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1 Before You Start

Errors detected by Math 330 students, Spring 2017:
Date Topic

2024-11-25 Error in Introduction 2.3(d). Incorrect version: function f(x) : D → C
has domain C and codomain D. Correct version: function f(x) : D →
C has domain D and codomain C. Detected by Ryan Wang.

2017-01-26 Error in Definition 5.2. Incorrect version: A relation is symmetric if
x1Rx2 implies x1Rx2 for all x1, x2 ∈ X . Correct version: A relation is
symmetric if x1Rx2 implies x2Rx1 for all x1, x2 ∈ X . Detected by Brad
Whistance.

1.1 About This Document

Remark 1.1 (The purpose of this document). The original version of this document was written in
2005 under the title “Introduction to Abstract Math – A Journey to Approximation Theory”. Since
then parts of it were discarded and others have been added. It now serves as lecture notes for the
course “Math 330: Number systems” which is held at the Department of Mathematical Sciences
at Binghamton University. Parts of the remainder of this chapter are specifically addressed to the
students of this course.
These notes serve at least two purposes:

(a) They contain material on topics that cannot found in sufficient detail or generality in the
textbook [2] Beck/Geoghegan: The Art of Proof. That book serves as the primary reference
for the first two thirds of the Math 330 course. It is often simply referred to as “B/G” in
these notes.

(b) This document covers material which is beyond the scope of [2] B/G such as
• material on lim inf and lim sup
• convergence, continuity and compactness in metric spaces
• applications of Zorn’s Lemma

These topics are usually covered in the last third of my Math 330 class.
Prof. Geoghegan has graciously given permission to let me copy definitions, proofs and theorems
verbatim from this text. I have indicated for such items how they are referenced there. An example
is, e.g., proposition 3.20 on p.66 of this document which is stated here for integral domains and
shows its origin by the references B/G prop.1.13 and B/G prop.8.14. No proof is given in the B/G
student edition for this proposition, and in all such circumstances I too do not furnish a proof to the
student unless I have one that is quite different from the one to be found in the instructor’s edition.
�

Remark 1.2 (Acknowledgements). Chapters 2 and 4 of this document draw on [5] Bryant, Kirby
Course Notes for MAD 2104. Moreover such a document cannot be written with the intent to
supplement the [2] B/G book without strongly borrowing from it. �

Remark 1.3 (How to navigate this document I). Scrutinize the table of contents, including the head-
ings for the subchapters. You will find many entries there tagged with a directive. The following
explains the meaning of those tags.
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a. “Understand this” directive: When you read “Understand this”, you should know the defini-
tions, propositions and theorems without worrying about proofs. It is quite likely that this kind of
material will be referenced in more important sections of this document. As of May 2022 only the
chapter on logic contains this directive.

b. “ ? ” directive: Chapters marked “ ? ” are optional. The student need not worry about
learning the material, although it may be referenced in the non optional chapters if doing so benefits
the interested reader. This symbol is also used to indicate that a certain statement or maybe just its
proof can be skipped. Again, it may be referenced in the non optional chapters to provide some
background for the interested reader. Moreover certain definitions are tagged with this symbol,
but the reader should NOT skip those definitions: My students are not expected to give precise
equivalents of such definitions in quizzes and exams, but they will need to know where to find
them to do their homework and to make sense of the propositions and theorems and their proofs.

Notation Alert: All directives discussed above apply to the entire subtree, and a lower
level directive overrides the “parent directives”. Accordingly, when you do not see any
comment, back up in the table of contents: first to the parent entry, then to its parent entry
. . . until you find one.

Homework: You will find almost every week reading assignments as part of your home-
work. The reading is due prior to when it is needed in class, both for this document and the
Beck/Geoghegan text. I assume that you did your reading and I will assume in particular
that you have learned the definitions, also those tagged with a “ ? ” symbol, so that I
can move along at a fast pace except for some topics that I will focus on in detail.

We use colored boxes like the two above according to the following. Generally speaking,

These boxes contain important definitions or parts thereof.

These boxes contain important theorems and proposiitions or parts thereof.

These boxes contain other kinds of important items that are worth while to know. �

There are definitions and theorems that contain two or even three small boxes rather than a big one.
There is a technical reason: such boxes do not span pages and will needlessly inflate the page count
of the docum

Remark 1.4 (How to navigate this document II). I believe that, particularly in Math, more words
take a lot less time to understand than a skeletal write-up like one often finds in the [2] B/G text.
Accordingly, almost all of the material in this document comes with quite detailed proofs. Those
proofs are there for you to study.
Some of those proofs, notably those in prop. 8.4 on p.240, make use of “⇔” to show that two sets
are equal. You should study this technique but, as you will hear me say many times in class, I
recommend that you abstain from using “⇔” between statements in your proofs. You very likely
lack the experience to use this technique without errors.
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Some of the material was written from scratch, other material was pulled in from a document that
was written as early as 10 years ago. I have make an attempt to make the entire document more
homogeneous but there will be some inconsistencies. Your help in pointing out to me the most
notable trouble spots would be deeply appreciated.
There are differences in style: the original document was written in a much more colloquial style
as it was addressed to a younger audience of high school students who had expressed a special
interest in studying college level math. �

This is a living document: material will be added as I find the time to do so. Be sure to
check the latest PDF frequently. You certainly should do so when an announcement was
made that this document contains new additions and/or corrections.

1.2 How to Properly Write a Proof

Study this brief chapter to understand some of the dos and don’ts when submitting your home-
work.
To prove the validity of an equation such as A = Z, do one of the following:
Method a.

A = B (use ....)
= C (use ....)
= D (use ....)

.....................
= Z (use ....)

You then conclude from the transitivity of equality that A = Z is indeed true.

Transitivity of equality means that if A = B and B = C then A = C.

Method b. You transform the left side (L.S.) and the right side (R.S.) separately and show that in
each case you obtain the same item, say M :
Left side:

A = B (use ....)
= C (use ....)
= D (use ....)

.....................
= M (use ....)
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Right side:

Z = Y (use ....)
= X (use ....)
= W (use ....)

.....................
= M (use ....)

You rightfully conclude that the proof is done because it follows from A = M and Z = M that
A = Z.

4!4!4!

You are not allowed to structure your proof that A = Z as follows.

Method c.

A = Z (that’s what you want to prove)
B = Y (you do with both A and Z the same operation ...... )
C = X (you do with both B and Y the same operation ...... )
D = W (you do with both C and X the same operation ...... )

.....................
M = M (you do with both L and N the same operation ...... )

What is potentially wrong with that last approach?
In the abstract the issue is that when using method (a) or (b) you take in each step an equation
that is true, and you rightfully conclude by the use of transitivity that you have proved what you
wanted to be true.
When you use method c, you take an equation that you want to be true (A = Z) but have not yet
proved that this is so. If this equation is wrong then doing the same thing to both of its sides will
potentially lead to a true equation.
Here is a simple example that demonstrates why method c is not allowed We will use this method
in two different ways to prove that −2 = 2.
First proof that −2 = 2:

−2 = 2 (want to prove)
−2 · 0 = 2 · 0 (multiply both sides from the right w. 0)

0 = 0 (anything times zero = zero)

We are done. �
Second proof that −2 = 2:

−2 = 2 (want to prove)
(−2)2 = 22 (square both sides)

4 = 4 (minus times minus = plus)

We are done. �
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Now you know why you must never use “method c” for a proof. 1

1You will learn later in this document about injective functions which guarantee that if you do an operation (apply a
function) to two different items then the results will also be different. If method c was restricted to only such operations
then there would not be a problem. In the two “proofs” that show −2 = 2 we use operations that are not injective: In
the first proof the assignment x 7→ 0 · x throws everything into the same result zero. The second proof employs the
assignment x 7→ x2 which maps two numbers x, y that differ by sign only to the same squared value x2 = y2.
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2 Preliminaries about Sets, Numbers and Functions

Introduction 2.1. This document strives for mathematically exact definition of proofs, but not in
this chapter. Here we want to provide the reader with a refresher of some material that a student
with an interest in mathematics should have previously encountered in beginner’s calculus, or even
in high school. Examples are union, intersection, and inclusion of sets, integers, rational and real
numbers, functions y = f(x) of a real–valued variable x with a real–valued function value y, and
some facts about differentiation and integration.

Much of this material will be given again in later chapters, with an accuracy that is satisfactory
to a mathematician, so why waste some effort here? For example, you will find in this chapter a
preliminary definition of the real numbers. See page 25. You will have to wait for the real thing (no
pun intended) until p.255 of chapter 9!

We will be careful not to use those preliminary definitions before we reach the exact ones
when developing the general theory, unless the instances where we do so will be covered a second
time with precision. Examples for this are the preliminary definitions of the integers, the ratio-
nal numbers, and the real numbers. However we will use the concepts defined here in examples,
in clarifying remarks, and in exercises to help the student achieve a better understanding of the
material.

The most important concept which we use before it is properly defined is that of “finitely
many”. We all know what it means, but do we know it in such a way that it can be used for the
study of abstract math? This author does not think so, and the proper definition of finiteness is
deferred until definition 7.1 on p.214, at the beginning of ch.7.1. Thus you will see examples of
infinite sets and we will use phrases like “finitely many” and “infinitely many” in examples and
preliminary definitions, but we will avoid using the concepts of finiteness and infiniteness when
developing the general theory. �

The students should read this chapter carefully, with the expectation that it contains mate-
rial that they are not familiar with, as much of it will be used in lecture without comment.
Very likely candidates are power sets, a function f : X → Y where domainX and codomain
Y are part of the definition.
We do not expect that the student has a background in proofs by induction and definitions
by recursion. Those concepts are introduced here as tools, and the student is expected to fa-
miliarize herself/himself with those techniques before the mathematical underpinnings are
provided in chapter 6.1 (The Integers, the Induction Axiom, and the Induction Principles)
on p.167.

2.1 Sets and Basic Set Operations

Introduction 2.2. This first subchapter of ch.2 is different from the following ones in that the treat-
ment of sets given here is sufficiently exact for a PhD in math unless s/he works in the areas of
logic or axiomatic set theory. The only exception is the end of the chapter where the preliminary
definition of the size of a set (Definition 2.12 on p.23) needs to refer to finiteness.
Ask a mathematician how her or his Math is different from the kind of Math you learn in high
school, in fact, from any kind of Math you find outside textbooks for mathematicians and theoretical
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physicists. One of the answers you are likely to get is that Math is not so much about numbers but
also about other objects, among them sets and functions. Once you know about those, you can
tackle sets of functions, set functions, sets of set functions, . . . �

An entire book can be filled with a mathematically precise theory of sets. 2 For our purposes the
following “naive” definition suffices:

Definition 2.1 (Sets). A set is a collection of stuff called members or elements which satisfies the
following rules: The order in which you write the elements does not matter and if you list an
element two or more times then it only counts once.
We write a set by enclosing within curly braces the elements of the set. This can be done by listing
all those elements or giving instructions that describe those elements. For example, to denote by X
the set of all integer numbers between 18 and 24 we can write either of the following:

X := {18, 19, 20, 21, 22, 23, 24} or X := {n : n is an integer and 18 ≤ n ≤ 24}

Both formulas clearly define the same collection of all integers between 18 and 24. On the left the
elements of X are given by a complete list, on the right we use instead setbuilder notation, i.e.,
instructions that specify what belongs to the set.
It is customary to denote sets by capital letters and their elements by small letters but this is not a
hard and fast rule. You will see many exceptions to this rule in this document.
We write x1 ∈ X to denote that an item x1 is an element of the set X and x2 /∈ X to denote that an
item x2 is not an element of the set X
For the above example we have 20 ∈ X , 27− 6 ∈ X , 38 /∈ X , ’Jimmy’ /∈ X . �

Example 2.1 (No duplicates in sets). The following collection of alphabetic letters is a set:

S1 = {a, e, i, o, u}

and so is this one:
S2 = {a, e, e, i, i, i, o, o, o, o, u, u, u, u, u}

Did you notice that those two sets are equal? �

Remark 2.1. The symbol n in the definition of X = {n : n is an integer and 18 ≤ n ≤ 24} is a
dummy variable in the sense that it does not matter what symbol you use. The following sets all
are equal to X :

{x : x is an integer and 18 ≤ x ≤ 24},
{α : α is an integer and 18 ≤ α ≤ 24},
{Z : Z is an integer and 18 ≤ Z ≤ 24} �

2See remark 2.2 (“Russell’s Antinomy”) below.

14 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

Remark 2.2 (Russell’s Antinomy). Care must be taken so that, if you define a set with the use of
setbuilder notation, no inconsistencies occur. Here is an example of a definition of a set that leads
to contradictions.

A := {B : B is a set and B /∈ B}(2.1)

What is wrong with this definition? To answer this question let us find out whether or not
this set A is a member of A. Assume that A belongs to A. The condition to the right of the colon
states that A /∈ A is required for membership in A, so our assumption A ∈ A must be wrong. In
other words, we have established “by contradiction” that A /∈ A is true. But this is not the end of it:
Now that we know that A /∈ A it follows that A ∈ A because A contains all sets that do not contain
themselves.
In other words, we have proved the impossible: both A ∈ A and A /∈ A are true! There is no
way out of this logical impossibility other than excluding definitions for sets such as the one given
above. It is very important for mathematicians that their theories do not lead to such inconsistencies.
Therefore, examples as the one above have spawned very complicated theories about “good sets”.
It is possible for a mathematician to specialize in the field of axiomatic set theory (actually, there
are several set theories) which endeavors to show that the sets are of any relevance in mathematical
theories do not lead to any logical contradictions.

The great majority of mathematicians take the “naive” approach to sets which is not to worry
about accidentally defining sets that lead to contradictions and we will take that point of view in
this document. �

We sometimes refer in the examples to the sets of numbers N (natural numbers), Z (integers), R (real
numbers). If you are not familiar with those set please review briefly Definitions 2.13 and 2.14 at the
start of section 2.3 (Numbers). This will come in handy for understanding the following example
which demonstrates that some or all elements of a set can be sets themselves.

Example 2.2.
(a) A := { ]a, b[ : a, b ∈ R, 0 < b− a < 2} is the set of all open intervals of length less than 2
(b) B := {K :K is a set of integers }We will later refer to B as the power set of Z. 3 �

Definition 2.2 (empty set). ∅ or { } denotes the empty set. 4 It is the one set that does not contain
any elements. �

Remark 2.3 (Elements of the empty set and their properties). You can state anything you like about
the elements of the empty sets as there are none. The following statements all are true:

(a) If x ∈ ∅ then x is a positive number.
(b) If x ∈ ∅ then x is a negative number.
(c) Define a ∼ b if and only if both are integers and a − b is an even number.

For all x, y, z ∈ ∅ it is true that
(c1) x ∼ x,
(c2) if x ∼ y then y ∼ x,
(c3) if x ∼ y and y ∼ z then x ∼ z.

(d) Let A be a set. If x ∈ ∅ then x ∈ A.
3See Definition 2.10 on p.22.
4 We discourage the use of { } since it makes expressions with nested braces hard to read.
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As you will learn later, (c1)+(c2)+(c3) means that “∼” is an equivalence relation (see Definition 5.3
on p.128) and (d) means that the empty set is a subset (see the next definition) of all sets, including
itself. �

Definition 2.3 (subsets, supersets and equality of sets).
(a) We say that a set A is a subset of the set B and we write A ⊆ B if each element of A also

belongs to B. Equivalently we say that B is a superset of the set A and we write B ⊇ A .
We also say that B includes A or A is included by B. Note that A ⊆ A and ∅ ⊆ A is true for
all sets A.

(b) If A ⊆ B but A 6= B, i.e., there is at least one x ∈ B such that x /∈ A, then we say that A is
a strict subset or a proper subset of B. We write “A ( B” or “A ⊂ B”. 5 Alternatively we
say that B is a strict superset or a proper superset of A and we write “B ) A”) or “B ⊃ A”.

(c) We say that two sets A and B are equal if both A ⊆ B and B ⊆ A �

BBB

AAA

Figure 2.1: Set inclusion: A ⊆ B, B ⊇ A

Note that A = B iff each element of A also belongs to B and each element of B also belongs to A iff
both A and B contain the same elements. Here “iff” is a short for “if and only if”: P iff Q for two
statements P and Q means that if P is valid then Q is valid and vice versa. 6

To show that two sets A and B are equal you show that
(a) if x ∈ A then x ∈ B,
(b) if x ∈ B then x ∈ A.

Definition 2.4 (Unions and intersections of two sets). Given are two arbitrary sets A and B. No
assumption is made that either one is contained in the other or that either one is not empty!

(a) The union A ∪ B (pronounced "A union B") is defined as the set of all elements which
belong to A or B or both. 7

5We try to avoid the notation “A ⊂ B”
6A formal definition of “if and only if” will be given in Definition 4.10 on p.93 where we will also introduce the

symbolic notation P ⇔ Q. Informally speaking, a statement is something that is either true or false.
7We could have shortened the phrase “all elements which belong to A or B or both” to “all elements which belong

to A or B”, and we will almost always do so because it is understood among mathematicians that “or” always means
at least one of the choices. If they mean instead exactly one of the choices #1,#2, . . .#n then they will use the phrase
“either #1 or #2 or . . . or #n. See rem3.3 on p.63. We will also see in a moment that there is a special symbolA4B which
denotes the items which belong to either A or B (but not both).
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(b) The intersectionA∩B (pronounced "A intersection B") is defined as the set of all elements
which belong to both A and B. �

It is obvious how to define unions and intersections of more than two sets: If A1, A2, . . . , An is a
collection of n sets then we define

Definition 2.5 (Unions and intersections of n sets). Let A1, A2, . . . , An be arbitrary sets.

(a) The union
n⋃
j=1

Aj := A1 ∪ A2 ∪ · · · ∪ An is defined as the set of all those items which

belong to at least one of the sets, i.e.,

(2.2) x ∈
n⋃
j=1

Aj ⇔ x ∈ Aj for at least one index j.

(b) The intersection
n⋂
j=1

Aj := A1 ∩ A2 ∩ · · · ∩ An is defined as the set of all those items

which belong to each and everyone of the sets, i.e.,

(2.3) x ∈
n⋂
j=1

Aj ⇔ x ∈ Aj for each index j. �

Definition 2.6 (Disjoint unions). We call two sets A and B disjoint , also mutually disjoint, , if
A ∩B = ∅. More generally, we say that a collection of sets A1, A2, . . . , An is (mutually) disjoint if
each pair Ai, Aj for different indices i and j is disjoint. We often write “]” (pronounced “disjoint
union”) rather than “∪” to remind the reader that we are dealing with unions of disjoint sets, i.e.,
we write

A ] B A1 ] A2 ] · · · ] An ,
n⊎
j=1

Aj ,

rather than A ∪B, A1 ∪A2 ∪ · · · ∪An,
n⋃
j=1

Aj . �

A ∪B: A ∪B ∪ C: A ∩B: A ∩B ∩ C:

A B A B

C

A B A B

C

Figure 2.2: Union and intersection of sets
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Remark 2.4. It is obvious from the definition of unions and intersections and the meaning of the
phrases “ all elements which belong to A or B or both”, “all elements which belong to both A and
B” and “A ⊆ B if each element of A also belongs to B” that the following is true for arbitrary sets
A,B and C.

A ∩B ⊆ A ⊆ A ∪B,(2.4)
A ⊆ B ⇒ A ∩B = A and A ∪B = B,(2.5)
A ⊆ B ⇒ A ∩ C ⊆ B ∩ C and A ∪ C ⊆ B ∪ C.(2.6)

The symbol ⇒ stands for “allows us to conclude that”. So A ⊆ B ⇒ A ∩ B = A means
“From the truth of A ⊆ B we can conclude that A ∩ B = A is true”. Shorter: “From A ⊆ B
we can conclude that A ∩ B = A”. Shorter: “If A ⊆ B then it follows that A ∩ B = A”.
Shorter: “If A ⊆ B then A ∩B = A”. More technical: “A ⊆ B implies A ∩B = A”.

You will learn more about implication in ch.4 of this document and in ch.3 (Some Points of Logic)
of [2] Beck/Geoghegan: The Art of Proof. �

Definition 2.7 (Set differences and symmetric differences). Given are two arbitrary sets A and B.
No assumption is made that either one is contained in the other or that either one is not empty!
The difference set or set difference A \ B (pronounced "A minus B") is defined as the set of all
elements which belong to A but not to B:

(2.7) A \B := {x ∈ A : x /∈ B}

The symmetric differenceA4B (pronounced "A delta B") is defined as the set of all elements which
belong to either A or B but not to both A and B:

(2.8) A4B := (A ∪B) \ (A ∩B) �

Definition 2.8 (Universal set). Usually there always is a big set Ω that contains everything we are
interested in and we then deal with all kinds of subsets A ⊆ Ω. Such a set is called a “universal”
set. �

For example, in this document, we often deal with real numbers and our universal set will then be
R. 8 If there is a universal set, it makes perfect sense to talk about the complement of a set:

Definition 2.9 (Complement of a set). Let Ω be a universal set. The complement of a set A ⊆ Ω

consists of all elements of Ω which do not belong to A. We write A{. or {A In other words:

(2.9) A{ := {A := Ω \A = {ω ∈ Ω : x /∈ A} �

8R is the set of all real numbers, i.e., the kind of numbers that make up the x-axis and y-axis in a beginner’s calculus
course (see ch.2.3 (“Classification of numbers”) on p.24).
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A \B: A4B: Universal set: A{:

A B A B
ΩΩΩ AAA

A{A{A{

Figure 2.3: Difference, symmetric difference, universal set, complement

Remark 2.5. Note the following: If Ω is a universal set then

Ω{ = ∅, ∅{ = Ω. �(2.10)

Example 2.3 (Complement of a set relative to the unit interval). Assume we are exclusively dealing
with the unit interval, i.e., Ω = [0, 1] = {x ∈ R : 0 ≤ x ≤ 1}. Let a ∈ [0, 1] and δ > 0 and

(2.11) A = {x ∈ [0, 1] : a− δ < x < a+ δ}

the δ–neighborhood 9 of a (with respect to [0, 1] because numbers outside the unit interval are not
considered part of our universe). Then the complement of A is

A{ = {x ∈ [0, 1] : x ≤ a− δ or x ≥ a+ δ}. �

Draw some Venn diagrams to visualize the following formulas.

Proposition 2.1. Let A, B, X be subsets of a universal set Ω and assume A ⊆ X . Then

A ∪ ∅ = A; A ∩ ∅ = ∅(2.12a)
A ∪ Ω = Ω; A ∩ Ω = A(2.12b)

A ∪A{ = Ω; A ∩A{ = ∅(2.12c)
A4B = (A \B) ] (B \A)(2.12d)
A \A = ∅(2.12e)
A4∅ = A; A4A = ∅(2.12f)
X4A = X \A(2.12g)
A ∪B = (A4B) ] (A ∩B)(2.12h)
A ∩B = (A ∪B) \ (A4B)(2.12i)
A4B = ∅ if and only if B = A(2.12j)

9Neighborhoods of a point will be discussed in the chapter on the topology of Rn (see (12.6) on p.366). In short, the
δ–neighborhood of a is the set of all points with distance less than δ from a.
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PROOF: The proof is left as exercise 2.2. See p.47. �

Next we give a very detailed and rigorous proof of a simple formula for sets. The reader should
make an effort to understand it line by line.

Proposition 2.2 (Distributivity of unions and intersections for two sets). Let A,B,C be sets. Then

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C),(2.13)
(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C).(2.14)

PROOF: We only prove (2.13). The proof of (2.14) is left as exercise 2.1.
PROOF of “⊆”: Let x ∈ (A ∪ B) ∩ C. It follows from (2.4) on p.18 that x ∈ (A ∪ B), i.e., x ∈ A or
x ∈ B (or both). It also follows from (2.4) that x ∈ C. We must show that x ∈ (A ∩ C) ∪ (B ∩ C)
regardless of whether x ∈ A or x ∈ B.
Case 1: x ∈ A. Since also x ∈ C, we obtain x ∈ A∩C, hence, again by (2.4), x ∈ (A ∩ C) ∪ (B ∩ C),
which is what we wanted to prove.
Case 2: x ∈ B. We switch the roles of A and B. This allows us to apply the result of case 1, and we
again obtain x ∈ (A ∩ C) ∪ (B ∩ C).
PROOF of “⊇”: Let x ∈ (A ∩ C) ∪ (B ∩ C), i.e., x ∈ A ∩ C or x ∈ B ∩ C (or both). We must
show that x ∈ (A ∪ B) ∩ C regardless of whether x ∈ A ∩ C or x ∈ B ∩ C.
Case 1: x ∈ A ∩ C. It follows from A ⊆ A ∪ B and (2.6) on p.18 that x ∈ (A ∪ B) ∩ C, and we
are done in this case.
Case 2: x ∈ B ∩ C. This time it follows from A ⊆ A ∪ B that x ∈ (A ∪ B) ∩ C. This finishes the
proof of (2.13).
Epilogue: The proofs both of “⊆” and of “⊇” were proofs by cases, i.e., we divided the proof into
several cases (to be exact, two for each of “⊆” and “⊇”), and we proved each case separately. For
example we proved that x ∈ (A ∪ B) ∩ C implies x ∈ (A ∩ C) ∪ (B ∩ C) separately for the cases
x ∈ A and x ∈ B. Since those two cases cover all possibilities for x the assertion “if x ∈ (A∪B)∩C
then x ∈ (A ∩ C) ∪ (B ∩ C)” is proven. �

Proposition 2.3 (De Morgan’s Law for two sets). Let A,B ⊆ Ω. Then the complement of the union is
the intersection of the complements, and the complement of the intersection is the union of the complements:

(a) (A ∪B){ = A{ ∩B{ (b) (A ∩B){ = A{ ∪B{(2.15)

PROOF of (a):
(1) First we prove that (A ∪B){ ⊆ A{ ∩B{:
Assume that x ∈ (A ∪ B){. Then x /∈ A ∪B, which is the same as saying that x does not belong
to either of A and B. That in turn means that x belongs to both A{ and B{ and hence also to the
intersection A{ ∩B{.
(2) Now we prove that (A ∪B){ ⊇ A{ ∩B{:
Let x ∈ A{ ∩B{. Then x belongs to both A{, B{, hence neither to A nor to B, hence x /∈ A ∪ B.
Therefore x belong to the complement of A ∪B. This completes the proof of formula (a).
PROOF of (b):
The proof is very similar to that of formula (a) and left as an exercise. �
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Formulas (a) through (g) of the next proposition are very useful. You are advised to learn them by
heart and draw pictures to visualize them. You also should examine closely the proof of the next
proposition. It shows how a proof which involves 3 or 4 sets can be split into easily dealt with cases.

Proposition 2.4. Let A,B,C,Ω be sets such that A,B,C ⊆ Ω. Then
(a) (A4B)4C = A4(B4C)
(b) A4∅ = ∅4A = A
(c) A4A = ∅
(d) A4B = B4A

Further we have the following for the intersection operation:
(e) (A ∩B) ∩ C = A ∩ (B ∩ C)
(f) A ∩ Ω = Ω ∩A = A
(g) A ∩B = B ∩A

And we have the following interrelationship between4 and ∩:
(h) A ∩ (B4C) = (A ∩B)4(A ∩ C)

PROOF:
The proof of (a) is very tedious and there is a much more elegant proof, but that one requires knowl-
edge of indicator functions 10 and of base 2 modular arithmetic (see, e.g., [2] B/G (Beck/Geoghegan)
ch.6.2).
By definition x ∈ U4V if and only if either x ∈ U or x ∈ V , i.e.,
(either)

[
x ∈ U and x /∈ V

]
or
[
x ∈ V and x /∈ U

]
. Hence,

• x ∈ (A4B)4C ⇔ either x ∈ (A4B) or x ∈ C
⇔ either

[
x ∈ A, x /∈ B or x ∈ B, x /∈ A

]
or x ∈ C.

• x ∈ A4(B4C) ⇔ either x ∈ A or x ∈ (B4C)
⇔ either

[
x ∈ B, x /∈ C or x ∈ C, x /∈ B

]
or x ∈ A.

Thus, we obtain the following “truth table” for the eight possible combinations:

x ∈ . . . A B C A4B B4C (A4B4C) A4(B4C)
F F F F F F F
F F T F T T T
F T F T T T T
F T T T F F F
T F F T F T T
T F T T T F F
T T F F T F F
T T T F F T T

We have a perfect match of set membership in the two rightmost columns. Thus,

x ∈ (A4B4C) ⇔ A4(B4C) .

This proves (a).
The proofs of (b), (c), (d) are easy if you work with

U4V = (U \ V ) ] (V \ U) = (U ∩ V {) ] (V ∩ U{) .
10Indicator functions will be discussed in ch.8.5 on p.246 and in ch.9.9 on p.296.
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For example the proof of (c) is as follows.

A4A = (A ∩A{) ] (A ∩A{) = ∅ ] ∅ = ∅ .

The proofs of (e), (f), (g) are immediate. The proof of (h) can be done by cases, similarly to the proof
of (a). �

Definition 2.10 (Power set).

The power set
2Ω := {A : A ⊆ Ω}

of a set Ω is the set of all its subsets. Note that many older texts also use the notation P(Ω)
for the power set. �

Example 2.4.
(a) ]3.2, 4.8[∈ 2[3.2,4.8] because ]3.2, 4.8[ is a subset of [3.2, 4.8],

but [3.2, 4.8] /∈ 2]3.2,4.8[ because ]3.2, 4.8[ is not a subset of [3.2, 4.8].
(b) Let Z := { 5.4, {19}, π }. Then

2Z =
{
∅, {5.4}, {{19}}, {π}, {5.4, {19}}, {5.4, π}, {{19}, π}, {5.4, {19}, π}

}
. �

Remark 2.6. Note that ∅ ∈ 2Ω for all sets Ω, even if Ω = ∅, since 2∅ = {∅}. In particular, the power
set of the empty set is not empty. �

Definition 2.11 (Partition). Let Ω be a set and A ⊆ 2Ω, i.e., the elements of A are subsets of Ω.

We call A a partition or a partitioning of Ω if
(a) If A,B ∈ A such that A 6= B then A ∩B = ∅. In other words, A consists of mutually

disjoint subsets of Ω (see Definition 2.6),
(b) Each x ∈ Ω is an element of some A ∈ A. �

Remark 2.7. Let Ω be a set and A ⊆ 2Ω. Then A is a partition of Ω if and only if

For each x ∈ Ω, there exists a UNIQUE A ∈ A such that x ∈ A . �

Example 2.5.
a. For n ∈ Z let An := {n}. Then A := {An : n ∈ Z} is a partition of Z. A is not a partition

of N because not all its members are subsets of N and it is not a partition of Q or R. The
reason: 1

2 ∈ Q and hence 1
2 ∈ R, but 1

2 /∈ An for any n ∈ Z, hence condition b of def.2.11 is
not satisfied.

b. For n ∈ N let Bn := [ n2, (n+1)2[ = {x ∈ R : n2 ≤ x < (n+1)2}. Then B := {Bn : n ∈ N}
is a partition of [1,∞[. �
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Definition 2.12 (Size of a set (preliminary)).
(a) Let X be a finite set, i.e., a set which only contains finitely many elements. We write

∣∣X∣∣
for the number of its elements, and we call

∣∣X∣∣ the size of the set X .
(b) For infinite, i.e., not finite sets Y , we define |Y | :=∞. �

A lot more will be said about sets once families are defined.

2.2 The Proper Use of Language in Mathematics: Any vs All, etc

Mathematics must be very precise in its formulations. Such precision is achieved not only by means
of symbols and formulas, but also by its use of the English language. We will list some important
points to consider early on in this document.

2.2.0.1 All vs. ANY
Assume for the following that X is a set of numbers. Do the following two statements mean the
same?

(1) It is true for ALL x ∈ X that x is an integer.
(2) It is true for ANY x ∈ X that x is an integer.

You will hopefully agree that there is no difference and that one could rewrite them as follows:
(3) ALL x ∈ X are integers.
(4) ANY x ∈ X is an integer.
(5) EVERY x ∈ X is an integer.
(6) EACH x ∈ X is an integer.
(7) IF x ∈ X THEN x is an integer.

Is it then always true that ALL and ANY means the same? Consider
(8a) It is NOT true for ALL x ∈ X that x is an integer.
(8b) It is NOT true for ANY x ∈ X that x is an integer.

Completely different things have been said: Statement (8) asserts that as few as one item and as
many as all items in X are not integers, whereas (9) states that no items, i.e., exactly zero items in
X , are integers.
My suggestion: Express formulations like (8b) differently. You could have written instead

(8c) There is no x ∈ X such that x is an integer.

2.2.0.2 AND vs. IF ... THEN
Some people abuse the connective AND to also mean IF ... THEN. However, mathematicians use
the phrase “p AND q” exclusively to mean that something applies to both p and q. Contrast the use
of AND in the following statements:

(9) “Jane is a student AND Joe likes baseball”. This phrase means that both are true: Jane is
indeed a student and Joe indeed likes baseball.

(10) “You hit me again AND you’ll be sorry”. Never, ever use the word AND in this con-
text! A mathematician would express the above as “IF you hit me again THEN you’ll be
sorry”.

2.2.0.3 OR vs. EITHER ... OR
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The last topic we address is the proper use of “OR”. In mathematics the phrase
(11) “p is true OR q is true”

is always to be understood as
(12) “p is true OR q is true OR BOTH are true”, i.e., at least one of p, q is true.

This is in contrast to everyday language where “p is true OR q is true” often means that exactly one
of p and q is true, but not not both.
When referring to a collection of items then the use of “OR” also is inclusive If the items a, b, c, . . .
belong to a collection C , e.g., if those items are elements of a set, then

(13) “a OR b OR c OR ...” means that we refer to at least one of a, b, c, . . . .

Note that “OR” in mathematics always is an inclusive or, i.e., “A OR B” means “A OR B
OR BOTH”. More generally, “A OR B OR ...” means “at least one of A, B, ...”.
To rule out that more than one of the choices is true you must use a phrase like “EXACTLY
ONE OF A, B, C, ...” or “EITHER A OR B OR C OR ...”. We refer to this as an exclusive or.

2.3 Numbers

We start with an informal classification of numbers. It is not meant to be mathematically exact. We
will give exact definitions of the integers, rational numbers and real numbers in chapter 9 (The Real
Numbers).

Definition 2.13 (Integers and decimal numerals). A digit or decimal digit Is one of the numbers
0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
We call numbers that can be expressed as a finite string of digits, possibly preceded by a minus
sign, integers. In particular we demand that an integer can be written without a decimal point.
Examples of integers are

3, − 29, 0, 3 · 106, −1, 2.9̄, 12345678901234567890, −2018.(2.16)

Note that 3 · 106 = 3000000 is a finite string of digits and that 2.9̄ equals 3 (see below about the
period of a decimal numeral). We write Z for the set of all integers.
Numbers in the set N = {1, 2, 3, . . . } of all strictly positive integers are called natural numbers.
An integer n is an even integer if it is a multiple of 2, i.e., there exists j ∈ Z such that n = 2j, and it
is an odd integer otherwise. One can give a strict proof that n is odd if and only if there exists j ∈ Z
such that n = 2j + 1. See prop6.26 on p.196.

A decimal or decimal numeral is a finite or infinite list of digits, possibly preceded by a minus sign,
which is separated into two parts by a point, the decimal point. The list to the left of the decimal
point must be finite or empty, but there may be an infinite number of digits to its right. Examples
are

3.0, − 29.0, 0.0, −0.75, .3̄, 2.749̄, π = 3.141592....., −34.56.(2.17)

The bar on top of the rightmost part of a decimal such as “.3̄” means that this part should be
repeated over and over again, i.e., .3̄ = 0.33333333333 . . . and 1.234567 = 1.234567567567 . . . .
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We call the barred portion of the decimal digits the period of the number and we also talk about
repeating decimals. The number of digits in the barred portion is called the period length. This
period length can be bigger than one. For example, the number 1.234567 from above has period
length 3 and the number 0.145 has period length 2.
If the list to the right of the decimal point is of the form

d1d2d3 . . . dk00 . . . ,

i.e., all digits dk+1, dk+2, dk+3, . . . are zero, then we may remove them from the list. For example,
the following all denote the same decimal:

−12.34 = −12.340 = −12.340000 = −12.340̄.

The above example shows that any decimal numeral which can be represented by finitely many
digits, can also be represented as a repeating decimal (with period 0̄).
Any integer can be transformed into a decimal numeral of same value by appending the pattern “.0”
to its right. Hence the first three integers of (2.16) are equal in value to the first three decimals of
(2.17). The mathematician says that we identify the integer±d1d2d3 . . . dk and the decimal numeral
±d1d2d3 . . . dk.0, i.e., we do not distinguish those expressions and we consider them as equal, just
as we would “six” and “half a dozen”. �

We are ready to give an informal definition of the most important kind of numbers. The formal,
axiomatic, definition will be given in axiom 9.1 on p.255.

Definition 2.14 (Real numbers). We call any kind of number which can be represented as a decimal
numeral, a real number. We write R for the set of all real numbers. It follows from what was
remarked at the end of Definition 2.13 that integers, in particular natural numbers, are real numbers.
Thus we have the following set relations:

N ⊆ Z ⊆ R. �(2.18)

We next define rational numbers. The formal definition will be given in Definition 9.4 on p.255,

Definition 2.15 (Rational numbers). A number that is an integer or can be written as a fraction of
integers, i.e., as m

n where m,n ∈ Z and n 6= 0, is called a rational number. We write Q for the set of
all rational numbers. Examples of rational numbers are

3
4 , −0.75, −1

3 , .3̄,
7
1 , 16, 13

4 , −5, 2.999̄, −372
7 .

Note that a mathematician does not care whether a rational number is written as a fraction

numerator
denominator

or as a decimal numeral. The following all are representations of one third:

(2.19) 0.3̄ = .3̄ = 0.33333333333 . . . = 1
3 = −1

−3 = 2
6 ,

and here are several equivalent ways of expressing the number minus four:

(2.20) − 4 = −4.000 = −3.9̄ = −12
3 = 4

−1 = −4
1 = 12

−3 = −400
100 .
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If q ∈ Q then there are unique integers n and d such that q = n
d and

(a) d ∈ N,
(b) d is minimal: there are no numbers n′ ∈ Z and d′ ∈ N such that q = n′

d′ and d′ < d.

We say that this choice of n and d is a representation of q in lowest terms or that q is written in
lowest terms. For example, the representation of .3̄ in lowest terms is 1

3 and the representation of
−4 in lowest terms is −4

1 .

Note that if q ∈ Q is strictly positive and if d
n represents q in lowest terms then d ∈ N. �

There are real numbers which cannot be expressed as integers or fractions of integers.

Definition 2.16 (Irrational numbers). We call real numbers that are not rational irrational numbers.
They hence fill the gaps that exist between the rational numbers. In fact, there is a simple way
(but not easy to prove) of characterizing irrational numbers: Rational numbers are those that can
be expressed with at most finitely many digits to the right of the decimal point, including repeating
decimals. You can find the underlying theory and exact proofs in ch.9.6 (Decimal Expansions of
Real and Rational Numbers). Irrational numbers must then be those with infinitely many decimal
digits without a continually repeating pattern. �

Example 2.6. To illustrate that repeating decimals are in fact rational numbers we convert x = 0.145
into a fraction:

99x = 100x− x = 14.545− 0.145 = 14.4

It follows that x = 144/990, and that is certainly a fraction. �

Remark 2.8. Examples of irrational numbers are
√

2 and π. A proof that
√

2 is irrational (actually
that n

√
2 is irrational for any integer n ≥ 2) is given in prop.9.30 on p.276. �

Remark 2.9. We will see in ch.9.7 (Countable and Uncountable Subsets of the Real Numbers)
on p.285 that, in a sense, there are a lot more irrational numbers than rational numbers, even
though Q is a “dense” subset in R in the following sense: No matter how small an interval
]a, b[= {x ∈ R : a < x < b} of real numbers you choose, it will contain infinitely many rational
numbers. �

Definition 2.17 (Types of numbers). We summarize what was said sofar about the classification of
numbers:

N := {1, 2, 3, . . . } denotes the set of natural numbers.
Z := {0,±1,±2,±3, . . . } denotes the set of all integers.
Q := {n/d : n ∈ Z, d ∈ N} denotes the set of all rational numbers.
R := {all integers or decimal numbers with finitely or infinitely many decimal digits} de-
notes the set of all real numbers.
R \Q = {all real numbers which cannot be written as fractions of integers} denotes the set
of all irrational numbers. There is no special symbol for irrational numbers. Example:

√
2

and π are irrational. �
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Here are some customary abbreviations of some often referenced sets of numbers:

N0 := Z+ := Z≥0 := {0, 1, 2, 3, . . . } denotes the set of nonnegative integers,
R+ := R≥0 := {x ∈ R : x ≥ 0} denotes the set of all nonnegative real numbers,
R+ := R>0 := {x ∈ R : x > 0} denotes the set of all positive real numbers,
R? := R 6=0 := {x ∈ R : x 6= 0}. �

Definition 2.18 (Translation and dilation of sets of numbers). For a set of numbers A and numbers
λ and b, we define 11

λA+ b := {λa+ b : a ∈ A}.(2.21)

In particular, for λ = ±1, we obtain

A+ b = {a+ b : a ∈ A},(2.22)
−A = {−a : a ∈ A}. �(2.23)

Definition 2.19 (Intervals of Numbers 12 ). For a, b ∈ R we have the following intervals.

• [a, b] := {x ∈ R : a ≤ x ≤ b} is the closed interval with endpoints a and b.
• ]a, b[ := {x ∈ R : a < x < b} is the open interval with endpoints a and b.
• [a, b[ := {x ∈ R : a ≤ x < b} and ]a, b] := {x ∈ R : a < x ≤ b} are half-open intervals

with endpoints a and b.

The symbol “∞” stands for an object which itself is not a number but is larger than any (real)
number, and the symbol “−∞” stands for an object which itself is not a number but is smaller than
any number. We thus have −∞ < x < ∞ for any number x. This allows us to define the following
intervals of “infinite length”:

]−∞, a] :={x ∈ R : x ≤ a}, ]−∞, a[ := {x ∈ R : x < a},
]a,∞[ :={x ∈ R : x > a}, [a,∞[ := {x ∈ R : x ≥ a}, ]−∞,∞[ := R

(2.24)

You should always work with a < b. In case you don’t, you get

• [a, a] = {a}; [a, a[ = ]a, a[ = ]a, a] = ∅
• [a, b] = [a, b[ = ]a, b[ = ]a, b] = ∅ for a ≥ b �

11See Definition 3.8 in ch.3.2
12The following will be generalized in Definition 3.12 on p.70 to so called ordered integral domains.
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Notation 2.1 (Notation Alert for intervals of integers or rational numbers).

It is at times convenient to also use the notation [. . . ], ] . . . [, [. . . [, ] . . . ], for intervals of
integers or rational numbers. We will subscript them with Z or Q. For example,

[ 3, n ]Z = [ 3, n] ∩ Z = {k ∈ Z : 3 ≤ k ≤ n},
]−∞, 7 ]Z = ]−∞, 7 ] ∩ Z = {k ∈ Z : k ≤ 7} = Z≤7,

]a, b[Q = ]a, b[∩Q = {q ∈ Q : a < q < b}.

An interval which is not subscripted always means an interval of real numbers, but we
will occasionally write, e.g., [a, b]R rather than [a, b], if the focus is on integers or rational
numbers and an explicit subscript helps to avoid confusion. �

Definition 2.20 (Absolute value). For a real number x we define its absolute value as

|x| =

{
x ifx ≥ 0,

−x ifx < 0.
�

Example 2.7. |3| = 3; | − 3| = 3; | − 5.38| = 5.38. �

Remark 2.10. For any real number x we have
√
x2 = |x|. �(2.25)

Assumption 2.1 (Square roots are always assumed nonnegative). Remember that for any number
a it is true that

a · a = (−a)(−a) = a2, e.g., 22 = (−2)2 = 4,

or that, expressed in form of square roots, for any number b ≥ 0

(+
√
b)(+
√
b) = (−

√
b)(−
√
b) = b.

We will always assume that “
√
b” is the positive value unless the opposite is explicitly

stated.

Example:
√

9 = +3, not −3. �

Proposition 2.5 (The Triangle Inequality for real numbers). The following inequality is used all the time
in mathematical analysis to show that the size of a certain expression is limited from above:

Triangle Inequality : |a+ b| ≤ |a|+ |b|(2.26)

This inequality is true for any two real numbers a and b.
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PROOF:
It is easy to prove this: just look separately at the three cases where both numbers are nonnegative,
both are negative or where one of each is positive and negative. �

The next definition should be familiar to anyone who has worked with matrix algebra.

Definition 2.21 (Kronecker symbol). ?

For i, j ∈ N, the Kronecker symbol δij , also called the Kronecker delta, is defined as follows.

δij :=

{
0 if i 6= j,

1 if i = j. �

2.4 A First Look at Functions, Sequences and Families

The material on functions presented in this section will be discussed again and in greater detail in
chapter 5 (Functions and Relations) on p.126.

Introduction 2.3. You are familiar with functions from calculus. Examples are f1(x) =
√
x and

f2(x, y) = ln(x − y). Sometimes f1(x) means the entire graph, i.e., the entire collection of pairs(
x,
√
x
)

and sometimes it just refers to the function value
√
x for a “fixed but arbitrary” number x.

In case of the function f2(x): Sometimes f2(x, y) means the entire graph, i.e., the entire collection of
pairs

(
(x, y), ln(x − y)

)
in the plane. At other times this expression just refers to the function value

ln(x− y) for a pair of “fixed but arbitrary” numbers (x, y).
This issue is addressed in the material of ch.5.2 on p.131 which precedes the mathematically precise
definition of a function (Definition 5.7 on p.134). You are encouraged to look at it once you have
read the remainder of this short section as ch.5.2 contains everything you see here.
To obtain a usable definition of a function there are several things to consider. In the following f1(x)
and f2(x, y) again denote the functions f1(x) =

√
x and f2(x, y) = ln(x− y).

(a) The source of all allowable arguments (x–values in case of f1(x) and (x, y)–values in case
of f2(x, y)) will be called the domain of the function. The domain is explicitly specified
as part of a function definition and it may be chosen for whatever reason to be only
a subset of all arguments for which the function value is a valid expression. In case
of the function f1(x) this means that the domain must be restricted to a subset of the
interval [0,∞[ because the square root of a negative number cannot be taken. In case of
the function f2(x, y) this means that the domain must be restricted to a subset of { (x, y) :
x, y ∈ R and x−y > 0} because logarithms are only defined for strictly positive numbers.

(b) The set to which all possible function values belong will be called the codomain of the
function. As is the case for the domain, the codomain also is explicitly specified as part
of a function definition. It may be chosen as any superset of the set of all function values
for which the argument belongs to the domain of the function.

For the function f1(x) this means that we are OK if the codomain is a superset of the
interval [0,∞[. Such a set is big enough because square roots are never negative. It is OK
to specify the interval ]−3.5,∞[ or even the set R of all real numbers as the codomain. In
case of the function f2(x, y) this means that we are OK if the codomain contains R. Not
that it would make a lot of sense, but the set R ∪ { all inhabitants of Chicago } also is an
acceptable choice for the codomain.
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(c) A function y = f(x) is not necessarily something that maps (assigns) numbers or pairs
of numbers to numbers. Rather domain and codomain can be a very different kind of
animal. In chapter 4 on logic you will learn about statement functions A(x) which assign
arguments x from some set U , called the universe of discourse, to statements A(x), i.e.,
sentences that are either true or false.

(d) Considering all that was said so far one can think of the graph of a function f(x) with
domain D and codomain C (see earlier in this note) as the set

Γf := {
(
x, f(x)

)
: x ∈ D}.

Alternatively one can characterize this function by the assignment rule which specifies
how f(x) depends on any given argument x ∈ D. We write “x 7→ f(x)” to indicate this.
You can also write instead f(x) = whatever the actual function value will be.
This is possible if one does not write about functions in general but about specific func-
tions such as f1(x) =

√
x and f2(x, y) = ln(x− y). We further write

f : D −→ C

as a short way of saying that the function f(x) has domain D and codomain C.
In case of the function f1(x) =

√
x for which we might choose the interval X := [ 2.5, 7 ]

as the domain (small enough because X ⊆ [0,∞[) and Y := ]1, 3[ as the codomain (big
enough because 1 <

√
x < 3 for any x ∈ X) we specify this function as

either f1 : [ 2.5, 7 ]→ ]1, 3[; x 7→
√
x or f1 : [ 2.5, 7 ]→ ]1, 3[; f(x) =

√
x.

Let us choose U := {(x, y) : x, y ∈ R and 1 ≤ x ≤ 10 and y < −2} as the domain
and V := [0,∞[ as the codomain for f2(x, y) = ln(x − y). These choices are OK because
x − y ≥ 1 for any (x, y) ∈ U and hence ln(x − y) ≥ 0, i.e., f2(x, y) ∈ V for all (x, y ∈ U .
We specify this function as

either f2 : U → V, (x, y) 7→ ln(x− y) or f2 : U → V, f(x, y) = ln(x− y). �

We incorporate what we noted above into this preliminary definition of a function.

Definition 2.22 (Preliminary definition of a function).
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A function f consists of two nonempty sets X and Y and an assignment rule x 7→ f(x)
which assigns any x ∈ X uniquely to some y ∈ Y . We write f(x) for this assigned value
and call it the function value of the argument x. X is called the domain and Y is called
the codomain of f . We write

f :X → Y, x 7→ f(x).(2.27)

We read “a 7→ b” as “a is assigned to b” or “a maps to b” and refer to 7→ as the maps to
operator or assignment operator. The graph of such a function is the collection of pairs

Γf := {
(
x, f(x)

)
: x ∈ X}. �(2.28)

Remark 2.11. The name given to the argument variable is irrelevant. Let f1, f2, X, Y, U, V be as
defined in (d) of the introduction to ch.2.4 (A First Look at Functions, Sequences and Families). The
function

g1 : X → Y, p 7→ √p

is identical to the function f1. The function

g2 : U −→ V, (t, s) 7→ ln(t− s)

is identical to the function f2 and so is the function

g3 : U −→ V, (s, t) 7→ ln(s− t).

The last example illustrates the fact that you can swap function names as long as you do it consis-
tently in all places.
There are times when we write f(·) rather than f for a function f when this avoids confusion. For
example physicists and engineers often write x = x(t) to denote the height x of a particle as a
function of time t. In such a case we would write

x(·) : [0,∞[−→ R ; t 7→ x(t)

rather than
x : [0,∞[−→ R ; t 7→ x(t)

and refer to x(·) rather than x. �

Now some remarks about inverse functions.

Remark 2.12. We all know what it means that f(x) =
√
x has the function g(x) = x2 as its inverse

function: f and f−1 cancel each other, i.e.,

g
(
f(x)

)
= f

(
g(x)

)
= x.

That certainly is the most important aspect, but there is more. There is an issue with how free
one is in the choice of domains and codomains of both functions. Let us replace g with the more
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familiar f−1, let us write Domf and Codf for domain and codomain of f and Domf−1 and Codf−1

for domain and codomain of f−1. Thus we have

f : Domf −→ Codf and f−1 : Domf−1 −→ Codf−1 .

We want that f−1 cancels the effect of f for all arguments of f , and we want that f cancels the effect
of f−1 for all arguments of f−1. In other words we want

f−1
(
f(x)

)
= x for all x ∈ Domf ,(2.29)

f
(
f−1(y)

)
= y for all y ∈ Domf−1 .(2.30)

(a) We choose Domf := [0,∞[ since that’s the biggest set of real numbers for which the square
root exists, and let us choose Codf := R. Since everything can be squared we choose
Codf−1 := R and Codf−1 := R.
We have a problem. Let x := −2. Then f

(
f−1(−2)

)
= f(4) = 2, thus (2.30) does not hold.

We have to exclude negative numbers fromDomf−1 , so we try again withDomf−1 := [0,∞[,
leaving everything else unchanged. Now (2.30) is satisfied.

(b) Some abstract considerations for the inverse: Let f : X → Y, x 7→ f(x). Since the inverse
should satisfy f−1

(
f(x)

)
= x it must accept items of the form f(x) as arguments, thus its

domain must be part of or maybe even all of Codf . Likewise, since the f itself should satisfy
f
(
f−1(y)

)
= y, it must accept items of the form f−1(y) as arguments, thus its domain must

be part of or maybe even all of Codf−1 .
There are mathematical reasons to demand equality in the above: We want

Domf−1 = Codf = Y ; and Codf−1 = Domf = X.

Thus, if f : X → Y, x 7→ f(x) has an inverse then it must be of the form

f−1 : Y → X, y 7→ f−1(y). �

We are now ready to give the preliminary definition of an inverse function.

Definition 2.23 (Preliminary definition of the inverse function).

Given are two nonempty sets X and Y and a function f : X → Y with domain X and
codomain Y . We say that f has an inverse function if it satisfies all of the following condi-
tions which uniquely determine this inverse function, so that we are justified to give it the
symbol f−1:

(a) f−1 : Y → X , i.e., f−1 has domain Y and codomain X .
(b) f−1

(
f(x)

)
= x for all x ∈ X , and f

(
f−1(y)

)
= y for all y ∈ Y . �

You will find a lot more about functions in ch.5.2 (Functions (Mappings) and Families). Here is just
one example. You will learn there that a function f has an inverse f−1 if and only if f is “onto”: for
each y ∈ Y there is at least one x ∈ X such that f(x) = y, and if f is “one–one”: for each y ∈ Y there
is at most one x ∈ X such that f(x) = y.
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Example 2.8. Be sure you understand the following:
(a) f : R→ R; x→ ex does not have an inverse f−1(y) = ln(y) since its domain would have

to be the codomain R of f and ln(y) is not defined for y ≤ 0.
(b) g : R→ ]0,∞[; x→ ex has the inverse g−1 : ]0,∞[→ R; g−1(y) = ln(y) since

Domg−1 = Codg = ]0,∞[, Codg−1 = Domg = R,

eln(y) = y for 0 < y <∞, ln(ex) = x for all x ∈ R. �

We now briefly discuss (infinite) sequences, subsequences and finite sequences. The exact defini-
tion of sequences and their subsequences will be given in Definition 5.22 on p.158, that of finite
sequences in Definition 7.2 on p.222.

Definition 2.24. Let n? be an integer and let there be a uniquely determined item xj for each integer
j ≥ n?. Such an item can be, e.g., a number or a set (the only items we are looking at for now). In
other words:

Assume that a unique item xj is assigned to each j ∈ [n?,∞[Z. We write

(xj)j≥n? or (xj)j∈[n?,∞[Z or (xj)
∞
j=n? or xn? , xn?+1 , xn?+2 , . . .

for such a collection of items, and we call it a sequence with start index n?. We call the set
[n?,∞[Z of indices the index set of the sequence.

The symbol j is a dummy variable, same as the name x of the argument of a function f(x). See
Remark 2.11 on p.31. �

Example 2.9. (a) If uk = k2 for k ∈ Z, then (uk)k≥−2 is the sequence of integers

4, 1, 0, 1, 4, 9, 16, . . .

(b) If Aj =

[
−1− 1

j
, 1 +

1

j

]
=

{
x ∈ R : −1 − 1

j
≤ x ≤ 1 +

1

j

}
,

then (Aj)j≥3 is a sequence of sets, the intervals (of real numbers)[
−4

3
,
4

3

]
,

[
−5

4
,
5

4

]
,

[
−6

5
,
6

5

]
,

[
−7

6
,
7

6

]
, . . .

(c) For j ∈ [0,∞]Z, let zj := (−1)j . Then (zj)
∞
j=0 is the sequence of integers

1, −1, 1, −1, 1, −1, 1, −1, . . . �

(d) The symbols naming a sequence are dummy variables, same as the symbols f and x denoting
a function f(x). See Remark 2.11 on p.31. Thus, if um = m2 and if Qj = j2, then (um)m≥−2 and
(Qj)j≥−2 are the same sequence of integers as the sequence from (a),

(uk)k≥−2 = 4, 1, 0, 1, 4, 9, 16, . . . �
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Remark 2.13. Sequences can be considered as functions which take the indices as arguments:

One can think of a sequence (xi)i≥n? in terms of the assignment i 7→ xi, and the sequence
can then be interpreted as the function

x(·) : [n?,∞[Z −→ suitable codomain; i 7→ x(i) := xi ,

where that “suitable codomain” depends on the nature of the items xi. In other words,
Sequences are functions with domain = index set = [n?,∞[Z.

In Example 2.9(a), we could choose Z as codomain. We could also choose either of [0,∞]Z, Q, R,
since each of those sets contains all “function” values uk that belong to the sequence. On the other
hand, the set ]0,∞[ of all strictly positive real numbers does not qualify since it does not contain the
sequence member u0 = 0.
In Example 2.9(b), we could choose 2R, the power set of R, as codomain.
In Example 2.9(c), any set that contains the set {−1, 1} is a suitable codomain. Observe that the
sequence (zj)

∞
j=0 is an infinite collection of tagged items, one for each index j ∈ [0,∞]Z. However,

the set {zj : j ∈ [0,∞]Z} of all values this sequence can attain, only contains two values. We have

{zj : j ∈ [0,∞]Z} = {−1, 1} ,

since duplicate members of a set are ignored. �

Definition 2.25. We occasionally admit an “ending index” n? instead of ∞, i.e., there will be an
indexed item xj for each j ∈ [n?, n

?]Z. We then talk of a finite sequence, and we write

(xn)n?≤n≤n? or (xj)
n?

j=n? or xn? , xn?+1 , . . . , xn?

for such a finite collection of items. If we refer to a sequence (xn)n without qualifying it as finite
then we imply that we deal with an infinite sequence, (xn)∞n=n? .
If one pares down the full set of indices {n?, n? + 1, n? + 2, . . . } to a subset

{n1, n2, n3, . . . } such that n? ≤ n1 < n2 < n3 < . . .

then we call the corresponding “thinned out” sequence (xnj )j∈N a subsequence (xn)n≥n? .
If this subset of indices is finite, i.e., we have

n? ≤ n1 < n2 < . . . < nK for some suitable K ∈ N ,

then we call (xnj )
K
j=1 a finite subsequence of the original sequence. �

Remark 2.14. Keep the sequence
(
(−1)j

)∞
j=0

in mind when considering the following which we
only state for infinite sequences, but which also applies to subsequences and finite sequences.

Do not confuse a sequence
(
xn
)
n≥n∗ with the set {xn : n ≥ n∗} of its values!

The sequence is a function n 7→ xn with domain [n∗,∞]Z, the set {xn : n ≥ n∗} merely is
the (smallest possible) codomain of that function.
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The sequence
(
xn
)
n≥n∗ always determines the set {xn : n ≥ n∗}, but the opposite is not true. For

example, if you know that the values belonging to the sequence
(
xn
)
n≥0

constitute the set {−1, 1}
then you do not know whether

xn = (−1)n or xn = (−1)n+1 or xn =

{
1 if n ∈ [0, 100[Z,

−1 if n ∈ [100,∞[Z,
or xn = . . . �

The members xk of a sequence
(
xk
)
k

are indexed items in the following sense.

Definition 2.26 (Indexed items). Given is an expression of the form

ai .

We say that ai is indexed by or subscripted by or tagged by i. We call i the index or subsript of ai,
and we call ai an indexed item . �

Remark 2.15. Both ai and i can occur in many different ways. Here is a collection of indexed items:

x7, Aα, kT , H2/9, fx, xt, hA , , iR, H2π

Some of the indices in this collection are highly unusual. Not only are some of them negative, but
they are fractions (e.g., 2/9) or irrational (e.g., 2π). Others don’t even look like numbers (e.g., α, T ,
x, t, A and R). It is not clear from the information available to us whether those indices are names of
variables which represent numbers or whether they represent functions, sets or other mathematical
objects. There is one exception: It should be safe to assume that the index R of iR denotes the set of
all real numbers, since it is hard to imagine that a mathematician would attach a different meaning
to that symbol. �

We can turn any set into a "family" by tagging each of its members with an index. As an example,
look at the following two indexed versions of the set S2 from example 2.1 on p. 14:

F = (a1, e1, e2, i1, i2, i3, o1, o2, o3, o4, u3, u5, u9, u11, u99)

G = (ak, e−
√

2, e1, i−6, iB, iR, o7, o2/3, o−8, o3, uA, uB, uC , uD, uE)

We note several things:

(a) F has the kind of indices that we are familiar with: all of them are
positive integers.

(b) Some of the indices in F occur multiple times. For example, 3 occurs as
an index for i3, o3, u3.

(c) All of the indices in G are unique.
(d) As in remark 2.15, some of the indices are very unusual.

The last point is not much of a problem as mathematicians are used to very unusual notation but
point (b), the non-uniqueness of indices, is something that we want to avoid. From now on we ask
for the following: The indices of an indexed collection must belong to some set J and each index
i ∈ J must be used exactly once. Remember that this automatically takes care of the duplicate
indices problem as a set never contains duplicate values (see Definition 2.1 on p. 14). We also
demand that there is a set X such that each indexed item xi belongs to X .
Those considerations leads us to the definition of a family.
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Definition 2.27 (Indexed families). Let J and X be nonempty sets such that

each i ∈ J is associated with exactly one indexed item xi ∈ X .

We write (xi)i∈J for this collection of indexed items and call it an indexed family or family
in X with index set J . The indexed items x are called the members of the family. �

Remark 2.16. Sequences are families with sets of integers as index sets:
(a) Sequences (xj)

∞
j=n?

are families with index set [n?,∞[Z.
(b) Finite sequences (xj)

n?
j=n?

are families with index set [n?, n
?]Z.

(c) Subsequences
(
xnj
)
j∈N are families with index set {n1 < n2 < . . . }; nj ∈ Z.

(d) Finite subsequences (xj)
K
j=1 are families with index set {n1 < · · · < nK}; nj ∈ Z. �

Example 2.10. Here are some examples of families.
(a) For r ∈ R, let Br := {(x, y) ∈ R2 : x2 + y2 ≤ r2}. Then (Br)r∈R is a family with index set R and
values in 2R. (The indexed items are subsets of R!)
Let B := {Br : r ∈ R} be the set of all tagged items Br of the above family (thus B is a set of sets).
Do not confuse B and (Br)r∈R! The family distinguishes, e.g., between the indexed items B2 and
B−2 even though they represent the same set, but B does not, since sets to not contain any duplicate
elements!
We have already seen this behavior for sequences, e.g., in Example 2.9(c) on p.33, where we looked
at the sequence

(
(−1)j

)∞
j=0

. This sequence has infinitely many members since there are infinitely
many indices j = 0, 1, 2, . . . , but its value set, {(−1)j : j ∈ [0,∞[Z} = {−1, 1}, only possesses two
members.

(b) We take the family from (a), but we shrink the index set to ]−∞, 0], i.e., we consider the family
(Br)r≤0. Note that B0 = {0}and Br = ∅whenever r < 0. Hence, {Br : r ≤ 0} = {∅, {0}}.

(c) Let the function h : R→ R be defined by h(x) = sin(x), and let yx := sin(x) for any real number
x. Besides the notation, Is there any real difference between the function h and the family (yx)x∈R

with values in R? Not really. Both objects do the same; they assign to each x ∈ R the real number
sin(x).

(d) This last example generalizes to any function f : X → Y with arbitrary, nonempty sets X and
Y . We can associate with f the function

(
f(x)

)
x∈X .

(e) Let I := [0, 10] and (xi)i∈I the R–valued family defined by xi := ei. The function

ϕ : I → R ; i 7→ ei

is equivalent to that family: both describe the assignment of i ∈ I to the real number ei.

(f) This last example generalizes to any X–valued family (xi)i∈I with arbitrary, nonempty index set
I and value set X . We can associate with (xi)i∈I the function

ψ : I → X ; i 7→ xi ,

and both objects convey the same information. �
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Remark 2.17. (a) Examples 2.10(c) through 2.10(f) and in particular, examples 2.10(d) and 2.10(f),
illustrate that families are functions just as sequences are functions: We mentioned in Remark 2.13
on p.34 that a sequence (xn)∞n=n? with a suitable codomain X , i.e., xn ∈ X for all n ∈ [n?,∞[Z, can
be interpreted as a function with domain [n?,∞[Z and codomain X . Likewise:

A family (xi)i∈J can be interpreted as the function

x(·) : J −→ X ; i 7→ x(i) := xi .

Families in X are functions with domain = index set = J and codomain X .

(b) Same as for sequences, i is a dummy variable: (xi)i∈J and (xk)k∈J describe the same family as
long as i 7→ xi and k 7→ xk describe the same function x(·) : J → X . This should not come as
a surprise to you if you recall Remark 2.11 on p.31 concerning function arguments and the end of
Definition 2.24 on p.33 (sequences).
(c) Do not confuse the family (xi)i∈J with the set {xi : i ∈ J} of its function values. We have
illustrated this in examples 2.10(a) and 2.10(b). �

Example 2.11. For 1 ≤ x ≤ 10 let Ax := [−x, 5x]. Since Ax ⊆ R, (Ax)x∈[1,10] is a family in 2R, the
power set of R, with index set [1, 10]. If we define Bz := [−z, 5z] and Aα := [−α, 5α], then both
families (Bz)z∈[1,10] and (Aα)α∈[1,10] are identical to the family (Ax)x∈[1,10] (!) �

This concludes our first look at families. We will have more to say about this topic in Chapter 5.2.8
(Families, Sequences, and Functions as Families).

2.5 Cartesian Products

We next define cartesian products of sets. 13 Those mathematical objects generalize rectangles

[a1, b1]× [a2, b2] = {(x, y) : x, y ∈ R, a1 ≤ x ≤ b1 and a2 ≤ y ≤ b2}

and quads

[a1, b1]× [a2, b2]× [a3, b3] = {(x, y, z) : x, y, z ∈ R, a1 ≤ x ≤ b1, a2 ≤ y ≤ b2 and a3 ≤ z ≤ b3}.

Definition 2.28 (Preliminary definition: Cartesian Product). Let X and Y be two sets The set

X × Y := {(x, y) : x ∈ X, y ∈ Y }(2.31)

is called the cartesian product of X and Y .
Note that the order is important: (x, y) and (y, x) are different unless x = y.
We write X2 as an abbreviation forX ×X .
This definition generalizes to more than two sets as follows: Let X1, X2, . . . , Xn be sets. The set

X1 ×X2 · · · ×Xn := {(x1, x2, . . . , xn) : xj ∈ Xj for each j = 1, 2, . . . n}(2.32)

is called the cartesian product of X1, X2, . . . , Xn.
We write Xn as an abbreviation forX ×X × · · · ×X . �

13See ch.5.1 (Cartesian Products and Relations) on p.126 for the real thing and examples.
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Example 2.12. The graph Γf of a function with domain X and codomain Y (see Definition 2.28) is
a subset of the cartesian product X × Y . �

Example 2.13. The domains given in (a) and (d) of the introduction to ch.2.4 (A First Look at Func-
tions, Sequences and Families) are subsets of the cartesian product

R2 = R× R = {(x, y) : x, y ∈ R} �

.

2.6 Arbitrary Unions and Intersections

In Definition 2.5 on p.17 we had defined unions and intersections of finitely many sets
A1, A2, . . . , An as follows:

n⋃
j=1

Aj = {x : x ∈ Aj for at least one j = 1, 2, . . . , n},

n⋂
j=1

Aj = {x : x ∈ Aj for each j = 1, 2, . . . , n}.

Thus the union of those sets are those items that belong to at least one of those sets, and the inter-
section of those sets are those items that belong to each one of those sets. This can be generalized to
any set of sets 14 or family of sets, finite or not.

Definition 2.29 (Arbitrary unions and intersections).
(A) For a (nonempty) set of sets A , let

⋃
B∈A

B :=
⋃[

B : B ∈ A
]

:= {x : x ∈ B for at least one B ∈ A },(2.33) ⋂
B∈A

B :=
⋂[

B : B ∈ A
]

:= {x : x ∈ B for each B ∈ A }.(2.34)

We call
⋃
B∈A

B the union and
⋂
B∈A

B the intersection of the members of A

(B) For a family (Ai)i∈I of sets Ai, let

⋃
i∈I

Ai :=
⋃[

Ai : i ∈ I
]

:= {x : x ∈ Ai for at least one i ∈ I},(2.35) ⋂
i∈I

Ai :=
⋂[

Ai : i ∈ I
]

:= {x : x ∈ Ai for each i ∈ I}.(2.36)

We call
⋃
i∈I

Ai the union and
⋂
i∈I

Ai the intersection of the family (Ai)i∈I .

14Recall that we encountered, in Example 2.2 on p.15 for example, sets whose elements are sets.
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Note that use of the “set style” notation
⋃[

B : B ∈ A
]
,
⋃[

Ai : i ∈ I
]
, . . . is less common than that

of
⋃
B∈A B,

⋃
i∈I Ai, . . . . We find it advantageous if A or I consists of a rather lengthy expression.

(C) Let A be a nonempty set of sets, let (Ai)i∈I be a family of sets.

We call the members of A disjoint , also mutually disjoint, if A,A′ ∈ A and A 6= A′

impliesA∩A′ = ∅. We call the family (Ai)i∈I disjoint , also mutually disjoint, ifAi∩Aj = ∅
for all i, j ∈ J such that i 6= j.
As done previously, we allow the use of

⊎
instead of

⋃
to indicate disjoint unions:⊎

B∈A

B :=
⋃
B∈A

B ,
⊎
i∈I

Ai :=
⋃
i∈I

Ai .(2.37)

(2.38)

Note that disjointness of sets was already defined in Definition 2.6 on p.17, but only for a finite
collection of sets.

(D) Assume that there is Ω, A such that A ⊆ Ω and the members of A are disjoint.
If Ω =

⊎
B∈A B, then we call A a partition of Ω.

Assume that there is Ω, (Ai)i∈I such that Aj ⊆ Ω for all j ∈ J is a disjoint family.
If Ω =

⊎
i∈I Ai, then we call (Ai)i∈I a partition of Ω.

Note that being a partition means that each x ∈ Ω belongs to exactly one member of A (of (Ai)i∈I
in case of a family).

Since sequences are special kinds of families with index sets

[n∗,∞[Z = {n∗, n∗ + 1, n∗ + 2, . . . } ,

it is natural to write
∞⋃
i=n∗

Ai :=
⋃

i∈[n∗,∞[Z

Ai ,
∞⋂
i=n∗

Ai :=
⋂

i∈[n∗,∞[Z

Ai , �(2.39)

Note that any statement concerning arbitrary families of sets such as the definition above
covers finite lists A1, A2, . . . , An of sets ( J = {1, 2, . . . , n} ) and also sequences A1, A2, . . . ,
of sets ( J = N ).

Remark 2.18. “At least one” can also be expressed as “some” or “there exists”, and “for each” can
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also be expressed as “for all”. Thus one also writes⋃
B∈A

B = {x : x ∈ B for some B ∈ A } = {x : there exists B ∈ A such that x ∈ B},⋂
B∈A

B =
⋂[

B : B ∈ A
]

:= {x : x ∈ B for all B ∈ A }.⋃
i∈I

Ai = {x : x ∈ Ai for some i ∈ I}, {x : there exists i ∈ I such that x ∈ Ai},⋂
i∈I

Ai = {x : x ∈ Ai for all i ∈ I}. �

Example 2.14. In Example 2.2 on p.15 we considered the sets
(a) A := { ]a, b[ : a, b ∈ R, 0 < b− a < 2} (all open intervals of length less than 2),
(b) B := {K :K is a set of integers } (the power set of Z).

Since each real number x belongs to the set ]x − 1
2 , x + 1

2 [ which is an element of A , it follows that
x ∈

⋃
B∈A

B. Thus
⋃[

B : B ∈ A
]

= R, the set of all real numbers.

No real number x is an element of ]x + 5, x + 6[. Since this interval belongs to A , it is not true that
x ∈ B for each B ∈ A . It follows that x /∈

⋂[
B : B ∈ A

]
. Thus no real number belongs to

⋂
B∈A

B;

we conclude that
⋂

B∈A
B = ∅.

Things are just that simple for B. Every integer m is an element of the set Z of all integers, which
in turn is an element of B It follows that m ∈

⋃[
K : K ∈ B

]
. Thus this union equals Z.

To compute the intersection of the members of B we note that no integer m belongs to the set {m}
which is an element of B since it is a set of integers. Thus it is not true that m ∈ K for all K ∈ B,
thus x /∈

⋂[
K : K ∈ B

]
. Since this is true for all integers m, it follows that

⋂[
K : K ∈ B

]
= ∅. �

Example 2.15. Here are two more examples for unions and intersections of sets of sets. The proofs
are not as easy as those in the previous example. To understand them you need to be familiar with
the properties of limits of real numbers on a beginner’s calculus level. 15 Let

C := {
[
π − 3 + 1

n , π + 3− 1
n

]
: n = 1, 2, 3, . . . },

D := {
]
π − 3− 1

n , π + 3 + 1
n

[
: n = 1, 2, 3, . . . }.

We claim that
⋃
A∈C

A = ]π − 3, π + 3[ and
⋂
A∈D

A = [π − 3, π + 3 ].

To see this we first observe the following.
(1) The sequence an = (π− 3)− 1

n converges from the left to π− 3, thus an is arbitrarily close
to π − 3 and,

if x < π − 3, then x < an < π − 3 is true for all sufficiently large n.
(2) The sequence bn = (π − 3) + 1

n converges from the right to π − 3, thus bn is arbitrarily
close to π − 3 and,

if x > π − 3, then π − 3 < bn < x is true for all sufficiently large n.

15Chapter 9.3 (Convergence and Continuity in R) will teach you convergence in a mathematically precise way.
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Likewise, we obtain for cn = (π + 3)− 1
n and dn = (π + 3) + 1

n that

(3) if x < π + 3, then x < cn < π + 3 is true for all sufficiently large n.
(4) if x > π + 3, then π + 3 < dn < x is true for all sufficiently large n.

Let us choose some more convenient notation. We define

Cn := [ bn, cn ] =

[
π − 3 +

1

n
, π + 3− 1

n

]
, C :=

⋃
A∈C

A ,

Dn := ]an, dn[ =

]
π − 3− 1

n
, π + 3 +

1

n

[
, D :=

⋂
A∈D

A .

Then

C = {Cn : n ∈ N} , thus, C =
⋃
n∈N

Cn , and we must show C = ]π − 3, π + 3[ ;

D = {Dn : n ∈ N} , thus, D =
⋂
n∈N

Dn , and we must show D = [π − 3, π + 3 ] .

Note that we rewrote C as a union and D as an intersection of a sequence of sets.

(I): We now show that
⋃

[A : A ∈ C ] = ]π − 3, π + 3[ .
(I.a) Prove that C ⊆ ]π − 3, π + 3[.
Let x ∈ C. We must show that x ∈]π−3, π+3[. it follows from (2.33) that x belongs to some element
of C , i.e., there must be some n ∈ N such that x ∈ Cn.
From Cn =

[
π − 3 + 1

n , π + 3− 1
n

]
we obtain Cn ⊆ ]π − 3, π + 3[, hence, x ∈ ]π − 3, π + 3[. We have

shown x ∈ C ⇒ x ∈]π − 3, π + 3[, and this proves (I.a).
(I.b) Prove that ]π − 3, π + 3[⊆ C.
Let x ∈]π − 3, π + 3[. We must show that x ∈ C. Since π − 3 < x < π + 3, it follows from (2) and (3)
above that π − 3 < bn < x < cn < π − 3 for all sufficiently large n.

Thus, bn < x < cn , thus, x ∈ [ bn, cn] , i.e., x ∈ Cn

is true for all sufficiently large n. Thus there exists an index n0 ∈ N such that x ∈ Cn0 . 16 It follows
from (2.33) that x ∈ C, and this proves (I.b).
(I.a) and (I.b) together yield

⋃
[A : A ∈ C ] = ]π − 3, π + 3[ . We have proved (I).

(II): Here is the proof that
⋂

[A : A ∈ D ] = [π − 3, π + 3 ].
(II.a) Prove that [π − 3, π + 3] ⊆ D.
Let x ∈ [π−3, π+3]. According to (2.34) we must prove that x ∈ A for allA ∈ D , i.e., x ∈ ]an, dn[ for
all n ∈ N. This is obviously true, since [π−3, π+3] ⊆ ]π−3−1/n, π+3+1/n[ and an = π−3−1/n
and dn = π + 3 + 1/n.
(II.b) Prove that D ⊆ [π − 3, π + 3].
Since D =

⋂
n∈N

]an, dn[, we must show, according to (2.34), the following.

If x ∈ ]an, dn[ for all n, then x ∈ [π − 3, π + 3] .(2.40)

16Of course there are infinitely many such indices, but that is not important for this proof.
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This is a logical statement of the form

if P is true, then Q is true, in short, If P , then Q,(2.41)

where P is the assumption “x ∈ ]an, dn[ for all n”, and Q is the conclusion “x ∈ [π − 3, π + 3]”.
This if ... then statement can also be expressed by its contrapositive

if Q is not true, then P is not true, in short, If not Q, then not P .(2.42)

We claim that both (2.41) and (2.42) are equivalent logical statements in the following sense:

The validity of “if P , then Q” implies that of “if not Q, then not P”, and vice versa.

This can be seen as follows.
• Assume that “if P , then Q” is valid.
• Since the truth of P implies the truth of Q, we cannot have both P true and Q false.
• Thus the falseness of Q implies the falseness of P ,
• i.e., if Q is not true then P is not true.

Here is the reverse direction: The validity of (2.42) implies that of (2.41).
• Assume that “if Q is not true then P is not true” is valid.
• Since the falseness of Q implies the falseness of P , we cannot have both Q false and P not false.
• Thus the non-falseness of P implies the non-falseness of Q.
• In other words, the truth of P implies the truth of Q, i.e., if P , then Q.

Thus, to prove that D ⊆ [π − 3, π + 3], we can replace (2.40) by its contrapositive

If x /∈ [π − 3, π + 3] then it is not true that x ∈ ]an, dn[ for all n.

What does it mean that it is not true that x ∈ ]an, dn[ for all n? It means that there must exist an
index n (at least one) such that x /∈ ]an, dn[ . Thus it suffices to prove

If x /∈ [π − 3, π + 3] then there is an index k ∈ N such that x /∈ ]ak, dk[ .(2.43)

So let x /∈ [π − 3, π + 3]. Then either x < π − 3 or x > π + 3.
First case, x < π−3: We have seen in (1) 17 that then x < an and thus x ≤ an is true for all sufficiently
large n. It follows that x /∈ ]an, dn[ for all such n and, hence, for at least one n.
Second case, x > π + 3: We have seen in (4) that then x > dn and thus x ≥ dn is true for all
sufficiently large n, thus x /∈ ]an, dn[ for all such n and, hence, for at least one n.
In summary, we have shown the validity of (2.43), hence, of (2.43), hence, of D ⊆ [π − 3, π + 3].
This concludes the proof of (II.b) and, thus, (II).

We have learned a few things about logic and proofs which we want to summarize below.

• The statement “if P , then Q” is equivalent to its contrapositive: “if not Q, then not
P”.

• The method of proving “if P , then Q” by proving the contrapositive is called an
indirect proof by contrapositive.

17near the beginning of the example
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Moreover, we used that the opposite of “it” being true for all items is that it is false for at least
one item, i.e., that there exists an item for which “it” is false. A moment’s reflection tells us the
following: The opposite of “it” being true for at least one item, i.e., the opposite of the existence of
an item for which “it” is true, is that “it” is false for all items.
We summarize that as follows.

Let P be some property which can be true or false
• If A is the statement “P is true for all x”, then not A is the statement “there exists

some x for which P is false”.
• IfB is the statement “there is some x for which P is true”, then notB is the statement

“P is false for all x”. �

2.7 Proofs by Induction and Definitions by Recursion

Introduction 2.4. The integers have a property which makes them fundamentally different from
the rational numbers (fractions) and the real numbers: Given any two integers m < n, there are
only finitely many integers between m and n. To be precise, there are exactly n−m−1 of them. For
example, there are only 4 integers between 12 and 17: the numbers 13, 14, 15, 16. 18

Therefore, given an integer n, we have the concept of its predecessor, n − 1, and its successor,
n+ 1. This has some profound consequences. If we know what to do for a certain starting number
k0 ∈ Z (we call this number the base case), and if we can figure out for each integer k ≥ k0 what to
do for k + 1 if only we know what to do for k, then we know what to do for any k ≥ k0! �

We make use of the above when defining a sequence by recursion. Here is a simple example.

Example 2.16. Let k0 = −2, xk0 = 5 (base case), and xk+1 = xk + 3 (i.e., we know how to obtain
xk+1 just from the knowledge of xk), then we know how to build the entire sequence

x−2 = 5, x−1 = x−2 + 3 = 8, x0 = x−1 + 3 = 11, x1 = x0 + 3 = 14, . . . ,

The equation xk+1 = xk + 3 which tells us how to obtain the next item from the given one is the
recurrence relation for that recursive definition. �

Example 2.17. Given is a sequence of sets A1, A2, . . . . For n ∈ N we define
n⋃
j=1

Aj and
n⋂
j=1

Aj recur-

sively as follows. 19

1⋃
j=1

Aj := A1,
n+1⋃
j=1

Aj :=
( n⋃
j=1

Aj

)
∪An+1,(2.44)

1⋂
j=1

Aj := A1,

n+1⋂
j=1

Aj :=
( n⋂
j=1

Aj

)
∩An+1.(2.45)

18All of this will be made mathematically precise in ch.6.1 on p.167.
19An “official” definition for unions and intersections of arbitrarily many sets (not just for finitely many) will be given

in Definition 2.29 on p.38.
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this tells us the meaning of
n⋃
j=1

Aj and
n⋂
j=1

Aj for any natural number n. For example,
4⋂
j=1

Aj is

computed as follows.

1⋂
j=1

Aj = A1,

2⋂
j=1

Aj =
( 1⋂
j=1

Aj

)
∩A2 = A1 ∩A2,

3⋂
j=1

Aj =
( 2⋂
j=1

Aj

)
∩A3 = (A1 ∩A2) ∩A3,

4⋂
j=1

Aj =
( 3⋂
j=1

Aj

)
∩A4 =

(
(A1 ∩A2) ∩A3

)
∩A4. �

Remark 2.19. The discrete structure of the integers can also be used as a means to prove a collection
of mathematical statements P (k0), P (k0+1), P (k0+2), . . . which is defined for all integers k, starting
at k0 ∈ Z. Each P (k) might be an equation or an inequality for two numeric expressions that depend
on k. It could also be a relation between sets or it could be something entirely different. For example,

P (k) could be the statement
( k⋃
j=1

Aj

)
∩ B =

k⋃
j=1

(Aj ∩B). An extremely important tool for proofs

of this kind is the following principle. Its mathematical justification will be given later in thm.6.2
on p.169.

Principle of Mathematical Induction
Assume that for each integer k ≥ k0 there is an associated statement P (k) such that the
following is valid:

A. Base case. The statement P (k0) is true.
B. Induction Step. Assuming that P (k) is true (“Induction Assumption”), it can

be shown that P (k + 1) also is true.
It then follows that P (k) is true for each k ≥ k0.

Here is an example which generalizes prop.2.2 on p.20.

Proposition 2.6 (Distributivity of unions and intersections for finitely many sets). LetA1, A2, . . . and
B be sets. If n ∈ N then ( n⋃

j=1

Aj

)
∩ B =

n⋃
j=1

(Aj ∩B),(2.46)

( n⋂
j=1

Aj

)
∪ B =

n⋂
j=1

(Aj ∪B).(2.47)

PROOF: We only prove (2.46), and this will be done by induction on n, i.e., the number of sets Aj .
The proof of (2.47) is left as exercise 2.11
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(A) Base case: k0 = 1. The statement P (1) is (2.46) for n = 1:
( 1⋃
j=1

Aj

)
∩B =

1⋃
j=1

(Aj ∩B). We must

prove that P (1) is true. According to our recursive definition of finite unions which was given in
example 2.16 this is the same as (A1) ∩B = (A1 ∩B), and this is a true statement. We have proven
the base case.
(B) Induction step:

Induction assumption: P (k) :
( k⋃
j=1

Aj

)
∩B =

k⋃
j=1

(Aj ∩B) is true for some k ≥ 1.(2.48)

Under this assumption

we must prove the truth of P (k + 1) :
( k+1⋃
j=1

Aj

)
∩B =

k+1⋃
j=1

(Aj ∩B).(2.49)

The trick is to manipulate P (k + 1) in a way that allows us to “plug in” the induction assumption.
For (2.49) one way to do this is to take the left–hand side and transform it repeatedly until we end
up with the right–hand side, and doing so in such a manner that (2.48) will be used at some point.( k+1⋃

j=1
Aj

)
∩B =

(( k⋃
j=1

Aj

)
∪Ak+1

)
∩B we used (2.44)

=
(( k⋃

j=1
Aj

)
∩B

)
∪ (Ak+1 ∩B) we used (2.13) on p. 20

=
k⋃
j=1

(Aj ∩B) ∪ (Ak+1 ∩B) we used the induction assumption!

=
k+1⋃
j=1

(Aj ∩B) we used (2.44)

We have managed to establish the truth of P (k + 1), and this concludes the proof.
Epilogue: It is crucial that you understand in what way the induction assumption was used to get
from the left–hand side of (2.49) to the right–hand side, and that you first had to find a base from
which to proceed by proving the base case. �

Proposition 2.7 (The Triangle Inequality for n real numbers). Let n ∈ N such that n ≥ 2. Let
a1, a2, . . . , an ∈ N. Then

(2.50) |a1 + a2 + . . .+ an| ≤ |a1|+ |a2|+ . . .+ |an|

PROOF: Note that this proposition generalizes prop.2.5 on p.28 from 2 terms to n terms. The proof
will be done by induction on n, the number of terms in the sum.
(A) Base case: For k0 = 2, inequality 2.50 was already shown (see (2.26) on p.28).
(B) Induction step: Let us assume that 2.50 is true for some k ≥ 2. This is our induction assumption.
We now must prove the inequality for k + 1 terms a1, a2, . . . , ak, ak+1 ∈ N. We abbreviate

A := a1 + a2 + . . .+ ak; B := |a1|+ |a2|+ . . .+ |ak|

then our induction assumption for k numbers is that |A| ≤ B. We know from (2.26) that the triangle
inequality is valid for the two termsA and ak+1. It follows that |A+ak+1| ≤ |A|+|ak+1|. We combine
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those two inequalities and obtain

(2.51) |A+ ak+1| ≤ |A|+ |ak+1| ≤ B + |ak+1|

In other words,

(2.52) |
(
a1 + a2 + . . .+ ak

)
+ ak+1| ≤ B + |ak+1| =

(
|a1|+ |a2|+ . . .+ |ak|

)
+ |ak+1|,

and this is (2.50) for k + 1 rather than k numbers: We have shown the validity of the triangle
inequality for k + 1 items under the assumption that it is valid for k items. It follows from the
induction principle that the inequality is valid for any k ≥ k0 = 2. �
To summarize what we did in all of part B: We were able to show the validity of the triangle in-
equality for k + 1 numbers under the assumption that it was valid for k numbers.

Remark 2.20 (Why induction works). But how can we from all of the above conclude that the
distributivity formulas of prop.2.6 and the triangle inequality of prop.2.7 work for all n ∈ N such
that n ≥ k0? We illustrate this for the triangle inequality.

Step 1: We know that the statement is true for k0 = 2 because that was proven in the base
case.

Step 2: But according to the induction step, if it is true for k0 = 2, it is also true
for the successor k0 + 1 = 3 of 2.

Step 3: But according to the induction step, if it is true for k0 + 1, it is also true
for the successor (k0 + 1) + 1 = 4 of k0 + 1.

Step 4: But according to the induction step, if it is true for k0 + 2, it is also true
for the successor (k0 + 2) + 1 = 5 of k0 + 2.

. . . . . . . . . . . . . . . . . . . . . . . .
Step 53, 920: But according to the induction step, if it is true for k0 + 53, 918, it is also true

for the successor (k0 + 53, 918) + 1 = 53, 921 of k0 + 53, 918.
. . . . . . . . . . . . . . . . . . . . . . . .

And now we see why the statement is true for any natural number n ≥ k0. �

2.8 Some Preliminaries From Calculus

Remark 2.21. To understand this remark you need to be familiar with the concepts of continuity,
differentiability and antiderivatives (integrals) of functions of a single variable. Just skip the parts
where you lack the background.
The following is known from calculus (see [15] Stewart, J: Single Variable Calculus): Let a ∈ R ∪
{−∞} and b ∈ R ∪ {∞} and let X :=]a, b[ be the open (end points a, b are excluded) interval of all
real numbers between a and b. Let x0 ∈]a, b[ be “fixed but arbitrary”.
Let f : ]a, b[→ R be a function which is continuous on ]a, b[. Then

(a) f is integrable for any α, β ∈ R such that a < α < β < b, i.e., the definite integral
β∫
α
f(u)du

exists. For a definition of integrability see, e.g., [15] Stewart, J: Single Variable Calculus.

(b) Integration is “linear”, i.e., it is additive:
∫ β

α

(
f(u) + g(u)

)
du =

∫ β

α
f(u)du +

∫ β

α
g(u)du,

and you also can “pull out” constant λ ∈ R:
∫ β

α
λf(u)du = λ

∫ β

α
f(u)du.
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(c) Integration is “monotonic”:

If f(x) ≤ g(x) for all α ≤ x ≤ β then
∫ β

α

(
f(u)

)
du ≤

∫ β

α
g(u)du.

(d) f has an antiderivative: There exists a function F : ]a, b[→ R whose derivative F ′(·) exists
on all of ]a, b[ and coincides with f , i.e., F ′(x) = f(x) for all x ∈]a, b[.

(e) This antiderivative satisfies F (β)− F (α) =

∫ β

α
f(u)du for all a < α < β < b and it is

not uniquely defined: If C ∈ R then F (·) + C is also an antiderivative of f .
On the other hand, if both F1 and F2 are antiderivatives for f then their differenceG(·) :=
F2(·)−F1(·) has the derivativeG′(·) = f(·)−f(·) which is constant zero on ]a, b[. It follows
that any two antiderivatives only differ by a constant.
To summarize the above: If we have one antiderivative F of f then any other antideriva-
tive F̃ is of the form F̃ (·) = F (·) + C for some real number C.

This fact is commonly expressed by writing
∫
f(x)dx = F (x) + C for the indefinite

integral (an integral without integration bounds).
(f) It follows from (e) that if some c0 ∈ R is given then there is only one antiderivative F

such that F (x0) = c0.
Here is a quick proof: Let G be another antiderivative of f such that G(x0) = c0. Because
G− F is constant we have for all x ∈]a, b[ that

G(x)− F (x) = const = G(x0)− F (x0) = 0,

i.e., G = F . �

2.9 Exercises for Ch.2

2.9.1 Exercises for Sets

Exercise 2.1. Prove (2.14) of prop.2.2 on p.20.

Exercise 2.2. Prove the set identities of prop.2.1.

Exercise 2.3. Prove that for any three sets A,B,C it is true that (A \B) \ C = A \ (B ∪ C).
Hint: use De Morgan’s formula (2.15(a)). �

Exercise 2.4. Let X = {x, y, {x}, {x, y} }. True or false?
(a) {x} ∈ X (c) { {x} } ∈ X (e) y ∈ X (g) {y} ∈ X
(b) {x} ⊆ X (d) { {x} } ⊆ X (f) y ⊆ X (h {y} ⊆ X �

For the subsequent exercises refer to example 5.5 for the preliminary definition of the size
∣∣A∣∣ of a

set A and to Definition 5.1 (Cartesian Product of Two Sets) for the definition of Cartesian product.
You find both in ch.5.1 (Cartesian Products and Relations) on p.126

Exercise 2.5. Find the size of each of the following sets:
(a) A = {x, y, {x}, {x, y} } (c) C = {u, v, v, v, u} (e) E = {sin(kπ/2) : k ∈ Z}
(b) B = {1, {0}, {1} } (d) D = {3z − 10 : z ∈ Z} (f) F = {πx : x ∈ R} �

Exercise 2.6. Let X = {x, y, {x}, {x, y} } and Y = {x, {y} }. True or false?
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(a) x ∈ X ∩ Y (c) x ∈ X ∪ Y (e) x ∈ X \ Y (g) x ∈ X∆Y
(b) {y} ∈ X ∩ Y (d) {y} ∈ X ∪ Y (f) {y} ∈ X \ Y (h) {y} ∈ X∆Y �

Exercise 2.7. Let X = {1, 2, 3, 4} and let Y = {x, y}.
(a) What is X × Y ? (c) What is

∣∣X × Y ∣∣? (e) Is (x, 3) ∈ X × Y ? (g) Is 3 · x ∈ X × Y ?
(b) What is Y ×X? (d) What is

∣∣X × Y ∣∣? (f) Is (x, 3) ∈ Y ×X? (h) Is 2 · y ∈ Y ×X? �

Exercise 2.8. Let X = {8}. What is 2(2X)?

Exercise 2.9. Let A = {1, {1, 2}, 2, 3, 4} and B = {{2, 3}, 3, {4}, 5}. Compute the following.
(a) A ∩B (b) A ∪B (c) A \B (d) B \A (e) A4B �

Exercise 2.10. Let A,X be sets such that A ⊆ X and let x ∈ X . Prove the following:
(a) If a ∈ A then A = (A \ {a}) ] {a}.
(b) If a /∈ A then A = (A ] {a}) \ {a}.
�

2.9.2 Exercises for Proofs by Induction

Exercise 2.11. Use induction on n to prove (2.47) of prop.2.6 on p.44 of this document: LetA1, A2, . . .

and B be sets. If n ∈ N then
( n⋂
j=1

Aj

)
∪B =

n⋂
j=1

(Aj ∪B). �

Exercise 2.12. 20

Let K ∈ N such that K ≥ 2 and n ∈ Z≥0. Prove that Kn > n. �

Exercise 2.13. Let n ∈ N. Then n2 + n is even, i.e., this expression is an integer multiple of 2. �

PROOF: The proof is given in this instructor’s edition.

The proof is done by induction on n.
The base case (n0 = 1) holds because 12 + 1 = 2, and this is an even number.
Induction step: Let k ∈ N.

Induction assumption: k2 + k is even, i.e., k2 + k = 2j for some suitable j ∈ Z.(2.53)

We must show that there exists j′ ∈ Z such that (k + 1)2 + k + 1 = 2j′. We have

(k + 1)2 + k + 1 = k2 + 2k + 1 + k + 1 = (k2 + k) + 2(k + 1)
(2.53)
= 2j + 2(k + 1).

Let j′ := j + k + 1. Then (k + 1)2 + k + 1 = 2j′ and this finishes the proof. �

Exercise 2.14. Use the result from exercise 2.13 above to prove by induction that n3+5n is an integer
multiple of 6 for all n ∈ N. �

20Note that this exercise generalizes B/G prop.7.1: If n ∈ N then n < 10n. Also note that if you allow K to be a real
number rather than an integer then it will not be true for allK > 1 and n ∈ Z≥0. For exampleKn > n is false forK = 1.4
and n = 2 (but it is true for K = 1.5 and n = 2).
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PROOF: The proof is given in this instructor’s edition.

The proof is done by induction on n.
The base case (n0 = 1) holds because 13 + 5 = 6 = 1 · 6.
Induction step: Let k ∈ N.

Induction assumption: k3 + 5k is an integer multiple of 6, i.e., k3 + 5k = 6j for some j ∈ Z.
(2.54)

We must show that there exists j′ ∈ Z such that (k + 1)3 + 5(k + 1) = 6j′. We know frome exercise
2.13 that 3(k2 + k) = 3 · 2 · i for a suitable i ∈ Z, hence

(k + 1)3 + 5(k + 1) = k3 + 3k2 + 3k + 1 + 5k + 5 = (k3 + 5k) + 3(k2 + k) + 6

= (k3 + 5k) + 6i+ 6
(2.54)
= 6(j + i+ 1).

Let j′ := j + i+ 1. Then (k + 1)3 + 5(k + 1) = 6j′ and this finishes the proof. �

Exercise 2.15. Let x1 = 1 and xn+1 = xn + 2n+ 1. Prove by induction that xn = n2 for all n ∈ N. �
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3 The Axiomatic Method

Introduction 3.1. The purpose of this chapter is to familiarize the reader with the axiomatic method,
often also called the “proof – theorem” method: How to go about proving a mathematic statement,
such as the following:

If m and n both are odd integers then their product mn is odd.
The following is a somewhat simplified description of the axiomatic method. To prove a statement
such as the one above one has the following to work with:

(a) Axioms: mathematical statements that are declared to be true and that may be used
unquestioningly even though they cannot be proven.

(b) Definitions: declarations that allow you to reference a lengthy sentence or collection
of sentences with a convenient short expression. As an example, see definition 3.1
below which allows you to use the words “semigroup” and “monoid” as a short for
mathematical objects with certain properties. Thus a definition is not statements,
i.e., something that is either true or false, and it makes no sense to ask for the proof
of a definition.

(c) Propositions, theorems and lemmata: mathematical statements that may be used
because they were previously proven.

Most of this document mainly addresses, besides the general mathematical “plumbing” which con-
sists of sets and functions, topics from the realm of analysis, in particular, convergence and continu-
ity. In contrast, this chapter introduces just enough topics from algebra to provide the foundation
for the axiomatic definitions of the integers and the rational and real numbers, as can be found in
chapters 1, 2, and 8 of [2] Beck/Geoghegan: The Art of Proof. �

3.1 Semigroups and Groups

Introduction 3.2. To be added later. �

Definition 3.1 (Semigroups and monoids). ?

Given is a nonempty set S with a binary operation �,
i.e. an “assignment rule” (s, t) 7→ s � t which assigns to any two elements s, t ∈ S a third element
u := s � t ∈ S. 21 The pair (S, �) is called a semigroup if the operation � satisfies

associativity: (s � t) � u = s � (t � u) for all s, t, u ∈ S.(3.1)

A semigroup for which there exists in addition a neutral element with respect to the
operation(s, t) 7→ s � t, i.e., some e ∈ S such that

s � e = e � s = s for all s ∈ S(3.2)

is called a monoid.
We can write S instead of (S, �) if it is clear which binary operation on S is represented by �. �

21In other words, we have a function � : S × S → S, (s, t) 7→ �(s, t) := s � t in the sense of Definition 5.7 on p.134. or
Definition 2.22 on p.30.
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Example 3.1.
(a) (Z,+) (the integers with addition) and (Z, ·) (the integers with multiplication) are monoids:

Both + and · are associative and addition has zero, multiplication has 1 as neutral element.
(b) The following also are monoids: (N, ·) , (Q,+) and (Q, ·), (R,+) and (R, ·).
(c) In case you have some knowledge about complex numbers: ( C,+) and (C, ·) also are

monoids.
(d) Beware: (N,+) is a semigroup but NOT a monoid since 0 /∈ N; hence there is no neutral

element under addition! �

Example 3.2. If you do not know from linear algebra or ch.11.2 on p.328 about general vector spaces
then skip this example.
If V is a vector space with addition + and scalar multiplication · then (V,+) is a monoid but (V, ·)
is not. (Why not?) �

The next example is so important that we state it as a proposition. You should review the (pre-
liminary) definition of a function which was given in Definition 2.22 on p.30 refresh your memory
about function composition (chain rule in calculus!) to understand it.

Proposition 3.1. Let A be a nonempty set and let S := {f : f is a function A→ A}. 22

We define a binary operation ◦ on S as follows. (f, g) 7→ g ◦ f assigns to two functions f, g : A → A the
function 23

g ◦ f : A→ A; x 7→ g ◦ f(x) := g
(
f(x)

)
.

(S, ◦) is a monoid.

PROOF:
We need to show that ◦ is associative and that S contains a neutral element.
We first prove associativity. For any three functions f, g, h ∈ S and any x ∈ A it follows from the
definition of ◦ that(

(h ◦ g) ◦ f
)
(x) = (h ◦ g)

(
f(x)

)
= h(g(f(x)) = h

(
(g ◦ f)(x)

)
=
(
h ◦ (g ◦ f)

)
(x).

In other words, both the left–hand side
(
(h ◦ g) ◦ f

)
(x) and the right–hand side

(
h ◦ (g ◦ f)

)
(x) are,

for each argument x ∈ A, equal to h(g(f(x))). This shows that those two functions coincide, and
we have proven associativity.
We now prove the existence of a neutral element. Let idA : A → A; x 7→ x be the function which
does nothing with its arguments. 24 We have(

idA ◦ f
)
(x) = idA

(
f(x)

)
= f(x) = f

(
idA(x)

)
=
(
f ◦ idA

)
(x)

for all x ∈ A. It follows that the three assignments x 7→
(
idA ◦f

)
(x), x 7→

(
f ◦ idA

)
(x), and x 7→ f(x)

coincide for all x, i.e., they all represent the same function x 7→ f(x). This proves (3.2) and hence
the existence of a neutral element. �

22If this is too abstract for you, choose A := R, the set of real numbers. Then the elements of S will be functions such
as f(x) = 3x2 and g(x) = 7x+ 5ex.

23See Definition 5.8 (Function composition) on p.136. Example: If f(x) = 3x2 and g(x) = 7x + 5ex then g ◦ f(x) =

g
(
f(x)

)
= g(3x2) = 21x2 + 5e3x2 .

24idA is called the identity function or just the identity on A.
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Theorem 3.1 (Uniqueness of the neutral element in monoids). Let (S, �) be a monoid and let e, e′ ∈ S
such that both

s � e = e � s = s(3.3)
s � e′ = e′ � s = s(3.4)

for all s ∈ S. Then e = e′.

PROOF: We have

e
(3.4)
= e′ � e (3.3)

= e′.

Here we applied (3.4) with s = e and then (3.3) with s = e′. �

Example 3.3. Here is an example of a binary operation which is not associative. For integers m and
n we define m � n := |n−m|, i.e., the distance between m and n. This operation is not associative
for all m,n ∈ Z. To prove that such is the case, we only need to find one counterexample, i.e., three
specific integers m,n, k such that (m � n) � k 6= m � (n � k). This kind of proof is called a proof by
counterexample. We choose m = 5, n = 3, k = 7 and obtain

(5 � 3) � 7 = 2 � 7 = 5, but 5 � (3 � 7) = 5 � 4 = 1.

It follows that (Z, �) is not a semigroup. Note that 0 is not a neutral element for (Z, �), because
n � 0 = |n| does not equal n whenever n < 0.
What if we replace Z with the set Z≥0 of all nonnegative integers? The counterexample above shows
that (Z≥0, �) is not a semigroup either. But in this case 0 is a neutral element for (Z≥0, �), because
n � 0 = |n| = n for all n ∈ Z≥0. �

Definition 3.2 (Groups and Abelian groups). Let (G, �) be a monoid with neutral element e which
satisfies the following: For each g ∈ G there exists some g′ ∈ G such that

g � g′ = g′ � g = e for all g ∈ G.(3.5)

We call such a g′ an inverse element. of g, and we then call (G, �) a group.
Assume moreover that the operation � satisfies

commutativity: g � h = h � g for all g, h ∈ G.(3.6)

Then G is called a commutative group or abelian group. 25 We write G instead of (G, �) if it is clear
which binary operation on G is represented by �. �

Groups (G, �) are characterized as follows.
(a) If g, h ∈ G then g � h ∈ G binary operation
(b) If g, h, k ∈ G then (g � h) � k = g � (h � k) associativity
(c) There exists e ∈ G such that

g � e = e � g = g for all g ∈ G neutral element
(d) For each g ∈ G there exists g′ ∈ G such that

g � g′ = g′ � g = e inverse element
G is a commutative group (abelian group) if, in addition,

(e) g � h = h � g for all g, h ∈ G commutativity

25named so after the Norwegian mathematician Niels Henrik Abel who lived in the first half of the 19th century and
died at age 26.
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Theorem 3.2 (Uniqueness of the inverse in groups). Let (G, �) be a group and let g ∈ G. Assume that
there exists besides g′ another g′′ ∈ G which satisfies (3.5). Then g′′ = g′.

PROOF: We have

g′′
(3.2)
= e � g′′ (3.5)

= (g′ � g) � g′′ assoc
= g′ � (g � g′′) (3.5)

= g′ � e (3.2)
= g′

and this proves uniqueness.
Epilogue: We have taken care in this proof to give for every step a reference. �

Definition 3.3 (inverse element g−1). It is customary to write g−1 for the unique element of G that
is associated with the given g ∈ G by means of (3.5). We call g−1 the inverse element of g rather
than an inverse element of g. �

Example 3.4.
(a) (R 6=0, ·) (the nonzero real numbers with multiplication) is a commutative group: Multiplication
is both associative and commutative, and the number 1 is the neutral element. Let x ∈ R not be
zero. Then x−1 = 1

x satisfies x · x−1 = x−1 · x = 1, i.e., (3.5). The notation g−1 for the inverse of g
comes from this example.
(b) (Z,+) (the integers with addition) is an abelian group: We have already seen that (Z,+) is a
monoid.
The inverse element to k ∈ Z with respect to addition is −k because k + (−k) = (−k) + k = 0 for
all k ∈ Z. Note that it would be very confusing to write k−1 rather than −k for the inverse element
under addition.
This group is abelian because m+ k = k +m for all k,m ∈ Z.
(c) (Z6=0, ·) (the nonzero integers with multiplication) is not a group: Let k = 5. Then k ∈ Z6=0. but
1/5, the only number m such that 5 ·m = m · 5 = 1 is not an integer and hence does not belong to
Z6=0. �

Proposition 3.2. Let (G, �) be a group with neutral element e. Let g, h ∈ G. Then(
g−1
)−1

= g,(3.7)

(h � g)−1 = g−1 � h−1.(3.8)

PROOF of (3.7): By definition of the inverse g−1, we have

g � g−1 = g−1 � g = e.

These two equations not only show that g−1 is an inverse of g, but also that g is an inverse of g−1. It
follows from thm.3.2 that g is the unique inverse

(
g−1
)−1 of g−1. We have shown (3.7).

PROOF of (3.8): We have

(g−1 � h−1) � (h � g)
(3.1)
= g−1 �

(
h−1 � (h � g)

)
(3.1)
= g−1 �

(
(h−1 � h) � g

) (3.5)
= g−1 � (e � g)

(3.2)
= g−1 � g (3.5)

= e.
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We substitute h−1 for g and g−1 for h in the above chain of equations, and we obtain
(
(h−1)−1 �

(g−1)−1
)
� (g−1 � h−1) = e. We apply (3.7) and it follows that (h � g) � (g−1 � h−1) = e. It follows

that g−1 � h−1 is an inverse of h � g. We have shown (3.8).
Note that it follows from prop.3.2 that g−1 � h−1 is the unique inverse (h � g)−1 of h � g. �

Proposition 3.3. ? Let (G, �) be a group. Let g, h ∈ G. Then

h � g−1 = (g � h−1)−1.(3.9)

FIRST PROOF – doing it the hard way from scratch:
Proof strategy: Let e denote the neutral elementG as usual. If we write x := h�g−1 and y := g �h−1

then our assertion is that x = y−1. According to the definition of inverses we thus must prove that
x � y = e and y � x = e, i.e., we must prove that

(h � g−1) � (g � h−1) = e (?) and (g � h−1) � (h � g−1) = e (??).

PROOF of (?):
(h � g−1) � (g � h−1) =

[
(h � g−1) � g

]
� h−1 (associativity)

=
[
h � (g−1 � g)

]
� h−1 (associativity)

= (h � e) � h−1 (def. inverse)
= h � h−1 (def. neutral element)
= e (def. inverse)

The proof of (??) is left as exercise 3.5 (see p.82). �

Proposition 3.4 (B/G prop.1.9 and B/G prop.8.10). Let g, h, h′ ∈ (G, �). If g �h = g �h′ then h = h′.

PROOF: It follows that the assumption that g−1 � (g � h) = g−1 � (g � h′).
Thus, by associativity, (g−1 � g) � h = (g−1 � g) � h′.
It follows from (3.5) in the definition of the group inverse that g−1 � g = e, thus e � h = e � h′.
Since the neutral element acts as a “no–op” we finally obtain h = h′. �

Example 3.5. Let S := {f : f is a function R → R} with the operation (f, g) 7→ g ◦ f defined as
g ◦ f(x) = g(f(x)). We have seen in prop.3.1 that (S, ◦) is a monoid. We now show that (S, ◦) is not
a group.
Proof strategy: According to Definition 3.2, S is a group if and only if each function f : R → R
possesses an inverse element f−1 : R → R which satisfies (3.5). Because the neutral element of S is
the function idR : x 7→ x, this inverse f−1 must satisfy

f ◦ f−1 = f−1 ◦ f = idR, i.e., f
(
f−1(x)

)
= f−1

(
f(x)

)
= x for all x ∈ R.

Accordingly, to prove that S is not a group, it suffices to produce just one counterexample f ∈ S for
which an inverse f−1 does not exist.
Some functions will have an inverse. For example f(x) = x− 7 has inverse f−1(x) = x+ 7.
Recall from calculus that if f has an inverse then f must pass the “horizontal line test”: Any parallel
to the x–axis may intersect the graph of f (see Definition 2.22 (preliminary definition of a function)
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on p.30) in at most one point. 26 We We must find a function which does not have an inverse. Here
are three.
f(x) = x2: The horizontal line y = 4 intersects the graph of f in (−2, 4) and also in (2, 4).
f(x) = 21: The horizontal line y = 21 intersects the graph of f in (x, 21) for each x ∈ R.
f(x) = sin(x): The horizontal line y = 0 intersects the graph of f in (nπ, 0) for each n ∈ Z. �

Proposition 3.5. Let G be the set of all polynomials of degree 1. In other words,

G = {f : R→ R : f(x) = ax+ b for some a, b ∈ R where a 6= 0}

This is the set of functions whose graph is a straight line in the x, y–plane, which is parallel neither to the
x–axis, nor to the y–axis. As in example 3.5, let (f, g) 7→ g ◦f be defined as g ◦f(x) = g(f(x)). Then (G, ◦)
is a group.

PROOF:
First, we prove that ◦ is a binary operation on G, i.e., if f, g ∈ G then g ◦ f ∈ G (see the begin-
ning of Definition 3.1 (semigroups and monoids) on p.50). In other words, we will show that the
composition of two straight line functions is a straight line function.
So let f(x) := a1x+ b1 and g(x) := a2x+ b2 for suitable a1, b1, a2, b2 ∈ R where moreover a1, a2 6= 0.
Let x ∈ R. Then

g ◦ f(x) = g(a1x+ b1) = a2(a1x+ b1) + b2 = (a1a2)x+ (a2b1 + b2).

Hence g ◦ f is of the form x 7→ ax+ b with a = a1a2 ∈ R 6=0 and b = a2b1 + b2 ∈ R. We have proved
that ◦ is a binary operation on G.
It follows from from prop.3.1 that (G, ◦) is a monoid. We only have to note that idR ∈ G because, if
a = 1 and b = 0, then idR(x) = x = ax+ b.
To prove that this monoid is a group, we must prove thefollowing. If f ∈ G, then there exists g ∈ G
such that g(f(x)) = f(g(x)) = x, for all x ∈ R.
We have learned in calculus that, if y = f(x), we must “solve for x” to obtain the inverse function.
Let f(x) = ax+ b (a 6= 0). Then

y = ax+ b ⇒ ax = y − b ⇒ x = 1
ay + −b

a .

Let g(x) := 1
ax−

b
a . Then g ∈ G. To prove that g = f−1, we must show that

g
(
f(x)

)
= g
(
f(x)

)
= x for all x ∈ R.

We have

g
(
f(x)

)
= g(ax+ b) = 1

a(ax+ b)− b
a = (x+ b

a)− b
a = x;

f
(
g(x)

)
= f( 1

ax+ −b
a ) = a( 1

ax−
b
a) + b = (x− b) + b = x.

Hence g = f−1. We have shown that every element f of the monoid (G, ◦) possesses an inverse and
it follows that (G, ◦) is a group. �

The next definition is familiar to you if you have taken a linear algebra course.
26Actually, our definition of inverse function demands that any parallel to the x–axis must intersect the graph of f in

exactly one point. (see rem. 5.13 (horizontal and vertical line tests) on p.146).

55 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

Definition 3.4 (Linear functions on R). ?

A function f : R→ R is a linear function on R if the following is true for all x, y, λ27 ∈ R:

f(x+ y) = f(x) + f(y) (additivity),(3.10)
f(λx) = λf(x) (homogeneity). �(3.11)

You will learn later about the general definition of a linear function. See Definition 11.9 (linear
mappings) on p.335.

Theorem 3.3. Let f : R → R. Then f is linear if and only if there exists a ∈ R such that f(x) = ax for all
x ∈ R.

PROOF:
Proof strategy: The proof of a statement of the form “P is true if and only if Q is true” consists of
two parts. We must prove that a) if P is true then Q is true and also b) if Q is true then P is true. In
the context of this theorem we have

P: f is linear,
Q: there exists a ∈ R such that f(x) = ax for all x ∈ R.

a) Proof that if f is linear then there exists a ∈ R such that f(x) = ax for all x ∈ R:

f(1) = f
(y − x
y − x

)
(3.11)
=

f(y − x)

y − x
(3.10)
=

f(y)− f(x)

y − x
for all y 6= x.(3.12)

It follows that f represents a straight line in the plane with slope m = f(1).

Next we observe that f(0) = f(2 · 0)
(3.11)
= 2f(0), hence f(0) = 0.

We substitute y = 0 in (3.12) and obtain f(1) = −f(x)
−x . It follows with a := f(1) that indeed

f(x) = a · x for some a ∈ R.
b) Proof that if there exists a ∈ R such that f(x) = ax for all x ∈ R then f is linear:
We show the validity of 3.10 and 3.11 by brute force. Let x, y, λ ∈ R. Then

f(x+ y) = a(x+ y) = ax+ ay = f(x) + f(y),

f(λx) = a(λx) = λ(ax) = λf(x).

This proves both additivity and homogeneity and hence the linearity of f . �

Let (G, �) be a group and H ⊆ G. Note that if h, h′ ∈ H then h, h′ ∈ G and hence h � h′ exists as an
element ofG, but there is no guarantee that h�h′ ∈ H . For example, let (G, �) be the group (R,+) of
all real numbers with addition as its binary operation, and let H := [−1, 1] = {x ∈ R : −1 ≤ x ≤ 1}.
Then 1

2 and 3
4 belong to H , but 1

2 + 3
4 /∈ H . Subsets H of G which are “closed” with respect to �, i.e.,

h � h′ ∈ H whenever h, h′ ∈ H , deserve a special name.

Definition 3.5 (Subgroup). ? Let (G, �) be a group and H ⊆ G.

27λ (prounced lambda) is the greek version of the letter l. Chapter 22.1 (Greek Letters) on p.510 contains a list of the
most commonly used Greek letters.
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We call (H, �) a subgroup of G if the following is true:

H is not empty,(3.13)
if h, h′ ∈ H then h � h′ ∈ H,(3.14)

if h ∈ H then its inverse element h−1 (in G!) belongs to H.(3.15)

We also write H for (H, �), if there is no confusion about the nature of “�”. �

Proposition 3.6. Subgroups are groups.

PROOF:
Let (G, �) be a group and let H be a subgroup of G. We must prove that (H, �) is a monoid (H is
not empty, � is a binary operation on the subset H of G, H has a neutral element eH , and H satisfies
associativity) and that each h ∈ H possesses h′ ∈ H such that h � h′ = h′ � h = eH

(a) H is nonempty: This follows from (3.13).
(b) � is a binary operation on H : We must show that if h, h′ ∈ H then h � h′ ∈ H (not just that
h � h′ ∈ G). But this follows from (3.14).
(c) Existence of a neutral element: Let e be the neutral element of G. H is not empty, hence there
exists h0 ∈ H . h0 has an inverse h−1

0 in the group G which belongs, according to (3.15), to H . It
follows from (3.14) that e = h0 � h−1

0 ∈ H .
g � e = e � g = e holds for any g ∈ G and hence, in particular, for each g ∈ H . This proves that e is a
neutral element of H .
(d) We next prove associativity. Let h1, h2, h3 ∈ H . We apply (3.14) four times to obtain

h1�h2 ∈ H, (h1 � h2) � h3 ∈ H, h2 � h3 ∈ H, h1 � (h2 � h3) ∈ H.

It further follows from the associativity of � in G that (h1 � h2) � h3 = h1 � (h2 � h3). We thus have
proven associativity of � in H .
(e) We finally prove that if h ∈ H then its inverse in G, h−1, is also the inverse of h in H . That
follows from the fact that, by (3.15), h−1 ∈ H , the neutral element e of G is also the neutral element
of H , and

h�h−1 = h−1 � h = e. �

Example 3.6.
(a) (Z,+) is a subgroup of (R,+), because the sum of two integers is an integer and the

additive inverse of an integer is an integer.
(b) (Q6=0, ·) is a subgroup of (R 6=0, ·), because the product of two nonzero fractions is a

nonzero fraction and the multiplicative inverse of two nonzero fractions is a nonzero
fraction.

(c) Let H := {x ∈ R : 0 < |x| < 1}. Then (H, ·) is not a subgroup of (R 6=0, ·) (since 1 /∈ H , but
also since 0.5−1 = −2 /∈ H).

(d) Then (Z6=0, ·) is not a subgroup of (R 6=0, ·) because 1
2 , the multiplicative inverse of 2 ∈ Z,

is not an integer.
(e) Let H := [1, 2]. Then (H, ·) is not a subgroup of (R 6=0, ·), and (H,+) is not a subgroup of

(R,+).
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Proposition 3.7. Let (G, ◦) be the set of all polynomials of degree 1 with function composition, i.e.,

G = {R
f−→ R : f(x) = ax+ b, for some a, b ∈ R such that a 6= 0} ,

g ◦ f : x 7→ g ◦ f(x) = g(f(x)) .

Further, let
H := {R

f−→ R : f(x) = ax, for some nonzero a ∈ R} .
Then (H, ◦) is a subgroup of (G, ◦).

PROOF:
It was established in prop.3.5 that (G, ◦) is a group. H is a subset of G because elements of H are
those functions x 7→ ax+ b of G for which b = 0. To prove that H is a subgroup of G we must show
that if h, h′ ∈ H then h ◦ h′ ∈ H and that the inverse function h−1 in G actually belongs to H .
So let h(x) := ax and h′(x) := a′x (a, a′ ∈ R and a, a′ 6= 0). Then

h ◦ h′(x) = a(a′x) = (aa′)x

shows, because aa′ 6= 0, that h ◦ h′ ∈ H . Further, the inverse of h in G is the function h−1 : x 7→ 1
ax.

But h′ ∈ H because 1
a 6= 0. We have proven that H is a subgroup of G. �

Note that the above proposition also follows from thm.3.3 on p.56.

Proposition 3.8. The intersection of two subgroups is a subgroup.

PROOF:
Let (G, �) be a group and let H1, H2 be two subgroups of G. Let H := H1 ∩H2 and h, h′ ∈ H . We
must prove (3.14) and (3.15). We conclude from h, h′ ∈ H ⊆ H1 that h � h′ ∈ H1 and h−1 ∈ H1

because H1 is a subgroup. We further conclude from h, h′ ∈ H ⊆ H2 that h � h′ ∈ H2 and h−1 ∈ H2

because H2 also is a subgroup. It follows from the definition of an intersection that h � h′ ∈ H1 ∩H2

and h−1 ∈ H1 ∩H2. This concludes the proof. �

We now turn our attention to functions which map from a group to another group in such a way
that they are, in a sense, compatible with the binary operations on their domain and codomain.

Example 3.7. Let (G, �) := (R,+) and (H, •) := ( ]0,∞[, ·). Then bothG andH are abelian groups
(H is an abelian subgroup of (R \ {0}, ·) since the product of two strictly positive numbers is again
strictly positive and because the neutral element 1 is strictly positive). Let

ϕ : (G, �)→ (H, •) ; x 7→ ex , ψ : (H, •)→ (G, �) ; y 7→ ln(y) .

Note that the following is true for ϕ:
• ϕ(x+ y) = ϕ(x) · ϕ(y) for all x, y ∈ G,
• ϕ(0) = 1: the image of the neutral element is the neutral element.
• ϕ(−x) = e−x = 1

ϕ(x) : the image of the inverse is the inverse of the image.

It does not matter whether you first apply the operation to two items in the domain and
then apply the function to the result or whether you first map those two items into the
codomain and then apply the operation to the two function values. Further, the inverse of
the function value is the function value of the inverse and the function maps the neutral
element to the neutral element.
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Mathematicians say that a function function ϕ that has groups both as its domain and it codomain
is structure compatible with the algebraic (group) operations on its domain and codomain.
The function ψ(y) = ln(y) also is structure compatible:
• ψ(x · y) = ψ(x) + ψ(y) for all x, y ∈ H ,
• ψ(1) = 0: the image of the neutral element is the neutral element.
• ψ

(
1
y

)
= ln

(
1
y

)
= − ln(y) = −ψ(y): the function value of the inverse is the inverse of the

function value.
Note that those two structure compatible functions ϕ and ψ are inverses of each other. �

We can generalize the above example as follows.

Definition 3.6 (Homomorphisms and isomorphisms). Let (G, �) and (H, •) be groups with neutral
elements eG and eH and let us write g−1 and h−1 for the inverses (in the sense of def. 3.3 on p.53.

Let ϕ : (G, �)→ (H, •) be a function which satisfies the following:

ϕ(g1 � g2) = ϕ(g1) • ϕ(g2) .(3.16)

Then we call ϕ a homomorphism, more specifically, a group homomorphism, from the
group (G, �) to the group (H, •).
Let ψ : (H, •) → (G, �) be a group homomorphism from (H, •) to (G, �) such that ϕ and ψ
are inverse to each other. We call such a bijective homomorphism an isomorphism, and
we call the groups (G, �) and (H, •) isomorphic.

For bijectivity, see Definition 5.12 on p.144). �

Theorem 3.4. Let (G, �) and (H, •) be two groups and let ϕ : (G, �)→ (H, •) be a homomorphism. Let eG
be the neutral element of G and eH be the neutral element of H . Then

(a) ϕ(eG) = eH ,
(b) Let g ∈ G. Then ϕ(g−1) =

(
ϕ(g)

)−1,
(c) Direct images of subgroups of G are subgroups of H .
(d) Preimages of subgroups of G are subgroups of H .

PROOF of (a): It follows from ϕ(eG) = ϕ(eG � eg) = ϕ(eG) • ϕ(eG) and associativity that

eH =
(
ϕ(eG)

)−1 • ϕ(eG) =
(
ϕ(eG)

)−1 • ϕ(eG � eG)

=
(
ϕ(eG)

)−1 •
[
ϕ(eG) • ϕ(eG)

]
=
[(
ϕ(eG)

)−1 • ϕ(eG)
]
• ϕ(eG)

= eH • ϕ(eG) = ϕ(eG) .

PROOF of (b): We apply part (a) and (3.16) and obtain

eH = ϕ(eG) = ϕ(g−1 � g) . = ϕ(g−1) • ϕ(g)

This proves that ϕ(g−1) is the inverse of ϕ(g).

The proof of (c) and (d) is left as an exercise. �
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The next result which is not hard to prove might surprise you. If a group homomorphism possesses
an inverse then this inverse is also a group homomorphism

Theorem 3.5. ? Let (G, �) and (H, •) be two groups and let ϕ : (G, �)→ (H, •) be a homomorphism
which possesses an inverse. Then ϕ−1 : H → G also is a homomorphism and thus ϕ is an isomorphism

PROOF:
We recall that the inverse ϕ−1 of ϕ satisfies ϕ ◦ ϕ−1 = idH and ϕ−1 ◦ ϕ = idG, i.e.,
ϕ
(
ϕ−1(h)

)
= h for all h ∈ H and ϕ−1

(
ϕ(g)

)
= g for all g ∈ G.

So let h, h′ ∈ H . Since ϕ is surjective, there exist g, g′ ∈ G such that ϕ(g) = h and ϕ(g′) = h′. Then,

ϕ−1(h • h′) = ϕ−1(ϕ(g) • ϕ(g′)) = ϕ−1(ϕ(g � g′)) (since ϕ is a homomorphism)

= g � g′ = ϕ−1
(
ϕ(g)

)
� ϕ−1

(
ϕ(g′)

)
(since ϕ−1 ◦ ϕ = idG)

= ϕ−1(h) � ϕ−1(h′). (definition of h and h′) �

3.2 Commutative Rings and Integral Domains

Introduction 3.3. The definition of a ring is of great importance in algebra. It will not be given
in this document because it is too general for our purposes. We rather restrict ourselves from the
outset to so called commutative rings with unit and to integral domains. These definitions not only
cover the number systems we all are familiar with, the integers, fractions and real numbers, 28 but
also, e.g., the set of all polynomials when considered as functions p(x) of a real variable x. �

Definition 3.7 (Commutative rings with unit). ?

Let R be a nonempty set with two binary operations

⊕ : (a, b) 7→ a⊕ b, called addition, and � : (a, b) 7→ a� b, called multiplication,

which assign to any two elements a, b ∈ R uniquely determined a⊕ b ∈ R and a� b ∈ R such that
the following holds:

(a) (R,⊕) is an abelian (i.e., commutative) group; we denote the neutral element for
addition by 0 and the inverse element of a ∈ R for addition by 	a.

(b) (R,�) is a commutative monoid, i.e., a monoid for which a�b = b�a for all a, b ∈ R.
We denote the neutral element with respect to multiplication by 1.

(c) Multiplication is distributive over addition:

(3.17) a� (b⊕ c) = (a� b)⊕ (a� c) for all a, b, c ∈ R.

(d) 1 6= 0.

The triplet (R,⊕,�) is called a commutative ring with unit. We may write R instead of (R,⊕,�)
if it is clear which binary operations on R are represented by ⊕ and by �. �

28See Proposition 3.12 on p.64
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Remark 3.1. Recall from thm.3.1 and thm.3.2 that the neutral elements 0 and 1 and the additive
inverse 	b are uniquely determined (b ∈ R). �

Notation 3.1 (Notation Alert for Commutative Rings With Unit).

(a) It is customary to write ab instead of a� b if this does not give rise to confusion.
(b) Multiplication has precedence over (binds stronger than) addition: a � b ⊕ c

means (a� b)⊕ c, not a� (b⊕ c).
(c) Let a, b,∈ R. Recall from thm.3.1 and thm.3.2 that not only the neutral elements

0 and 1 but also the additive inverse 	b are uniquely determined. Accordingly,
we can define another binary operation, 	, on (R,⊕,�) as follows:

a 	 b := a ⊕ (	b). �(3.18)

We call a	 b the difference of a and b.

For a set of numbers A we defined in Definition 2.18 on p.27 the set λA+ b = {λa+ b : a ∈ A}. This
generalizes without difficulty to commutative rings with unit.

Definition 3.8 (Translation and dilation of sets). ?

Let R = (R,⊕,�) be a commutative ring with unit and A ⊆ R. and α, b ∈ R. We define

λA⊕ b := {λa⊕ b : a ∈ A}.(3.19)

In particular, for λ = ±1, we obtain

A⊕ b = {a⊕ b : a ∈ A},(3.20)
	A = {	a : a ∈ A}. �(3.21)

Remark 3.2. Note that the above makes sense for any algebraic structure, i.e., a set with one or
more “algebraic operations”, if they have the binary operations “⊕” and/or “�” of a commutative
ring with unit. 29 �

We will now examine the role of the condition 1 6= 0. It turns out that it is equivalent to demanding
that R is not the trivial “Null ring” {0}.

Proposition 3.9. Let (R,⊕,�) be a nonempty set with two binary operations ⊕ and � which satisfies (a),
(b), (c) of Definition 3.7, i.e., R satisfies all conditions for a commutative ring with unit except that 1 and 0
need not be different elements of R. Then

(a) a	 a = 0 for all a ∈ R,
(b) a� 0 = 0 for all a ∈ R.

29Ignore this if you are not familiar with vector spaces: In a vector space V the scalar product (λ, a) 7→ λv of a real
number (scalar) λ and a vector v ∈ V (not a binary operation since its domain is R × V rather than V × V ) would take
the place of “�”
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PROOF of (a): This follows from the definitions of inverse and subtraction: a	 a = a⊕ (	a) = 0.
PROOF of (b):

a� 0
3.2
= a(0⊕ 0)

3.17
= a� 0⊕ a� 0, hence(3.22)

0
3.5
= a� 0 ⊕

(
	 (a� 0)

) 3.22
= (a� 0⊕ a� 0) ⊕

(
	 (a� 0)

)
3.1
= a� 0 ⊕

(
a� 0 ⊕ (	(a� 0))

) 3.5
= a� 0⊕ 0

3.2
= a� 0.

(3.23)

The second chain of equations above proves that a� 0 = 0. �

Proposition 3.10.
(a) The set R := {0} satisfies conditions (a), (b), (c) of Definition 3.7,
(b) Let (R,⊕,�) be a nonempty set with two binary operations ⊕ and � which satisfies

(a), (b), (c) of Definition 3.7. Then the following is true: 1 = 0 if and only if R = {0}
.

PROOF:
Proof of (a):
Note that because 0 is the only element of R, the operations ⊕ and � are completely determined by
the following:

0 ⊕ 0 = 0; 0 � 0 = 0.

We only prove here that (R,⊕) is a monoid. The proofs of the other properties are just as simple.
Let a, b, c ∈ R. Then a = b = c = 0 because R does not contain any other elements. We obtain

(a⊕ b)⊕ c = (0⊕ 0)⊕ 0 = 0⊕ 0 = 0⊕ (0⊕ 0) = a⊕ (b⊕ c),

hence ⊕ is associative and (R,⊕) is a semigroup.
Let a ∈ R. Then a = 0 because R does not contain any other elements. We obtain

a⊕ 0 = 0⊕ 0 = 0⊕ a,

hence 0 is neutral element for ⊕ and the semigroup (R,⊕) is a monoid.
Proof of (b):
�

Definition 3.9 (Zero Divisors and Cancellation Rule).

Let (R,⊕,�) be a commutative ring with unit.
(a) If a, b ∈ R such that a 6= 0 and b 6= 0 and a � b = 0 then we call a and b zero

divisors.
(b) We say that the cancellation rule holds in R if the following is true

for all a, b, c ∈ R such that a 6= 0:

(3.24) If a� b = a� c then b = c. �
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For an example of a commutative ring with unit which contains zero divisors see ch.6.10 (The Inte-
gers Modulo n) on p.197.

Definition 3.10 (Integral domains).

Let (R,⊕,�) be a commutative ring with unit which satisfies the
• no zero divisors condition: If a, b ∈ R such that a� b = 0 then

a = 0 or b = 0 (or both are zero).
The triplet (R,⊕,�) is called an integral domain. �

Remark 3.3. We stated the no zero divisors condition in the definition of an integral domain as
follows: If a, b ∈ R such that a � b = 0 then a = 0 or b = 0 (or both are zero). We remind you that
there was no need to include the “or both are zero” part since “or” is always the inclusive “or”. See
the 2.2.0.3 section (OR vs. EITHER ... OR) on p.23. �

Remark 3.4. Integral domains (R,⊕,�) are characterized as follows.

(a) If a, b ∈ R then a⊕ b ∈ R and a� b ∈ R binary operations
(b) If a, b, c ∈ R then (a⊕ b)⊕ c = a⊕ (b⊕ c) associativity of ⊕
(c) If a, b, c ∈ R then (a� b)� c = a� (b� c) associativity of �
(d) If a, b ∈ R then a⊕ b = b⊕ a commutativity of ⊕
(e) If a, b ∈ R then a� b = b� a commutativity of �
(f) If a, b, c ∈ R then a� (b⊕ c) = (a� b)⊕ (a� c) distributivity
(g) There exists 0 ∈ R such that a⊕ 0 = a for all a ∈ R neutral element f. ⊕
(h) There exists 1 ∈ R such that 1 6= 0 and

a� 1 = a for all a ∈ R neutral element f. �
(i) For each a ∈ R there exists a′ ∈ R such that a⊕ a′ = 0 inverse element f. ⊕
(j) If a, b ∈ R such that a 6= 0 and b 6= 0 then a� b 6= 0 no zero divisors

Proposition 3.11. Let (R,⊕,�) be a commutative ring with unit. Then R satisfies the No zero divisors
condition if and only if the cancellation rule holds in R.

PROOF that the cancellation rule implies the absence of zero divisors:
We assume that the cancellation rule holds in R. Let a, b ∈ R such that ab = 0 and a 6= 0. It suffices
to show that then b = 0. (Why?)
It follows from ab = 0 and b = b 	 0 that a(b 	 0) = 0, hence a � b = a � 0. The cancellation rule
now implies together with a 6= 0 that b = 0.
PROOF that the absence of zero divisors implies the cancellation rule:
We assume that R has no zero divisors. Let a, b, c ∈ R such that ab = ac and a 6= 0. It suffices to
show that b = c.
It follows from the distributivity law (3.17) that 0 = ab 	 ac = a(b 	 c). Because R has no zero
divisors, at least one of a or b	 c must be zero.
We assumed that a 6= 0 and it follows that b	 c = 0, i.e., b = c. �
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Corollary 3.1. A commutative ring with unit is an integral domain if and only if the cancellation rule holds.

PROOF: Immediate from prop.3.11. �

Proposition 3.12. Each of the following algebraic structures is an integral domain:
(a) (Z,+, ·): the integers with addition and multiplication,
(b) (Q,+, ·): the rational numbers with addition and multiplication,
(c) (R,+, ·): the real numbers with addition and multiplication.
(d) 30 (C,+, ·): the complex numbers with addition and multiplication.

PROOF Will not be given here. �

3.3 Arithmetic in Integral Domains

Notation: In this entire chapter we assume that a fixed integral domain (R,⊕,�) is given
and phrases such as “let x ∈ R” refer to that integral domain.
Note also that we will, in accordance with notation 3.1(a), often write a b instead of a� b.

Introduction 3.4. When you look at ch.1.2–1.3 and then again at ch.8.1 of [2] Beck/Geoghegan:
The Art of Proof then you notice that identical propositions and theorems are given there: First for
integers in ch.1, and then again for real numbers in ch.8. You will not find a third set for the rational
numbers, but only because the authors chose instead to define those as a subset of R instead and, in
that manner, inherit their laws of arithmetic from those for the real numbers.

It was mentioned in prop.3.12 on p.64, and it will be proven in ch.6 (The Integers) and ch.9
(The Real Numbers) that not only the integers but also the rational numbers and the real numbers
with the binary operations of addition and multiplication are integral domains.
This is the power of mathematical abstraction:

A formula such as, e.g., (−x)(−y) = xy need not be demonstrated separately for Z, for Q,
and then again for R. Rather it should be possible to state and prove it once for integral
domains and thus have it validated for all three sets of numbers.

This is the route we are going here. The propositions and theorems in this chapter are almost
an exact copy of ch.1.2–1.3, and then again of ch.8.1, of [2] Beck/Geoghegan: The Art of Proof, but
we use “⊕′′ instead of “+′′, “	′′ instead of “−′′ and “�′′ instead of “·′′ for the binary operations of
addition, subtraction and multiplication. This is deliberate. The reader then should more easily
remember that these rules also apply to other integral domains such as, e.g., the complex numbers
and the so called integers modulo n. (See Definition 6.13 on p.197.) �

We just mentioned that a lot of the following material can, in a sense, also be found in ch.1.2–1.3
and ch.8.1, of [2] Beck/Geoghegan: The Art of Proof. The difference is that those authors represent
the material first for the integers (ch.1) and then again for the real numbers (ch.8). In contrast we
state the material only once, in the framework of integral domains.

30Skip this part of the proposition if you have not learned about complex numbers.
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Some of the propositions that only deal with one of the operations ⊕ and � are immediate conse-
quences of the material of Chapter 3.1 (Semigroups and Groups). We include them here to make it
easier to read the Beck/Geoghegan text in parallel.
Where applicable we provide the Beck/Geoghegan references for matching definitions, proposi-
tions and theorems. Note that we refer to some of the proofs to that book. On the other hand, if
a proof is not given in the B/G book then you will generally also not find it in this document. An
exception is the first proposition here, prop.3.13, where we supply the proof to help the readers
make the transition between the set (Z,+, ·) and the set (R,⊕,�).

Proposition 3.13 (B/G prop.1.6 and B/G prop.8.8). Let a, b, c ∈ R. Then (a⊕ b)� c = a� c⊕ b� c.

PROOF:

(a⊕ b)� c def.3.7.b
= c� (a⊕ b) (3.17)

= c� a⊕ c� b def.3.7.b
= a� c⊕ b� c. �

Proposition 3.14 (B/G prop.1.7 and B/G prop.8.9). Let a ∈ R. Then 0⊕ a = a and 1� a = a.

PROOF: It follows from Definition 3.7 on p.60 of a commutative ring with unit that (R,⊕) is a
monoid with neutral element 0 and (R,�) is a monoid with neutral element 1. The assertion follows
from the definition of a monoid. �

Proposition 3.15 (B/G prop.1.8). Let a ∈ R. Then (	a)⊕ a = 0.

PROOF: It follows from the definition of inverse elements in groups, even if they are not assumed
to be abelian, that (	a)⊕ a = 0. See (3.5) on p.52. �

Proposition 3.16 (B/G prop.1.10 and B/G prop.8.11). Let a, b1, b2 ∈ R. If a ⊕ b1 = 0 and a ⊕ b2 = 0
then b1 = b2.

PROOF: Left as an exercise. �

Note for the following proposition that parts (b) and (c) hold true for semigroups (not even com-
mutativity of ⊕ is needed) and that part (d) holds true for commutative monoids.

Proposition 3.17 (B/G prop.1.11 and B/G prop.8.12). Let a, b, c, d ∈ R. Then
(a) (a⊕ b) (c⊕ d) = (ac⊕ bc)⊕ (ad⊕ bd),
(b) a⊕

(
b⊕ (c⊕ d)

)
= (a⊕ b)⊕ (c⊕ d) =

(
(a⊕ b)⊕ c

)
⊕ d,

(c) a⊕ (b⊕ c) = (c⊕ a)⊕ b,
(d) a(bc) = c(ab),
(e) a

(
b⊕ (c⊕ d)

)
= (ab⊕ ac)⊕ ad,

(f)
(
a(b⊕ c)

)
d = (ab)d⊕ a(cd).

The proof is left as an exercise. �

Proposition 3.18. ? Let a, b ∈ R. Then b	 a = 	(a	 b).

PROOF: Since (R,⊕) is a group and 	x denotes the inverse of x ∈ R this is a reformulation of
prop.3.3 on p.54. �

The following two propositions state that the neutral element with respect to addition is the unique
solution of the equation a⊕ x = a.
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Proposition 3.19 (B/G prop.1.12 and B/G prop.8.13). Let x ∈ R satisfy the following: For each a ∈ R
it is true that a⊕ x = a. Then x = 0.

PROOF: Left as an exercise. �

Proposition 3.20 (B/G prop.1.13 and B/G prop.8.14). Let x ∈ R satisfy the following: There exists (at
least one) a ∈ R such that a⊕ x = a. Then x = 0.

Left as an exercise. �

Remark 3.5. Be sure to understand that the last two propositions are different! Both have the same
conclusion, x = 0, but the assumptions are not the same:
• Prop.3.19 asks for a lot before it allows you to conclude that x = 0: Every element a of R

must satisfy the condition a⊕ x = a.
• In contrast prop.3.20 asks for very little so that you may reach the same conclusion: It suffices

if you can find just one element a of R which satisfies the condition a⊕ x = a.
So which of the two propositions is the more powerful one? Of course it is prop.3.20 which allows
you to draw the same conclusion under the “weaker” assumption that it suffices to find just one
a ∈ R that satisfies a⊕ x = a. �

Proposition 3.21 (B/G prop.1.14 and B/G prop.8.15). Let a ∈ R. Then a� 0 = 0 = 0� a.

PROOF: This is Proposition 3.9(b). �

[2] Beck/Geoghegan: The Art of Proof gives at this spot the definition of divisibilty. We omit it here
and provide it in Definition 6.2 on p.172.

The following two propositions show that the neutral element with respect to multiplication is the
unique solution of the equation

a� x = a.

Compare them to prop.3.19 and prop.3.20 above, and also review remark 3.5 which follows them.

Proposition 3.22 (B/G prop.1.18 and B/G prop.8.16). Let x ∈ R satisfy the following: For each a ∈ R
it is true that a� x = a. Then x = 1.

PROOF: Left as an exercise. �

Proposition 3.23 (B/G prop.1.19 and B/G prop.8.17). Let x ∈ R satisfy the following: There exists (at
least one) nonzero a ∈ R such that a� x = a. Then x = 1.

PROOF: See the proof of B/G prop.1.19. �

Next we provide more propositions about the additive and multiplicative inverses and about can-
cellation.

Proposition 3.24 (B/G prop.1.20 and B/G prop.8.18). Let a, b ∈ R. Then (	a)(	b) = ab.

PROOF: See the proof of B/G prop.1.20. �
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Corollary 3.2 (B/G cor.1.21). (	1)(	1) = 1.

PROOF: Immediate from prop.3.24. �

Proposition 3.25 (B/G prop.1.22 and B/G prop.8.19).
(a) If a ∈ R then 	(	a) = a.
(b) 	0 = 0.

PROOF of (a): Left as an exercise.
PROOF of (b): Let x = 	0 and a = 0. Then

a⊕ x = 0⊕ (	0) = 0 = a .

According to Proposition 3.20 (B/G prop.1.13 and B/G prop.8.14) on p.66, the existence of a ∈ R
such that a ⊕ x = a implies that x = 0. It follows from the above chain of equations that x = 0, i.e.,
	0 = 0. �

Proposition 3.26 (Unique Solutions of Linear Equations). Let (R,⊕,�) be an integral domain and
a, b, y ∈ R such that a 6= 0. The equation y = a� x⊕ b possesses at most one solution x ∈ R.

PROOF: Let x, x′ ∈ R satisfy y = a� x⊕ b and y = a� x′ ⊕ b. We must show that x = x′.
It follows from our assumptions that a� x⊕ b = a� x′ ⊕ b, hence a� x = a� x′ by prop.3.4 on
p.54. It follows from cor.3.1 on p.64 that x = x′ �

Remark 3.6. Note that the equation y = a � x ⊕ b need not have a solution. For example, there is
no x ∈ (Z,+, ·) which satisfies the equation 2x+ 0 = 1. �

However the following is true.

Proposition 3.27 (B/G prop.1.23 and B/G prop.8.20). Let a, b ∈ R. Then there exists one and only one
x ∈ R such that a⊕ x = b.

PROOF: Uniqueness follows from Proposition 3.26.
x exists since we can compute it as follows:

x = (	a ⊕ a) ⊕ x = 	a ⊕ (a⊕ x) = 	a⊕ b . �

Remark 3.7. Note that “there exists one and only one ...” is the same as “there exists a unique ...”
For this reason a statement like the one in the preceding proposition is also called an existence and
uniqueness statement. �

Proposition 3.28 (B/G prop.1.24 and B/G prop.8.21).

Let x ∈ R. If x� x = x then x = 0 or x = 1.

PROOF: Left as an exercise. �
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Proposition 3.29 (B/G prop.1.25 and B/G prop.8.22). Let a, b ∈ R. Then
(a) 	(a⊕ b) = (	a)⊕ (	b),
(b) 	a = (	1)a,
(c) (	a)b = a(	b) = 	(ab).

PROOF: Left as an exercise. �

Proposition 3.30 (B/G prop.1.26 and B/G prop.8.23). Let a, b ∈ R. If ab = 0 then a = 0 or b = 0.

PROOF: This is the no zero divisors condition for integral domains. �

The next proposition is a collection of properties that involve the difference a	 b = a⊕ (	b) of two
elements a and b of R.

Proposition 3.31 (B/G prop.1.27 and B/G prop.8.24). Let a, b, c, d ∈ R. Then
(a) (a	 b)⊕ (c	 d) = (a⊕ c)	 (b⊕ d),
(b) (a	 b)	 (c	 d) = (a⊕ d)	 (b⊕ c),
(c) (a	 b)(c	 d) = (ac⊕ bd)	 (ad⊕ bc),
(d) a	 b = c	 d if and only if a⊕ d = b⊕ c,
(e) (a	 b)c = ac	 bc.

PROOF: For the proof of (a) see B/G prop.1.27. The proofs of (b) – (e) are left as an exercise. �

3.4 Order Relations in Integral Domains

Introduction 3.5. It is possible to introduce an order a < b on certain integral domains (R,⊕,�) by
marking the elements of an appropriate subset P of R as positive and saying that x is less than y
if the difference y 	 x is positive, i.e., if y 	 x ∈ P . This is how we proceed with integers, real and
rational numbers. For each of those three number systems the set P = {x : x > 0} plays that role.
For example 7 is less than 12 since 12 − 7 > 0, and −12 < −7 since −7 − (−12) > 0. Moreover P
satisfies the following: If x, y ∈ P , i.e., x > 0 and y > 0 then x + y > 0 and xy > 0, i.e., x + y ∈ P
and xy ∈ P . We also note that the number zero is not positive (not negative either), and that it is
true for any number x that (either) x < 0 or x = 0 x > 0, i.e., x ∈ P or −x ∈ P or x = 0. �

The above motivates the following definition.

Definition 3.11 (Ordered Integral Domains). I. Let (R,⊕,�) be an integral domain. Assume there
exists P ⊆ R which satisfies the following:

(a) If p1, p2 ∈ P then p1 ⊕ p2 ∈ P ,
(b) If p1, p2 ∈ P then p1 � p2 ∈ P ,
(c) 0 /∈ P ,
(d) Let a ∈ R. Then at least one of the following is true: a ∈ P , 	a ∈ P , a = 0.

We call P a positive cone on the integral domain R.
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II. We use P to define on R an “order relation” a < b as follows: Let a, b ∈ R. We define

a < b if and only if b	 a ∈ P (“a is less than b′′),(3.25)
a ≤ b if and only if a < b or a = b, (“a is less than or equal b′′),(3.26)
a > b if and only if b < a, (“a is greater than b′′),(3.27)
a ≥ b if and only if b ≤ a. (“a is greater than or equal b′′),(3.28)

We say that< is the order induced by P , and we call the quadruple (R,⊕,�, P ) an ordered integral
domain. Let a ∈ R. If a ∈ P then we call a a positive element of R, and if 	a ∈ P then we call a
a negative element of R. If a is positive or zero then we call a nonnegative, and if a is negative or
zero then we call a nonpositive. �

Remark 3.8. It may seem obvious to you that property (d) of a positive cone implies that an element
of an ordered integral domain cannot be both positive and negative, but this requires proof! The
above will follow easily from prop.3.33 on p.70. �

The next proposition gives the integers Z, the fractions Q, and the real numbers R as examples of
ordered integral domains. It uses the naive definitions of ch.2 (Preliminaries about Sets, Numbers
and Functions) for those sets. We will see in ch.6 and in ch.9 that things are the other way around Z
and R are defined there in an exact manner as ordered integral domains (with additional properties).

Proposition 3.32.

Each of the following algebraic structures is an ordered integral domain:
(a) (Z,+, ·,N): The integers with addition and multiplication: The positive cone is the

subset of all natural numbers.
(b) (Q,+, ·,Q>0): The rational numbers with addition and multiplication: The positive

cone Q>0 is the subset of all fractions m
n . where both m,n are positive integers. 31

(c) (R,+, ·,R>0): The real numbers with addition and multiplication. The positive cone
here is ]0,∞[.

There is no suitable positive cone to define an order on the complex numbers (C,+, ·) with addition and
multiplication. 32

PROOF: This will be obvious when we see the exact definitions for Z, Q, and R. �

Notation: In this entire chapter we assume that a fixed ordered integral domain (R,⊕,�, P )
is given and phrases such as “let a ∈ R” refer to elements of that integral domain. We
further assume that order relations such as “a < b” and “a ≥ b” refer to the order induced
by the positive cone P .

For the following see Definition 2.19 on p.27 and the subsequent notation alert 2.1 concerning in-
tervals of integers, real numbers and rational numbers. Convince yourself that the definitions and

32Ignore this example if you have not learned about complex numbers.
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notations given there are consistent with the following ones for intervals in ordered integral do-
mains.

Definition 3.12 (Intervals in Ordered Integral Domains).
(A) For the following let a, b ∈ (R,⊕,�, P ).

[a, b]R := {x ∈ R : a ≤ x ≤ b} is called the closed interval with endpoints a and b.
]a, b[R := {x ∈ R : a < x < b} is called the open interval with endpoints a and b.
[a, b[R := {x ∈ R : a ≤ x < b} and ]a, b]R := {x ∈ R : a < x ≤ b} are called half-open
intervals with endpoints a and b.

(B) We generalize the symbol “∞” from real numbers (see Definition 2.19 on p.27) to arbitrary
ordered integral domains as follows. The symbol “∞” stands for an object which itself is not an
element of (R,⊕,�, P ) but is larger than any of its elements, and the symbol “	∞” stands for an
object which itself is not an element of (R,⊕,�, P ) but is smaller than any of its elements. We thus
have 	∞ < x <∞ for any x ∈ R. We write ⊕	∞when we mean “either ⊕∞ or 	∞.”
We now define

]	∞, a]R := {x ∈ R : x ≤ a} ]	∞, a[R := {x ∈ R : x < a}
]a,∞[R := {x ∈ R : x > a} [a,∞[R := {x ∈ R : x ≥ a}. �

Remark 3.9. The above definition (part A) to be precise) does not assume that a < b: If a > b then
[a, b[R = ]a, b[R = ]a, b]R = [a, b]R = ∅ . If a = b we obtain [a, a[R = ]a, a[R = ]a, a]R = ∅ , and
[a, a] = {a}. �

Remark 3.10. We are in a very similar situation to that of the introductory remark 3.4 of ch.3.3 on
p.64. This time you look at ch.2.1 and 2.2, and then at ch.8.2, of [2] Beck/Geoghegan: The Art of
Proof. Again you notice that identical propositions and theorems are given there: First for integers
in ch.2, and then again for real numbers in ch.8. Now the reason is prop.3.32 on p.69: Both (Z,+, ·,N)
and (R,+, ·,R>0) are ordered integral domains. By the way, so are the rational numbers when
ordered by Q>0. Because of this a proposition involving inequalities, e.g., x < y ⇒ x⊕ z < y ⊕ z,
need not be demonstrated separately for Z, for Q, and then again for R. We will state and prove such
statements for ordered integral domains, and it follows that they hold for all three sets of numbers.

As in ch.3.3 we will merely rephrase propositions and theorems of [2] Beck/Geoghegan: The
Art of Proof. We again use “⊕′′ instead of “+′′, “	′′ instead of “−′′ and “�′′ instead of “·′′ for
addition, subtraction and multiplication to remind the reader that these rules apply to any other
ordered integral domains. �

We begin with a sharpening of part (d) of the definition of an ordered integral domain. It says that
an element of an ordered integral domain is either positive or negative or zero.

Proposition 3.33 (B/G prop.2.2 and B/G prop.8.27).

Let a ∈ R. Then either a ∈ P or 	a ∈ P or a = 0.

PROOF: We examine separately the cases a = 0 and a 6= 0.
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Case 1: a = 0.
Since 0 = 	0 (see Exercise 3.18 on p.83) it follows from Definition 3.11(c) that both a = 0 /∈ P and
	a = 	0 = 0 /∈ P . The proposition thus is correct.
Case 2: a 6= 0.
It follows in this case from Definition 3.11(d) that at least one of a ∈ P or 	a ∈ P is true. Thus there
are only three possibilities:

(2a) a ∈ P,	a /∈ P ,
(2b) a /∈ P,	a ∈ P ,
(2c) a ∈ P,	a ∈ P ,

Case 2 holds if a satisfies (2a) or (2b) but it is false if a satisfies (2c). Thus all that remains to be
shown for Case 2 is that (2c) can be ruled out.
To state this positively, we want to prove the following:

At most one a,	a is an element of P .(*)

This will be done by means of an indirect proof.

In an indirect proof we play devil’s advocate and assume to the contrary that our assertion
is false, (i.e., we assume that both a ∈ P and 	a ∈ P ), and we show that this assumption
leads to a contradiction. Since the only way to avoid that contradiction is not to assume that
our assertion is false. It thus must be true. (In this particular case: the statement (*) thus
must be true.)

So assume to the contrary that both a ∈ P and 	a ∈ P . It follows from Definition 3.11(a) that

a⊕ (	a) ∈ P i.e., 0 ∈ P .

This contradicts property (c) of the positive cone P and we conclude that the assumption that (*) is
false is faulty. In other words, (*) is correct.
We have thus shown that the case (2c) can be ruled out and thus Case 2 holds.
Since Case 1 and Case 2 cover all possibilities the entire proof is completed. �

Remark 3.11.
(a) Prop.3.33 can be restated as follows: Let a ∈ R. Then either a is positive or a is negative or

a = 0.
(b) It easily follows from prop.3.33 that 0 is the only element of R which is both nonnegative

and nonpositive. �

Prop.3.32 on p.69 had introduced the following three ordered integral domains of number systems
that you have been very familiar with even before you entered college: The integers (Z,+, ·,N),
the real numbers (R,+, ·,R>0), and the rational numbers (Q,+, ·,Q>0). The positive cones which
induce the “<” order relation are Q>0 for the rational numbers and R>0 for the real numbers. This
makes perfect sense, as we have been taught to call numbers positive if and only if they are greater
than zero. We chose N as the positive cone for the integers, and that fits the general mold because
N = {n ∈ Z : n > 0} = N>0. It is remarkable that the equation P = {x ∈ R : x > 0}, as the next
proposition demonstrates, is true for any ordered integral domain.
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Proposition 3.34 (B/G prop.2.13 and B/G prop.8.38).

If (R,⊕,�, P ) is an ordered integral domain, then P = { x ∈ R : x > 0 }.

Proof strategy:
We will first prove that P ⊆ {x ∈ R : x > 0} and afterwards that P ⊇ {x ∈ R : x > 0}.
PROOF of “⊆”: Let p ∈ P . Then p	 0 = p ∈ P , hence p > 0, hence p ∈ {x ∈ R : x > 0}.
PROOF of “⊇”: Let p ∈ {x ∈ R : x > 0}. Then p > 0, hence p	 0 ∈ P , i.e., p ∈ P . �

Remark 3.12. Since P = {x ∈ R : x > 0} (see prop.3.34) 3.11(a) can be formulated as follows in the
language of sets: R = P

⊎
(	P )

⊎
{0}. In other words, A := { P,	P, {0} } is a partition of the

set R in the sense of Definition 2.11 on p.22. �

We have established that P = { x ∈ R : x > 0}. However, it is not self–understood that 1 > 0
(equivalently, 1 ∈ P ).

Proposition 3.35 (B/G prop.2.3 and B/G prop.8.28).

The multiplicative unit 1 of R belongs to P .

PROOF: The proof is left as exercise 3.8 (see p.82). �

Proposition 3.36. If a ∈ R then a⊕ 1 > a.

Proof: Left as an exercise. �

Corollary 3.3. 1 > 0.

PROOF: This follows from 1 = 1⊕ 0 and prop.3.36, applied to a := 0. �

Proposition 3.37 (B/G prop.2.4 and B/G prop.8.29). Let a, b, c ∈ R.

(3.29) If a < b and b < c, then a < c.

PROOF: Adopt the proof of B/G prop.2.4. �

Proposition 3.38. Let a, b, c ∈ R.

(3.30) If a ≤ b and b ≤ c, then a ≤ c.

PROOF: There are four cases.
(1) a < b, b < c: It follows from B/G prop.2.4 (transitivity of “<”) that a < c, in particular,

a ≤ c.
(2) a < b, b = c: It follows that a < c. This implies a ≤ c.
(3) a = b, b < c: It follows again that a < c, hence a ≤ c.
(4) a = b, b = c: It follows that a = c. This implies a ≤ c. �
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Proposition 3.39 (B/G prop.2.5 and B/G prop.8.30). For each a ∈ R there exists p ∈ P such that
a⊕ p > a.

PROOF: Left as an exercise. �

Proposition 3.40 (B/G prop.2.6 and B/G prop.8.31). Let a, b ∈ R. If a ≤ b ≤ a then a = b.

PROOF: Left as an exercise. �

Proposition 3.41 (B/G prop.2.7 and B/G prop.8.32). Let a, b, c, d ∈ R. Then
(a) If a < b then a⊕ c < b⊕ c.
(b) If a < b and (c < d) then a⊕ c < b⊕ d.
(c) If 0 < a < b and 0 < c ≤ d then ac < bd.
(d) If 0 < a ≤ b and 0 < c ≤ d then ac ≤ bd.
(e) If a < b and c < 0 then bc < ac.

PROOF of (a), (b), and (e): Left as an exercise.
PROOF of (c): Adopt the proof of B/G prop.2.7(iii).
PROOF of (d): If a < b then the proof follows from (c). We thus may assume that a = b. But then we
also may assume that c < d, since otherwise c = d, hence bd = ac, and nothing remains to prove.
It follows from a > 0 that a = a	 0 ∈ P , and it follows from c < d that d	 c ∈ P . Thus a(d	 c) ∈ P
by Definition 3.11(b) on p.68, i.e., ad	 ac ∈ P , hence ad > ac, hence ad ≥ ac. �

Proposition 3.42 (B/G prop.2.8 and B/G prop.8.33). Let a, b ∈ R. Then either a < b or a = b
or a > b.

PROOF: Left as an exercise. �

Proposition 3.43. Let a, b ∈ R. Then

(a) ab > 0 ⇔ a, b > 0 or a, b < 0,
(b) ab < 0 ⇔ [ either a > 0 and b < 0 ] or [ a < 0 and b > 0 ]
(c) ab = 0 ⇔ a = 0 or b = 0

Proof strategy:
In the current situation it is sufficient to prove the “⇐” direction for each of (a), (b), (c) to get the
“⇒” direction for free in all three cases. Why? Observe that, on account of prop.3.42, the three
left hand sides of (a), (b), (c) are mutually exclusive and there is no fourth choice (either ab > 0 or
ab < 0 or ab = 0), and that the same is also true for the three right hand sides.
Let us abbreviate the left hand side of (a) with LS(a), its right hand side with RS(a), the left hand
side of (b) with LS(b), etc. Assume that we have proven RS(a)⇒ LS(a), RS(b)⇒ LS(b) and RS(c)⇒
LS(c).
Why is it true that then also LS(a)⇒ RS(a), LS(b)⇒ RS(b) and LS(c)⇒ RS(c)? We will show LS(b)
⇒ RS(b). The proof for the other two cases is obtained by the same reasoning:
Assume to the contrary that LS(b) is true but RS(b) is false. Then one of the other cases RS(a) or RS(c)
must be true since there are no other options. But RS(a) is not true since RS(a)⇒ LS(a) was shown
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to be correct, thus LS(a) is true. It follows that LS(b) is false since the three left hand expressions are
mutually exclusive. We found a contradiction to our assumption that LS(b) is true. We replace “a”
with “c” and the same argument show that RS(c) cannot be true either. Since both RS(a) and RS(c)
are false and one of RS(a), RS(b), RS(c) must be true it follows that RS(b) is true. We have proven
LS(b)⇒ RS(b).

You should understand that there is nothing magical about the number 3. Assume you have proven the n state-
ments RS(1)⇒ LS(1), RS(2)⇒ LS(2), . . . , RS(n)⇒ LS(n) and that it is the case that either LS(1) or ... or LS(n) is
true, and also that either RS(1) or ... or RS(n) is true.
It then follows that LS(1)⇒ RS(1), LS(2)⇒ RS(2), . . . , LS(n)⇒ RS(n).

PROOF of the proposition:
PROOF of RS(a)⇒ LS(a):
If a, b > 0 then the product ab is positive by Definition 3.11(b) on p.68 of a positive cone, and if
a, b < 0 then the product ab =

(
(	1)a

)
,
(
	 1)b

)
is positive for the same reason.

PROOF of RS(b)⇒ LS(b):
Assume that a > 0 and b < 0. It follows from prop.3.41(e) (setting a = 0) that a � b < 0 � b, i.e.,
a� b < 0. We now obtain the proof for a < 0 and b > 0 by switching the roles of a and b.
PROOF of RS(c)⇒ LS(c): This is true since u� 0 = 0 for all u ∈ R. (See prop.3.9 on p,61). �

Next should be the translation of B/G prop.2.9: If a ∈ Z and a 6= 0 then a2 ∈ N. This following
proposition does exactly that if you remember that the positive cone for (Z,+, ·) is the set N of all
natural numbers.

Proposition 3.44 (B/G prop.2.9 and prop.8.34). Let a ∈ R. If a 6= 0 then a2 ∈ P .

The proof is left as exercise 3.10 (see p.82). �

Proposition 3.45 (B/G prop.2.10 and B/G prop.8.35). The equation x2 = 	1 has no solution (in R).

The proof is left as exercise 3.11 (see p.82). �

Proposition 3.46 (B/G prop.2.11 and B/G prop.8.36). Let a ∈ R and p ∈ P . If ap ∈ P then a ∈ P .

PROOF: Left as an exercise. �

Proposition 3.47 (B/G prop.2.12 and B/G prop.8.37). Let a, b, c ∈ R. Then
(a) 	 a < 	b if and only if a > b.
(b) If c > 0 and ac < bc then a < b.
(c) If c < 0 and ac < bc then b < a.
(d) If a ≤ b and 0 ≤ c then ac ≤ bc.

PROOF: Left as an exercise. �

The next proposition has been included to stay in sync with [2] Beck/Geoghegan: The Art of Proof,
ch.2.

Proposition 3.48 (B/G prop.2.14(ii) and B/G prop.8.39). If a ∈ P then a⊕ 1 ∈ P .
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PROOF: This follows from prop.3.35 on p.72 and Definition 3.11(a) (ordered integral domains) on
p.72. �

Ordered integral domains have enough structure to define absolute values.

Definition 3.13 (Absolute value).

For an element x of the ordered integral
domain R, we define its absolute value
as

|x| =

{
x ifx ≥ 0,

	x ifx < 0.
�

Here are some properties of squares and absolute values.

Proposition 3.49 (Generalization of B/G prop.10.5). Let x, y ∈ P ∪ {0}, i.e., x, y ≥ 0. Then

(a) x ≤ y if and only if x2 ≤ y2,
(b) x = y if and only if x2 = y2,
(c) x < y if and only if x2 < y2.

The proof is left as exercise 3.12 (see p.83). �

Proposition 3.50 (B/G prop.10.6). Let a ∈ R. Then |a|2 = a2.

The proof is left as exercise 3.13 (see p.83). �

Proposition 3.51 (B/G prop.10.7). Let a, b ∈ R. Then |a| < |b| ⇔ a2 < b2.

PROOF: Left as an exercise. �

The next two propositions are very similar. We will see in ch.11.2.2 (Normed Vector Spaces) that
prop.3.52 shows that if (R,⊕,�, P ) = (R,+, ·,R>0) then the absolute value satisfies the properties
of a norm.
The subsequent proposition 3.53 shows that the assignment (a, b) 7→ |b	a| turns the ordered integral
domain (R,+, ·,R>0) into a metric space. See Chapter12 (Metric Spaces and Topological Spaces –
Part I).

Proposition 3.52 (B/G prop.10.8). Let a, b ∈ R. Then the following holds:

(a) |a| = 0 if and only if a = 0,
(b) |ab| = |a| � |b|,
(c) 	|a| ≤ a ≤ |a|,
(d) |a⊕ b| ≤ |a| ⊕ |b|,
(e) if 	b < a < b then |a| < b, in particular, b ≥ 0.

PROOF: The proofs of (a) and (d) can be found in [2] Beck/Geoghegan Art of Proof The proof of
the other parts is left as an exercise. �
Remark: Actually B/G prop.10.8(e) states that 	b < a < b then |a| < |b|. But we see that b ≥ 0
(and hence b = |b|) as follows: 	b < a < b implies that 	b < b. Assume to the contrary that b < 0.
Then 	b > 0, thus 	b < a < b < 0 < 	b, thus 	b < 	b. We have reached a contradiction.
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Proposition 3.53 (B/G prop.10.10). If a, b, c ∈ R, then

(a) |a	 b| = 0 ⇔ a = b,
(b) |a	 b| = |b	 a|,
(c) |a	 b| ≤ |a	 c| ⊕ |c	 b|,
(d) |a	 b| ≥

∣∣|a| 	 |b|∣∣.
PROOF: The proof is left as exercise 3.14 (see p.83). �

We will give two (very short) proofs for the next proposition. Which one do you prefer?

Proposition 3.54. This proposition is similar to prop.3.52(e).
Let a, b ∈ R such that both #1) 	a ≤ b and #2) a ≤ b. Then |a| ≤ b.

FIRST PROOF:
Case 1) a ≥ 0: It follows from #2 that |a| = a ≤ b, which is what we had to show.
Case 2) a < 0: It follows from #1 that |a| = 	a ≤ b, which is what we had to show.
SECOND PROOF:
Here is an alternate proof which avoids using separate cases.
#1 is equivalent to a ≥ 	b, thus #1 and #2 together yield, 	b ≤ a ≤ b. It follows from prop.3.52(e)
above that |a| < b. �.

3.5 Minima, Maxima, Infima and Suprema in Ordered Integral Domains

Notation: In this entire chapter we assume that a fixed ordered integral domain (R,⊕,�, P )
is given and phrases such as “let a ∈ R” refer to elements of that integral domain. We
further assume that order relations such as “a < b” and “a ≥ b” refer to the order induced
by the positive cone P . Do not confuse the symbol R for this integral domain with the
symbol R for the real numbers!

We have seen in prop.3.42 that any two elements a, b of R can be compared: Either a < b or a = b
or a > b. 33 This makes it possible to introduce boundedness, least upper bounds, greates lower
bounds, maxima and minima for certain subsets of R. 34

Definition 3.14 (Upper and lower bounds, maxima and minima). Let A ⊆ R and let l, u ∈ R.

(a) We call l a lower bound of A if l ≤ a for all a ∈ A.
(b) We call u an upper bound of A if u ≥ a for all a ∈ A.
(c) We call A bounded above if this set has an upper bound.
(d) We call A bounded below if A has a lower bound.
(e) We call A bounded if A is both bounded above and bounded below.
(f) A minimum (min) of A is a lower bound l of A such that l ∈ A.
(g) A maximum (max) of A is an upper bound u of A such that u ∈ A. �

33In ch.5.1 (Cartesian Products and Relations) we will call sets which carry such an order relation linearly, or totally,
ordered. See Definition 5.5 on p.131.

34Those concepts will also be introduced for so called partially ordered sets. See Definition 15.1 on p.452.
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Remark 3.13. The empty set does not possess a maximum or minimum because either would have
to be an element of ∅. �

Proposition 3.55. Let A ⊆ R. If A has a maximum then it is unique. If A has a minimum then it is unique.

Proof for maxima: Let u1 and u2 be two maxima of A: both are upper bounds of A and both belong
to A.
As u1 is an upper bound it follows that a ≤ u1 for all a ∈ A. Hence u2 ≤ u1.
Now we switch the roles of u1 and u2 and the same reasoning as above yields u1 ≤ u2.
We thus have equality u1 = u2. The proof for minima is similar. �

The last proposition makes it possible to write min(A) for the minimum of A and max(A) for the
maximum of A in case those items exist for a subset A of R.

Definition 3.15. Let A ⊆ R. If A possesses a minimum then we write min(A) or minA for this
uniquely determined element of R, and if A possesses a maximum then we write max(A) or maxA
for that uniquely determined element of R. �

Definition 3.16. ? Let A ⊆ R. We define

Alowb := {l ∈ R : l is lower bound of A}
Auppb := {u ∈ R : u is upper bound of A}. �

(3.31)

Remark 3.14. The sets Alowb and/or Auppb may be empty. Examples to that effect are A = R, A =
]0,∞[ , A = A = ]−∞, 0[ . �

Remark 3.15. Note that A is bounded above if and only if Auppb 6= ∅ and bounded below if and only
if Alowb 6= ∅. �

IfA is a nonempty subset ofR then the setAlowb of its lower bounds need not not necessarily possess
a maximum, but if max(Alowb) exists then this element of R will be the greatest of all lower bounds
of A. This warrants the following definition.

Definition 3.17 (Infimum and supremum in an ordered integral domain). Let A be a nonempty
subset of R.

(a) If max(Alowb) exists then it is unique by prop.3.55. We write inf(A) or g.l.b.(A) for
max(Alowb) and call this number the infimum or greatest lower bound of A.

(b) If min(Auppb) exists then it is unique by prop.3.55. We write sup(A) or l.u.b.(A) for
min(Auppb) and call this element of R the supremum or least upper bound of A. �
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Remark 3.16. If the set A has no upper bounds then Auppb is empty, hence does not possess a min-
imum (see rem3.13 above), hence sup(A) does not exist. Likewise, if A has no lower bounds then
inf(A) does not exist. We will introduce infima and suprema for unbounded sets later in this chap-
ter. See Definition 3.18 on p.79. �

Example 3.8.
(a) Let A := {1

j : j ∈ N}. If we consider A as a subset of Q then Alowb = ]−∞, 0 ]Q possesses 0 as it
maximum, i.e., inf(A) = 0, but A has no minimum because 0 /∈ A.

(b) LetA := {1
j : j ∈ N}, just as in (a), but now we considerA as a subset of R. ThenAlowb = ]−∞, 0 ]

possesses 0 as it maximum, i.e., inf(A) = 0, but A has no minimum because 0 /∈ A. Thus the
situation is the same as for Q.

(c) 35 We remind the reader that the real number
√

2 is not rational. 36

Let B := {nd : n, d ∈ N and n2

d2 < 2}, i.e., the set of all positive, rational, numbers with a square
less than 2. Then inf(B) = 0 and min(B) does not exist (0 /∈ B!) regardless whether we consider
B a subset of the integral domain R = Q or R = R. However we have different outcomes for
the upper “boundary” of B.
One can prove that sup(B)2 = 2, i.e., that sup(B) =

√
2 exists as an element of R. 37 On the

other hand it follows from sup(B)2 = 2 that sup(B) /∈ B. Thus the set B has a supremum but
not a maximum in R.
In contrast to the above sup(B) does not exist in Q because, as mentioned, the square of sup(B)
would have to be 2 and

√
2 is not rational. Thus B possesses neither supremum nor maximum

in Q.
(d) Let (R,+, ·) be the ordered integral domain of either the rational or the real numbers, and let

C := {k ∈ R : 0 < 2k < 7}. For both R = Q and R = R we have inf(C) = 0, sup(C) = 3/2.
However, both min(C) and max(C) do not exist since neither 0 nor 3/2 belongs to C.

(e) Let R = Z and C := {k ∈ R : 0 < 2k < 7}. Then min(C) = 1 and max(C) = 3. The reason:
1 ∈ C is a lower bound of C, 3 ∈ C is an upper bound of C, and 1 and 3 belong to R. �

We are staying away from using functions in the context of integral domains as much as possible
because we use them mainly as a generalization of the number systems given by the integers, the
rational numbers, and the real numbers. The following is an exception because this material on
minima, maxima, infima and suprema is referred to in later chapters.

Notation 3.2.

Notational conveniences:
(a) We may drop the parentheses in expressions like max(A), sup({f(x) : x ∈ B}) (here

f : X → R is a function which takes values in an ordered integral domain R and
where B ⊆ X), etc., if this does not lead to any confusion. We also can write the
above as maxA and sup{f(x) : x ∈ B}.

(b) If A consists of two elements x, y ∈ R, i.e., A = {x, y} then it is customary to write
max(x, y), min(x, y), sup(x, y), and inf(x, y). �

35An example very similar to this one is example 9.1 on p.258.
36See rem.2.8 on p.26.
37The proof is given in prop.9.25 on p.274.
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Proposition 3.56. Let A ⊆ R. If A has a maximum then it also has a supremum, and max(A) = sup(A).
Likewise, if A has a minimum then it also has an infimum, and min(A) = inf(A).

PROOF: The proof is left as exercise 3.15. �

Remark 3.17. One can say informally that a supremum is a generalized maximum – generalized
in the sense that it need not belong to the set under consideration. Examples for this are given in
ch.9.2 when looking at the ordered integral domain of the real numbers. See examples 9.2 and 9.3
on p.259.

Proposition 3.57. Let ∅ 6= A ⊆ B ⊆ R.
(a) If both A and B possess an infimum (resp., supremum) then

inf(A) ≥ inf(B) (resp., sup(A) ≤ sup(B)).
(b) If both A and B possess a minimum (resp., maximum) then

min(A) ≥ min(B) (resp., max(A) ≤ max(B)).
(c) If both A and B possess a minimum (resp., maximum) and min(B) /∈ A (resp., max(B) /∈ A) then

min(A) > min(B) (resp., max(A) < max(B)).

PROOF: We prove (a) for suprema. The proof for infima is similar. It follows from A ⊆ B that
any upper bound of B also is an upper bound of A. We obtain in particular sup(B) ∈ Auppb , hence
sup(A) = min(Auppb) ≤ sup(B).
Note that (b) follows from (a) because if a set has a minimum then it equals its infimum and if a set
has a maximum then it equals its supremum.
We now prove (c) for minima. The proof for maxima is similar. If min(B) /∈ A then min(A) ∈ A
implies min(B) 6= min(A). That together with min(B) ≤ min(A) yields min(B) < min(A). �

Remark 3.18. It is convenient to define inf(A) if A ⊆ R is empty or has no lower bounds and to
define sup(A) if A is empty or has no upper bounds. If A has no lower bounds (and hence is not
empty)
(A) We recall that if inf(A) exists then it is a lower bound of A, and if sup(A) exists then it is an
upper bound of A. Thus inf(A) ≤ a ≤ sup(A) for all a ∈ A. If A is not bounded below then 	∞
is the only object x that satisfies x ≤ a for all a ∈ A; if A is not bounded above then∞ is the only
object x that satisfies x ≥ a for all a ∈ A. It thus makes sense to define inf(A) := 	∞ if A has no
lower bounds and sup(A) :=∞ if A has no upper bounds.
(B) Prop.3.57(a) above suggests how to handle the empty set: Since ∅ ⊆ B for all B ⊆ R and the
infimum becomes bigger for smaller sets we would want inf(∅) to be as large as possible, i.e., inf(∅)
should be∞. Further sup(∅) should be as small as possible, i.e., this value should be 	∞. �

So we arrive at the following definition.

Definition 3.18 (Supremum and Infimum of unbounded and empty sets). ? Let A ⊆ R. If A is
not bounded above then we define

(3.32) supA =∞

If A is not bounded below then we define

(3.33) inf A = 	∞
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Finally we define 38

(3.34) sup ∅ = 	∞, inf ∅ = ⊕∞. �

Remark 3.19. Be aware that even though we allow sup(A) = ⊕
	∞ and inf(A) = ⊕

	∞ we do not
allow max(A) = ⊕

	∞ or min(A) = ⊕
	∞.

The reason: By definition of, e.g., the maximum, if max(A) exists then it must satisfy max(A) ∈ A,
hence max(A) ∈ R. Since the infinity values are not elements of R it is not possible that, e.g.,
max(A) = ⊕

	∞. �

Proposition 3.58. Let A ⊆ B ⊆ R.
(a) If inf(A) and inf(B) both exist then inf(A) ≥ inf(B).
(b) If sup(A) and sup(B) both exist then sup(A) ≤ sup(B).

PROOF:
The above was proven in prop.3.57 under the condition that inf(A), inf(B) , sup(A), sup(B) exist as
elements of R, i.e., we did not permit the values ⊕	∞.
We prove this proposition for suprema. The proof for infima is similar. If A 6= ∅ (hence B 6= ∅) and
B is bounded above (hence A is bounded above) then (B) follows from prop.3.57.
Otherwise A = ∅ in which case sup(A) = 	∞ ≤ inf(B), or B is not bounded above, in which case
sup(A) ≤ ∞ = sup(B). In either case (B) holds. �

Recall for the following that 	A = {	a : a ∈ A} (see Definition 3.8 on p.61).

Proposition 3.59. Let A ⊆ R and x ∈ R. Then

x ≤ a for all a ∈ A ⇔ 	 x ≥ a′ for all a′ ∈ 	A,(3.35)
x ∈ Alowb ⇔ 	 x ∈ (	A)uppb ,(3.36)

	Alowb = (	A)uppb ,(3.37)

x ≥ a for all a ∈ A ⇔ 	 x ≤ a′ for all a′ ∈ 	A,(3.38)
x ∈ Auppb ⇔ 	 x ∈ (	A)lowb ,(3.39)

	Auppb = (	A)lowb , .(3.40)

PROOF: We have

x ≤ a for all a ∈ A ⇔ 	 x ≥ 	a for all a ∈ A ⇔ 	x ≥ 	a for all 	 a ∈ 	A.

Replacing 	a with a′ yields (3.35). We now obtain (3.36) from (3.35) and (3.31). (3.37) follows from

x ∈ 	Alowb ⇔ 	 x ∈ Alowb
(3.36)⇐⇒ 	(	x) ∈ (	A)uppb ⇔ x ∈ (	A)uppb .

We exchange the roles of ≤ and ≥ and apply similar arguments to obtain (3.38) through (3.40). �

38These definitions for the empty set will also work harmoniously with (8.1) on p.232 in ch.8.1 (More on Set Operations)
where

⋃
i∈∅Ai and

⋂
i∈∅Ai are defined.
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Proposition 3.60. Let ∅ 6= A ⊆ R. If the maximum of Alowb exists then A has lower bounds, 	A has lower
bounds, the minimum of (	A)uppb exists, and we have

	max(Alowb) = min
(
(	A)uppb

)
,(3.41)

	min(Auppb) = max
(
(	A)lowb

)
.(3.42)

PROOF: Let a? := max(Alowb). Since a set contains it maximum, a? ∈ Alowb , hence 	a? ∈ 	Auppb by
(3.36). To prove that 	a? = min

(
(	A)uppb

)
we must show that u ≥ 	a? for all u ∈ (	A)uppb .

So let u ∈ (	A)uppb . It follows from (3.31) that u ≥ a′ for all a′ ∈ 	A, hence, by (3.41), 	u ≤ a for
all a ∈ A. Thus 	u is a lower bound of A, i.e., 	u ∈ Alowb . Since a? = max(Alowb) it follows that
	u ≤ a?, i.e., u ≥ 	a?. This is what we needed to show. �

Corollary 3.4. The following equations are to be understood in the sense that if the item on the left exists
and vice versa, and both sides then are equal.

	 inf(A) = sup(	A),(3.43)
	 sup(A) = inf(	A),(3.44)
	min(A) = max(	A).(3.45)
	max(A) = min(	A),(3.46)

PROOF: (3.43) is obtained from (3.41) and (3.44) is obtained from (3.42) by the very definition of
suprema as minimal upper bounds and infima as maximal lower bounds. We now obtain (3.45)
and (3.46) from prop.3.56 on p.79. �

Draw a picture for numbers a, b, c to visualize the content of the following proposition and its corol-
lary.

Proposition 3.61. Let a, b be nonnegative elements of R. Then

|b	 a| ≤ max(a, b), i.e.,(3.47)
	max(a, b) ≤ b	 a ≤ max(a, b).(3.48)

PROOF: The proof is left as exercise 3.16 (see p.83). �

Corollary 3.5. Let a, b, c ∈ R such that 0 ≤ a, b < c. Then

	c < b	 a < c.(3.49)

PROOF: Follows from prop.3.61 with c := max(a, b). �

3.6 Exercises for Ch.3

Exercise 3.1. From example 3.1 on p.51:

81 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

(a) What laws for the addition of numbers do you need to use to prove that (Z,+) (the integers
with addition) is an abelian group?

(b) What laws for the multiplication of numbers do you need to use to prove that (Q \ {0}, ·)
(the nonzero rational numbers with with multiplication) is an abelian group?

(c) What about (R, ·) Is that a semigroup? a monoid? a group? an abelian group? �

Exercise 3.2. Let (G, �) be a commutative group with neutral element e. Let g, h1, h2 ∈ G such that

g � h1 = e and g � h2 = e .

Use the material before Proposition 3.2 on p.53 to prove that h1 = h2. �

Exercise 3.3. Let (S, �) be a semigroup. Let a, b, c, d ∈ S. Use the definition of a semigroup only to
prove that

(a) a �
(
b � (c � d)

)
= (a � b) � (c � d),

(b)
(
a � (b � c)

)
� d = (a � b) � (c � d). �

Exercise 3.4. Let (S, �) be a commutative semigroup, i.e., S is a semigroup which satisfies s�t = t�s
for all s, t ∈ S. Let a, b, c ∈ S. Prove that

a � (b � c) = c � (a � b)

Exercise 3.5. Prop.3.3 on p.54 of this document states that if g, h are elements of a group (G, �) then
h � g−1 = (g � h−1)−1. The proof only demonstrated that (h � g−1) � (g � h−1) = e. Prove what has
been omitted, i.e., the equation (g � h−1) � (h � g−1) = e. �

Exercise 3.6. Prove part (b) of prop.3.10 on p.62 of this document:
Let (R,⊕,�) be a nonempty set with two binary operations ⊕ and � which satisfies (a), (b), (c) of
Definition 3.7. Then the following is true:
1 = 0 ⇔ R = {0} . �

Exercise 3.7. Let (R,⊕,�) be an integral domain and a, b, c, d ∈ R. Prove that
(
a ⊕ (b ⊕ c)

)
⊕ d =

(a⊕ b)⊕ (c⊕ d). Do so without using the results of prop.3.17! �

Exercise 3.8. Prove prop.3.35 on p.72: The multiplicative unit 1 of R belongs to P . �

Exercise 3.9. Use everything up to AND including prop.3.35 on p.72 to prove prop.3.36 on p.72 of
this document: If R is an ordered integral domain and a ∈ R then a⊕ 1 > a. �

Exercise 3.10. Prove prop.3.44 on p.74 of this document:
If a ∈ (R,⊕,�, P ) and a 6= 0 then a2 ∈ P . �

Exercise 3.11. Prove prop.3.45 on p.74 of this document:
The equation x2 = 	1 has no solution (in R). �
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Exercise 3.12. Prove prop.3.49 on p.75 of this document: If x, y ∈ P ∪ {0} then
(a) x ≤ y if and only if x2 ≤ y2,
(b) x = y if and only if x2 = y2,
(c) x < y if and only if x2 < y2.

Hint: Do the proof of (a),⇐) separately for x2 = y2 and x2 < y2. �

Exercise 3.13. Prove prop.3.50 on p.75 of this document:
Let a ∈ R. Then |a|2 = a2. �

Exercise 3.14. Prove prop.3.53 on p.76 of this document: Let a, b, c ∈ R. Then the following are true.
(a) |a	 b| = 0 ⇔ a = b,
(b) |a	 b| = |b	 a|,
(c) |a	 b| ≤ |a	 c| ⊕ |c	 b|,
(d) |a	 b| ≥

∣∣|a| 	 |b|∣∣. �
Exercise 3.15. Prove prop.3.56 on p.79 of this document: Let A ⊆ R. If A has a maximum then it
also has a supremum, and max(A) = sup(A). Likewise, if A has a minimum then it also has an
infimum, and min(A) = inf(A). �

Exercise 3.16. Prove prop.3.61 on p.81 of this document: Let a, b be nonnegative elements of R.
Then

|b	 a| ≤ max(a, b), i.e., 	max(a, b) ≤ b	 a ≤ max(a, b).

Hint: Handle separately the cases b ≥ a and b < a. �

Exercise 3.17. Let R := (R,⊕,�, P ) be an ordered integral domain and W ⊆ R.
(A) Prove that the set Wuppb of the upper bounds of W satisfies either of the following:

(a) Wuppb = [z,∞[R for some suitable z ∈ R,
(b) Wuppb = ]z,∞[R for some suitable z ∈ R,
(c) Wuppb = ]	∞,∞[R (i.e., Wuppb = R).

(B) For what sets W is Wuppb = R? �

Exercise 3.18. Prove that if (G, �) is a group with neutral element e then e has itself as an inverse,
i.e.,

e−1 = e . �(3.50)
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4 Logic ?

This chapter uses material presented in ch.2 (Logic) and ch.3 (Methods of Proofs) of [5] Bryant,
Kirby Course Notes for MAD 2104.

4.1 Statements and Statement Functions

Note 4.1 (Textual variables). It was mentioned in (c) of the introduction to ch.2.4 (A First Look at
Functions, Sequences and Families) that the input variables and function values of a function need
not necessarily numbers, but they can also be textual. For example, the domain of a function may
consist of the first names of certain persons.

A note on textual variables: If the variable is the last name of the person James Joice and
valid input for the function F : p 7→ “Each morning p writes two pages.”) then we write
interchangeably Joyce or ‘Joyce’. Quotes are generally avoided unless they add clarity.

In the above example “Each morning ‘Joyce’ writes two pages.” emphasizes that Joyce is the
replacement of a parameter whereas F (‘Joyce’) does not seem to improve the simpler notation
F (Joyce) and you will most likely see the expression F (Joyce) = “Each morning ‘Joyce’ writes two
pages.” �

Definition 4.1 (Statements). A statement 39 is a sentence or collection of sentences that is either
true or false. We write T or true for “true” and F or false for “false” and we refer to those constants
as truth values �

Example 4.1. The following are examples of statements:
(a) “Dogs are mammals” (a true statement);
(b) “Roses are mammals. 7 is a number.” This is a false statement which also could have

been written as a single sentence: “Roses are mammals and 7 is a number”;
(c) “I own 5 houses” (a statement because this sentence is either true or false depending on

whether I told the truth or I lied);
(d) “The sum of any two even integers is even” (a true statement);
(e) “The sum of any two even integers is even and Roses are mammals” (a false statement);
(f) “Either the sum of any two even integers is even or Roses are mammals” (a true state-

ment). �

Example 4.2. The following are not statements:
(a) “Who is invited for dinner?”
(b) “2x = 27” (the variable x must be bound (specified) to determine whether this sentence

is true or false: It is true for x = 13.5 and it is false for x = 33)
(c) “x2 +y2 = 34” (both variables x and y must be bound to determine whether this sentence

is true or false It is true for x = 5 and y = 3 and it is false for x = 7.8 and y = 2)
(d) “Stop bothering me!” �

39usually called a proposition in a course on logic but we do not use this term as in mathematics “proposition” means
a theorem of lesser importance.
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For the remainder of the entire chapter on logic we define

S := the set of all statements(4.1)

S will appear as the codomain of statement functions.
Be sure to understand the material of ch.2.4 (A First Look at Functions, Sequences and Families) on
p.29) before continuing.

Definition 4.2 (Statement functions (predicates)). We need to discuss some preliminaries before
arriving at the definition of a statement function. Let A be a sentence or collection of sentences
which contains one or more variables (placeholders) such that, if each of those variables is assigned
a specific value, it is either true or false, i.e., it is an element of the set S of all statements. If
A contains n variables x1, x2, . . . , xn and if they are bound, i.e., assigned to the specific values
x1 = x10, x2 = x20, . . . , xn = xn0 , we write A(x10, x20, . . . , xn0) for the resulting statement.
To illustrate this let A := “x is green and y and z like each other”. If we know the specific values for
the variables x, y, z then this sentence will be true or false. For example A(this lime, Tim, Fred) is
true or false depending on whether Tim and Fred do or do not like each other.
There are restrictions for the choice of x1 = x10, x2 = x20, . . . , xn = xn0: Associated with each
variable xj in A is a set Uj which we call the universe of discourse, in short, UoD, for the jth
variable in A. Each value xj0 (j = 1, 2, . . . n) must be chosen in such a way that xj0 ∈ Uj . If this is
not the case then the expression A(x10, x20, . . . , xn0) is called inadmissible and we refuse to deal
with it.
What was said can be rephrased as follows: We have an assignment (x1, x2, . . . , xn) 7→
A(x1, x2, . . . , xn) which results in a statement, i.e., an element of S (see (4.1)) just as long as
xj0 ∈ Uj . In other words we have a function

A : U1 ×U2 × · · · ×Un → S , (x1, x2, . . . , xn) 7→ A(x1, x2, . . . , xn)(4.2)

in the sense of def. 2.22. with the cartesian product of the UoDs for x1, . . . , xn as domain and S as
codomain. We call such a function a statement function 40 or predicate. �

Note 4.2 (Relaxed notation for statement functions). You should remember that a statement func-
tion is a function in the sense of Definition 2.22 but we we will often use the simpler notation
A := “some text that contains the placeholders x1, x2, . . . , xn and evaluates to true
or false once all xj are bound”

together with the specification of each UoD Uj rather than the formal notation

A :U1 ×U2 × · · · ×Un → S , (x1, x2, . . . , xn) 7→ A(x1, x2, . . . , xn).

If A contains two or more variables then the formal notation has an advantage. There is no doubt
when looking at an evaluation such as A(5.5, 7,−3, 8) which placeholder in the string corresponds
to 5.5, which one corresponds to 7 etc. When employing the relaxed notation then we decide this
according to the following

40A statement function is usually called a proposition function in a course on logic. As previously mentioned, we do
not use the term “proposition” in this document because in most brances of mathematics it refers to a theorem of lesser
importance.
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Left to right rule for statement functions: If the string A contains n different place holders
then the expression A(x10, x20, . . . xn0) implies the following: If the name of the first (left-
most) place holder in A is x then each occurrence of x is bound to the value x10. If the name
of the first of the remaining place holders in A is y then each occurrence of y is bound to the
value x20, .... After n − 1 steps the remaining placeholders all have the same name, say z
and each occurrence of z is bound to the value xn0. If there is any confusion about what is
first, what is second, ... then this will be indicated when A is specified or when its variables
are bound for the first time.

Example 4.3. In Definition 4.2 A = “x is green and y and z like each other” was used to illustrate
the concept of a statement function. We never showed how to write the actual statement function.
We must decide the UoDs for x, y, z and we define them as follows.

UoD for x: Ux := all plants and animals in the U.S.,
UoDs for y and z: Uy := Uz := all BU majors in actuarial science.

(a) Here is the formal definition: Let A be the statement function

A : Ux ×Uy ×Uz → S , (x, y, z) 7→ A(x, y, z) := “x is green and y and z like each other”

(b) Here is the relaxed definition: Let A be the statement function
A := “x is green and y and z like each other” with UoDs Ux for x, Uy for y and Uz for z. �

The example above and all those below for statement functions of more than a single variable em-
ploy the left to right rule. �

Adhering to the left to right rule is not a big deal because of the following convention:

We will restrict ourselves in this document from now on to statement functions of one or
two variables.

Example 4.4. Let A(t) = “t − 4.7 is an integer′′. Then A : R → S , x 7→ A(x) is a one parameter
statement function with UoD R and x as the variable. Note that it is immaterial that we wrote t in
the equation and x in the “ 7→” expression because with deal with a dummy variable and we have
employed its name consistently in both cases. We have

(a) A(Honda) = “(Honda’− 4.7 is an integer′′ is inadmissible because a car brand is not part
of our universe of discourse.

(b) If u0 ∈ U then A(u0) = “u0 − 4.7 is an integer′′ is a statement which evaluates to true or
false depending on that fixed but unknown value of u0.

(c) If n ∈ U then A(n) is the statement(!) “n − 4.7 is an integer”. It does not matter that
this expression looks exactly like the original A: The expression A(n) implies that the
parameter inside the sentence collection A which happens to be named “n” has been
bound to a fixed (but unspecified) value also denoted by n. �

Example 4.5. Let B(x, y) := “x2 − y + 2 = 11′′. Then B : R×]1, 100[→ S , (x, y) 7→ B(x, y) is a
two parameter statement function with UoD R for x and UoD ]1, 100[ for the variable y. Then

(a) B(4,−2) = “42 − (−2) + 2 = 11′′ (a false statement) because x is the leftmost item in B.
(b) B(z, 10) = “z2 − 10 + 2 = 11′′ (true or false depending on z).
(c) BE CAREFUL: If x, y ∈ R then B(y, x) = “y2 − x + 2 = 11′′ and NOT “x2 − y + 2 = 11′′

because the “evaluate left to right” rule matters, not any similarity or even coincidence
between the symbols inside the sentence collection and in the evaluation B(·, ·) �
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Example 4.6. The following are predicates:
(a) P := “2x = 27′′ (see example 4.2(b)), UoD U := {x ∈ R : x > 10}
(b) Q := “x2 + y2 = 34′′ (example 4.2(c)), UoD V := {(x, y) : x, y ∈ R and x < y}
(c) R := “x2 + y2 = 34 and xy > 100′′, UoDs are Wx := Wy := [−50, 25].

Note the following for (c): R(−30, 20) evaluates to a false statement because (−30) · 20 > 100 is
false. R(30, 20) does not evaluate to any kind of statement: It is an inadmissible expression because
30 /∈ Wx.
(d) The sentence “Stop bothering x!” is not a statement function because this imperative will not be
true or false even if x is bound to a specific value. �

Example 4.7. Let B := “x + 7 = 16 and d is a dog′′. Let Ux := N and Ud := {d :
d is a vegetable or animal }.
B becomes a statement function of two variables x and d if we specify that the UoD for x is Ux and
the UoD for d is Ud

Assume for the following that Robby is an animal.
(a) B(9,Robby) is the statement “9 + 7 = 16 and Robby is a dog′′. It is true in case Robby is

a dog and false in case Robby is not a dog.
(b) B(20,Robby) is the statement “20 + 7 = 16 and Robby is a dog′′ which is false regardless

of what Robby might be because 20 + 7 = 16 by itself is false.
(c) B(d, F ) is the statement “d + 7 = 16 and F is a dog′′: which is true or false depending

on the fixed but unspecified values of d and F . Note that d corresponds to the leftmost
variable x inside B and not to the second variable d!

(d) B(x) is not a valid expression as we do not allow “partial evaluation” of a predicate. 41

�

4.2 Logic Operations and their Truth Tables

We now resume our discussion of statements.

4.2.1 Overview of Logical Operators

Statements can be connected with logical operators, also called connectives, to form another state-
ment, i.e., something that is either true or false.
Here is an overview of the important connectives. 42 Their meaning will be explained subsequently,
once we define compound statements and compound statement functions.

41To indicate that we consider d as fixed but arbitrary and want to interpret “x+ 7 = 16 and d is a dog′′ as a statement
function of only x as a variable we could have introduced the notation B(·, d) : x 7→ B(x, d). Similarly, to indicate that
we consider x as fixed but arbitrary and want to interpret “x + 7 = 16 and d is a dog′′ as a statement function of only d
as a variable we could have introduced the notation B(x, ·) : d 7→ B(x, d). We choose not to overburden the reader with
this additional notation. Rather, this situation can be handled by defining two new predicates C : x 7→ C(x) := “x+ 7 =
16 and z is a dog′′ and D : d 7→ D(d) := “z + 7 = 16 and d is a dog′′ and then state that z is not a variable but a fixed
(but unspecified) value.

42This order is rather unusual in that usually you would discuss biconditional and logical equivalence operators last,
but logical equivalence between two statements A and B is what we think of when saying “A if and only if B” and it
helps to understand what this phrase means in the context of logic as early as possible.
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negation: ¬A not A
conjunction: A ∧B A and B
double arrow (biconditional): A↔ B A double arrow B
logical equivalence: A ⇔ B A if and only if B
disjunction (inclusive or): A ∨B A or B
exclusive or: A xor B either A or B, exactly one of A or B
arrow: A→ B A arrow B, if A then B
implication: A⇒ B A implies B, if A then B

Notation 4.1 (use of symbols vs descriptive English).
(a) In the entire chapter on logic we generally use for logical operators their symbols like “¬” or
“⇒” in formulas but we use their corresponding English expressions (not and implies in this case)
in connection with constructs which contain English language.
For example we would write ¬(A ∨ ¬B) rather than not(A or not B) but we would write “d+ 7 =
16 and F is a dog′′ rather than “(d+ 7 = 16) ∧ (F is a dog)′′

(b) Outside chapter 4 symbols are not used at all for logical operators. We use boldface such as
“and” rather than just plain type face only to make it visually easier to understand the structure of
a mathematical construct which employs connectives. �

Definition 4.3 (Compound statements). A statement which does not contain any logical operators is
called a simple statement and one that employs logical operators is called a compound statement.
Similarly statement functions which contain logical operators are called compound statement func-
tions. �

Example 4.8. Statements (e) and (f) of example 4.1 are examples of compound statements.
In (e) the two simple statements “The sum of any two even integers is even” and “Roses are mam-
mals” are connected by and.
In (f) the two simple statements “The sum of any two even integers is even” and “Roses are mam-
mals” are connected by either ... or. �

4.2.2 Negation and Conjunction, Truth Tables and Tautologies (Understand this!)

We now give the definition of the first two logical operators which were introduced in the table of
section 4.2.1.

Definition 4.4 (Negation). The negation operator is represented by the symbol “¬” and it reverses
the truth value of a statement A, i.e., if A is true then ¬(A) is false and if A is false then ¬(A) is true.

This is expressed in this “truth table” for ¬A:43(4.3)
A ¬ A
F T
T F

�

Example 4.9. Let A := “Rover is a horse”. Then ¬A = “Rover is not a horse” and ¬¬A = ¬(¬A) =
“Rover is a horse” = A.

43The definition of a truth table will be given shortly. See Definition 4.6 on p.89.
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Let us not quibble here about whether ¬¬A is not in reality the statement “Rover is not not a horse”
which admittedly means the same as “Rover is a horse” but looks different.

There is no question about the fact that the T/F values for A and
¬¬A are the same. Just compare column 1 with column 3.

A ¬A ¬(¬A)

F T F
T F T

Note that we did not use any specifics about A. We derived the T/F values for ¬¬A from those in
the second column by applying the definition of the ¬ operator to the statement B := ¬A.
In other words we have proved that the statements A and ¬¬A are logically equivalent in the
sense that one of them is true whenever the other one is true and vice versa. �

All operators discussed subsequently are binary operators, i.e., they connect two input parameters
(statements) A, B and four rather than two rows are needed to show what will happen for each of
the four combinations A: false and B: false, A: false and B: true, A: true and B: false, A: true and
B: true.
In contrast, the already discussed negation operator “¬” is a unary operators, i.e., it has a single
input parameter. We will keep referring to “¬” as a connective even though there are no two or
more items that can be connected.

Definition 4.5 (Conjunction). The conjunction operator is represented by the symbols “∧” or
“and”. The expression A and B is true if and only if both A and B are true.

Truth table for A and B:(4.4)

A B A ∧B
F F F
F T F
T F F
T T T

The and connective generalizes to more than two statements A1, A2, . . . , An in the obvious manner:
A1 ∧A2 ∧ · · · ∧An is true if and only if each one of A1, A2, . . . , An is true and false otherwise. �

Definition 4.6 (Truth table). A truth table contains the symbols for statements in the header, i.e.,
the top row and shows in subsequent rows how their truth values relate.
It contains in the leftmost columns statements which you may think of as varying inputs and it
contains in the columns to the right compound statements which were built from those inputs
by the use of logical operators. We have a row for each possible combination of truth values for
the input statements. Such a combination then determines the truth value for each of the other
statements.
When we count rows we start with zero for the header which contains the statement names. Row 1
is the first row which contains T/F values.
An example for a truth table is the following table which you encountered in the definition above
4.5 of the conjunction operator:
A B A ∧B
F F F
F T F
T F F
T T T

Here the input statements areA andB. The compound statementA∧B
is built from those inputs with the use of the ∧ operator. We have 4 pos-
sible T/F combinations for A and B and each one of those determines
the truth value of A ∧B. For example, row 2 contains A:F and B:T and
from this we obtain F as the corresponding truth value of A ∧B.

Some truth tables have more than two inputs. If there are three statements A,B,C from which the
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compound statements that interest us are built then there will be 23 = 8 rows to hold all possible
combinations of truth values and for n inputs there will be 2n rows. �

Definition 4.7 (Logically impossible). The statements A and B in the truth table of Definition 4.6
were of a generally nature and all four T/F combinations had to be considered. If we deal with
statements which are more specific but have some variability because they contain place holders
44 then there may be dependencies that rule out certain combinations as nonsensical. For example
let x be some fixed but unspecified number and look at a truth table which has the statements
A := A(x) := “x > 5′′ and B := B(x) := “x > 7′′ as input. It is clearly impossible that A is false and
B is true, no matter what value x may have.
We call such combinations logically impossible or contradictory. We abbreviate “logically impos-
sible” with L/I.

Both truth tables indicate that the combina-
tion A:F and B:T is logically impossible for
A = “x > 5′′ and B = “x > 7′′.

A B A ∧B
F F F
F T L/I
T F F
T T T

A B A ∧B
F F F
T F F
T T T

�

Remark 4.1. It was mentioned in the definition of logically impossible T/F combinations that there
had to be some relationship between the inputs, i.e., some placeholders or some fixed but unspeci-
fied constants to make this an interesting definitions.
Consider what happens if you have two statements A and B for which this is not the case. For
example, let A := “All tomatoes are blue” (obviously false) and B := “Arkansas is a state of the
U.S.A.” (obviously true).

For those two specific statements we know up-
front that we have A:F and B:T, so why bother
with the other three cases? In other words, the ap-
propriate truth table is either of those two:

A B A ∧B
F F L/I
F T F
T F L/I
T T L/I

A B A ∧B
F T F

�

Remark 4.2. We chose for a more compact notation to place “L/I” into one of the statement columns
but be aware that the L/I attribute really belongs to certain combinations of the T/F values of the
inputs. In other words,

the L/I attribute belongs to certain rows of the truth table. A
more accurate way would be to place L/I into a separate status
column and place “N/A” or “-” or nothing into all columns
other than those for the inputs:

Status A B A ∧B
F F F

L/I F T -
T F F
T T T

�

Of course more than two input statements can be involved when discussing logical impossibility.
The following example will show this.

44e.g., if we have a statement function P : x 7→ P (x) and we look at the statements P (x0) for which x0 belongs to the
UoD of P or a certain subset thereof
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Example 4.10. Let U, V,W,Z be the statement functions
U := x 7→ U(x) := “x ∈ [0, 4]′′,
V := x 7→ V (x) := “x /∈ ∅′′,
W := x 7→W (x) := “x < −1′′,
Z := x 7→ Z(x) := “x > 2′′

with UoD R in each case. Let Q be a statement function that is built from U, V,W,Z with the help
of logical operators.
We observe the following:

(a) V (x) is always true because the empty set does not contain any elements.
a’. In other words, there is no x in the UoD for which V (x) is false.
(b) There is no x in the UoD for which W (x) and Z(x) can both be true.

The following rows in the resulting truth table yield
an L/I regardless whether we enter a truth value of T
or F into anyone of the “•” entries.

U(x) V (x) W (y) Z(x) Q(x)

• F • • L/I
• • T T L/I

�

Remark 4.3. As in example 4.10 above let
U := U(x) := “x ∈ [0, 4]′′, V := V (x) := “x /∈ ∅′′, W := W (x) := “x < −1′′, Z := Z(x) := “x > 2′′.
(a) The statement 45 Q(x) := ¬(U(x) ∧ V (x)) ∧W (x) ∧ Z(x) can never be true, regardless of x.
To see this directly note again that V (x) is trivially true for any x because the emptyset by definition
does not contain any elements. It follows that U(x) ∧ V (x) means “x ∈ [0, 4]′′ and Q(x) means
“x < 0′′ ∧ “x > 4′′ ∧ “x < −1′′ ∧ “x > 2′′ which is equivalent to “x < −1′′ ∧ “x > 4′′ and certainly
false for any x in the UoD, i.e., x ∈ R.
Alternatively we can use the results from example 4.10 where we found out that W (x) and Z(x)
cannot both be true at the same time.
The remaining rows in the resulting truth table yield an
F for Q(x) regardless of the truth values of U(x) and
V (x) because W (x) ∧ Z(x) is false, hence Q(x) = what-
ever ∧

(
W (x) ∧ Z(x)

)
is false for those remaining rows.

U(x) V (x) W (y) Z(x) Q(x)

• • F F F
• • F T F
• • T F F

(b) Let R : x 7→ R(x) := ¬Q(x) be the statement function with UoD R which represents for each x
in the UoD the opposite of Q. Because Q(x) is false for all x, R(x) is true for all x in the universe of
discourse for x. �

Statements which are true or false under all circumstances like the statements R(x) and Q(x) from
the remark above deserve special names.

Definition 4.8 (Tautologies and contradictions). A tautology is a statement which is true under all
circumstances, i.e., under all combinations of truth values which are not logically impossible.
A contradiction is a statement which is false under all circumstances.
We write T0 for the tautology “1 = 1” and F0 for the contradiction “1 = 0”. This gives us a conve-
nient way to incorporate statements which are true or false under all circumstances into formulas
that build compound statements. �

45It is tough to come up with some decent examples of compound statements if the only operators at your disposal so
far are negation and conjunction.
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Example 4.11. Here are some examples of tautologies.
(a) The statements R(x) of remark 4.3 are tautologies.
(b) T0 is a boring example of a tautology. So is any true statement without any variables such as
“9 + 12 = 21′′ and “a cat is not a cow”.
(c) There are formulas involving arbitrary statements which are tautologies. We will show that for
any two statements A and B the statement P := ¬

(
A ∧ ¬A

)
is a tautology.

Here are some examples of contradictions.
(d) The statements Q(x) of remark 4.3 are contradictions.
(e) F0 is a boring example of a contradiction. So is any false statement without any variables such
as “9 + 12 = 50′′ and “a dog is a whale”.
(f) There are formulas involving arbitrary statements which are contradictions. We will show that
for any two statements A and B the statement Q :=

(
A ∧ ¬A

)
∧B is a contradiction. �

PROOF of (c) and (f):

P = ¬
(
A ∧ ¬A

)
(last column) has entries

all T, hence P is a tautology.
Q =

(
A∧¬A

)
∧B (next to last column) has

entries all F, hence Q is a contradiction.

A B ¬A A ∧ ¬A (A ∧ ¬A) ∧B ¬(A ∧ ¬A)

F F T F F T
F T T F F T
T F F F F T
T T F F F T

�

We now continue with the conjunction operator.

Example 4.12. In the following let x, y be two (fixed but arbitrary) integers and let A(x) := “x ∈ N′′

andB(y) := “y ∈ Z and y > 0′′. Be sure to understand thatA(x) andB(y) are in fact statements and
not predicates, because the symbols x, y are bound from the start and hence cannot be considered
variables of the predicates A := “x ∈ N′′ and B := “y ∈ Z and y > 0′′.
We will reuse the statements A(x) and B(y) in examples for the subsequently defined logical oper-
ators.

(a) If no assumptions are made about a relationship be-
tween x and y then all four T/F combinations are possi-
ble and, to explore conjunction, we must deal with the full
truth table

A(x) B(y) A(x) ∧B(y)

F F F
F T F
T F F
T T T

(b) On the other hand, if x < y then the truth of A(x) implies that of B(y) because if y is an integer
which dominates some natural number x then we have y > x ≥ 1 > 0, i.e., y is an integer bigger
than zero, i.e., truth of A(x) and falseness of B(y) are incompatible.

It follows that the combination T/F is L/I. We discard the
corresponding row and restrict ourselves to the truth table

A(x) B(y) A(x) ∧B(y)

F F F
F T F
T T T

(c) Even better, if x = y, i.e., we compare truth/falsehood of A(x) with that of B(x), we only need
to worry about the two combinations F/F and T/T for the following reason: The set of positive
integers is the set {1, 2, . . . } and this is, by definition, the set N of all natural numbers. This means
that the statements “x ∈ N” and “y ∈ Z and y > 0′′ are just two different ways of expressing the
same thing.
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It follows that either both A(x) and B(x) are true or both
are false. We discard the logically impossible combinations
F/T and T/F and restrict ourselves to the truth table

A(x) B(x) A(x) ∧B(x)

F F F
T T T

�

4.2.3 Biconditional and Logical Equivalence Operators – Part 1

Definition 4.9 (Double arrow operator (biconditional)). The double arrow operator 46 is repre-
sented by the symbol “↔” and read “A double arrow B”. A↔ B is true if and only if either both A
and B are true or both A and B are false.

Truth table for A ↔ B:(4.5)

A B A↔ B

F F T
F T F
T F F
T T T

�

Definition 4.10 (Logical equivalence operator). Two statements A and B are logically equivalent
if the statement A ↔ B is a tautology, i.e., if the combinations A:true, B:false and A:false, B:true
both are logically impossible.
We write A ⇔ B and we say “A if and only if B” to indicate that A and B are logically equivalent.

Truth table for A ⇔ B:(4.6)

A B A ⇔ B

F F T
F T L/I
T F L/I
T T T

�

The discussion of the ↔ and ⇔ operators will be continued in ch.4.2.6 (Biconditional and Logical
Equivalence Operators – Part 2) on p.100

4.2.4 Inclusive and Exclusive Or

Definition 4.11 (Disjunction). The disjunction operator is represented by the symbols “∨” or “or”.
The expression A or B is true if and only if either A or B is true.

Truth table for A ∨ B:(4.7)

A B A ∨B
F F F
F T T
T F T
T T T

The or connective generalizes to more than two statements A1, A2, . . . , An in the obvious manner:
A1 ∨A2 ∨ · · · ∨An is true if and only if at least one of A1, A2, . . . , An is true and false otherwise, i.e.,
if each of the Ak is false. �

46[5] Bryant, Kirby Course Notes for MAD 2104 calls this operator the equivalence operator but we abstain from that
terminology because “A is equivalent to B” has a different meaning and is written A ⇔ B.
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Example 4.13. As in example 4.12 let x, y ∈ Z and let
A(x) := “x ∈ N′′ and B(y) := “y ∈ Z and y > 0′′

(a) If no assumptions are made about a relationship be-
tween x and y then all four T/F combinations are possi-
ble and, to explore conjunction, we must deal with the full
truth table

A(x) B(y) A(x) ∨B(y)

F F F
F T T
T F T
T T T

(b) Let x < y. We have seen in example 4.12(b) that the
combination T/F is impossible and we can restrict our-
selves to the simplified truth table

A(x) B(y) A(x) ∨B(y)

F F F
F T T
T T T

(c) Now let x = y. We have seen in example 4.12(c) that
either both A(x) and B(y) = B(x) are true or both are false.
Because the combinations F/T and T/F are impossible we
can restrict ourselves to the simplified truth table

A(x) B(x) A(x) ∧B(x)

F F F
T T T

�

Definition 4.12 (Exclusive or). The exclusive or operator is represented by the symbol “xor”. 47 A
xor B is true if and only if either A or B is true (but not both as is the case for the inclusive or).

Truth table for A xor B:(4.8)

A B A xor B
F F F
F T T
T F T
T T F

�

Example 4.14. As in example 4.12 let x, y ∈ Z and let
A(x) := “x ∈ N′′ and B(y) := “y ∈ Z and y > 0′′

(a) If no assumptions are made about a relationship be-
tween x and y then all four T/F combinations are possi-
ble and, to explore conjunction, we must deal with the full
truth table

A(x) B(y) A(x) xor B(y)

F F F
F T T
T F T
T T F

(b) Let x < y. We have seen in example 4.12(b) that the
combination T/F is impossible and we can restrict our-
selves to the simplified truth table

A(x) B(y) A(x) xor B(y)

F F F
F T T
T T F

(c) Now let x = y. We have seen in example 4.12(c) that
either both A(x) and B(y) = B(x) are true or both are false.
Because the combinations F/T and T/F are impossible we
can restrict ourselves to the simplified truth table

A(x) B(x) A(x) xor B(x)

F F F
T T F

This last truth table is remarkable. The truth values for A(x) xor B(x) are false in each row, hence
it is a contradiction as defined in Definition 4.8 on p.91. �

47Some documents such as [5] Bryant, Kirby Course Notes for MAD 2104. also use the symbol ⊕.
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Remark 4.4. Note that the truth values for A ↔ B are the exact opposites of those for A xor B:
A ↔ B is true exactly when both A and B have the same truth value whereas A xor B is true
exactly when A and B have opposite truth values. In other words,
A ↔ B is true whenever ¬[A xor B] is true and false whenever ¬[A xor B] is false. �

Exercise 4.1. use that last remark to prove that for any two statements A and B the compound
statement

[A↔ B] ↔ ¬[A xor B]

is a tautology. �

4.2.5 Arrow and Implication Operators

Definition 4.13 (Arrow operator). The arrow operator 48 is represented by the symbol “→”. We
read A→ B as “A arrow B” but see remark 4.6 below for the interpretation “if A then B”.

Truth table for A→ B:(4.9)

A B A→ B

F F T
F T T
T F F
T T T

In other words, A→ B is false if and only if A is true and B is false. �

Definition 4.14 (Implication operator). We say that A implies B and we write

A ⇒ B(4.10)

for two statements A and B if the statement A → B is a tautology, i.e., if the combination A: true,
B: false is logically impossible.

Truth table for A⇒ B:(4.11)

A B A⇒ B

F F T
F T T
T F L/I
T T T

�

Remark 4.5. There are several ways to express A⇒ B in plain english:

Short form:

A implies B
if A then B
A only if B
B if A
B whenever A
A is sufficient for B
B is necessary for A

Interpret this as:

The truth of A implies the truth of B
if A is true then B is true
A is true only if B is true
B is true if A is true
B is true whenever A is true
The truth of A is sufficient for the truth of B
The truth of B is necessary for the truth of A

�
48[5] Bryant, Kirby Course Notes for MAD 2104 calls this operator the implication operator but we abstain from that

terminology because “A implies B” has a different meaning and is written A⇒ B.
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Theorem 4.1 (Transitivity of “⇒”). Let A,B,C be three statements such that A⇒ B and B ⇒ C. Then
A⇒ C.

PROOF:

A⇒ B means that the combination A:T, B:F is logically impossible be-
cause otherwise A → B would have a truth value of F and we would
not have a tautology. Hence we can drop row 5 from the truth table
on the right. Similarly we can drop row 7 because it contains the com-
bination B:T, C:F which contradicts our assumption that B ⇒ C. But
those are the only rows for whichA→ C yields false because only they
contain the combination A:T, C:F. It follows that A → C is a tautology,
i.e., A⇒ C.

A B C

1 F F F
2 F F T
3 F T F
4 F T T
5 T F F
6 T F T
7 T T F
8 T T T

�

Theorem 4.2 (Transitivity of “→”). Let A,B,C be three statements.
Then

[
(A→ B) ∧ (B → C)

]
⇒ (A→ C).

PROOF: We must show that
[
(A→ B) ∧ (B → C)

]
→ (A→ C) is a tautology. We do this by brute

force and compute the truth table.

P :=
A B C A→ B B → C (A→ B) ∧ (B → C) A→ C P → (A→ C)

F F F T T T T T
F F T T T T T T
F T F T F F T T
F T T T T T T T
T F F F T F F T
T F T F T F T T
T T F T F F F T
T T T T T T T T

We see that the last column with the truth values for
[
(A → B) ∧ (B → C)

]
→ (A → C) contains

true everywhere and we have proved that this statement is a tautology. �

Definition 4.15. In the context of A → B and A ⇒ B we call A the premise or the hypothesis 49

and we call B the conclusion. 50

We call B → A the converse of A→ B and we call ¬B → ¬A the contrapositive of A→ B.
We call B ⇒ A the converse of A⇒ B and we call ¬B ⇒ ¬A the contrapositive of A⇒ B. �

Remark 4.6.
49also called the antecedent
50Another word for conclusion is consequent .
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(a) The difference between A → B and A ⇒ B is that A ⇒ B implies a relation
between the premise A and the conclusion B which renders the T/F combination
A:T, B:F logically impossible, i.e., the pared down truth table has only true entries
in the A ⇒ B column. In other words, A ⇒ B is the statement A → B in case the
latter is a tautology as defined in Definition 4.8 on p.91.

(b) Both A → B and A ⇒ B are interpreted as “if A then B” but we prefer in general
to say “A arrow B” for A → B because outside the realm of logic A ⇒ B is what
mathematicians use when they refer to “If ... then ” constructs to state and prove
theorems.

�

Example 4.15. The converse of “if x is a dog then x is a mammal” is “if x is a mammal then x is
a dog”. You see that, regardless whether you look at it in the context of → or ⇒, a “if . . . then”
statement can be true whereas its converse will be false and vice versa.
The contrapositive of “if x is a dog then x is a mammal” is “if x is not a mammal then x is a not a
dog”. Switching to the contrapositive did not switch the truth value of the “if . . . then” statement.
This is not an accident: see the Contrapositive Law (4.37) on p.104. �

Remark 4.7. What is the connection between the truth tables for A → B, A ⇒ B and modeling
“if A then B”?
We answer this question as follows:
(a) If the premise A is guaranteed to be false, you should be allowed to conclude from it anything
you like:
Consider the following statements which are obviously false:
F1 : “The average weight of a 30 year old person is 7 ounces”,
F2 : “The number 12.7 is an integer”,
F3 : “There are two odd integers m and n such that m+ n is odd”,
F4 : “All continuous functions are differentiable” 51

and some that are known to be true:
T1 : “The moon orbits the earth”,
T2 : “The number 12.7 is not an integer”,
T3 : “If m and n are even integers then m+ n is even”,
T4 : “All differentiable functions are continuous”
a1. What about the statement “if F3 then T1”: “If There are two odd integers m and n such that
m+n is odd then the moon orbits the earth”? This may not make a lot of sense to you, but consider
this:
The truth of “if F3 then T1” is not the same as the truth of just F1. No absolute claim is made that
the moon orbits the earth. You are only asked to concede such is the case under the assumption that
two odd integers can be found whose sum is odd. But we know that no such integers exist, i.e., we
are dealing with a vacuous premise and there is no obligation on our part to show that the moon
indeed orbits the earth! Because of this we should have no problem to accept the validity of “if F3

then T1”. Keep in mind though that knowing that if F3 then T1 will not help to establish the truth
or falseness of T1!
a2. Now what about the statement “if F3 then F2”: “If There are two odd integers m and n such

51A counterexample is the function f(x) = |x| because it is continuous everywhere but not differentiable at x = 0.
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that m+n is odd then the number 12.7 is an integer”? The truth of this implication should be much
easier to understand than allowing to conclude something false from something false:
When was the last time that someone bragged “Yesterday I did xyz” and you responded with some-
thing like “If you did xyz then I am the queen of Sheba” in the serene knowledge that there is no
way that this person could have possibly done xyz? You know that you have no burden of proof to
show that you are the queen of Sheba because you did not make this an absolute claim: You hedged
that such is only the case if it is true that the other person in fact did xyz yesterday.
So, yes, the argument “if F3 then F2”. sounds OK and we should accept it as true but, as in the case
of “if F3 then T1”. this has no bearing on the truth or falseness of F2.

To summarize, “if F then B”. should be true, no matter what you plug
in for B. We thus have obtained the first two rows of a sensible truth
table for A→ B:

A B A→ B
F F T
F T T

(b) Is it OK to say that if the premise A is true then we may infer that the conclusion B is also true?
Definitely! There is nothing wrong with “if T2 then T4”, i.e., the statement “If The number 12.7 is
not an integer then all differentiable functions are continuous”

We can add the fourth row but
we do not have #3 yet:

A B A→ B
F F T
F T T
T F ??
T T T

(c) Is it OK to say that, if the premise A is true, we may say in parallel that A implies B even if the
conclusion B is false? No way! Let’s assume that Jane is a goldfish. Then A: “Jane is a fish” is true
and B: “Jane is a rocket scientist” is false. It is definitely NOT OK to say, under those circumstances,
“If Jane is a fish” then Jane is a rocket scientist”. Contrast that with this modification that fits case
b: “If Jane is a fish’ then Jane is not a rocket scientist”. No one should have a problem with that! We
now can complete row #3: T→ F is false.

We now have the complete truth table for A → B and it
matches the one in Definition 4.13:

A B A→ B

F F T
F T T
T F F
T T T

The truth table (4.11) forA⇒ B is then derived from that for
A→ B by demanding thatA andB be such thatA→ B can-
not be false, i.e, the combination A:F, B:T must be logically
impossible:

A B A⇒ B

F F T
F T T
T F L/I
T T T

We arrived in this remark at the truth tables for A → B and A ⇒ B based on what seems to be
reasonable. But the discipline of logic is as exacting a subject as abstract math and the process had
to be done in reverse: We first had to define A → B and A ⇒ B by means of the truth tables given
in Definition 4.13 and Definition 4.14 and from there we justified why these operators appropriately
model “if A then B”. �

Example 4.16. As in example 4.12 let x, y ∈ Z and let
A(x) := “x ∈ N′′ and B(y) := “y ∈ Z and y > 0′′
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(a) If no assumptions are made about a relationship be-
tween x and y then all four T/F combinations are possi-
ble and, to explore conjunction, we must deal with the full
truth table

A(x) B(y) A(x)→ B(y)

F F T
F T T
T F F
T T T

(b) Let x < y. We have seen in example 4.12(b) that the
combination T/F is impossible and we can restrict our-
selves to the simplified truth table

A(x) B(y) A(x)→ B(y)

F F T
F T T
T T T

(c) Now let x = y. We have seen in example 4.12(c) that
either both A(x) and B(y) = B(x) are true or both are false.
Because the combinations F/T and T/F are impossible we
can restrict ourselves to the simplified truth table

A(x) B(x) A(x)→ B(x)

F F T
T T T

We see that A(x)→ B(y) is a tautology in case that x < y or x = y. �

We have seen that some work was involved to show that the “A(x) → B(y)” statement of the last
example is a tautology. How do we interpret this?

If you show that a “if P then Q” statement is a tautology then you have demonstrated that
a true premise necessarily results in a true conclusion. You have “proved” the validity of
the conclusion Q from the validity of the hypothesis P .

The next example is a modification of the previous one. We replace the statements A(x) and B(y)
with statement functions x 7→ A(x), y 7→ B(y), (x, y) 7→ C(x, y). and replace A(x) → B(y) with an
equivalent→ statement which involves those three statement functions. Our goal is now to show
that this new if . . . then statement is a tautology for all x and y which belong to their universes of
discourse.

Example 4.17. Let Ux := Uy := Z be the UoDs for the variables x and y.
Let A : Ux → S with x 7→ “x ∈ N′′,

B : Uy → S with y 7→ “y ∈ Z and y > 0′′,
C : Ux ×Uy → S with (x, y) 7→ “x < y′′.

Let us try to show that for any x in the UoD of x and y in the UoD of y, i.e., for any two integers x
and y, the function value T (x, y) of the statement function

T :Ux ×Uy → S with (x, y) 7→ T (x, y) :=
[(
A(x) ∧ C(x, y)

)
→ B(y)

]
is a tautology.(4.12)

Note that

(a) The last arrow in (4.12) is the arrow operator→, not the function assignment operator 7→.
(b) if we can demonstrate that (4.12) is correct then we can replace

(
A(x)∧C(x, y)

)
→ B(y)

with
(
A(x) ∧ C(x, y)

)
⇒ B(y). We interpret this as having proved the (trivial)

Theorem: It is true for all integers x and y that if x ∈ N and x < y then y ∈ Z and y > 0.

The trick is of course to think of x and y not as placeholders but as fixed but unspecified integers.
Then A(x), B(y) and C(x, y) are ordinary statements and we can build truth tables just as always.
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Observe that we now have three “inputs” A(x), B(y) and C(x, y) and the full truth table contains
nine entries.
We need not worry about numbers x and y whose combination (x, y) results in the falseness of the
premise A(x) ∧ C(x, y) because false → B(y) always results in true. In other words we do not
worry about any combination of x and y for which at least one of A(x), C(x, y) is false. To phrase
it differently we focus on such x and y for which we have that both A(x), C(x, y) are true and
eliminate all other rows from the truth table. There are only two cases to consider: either B(y) is
false or B(y) is true:
A(x) C(x, y) B(y) A(x) ∧ C(x, y)

(
A(x) ∧ C(x, y)

)
→ B(y)

T T F T F
T T T T T

The proof is done if it can be shown that the first row is a logically impossible. We now look at the
components A(x), C(x, y), B(y) in context. We have seen in example 4.12(b) that the assumed truth
of C(x, y) together with that of A(x) is incompatible with B(y) being false. This eliminates the first
row from that last truth table and what remains is
A(x) C(x, y) B(y) A(x) ∧ C(x, y)

(
A(x) ∧ C(x, y)

)
→ B(y)

T T T T T
In other words we obtain the value true for all non-contradictory combinations in the last column
of the truth table and this proves (4.12). �

Remark 4.8. Let us compare example 4.15(b) with example 4.17. Besides using statements in the
former and predicates in the latter a more subtle difference is that, because x and y were assumed
to be known from the outset,
example 4.15(b) allowed us to formulate a truth table in which none of the statements had to ex-
plicitly refer to the condition x < y.
In contrast to this we had to introduce in example 4.17 the predicate C = “x < y′′ to bring this
condition into the truth tables
Was there any advantage of switching from statements to predicates and adding a significant
amount of complexity in doing so? The answer is yes but it will only become clear when we in-
troduce quantifiers for statement functions. �

We will come back to the subject of proofs in chapter 4.6.1 (Building blocks of mathematical theories)
on p.114.

4.2.6 Biconditional and Logical Equivalence Operators – Part 2 (Understand this!)

This chapter continues the discussion of the ↔ and ⇔ operators from ch.4.2.3 (Biconditional and
Logical Equivalence Operators – Part 1) on p.93.

Remark 4.9.
(a) Equivalence A ⇔ B provides a “replacement principle for statements”: Logically equivalent
statements are not “semantically identical” but they cannot be distinguished as far as their “logic
content”, i.e., the circumstances under which they are true or false are concerned.
(b) Note that A ⇔ B means the same as the following: A is true whenever B is true and A is false
whenever B is false because this is the same as saying that, in a truth table that contains entries for
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A and B, each row either has the value T in both columns or the value F in both columns. This in
turn is the same as saying that the column for A↔ B has T in each row, i.e., A↔ B is a tautology.
b’. There is not much value to (b) if A and B are simple statements but things become a lot more
interesting if compound statements like A := ¬(P ∧Q) and B := ¬P ∨ ¬Q are looked at. �

We illustrate the above remark with the following theorem.

Theorem 4.3 (De Morgan’s laws for statements). LetA andB be statements. Then we have the following
logical equivalences:

¬(A ∧B) ⇔¬A ∨ ¬B,(4.13)
¬(A ∨B) ⇔¬A ∧ ¬B.(4.14)

Those formulas generalize to n statements A1, A2, . . . , An as follows:

¬(A1 ∧A2 ∧ · · · ∧An) ⇔¬A1 ∨ ¬A2 ∨ · · · ∨ ¬An,(4.15)
¬(A1 ∨A2 ∨ · · · ∨An) ⇔¬A1 ∧ ¬A2 ∧ · · · ∧ ¬An.(4.16)

PROOF of 4.13: Here is the truth table for both ¬(A∧B) and ¬A∨¬B depending on the truth values
of A and B.
A B A ∧B ¬(A ∧B) ¬A ¬B ¬A ∨ ¬B

[
¬(A ∧B)

]
↔
[
¬A ∨ ¬B

]
F F F T T T T T
F T F T T F T T
T F F T F T T T
T T T F F F F T

This proves the validity of 4.13. Note that the last column of the truth table is superfluous because
getting T in each row follows from the fact that the rows of the statement to the left and the one to
the right of “↔” both contain the same entries T-T-T-F. The column has been included because it
illustrates what was said in remark 4.9.
PROOF of 4.14: Left as an exercise. �

Example 4.18. As in example 4.12 let x, y ∈ Z and let
A(x) := “x ∈ N′′ and B(y) := “y ∈ Z and y > 0′′

(a) If no assumptions are made about a relationship between x and y then the full truth table needs
all four entries and we obtain
A(x) B(y) A(x)↔ B(y)

F F T
F T F
T F F
T T T

(b) Let x < y. We have seen in example 4.12 that the combination T/F is impossible and we can
restrict ourselves to the simplified truth table
A(x) B(y) A(x)→ B(y)

F F T
F T F
T T T
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(c) Now let x = y. We have seen in example 4.12(c) that then either A(x) and B(y) = B(x) must
both be true or they must both be false. Because the combinations F/T and T/F are impossible we
can restrict ourselves to the simplified truth table
A(x) B(x) A(x)↔ B(x)

F F T
T T T

It follows that for any given number x the statement A(x)↔ B(x) is always true, irrespective of the
truth values of A(x) and B(x). Hence A(x) ↔ B(x) is a tautology and we can write A(x) ⇔ B(x)
for all x. �

4.2.7 More Examples of Tautologies and Contradictions (Understand this!)

Now that we have all logical operators at our disposal we can give additional examples of tautolo-
gies and contradictions.

Example 4.19. In the following let P,Q,R be three arbitrary statements, let x, y be two (fixed but
arbitrary) integers and let A(x) := “x ∈ N′′ and B(y) := “y ∈ Z and y > 0′′. (see example 4.12 on
p. 92).
(a) Tautologies:
T0,
A1 := “5 + 7 = 12”,
A2 := “Any integer is even or odd”,
A3 := P ∨ ¬P (Tertium non datur or law of the excluded middle),
A4 := P ∨ T0,
A5 := (P ∧ Q) ∨ (P ∧ ¬Q),
A6 := (P → Q)↔ (¬P ∨ Q) (Implication is logically equivalent to an or statement),
A7 := [“x < y′′ ∧A(x)]→ B(y) (see 4.15(b) on p.97),
A8 := A(x)↔ B(x) (see 4.15(c)).
Note that we can express the fact that A6, A7, A8 are tautologies as follows:

(P → Q) ⇔ (¬P ∨ Q), [“x < y′′ ∧A(x)]⇒ B(y), A(x) ⇔ B(x).

(b) Contradictions:
F0,
B1 := “5 + 7 = 15”,
B2 := “There are some non-zero numbers x such that x = 2x”,
B3 := P ∧ ¬P ,
B3 := P ∧ F0,
B4 := F0 ∧ (P ∨ ¬P ),
B5 := [¬P ∨ ¬Q] ∧ [P ∧Q],
B6 := A(x) xor B(x) (see 4.14(c) on p. 94). �

Proof that A3 is a tautology:
P ¬P P ∨ ¬P
F T T
T F T

Proof that A4 is a tautology:
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P T0 P ∨ T0

F T T
T T T

Note that even though there are two inputs, P and T0, there are only two valid combinations of
truth values because the only choice for T0 is true.
Proof that A6 is a tautology:
P Q P → Q ¬P ¬P ∨Q (P → Q)↔ (¬P ∨Q)

F F T T T T
F T T T T T
T F F F F T
T T T F T T
�

Remark 4.10. The interesting tautologies and contradictions are not those involving only specific
statements such as T0, F0, A1, A2, B1, B2, from above but those statements like A5, A6, B4 and B5

which specify formulas relating the general statements P,Q and R. �

4.3 Statement Equivalences (Understand this!)

Symbolic logic has a collection of very useful statement equivalences which are given here. They
were taken from ch.2 on logic, subchapter 2.4 (Important Logical Equivalences) of [5] Bryant, Kirby
Course Notes for MAD 2104.

Theorem 4.4. Let P,Q,R be statements.

(a) Identity Laws: P ∧ T0 ⇔ P(4.17)
P ∨ F0 ⇔ P(4.18)

(b) Domination Laws: P ∨ T0 ⇔ T0(4.19)
P ∧ F0 ⇔ F0(4.20)

(c) Idempotent Laws: P ∨ P ⇔ P(4.21)
P ∧ P ⇔ P(4.22)

(d) Double Negation Law: ¬(¬P ) ⇔ P(4.23)

(e) Commutative Laws: P ∨Q ⇔ Q ∨ P(4.24)
P ∧Q ⇔ Q ∧ P(4.25)
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(f) Associative Laws:

(P ∨Q) ∨R ⇔ P ∨ (Q ∨R)(4.26)
hence (P ∨Q) ∨R ⇔ P ∨Q ∨R(4.27)

(P ∧Q) ∧R ⇔ P ∧ (Q ∧R)(4.28)
hence (P ∧Q) ∧R ⇔ P ∧Q ∧R(4.29)

(g) Distributive Laws: P ∨ (Q ∧R) ⇔ (P ∨Q) ∧ (P ∨R)(4.30)
P ∧ (Q ∨R) ⇔ (P ∧Q) ∨ (P ∧R)(4.31)

(h) De Morgan’s Laws: 52 ¬(P ∧Q) ⇔¬P ∨ ¬Q(4.32)
¬(P ∨Q) ⇔¬P ∧ ¬Q(4.33)

(i) Absorption Laws: P ∧ (P ∨Q) ⇔ P(4.34)
P ∨ (P ∧Q) ⇔ P(4.35)

(j) Implication Law:

(P → Q) ⇔ (¬P ∨Q)(4.36)

You should remember this formula because the fact that implication
can be expressed as an OR statement is often extremely useful when
showing that two statements are logically equivalent.

k. Contrapositive Laws: (P → Q) ⇔ (¬Q→ ¬P )(4.37)
(P ⇒ Q) ⇔ (¬Q⇒ ¬P )(4.38)

l. Tautology: (P ∨ ¬P ) ⇔ T0(4.39)

m. Contradiction: (P ∧ ¬P ) ⇔ F0(4.40)

n. Equivalence: (P → Q) ∧ (Q→ P ) ⇔ (P ↔ Q)(4.41)

The proof for only some of the laws stated above are given here. You can prove all others by writing
out the truth tables to show that left and right sides of the . . . ⇔ . . . statements are indeed logically
equivalent.
PROOF of (h) (De Morgan’s laws):

52This is theorem 4.3 (De Morgan’s laws for statements).
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See theorem 4.3 on p.101.
PROOF of (j) (implication law):
We prove (4.36) using a truth table:

We see that the entries T-T-F-T in the ¬P ∨ Q column match
those given for P → Q in Definition 4.13 on p.95 of the arrow
operator. This proves the logical equivalence of those state-
ments.

P Q ¬P ¬P ∨Q
F F T T
F T T T
T F F F
T T F T

PROOF of (k) (contrapositive law for→):
We prove (4.37) with the help of the previously given laws (a) through (j):

(P → Q)
((j))⇔ (¬P ∨Q)

((e))⇔ (Q ∨ ¬P )
((d))⇔ (¬(¬Q) ∨ ¬P )

((j))⇔ (¬Q→ ¬P )

�

Example 4.20. Use the logical equivalences of thm.4.4 to prove that ¬
(
¬A∧ (A∧B)

)
is a tautology.

�

Solution:
¬
(
¬A ∧ (A ∧B)

)
⇔ ¬(¬A) ∨ ¬(A ∧B) De Morgan’s Law (4.32)
⇔ A ∨ (¬A ∨ ¬B) De Morgan (4.32) + Double negation (4.23)
⇔ (A ∨ ¬A) ∨ ¬B Associative law (4.26)
⇔ T0 ∨ ¬B Tautology (4.39)
⇔ T0 Commutative Law (4.24) + Domination Law (4.19) �

Example 4.21. Find a simple expression for the negation of the statement “if you come before 6:00
then I’ll take you to the movies”. �

Solution: Let A := “You come before 6:00” and B := “I’ll take you to the movies”. Our task is to
find a simple logical equivalent to ¬(A→ B). We proceed as follows:

¬(A→ B)
((j))⇔¬(¬A ∨B)

((h))⇔ (¬(¬A) ∧ ¬B)
((d))⇔ (A ∧ ¬B)

This translates into the statement “you come before 6:00 and I won’t take you to the movies”.
�

Remark 4.11. Now that we accept that such logical expressions are DEFINED by their truth tables,
we must accept the following: if two logical expressions with two statements A and B as input have
the same truth table, then they are logically equivalent and we may interchangeably use one or the
other in a proof. �

4.4 The Connection Between Formulas for Statements and for Sets (Understand this!)

Given statements a, b and setsA,B you may have the impression that there are connections between
a ∧ b and A ∩B, between a ∨ b and A ∪B, between ¬a and A{, etc. We will briefly explore this.
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In this chapter we switch to small letters for statements and statement functions and use capital
letters to denote sets. You have already seen an example in the introduction.
We assume the existence of a universal set U of which all sets are subsets.
All statements will be of the form a(x) = “x ∈ A′′ for some set A ⊂ U . In other words we associate
with such a set A the following statement function:

a : U → S , x 7→ a(x) =: “x ∈ A′′(4.42)

This relationship establishes a correspondence between the subset A of U and the predicate a =
“x ∈ A′′ with UoD U . We write a ∼= A for this correspondence.

Example 4.22. Let a ∼= A and b ∼= B.
We have
(a) T0

∼= U , F0
∼= ∅

(b) ¬a : x 7→ ¬a(x) = ¬“x ∈ A′′ evaluates to a true statement if and only if x /∈ A, i.e. x ∈ A{. Hence
¬a ∼= A{.
(c) a∧b : x 7→ a(x)∧b(x) = “x ∈ A and x ∈ B′′ evaluates to a true statement if and only if x ∈ A∩B.
Hence a ∧ b ∼= A ∩B.
(d) a∨ b : x 7→ a(x)∨ b(x) = “x ∈ A or x ∈ B′′ evaluates to a true statement if and only if x ∈ A∪B.
Hence a ∨ b ∼= A ∪B. �

We expand the table of formulas for statements given in thm 4.4 on p.103 of ch.4.3 (Statement equiv-
alences) with a third column which shows the corresponding relation for sets. Having a translation
of statement relations to set relations allows you to use Venn diagrams as a visualization aid.

Theorem 4.5. For a set U Let p, q, r be statement functions and let P,Q,R ⊆ U such that p ∼= P , q ∼= Q,
r ∼= R. Then we have the following:

(a) Identity: p ∧ T0 ⇔ p(4.43)
p ∨ F0 ⇔ p(4.44)

P ∩U =P

P ∪ ∅ =P

(b) Domination: p ∨ T0 ⇔ T0(4.45)
p ∧ F0 ⇔ F0(4.46)

P ∪U =U

P ∩ ∅ =∅

(c) Idempotency: p ∨ p ⇔ p(4.47)
p ∧ p ⇔ p(4.48)

P ∪ P =P

P ∩ P =P

(d) Double Negation: ¬(¬p) ⇔ p(4.49) (P {){ =P
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(e) Commutative: p ∨ q ⇔ q ∨ p(4.50)
p ∧ q ⇔ q ∧ p(4.51)

P ∪Q =Q ∪ P
P ∩Q =Q ∩ P

(f) Associative:

(p ∨ q) ∨ r
⇔ p ∨ (q ∨ r)

(4.52)

(p ∧ q) ∧ r
⇔ p ∧ (q ∧ r)

(4.53)

(P ∪Q) ∪R =P ∪ (Q ∪R)

(P ∩Q) ∩R =P ∩ (Q ∩R)

(g) Distributive:

p ∨ (q ∧ r)
⇔ (p ∨ q) ∧ (p ∨ r)

(4.54)

p ∧ (q ∨ r)
⇔ (p ∧ q) ∨ (p ∧ r)

(4.55)

P ∪ (Q ∩R) =(P ∪Q) ∩ (P ∪R)

P ∩ (Q ∪R) =(P ∩Q) ∪ (P ∩R)

(h) De Morgan: ¬(p ∧ q) ⇔¬p ∨ ¬q(4.56)
¬(p ∨ q) ⇔¬p ∧ ¬q(4.57)

(P ∩Q){ =P { ∪Q{

(P ∪Q){ =P { ∩Q{

(i) Absorption: p ∧ (p ∨ q) ⇔ p(4.58)
p ∨ (p ∧ q) ⇔ p(4.59)

P ∩ (P ∪Q) = P

P ∪ (P ∩Q) = P

j1. Implication 1:

(p→ q) ⇔ (¬p ∨ q)(4.60) (P \Q){ = P { ∪Q

Interpretation: p(x) → q(x), i.e., “x ∈ P ′′ → “x ∈ Q′′ is true if
and only if p(x):T, q(x):F is L/I., i.e., if and only if x /∈ P ∩ Q{ =
P \Q, i.e., x ∈ (P \Q){.

j2. Implication 2:

p⇒ q(4.61)

P \Q = ∅, i.e., P ⊆ Q

Note that we are not dealing with p → q but with p ⇒ q
where we assume for all x a relation between p and q which
renders p(x):T, q(x):F logically impossible.

k. Contrapositive: (P → Q) ⇔ (¬Q→ ¬P )(4.62)
(P ⇒ Q) ⇔ (¬Q⇒ ¬P )(4.63)

P { ∪Q = Q ∪ P {

P ⊆ Q ⇔ Q{ ⊆ P {
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l. Tautology: (P ∨ ¬P ) ⇔ T0(4.64) P ∪ P { =U

m. Contradiction: (P ∧ ¬P ) ⇔ F0(4.65) P ∩ P { =∅

n1. Equivalence 1:
(p→ q)∧(q → p)

⇔ (p↔ q)
(4.66)

(P { ∪Q) ∩ (Q{ ∪ P )

= {x : x both in P,Q or
x neither in P nor in Q }

n2. Equivalence 2:
(p⇒ q)∧(q ⇒ p)

⇔ (p⇔ q)
(4.67)

(P ⊆ Q) and (Q ⊆ P )

⇔ (P = Q)

PROOF: The set equalities are evident except for the following:
PROOF of Equivalence 1:

(P { ∪Q) ∩ (Q{ ∪ P ) =
[
(P { ∪Q) ∩Q{

]
∪
[
(P { ∪Q) ∩ P

]
= (P { ∩Q{) ∪ (Q ∩Q{) ∪ (P { ∩ P ) ∪ (Q ∩ P )

= (P { ∩Q{) ∪ (Q ∩ P )

= {x : x neither in P nor in Q or x both in P,Q }.

�

4.5 Quantifiers for Statement Functions

This chapter has been kept rather brief. You can find more about quantifiers in ch.2 on logic, sub-
chapter ch.2.3 (Predicates and Quantifiers) of [5] Bryant, Kirby Course Notes for MAD 2104.

4.5.1 Quantifiers for One–Variable Statement Functions

Definition 4.16 (Quantifiers). Let A : U → S , x 7→ A(x) be a statement function of a single
variable x with UoD U for x.
(a) The universal quantification of the predicate A is the statement

“For all x A(x)′′, written ∀xA(x).(4.68)

The above is a short for “A(x) is true for each x ∈ U ”. We call the symbol ∀ the universal quantifier
symbol.
(b) The existential quantification of the predicate A is the statement

“For some x A(x)′′, written ∃xA(x).(4.69)
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The above is a short for “There exists x ∈ U such that A(x) is true”. 53 We call the symbol ∃ the
existential quantifier symbol.
(c) The unique existential quantification of the predicate A is the statement

“There exists unique x such that A(x)′′, written ∃!xA(x).(4.70)

The above is a short for “There exists a unique x ∈ U such that A(x) is true”. 54 We call the symbol
∃! the unique existential quantifier symbol. �

Example 4.23. Let A : [−3, 3]→ S be the statement function x 7→ “x2 − 4 = 0′′.
Let C := ∀xA(x) D := ∃xA(x) and E := ∃!xA(x). Then
C = “for all x ∈ [−3, 3] it is true that x2 − 4 = 0”
D = “there is at least one x ∈ [−3, 3] such that x2 − 4 = 0”
E = “there is exactly one x ∈ [−3, 3] such that x2 − 4 = 0”
Note that each of C,D,E is in fact a statement because each one is either true or false: Clearly the
zeros of the function f(x) = x2 − 4 in the interval −3 ≤ x ≤ 3 are x = ±2. It follows that D is a true
statement and A and C are false statements. �

Example 4.24. Let U := { all human beings } be the UoD for the following three predicates:
S(x) := “x is a student at NYU”,
C(x) := “x cheats when taking tests”,
H(x) := “x is honest”,

Let us translate the following three english verbiage statements into formulas:
A1 := “All humans are NYU students”,
A2 := “All NYU students cheat on tests”,
A3 := “Any NYU student who cheats on tests is not honest”.

Solution:
A1 = ∀x S(x) ,
A2 = ∀x [S(x)→ C(x)],
A3 = ∀x [(S(x) ∧ C(x))→ ¬H(x)]. �

Example 4.25. We continue example 4.24.
Let us simplify A3 = ∀x [(S(x) ∧ C(x))→ ¬H(x)].
It is clear that “A(x) is true for all x” is equivalent to “There is no x such that A(x) is false”. In other
words, we have for any statement function A the following:

∀x A(x) ⇔ ¬
[
∃x (¬A(x))

]
.

But A3 is the form ∀x A(x): replace A(x) with (S(x) ∧ C(x))→ ¬H(x).
It follows that

A3 ⇔ ¬
[
∃x (¬

(
S(x) ∧ C(x))→ ¬H(x)

)
)
]
.

What a mess! let us drop the “(x)” everywhere and the above becomes

A3 ⇔ ¬
[
∃x (¬

(
S ∧ C)→ ¬H

)
)
]
.

53Equivalently, “A(x) is true for some x ∈ U ” or “A(x) is true for at least one x ∈ U ”.
54Equivalently, “A(x) is true for exactly one x ∈ U ”.
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We have seen in example 4.21 on p.105 that for any two statements P and Q the equivalence
¬(P → Q) ⇔ (P ∧ ¬Q) is true.
Let us apply this with P := S ∧ C and Q := ¬H . We obtain

A3 ⇔¬
[
∃x
(
(S ∧ C) ∧ ¬(¬H)

) ]
. ⇔ ¬

[
∃x
(
S ∧ C ∧H

) ]
.

where we obtained the last equivalence by applying the double negation law to ¬(¬H) and the
associative law for ∧ to remove the parentheses from (S ∧ C) ∧H .
As a last step we bring back the “(x)” terms and obtain

A3 ⇔¬∃x [S(x) ∧ C(x) ∧H(x)].

In other words, A3 means “There is no one who is an NYU student and who cheats on tests and is
honest”. This should make sense if you remember the original meaning of A3: “Any NYU student
who cheats on tests is not honest”. �

4.5.2 Quantifiers for Two–Variable Statement Functions

We now discuss quantifiers for statement functions of two variables. Things become a lot more
interesting because we can mix up ∀, ∃ and ∃!.
Unless mentioned otherwise B denotes the statement function of two variables

B :Ux ×Uy → S , x 7→ B(x, y)(4.71)

It follows that the unverses of discourse are Ux for x and Uy for y.
We need a quantifier for each variable to bind the expression B(x, y) with placeholders x and y into
a statement, i.e., into something that will be true or false. This done by example as follows:

Definition 4.17 (Doubly quantified expressions). Here is a table of statements involving two quan-
tifiers and their meanings.

(a) ∀x∀yB(x, y) “for all x ∈ Ux and for all y ∈ Uy (we have the truth of) B(x, y)′′,
(b) ∀x∃yB(x, y) “for all x ∈ Ux there exists (at least one) y ∈ Uy such that B(x, y)′′,
(c) ∃x∀yB(x, y) “there exists (at least one) x ∈ Ux such that for all y ∈ Uy B(x, y)′′,
(d) ∃!x∀yB(x, y) “there exists exactly one x ∈ Ux such that for all y ∈ Uy B(x, y)′′,
(e) ∃x∃yB(x, y) “there exists (at least one) x ∈ Ux and (at least one) y ∈ Uy such that B(x, y)′′. �

Example 4.26. Let Ux := N,Uy := Z and B : Ux × Uy → S , (x, y) 7→ B(x, y) := “x + y = 1′′.
Then

(a) ∀x∀yB(x, y) false
(b) ∀x∃yB(x, y) true: for the given x choose y := 1− x.
(c) ∃y∀xB(x, y) false
(d) ∀y∃xB(x, y) false: If you choose y > 0 then the only x that satisfies the equa-

tion x+ y = 1 is x = 1− y ≤ 0, i.e., x /∈ N, the UoD for x.
(e) ∃!x∀yB(x, y) false
(f) ∃x∃yB(x, y) true: choose x := 10 and y := −9.

Understand the different outcomes of (b), (c) and (d) and remember this:
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(1) The order in which the qualifiers are applied is important.
∀x∃y generally does not mean the same as ∃y∀x.

(2) Interchanging variable names in the qualifiers is not OK.
∀x∃y generally does not mean the same as ∀y∃x.

Proposition 4.1. Note the following:

∀x∀yB(x, y) ⇔ ∀y∀xB(x, y)(4.72)
∃x∃yB(x, y) ⇔ ∃y∃xB(x, y)(4.73)
∀x∃yB(x, y) < ∃y∀xB(x, y)(4.74)
∃y∀xB(x, y)⇒ ∀x∃yB(x, y)(4.75)

PROOF: (4.72) and (4.73) follow from (a) and (e) in def. 4.17 and we saw an example for (4.72) in
the previous example.
The last item is not so obvious. We argue as follows: Assume that ∃y∀xB(x, y) is true. Then there is
some y0 ∈ Uy such that B(x, y0 is true for all x ∈ Ux.
Why does that imply the truth of ∀x∃yB(x, y), i.e., for all x ∈ Ux you can pick some y ∈ Uy such
that B(x, y) is true? Here is the answer: Pick y0. This works because, by assumption, B(x, y0) is
true for all x ∈ Ux. �

Remark 4.12. The last part of the proof of (4.75) is worth a closer look:
“∀x∃y . . . ” only tells you that for all x there will be some y which generally depends on x, some-
thing we sometimes emphasize using “functional notation” y = y(x).
“∃y∀x . . . ” does more: it postulates the existence of some y0 which is suitable for each x in its UoD.
The assignment y(x) = y0 is constant in x! �

Remark 4.13 (Partially quantified statement functions). Given a statement function

B :Ux ×Uy → S , x 7→ B(x, y)

with two place holders x and y, we can elect to use only one quantifier for either x or y. If we only
quantify x then we only bind x and y still remains a placeholder and if we only quantify y then we
only bind y and x still remains a placeholder. �

Example 4.27. Let Ux := { all students at this party } and Uy := { “Linear Algebra”, Discrete
Mathematics”, “Multivariable Calculus”, “Ordinary Differential Equations”, “Complex Variables”,
“Graph Theory”, “Real Analysis” }.
Let A := “x studies y′′ be the two-variable statement function with UoD Ux for x and UoD Uy for
y, i.e.,
A : Ux ×Uy → S , (x, y) 7→ A(x, y) = “x studies y′′.
Then B := ∀x A(x, y) is the one-variable predicate
B : Uy → S , y 7→ B(y) = “all students at this party study y”
and C := ∃!y A(x, y) is the one-variable predicate
C : Ux → S , x 7→ C(x) = “x studies exactly one of the courses listed in Uy”. �
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4.5.3 Quantifiers for Statement Functions of more than Two Variables

Remark 4.14. Although this document limits its scope to statement functions of one or two variables
(see the note before remark 4.4 in ch.4.1 (Statements and statement functions)) we discuss briefly
the use of quantifiers for predicates

A :U1 ×U2 × · · · ×Un → S , (x1, x2, . . . , xn) 7→ A(x1, x2, . . . , xn).

with n place holders.
Each one of those variables needs to be bound by one of the quantifiers ∀, ∃,∃! in order to obtain a
statement, i.e., something that is either true or false. �

Example 4.28 (Continuity vs uniform continuity). This example demonstrates the effect of switch-
ing a ∀ quantifier with an ∃ quantifier for a predicate with four variables. You will learn later that
one quantification corresponds to ordinary continuity and the other corresponds to uniform conti-
nuity of a function. Do not worry if you do not understand how this example relates to continuity.
The only point of interest here is the use of the quantifiers.
Let a < b be two real numbers and let f :]a, b[→ R be a function which maps each x in its domain
]a, b[ to a real number y = f(x).
Let Uε := Uδ :=]0,∞[ and Ux := Ux′ :=]a, b[. Let P : Ux ×Ux′ ×Uδ ×Uε → S be the predicate

(x, x′, δ, ε) 7→ P (x, x′, δ, ε) := “if |x− x′| < δ then |f(x)− f(x′)| < ε“.

Let A := ∀ε ∀x ∃δ ∀x′P (x, x′, δ, ε) Then A being true is equivalent to saying that the function f is
continuous at each point x ∈]a, b[. 55

Let B := ∀ε ∃δ ∀x ∀x′P (x, x′, δ, ε). Then B being true is equivalent to saying that the function f is
uniformly continuous in ]a, b[. 56

The difference between A and B is that in statement A the variable δ whose existence is required
may depend on both ε and x, i.e., δ = δ(ε, x

On the other hand, to satisfy B, a δ must be found which still may depend on ε but it must be
suitable for all x ∈]a, b[, i.e., δ = δ(ε. �

Remark 4.15 (Partially quantified statement functions). What was said in remark 4.13 about partial
qualification of two-variable predicates generalizes to more than two variables: If A is a statement
function with n variables and we use quantifiers for only m < n of those variables then n − m
variables in the resulting expression remain unbound and this expression becomes a statement
function of those unbound variables.
For example, if A(w, x, y, z) is a four-variable predicate then B : (x, z) 7→

[
∀y ¬∃w A(w, x, y, z)

]
defines a two-variable predicate B which inherits the UoDs for x and z from the original statement
function A. �

4.5.4 Quantifiers and Negation (Understand this!)

Negation of statements involving quantifiers is governed by

55See Definition 13.2 (ε-δ continuity) on p.402.
56See Definition 13.5 (Uniform continuity of functions) on p.410.
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Theorem 4.6 (De Morgan’s laws for quantifiers). Let A be a statement function with UoD U . Then
(a) ¬

(
∀xA(x)

)
⇔ ∃x ¬A(x) “It is not true that A(x) is true for all x” ⇔ “There is

some x for which A(x) is not true”
(b) ¬

(
∃xA(x)

)
⇔ ∀x ¬A(x) “There is no x for which A(x) is true” ⇔ “A(x) is not

true for all x ”

PROOF of (a): Not given here but you can find it in ch.2 on logic, subchapter 3.11 (De Morgan’s
Laws for Quantifiers) of [5] Bryant, Kirby Course Notes for MAD 2104.
PROOF of (b): Let Ux be the UoD for x.
The truth of ¬

(
∃xA(x)

)
means that ∃xA(x) is false, i.e.,A(x) is false for all x ∈ Ux. This is equivalent

to stating that ¬A(x) is true for all x ∈ Ux and this is by definition, the truth of ∀x ¬A(x). �
You can use the formulas above for negation of statements of more than one variable with more
than one quantifier using the following method, demonstrated here by example.

Example 4.29. Negate the statement ∃x∀yP (x, y), i.e., move the ¬ operator of ¬∃x∀yP (x, y) to the
right past all quantifiers.
The key is to introduce an intermittent predicate A : x 7→ A(x) :=

[
∀yP (x, y)

]
. We obtain

[
¬∃x∀yP (x, y)

]
⇔
[
¬∃xA(x)

] ((b))⇔
[
∀x¬A(x)

]
⇔
[
∀x(¬∀yP (x, y))

]
((a))⇔

[
∀x(∃y¬P (x, y))

]
. �

Example 4.30. As in example 4.29, negate the statement ∃x∀yP (x, y) but do so using parentheses
instead of explicitly defining an intermittent predicate.
Here is the solution:[

¬∃x∀yP (x, y)
]
⇔
[
¬∃x

(
∀yP (x, y)

)] ((b))⇔
[
∀x¬

(
∀yP (x, y)

)]
⇔
[
∀x(¬∀yP (x, y))

]
((a))⇔

[
∀x(∃y¬P (x, y))

]
. �
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4.6 Proofs (Understand this!)

We have informally discussed proofs in examples 4.15 and 4.17 of chapter 4.2.5 (Arrow and Implica-
tion Operators) on p.95 and seen in two simple cases how a proof can be done by building a single
truth table for an if . . . then statement and showing that it is a tautology. In this chapter we take a
deeper look at the concept of “proof”.
Many subjects discussed here follow closely ch.3 (Methods of Proofs) of [5] Bryant, Kirby Course
Notes for MAD 2104.

4.6.1 Building Blocks of Mathematical Theories

Some of the terminology definitions in notations 4.2 and 4.4 were taken almost literally from ch.3
(Methods of Proofs), subchapter 1 (Logical Arguments and Formal Proofs) of [5] Bryant, Kirby
Course Notes for MAD 2104.

Notation 4.2 (Axioms, rules of inferences and assertions).

(a) An axiom is a statement that is true by definition. No justification such as a proof needs
to be given.

(b) A rule of inference is a logical rule that is used to deduce the truth of a statement from
the truth of others.

(c) For some statements it is not clear whether they are true for false. Even if a statement is
known to be true there might be someone like a student taking a test who is given the
task to demonstrate, i.e., prove its truth. In this context we call a statement an assertion
and we call it a valid assertion if it can be shown to be true. An assertion which is not

known to be true by anyone is often called a conjecture. �

Example 4.31. LetA := “all continuous functions are differentiable” (known to be false 57 ) andB :=
“all differentiable functions are continuous” (known to be true). A homework problem in calculus
may ask the students to figure out which of the four statements A,¬A,B,¬B are valid assertions
and give proofs to that effect. �

Remark 4.16.
(a) Goldbach’s conjecture states that every even integer greater than 2 can be expressed as the sum
of two primes, i.e., integers p greater than 1 which can be divided evenly by no natural number
other than p (p/p = 1) or 1 (p/1 = p). Goldbach came up with this in 1742, more than 250 years
ago. No one has been able until now to either prove the validity of this assertion or provide a
counterexample to prove its falsehood.
(b) Fermat’s conjecture was that there are no four numbers a, b, c, n ∈ N such that n > 2 and an +
bn = cn. 58 This was stated by Pierre de Fermat in 1637 who then claimed that he had a proof.
Unfortunately he never got around to write it down. A successful proof was finally published in
1994 by Andrew Wiles. Accordingly, Fermat’s conjecture was rechristened Fermat’s Last Theorem.
�

Notation 4.3 (Proofs). A proof is the demonstration that an assertion is valid. This demonstration
must be detailed enough so that a person with sufficient expert knowledge can understand that we

57see remark 4.7 on p.97 in ch.4.2.5 (Arrow and Implication Operators).
58We have an elementary counterexample for n = 2: 32 + 42 = 25 = 52.
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do indeed have a statement which is true for all logically possible combinations of T/F values. To
show that the arguments given in this demonstration are valid, available tools are

(a) the rules of inference which wil be discussed in section 4.6.2 (Rules of Inference) on p.117
(b) logical equivalences for statements (see ch.4.2.6 (Biconditional and Logical Equivalence

Operators – Part 2) on p.ch.100).

In almost all cases the assertion in question is of the form “if P then C”. Proving it means
showing that the statement P → C is a tautology, i.e., it can be replaced by the stronger
P ⇒ C statement. The proof then consists of the demonstration that the combination P :
true, C: false can be ruled out as logically impossible. In other words, assuming P : true,
i.e., the truth of the premise, it must be shown that C: true, i.e., the conclusion then also is
necessarily true.

Usually a proof is broken down into several “sub-proofs” which can be proved separately and
where some or all of those steps again will be broken down into several steps ... You can picture
this as a hierarchical upside down tree with a single node at the top. At the most detailed level
at the bottom we have the leaf nodes. The proof of the entire statement is represented by that top
node. �

Notation 4.4 (Theorems, lemmata and corollaries).

(a) A theorem is an assertion that can be proved to be true using definitions, axioms, previ-
ously proven theorems, and rules of inference.

(b) A lemma (plural: lemmata) is a theorem whose main importance is that it can used to
prove other theorems.

(c) A corollary is a theorem whose truth is a fairly easy consequence of another theorem.
�

Remark 4.17 (Terminology is different outside logic). The terminology given in the above defini-
tions is specific to the subject of mathematical logic. In other branches of mathematics and hence
outside this chapter 4 different meanings are attached to those terms:

Each one of lemma, proposition, theorem, corollary is a theorem as defined above in
notations 4.2, i.e., a statement that can be proved to be true. We distinguish those terms
by comparing them to propositions:

(a) Theorems are considered more important than propositions.
(b) The main purpose of a lemma is to serve as a tool to prove other propositions or

theorems.
(c) A corollary is a fairly easy consequence of some lemma, proposition, theorem or

other corollary.
�

It was mentioned as a footnote to the definition of a statement (def. 4.1 on p.84) that what
we call a statement, [5] Bryant, Kirby calls a proposition and that we deviate from that
approach because mathematics outside logic uses “proposition” to denote a theorem of
lesser importance.

Any mathematical theory must start out with a collection of undefined terms and axioms that spec-
ify certain properties of those undefined terms.
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There is no way to build a theory without undefined terms because the following will happen if
you try to define every term: You define T2 in terms of T1, then you define T3 in terms of T2, etc.
Two possibilities:

(1) Each of T1, T2, T3, . . . are different and you end up with an infinite sequence of defini-
tions.

(2) At least one of those terms is repeated and there will be a circular chain of definitions.

Neither case is acceptable if you want to specify the foundations of a mathematical system.

Example 4.32. Here are a few important examples of mathematical systems and their ingredients.
(a) In Euclid’s geometry of the plane some of the undefined terms are “point”, “line segment” and
“line”. The five Euclidean axioms specify certain properties which relate those undefined terms.
You may have heard of the fifth axiom, Euclid’s parallel postulate. It has been reproduced here
with small alterations from Wikipedia’s “Euclidean geometry” entry: 59

(It is postulated that) “if a line segment falling on two line segments makes the interior angles on
the same side less than two right angles, the two line segments, if produced indefinitely, meet on
that side on which are the angles less than the two right angles”.
(b) In the so called Zermelo-Fraenkel set theory which serves as the foundation for most of the math
that has been done in the last 100 years, the concept of a “set” and the relation “is an element of”
(∈) are undefined terms.
(c) Chapters 1 and 2 of [2] Beck/Geoghegan list several axioms which stipulate the existence of a
nonempty set called Z whose elements are called “integers” which you can “add” and “multiply”.
Certain algebraic properties such as “a+ b = b+a” and “c · (a+ b) = (c ·a)+(c ·a)” are given as true
and so is the existence of an additive neutral unit “0” and a multiplicative neutral unit “1”. Besides
those algebraic properties the existence of a strict subset N called “positive integers” is assumed
which has, among others, the property that any z ∈ Z either satisfies z ∈ Z or −z ∈ Z or z = 0.
Finally there is the induction axiom which states that if you create the sequence 1, 1 + 1, (1 + 1) + 1,
. . . then you capture all of N. This axiom is the basis for the principle of mathematical induction
(see thm.6.2 on p. 169). �

Once we have the undefined terms and axioms for a mathematical system, we can begin defining
new terms and proving theorems (or lemmas, or corollaries) within the system.

Remark 4.18 (Axioms vs. Definitions). You can define anything you want but if you are not careful
you may have a logical contradiction and the set of all items that satisfy that definition is empty.
In contrast, axioms will postulate the existence of an item or an entire collection of items which
satisfy all axioms. If the axioms contradict each other we have a theory which is inconsistent and
the only way to deal with it is to discard it and rework its foundations An example for this was set
theory in its early stages. Anything that you could phrase as “Let A be the set which contains . . . ”
was fair game to define a set. We saw in remark 2.2 (Russell’s Antinomy) on p.15 that this lead to
problems so serious that they caused some of the leading mathematicians of the time to revisit the
foundations of mathematics. �

Example 4.33. For example you can define an oddandeven integer to be any z ∈ Z which satisfies
that z−212 is an even number and z+48 is an odd number and you can prove great things for such

59https://en.wikipedia.org/wiki/Euclidean_geometry#Axioms
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z. The problem is of course that the set of all oddandeven integers is empty! We have a definition
which is useless for all practical purposes, but no mathematical harm is done.
On the other hand, if you add as an additional axiom for Z in example 4.32(c) that Z
must contain one or more oddandeven integers then you are in a conundrum because
you postulated the existence of a set Z which satisfies all axioms and the existence of such a set
is logically impossible! �

4.6.2 Rules of Inference

Remark 4.19 (Most important rules of inference). In Notations 4.2 on p.114 we described the term
“rule of inference” as “a logical rule that is used to deduce the truth of a statement from the truth of
others”. The most important rules of inference are those that allow you to draw a conclusion of the
form “if A is true then I am allowed to deduce the the truth of C.” This basically amounts to having
is a list of premises A1, A2, . . . , An and a conclusion C such that

the compound statement
[
A1 ∧A2 ∧ · · · ∧An

]
→ C is a tautology.(4.76)

In other words, the column for the conclusion C in the truth table for this statement must have the
value true for each combination of truth values which is not logically impossible.
Observe that the order of the premises does not matter because the and connective is commutative.
�

Theorem 4.7. Let P1, P2, . . . , Pn and C be statements. Then the statement (P1 ∧ P2 ∧ · · · ∧ Pn)→ C is a
tautology if and only if the following combination of truth values is logically impossible:

Pj is true for each j = 1, 2, . . . , n and C is false.(4.77)

PROOF:
Let P := (P1 ∧ P2 ∧ · · · ∧ Pn). Then “Pj is true for each j = 1, 2, . . . , n′′ means according to the
definition of the ∧ operator the same as the truth of P . Hence proving the theorem is equivalent to
proving that the statement P → C is a tautology if and only if the combination of truth values

P is true and C is false is logically impossible.(4.78)

In other words, we must prove that P → C is a tautology if and
only if the row with the combination P :T, C:F, i.e., row 3, is logically
impossible and can be ignored. This is is obvious as row 3 is the only
one for which P → C evaluates to false.

P C P → C

1. F F T
2. F T T
3. T F false
4. T T T

�

Notation 4.5. Rules of inference are commonly written in the following form:
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Your explanations go
into this area

A1

A2

· · ·
An
————
∴ C

Read “∴” as “therefore”. The following, more compact notation can also be found:

A1, A2, . . . , An
—————–
∴ C

Theorem 4.8 (The three most important inference rules). The following lists three inference rules, i.e.,
those arrow statements are indeed tautoloties:

(4.79)
Modus Ponens
(Law of detachment - the mode that af-
firms the antecedent (the premise))

A
A→ C
————
∴ C

(4.80)
Modus Tollens
(The mode that Denies the consequent
(the conclusion))

¬C
A→ C
————
∴ ¬A

(4.81) Hypothetical syllogism

A→ B
B → C
————
∴ A→ C

Here is the compact notation:

Modus Ponens Modus Tollens Hypothetical syllogism

A, A→ C
————–
∴ C

¬C, A→ C
—————
∴ ¬A

A→ B, B → C
——————–
∴ A→ C

Note that the proof that the hypothetical syllogism is a tautology was given in thm.4.1 on p.96

PROOF:
�
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Example 4.34. Here are five more inference rules.

(4.82) Disjunction Introduction
A
————
∴ A ∨B

(4.83) Conjunction elimination
A ∧B
————
∴ A

(4.84) Disjunctive syllogism

A ∨B
¬A
————
∴ B

(4.85) Conjunction introduction

A
B
————
∴ A ∧B

(4.86) Constructive dilemma

(A→ B) ∧ (C → D)
A ∨ C
————
∴ B ∨D

Compact notation:

Disjunction Introduction Conjunction elimination Disjunctive syllogism

A
————–
∴ A ∨B

A ∧B
—————
∴ A

A ∨B, ¬A
——————–
∴ B

Conjunction introduction Constructive dilemma

A,B
——————–
∴ A ∧B

(A→ B) ∧ (C → D), A ∨ C
—————————————
-
∴ B ∨D

�

None of the rules of inference that were given in this chapter involve quantifiers. You can find
information about that topic in ch.2, section 1.6 (Rules of Inference for Quantifiers) of [5] Bryant,
Kirby Course Notes for MAD 2104.

119 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

4.6.3 An Example of a Direct Proof

We illustrate in detail a mathematical proof by applying some the tools you have learned so far
in this chapter on logic. For an example we will prove the theorem that each polynomial is dif-

ferentiable. We define a polynomial as a function f(x) =

n∑
j=0

cjx
j for some n = 0, 1, 2, . . . , i.e., for

some n ∈ Z≥0 and we write D for the set of all differentiable functions. We now can formulate our
theorem.

Theorem 4.9. Given the statements

a: A := “(n ∈ Z≥0) ∧ (c0 ∈ R) ∧ (c1 ∈ R) ∧ · · · ∧ (cn ∈ R) ∧
(
f(x) =

n∑
j=0

cjx
j
)′′,

b: B := “f(x) ∈ D ′′,

the following is valid: A⇒ B. 60

PROOF:
We first collect the necessary ingredients.
We define the following statements which serve as abbreviations so that the formulas we will build
are reasonably compact.

a: Zj := “j ∈ Z≥0
′′,

b: Cj := Zj ∧ “cj ∈ R′′,
c: 61 Xj := Zj ∧ “xj ∈ D ′′,
d: Dj := Zj ∧ “cjx

j ∈ D ′′,

e: E := Zn ∧ “f(x) =

n∑
j=0

cjx
j ′′,

f: B := “f(x) ∈ D ′′ (repeated for convenient reference)

We now can write our theorem as

(Zn∧C0 ∧ C1 ∧ · · · ∧ Cn ∧ E)→ B.(4.87)

We assume that the following three theorems were proved previously, hence we may use them
without giving a proof.
Theorem Thm-1: If p(x) is a power of x, i.e., p(x) = xn for some n = 0, 1, 2, . . . , then is p(x) differ-
entiable.
We rewrite Thm-1 as an implication which uses the statements above. Let

A1 := Zn ∧ “p(x) = xn ′′, B1 := Xn.

60Note here and for the other theorems the use of A2 ⇒ B2 instead of A2 → B2: We assume that Thm-2 has been
proved, i.e., A2 → B2 is a tautology.

61The expression xj in (c) and (d) denotes the function x 7→ xj .
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Then Thm-1 states that A1 ⇒ B1. 62

Theorem Thm-2: The product of a constant (real number) and a differentiable function is differen-
tiable.
We rewrite Thm-2 as an implication. Let

A2 := “c ∈ R′′ ∧ “h(x) ∈ D ′′ ∧ “g(x) = c · h(x)′′,
B2 := “h(x) ∈ D ′′,

Then Thm-2 states that A2 ⇒ B2.
Theorem Thm-3: The sum of differentiable functions is differentiable
We rewrite Thm-3 as an implication. Let

A3 := “Zn ∧ “h1(x) ∈ D ′′ ∧ “h2(x) ∈ D ′′ ∧ · · · ∧ “hn(x) ∈ D ′′ ∧ “g(x) =
n∑
j=0

hj(x) ′′,

B3 := “g(x) ∈ D ′′,
Then Thm-3 states that A3 ⇒ B3.

Assertion Reason
a: Z0, Z1, . . . Zn evident from Z≥0 = {0, 1, 2, . . . }
b: C0, C1, . . . Cn part of the premise of A→ B (see (4.87))
c: Zj → Xj (j = 0, 1, . . . n) Thm-1 with n := j
d: Xj (j = 0, 1, . . . n) (c) and modus ponens
e: (Zj ∧ Cj ∧Xj)→ Dj (j = 0, 1, . . . n) Thm-2 with c := cj and h(x) := xj

f: Dj (j = 0, 1, . . . n) (e) and modus ponens
g: E part of the premise of A→ B
h: (Zn ∧D0 ∧D1 ∧ · · · ∧Dn ∧ E)→ B (g) and Thm-3 with hj(x) := cjx

j and g(x) := f(x)
i: B (h) and modus ponens

We have demonstrated that the truth of the premise A of our theorem implies that of its conclusion
B and this proves the theorem. �

Remark 4.20. Let us reflect on the steps involved in the proof above.
a: Break down all statements involved – not only those in the theorem you want to

prove but also in all theorems, axioms and definitions you reference – into reusable
components and name those components with a symbol so that it is easier to un-
derstand what assertions you employ and how they lead to the truth of other as-
sertions. Example: Dj references the component Zj ∧ “cjx

j ∈ D ′′ (which itself
references the component Zj = “j ∈ Z′′≥0).

b: Rewrite the theorem to be proved as an implication A⇒ B.
c: Do the same for the three other theorems that we assumed as already having been

proved.
The following is specific to our example but can be modified to other problems.

d: Start by using the premise A and the definition Z≥0 := {0, 1, 2, . . . } to get the first
two rows. Show that what you have implies the truth of the premise of Thm-1 and
then use the modus ponens inference rule to deduce the truth of its conclusion Xj .
This allows Xj to become an additional assertion.

62As is the case for the theorem we want to prove, note here and for Thm-2 and Thm-3 below the use of A1 ⇒ B1

instead of A1 → B1: Thm-1 has been proved already, i.e., we know that A1 → B1 is a tautology.
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e: Use that new assertion to obtain the truth of the premise of Thm-2 and then use
again modus ponens to deduce the truth of its conclusion Dj . Now Dj becomes an
additional assertion.

f: Use that new assertion to obtain the truth of the premise of Thm-3 and then use
again modus ponens to deduce the truth of Dj . Now Dj becomes an additional
assertion. �

4.6.4 Invalid Proofs Due to Faulty Arguments

Remark 4.21 (Fallacies in logical arguments). People who are not very analytical often commit the
following errors in their argumentation:

(4.88)
Affirming the Consequent
(proving the wrong direction)

P → Q
Q
————
∴ P

(4.89)
Denying the Antecedent
(indirect proof in the wrong direction)

P → Q
¬P
————
∴ ¬Q

(4.90) Circular Reasoning
The argument incorporates use of the
(not yet proven) conclusion

�

The reason that the above are fallacies stems from the fact that the above “rules of inferences” are
not tautologies.

Example 4.35 (Fallacies in reasoning). (a) Affirming the Consequent:
“If you are a great mathematician then you can add 2 + 2”. It is true that you can add 2 + 2. You
conclude that you are a great mathematician.
(b) Denying the Antecedent:
“If this animal is a cat then it can run quickly”. This is not a cat. You conclude that this animal
cannot run quickly.
(c) Circular Reasoning: 63

“If xy is divisible by 5 then x is divisible by 5 or y is divisible by 5”.
The following incorrect proof uses the yet to be proven fact that the factors can be divided evenly
by 5.
PROOF:
If xy is divisible by 5 then xy = 5k for some k ∈ Z. But then x = 5m or y = 5n for some m,n ∈ Z
(this is the spot where the conclusion was used). Hence x is divisible by 5 or y is divisible by 5. �

63This is example 1.8.3 in ch.3 (Methods of Proofs) of [5] Bryant, Kirby Course Notes for MAD 2104.
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4.7 Categorization of Proofs (Understand this!)

There are different methods by which you can attempt to prove an “if . . . then” statement P ⇒ Q.
They are:

(a) Trivial proof
(b) Vacuous proof
(c) Direct proof
(d) Proof by contrapositive
(e) Indirect proof (proof by contradiction)
(f) Proof by cases

4.7.1 Trivial Proofs

The underlying principle of a trivial proof is the following: If we know that the conclusion Q is true
then any implication P ⇒ Q is valid, regardless of the hypothesis P .

Example 4.36 (Trivial proof). Prove that if it rains at least 60 days per year in Miami then 25 + 35 =
60.
PROOF: There is nothing to prove as it is known that 25 + 35 = 60. It is irrelevant whether or not in
rains (or snows, if you prefer) 60 days per year in Miami. �

4.7.2 Vacuous Proofs

The underlying principle of a vacuous proof is that a wrong premise allows you to conclude any-
thing you want: Both P :F, Q:F and P :F, Q:T yield true for P → Q.
For example, it was mentioned in remark 2.3 (Elements of the empty set and their properties) on
p.15 that you can state anything you like about the elements of the empty set as there are none. The
underlying principle of proving this kind of assertion is that of a vacuous proof. We prove here
assertion (d) of that remark.

Theorem 4.10. Let A be any set. Then ∅ ⊆ A.

PROOF:
According to the definition of ⊆we must prove that if x ∈ ∅ then x ∈ A.
So let x ∈ ∅. We stop right here: “x ∈ ∅” is a false statement regardless of the nature of x because
the empty set, by definition, does not contain any elements. It follows that x ∈ A. �

Remark 4.22. You may ask: But is it not equally true that if x ∈ ∅ then x /∈ A? The answer to that is
YES, it is equally true that x ∈ A? and x /∈ A?, but so what? First you’ll find me an x that belongs to
the empty set and only then am I required to show you that it both does and does not belong to A!
�

4.7.3 Direct Proofs

In a direct proof of P ⇒ Q we assume the truth of the hypothesis P and then employ logical
equivalences, including the rules of inference, to show the truth of Q.
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We proved in chapter 4.6.3 (An example of a direct proof) on p.120 that each polynomial is differ-
entiable (theorem 4.9). That was an example of a direct proof.

4.7.4 Proof by Contrapositive

A proof by contrapositive makes use of the logical equivalence (P ⇒ Q) ⇔ (¬Q ⇒ ¬P ) (see
the contrapositive law (4.38) on p.104). We give a direct proof of ¬Q ⇒ ¬P , i.e., we assume the
falseness of Q and prove that then P must also be false. Here is an example.

Theorem 4.11. Let A,B be two subsets of some universal set Ω such that A ∩B{ = ∅. Then A ⊆ B.

PROOF: We prove the contrapositive instead: If A * B then A ∩B{ 6= ∅.
So let us assume A * B. This means that not every element of A also belongs to B. In other words,
there exists some x ∈ A such that x /∈ B. But then x ∈ A \B = A ∩B{, i.e., A ∩B{ 6= ∅.
We have proved from the negated conclusion A * B the negated premise A ∩B{ 6= ∅. �

4.7.5 Proof by Contradiction (Indirect Proof)

A proofs by contradiction are a generalization of proofs by contrapositive. We assume that it is
possible for the implication P ⇒ Q that the premise P can be true and Q can be false at the same
time and construct the assumption of the truth of P ∩ ¬Q a statement R such that both R and ¬R
must be true. Here is an example.

Theorem 4.12. Let A ⊆ Z with the following properties:

m,n ∈ A ⇒ m+ n ∈ A,(4.91)
m,n ∈ A ⇒ mn ∈ A,(4.92)

0 /∈ A,(4.93)
if n ∈ Z then either n ∈ A or − n ∈ A or n = 0.(4.94)

Then 1 ∈ A.

Proof by contradiction: Assume that A is a set of integers with properties (4.91) – (4.94) but that
1 /∈ A. We will show that then 1 ∈ A must be true. This finishes the proof because it is impossible
that both 1 /∈ A and 1 ∈ A are true.
(a) It follows from 1 /∈ A and (4.94) and 1 6= 0 that −1 ∈ A.
(b) It now follows from (4.92) that (−1) · (−1) ∈ A, i.e., 1 ∈ A.
We have reached our contradiction. �

Remark 4.23. In this simple proof the statement R for which both R and ¬R were shown to be true
happens to be the conclusion 1 ∈ A. This generally does not need to be the case. �

4.7.6 Proof by Cases

Sometimes an assumption P is too messy to take on in its entirety and it is easier to break it down
into two or more cases P1, P2, . . . , Pn each of which only covers part of P but such that P1 ∨ P2 ∨
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· · · ∨ Pn covers all of it, i.e., we assume

P1 ∨ P2 ∨ · · · ∨ Pn ⇔ P.(4.95)

Proof by cases then rests on the following theorem:

Theorem 4.13. Let P,Q, P1 ∨ P2 ∨ · · · ∨ Pn be statements such that (4.95) is true. Then(
P ⇒ Q

)
⇔
[

(P1 ⇒ Q) ∨ (P2 ⇒ Q) ∨ . . . (Pn ⇒ Q)
]
.(4.96)

Proof (outline): You would do the proof by induction. Prove (4.96) first for n = 2 by expressingA→
B as ¬A∨B and then building a truth table that compares

(
¬(P1∨P2)

)
∨Q with ¬P1∨Q∨¬P2∨Q.

Then do the induction step in which (4.95) becomes P1 ∨ P2 ∨ · · · ∨ Pn+1 ⇔ P by setting A :=
P1 ∨ P2 ∨ · · · ∨ Pn and this way reducing the proof of (4.96) for n + 1 to that of 2 components. You
make the validity of

(
A ⇒ Q

)
⇔

[
(P1 ⇒ Q) ∨ (P2 ⇒ Q) ∨ . . . (Pn ⇒ Q)

]
the induction

assumption. �

Theorem 4.14. Prove that for any x ∈ R such that x 6= 5 we have

x

x− 5
> 0 ⇒

[
(x < 0) or (x > 5)

]
.(4.97)

PROOF: There are two cases for which x/(x− 5) > 0:
either both x > 0 and x− 5 > 0 or both x < 0 and x− 5 < 0. We write
P := “x/(x− 5) > 0′′, 64 P1 := x > 0 and x− 5 > 0, P2 := x < 0 and x− 5 < 0. Then P = P1 ∨ P2.
case 1. P1:
Obviously x > 0 and x− 5 > 0 if and only if x > 5, so we have proved P1 ⇒ (x > 5).
case 2. P2:
Obviously x < 0 and x− 5 < 0 if and only if x < 0, so we have proved P2 ⇒ (x < 0).
We now conclude from P = P1 ∨ P2 and theorem 4.13 the validity of (4.97). �

64P := “x/(x− 5) > 0 and x 6= 5′′ if you want to be a stickler for precision
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5 Relations, Functions and Families

We now give an in depth presentation of the material of ch.2.4 (A First Look at Functions, Sequences
and Families).

5.1 Cartesian Products and Relations

Definition 5.1 (Cartesian Product of Two Sets).

The cartesian product of two sets A and B is

A×B := {(a, b) : a ∈ A, b ∈ B},

i.e., it consists of all pairs (a, b) with a ∈ A and b ∈ B.
Let (a1, b1), (a2, b2) ∈ A × B. We say they are equal, and we write (a1, b1) = (a2, b2) if and
only if a1 = a2 and b1 = b2.

It follows from this definition of equality that the pairs (a, b) and (b, a) are different unless a = b. In
other words, the order of a and b is important. We express this by saying that the cartesian product
consists of ordered pairs.
As a shorthand, we abbreviate A2 := A×A. �

Example 5.1 (Coordinates in the plane). Here is the most important example of a Cartesian Product
of Two Sets. Let A = B = R . Then R× R = R2 = {(x, y) : x, y ∈ R} is the set of pairs of real
numbers, i.e., the points in the plane, expressed by their x– and y–coordinates.
Examples of such points are are: (1, 0) ∈ R2 (a point on the x–axis), (0, 1) ∈ R2 (a point on the
y–axis), (1.234,−

√
2) ∈ R2.

You should understand why we do not allow two pairs to be equal if we flip the coordinates: Of
course (1, 0) and (0, 1) are different points in the xy–plane! �

Remark 5.1 (Function graphs as subsets of cartesian products). We gave the preliminary definition
of a function in Definition 2.22, p.30 of ch.2.4 (A First Look at Functions, Sequences and Families).
65 A function

f : X → Y ; y = f(x)

which assigns each x ∈ X to a unique function value f(x) ∈ Y , e.g., f(x) = x2, is characterized by
its graph

Γf := {
(
x, f(x)

)
: x ∈ X}

which is a subset of the cartesian product X × Y . For example, if X = [−2, 3] and Y = [0, 10] then
Γf := {(x, x2) : −2 ≤ x ≤ 3} is a subset of [−2, 3]× [0, 10]. We will examine the connection between
functions and their graphs in detail later in this chapter. �

65The precise definition of a function will be given in section 5.2 on p.131.
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Remark 5.2 (Empty cartesian product). Note that A×B = ∅ if and only if A = ∅ or B = ∅ or
both are empty. �

Definition 5.2 (Relation). LetX and Y be two sets andR ⊆ X×Y a subset of their cartesian product
X × Y . We call R a relation on (X,Y ). A relation on (X,X) is simply called a relation on X . If
(x, y) ∈ R we say that x and y are related and we usually write xRy instead of (x, y) ∈ R.

A relation on X is
(a) reflexive if xRx for all x ∈ X ,
(b) symmetric if x1Rx2 implies x2Rx1 for all x1, x2 ∈ X ,
(c) transitive if x1Rx2 and x2Rx3 implies x1Rx3 for all x1, x2, x3 ∈ X ,
(d) antisymmetric if x1Rx2 and x2Rx1 implies x1 = x2 for all x1, x2 ∈ X . �

Here are some examples of relations.

Example 5.2 (Equality as a relation). Given a set X let R := {(x, x) : x ∈ X} 66

, i.e., xRy if and only if x = y. This defines a relation on X which is reflexive, symmetric, antisym-
metric and transitive. �

Example 5.3 (Set inclusion as a relation). Given a set X let R := {(A,B) : A,B ⊆ X and A ⊆ B},
i.e., ARB if and only if A ⊆ B. This defines a relation on 2X which is reflexive, antisymmetric and
transitive. �

Remark 5.3. Unless a relation on a set X is symmetric there will be at least one pair x, y ∈ X
such that x is related to y whereas y is related to x is false. This is different from how we think of
relatedness in a non–mathematical context.
Consider Example 5.3. If A is a proper subset of B then A is related to B but it is not true that B is
related to A. �

Example 5.4 (Function graphs as relations). We saw in rem.5.1 on p.126 that functions f : X → Y
are characterized by their graphs Γf := {

(
x, f(x)

)
: x ∈ X} which are subsets of X × Y , i.e., Γf is

a relation on X × Y . �

Example 5.5 (Size of sets as a relation). Let X be a set and

R := {(A,B) : A,B ⊆ X and
∣∣A∣∣ =

∣∣B∣∣ },
i.e., ARB if and only if A and B possess the same number of elements. 67 In particular ARB is true
if |A| = |B| = ∞. This defines a relation on the power set 2X of X which is reflexive, symmetric
and transitive. �

66This set is commonly referred to as the diagonal of X2.
67See Definition 2.12 (preliminary definition of the size of a set) on p.23.
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Example 5.6 (Empty relation). Given two sets X and Y let R := ∅. This empty relation is the only
relation which exists on (X,Y ) if X or Y is empty. �

Example 5.7. Let X := R2 be the xy–plane. For any point ~x = (x1, x2) in the plane let

‖~x‖_2 :=
√
x2

1 + x2
2 ; R := { (~x, ~y) ∈ R2 × R2 : ‖~x‖2 = ‖~y‖2 } .

Let In other words, ‖~x‖_2 is the length of the straight line which extends from the origin of the plane
to ~x 68 and two points in the plane are related when they have the same length: they are located on
a circle which is centered at the origin and has radius r = ‖~x‖2 = ‖~y‖2. The relation R is reflexive,
symmetric and transitive but not antisymmetric. �

The relations given in examples 5.2, 5.5, 5.6 and 5.7 are reflexive, symmetric and transitive. Such
relations are so important that they deserve a special name:

Definition 5.3 (Equivalence relations and equivalence classes). Let R be a relation on a set X .

(a) If R is • reflexive, • symmetric, • transitive, we call R an equivalence relation on X .

(b) For an equivalence relation R it is customary to write x ∼ x′ rather than xRx′ (or
(x, x′) ∈ R). We say in this case that x and x′ are equivalent.

(c) Given is an equivalence relation “∼” on a set X . For x ∈ X let

[x]∼ := {x′ ∈ X : x′ ∼ x} = { all items equivalent to x }.(5.1)

We call [x]∼ the equivalence class of x. If it is clear from the context what equivalence
relation is referred to then we can write [x] instead of [x]∼. �

Proposition 5.1 (see [2] B/G prop.6.4 & B/G prop.6.5). Let “ ∼′′ be an equivalence relation on a
nonempty set X and x, y ∈ X Then

(a) x ∈ [x],
(b) x ∼ y ⇔ [x] = [y],
(c) either [x] = [y] or [x] ∩ [y] = ∅.

PROOF of (a): This follows from the reflexivity of “ ∼′′.
PROOF of (b):
We first show that if x ∼ y then [x] = [y]. Let z ∈ [x]. It follows from the definition of [x] that z ∼ x,
hence z ∼ y (transitivity of “ ∼′′), hence z ∈ [y]. This proves [x] ⊆ [y]. We switch the roles of x and
y and repeat the above to obtain [y] ⊆ [x].
We now prove that if [x] = [y] then x ∼ y. It follows from [x] = [y] that x ∈ [y], hence x ∼ y by (5.1).
PROOF of (c): This proof is left as exercise 5.4 (see p.163). �

For the next proposition recall Definition 2.11 on p.22 of a partition.
68See Definition 11.4 on p.327. of the length or Euclidean norm of a vector in n-dimensional space.
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Proposition 5.2 (see [2] B/G prop.6.6 for parts (a) and (b)).
(a) Let “ ∼′′ be an equivalence relation on a nonempty set X and let P∼ := {[x] : x ∈ X} be the set

of all its equivalence classes. Then P∼ is a partition of X .
(b) Conversely, let P be a partition of X and define a relation “∼P” on X as follows: x ∼P y ⇔

there is P ∈P such that x, y ∈ P . Then ∼P is an equivalence relation on X .
(c) Let “∼” be an equivalence relation on X . Let P∼ be the associated partition of its equivalence

classes. Let “∼P∼” be the equivalence relation associated with the partition P∼. Then “∼P∼” =
“∼” (i.e., both equivalence relations are equal as subsets of X ×X .

(d) Let P be a partition of X . Let ∼P be the associated equivalence relation defined in part (b). Let
P∼P be the associated partition of its equivalence classes. Then P∼P = P .

PROOF of (a):
We observe that a set contains no duplicates: If [x] = [y], we do not count [x] and [y] as separate
members of P∼! It follows from prop.5.1(c) that those members are mutually disjoint.
It remains to prove that their union is X . Let x ∈ X . Then x ∈ [x] (reflexivity of “∼”) and [x] ∈P∼.
It follows that x ∈

⋃[
P : P ∈P∼

]
and we obtain that

⋃[
P : P ∈P∼

]
= X . We have proved that

P∼ is a partition of X .
PROOF of (b): For the following assume that x, y, z ∈ X .
It follows from

⊎[
P : P ∈ P

]
= X that for each x ∈ X there exists P ∈ P such that x ∈ P . It

further follows from the mutual disjointness of the elements of P that there exists exactly one such
P and we are justfied to write Px for this uniquely defined set P . In other words, the assignment
x 7→ Px defines a function P (·) : X →P .
Reflexivity: x ∈ Px implies x ∼P x.
Symmetry: Let x ∼P y. This implies Px = Py, hence y ∈ Px, hence y ∼P x.
Transitivity: Let x ∼P y and y ∼P z. x ∼P y implies Px = Py and y ∼P z implies Py = Pz . It
follows that Pz = Px, i.e., x ∼P z.
PROOF of (c): ?

Let x, y ∈ X . Then

x ∼ y ⇔ [x] = [y] ⇔ both x, y belong to the same element of P∼ ⇔ x ∼P∼ y.

PROOF of (d): ?

Let P ∈ P and x, y ∈ X . Let [x] and [y] be the equivalence classes of x and y for “∼P”. If x ∈ P
then

y ∈ P ⇔ x ∼P∼ y ⇔ [x] = [y].

It follows that P = [x], hence P ∈ P∼P This true for any P ∈P and it follows that P ⊆ P∼P .
Now let x ∈ X . If y ∈ X then

y ∈ [x] ⇔ y ∼P x ⇔ y ∈ Px.

It follows that any equivalence class [x] with respect to “∼P” is an element of P , hence P∼P ⊆P .
We have shown that P∼P = P and this finishes the proof of Proof of (d). �
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Relations which are reflexive, antisymmetric and transitive like the relation of example 5.3 (set
inclusion) allow to compare items for “bigger” and “smaller” or “before” and “after”. They also
deserve a special name:

Definition 5.4 (Partial Order Relation). Let R be a relation on a set X which is reflexive, antisym-
metric and transitive. We call such a relation a partial ordering of X or a partial order relation on
X . 69 It is customary to write “x � y” or “y � x” rather than “xRy” for a partial ordering R. We
say that “x before y” or “y after x”.
If “x � y” defines a partial ordering on X then (X,�) is called a partially ordered set set or a
POset. �

Remark 5.4. The properties of a partial ordering can now be phrased as follows:

x � x for all x ∈ X(5.2)
x � y and y � x ⇒ y = x(5.3)
x � y and y � z ⇒ x � z(5.4)

reflexivity
antisymmetry
transitivity �

Remark 5.5. Note the following:
(A) According to the above definition, the following are partial orderings of X :
1. X = R and x � y if and only if x ≤ y.
2. X = 2Ω for some set Ω and A � B if and only if A ⊆ B (example 5.3).
3. X = R and x � y if and only if x ≥ y.
(B) The following relations are not partial orderings of X because none of them is reflexive.
4. X = R and x � y if and only if x < y.
5. X = 2Ω for some set Ω and A � B if and only if A ⊂ B (i.e., A ⊆ B but A 6= B).
6. X = R and x � y if and only if x > y.
Note that each one of those three relations is antisymmetric. For example, let us look at x < y. It
is indeed true that the premise

[
x < y and y < x

]
allows us to conclude that y = x as there are no

such numbers x and y and a premise that is known never to be true allows us to conclude anything
we want!
(C) An equivalence relation ∼ is a never a partial ordering of X except in the very uninteresting
case where you have x ∼ y if and only if x = y.
(D) A partial ordering of X , as any relation on X in general, is inherited by any subset A ⊆ X as
follows: Let � be a partial ordering on a set X and let A ⊆ X . We define a relation �A on A as
follows: Let x, y ∈ A. Then x �A y if and only if x � y . �

What makes a partial ordering more general than the “x ≤ y” order relation on sets of numbers?
The answer: You can compare any two numbers: either x ≤ y or y ≤ x or x = y. Set inclusion on
2Ω on the other hand does not have this property. For example, if A = [0, 2] and B = [1, 3] then
neither A ⊆ B nor B ⊆ A nor A = B. We call POsets with the property that any two elements can
be compared linearly or totally ordered:

69Some authors, Dudley among them, do not include reflexivity into the definition of a partial ordering and then
distinguish between strict partial orders and reflexive partial orders.
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Definition 5.5 (Linear orderings). ?

(a) Let (X,�) be a nonempty POset, i.e., � is a partial ordering on X (see Definition 5.4 on
p.130). We say that � is a linear ordering , also called a total ordering of X if and only
if, for all x and y ∈ X such that x 6= y, either x � y or y � x. We call (X,�) a linearly
ordered set or a totally ordered set set.

(b) Let (X,�) be a nonempty POset and A,C ⊆ X . C is a chain in X if (C,�) is linearly
ordered (with the same ordering). �

Example 5.8.
(a) The real numbers line (R,≤) with its usual “≤” ordering is a linearly ordered set.

So is (R,≥)(!)
(b) If X is a set with at least two elements then set inclusion is not a linear order on 2X .
(c) Ordered integral domains (R,⊕,�, P ) are totally ordered. �

Definition 5.6 (Inverse Relation). ? Let X and Y be two sets and R ⊆ X × Y a relation on
(X,Y ). Let

R−1 := { (y, x) : (x, y) ∈ R }.

Clearly R−1 is a subset of Y ×X and hence a relation on (Y,X). We call R−1 the inverse relation
of the relation R. �

Example 5.9. Let R := {(x, x3) : x ∈ R}. Then this relation is the graph Γf of the function
y = f(x) = x3. We obtain

R−1 = {(x3, x) : x ∈ R} = {(y, y1/3) : y ∈ R}.

In other words, R−1 is the graph Γf−1 of the inverse function x = f−1(y) = y1/3. �

5.2 Functions (Mappings) and Families

5.2.1 Some Preliminary Observations about Functions

Remark 5.6 (A layman’s definition of a function). We look at the set R of all real numbers 70 and
the function y = f(x) =

√
4− x2 which associates with certain real numbers x (the “argument”

or “independent variable”) another real number y =
√

4− x2 (the “function value” or “dependent
variable”):

f(0) =
√

(4− 0 = 2, f(2) = f(−2) =
√

(4− 4 = 0, f(2/3) = f(−2/3) =
√

(36− 4)/9 =
√

30/3, . . .

You can think of this function as a rule or law which specifies what item y is obtained as the output
or result if the item x is provided as input.
Let us take a closer look at the function y = f(x) =

√
4− x2 and its properties:

70Real numbers were defined informally in ch.2.3 (Numbers)
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(a) For some real numbers x there is no function value: For example, if x = 10 then 4− x2 =
−96 is negative and the square root cannot be taken.

(b) For some other x, e.g., x = 0 or x = 2/3, there is a function value f(x). A moment’s reflec-
tion shows that the biggest possible set of potential arguments for our function, called by
some authors the natural domain of the function (e.g., [3] Brewster/Geoghegan), is the
interval [−2, 2]. It is customary to write Df for the natural domain of a function y = f(x).

(c) For a given x there is never more than one function value f(x). This property allows us
to think of a function as an assignment rule: It assigns to certain arguments x a unique
function value f(x). We observed in (b) that f(x) exists if and only if x ∈ [−2, 2].

(d) Not every y ∈ R is suitable as a function value: A square root cannot be negative, hence
no x exists such that f(x) = −1 or f(x) = −π.

(e) On the other hand, there are numbers y such as y = 0, which are “hit” more than once by
the function: f(2) = f(−2) = 0. 71

(f) Graphs as drawings: We are used to look at the graphs of functions. Here is a picture of
the graph of f(x) =

√
4− x2.

x

f(x)

-3 -2 -1 1 2 3
-1

1

2

3

(g) Graphs as sets: Drawings as the one above have limited precision (the software should
have drawn a perfect half circle with radius 2 about the origin but there seem to be
wedges at x ≈ ±1.8). Also, how would you draw a picture of a function which assigns a
3–dimensional vector 72 (x, y, z) to its distance w = F (x, y, z) =

√
x2 + y2 + z2 from the

zero vector (0, 0, 0)? You would need four dimensions, one each for x, y, z, w, to draw the
graph!
To express the graph of a function without a picture, let us look at a verbal description:
The graph of a function f(x) is the collection of the pairs (x, f(x)) for all points x which
belong to the set [−2, 2] of potential arguments (see (a)). In mathematical parlance: The
graph of the function f(x) is the set

Γf := {
(
x, f(x)

)
: x ∈ Df}

(see remark 5.1 on p. 126). �

We now make adjustments to some of those properties which will get us closer to the definition of
a function as it is used in abstract mathematics.

Remark 5.7 (A better definition of a function). We make the following alterations to remark 5.6.

71Matter of fact, only for y = 2 there exists a single argument x such that y = f(x) (x = 0). All other y-values in the
interval [0, 2] are “mapped to” by two different arguments x = ±

√
4− y2.

72Skip this example on first reading if you do not know about functions of several variables. You will find information
about this in chapter 11 (“Vectors and vector spaces”) on p.323.
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I We require an upfront specification of the set A of items that will be allowed as input
(arguments) for the function and we require that y = f(x) makes sense for each x ∈ A.
Given the function y = f(x) =

√
4− x2 from above this means that A must be a subset of

[−2, 2].
I We require an upfront specification of the set B of items that will be allowed as output

(function values) for the function. This set must be so big that each x ∈ A has a function
value y ∈ B. We do not mind if B contains redundant y values. For y = f(x) =

√
4− x2

any superset of the closed interval [0, 2] will do. We may choose, e.g., B := [0, 2] or
B := [−2, 2π] or B := [0, 4] or B := R ∪ { all inhabitants of Chicago }.

Doing so gives us the following: A function consists of three items: a set A of inputs, a set B of
outputs and an assignment rule x 7→ f(x) with the following properties:

(1) For all inputs x ∈ A there is a function value f(x) ∈ B.
(2) For any input x ∈ A there is never more than one function value f(x) ∈ B. It follows

from property 1 that each x ∈ A uniquely determines its function value y = f(x). This
property is what allows us to think of a function as an assignment rule: It assigns to each
x ∈ A a unique function value f(x) ∈ B.

(3) Not every y ∈ B needs to be a function value f(x) for some x ∈ A, i.e., the set {x ∈ A :
f(x) = y} can be empty.

(4) On the other hand there may be numbers y which are “hit” more than once by f .
Example: Let A := N, B := R, f(x) := (−1)x. Then both −1 and 1 are mapped to
infinitely often by f .

(5) The graph Γf of a function f(x) is the collection of the pairs (x, f(x)) for all points x
which belong to the set A, i.e.,

Γf := {
(
x, f(x)

)
: x ∈ A}.(5.5)

Γf has the following properties:
(5a) Γf ⊆ A×B, i.e., Γf is a relation on (A,B) (see Definition 5.2 on p.127).
(5b) For each x ∈ A there exists a unique y ∈ B such that (x, y) ∈ Γf
(5c) If x 7→ g(x) is another function with inputs A and outputs B which is different from

x 7→ f(x) (i.e., there is at least one a ∈ A such that f(a) 6= g(a)) then the graphs Γf and
Γg do not coincide

(6) Conversely, ifA andB are two nonempty sets, then any relation Γ on (A,B) which satifies
5a and 5b uniquely determines a function x 7→ f(x) with inputs A and outputs B as
follows: For a ∈ A we define f(a) to be the element b ∈ B for which (a, b) ∈ Γ. We know
from 5b that such b exists and is uniquely determined. �

Here is a complicated way of looking at the example above: Let X = [−2, 2] and Y = R. Then
y = f(x) =

√
4− x2 is a rule which "maps" each element x ∈ X to a uniquely determined number

y ∈ Y which depends on x as follows: Subtract the square of x from 4, then take the square root of
that difference.

Mathematicians are very lazy as far as writing is concerned and they figured out long ago
that writing "depends on xyz" all the time not only takes too long, but also is aesthetically very
unpleasing and makes statements and their proofs hard to understand. They decided to write
“(xyz)” instead of “depends on xyz” and the modern notion of a function or mapping y = f(x)
was born.
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Here is another example: if you say f(x) = x2 −
√

2, it’s just a short for "I have a rule which
maps a number x to a value f(x) which depends on x in the following way: compute x2 −

√
2." It

is crucial to understand from which set X you are allowed to pick the "arguments" x and it is often
helpful to state what kinds of objects f(x) the x–arguments are associated with, i.e., what set Y they
will belong to.
We now are ready to give the precise definition of a function.

5.2.2 Definition of a Function and Some Basic Properties

Introduction 5.1. Remark 5.7 on p.132 made it plausible that a function can be thought of equiva-
lently as an assignment rule x 7→ f(x) or as a graph Γf := {

(
x, f(x)

)
: x ∈ A}, i.e., as a relation

on (X,Y ) (see example 5.4 on p.127). Mathematicians prefer the latter approach because “assign-
ment rule” is a rather vague term (an undefined term in the sense of ch. 4.6.1 (Building blocks of
mathematical theories) on p.114) whereas “relation” is entirely defined in the language of sets.
Not every relation Γ on X×Y is can serve as the graph of a function with domain X and codomain
Y since we decided that the following is important:

(a) For each x ∈ X there must be a function value f(x), i.e., some y ∈ Y such that (x, y) ∈ Γ,
(b) There cannot be more than one such function value f(x), i.e., for each x ∈ X there must

be exactly one y ∈ Y such that (x, y) ∈ Γ. �

The above now leads us to the official definition of a function as a relation which satisfies those
properties (a) and (b).

Definition 5.7 (Mappings (functions)). Given are two arbitrary nonempty sets X and Y and a rela-
tion Γ on (X,Y ) (see 5.2 on p.127) which satisfies the following:

(5.6) for each x ∈ X there exists exactly one y ∈ Y such that (x, y) ∈ Γ.

We call the triplet f(·) := (X,Y,Γ) a function or mapping from X to Y . The set X is called the
domain or source and Y is called the codomain or target of the mapping f(·). We will usually
use the words “domain” and “codomain” in this document.

Usually mathematicians simply write f instead of f(·) We mostly follow that convention,
but sometimes include the “(·)” part to emphasize that a function rather than an “ordinary”’
element of a set is involved. We write Γf or Γ(f) if we want to stress that Γ is the relation
associated with the function f = (X,Y,Γ). Let x ∈ X . We write f(x) for the uniquely
determined y ∈ Y such that (x, y) ∈ Γ. It is customary to write

(5.7) f : X → Y, x 7→ f(x)

instead of f = (X,Y,Γ) and we henceforth follow that convention. We abbreviate that to
f : X → Y if it is clear or irrelevant how to compute f(x) from x. We read the expression
“a 7→ b” as “a is assigned to b” or “a maps to b”.

We call Γ the graph of the function f . Clearly

(5.8) Γ = Γf = Γ(f) = {(x, f(x)) : x ∈ X}.
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We refer to 7→ as the maps to operator or assignment operator.
Domain elements x ∈ X are called independent variables or arguments and f(x) ∈ Y is called
the function value of x. The subset

f(X) := {y ∈ Y : y = f(x) for some x ∈ X} = {f(x) : x ∈ X}(5.9)

of Y is called the range or image of the function f(·).
We say “f maps X into Y ” and “f maps the domain value x to the function value f(x)”. �
We say that two functions f = (X,Y,Γ) and f ′ = (X ′, Y ′,Γ′) are equal if X = X ′, Y = Y ′, and
Γ = Γ′. Note that X = X ′ follows from Γ = Γ′ because

x ∈ X ⇔ (x, y) ∈ Γ for some (unique) y ∈ Y ⇔ (x, y) ∈ Γ′ for some y ∈ Y ⇔ x ∈ X ′.

Note that the codomain) Y of f and its range f(X) can be vastly different. For example, if f : R→ R
is given by the assignment f(x) = sin(x) then f(R) = [−1, 1] is a very small part of the codomain!

Figure 5.1 on p.135 illustrates the graph of a function as a subset of X × Y .

X

Y
Γf

(x0, f(x0))

x0

f(x0)

Figure 5.1: Graph of a function.

Remark 5.8. Note that if Y ( Y ′ and f = (X,Y,Γ) is a function then f ′ = (X,Y ′,Γ) also is a
function: Γ) is a subset of X × Y ′ and (5.6) remains valid for Y ′ in place of Y . But note that the
domain X of f is determined by the graph Γ as follows:

X = {x : (x, y) ∈ Γ for some y}. �

Remark 5.9 (Mappings vs. functions). Mathematicians do not always agree 100% on their defini-
tions. The issue of what is called a function and what is called a mapping is subject to debate. Some
mathematicians call a mapping a function only if its codomain is a subset of the real numbers, 73

73or if the codomain is a subset of the complex numbers, but we won’t discuss complex numbers in this document.
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but the majority does what this document tries to adhere to: We use “mapping” and “function” in-
terchangeably and we talk about real–valued functions rather than just functions if the codomain
is a subset of R (see (5.16) on p.153). �

Remark 5.10. The symbol x chosen for the argument of the function is a dummy variable in the
sense that it does not matter what symbol you use.
The following each define the same function with domain [0,∞[ and codomain R which assigns to
any nonnegative real number its (positive) square root:

f : [0,∞[→ R, x 7→
√
x,

f : [0,∞[→ R, y 7→ √y,
f : [0,∞[→ R, f(γ) =

√
γ.

Matter of fact, not even the symbol you choose for the function matters as long as the operation
(here: assign a number to its square root) is unchanged. In other words, the following still describe
the same function as above:

ϕ : [0,∞[→ R, t 7→
√
t,

A : [0,∞[→ R, x 7→
√
x,

g : [0,∞[→ R, g(A) =
√
A.

In contrast, the following three functions all are different from each other and none of them equals
f because domain and/or codomain do not match:

ψ : ]0,∞[→ R, x 7→
√
x (different domain).

B : [0,∞[→ ]0,∞[, x 7→
√
x (different codomain),

h : [0, 1[→ [0, 1[, x 7→
√
x (different domain and codomain). �

The next topic is function composition. We have already dealt with its associativity in ch.3. See
prop.3.1 on p.51.

Definition 5.8 (Function composition). Given are three nonempty sets X,Y and Z and two func-
tions f : X → Y and g : Y → Z. Given x ∈ X we know the meaning of the expression g

(
f(x)

)
:

y := f(x) is the function value of x for the function f , i.e., the unique y ∈ Y such that (x, y) ∈ Γf .
z := g(y) = g

(
f(x)

)
is the function value of f(x) for the function g, i.e., the unique z ∈ Z such that(

f(x), z
)

=
(
f(x), g(f(x))

)
∈ Γg.

The set Γ := {
(
x, g(f(x)) : x ∈ X

)
} is a relation on (X,Z) such that

(5.10) for each x ∈ X there exists exactly one z ∈ Z,namely, z = g
(
f(x)

)
, such that (x, z) ∈ Γ.

It follows that Γ is the graph of a function h = (X,Z,Γ) with function values h(x) = g
(
f(x)

)
for

each x ∈ X . We call h the composition of f and g and we write h = g ◦ f (“g after f”).
As far as notation is concerned it is OK to write either of g ◦ f(x) or (g ◦ f)(x). The additional
parentheses may give a clearer presentation if f and/or g are defined by fairly complex formulas.
�
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The following shows how you diagram the composition of two functions. The left picture shows
the domains and codomains for each mapping and the right one shows the element assignments.

Function composition(5.11)
X Y

Z

f

gg ◦ f

x f(x)

g
(
f(x)

)
f

gg ◦ f

The simplest functions are those that map every domain value to one and the same function value.

Definition 5.9 (Constant functions). Let Y be a nonempty set and y0 ∈ Y . You can think of y0 as a
function from any nonempty set X to Y as follows:

y0(·) : X → Y ; x 7→ y0.

In other words, the function y0(·) assigns to each x ∈ X one and the same value y0. We call such a
function which only takes a single value a constant function.
The most important constant function is the zero function 0(·) which maps any x ∈ X to the
number zero. We usually just write 0 for this function unless doing so would confuse the reader.
�

We have a special name for the “do nothing function” which assigns each argument to itself:

Definition 5.10 (identity mapping). Given any nonempty set X , we use the symbol idX for the
identity mapping defined as

idX : X → X, x 7→ x.

We drop the subscript if it is clear what set is referred to. �

5.2.3 Examples of Functions

We now give some examples of functions. You might find some of them rather difficult to under-
stand at first reading.

Example 5.10. Let Γ := {(x, x3) : x ∈ R } ⊆ R× R. Then f = (R,R,Γ) is the function

f : R→ R, x 7→ x3. �

Example 5.11. Let Γ := {(x, x2 + 1) : x ∈ R }. Then g = (R,R,Γ) is the function

g : R→ R, x 7→ x2 + 1. �

Example 5.12. Let Γ := {(a, ln(a)) : a ∈]0,∞[ }. Here ln(a) denotes the natural logarithm of a.
Then h = (]0,∞[,R,Γ) is the function

h : ]0,∞[→ R, x 7→ ln(x). �
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Example 5.13. Let Γ := {(x,
√
x) : x ∈ [0,∞[ }. Then ϕ = ([0,∞[,R,Γ) is the function

ϕ : [0,∞[→ R, x 7→
√
x. �

Example 5.14. Let Γ := {(x,
√
x) : x ∈ [0,∞[ }. We can consider Γ as a subset of [0,∞[×R but also

as a subset of [0,∞[×[0,∞[. In the first case we obtain a function ϕ = ([0,∞[,R,Γ), i.e., the function

ϕ : [0,∞[→ R, x 7→
√
x.

In the second case we obtain a different(!) function ψ = ([0,∞[, [0,∞[,Γ), i.e., the function

ψ : [0,∞[→ [0,∞[, x 7→
√
x. �

If you have taken multivariable calculus or linear algebra then you know that functions need not
necessarily map numbers to numbers but they can also map vectors to numbers, numbers to vectors
(curves) or vectors to vectors.

Example 5.15. We define a function which maps two-dimensional vectors to numbers. Let

A := {
(
(x, y) ∈ R2 : x2 + y2 ≤ 1 } , Γ := {

(
(x, y),

√
1− x2 − y2

)
: (x, y) ∈ A} .

Then F = (A,R,Γ) is the function

F : A→ R, (x, y) 7→
√

1− x2 − y2.

Note that the domain is not a set of real numbers but of points in the plane and that the graph of
F is a set of points (x, y, z) in 3–dimensional space. (It is the upper half of the surface of the three
dimensional ball centered at the origin and with radius 1). �

Example 5.16. We define a function which maps numbers to two-dimensional vectors (a curve in
the plane). Let Γ := {

(
t, (sin t, cos t)

)
: t ∈ R }. Then G = (R,R2,Γ) is the function

G : R→ R2, t 7→ (sin t, cos t).

whose image G(R is the unit circle {(x, y) ∈ R2 : x2 + y2 = 1} Note that the codomain is not a set of
real numbers but the Euclidean plane. �

Example 5.17. Let Γ := {
(
(x, y), (2x − y/3, x/6 + 4y)

)
: x, y ∈ R }. Then H = (R2,R2,Γ) is the

function
H : R2 → R2, (x, y) 7→ (2x− y/3, x/6 + 4y).

Note that both domain and codomain are the Euclidean plane. �

We now reformulate the last example in the framework of linear algebra. Skip this next example if
you do not know about matrix multiplication.
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Example 5.18. As is customary in linear algebra we now think of R2 as the collection of column

vectors {
(
x
y

)
: x, y ∈ R} rather than the cartesian product R × R which is the collection of row

vectors {(x, y) : x, y ∈ R}.
Let A be the 2× 2 matrix

A :=

(
2 −1/3

1/6 4

)
.

We then obtain for any pair of numbers ~x = (x, y)> 74 that

A~x =

(
2 −1/3

1/6 4

) (
x
y

)
=

(
2x− y/3
x/6 + 4y

)

Let Γ := {
((x

y

)
,

(
2x− y/3
x/6 + 4y

))
: x, y ∈ R }. Then H = (R2,R2,Γ) is the function

H : R2 → R2,

(
x
y

)
7→ A

(
x
y

)
.

Note that both domain and codomain are the Euclidean plane. �

If you want to construct a counterexample to a mathematical statement concerning functions it often
is best to construct functions with small domain and codomain so that you can draw a picture that
completely describes the assignments. The next example will illustrate this.

Example 5.19.

Let X := {a, b, c, d}, Y := {x, y, z}, Γ := { (a, y), (b, y), (c, z), (d, y)}.
Then I = (X,Y,Γ) is the function which maps the elements of X to
Y according to the diagram on the right. Note that nothing was said
about the nature of the elements of X and Y . One need not know
about it to make observations like the following: Examine items (3)
and (4) of remark 5.7 (A better definition of a function) on p.132.
Convince yourself that x ∈ Y is an example for (3): Not every ele-
ment

a x

b y

c z

d

of Y needs to be a function value and that y ∈ Y is an example for (4): There may be elements of Y
which are “hit” more than once by the function. �

Example 5.20. This example represents a mathematical model for computing probabilities of the
outcomes of rolling a fair die and demonstrates that probability can be thought of as a function that
maps sets to numbers.
If we roll a die then the outcome will be an integer between 1 and 6, i.e., the “state space” for this
random action will be X := {1, 2, 3, 4, 5, 6}. For A ⊆ X let Prob(A) denote the probability that
rolling the die results in an outcome x ∈ A.

74Here (x, y)> =

(
x
y

)
is the transpose of (x.y), i.e., the operation that switches rows and columns of any matrix. In

particular it transforms a row vector into a column vector and vice versa.
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For example Prob( an even number occurs ) = Prob
(
{2, 4, 6}

)
= 50% = 1/2. Clearly we have for

singletons consisting of a single outcome that

Prob
(
{1}
)

= Prob
(
{2}
)

= · · · = Prob
(
{6}
)

= 1/6 = 16.6̄%.

Your everyday experience tells you that if A = {x1, x2, . . . , xk} where xj ∈ X for each index j (and
hence k ≤ 6 because a set does not contain duplicates) then

Prob(A) = Prob
(
{x1}

)
+ Prob

(
{x2}

)
+ · · ·+ Prob

(
{xk}

)
=

k∑
j=1

Prob
(
{xj}

)
.

What if A is the event that the roll of the die does not result in any outcome, i.e., A = ∅? We do not
worry about the die getting stuck in mid-air or the dog snatching it before we get a chance to see
the outcome and consider this event impossible, i.e., Prob(∅) = 0.
We now have a probability associated with every A ⊆ X , i.e., with every A ∈ 2X and can finally
write this probability as a function. Let Γ := {(A,Prob(A)) : A ⊆ X}. Then P = (2X , [0, 1],Γ) is
the function

P : 2X → [0, 1], A 7→ Prob(A).

Why do we use [0, 1] and not R as the codomain? The answer is that we could have done so but
no event has a probablity that exceeds 100% or is negative, so [0, 1] is big enough and by choosing
this set as the codomain we do not deviate from standard presentation of mathematical probability
theory. �

Example 5.21. In this example we will define a function I(·) for which the domain F is a set of func-
tions, and the codomain G is a set of equivalence classes of functions. For the necessary background
on antiderivatives see rem.2.21 on p.46.
Let a ∈ R ∪ {−∞} and b ∈ R ∪ {∞} and let X :=]a, b[ be the open (end points a, b are excluded)
interval of all real numbers between a and b. Let x0 ∈]a, b[ be “fixed but arbitrary”. Let

F := {f : ]a, b[→ R such that f is continuous on ]a, b[ },
G := {[g]∼ : g is differentiable on ]a, b[ }, where g ∼ g′ ⇔ g − g′ = const.

We have seen in rem.2.21 on p.46 that for each f ∈ F there exists a differentiable function g, unique
up to a constant, such that g′ = f , i.e., g is an antiderivative of f .
Using “∼” and writing [g] for [g]∼ this can be rephrased as follows: For each f ∈ F there exists a
unique [g]∼ ∈ G , such that g is an antiderivative of f , i.e., g′ = f .
We now define a function I : F → G by specifying its graph as the set

Γ := {
(
f, [g]∼)

)
: f ∈ F , [g] ∈ G , g′ = f }. �

Example 5.22. Compare the following to example 5.21.
Let a ∈ R ∪ {−∞} and b ∈ R ∪ {∞} and let X :=]a, b[ be the open (end points a, b are excluded)
interval of all real numbers between a and b. Let x0 ∈]a, b[ be “fixed but arbitrary”. For example,
we could choose x0 := a+b

2 . Let

F := {f : f is a real–valued function with domain ]a, b[ },
C := {f : ]a, b[→ R such that f is continuous on ]a, b[ },
D := {f : ]a, b[→ R such that g is differentiable on ]a, b[ }.

140 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

Note that D ⊆ C ⊆ F because differentiable functions are continuous. We define the following
equivalence relation on D : f ∼ g ⇔ f − g = const. 75 Let

A := {[f ] : f ∈ D }

be the set of all equivalence classes of differentiable functions on ]a, b[. Then

I : C →A ; f 7→ [I(f)] where I(f) :]a, b[→ R is the function x 7→ I(f)(x) :=

∫ x

x0

f(u)du,

is a function whose domain C is a set of functions and whose codomain A is a set of equivalence
classes (i.e., sets(!)) of functions. �

5.2.4 A First Look at Direct Images and Preimages of a Function

Introduction 5.2. We continue with yet another example. It leads to the very important definition
of the direct images of subsets of the domain, and of the preimages of subsets of the codomain of a
function. �

Example 5.23. Let X and Y be nonempty sets and f : X → Y . We define two functions f? and
f? which are associated with f and for which both arguments and function values are sets(!) as
follows.

(a) f? : 2X → 2Y ; A 7→ f?(A) := {f(a) : a ∈ A} ,
(b) f? : 2Y → 2X ; B 7→ f?(B) := {x ∈ X : f(x) ∈ B} .

You should convince yourself that indeed f? maps any subset of X to a subset of Y , and that f?

maps any subset of Y to a subset of X . �

The sets f?(A) and f?(B) are used pervasively in abstract mathematics, but it is much more com-
mon nowadays to write f(A) rather than f?(A) and f−1(B) rather than f?(B). We will follow this
convention.

Definition 5.11.

Let X,Y be two nonempty sets and f : X → Y . We associate with f the functions

f : 2X → 2Y ; A 7→ f(A) := {f(a) : a ∈ A},(5.12)

f−1 : 2Y → 2X ; B 7→ f−1(B) := {x ∈ X : f(x) ∈ B}.(5.13)

We call f : 2X → 2Y the direct image function and f−1 : 2Y → 2X the indirect image
function or preimage function associated with f : X → Y .
For each A ⊆ X we call f(A) the direct image of A under f , and for each B ⊆ Y we call
f−1(B) the indirect image or preimage of B under f . �

Note that the range f(X) of f (see (5.9) on p.135 is a special case of a direct image.

75Note that f ∼ g ⇔ f − g = const also defines equivalence relations on the supersets C and F .
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Notational conveniences I:

If we have a set that is written as {. . . } then we may write f{. . . } instead of f({. . . }) and
f−1{. . . } instead of f−1({. . . }). Specifically for singletons {x} ⊆ X and {y} ⊆ Y we obtain
f{x} and f−1{y}.
Many mathematicians will write f−1(y) instead of f−1{y} but this author sees no advan-
tages doing so whatsover. There seemingly are no savings with respect to time or space for
writing that alternate form but we are confounding two entirely separate items: a subset
f−1{y} of X v.s. the function value f−1(y) of y ∈ Y which is an element of X . We are
allowed to talk about the latter only in case that the inverse function f−1 of f exists.

4!4!4!
The same symbol f is used for the original function f : X → Y and the direct
image function f : 2X → 2Y , and the symbol f−1 which is used here for the
indirect image function f−1 : 2Y → 2X will be used at the start of ch.5.2.5 to
define the inverse function f−1 : Y → X of f in case this can be done. 76 Be
careful not to let this confuse you! �

Example 5.24 (Direct images). Let f : R→ R; f(x) = x2.
(a) f(]− 4,−2[) = { x2 : x ∈ ]− 4,−2[ } = { x2 : −4 < x < −2 } = ]4, 16[.
(b) f([1, 2]) = { x2 : x ∈ [1, 2] } = { x2 : 1 ≤ x ≤ 2 } = [1, 4].
(c) f([5, 6]) = { x2 : x ∈ [5, 6] } = { x2 : 5 ≤ x ≤ 6 } = [25, 36].
(d) f(]− 4,−2[ ∪ [1, 2] ∪ [5, 6]) = { x2 : x ∈ ]− 4,−2[ or x ∈ [1, 2] or x ∈ [5, 6] }

= ]4, 16[ ∪ [1, 4] ∪ [25, 36] = [1, 16[ ∪ [25, 36]. �

Example 5.25 (Direct images). Let f : R→ R; f(x) = x2.
(a) f(]− 4, 2[) = { x2 : x ∈]− 4, 2[ } = { x2 : −4 < x < 2 } = ]4, 16[.
(b) f([1, 3]) = { x2 : x ∈ [1, 3] } = { x2 : 1 ≤ x ≤ 3 } = [1, 9].
(c) f(]− 4, 2[ ∩ [1, 3]) = { x2 : x ∈ ]− 4, 2[ and x ∈ [1, 3] } = { x2 : 1 ≤ x < 2 } = [1, 4[. �

And here are the results for the preimages of the same sets with respect to the same function x 7→ x2.

Example 5.26 (Preimages). Let f : R→ R; f(x) = x2. Determine
a. f−1(]− 4,−2[), b. f−1([1, 2]), c. f−1([5, 6]), d. {−4 < f < −2 or 1 ≤ f ≤ 2 or 5 ≤ f < 6]}.

Solution:
a. f−1(]− 4,−2[) = { x ∈ R : x2 ∈]− 4,−2[ } = { −4 < f < −2 } = ∅.
b. f−1([1, 2]) = { x ∈ R : x2 ∈ [1, 2] } = { 1 ≤ f ≤ 2 } = [−

√
2,−1] ∪ [1,

√
2].

c. f−1([5, 6]) = { x ∈ R : x2 ∈ [5, 6] } = { 5 ≤ f ≤ 6 } = [−
√

6,−
√

5] ∪ [
√

5,
√

6].
d. {−4 < f < −2 or 1 ≤ f ≤ 2 or 5 ≤ f < 6]} = f−1(]− 4,−2[ ∪ [1, 2] ∪ [5, 6])

= { x ∈ R : x2 ∈ ]− 4,−2[ or x2 ∈ [1, 2] or x2 ∈ [5, 6] }
= [−

√
2,−1] ∪ [1,

√
2] ∪ [−

√
6,−
√

5] ∪ [
√

5,
√

6]. �

Example 5.27 (Preimages). Let f : R→ R; f(x) = x2. Determine
a. f−1(]− 4, 2[), b. f−1([1, 3]), c. {−4 < f < 2 and 1 ≤ f ≤ 3}.
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Solution:
a. f−1(]− 4, 2[) = { x ∈ R : x2 ∈ ]− 4, 2[ } = { x ∈ R : −4 < x2 < 2 } = ]−

√
2,
√

2[.
b. f−1([1, 3]) = { x ∈ R : x2 ∈ [1, 3] } = { x ∈ R : 1 ≤ x2 ≤ 3 } = [−

√
3,−1] ∪ [1,

√
3].

c. {−4 < f < 2 and 1 ≤ f ≤ 3} = f−1(]− 4, 2[ ∩ [1, 3])
= { x ∈ R : x2 ∈ ]− 4, 2[ and x2 ∈ [1, 3] }
= { x ∈ R : 1 ≤ x2 < 2 } = ]−

√
2,−1] ∪ [1,

√
2[ . �

Remark 5.11 (Notational conveniences II:).

In probability theory the following notation is also very common:
{f ∈ B} := f−1(B), {f = y} := f−1{y}.
Let R be either of Z,Q,R. Assume that the codomain of f is considered a subset of R. Let
a, b ∈ R such that a < b. We write {a ≤ f ≤ b} := f−1([a, b]R), {a < f < b} := f−1(]a, b[R),
{a ≤ f < b} := f−1([a, b[R), {a < f ≤ b} := f−1(]a, b]R), {f ≤ b} := f−1(] −∞, b]R), etc.
�

Proposition 5.3. Some simple properties:

f(∅) = f−1(∅) = ∅(5.14)
A1 ⊆ A2 ⊆ X ⇒ f(A1) ⊆ f(A2) (monotonicity of f{. . . } )(5.15)

B1 ⊆ B2 ⊆ Y ⇒ f−1(B1) ⊆ f−1(B2) (monotonicity of f−1{. . . } )(5.16)
x ∈ X ⇒ f({x}) = {f(x)}(5.17)

f(X) = Y ⇔ f is “surjective” (see def.5.12 on p.144)(5.18)

f−1(Y ) = X always!(5.19)

PROOF: Left as exercise 8.9 on p.249. �

5.2.5 Injective, Surjective and Bijective functions

Introduction 5.3. Given two nonempty sets X and Y we did not find every relation Γ ⊆ X × Y
suitable to serve as the graph of a function X → Y : We demanded that for each x ∈ X there should
be one and only one y ∈ Y suitable as a function value, i.e., there should be one and only one y ∈ Y
such that y ∈ Γ. The example f : R → R; x 7→ x2 demonstrates that this relationship between
domain elements x ∈ X and codomain elements y ∈ Y is not symmetric: One can find y ∈ R for
which zero elements x ∈ R can be found such that (x, y) ∈ Γf : that would be all negative numbers
y. Moreover there also are many y ∈ R for which more than one x ∈ R exists which is mapped to y:
If y > 0 then both

√
y and −√y have y as function value.

Let X,Y be two nonempty sets and f : X → Y an arbitrary function with domain X and codomain
Y . Restricting the domain of f to a small enough subsetA ⊆ X may have the effect that the resulting
function f ′ possesses at most one (x, y) ∈ Γf ′ whenever x ∈ A. We will call such functions injective.
Also, restricting the codomain of f to a small enough subset B ⊆ Y may result in a function f ′′

143 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

which satisfies the following: For each y ∈ B there exists at least one x ∈ X such that (x, y) ∈ Γf ′′ .
We will call such functions surjective.
We demonstrate this by using again the function f : R → R; x 7→ x2 as an example. If we restrict
its domain R to [0,∞[ or any nonempty subset thereof then the resulting function will be injective,
and if we restrict its codomain R to f(R) = [0,∞[ (the range of f ) then we wills say of the resulting
function that it is surjective. �

The above leads to the following definition.

Definition 5.12 (Surjective, injective, bijective). Let f : X → Y . As usual the graph of f is denoted
Γf .
a. Surjectivity: In general it is not true that f(X) = {f(x) : x ∈ X} equals the entire codomain Y ,
i.e., that

(5.20) for each y ∈ Y there exists at least one x ∈ X such that (x, y) ∈ Γf .

But if f(X) = Y , i.e., if (5.20) holds, we call f surjective or a surjection. We also say that f maps
X onto Y .
b. Injectivity: In general it is not true that if y ∈ f(X) then y = f(x) for a unique x, i.e., that if there
is another x1 ∈ X such that also y = f(x1) then it follows that x1 = x. But if this is the case, i.e., if

(5.21) for each y ∈ Y there exists at most one x ∈ Xsuch that (x, y) ∈ Γf .

then we call f injective or an injection. We also say that f is a one to one function.
We can express (5.21) also as follows: If x, x1 ∈ X and y ∈ Y are such that (x, y) ∈ Γf and (x1, y) ∈
Γf then it follows that x1 = x.
c. Bijectivity: Let f : X → Y be both injective and surjective. Such a function is called bijective,
also a . We often write f : X

∼−→ Y for a bijective function f .
It follows from (5.20) and (5.21) that f is bijective if and only if

(5.22) for each y ∈ Y there exists exactly one x ∈ Xsuch that (x, y) ∈ Γf .

We rewrite (5.22) by employing Γf ’s inverse relation Γ−1
f = {(y, x) : (x.y) ∈ Γ} (see def. 5.6 on

p.131) and obtain

(5.23) for each y ∈ Y there exists exactly one x ∈ Xsuch that (y, x) ∈ Γ−1
f .

But this implies, according to (5.6), that Γ−1
f is the graph of a function g := (Y,X,Γ−1

f ) with domain
Y and codomain X where, for a given y ∈ Y , g(y) stands for the uniquely determined x ∈ X such
that (y, x) ∈ Γ−1

f . Note that

(5.24) Γ−1
f = Γg.

We call g the inverse mapping or inverse function of f and write f−1 instead of g. �
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Notation 5.1.

We will occasionally use special arrow symbols to give a visual clue about injectivity, sur-
jectivity and bijectivity of a function.

a) f : X � Y and X
f
� Y indicate that the function f is surjective,

b) f : X � Y and X
f
� Y indicate that the function f is injective,

c) f : X
∼−→ Y and f : X

∼=−→ Y indicate that the function f is bijective. �
Moreover, X ∼= Y implies that there exists a bijection between the sets X and Y .

Remark 5.12.
(a) It follows from (5.24) that

(5.25) Γ−1
f = Γf−1 .

(b) Each x ∈ X is mapped to y = f(x) which is the only element of Y such that f−1(y) = x,
(c) Each y ∈ Y is mapped to x = f−1(y) which is the only element of X such that f(x) = y.
(d) It follows from (b) and (c) that

if x ∈ X, y ∈ Y then f(x) = y ⇔ x = f−1(y).(5.26)

(e) It also follows from (b) and (c) that f−1(f(x)) = x for all x ∈ X and f(f−1(y)) = y for all y ∈ Y .
In other words, f−1 ◦ f = idX and f ◦ f−1 = idY . Here is the picture:

Inverse function:(5.27)

X Y

X

f

f−1idX

Y X

Y

f−1

fidY �

Theorem 5.1 (Characterization of inverse functions).

Let X and Y be nonempty sets and f : X → Y . The following are equivalent:
(a) f is bijective.
(b) There exists g : Y → X such that both g ◦ f = idX and f ◦ g = idY .

PROOF of (a)⇒ (b): We have seen in part (e) of remark 5.12 that g := f−1 satisfies (b).
PROOF of (b) ⇒ (a): We must show that f is both surjective and injective. First we show that f is
surjective. Let y ∈ Y . we must find some x ∈ X such that f(x) = y. Let x := g(y). Then

f(x) = f
(
g(y)

)
= f ◦ g(y) = idY (y) = y.
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We have f(x) = y and this proves surjectivity. Now we show that f is injective. Let x1, x2 ∈ X and
y ∈ Y such that f(x1) = f(x2) = y. We are done if we can prove that x1 = x2. We have

x1 = idX(x1) = g ◦ f(x1) = g
(
f(x1)

)
= g(y) = g

(
f(x2)

)
= g ◦ f(x2) = idX(x2) = x2,

i.e., x1 = x2. This proves injectivity of f . �

Example 5.28 (Bijective functions).

(a) Let R = (R,⊕,�) be an integral domain and let a ∈ R. Then the function ϕ : R → R; x 7→
x⊕ a is bijective since it has the function ϕ−1 : R→ R; y 7→ y 	 a as an inverse.

(b) Let R = (R,⊕,�) be an integral domain. Then the function ψ : R→ R; x 7→ 	x is bijective
since it has the function ψ−1 : R→ R; y 7→ 	y as an inverse. Note that ψ−1 = ψ!

(c) Let G := {f : R → R : f(x) = ax + b for some a, b ∈ R where a 6= 0} of all polynomials of
degree 1. We computed in prop.3.5 on p.55 for each element f : R → R; f(x) = ax+ b of G
its inverse f−1 as the function y 7→ 1

ay −
b
a . Thus each element f ∈ G is a bijection R

∼−→ R.
(d) Let X be a nonempty set and let

E := {∼:∼ is an equivalence relation on X}, P := {P : P is a partition of X}.

In prop.5.2 on p.129 we associated with an equivalence relation∼ the partition P∼ = {[x]∼ :
x ∈ X of its equivalence classes, and we associated with a partition P of X the equivalence
relation ∼P on X defined as x ∼P y ⇔ x, y belong to the same element of P .

With those notations let ϕ : E→ P be defined as ϕ(∼) := P∼, and let ψ : P→ E be defined
as ψ(P) := ∼P . We saw in prop.5.2(c) that ∼P∼= ∼, i.e., that ψ(ϕ(∼)) = ∼ for any ∼ ∈ E.
We further saw in prop.5.2(d) that P∼P = P , i.e., that ϕ(ψ(P)) = P for any P ∈ P. This
allows us to restate parts (c) and (d) of prop.5.2 as follows: The function ϕ defines a bijection
E
∼−→ P, and ψ is the inverse of ϕ. �

Remark 5.13. [Horizontal and vertical line tests] LetX and Y be nonempty sets and f : X → Y . The
following needs to be taken with a grain of salt because X and Y need not be sets of real numbers.
Let R ⊆ X × Y .

(a) (5.6) on p.134 states that R is the graph of a function with domain X and codomain Y if
and only if it passes the “vertical line test”: Any “vertical line”, i.e., any subset of X × Y
of the form V (x0) := {(x0, y) : y ∈ Y } for a fixed x0 ∈ X intersectsR in exactly one point.

(b) (5.20) on p.144 states that R is the graph of a surjective function with domain X and
codomain Y if and only if it passes in addition to the vertical line test the following
“horizontal line test”: any “horizontal line”, i.e., any subset ofX×Y of the formH(y0) :=
{(x, y0) : x ∈ X} for a fixed y0 ∈ Y intersects R in at least one point.

(c) (5.21) on p.144 states that R is the graph of an injective function with domain X and
codomain Y if and only if it passes in addition to the vertical line test the following
horizontal line test: any “horizontal line”, i.e., any subset of X × Y of the form H(y0) :=
{(x, y0) : x ∈ X} for a fixed y0 ∈ Y intersects R in at most one point.
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(d) It follows from (5.22) on p.144 but also from the above that that R is the graph of a bijec-
tive function with domain X and codomain Y if and only if it passes in addition to the
vertical line test the following horizontal line test: any “horizontal line”, i.e., any subset
of X × Y of the form H(y0) := {(x, y0) : x ∈ X} for a fixed y0 ∈ Y intersects R in exactly
one “point”. Note the symmetry between this test and the one for vertical lines. The
above is another indication that the inverse graph R−1 of a bijective function is a graph
of a function (the inverse function f−1). �

Proposition 5.4. Let (R,⊕,�, P ) be an ordered integral domain
(A) Let b ∈ R. Then the function

T : R→ R; x 7→ x⊕ b,

is a bijection.
(B) Let a ∈ R, a 6= 0. Then the function

D : R→ a�R; x 7→ a� x,

is a bijection. (As usual, a�R = aR = {a� r : r ∈ R}.)

The proof is left as exercise 5.11 (see p.164). �

Remark 5.14. Abstract math is about proving theorems and propositions. Functions are very im-
portant tools for many proofs, and in many instances it is very important to know or to show that
a certain function is injective or surjective or both. But these properties depend on the choice of do-
main and codomain, and for this reason domain and codomain are very important for the complete
specification of a function.
Here is a simple example.
Let f : A→ B be the function f(x) := x2.
A = R, B = R: f is neither injective nor surjective
A =]− 2, 3[, B = [0, 9[: f is surjective but not injective
A =]0, 3[, B = [0, 9]: f is injective but not surjective
A =]0, 3[, B =]0, 9[: f is bijective �

Proposition 5.5.

Let X,Y, Z 6= ∅. Let f : X → Y and g : Y → Z.
(a) If both f, g are injective then g ◦ f is injective.
(b) If both f, g are surjective then g ◦ f is surjective.
(c) If both f, g are bijective then g ◦ f is bijective.

The proof of (a) and (b) is left as exercise 5.9 on p.164.
PROOF of (c): Follows from (a) and (b) because bijective = injective + surjective. �

Corollary 5.1. Let X,Y, Z 6= ∅. Let f : X → Y and g : Y → Z.
(a) If f is bijective and g is injective then both g ◦ f and f ◦ g are injective.
(b) If f is bijective and g is surjective then both g ◦ f and f ◦ g are surjective.
(c) If f is bijective and g is bijective then both g ◦ f and f ◦ g are bijective.
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PROOF:
(a) follows from prop.5.5(a) because bijective functions are injective.
(b) follows from prop.5.5(b) because bijective functions are surjective.
(c) follows from prop.5.5(c). �

The following proposition is easy to prove and will be used when we compare the sizes of sets later
on.

Proposition 5.6. ? Let X be an arbitrary set and let A be a nonempty proper subset of X . so that

X = A
⊎
A{ is a partitioning of X into two nonempty subsets A and A{. Let a ∈ A, a0 ∈ A{ and

A′ := (A \ {a})
⊎
{a0}. Then the function

ϕ : A′
∼−→ A; x 7→

{
x ifx 6= a0,

a ifx = a0

is a bijection.

PROOF: The proof is left as exercise 5.10. �

We now examine conditions under which there are functions f : X → Y and g : Y → X such that
g ◦ f = idX , i.e.,

g
(
f(x)

)
= x for all x ∈ X :(5.28)

X Y

X

f

gidX

Proposition 5.7. Let X,Y 6= ∅. Let f : X → Y and g : Y → X such that g ◦ f = idX . Then
(a) f is injective,
(b) g is surjective.

PROOF of (a): Let x1, x2 ∈ X . If f(x1) = f(x2) then

x1 = idX(x1) = g(f(x1)) = g(f(x2)) = idX(x2) = x2.

This proves injectivity of f .
PROOF of (b): Let x0 ∈ X . Let y := f(x0). Then g(y) = g(f(x0)) = g ◦ f(x0) = x0. We found for an
arbitrary x0 in the codomain of g some y which maps to x0. This proves surjectivity of g. �

Proposition 5.8. Let X,Y 6= ∅.
(a) Let f : X → Y . If f is injective then there exists g : Y → X such that g ◦ f = idX and any such

function g is necessarily surjective.
(b) Let g : Y → X . If g is surjective then there exists f : X → Y such that g ◦ f = idX and any

such function f is necessarily injective.

PROOF of (a): Let Y ′ := f(X) and

f ′ : X → Y ′, x 7→ f(x),
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i.e., f(x) = f ′(x) for all x ∈ X . The only difference between f and f ′ is that we shrunk the codomain
from Y to f(X), thus making f ′ not only injective but also surjective, hence bijective. It follows that
the inverse (f ′)−1 : Y ′ → X exists.
Let x0 be an arbitrary, but fixed, element of X . We define g : Y → X as follows.

g(y) :=

{
(f ′)−1(y) if y ∈ Y ′,
x0 if y /∈ Y ′.

Let x ∈ X . Then f(x) ∈ Y ′, hence g ◦ f(x) = g ◦ f ′(x) = (f ′)−1
(
f ′(x)

)
= x. As x was an arbitrary

element of x, this proves g ◦ f = idX . We observe that g is surjective according to prop.5.7(b).
PROOF of (b): If x ∈ X then the surjectivity of g implies that g−1{x} 6= ∅. We thus can associate
with each x ∈ X some yx ∈ g−1{x}. 77

Let f : X → Y be the function x 7→ yx described by the above association. If x ∈ X then

g ◦ f(x) = g(yx) = x.

The first equality follows from the definition of f and the second one is true because yx ∈ g−1{x}.
It follows from prop.5.7(a) that f is injective. �

There are special names for functions f and g which are related by (5.28).

Definition 5.13 (Left inverses and right inverses). Let X,Y 6= ∅.

Let f : X → Y and g : Y → X such that g ◦ f = idX . We say that

(a) f possesses a left inverse,
(b) g is a left inverse of f ,
(c) g possesses a right inverse,
(d) f is a right inverse of g. �

Remark 5.15. There is no good way to remember which function in the composition of f and g
is/has a left inverse and which one is/has a right inverse since the order of f and g in the expression

g ◦ f is reversed in the expression X
f−→ Y

g−→ Z. The author’s suggestion:

• f has (g as) a left inverse since g is to the left of f in the expression g ◦ f ,
• g has (f as) a right inverse since f is to the right of g in the expression g ◦ f . �

We combine the definition of left/right inverses with the preceding two proposition and obtain

Theorem 5.2. Let X,Y 6= ∅.

(a) Let f : X → Y . Then f is injective ⇔ f has a left inverse (which is necessarily surjective).
(b) Let g : Y → X . Then g is surjective ⇔ g has a right inverse (which is necessarily injective).
(c) An injection X → Y exists ⇔ a surjection Y → X exists.

77The ability to do such selections yx ∈ g−1{x} regardless of the nature ofX,Y and of the surjective function g : Y → X
is not something one can prove. It requires acceptance of the Axiom of Choice. See Chapter 5.3 (optional) in which a
complete proof is given that the Axiom of Choice is equivalent to the existence of f : X → Y such that g ◦ f = idX for
any surjective g : Y → X . See also Remark 15.1 on p.453 in ch.15 (Applications of Zorn’s Lemma).

149 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

PROOF of (a)⇒): prop.5.8(a).
PROOF of (a)⇐): prop.5.7(a).
PROOF of (b)⇒): prop.5.8(b).
PROOF of (b)⇐): prop.5.7(b).
PROOF of (c) ⇒): Let f : X → Y be injective. According to part (a) there exists a left inverse
g : Y → X and this function is surjective
PROOF of (c) ⇐): Let g : Y → X be surjective. According to part (b) there exists a right inverse
f : X → Y and this function is injective �

Remark 5.16. Let X and Y be two nonempty sets. No assumptions are made concerning how X
and Y might be related.

(a) Let y0 ∈ Y . Then the function

f : X
∼−→ {y0} ×X; x 7→ (y0, x)(5.29)

is bijective because f has the function (y0, x) 7→ x as an inverse.
(b) Let u, v elements of some set. An injection/surjection/bijection X → Y exists if and only

if an injection/surjection/bijection {u} ×X → {v} × Y exists.
(c) Let u, v elements of some set such that u 6= v. Then the sets {u} × X and {v} × Y are

disjoint. �

5.2.6 Binary Operations and Restrictions and Extensions of Functions

Introduction 5.4. When we defined groups, integral domains and other algebraic structures in ch.3
(The Axiomatic Method) we made use of binary operations such as “�” which assign to any two
elements x and y of such an algebraic structure A a third element z ∈ A, and also of the “unary
operations 	 and ·−1” which assign to x ∈ A its inverse 	x ∈ A or x−1 ∈ A if it exists.
Beside formalizing these notions we will also define restrictions of functions to subsets of their
domain and extensions of functions to supersets of their domain. We have previously discussed in
the introduction to ch.5.2.5 (Injective, Surjective and Bijective functions) that confining a function to
a smaller domain may make that restriction injective. �

We start with the formal definition of unary and binary operations as functions.

Definition 5.14 (Binary and unary operations). ? LetX be a nonempty set. A binary operation
on X is a function

� : X ×X −→ X; (x, y) 7→ x � y := �(x, y).(5.30)

A unary operation, on X is a function

• : X −→ X; x 7→ •(x). �(5.31)

One often writes x• or •x instead of •(x). For example, −x instead of −(x) and x−1 rather than
−1(x).
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Example 5.29. The following are examples of binary operations.

(a) Addition on X = N or X = Z or X = Q or X = R is a binary operation

+ : X ×X −→ X; (x, y) 7→ x+ y.(5.32)

(b) Multiplication on X = N or X = Z or X = Q or X = R is a binary operation

· : X ×X −→ X; (x, y) 7→ x · y.(5.33)

(c) Let X be a nonempty set and FFF := { functions f : X → X}. Function composition

◦ : FFF ×FFF −→FFF ; (f, g) 7→ g ◦ f(5.34)

where g ◦ f : X → X is the function defined by x 7→ g ◦ f(x) := g
(
f(x)

)
(x ∈ X).

Here are some examples of unary operations.
(d) Negative number: Let X = N or X = Z or X = Q or X = R. Then

− : X → X; x 7→ −x.(5.35)

is a unary operation.
(e) Reciprocal: Let X = Q6=0 or X = R 6=0

·−1 : X → X; x 7→ x−1 = 1/x.(5.36)

is a unary operation.
(f) Let X be a nonempty set and BBB := { bijective functions f : X → X}. Let

·−1 : BBB →BBB; f(·) 7→ f−1(·)(5.37)

be the function which assigns to the function x 7→ f(x) its (uniquely determined) inverse
function y 7→ f−1(y)). Then this assignment is a unary operation on BBB.

Note that assignment of the reciprocal number and assignment of the inverse function both are
denoted by the symbol “·−1”. There is no danger of confusing the two unary operations because
one of them operates on a set of numbers and the other one on a set of functions. �

Definition 5.15 (Restriction/Extension of a function). Given are three nonempty sets A,X and Y
such that A ⊆ X and a function f : X → Y with domain X .
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(a) We define the restriction of f to A as the function

(5.38) f
∣∣
A

: A→ Y defined as f
∣∣
A

(x) := f(x) for all x ∈ A.

(b) Conversely, let f : A→ Y and ϕ : X → Y be functions such that f = ϕ
∣∣
A

.
We then call ϕ an extension of f to X . �

Example 5.30. For an example let X := R, A := [0, 1] and f(x) := 3x2(x ∈ [0, 1]). For any α ∈ R
the function ϕα : R → R defined as ϕα(x) := 3x2 if 0 ≤ x ≤ 1 and αx otherwise defines a different
extension of f to R. �

Notation 5.2. As the only difference between f and f
∣∣
A

is the domain, it is customary to write f
instead of f

∣∣
A

to make formulas look simpler if doing so does not give rise to confusions. �

Remark 5.17. The restriction f
∣∣
A

is always uniquely determined by f . Such is not the case for
extensions if A is a strict subset of X unless some conditions are imposed on the nature of the
extension.
For example, if we had asked for continuity 78 of the extension ϕα of f in example 5.30 above, only
ϕ1(x) = 3x2 if 0 ≤ x ≤ 1 and x otherwise would qualify. �

Proposition 5.9. Let X,Y be nonempty sets. Let f : X
∼−→ Y be bijective

(a) Let ∅ 6= A ⊆ X , B := f
∣∣
A

(A) = {f(a) : a ∈ A}. 79 Let f ′ : A → B; x 7→ f(x), i.e., f ′ = f
∣∣
A

,
except that we have shrunken the codomain Y to B. Then f ′ is bijective.

(b) Let ∅ 6= V ⊆ Y . Let U := {x ∈ X : f(x) ∈ V }. 80 Let f ′′ : U → V ; x 7→ f(x), i.e., f ′′ = f
∣∣
U

,
except that we have shrunken the domain X to U . Then f ′′ is bijective.

The proof of (a) is left as exercise 5.17. See p.166.
PROOF of (b):
We first prove injectivity. Let u, u′ ∈ U such that u 6= u′. Then f(u) 6= f(u′) because f is injective.
But then f ′(u) = f(u) 6= f(u′) = f ′(u′). It follows that f ′ is injective.
Let b ∈ V . Since U = {x ∈ X : f(x) ∈ V }, the set U contains all items with function values in V ,
hence there exists u ∈ U such that f(u) = v. We have proven surjectivity. �

Example 5.31. For example let f : [0,∞[→ [0,∞[; x→ x2. Then f is bijective.

(a) Let A := [0, 2]. Then f(A) = f
∣∣
A

(A) = [0, 4], and f
∣∣
[0,2]

[0, 2]
∼−→ [0, 4] is bijective.

(b) Let V := [1, 9]. Then f−1(V ) = [1, 3], and f
∣∣
[1,3]

[1, 3]
∼−→ [1, 9] is bijective. �

78Continuity of functions y = f(x) with real numbers x and y will be defined in ch.9.3 (Convergence and Continuity
in R). See Definition 9.12 on p.271. Until then use your knowledge from calculus.

79i.e., B = f(A)
80i.e., U = f−1(B)
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5.2.7 Real–Valued Functions and Polynomials

Introduction 5.5. If we deal with functions such as f(x) = sin(2x) − 3x3 or g(x, y, z) =√
x2 + y2 + z2 or h(x, y, z) = (xy)z for which the codomain is (a subset of) R, i.e., each function

value is a real number, then we can add those function values or multiply them or do anything else
one can do with real numbers. In particular we can define for two functions f1, f2 : X → R with
matching domain X their sum (f1+f2)(x) = f1(x)+f2(x) and their product (f1 ·f2)(x) = f1(x)f2(x).
Thus we have g + h(x, y, z) =

√
x2 + y2 + z2 + (xy)z and gh(x, y, z) =

√
x2 + y2 + z2(xy)z .

Does it matter at all what kind of structure if any the domain has been endowed with? Not for the
subject matter that will be discussed here. For example let C := { all inhabitants of Chicago }, let
a : X → [0,∞[ be the function which assigns to each person x who lives in Chicago her/his age in
days a(x), and let s : C → [0,∞[ be the function which assigns to x the number of days s(x) s/he
has been severely ill so far. Then we can build the function s/a : C → [0,∞[ ; x 7→ 100

(
s(x)/a(x)

)
which assigns to each inhabitant of Chicago the percentage of time they have been sick so far.
We just mention in passing that we can apply this principle to codomains which carry any kind
of structure. For example if (G, �) is a group and X is a nonempty set then we can associate with
f, gX → G the functions f � g : x 7→ f(x) � g(x) and f−1 : x 7→

(
f(x)

)−1.
Here is an example where each function value is a set. Let C again denote the inhabitants of
Chicago. We assign to each x ∈ C the set P (x) ⊆ C of all people who live in Chicago and whom
x knows professionally, and the set F (x) of all friends that x has in Chicago. We thus have defined
two functions P, F : C → 2C . We cannot build the sum P + F or the quotient P/F , but we can
construct functions such as P ∩ F : x 7→ P (x) ∩ F (x), the set of all friends who live in Chicago
whom x knows professionally and P { : x 7→ P (x){, the set of all Chicagoans with whom x does not
have a professional relationship. �

We start with the definition of a real–valued function.

Definition 5.16 (Real–Valued Function). Let X be an arbitrary, nonempty set. If the codomain Y of
a mapping

f : X → Y ; x 7→ f(x)

is a subset of R, then we call f(·) a real function or real–valued function. �

Note that the above definition does not exclude the case Y = R because Y ⊆ R is in particular
true if both sets are equal.
As we mentioned in the introduction to this section real–valued functions are a pleasure to work
with because, given any fixed argument x0, the object f(x0) is just an ordinary number. In particular
you can add, subtract, multiply and divide real–valued functions. Of course, division by zero is not
allowed:

Definition 5.17 (Operations on real–valued functions). ? Let X be an arbitrary nonempty set.
Given are two real–valued functions f(·), g(·) : X → R and a real number α. The sum f + g,
difference f−g, product fg or f ·g, quotient f/g, and scalar product αf are defined by doing the
operation in question with the numbers f(x) and g(x) for each x ∈ X . In other words these items
are defined by the following equations:
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(f + g)(x) := f(x) + g(x),

(f − g)(x) := f(x)− g(x),

(fg)(x) := f(x)g(x),

(f/g)(x) := f(x)/g(x) for all x ∈ X where g(x) 6= 0,

(αf)(x) := α · g(x). �

(5.39)

Remark 5.18. Note that scalar multiplication (αf)(x) = α · f(x) is a special case of multiplying two
functions (gf)(x) = g(x)f(x), namely the case where g(x) = α for all x ∈ X (constant function α).
�

Definition 5.18 (Negative function). ? Let X be an arbitrary, nonempty set and let f : X → R.
The function

−f(·) : X → R; x 7→ −f(x).

is called negative f or minus f . We usually write −f for −f(·). �

Note that this definition does not exclude the case Y = R because Y ⊆ R is in particular true if
both sets are equal.
All those last definitions about sums, products, scalar products, . . . of real–valued functions are
very easy to understand if you remember that, for any fixed x ∈ X , you just deal with ordinary
numbers!

Example 5.32 (Arithmetic operations on real–valued functions).
For simplicity, let X := R+ = {x ∈ R : x ≥ 0}. Let

f : R≥0 → R; x 7→ (x− 1)(x+ 1)
g : R≥0 → R; x 7→ (x− 1)
h : R≥0 → R; x 7→ (x+ 1)

Then

(f + h)(x) = (x− 1)(x+ 1) + x+ 1 = x2 − 1 + x+ 1 = x(x+ 1) ∀x ∈ R≥0,

(f − g)(x) = (x− 1)(x+ 1)− (x− 1) = x2 − 1− x+ 1 = x(x− 1) ∀x ∈ R≥0,

(gh)(x) = (x− 1)(x+ 1) = f(x) ∀x ∈ R≥0,

(f/h)(x) = (x− 1)(x+ 1)/(x+ 1) = x− 1 = g(x) ∀x ∈ R≥0,

(f/g)(x) = (x− 1)(x+ 1)/(x− 1) = x+ 1 = h(x) ∀x ∈ R≥0 \ {1}

It is really, really important for you to understand that f/g and h are not the same functions. Here is
the reason. f/g is not defined for x = 1 because (1−1)(1+1)

1−1 = “0/0′′. The domain of f/g is R≥0 \{1}.
It is different from R≥0, the domain of h. It follows that both functions are different. �

Definition 5.19 (Polynomials). Let A be subset of the real numbers and let p(·) : A→ R be a real–
valued function on A. p(·) is called a polynomial. if there is an integer n ≥ 0 and real numbers
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a1, a2, . . . , an which are constant (they do not depend on x) so that p(·) can be written as a sum

(5.40) p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n =
n∑
j=0

ajx
j .

In other words, polynomials are linear combinations of the monomials x→ xk (k ∈ (Z)≥0 . If
an 6= 0 then we call n the degree of p. The zero function x 7→ 0 = 0 · x0 is a polynomial which
we call the zero polynomial. Note that it has no degree because we cannot represent it in the form
(5.40) with a non–zero coefficient an. We call z ∈ A a root of the polynomial p if p(z) = 0.
If we talk about polynomials without explicitly specifying the domain then it is implied that the
domain is R. �

Proposition 5.10. If p1 and p2 are polynomials and if λ ∈ R then

(a) The sum x 7→ p1(x) + p2(x) is a polynomial.
(b) The “scalar product” x 7→ λp1(x) is a polynomial.

The proof is left as exercise 5.19 (see p.166). �

Example 5.33. Polnomials may not always be given in their “normalized form” (5.40) on p.155. For
x ∈ R let

p(x) := b0x
0(1− x)n + b1x

1(1− x)n−1 + . . .+ bn−1x
n−1(1− x)1 + bnx

n

=
n∑
k=0

bkx
k(1− x)n−k

(5.41)

We have bkx
k(1− x)n−k = bkx

k + (−bk)xn. Let b :=
n∑
k=0

bk. Then p(x) =
n∑
k=0

bkx
k − bxn is of

the form (5.40) (define ak := bk for 0 ≤ k < n and an := bn − b) and hence is a polynomial.
The so called Bernstein polynomials which we will examine in ch.6.7 are of the form (5.41). �

Many more properties of functions will be discussed later. Now we look at families, sequences and
some additional properties of sets.

5.2.8 Families, Sequences, and Functions as Families

Introduction 5.6. In Chapter 2.4 (A First Look at Functions, Sequences and Families) We were in-
troduced to the notion of a family as collection (xi)i∈I of items xi which are subscripted or indexed
by the elements i of an arbitrary index set I . We saw that any such family can be thought of as
a function with index set I , and that sequences are families with index sets of integers that con-
tain a smallest element, the start index. We also noticed that families (in particular, sequences) are
functions in disguise shich associate with each index i ∈ I the corresponding indexed item xi.
We never gave a reason why one would introduce families if, whatever one can do with them, also
can be done with functions. It’s really just convenience: The expression

(
⋃
j∈J

(
Ai ∩Bj)

)
i∈I
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is significantly shorter than the expression

ϕ : I → 2Ω; ϕ(i) =
⋃
j∈J

(
A(i) ∩B(j)

)
where A : I → 2Ω and B : J → 2Ω .

Again, we define sequences as special families, those with index set J = J = [k0,∞[Z for some
initial index k0 ∈ Z. We also give in this chapter the definition of an infinite subsequence which is
consistent with the one given in Chapter 2.4,
Even though finite sequences and their subsequences were already defined in Chapter 2.4, you
will not find the exact definitions here. That must wait until Chapter 7 (Cardinality I: Finite and
Countable Sets) when the precise definition of finiteness is available. �

We now are ready to give the definition of a family.

Definition 5.20 (Indexed families). Let J and X be nonempty sets and assume that

for each ı ∈ J there exists exactly one indexed item xı ∈ X .

(a) We write (xı)ı∈J for this collection of indexed elements and call it an indexed fam-
ily or simply a family in X .

(b) J is called the index set of the family.
(c) For each  ∈ J , x is called a member of the family (xı)ı∈J .

�

Remark 5.19. (a) The index ı is a dummy variable: (xı)ı∈J and (xk)k∈J describe the same family as
long as ı 7→ xı and k 7→ xk describe the same function x(·) : J → X . This should not surprise you if
you recall remark 5.10 on p.136.
(b) Let R := {(ı, xı) : ı ∈ J}. Then R is a relation on (J,X) which satisfies (5.6) of the definition of
a function

x(·) : J −→ X, ı 7→ x(ı) := xı

(see Definition 5.7 on p.134), whose graph Γx(·) equals R. In other words,

• Every family (xı)ı∈J in X can be interpreted as a function

x(·) : J −→ X; ı 7→ xı . �

Remark 5.20. The codomainX does not occur in the notation (xı)ı∈J . This is not a problem because
we do not care about surjectivity or injectivity of families. The only thing that matters about the set
X is that it is big enough to contain each indexed item. Here are two natural choices for a codomain.
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(a) If there is a universal set X which contains all tagged items of the family then selecting
X as codomain makes perfect sense.

(b) If there is no universal set then you can think of

X =
⋃[

xı : ı ∈ J
]

:= {x : x = xı0 for some ı0 ∈ I}

as the codomain. 81 �

Definition 5.21 (Equality of families).

Two families (xi)i∈I and (yj)j∈J are equal if
(a) I = J ,
(b) xi = yi for all i ∈ I . �

Remark 5.21. Equality of families and equality of functions are not identical concepts, since no
demand is made in the latter that both families are families in the same set, say, X . But of course,
if (xi)i∈I is a family in X and (yj)j∈J is a family in Y and those two families are equal then this
necessitates

{xi : i ∈ I} = {yj : j ∈ J} ⊆ X ∩ Y. �(5.42)

Note 5.1 (Simplified notation for families).

If there is no confusion about the index set then it can be dropped from the specification of
a family and we simply write (xı)ı instead of (xı)ı∈J . We even may shorten this to (xı) if
doing so does not lead do confusion.

For example, a proposition may start as follows: Let (Aα) and (Bα) be two families of subsets of Ω
indexed by the same set. Then .....
It is clear from the formulation that we deal in fact with two families (Aα)α∈J and (Bα)α∈J . Nothing
is said about the index set, probably because the proposition is valid for any index set or because
this set was fixed once and for all earlier on for the entire section. �

Example 5.34. Here is an example of a family of subsets of R which are indexed by real numbers:
Let J = [0, 1] and X := 2R. For 0 ≤ x ≤ 1 let Ax := [x, 2x] be the set of all real numbers between x
and 2x. Then (Ax)x∈[0,1] is such a family. �

Remark 5.22. If a family is just some kind of function, why bother with yet another definition? We
already gave an answer in the introduction to this section: There we saw an example where writing
something as a collection of indexed items rather than as a function is a notational convenience.
Here is another example. Take a peek at theorem 8.1 (De Morgan’s Law) on p.234. One of the
formulas there states that for any indexed family (Aα)α∈I of subsets of a universal set Ω it is true
that (⋃

α

Aα
){

=
⋂
α

A{α.

81General unions and intersections will be defined in ch.8.1 (More on set operations). See Definition 2.29 on p.38.
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Without the notion of a family you might have to say something like this: Let A : I → 2Ω be a
function which assigns its arguments to subsets of Ω . Then(⋃

α

A(α)
){

=
⋂
α

A(α){.

The additional parentheses around the index α just add complexity to the formula. �

Example 5.35 (Sequences as families). We have worked with special families before: those where
the index set is J = N = [1,∞[Z or J = [0,∞[Z or, more generally J = [k0,∞[Z for some “start
index” k0 ∈ Z, and where X is a subset of the real numbers. Example: xn := 1/n. Here

(xn)n∈N corresponds to the indexed collection 1,
1

2
,

1

3
, . . . ,

1

n
, . . . �

The families from the last example will be called sequences. Preliminary definitions for sequences,
subsequences, finite sequences and finite subsequences were given in Definition 2.24 on p.33 and
Definition 2.25 on p.34. We will now give precise definitions for sequences and subsequences. Those
for finite sequences and finite subsequences will have to wait until ch.7.3 (Finite Sequences and
Subsequences and Eventually True Properties).

Definition 5.22 (Sequences and subsequences). Let n? ∈ Z, let J := [n?,∞[Z = {k ∈ Z : k ≥ n?}.
Let X be an arbitrary nonempty set. An indexed family (xn)n∈J in X with index set J is called a
sequence in X with start index n?. We will also write

(xn)n≥n? or (xn)∞n=n? or xn? , xn?+1 , xn?+2 , . . .

for this sequence. As for families, the name of the index variable of a sequence is unimportant as
long as it is applied consistently. It does not matter whether one writes, e.g.,

(xn)n≥n? or (xj)j≥n? or (xβ)β≥n? or (xA)∞A=n? .
82

Let (nj)
∞
j=1 be a sequence of integers nj such that

1) nj ∈ J (i.e., a sequence of indices for the above sequence (xj)
∞
j=n?

)
2) i < j ⇒ ni < nj for all i, j ∈ N.

Note that nj ∈ J for all j ∈ N implies n? ≤ n1 < n2 < . . . . If we write I := {nj : j ∈ N} then we
see that (xn)n∈I = (xnj )j∈N, thus this object is an indexed family whose index set I is a subset of
the original index set J . We call (xnj )j∈N = (xnj )

∞
j=1 a subsequence of the sequence (xj)

∞
j=n?

. This
is an appropriate name since we obtain (xnj )

∞
j=1 from (xj)j∈J by removing all members xn such

that none of the nj equals n. Be sure to understand that, according to this definition, the sequence
(nj)j∈N is a subsequence of the full sequence of indices (n)∞n=n? . We will also write

(xnj )j∈N or (xnj )j≥1 or (xnj )
∞
j=1 or xn1 , xn2 , xn3 , . . .

for this subsequence. �

82see Definition 5.20 (indexed families) on p.156.
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Note 5.2 (Simplified notation for sequences).

(a) It is customary to choose either of i, j, k, l,m, n as the symbol of the index variable
of a sequence and to stay away from other symbols whenever possible.

(b) By default the index set for a sequence is N = {1, 2, 3, 4, . . . }.
(c) We are allowed to write (xn)n or just (xn) if there is no confusion about the value

of n? or if this value is irrelevant for the statement at hand.
(d) Customary simplified notation for subsequences is either of (xnj )j∈N, (xnj )j≥1,

(xnj )j or simply (xnj ).

Compare this to note 5.1 about simplified notation for families. �

Part (b) of the above note deserves repeating:

Assumption 5.1 (indices of sequences).

Unless explicitly stated otherwise, sequences are always indexed 1, 2, 3, . . . , i.e., the first
index is 1, there is no largest index and, given any index, you obtain the next one by adding
1 to it. �

Example 5.36. For j ∈ N let xj := (−1)j . Then
(
(−1)n

)∞
n=1

is the sequence

x1 = −1, x2 = 1, x3 = −1, x4 = 1, x5 = −1, . . .

With the notations of Definitions 2.24 and 2.25 we haveX = Z and n? = 1 (i.e., J = N). If we choose
nj := 2j, then the corresponding index set {2, 4, 6, . . . } is the set of all even indices, and we obtain
the subsequence (

xnj
)∞
j=1

=
(
(−1)2j

)∞
j=1

= 1, 1, 1, 1, . . . .

If we choose nj := 2j − 1 then we obtain as index set the subset {1, 3, 5, . . . } of all odd indices, and
thus the subsequence (

xnj
)∞
j=1

=
(
(−1)2j−1

)∞
j=1

= −1,−1,−1,−1, . . . �

Here is another example of a sequence.

Example 5.37 (Series (summation sequence) ). Let sk := 1 + 2−1 + 2−2 + . . .+ 2−k (k = 1, 2, 3, . . . ):

s1 =1, s2 = 1 + 1/2 = 2− 1/2, s3 = 1 + 1/2 + 1/4 = 2− 1/4, . . . ,

sk =1 + 1/2 + . . .+ 2k−1 = 2− 2k−1; s = 1 + 1/2 + 1/4 + 1/8 + . . . “infinite sum”.

You obtain sk+1 from sk = 2 − 2k−1 by cutting the difference 2k−1 to the number 2 in half (that
would be 2k) and adding that to sk. It is intuitively obvious from sk = 2− 2k−1 that the infinite sum
s adds up to 2. Such an infinite sum is called a series. 83 �

83The precise definition of a series will be given in ch.13.2 (Function Sequences and Infinite Series) on p.414.
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Remark 5.23. Having defined the family (xı)ı∈J as the function which maps ı ∈ J to xı means that
a family distinguishes any two of its members xı and x by remembering what their indices are,
even if they represent one and the same element of X : Think of “(xı)ı∈J” as an abbreviation for

“
(
(ı, xı)

)
ı∈J
′′
.(5.43)

Doing so should also make it much easier to see the equivalence of functions and families: (5.43)
looks at its core very much like the graph {(ı, xı) : ı ∈ J} of the function ı 7→ xı. �

Remark 5.24 (Families and sequences can contain duplicates). One of the important properties of
sets is that they do not contain any duplicates (see Definition 2.1 (sets) on p.14). On the other hand,
remark 5.23 casually mentions that families, and hence sequences as special kinds of families, can
contain duplicates. Let us look at this more closely.
The two sets A := {31, 20, 20, 20, 31} and B := {20, 31} are equal. On the other hand let J :=
{α, β, π, ?,Q} and define the family (wı)ı∈J in B by its associated graph as follows:

Γ := {(α, 31), (β, 20), (π, 20), (?, 20), (Q, 31)}, i.e.,, wα = 31, wβ = 20, , wπ = 20, w? = 20, wQ = 31.

The three occurrences of 20 cannot be distinguished as elements of the set A. In contrast to this
the items (β, 20), (π, 20), (?, 20) as elements of Γ ⊆ J × A = J × B 84 are different from each other
because two pairs (a, b) and (x, y) are equal only if x = a and y = b. �

In contrast to sets, families and sequences allow us to incorporate duplicates.

A family (xı)ı∈J in X is specified by the function F : J → X which maps ı ∈ J to F (z) =
xz . Conversely, let X,Y be nonempty sets and let f : X → Y be a function with domain X and
codomain Y . For x ∈ X let fx := f(x). Then f can be written as (fx)x∈X , i.e., as a family in Y with
index set X . Thus we have

Proposition 5.11 (Functions are families and families are functions).

The following two ways of specifying a function f : X → Y, x 7→ f(x) are equivalent:
(a) f is defined by its graph {(x, f(x)) : x ∈ X}.
(b) f is defined by the following family in Y : (f(x))x∈X

Note that the above is one case where a family needed explicit mention of the codomain Y .

PROOF: This follows from the material leading to the above proposition. �

There will be a lot more on sequences and series (sequences of sums) in later chapters, but we need
to develop more concepts, such as convergence, to continue with this subject.

5.3 Right Inverses and the Axiom of Choice ?

The following is a greatly expanded version of the online article http://planetmath.org/
surjectionandaxiomofchoice about the equivalence of the Axiom of Choice and the existence of
right inverses for arbitrary, surjective functions.

84Be sure to understand that J ×A = J ×B!
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Definition 5.23 (Choice function). Let AAA be a collection of nonempty sets and let Ω be a set such
that

⋃
[A : A ∈AAA ] ⊆ Ω. Let the function

c : AAA −→ Ω satisfy c(A) ∈ A for all A ∈AAA

Then we call c a choice function 85 on AAA . �

The following is a repeat of Proposition 5.8(b) and its proof, with emphasis on the use of a choice
function. It shows that the acceptance of the Axiom of Choice implies that right inverses exist for
any choice of nonempty Y and X and surjective g : Y → X .

Proposition 5.12. Let X,Y 6= ∅. Let g : Y → X . If g is surjective then there exists f : X → Y such that
g ◦ f = idX .

PROOF: Let AAA := {g−1{x} : x ∈ X}. The surjectivity of g implies that g−1{x} 6= ∅ for all x ∈ X .
According to the Axiom of Choice there exists a choice function c : AAA → Y .
Let f : X → Y be the function x 7→ yx := c(g−1{x}) and let x ∈ X .
Since c is a choice function, yx ∈ g−1{x} and thus g(yx) ∈ {x}, i.e., g(yx) = x. Thus

g ◦ f(x) = g ◦ c(g−1{x}) = g(yx) = x.

The first equality follows from the definition of f and the second one from that of yx. �

It is not as easy to show the other direction: Accepting that surjective functions g : Y → X have right
inverses for any choice of nonempty X,Y and y 7→ g(y) implies the existence of choice functions
AAA → Ω for arbitrary, nonempty Ω and AAA ⊆ 2Ω \ ∅. This will be shown in the next lemma and
subsequent proposition.

Lemma 5.1. Assume that each surjective function possesses a right inverse, i.e., if Y and X are nonempty
and g : Y → X is surjective then there exists f : X → Y (necessarily injective) such that g ◦ f = idX . See
Definition 5.13 (Left inverses and right inverses) on p.149 and the subsequent material. Assume further that
AAA is a collection of nonempty and disjoint sets.
Then there exists a choice function on AAA .

PROOF: Let Ω :=
⊎

[A : A ∈ AAA ]. Since the elements of AAA are disjoint there exists for each ω ∈ Ω a
unique Aω such that ω ∈ Aω. Thus the association

ω 7→ Aω defines a function g : Ω→AAA such that ω ∈ g(ω) = Aω .(5.44)

(A): We show that g is surjective and thus possesses a right inverse.
Let A ∈AAA and ω ∈ A. Such ω exists because A 6= ∅. Let

Aω := g(ω) .(5.45)

Then ω ∈ Aω by the definitions of g and Aω. Since we assumed ω ∈ A, it follows that ω ∈ A ∩ g(ω).
Since the elements of AAA are disjoint, A = g(ω). We have found for an arbitrary A ∈ AAA an ω ∈ Ω
such that ω ∈ g(ω), thus g is surjective.

85denoted so since this function chooses from each of its arguments A an item ω = c(A).
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(B): By assumption g possesses a right inverse, i.e., there is

c : AAA → Ω such that c is injective and g ◦ c = idAAA .(5.46)

Let A ∈AAA and ω := c(A). Then

g(ω) = g
(
c(A)

)
= idAAA (A) = A .(5.47)

Since c(A) = ω, ω ∈ g(ω) by (5.44) and g(ω) = A by (5.47), it follows that c(A) ∈ A. This holds for
arbitrary A ∈AAA , thus c is a choice function on AAA . �

We now remove the restrictive assumption that the members of AAA must be mutually disjoint.

Proposition 5.13. Assume that each surjective function possesses a right inverse. Assume further that AAA
is a collection of nonempty sets. Then there exists a choice function on AAA .

PROOF:
Let Ω :=

⋃
[A : A ∈AAA ]. Let

 : AAA −→ Ω×AAA ; A 7→ {(ω′, A) : ω′ ∈ A} .

Let A,A′ ∈ AAA such that A 6= A′. Then (A) ∩ (A′) = ∅ since all elements (ω,A) ∈ (A) have
different second coordinate from the elements (ω′, A′) ∈ (A′), and two elements (x, y) and (x′, y′)
of a cartesian product X × Y are different unless both x = x′ and y = y′.
In particular, A 6= A′ ⇒ (A) 6= (A′). It follows that the function

ı : AAA
∼−→ (AAA ) ; A 7→ ı(A)(5.48)

bijects AAA to a collection of disjoint subsets of Ω×AAA .
We infer from Lemma 5.1 the existence of a choice function c : ı(AAA )→ Ω×AAA .
Let A ∈AAA . Since c is a choice function, c ◦ ı(A) ∈ ı(A), i.e.,

c ◦ ı(A) = c ◦ (A) ∈ {(ω′, A) : ω′ ∈ A}

according to the definition of (A). Thus

there exists ω ∈ A such that c ◦ ı(A) = (ω,A) .(5.49)

Let πΩ : ı(AAA ) −→ Ω ; (ω′, A′) 7→ ω′ ,

be the projection to the first coordinate. Then

πΩ ◦ c ◦ ı(A) = πΩ

(
(ω,A)

)
= ω

where ω satisfies ω ∈ A according to (5.49). We have shown that the function

c∗ := πΩ ◦ c ◦ ı : AAA −→ Ω A 7→ ω := πΩ ◦ c ◦ ı : AAA (A)

maps any A ∈AAA to an element ω ∈ A. We conclude that c∗ is a choice function on AAA . �

We state the content of Proposition 5.12 and Proposition 5.13 as follows.
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Theorem 5.3. The following are equivalent.

(a) For any sets X,Y 6= ∅ and surjective g : Y → X there exists a right inverse for g, i.e., a
function f : X → Y such that g ◦ f = idX .

(b) The Axiom of Choice holds: For any collection AAA of nonempty sets there exists a choice
function on AAA , i.e., a function c : AAA →

⋃
[A : A ∈AAA ] such that c(A) ∈ A for all A ∈AAA .

PROOF: See Proposition 5.12 and Proposition 5.13. �

5.4 Exercises for Ch.5

5.4.1 Exercises for Functions and Relations

Exercise 5.1. Prove that A×B = ∅ ⇔ A = ∅ or B = ∅ or both are empty. �

Exercise 5.2.
(a) Which of the following is an equivalence relation? a partial ordering? on R?

a1. xRy ⇔ x < y, a2. xRy ⇔ x ≤ y, a3. xRy ⇔ x = y, a4. xRy ⇔ x 6= y.
(b) Define xRy ⇔ xy > 0. Is this an equivalence relation on R? on R 6=0? on R>0? on R<0? �

Exercise 5.3. It was stated in example 5.8 on p.131 that (R,≥) is a linearly ordered set. Prove it.
(Prove first that this is a POset.) �

Exercise 5.4. Prove prop.5.1(c) on p.128 of this document: If “ ∼′′ is an equivalence relation on a
nonempty set X and x, y ∈ X then either [x] = [y] or [x] ∩ [y] = ∅. �

Exercise 5.5. Injectivity and Surjectivity:
• Let f : R→ [0,∞[; x 7→ x2.
• Let g : [0,∞[→ [0,∞[; x 7→ x2.

In other words, g is same function as f as far as assigning function values is concerned,
but its domain is downsized to [0,∞[.

Answer the following with true or false.
(a) f is surjective (c) g is surjective
(b) f is injective (d) g is injective

If your answer is false then give a specific counterexample. �

Exercise 5.6 (Excercise 5.5 continued). Let A ⊆ R .
Part 1.
• Let F1 : A→ [−2, 20[; x 7→ x2.
• Let F2 : A→ [2, 20[; x 7→ x2.

What choice of A makes
(a) F1 surjective? (c) F2 surjective?
(b) F1 injective? (d) F2 injective?

Part 2.
• Let G1 : A→ [−2, 20[; x 7→

√
x.

• Let G2 : A→ [2, 20[; x 7→
√
x.
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What choice of A makes
(e) G1 surjective? (g) G2 surjective?
(f) G1 injective? (h) G2 injective?

Part 3.
• Let G3 : A→ [−20, 2[; x 7→

√
x.

• Let G4 : A→ [−20,−2[; x 7→
√
x.

What choice of A makes
(i) G3 surjective? k. G4 surjective?
(j) G3 injective? l. G4 injective?

For the questions above
• Write impossible if no choice of A ⊆ R exists.
• Write NAF for any of F1, F2, G1, G2, G3, G4 which does not define a function. �

Exercise 5.7. Find f : X → Y and A ⊆ X such that f(A{) 6= f(A){. Hint: use f(x) = x2 and choose
Y as a one element only set (which does not leave you a whole lot of choices for X). See example
5.19 on p.139. �

Exercise 5.8.
(a) Prove prop.5.5(a): The composition of two injective functions is injective.
(b) Prove prop.5.5(b): The composition of two surjective functions is surjective. �

Exercise 5.9. You proved in the previous exercise that
injective ◦ injective = injective,
surjective ◦ surjective = surjective.

This exercise illustrates that the reverse is not necessarily true.
Find functions f : {a} → {b1, b2} and g : {b1, b2} → {a} such that h := g ◦ f : {a} is bijective but
such that it is not true that both f, g are injective and it is also not true that both f, g are surjective.
Hint: There are not a whole lot of possibilities. Draw possible candidates for f and g in arrow
notation as on p.118. You should easily be able to figure out some examples. Think simple and look
at example 5.19 on p.139. �

Exercise 5.10. Prove prop.5.6 on p.148: Let X be an arbitrary set and let A be a nonempty proper
subset of X . so that X = A

⊎
A{ is a partitioning of X into two nonempty subsets A and A{. Let

a ∈ A, a0 ∈ A{ and A′ := (A \ {a})
⊎
{a0}. Then the function ϕ : A′

∼−→ A; ϕ(x) = a if x = a0 and
ϕ(x) = x else is a bijection. �

Exercise 5.11. Prove prop.5.4 on p.147 of this document: Let (R,⊕,�, P ) be an ordered integral
domain
(A) Let b ∈ R. Then the function

T : R→ R; x 7→ x⊕ b,

is a bijection.
(B) Let a ∈ R, a 6= 0. Then the function

D : R→ a�R; x 7→ a� x,

is a bijection. (As usual, a�R = aR = {a� r : r ∈ R}.)
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Hint: Find the inverses of T (obvious) and D (tricky: you cannot write a−1y since the inverse of a
may not exist). �

Only the group structure of R was used in part A of the previous exercise:

Exercise 5.12. If (G, �) is a group and and h ∈ G then the function

T : G→ G; g 7→ g � h,

is a bijection. �

Exercise 5.13. Prove (c) of remark 5.16 on p.150: Let X and Y be two nonempty sets and u 6= v
arbitrary items. Then the sets {u} ×X and {v} × Y are disjoint. �

Exercise 5.14. Prove (b) of remark 5.16 on p.150: Let X and Y be two nonempty sets and u, v
arbitrary.
Then an injection/surjection/bijection X → Y exists if and only if an injection/surjection/bijection
{u} ×X → {v} × Y exists. �

Exercise 5.15. Let f : R→ R be the function x 7→ 2x− 4. Let the relation Γf be defined as the graph
of f .

(a) Compute the inverse relation (Γf )−1.
(b) Is (Γf )−1 the graph of a function? If yes, what function? Don’t forget to include domain

and codomain. �

Exercise 5.16. B/G Project 6.9.:
On Z× (Z \ {0}) we define the relation ∼ as follows.

(m1, n1) ∼ (m2, n2) ⇔ m1 · n2 = n1 ·m2.(5.50)

(a) Prove that ∼ defines an equivalence relation on Z× (Z \ {0}).
Let

Q := {[(m,n)] : m,n ∈ Z and n 6= 0}(5.51)

be the set of all equivalence classes of∼. We define two binary operations⊕ and⊗ on Q as follows;

[(m1, n1)]⊕ [(m2, n2)] := [(m1n2 + m2n1, n1n2)],(5.52)
[(m1, n1)]⊗ [(m2, n2)] := [(m1m2, n1n2)](5.53)

(b) Prove that these binary operations are defined consistently: the right–hand sides of (5.52)
and (5.53) do not depend on the particular choice of elements picked from the sets [(m1, n1)] and
[(m2, n2)]. In other words, prove the following:
Let (p1, q1) ∼ (m1, n1) and (p2, q2) ∼ (m2, n2). Then

[(m1n2 + m2n1, n1n2)] = [(p1q2 + p2q1, q1q2)],(5.54)
[(m1m2, n1n2)] = [(p1p2, q1q2)].(5.55)

or, equivalently, then

(m1n2 + m2n1, n1n2) ∼ (p1q2 + p2q1, q1q2),(5.56)
(m1m2, n1n2) ∼ (p1p2, q1q2). �(5.57)
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Exercise 5.17. Prove prop.5.9(a) on p.152: LetA,X, Y be nonempty sets andA ⊆ X . Let f : X
∼−→ Y

be bijective. Let B := {f(a) : a ∈ A}. Let f ′ : A→ B; x 7→ f(x). Then f ′ is bijective.
Hint: Study the proof of prop.5.9(b) Your proof is very similar. �

Exercise 5.18. What are the graphs Γf? and Γf? of the functions f? and f? of example 5.23 on p.141?
Do not use the symbols f? and f? when you write the formulas!

Exercise 5.19. Prove prop.5.10 on p.155 of this document: If p1 and p2 are polynomials and if λ ∈ R
then

(a) The sum x 7→ p1(x) + p2(x) is a polynomial.
(b) The “scalar product” x 7→ λp1(x) is a polynomial. �

Exercise 5.20. Prove (5.42) of rem.5.21 on p.157 of this document: If (xi)i∈I is a family in X , (yj)j∈J
is a family in Y , and those two families are equal then

{xi : i ∈ I} = {yj : j ∈ J} ⊆ X ∩ Y. �
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6 The Integers

Note to Math 330 students: This chapter contains a lot of, but by no means all of the material of
chapters 2.3, 2.4, 4, 6 and 7 of [2] Beck/Geoghegan: Art of Proof. On the other hand this chapter
also contains some generalizations which cannot be found in that book, and I have given alternate
versions of some proofs which I found difficult to follow. An other reason to duplicate that material
here is that doing so allows this author to give internal references which you can click on rather
than having to go back and forth between two different sources.

Note to Math 330 students: You should read this chapter in parallel with chapters 2, 4, 6
and 7 of [2] Beck/Geoghegan Art of Proof

6.1 The Integers, the Induction Axiom, and the Induction Principles

In ch.2.3 (Numbers) on p.24 we informally defined the integers Z as those numbers n which can
be expressed as finite strings of decimal digits, possibly preceded by a minus sign. This is prob-
lematic from a very unexpected perspective: We will need a precise definition of the integers as a
prerequisite for a precise definition of finiteness.
We also defined the natural numbers just as informally as the set N = {1, 2, 3, . . . }. We will now
give precise, axiomatic, definitions of those sets by using as a starting point prop.3.32(a) on p.69,
which asserts that (Z,+, ·,N) is an ordered integral domain. This “proposition” was stated at a
point where the exact definition of Z and N was not provided yet. The next axiomatic definition
will close that gap.

Since addition and multiplication are associative in integrals domains (R,⊕,�) we will
heneforth write a ⊕ b ⊕ c for either of (a ⊕ b) ⊕ c, a ⊕ (b ⊕ c), and a � b � c for either of
(a� b)� c, a� (b� c). Here we assumed that a, b, c ∈ R.
The case of more than three operands will be taken care of later by Theorem 6.6 (Generalized
Law of Associativity) on p.181.

Axiom 6.1 (Integers and Natural Numbers). We postulate the existence of two sets Z and N which
satisfy the following:

(a) Z is endowed with two binary operations “+” (called addition) and “·” (called mul-
tiplication) and with a positive cone N such that (Z,+, ·,N) is an ordered integral
domain. We denote the additive unit of this integral domain by 0 and its multi-
plicative unit by 1.

(b) Induction Axiom: Let A ⊆ Z such that
(1) 1 ∈ A,
(2) k ∈ A implies k + 1 ∈ A.

Then A ⊇ N.
We call Z the set of integers, and we call N the set of natural numbers. �
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Definition 6.1 (Decimal Digits). So far the only two integers we know are 0 (the neutral element for
“+”), and 1 (the neutral element for “·”). We define the following integers:

2 := 1 + 1, 3 := 2 + 1, 4 := 3 + 1, 5 := 4 + 1, 6 := 5 + 1, 7 := 6 + 1, 8 := 7 + 1, 9 := 8 + 1.

We call the elements of the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} digits or decimal digits. 86 �

Remark 6.1. Letm,n ∈ Z. We remind the reader that precise definitions were given at the beginning
of ch.3.4 on p.68 about statements like, e.g., m < n (it means that n−m ∈ N), about positivity (n is
positive if and only if n ∈ N), and about negativity (n is negative if and only if −n ∈ N).

The following simple proposition and its corollary will allow us to generalize the induction axiom
to sets of the form [k0,∞[Z = {k ∈ Z : j ≥ k0}where k0 is an arbitrary integer.

Proposition 6.1. Let i, j, n ∈ Z. Then n+ i ∈ [i,∞[Z⇔ n+ j ∈ [j,∞[Z .

The proof is left as exercise 6.1 (see p.209). �

Corollary 6.1. Let k0, n ∈ Z. Then n ∈ [k0,∞[Z if and only if n− k0 + 1 ∈ N.

PROOF: We apply prop.6.1 with n− k0 instead of n, k0 instead of i, and 1 instead of j:

(n− k0) + k0 ∈ [k0,∞[Z⇔ (n− k0) + 1 ∈ [1,∞[Z, i.e., n ∈ [k0,∞[Z⇔ n− k0 + 1 ∈ N. �

Theorem 6.1 (Generalization of the Induction Axiom).

Let k0 ∈ Z and let
Ak0 := {k ∈ Z : j ≥ k0} = [k0,∞[Z

be the set of all integers at least as big as k0. Let A ⊆ Z such that
(a) k0 ∈ A,
(b) k ∈ A implies k + 1 ∈ A.

Then A ⊇ Ak0 .

Proof strategy: We will shift everything by the amount −k0 + 1: Let

B := 1− k0 +A = { a− k0 + 1 : a ∈ A } .(A)

Our proof then proceeds as follows.
(1) Show that 1 ∈ B.
(2) For an arbitrary b ∈ B let a := b + k0 − 1 be the corresponding item in A. By assumption,

a+ 1 ∈ A. Use this to show that b+ 1 ∈ B.
(3) It follows from (1) and (2) thatB satisfies both properties (1) and (2) of the induction axiom,

thus B ⊇ N.
(4) We complete the proof by adding k0 − 1 to both B and N and obtaining A ⊇ Ak0 .

86Note that all we needed to define those decimal digits were the existence of 0, 1, and the “+” operation, thus we
could have defined the above for any integral domain, even for any commutative ring with unit.
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PROOF of Theorem 6.1:
So let B := 1− k0 +A. Since k0 ∈ [k0,∞[Z and [k0,∞[Z⊆ A, k0 ∈ A. Thus 1 = k0 − k0 + 1 ∈ B. This
proves step (1).
Let b ∈ B and a := b+ k0 − 1. Then a ∈ A by definition of B. From assumption (b) of this theorem
we obtain a+ 1 ∈ A and thus b+ 1 = (a+ 1)− k0 + 1 ∈ B by definition of B. This proves step (2).
We have proven for the set B that 1 ∈ B and that this set contains with each element b also the
integer b+ 1. It follows from the induction axiom that B ⊇ N. This proves step (3).
It follows from B ⊇ N that (k0 − 1) +B ⊇ (k0 − 1) + N, i.e., A ⊇ [k0,∞[Z= Ak0 . �

The generalized induction axiom allows us to give a proof for the principle of mathematical in-
duction which was introduced in rem.2.19 (p.44) of ch.2.7.

Theorem 6.2 (Principle of Mathematical Induction).

Assume that for each integer k ≥ k0 there is an associated statement P (k) such that
A. Base case. The statement P (k0) is true.
B. Induction Step. For each k ≥ k0 we have the following: Assuming that P (k) is true

(“Induction Assumption”), it can be shown that P (k+ 1) also is true.
It then follows that P (k) is true for each k ≥ k0.

PROOF: Let Ak0 := {k ∈ Z : j ≥ k0}, and let A := {k ∈ Ak0 : P (k) is true }. It follows from A that
k0 ∈ A, and it follows from B that if k ∈ A then k + 1 ∈ A. We conclude from thm.6.1 above that
Ak0 ⊆ A. Thus P (k) is true for all k ∈ Ak0 . �

Remark 6.2. The above theorem 6.2 is often stated for the special case k0 = 1. 87

We remind the reader that several examples for proofs by induction were given in ch.2.7.

Theorem 6.3 (Principle of Strong Mathematical Induction).

Let k0 ∈ Z and assume that for each integer k ≥ k0 there is an associated statement P (k) such that
the following is valid:

A. Base case. The statement P (k0) is true.
B. Induction Step. For each k ≥ k0 we have the following: Assuming that P (j) is true

for all j ∈ Z such that k0 ≤ j ≤ k (“Induction Assumption”), it
can be shown that P (k + 1) also is true.

It then follows that P (k) is true for each k ≥ k0.

PROOF: Let

Ak0 := {k ∈ Z : j ≥ k0} ; A := {k ∈ Ak0 : P (j) is true for all j ∈ [k0, k]Z } .

It follows from A that k0 ∈ A, and it follows from B that if k ∈ A, i.e., P (j) is true for all k0 ≤ j ≤ k,
then also P (k+ 1) is true, hence P (j) is true for all k0 ≤ j ≤ k+ 1, i.e., k+ 1 ∈ A. We conclude from
thm.6.1 on p.168 that Ak0 ⊆ A. Thus P (k) is true for all k ∈ Ak0 . �

The following is an example for a proof that is best done with strong induction.
87[2] Beck/Geoghegan refers to the case k0 = 1 as the Principle of mathematical induction — first form and to the

general case as the Principle of mathematical induction — first form revisited.
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Example 6.1. 88 Let (xn)n∈N be the sequence x1 := 2, x2 := 8, xn := 4(xn−1 − xn−2) (n ≥ 3).
Prove that xn = n2n for all n ∈ N.

Solution strategy: This is a two-step recursion: To know the value of the sequence at “time” k we
must know xn for both n = k − 1 and n = k − 2. We need strong induction rather than ordinary
induction on n, and we must “anchor” the proof with two base cases: n = 2 and n = 1 so that we
can bootstrap ourselves and conclude the validity of xn = n2n for n = 3 from that of the base cases
and the recursion formula xn := 4(xn−1 − xn−2).
SOLUTION (by strong induction on n):
Base cases:
n = 1 ⇒ n2n = 1 · 21 = 2 = x1,
n = 2 ⇒ n2n = 2 · 22 = 8 = x2.
Induction step:
Induction assumption: We have some n ∈ N such that xj = j2j for all j ≤ n. (?)

We must show under this assumption that xn+1 = (n+ 1)2n+1. (??)

xn+1 = 4(xn − xn−1) (recursion formula for xn)
= 4

(
n2n − (n− 1)2n−1

)
(induction assumption (?))

= 2n2n+1 − (n− 1)2n+1
)

= (2n− n+ 1)2n+1

= (n+ 1)2n+1.
We have shown the validity of (??), and this completes the proof by strong induction. �

Here is another example for a proof by strong induction.

Example 6.2. Example 89 Let (xn)n∈N be the following sequence of real numbers:
x1 := x2 := 1, xn := 1

2(xn−1 + 2/xn−2) (n ≥ 3). Prove that 1 ≤ xn ≤ 2 for all n ∈ N.

SOLUTION (by strong induction on n):
Base cases:
We need both n = 1 and n = 2 as base cases for the same reason as in example 6.1. Their validity is
obvious from x1 = x2 = 1, since then 1 ≤ x1 ≤ 2 and 1 ≤ x2 ≤ 2.
Induction step:
Induction assumption: We have some n ∈ N such that 1 ≤ xj ≤ 2 for all j ≤ n. (?)

We must show under this assumption that 1 ≤ xn+1 ≤ 2. (??) for all (n ≥ 3).
It follows from (?) that

(i) xn ≤ 2, hence 1
2xn ≤

1
2 · 2 = 1,

(ii) xn−1 ≥ 1, hence 1
2 ·

2
xn−1

= 1
xn−1

≤ 1.

It follows from the recursion formula xn = 1
2(xn−1 + 2/xn−2) that xn ≤ 1 + 1 = 2 for (n ≥ 3).

It also follows from (?) that
88This is example 3.40 of D’Angelo and West [8].
89This is exercise 3.57 of D’Angelo and West [8].
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(iii) xn ≥ 1, hence 1
2xn ≥

1
2 ,

(iv) xn−1 ≤ 2, hence 1
2 ·

2
xn−1

= 1
xn−1

≥ 1
2 .

It follows from xn := 1
2(xn−1 + 2/xn−2) that xn ≥ 1

2 + 1
2 = 1 for (n ≥ 3).

We have shown the validity of (??), and this completes the proof by strong induction. �

Remark 6.3. How do thm.6.2 and thm.6.3 compare? The base case “Pk0 is true” is the same for
both, and so is the conclusion “Pk+1 is true”. The difference is in the induction assumptions. Strong
induction allows you to assume a lot more (the validity of Pj for a]] j ≤ k) than ordinary induction
where you only may assume the validity of Pk. �

6.2 The Discrete Structure of the Integers

In the previous section the induction principles were derived from the induction axiom and they
are very powerful tools for the design of a proof. Accordingly, you encounter such proofs quite
frequently. The induction axiom itself is used rather seldom in comparison, but the next theorem is
a nice example where this is the case.

Theorem 6.4 (B/G Prop.2.20). If k ∈ N then

k ≥ 1.(6.1)

PROOF:
Let A := {n ∈ N : n ≥ 1. It suffices to show that A ⊇ N.

(a) Clearly, 1 ≥ 1. Hence, 1 ∈ A.
(b) Next, let a ∈ A. Then a ≥ 1. Hence, a+ 1 ≥ 1 + 1 > 1 (use Proposition 3.36 on p.72).
(c) Thus, a+ 1 ≥ 1 and thus, a+ 1 ∈ A.

We have shown in (a) and (c) that 1 ∈ A and also, that ∈ A ⇒ a + 1 ∈ A. It follows from the
induction axiom that A ⊇ N �

Proposition 6.2 (B/G Prop.2.21). There exists no x ∈ Z such that 0 < x < 1.

The proof is left as exercise 6.12 (see p.210). �

Corollary 6.2 (B/G Cor.2.22). Let n ∈ Z. There exists no x ∈ Z such that n < x < n+ 1.

The proof is left as exercise 6.13 (see p.210). �

Proposition 6.3 (sharpening of B/G Prop.2.13). N = {k ∈ Z : k ≥ 1}.

PROOF: This follows from 1 > 0 (cor.3.3 on p.72) and prop.6.2 above. �

It follows from the last proposition that N = [1,∞[ and thus min(N) = 1. We will see in subchapter
6.8 (The Well–Ordering Principle) on p.193 that this is a special case of the following: All nonempty
subsets of N possess a minimum.
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6.3 Divisibility

For any two real numbers a and b such that b 6= 0 one can construct the quotient ab , and the result is
again a real number. The same situation exists for fractions. In contrast there are integers m, n 6= 0
for which the quotient m

n is not an integer, e.g., if m = 12 and n = 5. One says in this case that m
is not divisible by n. Questions of divisibility are of great interest in the mathematical discipline of
number theory, and we will examine divisibility at various times.

Definition 6.2 (Divisibility).

(a) Let m,n ∈ Z. We say that n divides m or, equivalently, that m is divisible by n if
there exists j ∈ Z such that m = jn. We then write n | m, and we write n - m if n
does not divide m, i.e., there is no k ∈ Z that satisfies m = kn.

(b) Let m ∈ Z. We say that m is an even integer if 2 | m. We say that m is an odd integer
if m is not even, i.e., 2 - m. �

Proposition 6.4. Let m,n ∈ Z such that m 6= 0 and m | n, i.e., there exists j ∈ Z be such that n = j ·m.
Then j is uniquely determined.

PROOF: Assume that there is j′ ∈ Z such that also n = j′ ·m. Then

n = j′ ·m = j ·m, hence (j′ − j)m = 0.

The integral domain Z has no zero divisors, hence a · b = 0 implies a = 0 or b = 0.
It follows from m 6= 0 that j′ − j = 0 and hence j′ = j. �

The above result implies that the integer j is unique determined by m and n and hence allows us to
make the following definition.

Definition 6.3 (Quotients). Let d, n ∈ Z such that d | n and d, n 6= 0.

Let q ∈ Z be the unique integer for which n = q · d. We write either of

n

d
, n/d, n÷ d instead of q ,

and we call n the dividend or numerator, d the divisor or denominator, and q the quotient
of the expression n/d. We also define 0

d := 0 if d 6= 0, but we leave n
0 undefined for any

integer n. �

Note 6.1. Note that the assignment (d, n) 7→ n/d is not a “binary operation” on Z as is the case for
(m,n) 7→ m+ n and (m,n) 7→ m · n. The reason: m+ n and m · n are defined for any two m,n ∈ Z
whereas n/d is only defined for those d, n ∈ Z which satisfy the condition d | n.

Also note that the order of n and d is reversed in these two expressions:
We write d | n to indicate that the quotient n/d exists! �
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Proposition 6.5 (B/G prop.1.16). If m and n are even integers, then so are m+ n and mn.

PROOF: Left as an exercise. �

Proposition 6.6 (B/G prop.1.17).

(a) If m is an integer then m | 0. In particular, 0 | 0.
(b) If m is a nonzero integer then 0 - m.

PROOF: Left as an exercise. �

Proposition 6.7 (B/G prop.2.18). Let n ∈ N. Then
(a) n3 + 2n is divisible by 3,
(b) n4 − 6n3 + 11n2 − 6n is divisible by 4,
(c) n2 + n is even, i.e., divisible by 2,
(d) n3 + 5n is divisible by 6.

PROOF of (a): See [2] B/G (Beck/Geoghegan), prop.2.18(i).
PROOF of (b), (c), (d): Left as an excercise. Note that (c) will be helpful for the proof of (d). �

The following example shows how to structure a proof by induction of divisibility. Note that it
makes use of Proposition 6.7(c).

Example 6.3 (Divisibility). Prove by induction that 6 | (5n3 + 7n) for n ∈ [0,∞[Z .

PROOF:
We need to find j ∈ Z such that 5n3 + 7n = 6j.
Base case: n = 0.
Then 5n3 + 7n = 0 + 0 = 0 = 0 · 1. The base case holds since we may choose j = 1.
Induction assumption: Assume that n ∈ [0,∞[Z is such that there exists j ∈ Z such that

5n3 + 7n = 6j .(IA)

We need to show that

there exists j′ ∈ Z such that 5(n+ 1)3 + 7(n+ 1) = 6j′ .(NTS)

We transform the left side of that equation as follows:

5(n+ 1)3 + 7(n+ 1) = (5n3 + 15n2 + 15n + 5) + 7n + 7

= (5n3 + 7n) + (15n2 + 15n + 5) + 7

= (5n3 + 7n) + 15(n2 + n) + 12 .
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According to Proposition 6.7(c), n2 + n is even and thus equals 2j′′ for a suitable integer j′′. We
further apply (IA) and obtain

5(n+ 1)3 + 7(n+ 1) = (6j) + 15(2j′′) + 12 = 6(j + 5j′′ + 2) .

Let j′ := j + 5j′′ + 2. Then (NTS) is satisfied and the proof by induction is finished �

Proposition 6.8 (B/G Prop.2.24). Let n ∈ N. Then n2 + 1 > n.

PROOF: The proof is left as exercise 6.14 (see p.210). �

Proposition 6.9 (B/G prop.2.23). Let m,n ∈ N. If m | n then m ≤ n

The proof is left as exercise 6.11 (see p.210). �

6.4 Embedding the Integers Into an Ordered Integral Domain

The presentation of this material follows ch.9 of [2] B/G (Beck/Geoghegan).

Introduction 6.1. Allowing integers to be viewed as certain elements of an ordered integral domain
R = (R,⊕,�, P ) makes it possible to look at products na of integers n and a ∈ R.
In particular we can multiply binomial coefficients

(
n
k

)
with elements of R and thus formulate and

prove the binomial theorem

(a⊕ b)n =

n∑
k=0

(
n

k

)
akbn−k

for elements a and b of such an arbitrary ordered integral domain.
We will “embed” the ordered integral domain Z = (Z,+, ·,N) into the ordered integral domain
R = (R,⊕,�, P ) by means of a function e : Z → R which respects their algebraic operations
(addition and multiplication) and also the order relation induced by their positive cones in a sense
which is specified in theorem 6.5 further down (p.178). �

We assume in the following that R = (R,⊕,�, P ) is a fixed ordered integral domain. We
will distinguish the additive units of the domain Z and the codomain R by tagging them as
0Z and 0R, and we will distinguish their multiplicatitive units by tagging them as 1Z and
1R. We also will distinguish order relations x < y, x ≤ y, ... by writing m < n,m ≤ n, . . . if
we deal with elements m,n ∈ Z, and we will write a ≺ b, a � b, . . . for a, b ∈ R.

We will see examples for the above notational conventions in the following definition.

Definition 6.4 (Natural Embedding of the Integers Into (R,⊕,�, P )). ?

We define a function e : Z→ R, partially by recursion, as follows.
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e(0Z) := 0R ,(6.2)
e(n+ 1Z) := e(n)⊕ 1R for n ∈ [0,∞[Z ,(6.3)

e(n) := 	 e(−n) for n ∈ ]−∞,−1 ]Z .(6.4)

We call e the natural embedding of Z into (R,⊕,�, P ). �

We establish some properties of the natural embedding.

Lemma 6.1.

e(1Z) = 1R,(6.5a)
e(−k) = 	 e(k) for any k ∈ Z.(6.5b)

PROOF of (6.5a):

e(1Z) = e(0Z + 1Z)
(6.3)
= e(0R)⊕ 1R

(6.2)
= 1R.

PROOF (6.5b): (6.5b) is obviously true if k = 0. If k < 0 then this equation follows from (6.4), and if
k > 0 then we also obtain it from (6.4) since then −k < 0, thus

e(−k) = 	 e
(
− (−k)

)
= 	 e(k). �

Note that (6.5a) expresses that the image of the multiplicatve unit in Z is the multiplicative unit in
R, and (6.5b) expresses that the image of the additive inverse is the additive inverse of the image.

We now show that the natural embedding e is compatible with the algebraic operations “+” of Z
and “⊕” of R in the sense that the image of the sum is the sum of the images.

Proposition 6.10. Let m,n ∈ Z. Then e(m+ n) = e(m)⊕ e(n).

Proof strategy: We will do a proof by cases:
Case 1: m = 0Z or n = 0Z,
Case 2: m > 0Z and n > 0Z,
Case 3: m < 0Z and n < 0Z.

The remaining case that either m > 0Z, n < 0Z or n > 0Z,m < 0Z only needs to be shown for one of
those two possibilities, say, n > 0Z and m < 0Z. We subdivide this case into two separate cases as
follows:

Case 4: n > 0Z and m < 0Z and n ≥ −m,
Case 5: n > 0Z and m < 0Z and n < −m.

Only the second case needs a proof by induction.
PROOF of case 1: m = 0Z or n = 0Z: This is trivial since if, say, n = 0Z then

e(m+ n) = e(m)
(6.2)
= e(m)⊕ e(0R) = e(m)⊕ e(n).

PROOF of case 2: m > 0Z and n > 0Z:
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We consider m > 0 as fixed but arbitrary and do the proof by induction on n.
Base case: n = 1Z. The assertion e(m+ 1Z) = e(m)⊕ 1R is just (6.3).
Induction assumption (IA): Assume that e(m+ n) = e(m)⊕ e(n) for some n ∈ N.
We must show that e

(
m+ (n+ 1Z)

)
= e(m)⊕ e(n+ 1Z). This follows from

e
(
m+ (n+ 1Z)

)
= e

(
(m+ n) + 1Z

) (6.3)
= e(m+ n)⊕ 1R

(IA)
= e(m)⊕

(
e(n) ⊕ 1R

) (6.3)
= e(m)⊕ e(n+ 1Z).

PROOF of case 3: m < 0Z and n < 0Z:
Since −m > 0 and −n > 0 we may apply what we already proved in case 2 above:

e(m+ n)
(6.4)
= 	 e

(
− (m+ n)

)
= 	 e

(
(−m) + (−n)

)
= 	

(
e(−m)⊕ e(−n)

)
=
(
	 e(−m)

)
⊕
(
	 e(−n)

) (6.4)
= e(m)⊕ e(n).

PROOF of case 4: n > 0Z and m < 0Z and n ≥ −m.
It follows from the assumptions of this case that n = (n + m) + (−m) is the sum of the natural
numbers n+m and −m. We apply what we proved in case 2 and obtain

e(n) = e(n+m)⊕ e(−m)
(6.5b)
= e(n+m)	 e(m),

thus e(m+ n) = e(m)⊕ e(n).
PROOF of case 5: n > 0Z and m < 0Z and n < −m:
It follows from the assumptions of this case that −m = −(m + n) + n is the sum of the natural
numbers −(n + m) and n. We apply what we proved in case 2 and obtain with repeated use of
(6.5b) that

	 e(m) = e(−m) = e
(
− (m+ n) + n

)
= e

(
− (m+ n)

)
⊕ e(n) = 	 e(m+ n)⊕ e(n),

thus e(m+ n) = e(m)⊕ e(n). �

We will prove next that the natural embedding e also is compatible with the algebraic operations
“·” of Z and “�” of R in the sense that the image of the product is the product of the images.

Proposition 6.11. Let m,n ∈ Z. Then e(m · n) = e(m)� e(n).

Proof strategy: We do a proof by cases just as we did for prop.6.10, but we only need four cases:
Case 1: m = 0Z or n = 0Z.
Case 2: m > 0Z and n > 0Z.
Case 3: m < 0Z and n < 0Z.

The remaining case that either m > 0Z, n < 0Z or n > 0Z,m < 0Z only needs to be shown for one of
those two, say, n > 0Z and m < 0Z since multiplication is commutative and we obtain the proof for
the other case by switching the roles of m and n. Thus we are left with

Case 4: m < 0Z and n > 0Z.
Only the second case needs a proof by induction.
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PROOF of case 1: m = 0Z or n = 0Z: This is trivial since if, say, m = 0Z then

e(m · n) = e(0Z)
(6.2)
= 0R = e(m)� 0R

(6.2)
= e(m)� e(0Z).

PROOF of case 2: m > 0Z and n > 0Z:
We consider m > 0 as fixed but arbitrary and do the proof by induction on n.
Base case: n = 1Z. The assertion e(m · 1Z) = e(m)� e(1Z) follows from (6.5b).
Induction assumption (IA): Assume that e(m · n) = e(m)� e(n) for some n ∈ N.
We must show that e

(
m · (n+ 1Z)

)
= e(m)� e(n+ 1Z). This follows from

e
(
m(n+ 1Z)

)
= e(mn+m)

prop.6.10
= e(mn)⊕ e(m)

(IA)
= e(m)� e(n) ⊕ e(m) = e(m)(e(n)⊕ 1R)

(6.3)
= e(m)� e(n+ 1Z).

PROOF of case 3: m < 0Z and n < 0Z:
Since −m > 0 and −n > 0 we may apply what we already proved in case 2 above:

e(m · n) = e
(
(−m)(−n)

)
= e(−m)� e(−n)

(6.5b)
=

(
	 e(m)

)
·
(
	 e(n)

)
= e(m)� e(n).

PROOF of case 4: n > 0Z and m < 0Z: We again apply what we proved in case 2 to the natural
numbers −m and n and obtain with the use of (6.5b) that

	e(mn) = e(−mn) = e
(
(−m)n

)
= e(−m)� e(n) = 	e(m)� e(n),

thus e(mn) = e(m)� e(n). �

We now turn to the relationship which the natural embedding e establishes between the order rela-
tion m < n on Z (induced by its positive cone N) on the one hand, and the order relation a < b on R
(induced by its positive cone P ) on the other hand.

Proposition 6.12 (B/G Prop.9.15). Let n ∈ N. Then e(n) ∈ P , i.e., e(n) is positive.

The proof is left as exercise 6.2 (see p.209). �

The natural embedding e is order preserving both ways in the sense specified in the next proposi-
tion.

Proposition 6.13 (B/G Prop.9.19). Let m,n ∈ Z. Then

m < n ⇔ e(m) ≺ e(n) ,(6.6)
m ≤ n ⇔ e(m) � e(n) .(6.7)

PROOF of⇒ of (6.7):
Let us assume that e(m) � e(n). We must show that m ≤ n.
Case 1 – e(m) ≺ e(n): then m < n according to the already proven part (6.7), thus m ≤ n.
Case 2 – e(m) = e(n): We prove that m = n, hence m ≤ n by showing that both m < n and n < m
lead to a contradiction.
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If m < n then n − m ∈ N, thus e(n) 	 e(m) = e(n − m) ∈ P according to Proposition 6.12, i.e.,
e(n)	 e(m) ∈ P since e(n)	 e(m) = e(n−m) according to Proposition 6.10 on p.175.
It follows from 0R /∈ P that e(m) 	 e(n) 6= 0R, i.e., e(m) 6= e(n). This contradicts the assumption
e(m) = e(n) we made at the beginning of this case 2.
We have shown that it is not possible that m < n, i.e., that m ≥ n. The proof that n ≥ n is obtained
by switching the roles of m and n in the above reasoning.
We have completed the proof of case 2 of⇒ of (6.7) and thus the proof of the entire proposition. �

Corollary 6.3. The natural embedding e : Z→ R is injective.

PROOF:
The proof was already done as part of case 2 of ⇒ of (B) of Proposition 6.13 where we saw that
equality e(m) = e(n) of function values implies that of the arguments m and n. This is the very
definition of injectivity. We give here a streamlined proof that builds on Proposition 6.13.
Let m,n ∈ Z such that m 6= n. Then either m < n or m > n. In the first case it follows from
prop.6.13 that e(m) ≺ e(n) and thus e(m) 6= e(n), in the second case it follows from (A) of prop.6.13
that e(m) � e(n) and thus e(m) 6= e(n). �

We summarize everything said in this subchapter in the following theorem.

Theorem 6.5. Let R = (R,⊕,�, P ) be an ordered integral domain.

The natural embedding e : (Z,+, ·,N) −→ (R,⊕,�, P ) which is defined as follows:

e(0Z) = 0R, e(n+ 1Z) = e(n)⊕ 1R if n ∈ N, e(n) = 	e(−n) if n < 0

is an injective function with the following structure preserving properties (m,n ∈ Z):
(a) e maps neutral element to neutral element: e(0Z) = 0R and e(1Z) = 1R.
(b) Image of the sum = sum of the images: e(m+ n) = e(m)⊕ e(n).
(c) Image of the product = product of the images: ⇒ e(m · n) = e(m)� e(n).
(d) Image of the additive inverse = additive inverse of the image: e(−m) = 	e(m).
(e) e preserves the order: m < n ⇔ e(m) ≺ e(n) and m ≤ n ⇔ e(m) � e(n).

PROOF: follows from the material presented prior to this theorem. �

Remark 6.4. The function e does such nice job of embedding, i.e., injecting the integers intoR that it
is justified to “identify” the integers with their images in R. One thus does not distinguish between
n ∈ Z and e(n) ∈ R. �

Functions which prefer algebraic structures play a very important role in abstract algebra, where
they are called homomorphisms. The group homomorphisms we briefly discussed in Chapter 3
(The Axiomatic Method) are an example of such homomorphisms. Note that (b), (d) and the for-
mula e(0Z) = 0R in (a) of Theorem 6.5 imply that the natural embedding is a group homomorphism
(Z,+)→ (R,⊕).

Definition 6.5 (Ring homomorphism). ?
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A function h : (R,⊕,�) −→ (R′,⊕′,�′) between two commutative rings with unit and
in particular between two ordered integral domains 90 which satisfies Theorem6.5.a–d is
called a ring homomorphism.
Note that ring homomorphisms play for commutative rings with unit the role which group
homomorphisms play for groups. �

Theorem:

Let R = (R,⊕,�, P ) be an ordered integral domain which satisfies the induction axiom.
See Axiom 6.1 (Integers and Natural Numbers) on p.167.
Then the natural embedding e : (Z,+, ·,N) −→ (R,⊕,�, P ) is an isomorphism of ordered
integral domains, i.e., e is bijective and it’s inverse, e−1, also satisfies (a)–(e) of Theorem 6.5.

PROOF:
Let A := P ∩ e(Z)

Step (1) We show that A = P .
Since 1R = e(1) and 1R > 0, 1R ∈ A.
Next, let p ∈ A. Since p ∈ e(Z), there is some k ∈ Z such that p = e(k). Then

a⊕ 1R = e(k)⊕ e(1) = e(k + 1) .

Thus, a⊕ 1R ∈ e(Z). Further, a ∈ P implies a⊕ 1R ∈ P .
We have shown thatA satisfies the induction axiom and it follows thatA ⊆ P . By definition,A ⊆ P .
It follows that A = P .
Step (2) We show that −P ⊆ e(Z).
Let x ∈ 	P and a := 	x. Then a ∈ P = A. Thus, there exists k ∈ Z such that = e(k). Further,
e(−k) = 	a = b. Thus, 	P ⊆ e(Z).
Step (3) We show that R ⊆ e(Z).
Since 0R = e(0) ∈ e(Z), it follows from steps (1) and (2) that {0R} ] (P ) ] (−P ) ⊆ e(Z). As an
ordered integral domain, R satisfies R = {0R} ] (P ) ] (−P ).
We have shown that e is surjective, hence, bijective.
Step (3) We show that e−1, also satisfies (a)–(e) of Theorem 6.5.
(a) We apply e−1 to e(0Z) = 0R and e(1Z) = 1R and obtain 0Z = e−1(0R) and 1Z = e−1(1R).
(b) follows from Theorem 3.5 on p.60.
(c) is obtained by applying the proof of Theorem 3.5 to “�” instead of “⊕”.
(d) We show that e−1(	a) = −e−1(a) as follows.
Let a ∈ R and n := e−1(a), i.e., a = e(n). Then

e−1(	a) = e−1
(
	 e(n)

) (6.5b)
= e−1

(
e(−n)

)
= −n = −e−1(a) .

(e) That e−1 preserves both “≺” and “�” follows from Theorem6.5.e by setting
m := e−1(a) and n := e−1(b) for arbitrary a, b ∈ R,

and noting that the “⇔” arrows allow us to go back and forth between Z and R. �

179 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

6.5 Recursive Definitions of Sums, Products and Powers in Integral Domains

We start this chapter with the generalizations of some definitions and several of the propositions
that you will find in ch.4 of [2] Beck/Geoghegan Art of Proof for the specific ordered integral do-
main (Z,+, ·,N) and the specific “start index j = 1. Except for those generalizations almost all of
the material in this subchapter has been copied almost literally from that book.

Assume in this entire chapter that R = (R,⊕,�, P ) is an ordered integral domain

The following definition is a generalization of “Σ” in B/G p.34, 35.

Definition 6.6. Let k ∈ Z and let (xj)
∞
j=k ∈ R.

For each n ∈ Z such that k ≤ n, we define an element of R called
n∑
j=k

xj as follows. 91

(i)
k∑
j=k

xj = xk, (ii)
n+1∑
j=k

xj =

n∑
j=k

xj ⊕ xn+1.(6.8)

We call
n∑
j=k

xj the sum of xk, xk+1, . . . , xn−1, xn. �

The following definition is a generalization of “
∏

” (B/G p.34, 35).

Definition 6.7 (Definition of
∏n
j=k xj). Let k ∈ Z and let (xj)

∞
j=k ∈ R.

For each n ∈ Z such that k ≤ n, we define an element of R called
n∏
j=k

xj as follows. 92

(i)
k∏
j=k

xj = xk, (ii)
n+1∏
j=k

xj =

n∏
j=k

xj � xn+1.(6.9)

We call
n∏
j=k

xj the product of xk, xk+1, . . . , xn−1, xn. �

Note that in the following proposition we make use of the results of ch.6.4 (Embedding the Integers
Into an Ordered Integral Domain). It was shown there that we can identify integers k as certain

91
n∑
j=k

xj can also be written xk ⊕ xk+1 ⊕ · · · ⊕ xn.

92
n∏
j=k

xj can also be written xk � xk+1 · · · � xn or xkxk+1 . . . xn.
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elements e(k) of R by means of the embedding function e : Z → R. For example the equation
n∑
j=k

xj = n	 k ⊕ 1 in part (b) of Proposition 6.14 below is to be understood as
n∑
j=k

xj = e(n− k + 1),

an equation between elements of R.

Proposition 6.14 (B/G prop.4.15). Let m,n, k ∈ Z, c ∈ R, and let (xj)
∞
j=k be a sequence in R. Then

(a) c�

(
n∑
j=k

xj

)
=

n∑
j=k

(c� xj).

(b) If xj = 1 for all j ∈ [k, n]Z then
n∑
j=k

xj = n	 k ⊕ 1.

(c) If xj = c for all j ∈ [k, n]Z then
n∑
j=k

xj = (n	 k ⊕ 1)� c.

PROOF: Left as an exercise. �

Proposition 6.15 (B/G prop.4.16).
Let m,n, p ∈ Z such that m ≤ n < p, and let (xj)

p
j=m and (yj)

p
j=m be sequences in R. Then

(a)
p∑

j=m
xj =

n∑
j=m

xj ⊕
p∑

j=n+1
xj ,

(b)
p∑

j=m
(xj ⊕ yj) =

p∑
j=m

xj ⊕
p∑

j=m
yj .

PROOF: Left as an exercise. �

Proposition 6.16 (B/G prop.4.17).

Let m,n, p ∈ Z such that m ≤ n, and let (xj)
n
j=m be a sequence in R. Then

n∑
j=m

xj =
n+p∑

j=m+p
xj−p.

PROOF: Left as an exercise. �

Proposition 6.17 (B/G prop.4.18).
Let m,n ∈ Z such that m ≤ n, and let (xj)

n
j=m and (yj)

n
j=m be sequences in R such that xj ≤ yj for all

m ≤ j ≤ n. Then
n∑

j=m
xj ≤

n∑
j=m

yj .

PROOF: Left as an exercise. �

We established earlier the convention to write

x⊕ y ⊕ z for either of (x⊕ y)⊕ z and x⊕ (y ⊕ z) ,
x� y � z for either of (x� y)� z and x� (y � z) ,

since the operations ⊕ and � are associative and we announced that we will be able to dispense
with parentheses in expressions that involve sums or products of more than three items

Theorem 6.6 (Generalized Law of Associativity). Let x1, x2, . . . , xn ∈ R. Then the formulas for as-
sociativity x1 ⊕ (x2 ⊕ x3) = (x1 ⊕ x2) ⊕ x3 for sums and x1(x2x3) = (x1x2)x3 for products extend to
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x1, x2, . . . , xn in the sense that it does not matter how parentheses are used to control the order how the sum

of those n items is evaluated. Matter of fact, the value of any such grouping is
n∑
j=1

xn for summation and

n∏
j=1

xn for products.

PROOF: The proof is given for summation only because the proof for products is similar. It is done
by induction on the size n of a list of elements of R.
Base case: The proof is obvious for n = 1, 2, 3. (We use associativity for k = 3).

Induction assumption:

If k ≤ n and y1, . . . yk ∈ R then any grouping with parentheses of y1 ⊕ · · · ⊕ yk equals
k∑
j=1

yj .

Let us now assume that we have a sum of x1, . . . xn, xn+1, grouped by parentheses. LetA denote that
sum. We may assume that n ≥ 4 and that there are no superfluous parentheses, i.e., no parentheses
of the form (a) (xj), (b) ((. . . )), and (c) pairs of parentheses that enclose the entire list of n + 1
elements. Because parentheses of type (a) and (c) are excluded, we have either of

case 1: x1 ⊕ (. . . ) or case 2: (. . . )⊕ xn+1 or case 3: (. . . )⊕ (. . . ),

where (. . . ) contains at most n of the n+ 1 items.
Case 1: (. . . ) is a sum of the items x2, . . . , xn+1, grouped by parentheses. It follows from the induc-

tion assumption that A = x1 ⊕
n+1∑
j=2

xj =
1∑
j=1

xj ⊕
n+1∑
j=2

xj .

Case 2: (. . . ) is a sum of the items x1, . . . , xn, grouped by parentheses. It follows from the induction

assumption that A =
n∑
j=1

xj ⊕ xn+1 =
n∑
j=1

xj ⊕
n+1∑
j=n+1

xj .

Case 3: There will be someK ∈ N such that 2 ≤ K < n and such that the left grouping (. . . ) consists
of x1, . . . , xK and the right grouping (. . . ) consists of xK+1, . . . , xn+1. It follows from the induction

assumption that A =
K∑
j=1

xj ⊕
n+1∑

j=K+1

xj .

In either case we conclude with the help of prop.6.15(a) that A =
n∑
j=1

xn+1. �

Definition 6.8. Let β ∈ R. For any n ∈ Z≥0 we define βn ∈ R recursively as follows:

(i) β0 := 1, (ii) βn+1 = βn � β.(6.10)

In an expression of the form βn we call β the basis, we call n the exponent, and we call βn

the n–th power of β. �

Remark 6.5. Note that the above definition implies that 00 = 1.
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Proposition 6.18 (B/G prop.4.6: Arithmetic Rules for Exponentiation). Let β ∈ R and k,m ∈ Z≥0.
We have the following:

(a) If β > 0 then βk > 0,
(b) βm � βk = βm+k,
(c) (βm)k = βmk.

PROOF: The proof of (a) is given (for R = Z) in [2] Beck/Geoghegan Art of Proof, ch.4.
The proofs of (b) and (c) is left as exercise 6.5 (see p.209). �

Proposition 6.19 (B/G prop.10.9). Let a ∈ R such that 0 ≤ a ≤ 1, and let m,n ∈ N such that m ≥ n.
Then am ≤ an.

The proof is left as exercise 6.6 (see p.209). �

Proposition 6.20 (B/G prop.8.41). Let a ∈ R. Then a2 < a3 if and only if a > 1.

PROOF: Left as an exercise. �

Definition 6.9 (Finite Geometric Series). Let q ∈ R and n ∈ Z≥0.

We call a sum of the form
n∑
j=0

qj a finite geometric series. �

Proposition 6.21 (Finite Geometric Series Formula (B/G prop.4.13)).

Let q ∈ R. If n ∈ Z≥0 then
(1	 q)�

n∑
j=0

qj = 1	 qn+1 .

PROOF: Left for as exercise 6.8 (see p.209). That exercise is stated for R = Z, but the proof for
general R is no different. �

Remark 6.6.

Except for prop.6.17 there are no inequalities involved in the formulas for generalized sums,
products and powers, and we did not take advantage of the absence of zero divisors either.
Thus we could have worked everywhere else with a commutative ring with unit instead of
an ordered integral domain. �

6.6 Binomial Coefficients

The material here follows very closely ch.4.4 (The Binomial Theorem) of [2] Beck/Geoghegan.

The recursive definitions of sums
∑
xj , products

∏
xj , and powers xn can be generalized to more

general objects xj and x (see ch.6.5 on p.180), but the following definition cannot be generalized to
objects n more general than nonnegative integers.
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Definition 6.10 (Definition of Factorials). For any n ∈ Z≥0 we define a natural number n! recursively
as follows:

(i) 0! := 1, (ii) (n+ 1)! = n! · (n+ 1).(6.11)

We pronounce n! as n factorial. �

Remark 6.7. If n ≥ 1 then n! represents the product of the “first n natural numbers”:

1! = 0! · 1 = 1,

2! = 1! · 2 = 1 · 2,
3! = 2! · 3 = 1 · 2 · 3,
−−−−−−−−−−−−−
n! = 1 · 2 · 3 · · · · · n. �

Definition 6.11 (Binomial coefficients). Let n, k ∈ Z such that 0 ≤ k ≤ n. We define the binomial

coefficient
(
n

k

)
(pronounced “n choose k”) as follows:

(6.12)
(
n

k

)
:=

 1 if k = 0 or k = n,(
n− 1

k − 1

)
+

(
n− 1

k

)
otherwise, i.e., n ≥ 2 and 0 < k < n. �

Remark 6.8. The binomial coefficients form a triangle, the so called Pascal triangle. The recursive
formula above states that a binomial coefficient

(
n
k

)
which is neither at the left side (k = 0) nor at the

right side (k = n) of that triangle,is computed as the sum of its upper left and upper right ancestors.
Here are the binomial coefficients for n = 0, 1, 2, 3, 4.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

Note that binomial coefficients are natural numbers since they are either 1 or the sum of natural
numbers. In particular they are integers and not fractions. �

Proposition 6.22.
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Let n, k ∈ Z such that 0 ≤ k ≤ n. Then

(6.13)
(
n

k

)
=

n!

k!(n− k)!
.

PROOF: We do the proof by strong induction on n.
(6.13) is obvious for k = 0 or k = n since n!

0!·n! = 1. This takes care of the base cases n = 0 and n = 1.
Let n ≥ 2 and 1 ≤ k ≤ n− 1. Our induction assumption is that

(6.14)
(
m

j

)
=

m!

j!(m− j)!
if m < n and 0 ≤ j ≤ m.

We prove the validity of (6.13) as follows.(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(n− 1)!

(k − 1)! · ((n− 1)− (k − 1))!
+

(n− 1)!

k! · ((n− 1)− k)!

=
(n− 1)!

(k − 1)! · (n− k)!
+

(n− 1)!

k! · (n− 1− k)!

=
k · (n− 1)!

k! · (n− k)!
+

(n− 1)! · (n− k)

k! · (n− k)!

= (k + n− k) · (n− 1)!

k! · (n− k)!
=

n · (n− 1)!

k! · (n− k)!
=

n!

k! · (n− k)!
.

Equation #1 above follows from (6.12), #2 follows from the induction assumption (6.14). �

Note that, in contrast to our approach, B/G uses prop.6.22 above as the definition of the binomial
coefficients, and (6.12) of this document then becomes a proposition.

The reduction formula in the following lemma allows to express a binomial coefficient in terms of
another with smaller numbers.

Lemma 6.2 (Symmetry and reduction lemma).(
n

k

)
=

(
n

n− k

)
(0 ≤ k ≤ n) symmetry(6.15a) (

n

k

)
=

n

k
·
(
n− 1

k − 1

)
(1 ≤ k ≤ n) reduction(6.15b)

PROOF of (6.15a): (
n

k

)
=

n!

k! · (n− k)!
=

n!

(n− k)! · k!
=

(
n

n− k

)
PROOF (6.15b):(

n

k

)
=

n!

k! · (n− k)!
=

n · (n− 1)!

k · (k − 1)! · ((n− 1)− (k − 1))!
=

n

k
·
(
n− 1

k − 1

)
�
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We recall the binomial formula for squares

(a + b)2 = 1 · a2 + 2 · ab + b2.

and the one for cubes:

(a + b)3 = 1 · a3 + 3 · a2b + 3 · ab2 + 1 · b3.

We see that the coefficients of the terms aibj match the numbers of the Pascal triangle: They are the
binomial coefficients

(
n
k

)
for n = 2 and n = 3. Here is the generalization to compute (a + b)n for

arbitrary n.
Let R = (R,⊕,�) be an integral domain. We also remember that exponentials xn and products kx
are defined for n ∈ [0,∞[, k ∈ Z, x ∈ R, as follows:

xn = 1 if n = 0 and xn = x� xn−1 if n > 0 ,

kx = e(k)� x where k 7→ e(k) is the embedding Z→ R defined in Chapter 6.4 .

Theorem 6.7 (Binomial theorem). Let R = (R,⊕,�) be an integral domain.

For any n ∈ Z≥0 and a, b ∈ R,

(6.16) (a+ b)n =

n∑
k=0

(
n

k

)
akbn−k

PROOF:
The proof is done by induction over n
Base case n = 0: Follows from

(
0
0

)
= 1 and a0 = b0 = (a+ b)0 = 1.

Induction assumption: For some n ≥ 0 it is true that

(6.17) (a+ b)n =

n∑
k=0

(
n

k

)
akbn−k.

We need to show that

(6.18) (a+ b)n+1 =
n+1∑
k=0

(
n+ 1

k

)
akbn+1−k.

It follows from the formulas in ch.6.5 (Recursive Definitions of Sums, Products and Powers in Inte-
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gral Domains) and prop.6.22 that

n+1∑
k=0

(
n+ 1

k

)
akbn+1−k =

(
n+ 1

0

)
a0bn+1 ⊕

n∑
k=1

(
n+ 1

k

)
akbn+1−k ⊕

(
n+ 1

n+ 1

)
an+1b0

= bn+1 ⊕
n∑
k=1

((
n

k − 1

)
+

(
n

k

))
akbn+1−k ⊕ an+1

= bn+1 ⊕
n∑
k=1

(
n

k − 1

)
akbn+1−k ⊕

n∑
k=1

(
n

k

)
akbn+1−k ⊕ an+1

= bn+1 ⊕
n−1∑
k=0

(
n

k

)
ak+1bn+1−(k+1) ⊕

n∑
k=1

(
n

k

)
akbn+1−k ⊕ an+1.

The last equation above results from application of prop.6.16 to the first summation term. We con-
tinue by pulling an+1 into the first sum and bn+1 into the second sum, using prop.6.15(a). This
yields

n+1∑
k=0

(
n+ 1

k

)
akbn+1−k =

n∑
k=0

(
n

k

)
ak+1bn−k ⊕

n∑
k=0

(
n

k

)
akbn+1−k

prop.6.14(a)
= a

n∑
k=0

(
n

k

)
akbn−k ⊕ b

n∑
k=0

(
n

k

)
akbn−k.

We apply the induction assumption (6.17) to each sum in the last expression and obtain

n+1∑
k=0

(
n+ 1

k

)
akbn+1−k = a(a⊕ b)n + b(a⊕ b)n = (a⊕ b)(a⊕ b)n = (a⊕ b)n+1.

We have proven (6.18), and this completes the induction step. �

Corollary 6.4. Let n ∈ Z≥0. Then
n∑
k=0

(
n

k

)
= 2n.

PROOF: We apply the binomial theorem with a = b = 1. Since 1j = 1 for all j ∈ Z≥0,

(6.19) 2b = (1 + 1)n =
n∑
k=0

(
n

k

)
ajbn−k =

n∑
k=0

(
n

k

)
. �

6.7 Bernstein Polynomials ?

Note that this chapter is starred, hence optional,

but also note that we will cite the results of this chapter later in this document.

The material in this chapter makes extensive use of the properties of binomial coefficients.
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Definition 6.12 (Bernstein Polynomials). ?

Let f : [0, 1] → R be a real–valued function on the unit interval which need not necessarily be
continuous. If n ∈ N then

Bf
n : R→ R; x 7→ Bf

n(x) :=
n∑
k=0

(
n

k

)
f
(k
n

)
xk(1− x)n−k.(6.20)

defines a function of the form (5.41) (see p.155), thus Bf
n is a polynomial which we call the n–th

Bernstein polynomial associated with f(·). �

Remark 6.9. Note that the degree of Bf
n need not be n. For example, any function f such that Bf

n is
the zero polynomial has no degree. Obviously such is the case for the zero function 0 : x→ 0 where
0 ≤ x ≤ 1. Here is a less trivial example. Consider the function

g : R→ [0, 1]; g(x) :=

{
0 if x ∈ Q,

1 else.
(6.21)

Since k
n ∈ Q for all n ∈ N and all integers k such that 0 ≤ k ≤ n it follows that g( kn) = 0 for such k

and n, thus Bg
n = 0. �

We now compute the Bernstein polynomials for some specific functions. The proof makes extensive
use of the properties of binomial coefficients. Note that all this takes place on the unit interval
[0, 1] = {x ∈ R : 0 ≤ x ≤ 1}.

Proposition 6.23 (The Bernstein polynomials for 1, id(·), id2(·)). Let

(6.22) 1 : x 7→ 1; id : x 7→ x; id2 : x 7→ x2; (0 ≤ x ≤ 1)

be the constant function 1, the identity function and the square function on the unit interval [0, 1]. Then

B1
n = 1,(6.23a)

Bid
n = id,(6.23b)

Bid2

n =
1

n
id +

n− 1

n
id2.(6.23c)

In other words, for any real number x we have

B1
n(x) = 1

Bid
n (x) = id(x) = x

Bid2

n (x) =
1

n
id(x) +

n− 1

n
id2(x) =

1

n
x +

n− 1

n
x2.

PROOF of (6.23(a)): If x ∈ R then

B1
n(x) =

n∑
k=0

(
n

k

)
xk(1− x)n−k = (x+ (1− x))n = 1n = 1
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The second equality results from (6.16) (binomial theorem) on p.186 applied to a = x and
b = 1− x.
PROOF of (6.23(b)): Let x ∈ R. We must show that Bid

n (x) = x . Observe that

Bid
n (x) =

n∑
k=0

(
n

k

)
k

n
xk(1− x)n−k =

n∑
k=1

k

n

(
n

k

)
xk(1− x)n−k.

We were able to discard the k = 0 term because k
n = 0. The reduction formula (6.15b) on p.185

yields
k

n

(
n

k

)
=

(
n− 1

k − 1

)
(1 ≤ k ≤ n),

thus

Bid
n (x) =

n∑
k=1

(
n− 1

k − 1

)
xk(1− x)n−k.

We change the summation index to j := k − 1, i.e., k = j + 1. Then

Bid
n (x) =

n−1∑
j=0

(
n− 1

j

)
x · xj(1− x)n−(j+1).

We rewrite n− (j + 1) = n− j − 1 = (n− 1)− j . This yields (6.23(b)):

(6.24) Bid
n (x) = x

n−1∑
j=0

(
n− 1

j

)
xj(1− x)(n−1)−j = x

(
x+ (1− x)

)n−1
= x · 1n−1 = x.

PROOF of (6.23(c)): The proof of this formula is significantly more complicated than that of 6.23(b).
We have

(6.25) Bid2

n (x) =

n∑
k=0

(
n

k

)
k2

n2
xk(1− x)n−k =

n∑
k=1

k2

n2

(
n

k

)
xk(1− x)n−k.

We were able to throw away the k = 0 term because this term is the product of k2/n2 with some
other stuff and k2/n2 = 0. As in the proof of part b, we’ll use the symmetry and reduction lemma.
Moreover, the definition formula for binomial coefficients(

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
for 1 ≤ k ≤ n− 1

will be used in this proof. This formula is not valid for k = n and we must split off the correspond-
ing summation term

(6.26)
(
n

n

)
n2

n2
xn(1− x)n−n = 1 · 1 · xn(1− x)0 = xn.

before applying the triangle formula. For k < n we obtain

(6.27)
k2

n2

(
n

k

)
=

k2

n2

n

k

(
n− 1

k − 1

)
=

k

n
·
((n

k

)
−
(
n− 1

k

))
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by applying the reduction formula to the first equation and the Pascal triangle formula to the second
one. Hence, remembering from (6.26) that the nth term is xn,

Bid2

n (x) =
n−1∑
k=1

k

n
·
((n

k

)
−
(
n− 1

k

))
· xk(1− x)n−k + xn

=

n−1∑
k=1

(k
n

(
n

k

)
− k

n

(
n− 1

k

))
· xk(1− x)n−k + xn.

(6.28)

We use the symmetry and reduction lemma again and substitute

k

n

(
n

k

)
=

(
n− 1

k − 1

)
in the left hand side of the difference. This yields

Bid2

n (x) =
n−1∑
k=1

(
n− 1

k − 1

)
xk(1− x)n−k + xn

−
n−1∑
k=1

k

n

(
n− 1

k

)
xk(1− x)n−k.

(6.29)

To make the proof easier to follow we abbreviate

Φ1 :=
n−1∑
k=1

(
n− 1

k − 1

)
xk(1− x)n−k + xn,(6.30a)

Φ2 :=

n−1∑
k=1

k

n

(
n− 1

k

)
xk(1− x)n−k,(6.30b)

thus

(6.31) Bid2

n (x) = Φ1 − Φ2.

We will transform Φ1 and Φ2 separately.
First we simplify Φ1. We substitute the summation index k the same way we did before in part b:

j := k − 1; i.e., k = j + 1.

Since
n− k = (n− 1) − (k − 1) = (n− 1) − j

and (
n− 1

n− 1

)
= 1 = (1− x)0
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we conclude that

Φ1 =
n−2∑
j=0

(
n− 1

j

)
xj+1(1− x)(n−1)−j + xn

=

n−2∑
j=0

(
n− 1

j

)
x · xj(1− x)(n−1)−j +

(
n− 1

n− 1

)
x · xn−1(1− x)0

= x
n−1∑
j=0

(
n− 1

j

)
xj(1− x)(n−1)−j .

We apply the binomial theorem to the last term and obtain

(6.32) Φ1 = x
(
x+ (1− x)

)n−1
= x · 1n−1 = x.

Now we simplify Φ2. Since k
n = n−1

n ·
k

n−1 we can write

Φ2 :=

n−1∑
k=1

k

n

(
n− 1

k

)
xk(1− x)n−k

=
n− 1

n

n−1∑
k=1

k

n− 1

(
n− 1

k

)
xk(1− x)n−k

=
n− 1

n

n−1∑
k=1

(
n− 2

k − 1

)
x · xk−1(1− x)(1− x)(n−1)−k.

The last equality follows from the reduction formula k
n−1

(
n−1
k

)
=
(
n−2
k−1

)
See (6.15b) on p.185. Since

(n− 1)− k = (n− 2)− (k − 1) we conclude that

Φ2 =
n− 1

n

n−1∑
k=1

(
n− 2

k − 1

)
x · xk−1(1− x)(1− x)(n−2)−(k−1)

=
n− 1

n
x(1− x)

n−2∑
j=0

(
n− 2

j

)
xj(1− x)(n−2)−j .

We obtained the last equality by substituting again j := k − 1 . Another application of the binomial
theorem yields

n−2∑
j=0

(
n− 2

j

)
xj(1− x)(n−2)−j = (x+ (1− x))n−2 = 1n−2 = 1.

Thus

(6.33) Φ2 =
n− 1

n
x(1− x).
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We finally use the expressions (6.32) for Φ1 and (6.33) for Φ2 in the equation Bid2

n (·) = Φ1 − Φ2:

Bid2

n (·) = Φ1 − Φ2 = x − n− 1

n
x(1− x)

= x − n− 1

n
x +

n− 1

n
x2

= x
(

1− n− 1

n

)
+

n− 1

n
x2

=
x

n
+

n− 1

n
x2.

(6.34)

This concludes the proof of equation (6.23c). �

We finish this chapter with the interpretation of the Bernstein polynomialsBf
n as expected values of

the discretizations fn(k) = f(k/n) of a real–valued function defined on the unit interval. You may
find it difficult to follow the next remark without some background in probability theory.

Remark 6.10 (Connection between Bernstein polynomials and probability theory). Let f : [0, 1]→ R
be a nonnegative function. For each n ∈ N we define

fn : [0, n]Z → R; k 7→ f(k/n).(6.35)

In other words we obtain fn by “digitizing” or “sampling” f at the points 0, 1
n ,

2
n , . . . ,

n−1
n , 1.

It is well known to those who have had some exposure to probability theory that for fixed p ∈ [0, 1]
the formula

Pp{k} :=

(
n

k

)
· pk · (1− p)n−k(6.36)

defines a probability on the set [0, n]Z. This is the binomial distribution with parameters n and p,
and its meaning is as follows.
Assume that the items in some population Ω possess a certain property B of interest, and that the
probability of choosing “at random” an ω ∈ Ω which possesses that property is p. For example let
Ω be a box which contains 500 marbles of different colors which are well shuffled, that 100 of those
marbles are of green color, that the person who picks a marble is blindfolded, and that the property
of interest is B: "A green marble was picked". Then p = 100

500 = 0.2.
Assume now that
• n times in a row an item ωj is chosen at random from Ω (j = 1, 2, . . . , n),
• it is recorded after pick j whether or not ωj possesses that property,
• ωj is put back into Ω in such a way that the probabilistic situation is no different from the one

we had before ωj was chosen. In the example with the marbles this means that the marbles
will be thoroughly reshuffled before each pick).

Let S = S(ω1, ω2, . . . , ωn) denote how many of the n chosen items ω1, . . . , ωn satisfy B. We can think
of S as a function

S : Ωn → [0, n]Z; (ω1, . . . , ωn) 7→ S(ω1, . . . , ωn).(6.37)

Consider the preimage of the set {k} under the function S, i.e., the set

{S = k} = S−1{k} = {(ω1, . . . , ωn) ∈ Ωn : exactly k of the ωj have property B }.(6.38)
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It is a well known fact that under the above conditions the “random variable” S follows a binomial
distribution with parameters n and p as described in (6.36) above, i.e.,

probability of {S = k} = Pp{k} =

(
n

k

)
· pk · (1− p)n−k.(6.39)

After this brief excursion into binomial distributions we go back to the function f which is defined
on the codomain of the random variable S. We will subsequently write ~ω for (ω1, . . . , ωn). The
compositions ω 7→ f ◦ S(ω) and ω 7→ fn ◦ S(ω) itself can be thought of as random variables since
their values f

(
S(~ω)

)
and fn

(
S(~ω)

)
depend on the randomly selected argument ~ω. The so–called

expectation or expected value of the random variable fn ◦ S under the probability distribution Pp
defined by (6.39) is then given as

Ep
(
fn ◦ S

)
=

n∑
k=0

fn(k) · Pp{k} =
n∑
k=0

f(k/n) ·
(
n

k

)
· pk · (1− p)n−k = Bfn

n (p). �(6.40)

6.8 The Well–Ordering Principle

Theorem 6.8 (Well–Ordering Principle).

Every nonempty subset of N possesses a minimum, i.e., a smallest element.

PROOF:
Let A ⊆ N such that A does not possess a minimum. We claim that it suffices to prove that

[1, k]Z ⊆ A{ for all k ∈ N .

Here, A{ = N \ A denotes the complement of A in N. This is so because, according to Proposition
6.3 on p.171, 1 = min(N) and thus, N = [1,∞[Z =

⋃∞
k=1[1, k]Z .

For k ∈ N let p(k) be the statement [1, k]Z ⊆ A{.
We will use induction on k to prove that p(k) is true for all k ∈ N.
Base case k = 1: Note that 1 /∈ A, because, as the minimum of N, 1 would also be the minimum of
A. Hence, 1 ∈ A{, hence [1, 1]Z = {1} ⊆ A{, and this proves the base case.

(IA) Induction assumption: p(k) is true, i.e., [1, k]Z ⊆ A{.

(?) We must prove under this assumption that [1, k + 1]Z ⊆ A{.

• Since A ⊆ N, the induction assumption [1, k]Z ⊆ A{ implies that k < a for all a ∈ A.
• Since ]k, k + 1[Z= ∅ by Corollary 6.2 on p.171, it follows that k + 1 ≤ a for all a ∈ A.

Thus, k + 1 is a lower bound of A.
• If it was true that k+1 ∈ A, then k+1 = min(A) by definition of a minimum. Since we assumed

that A does not possess a minimum, we conclude that k + 1 /∈ A, i.e., k + 1 ∈ A{.
• Since we assumed [1, k]Z ⊆ A{, it follows from k + 1 /∈ A that [1, k + 1]Z ⊆ A{.

We have shown (?) and this finishes the proof by induction. �

Alternate proof: ?

Let Γ := {k ∈ N : if B ⊆ N such that [1, k]Z ∩B 6= ∅ then min(B) exists } .(A)
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Proof strategy:
(1) We will show that 1 ∈ Γ.
(2) We will show that n+ 1 ∈ Γ whenever n ∈ Γ.
(3) It follows from the induction axiom that Γ = N. We will show how this implies that any

nonempty B ⊆ N possesses a minimum.

Proof of (1): Let B ⊆ N such that [1, 1]Z ∩ B 6= ∅, i.e., 1 ∈ B. (Thus B is nonempty.) It follows from
Proposition 6.3 (sharpening of B/G Prop.2.13) on p.171 and B ⊆ N that 1 is a lower bound of B.
Since 1 ∈ B, 1 = min(B). We have proved that 1 ∈ Γ, and we are done with step (1).
Proof of (2): Now assume that n ∈ Γ. To prove that n+ 1 ∈ Γ we proceed as follows.
Let B ⊆ N such that [1, n + 1]Z ∩ B 6= ∅ (which implies that B had to be nonempty to begin with).
Since the set B satisfying this was arbitrarily chosen,

to prove that n+ 1 ∈ Γ it suffices to show that min(B) exists.(B)

We consider the two separate cases [1, n] ∩B = ∅ and [1, n] ∩B 6= ∅.
Case 1: [1, n] ∩B 6= ∅.
Since we assume n ∈ Γ, we obtain from the definition of Γ that B possesses a minimum.
Case 2: [1, n] ∩B = ∅. We assumed that [1, n+ 1]Z ∩B 6= ∅, thus n+ 1 ∈ B. Note that [1, n] ∩B = ∅
implies that n+ 1 is a lower bound of B. Since n+ 1 ∈ B, n+ 1 = min(B).
Case 1 and case 2 together prove (B), and we are done with step (2).
Proof of (3): Let ∅ 6= A ⊆ N and a ∈ A. Such a exists since A is not empty. We finish the proof of the
well–ordering principle by showing that A possesses a minimum.
It follows from (1) and (2) and the induction axiom that Γ = N. From A ⊆ N we obtain a ∈ Γ. Since
[1, a]Z ∩A 6= ∅, A possesses a minimum by definition of the set Γ. �

Theorem 6.9 (Extended Well–Ordering Principle).

(a) Let A be a nonempty subset of Z which is bounded below. Then A possesses a minimum in Z.
(b) Let B be a nonempty subset of Z which is bounded above. Then B possesses a maximum in Z.
(c) Let C be a nonempty bounded subset of Z. Then C possesses both minimum and maximum

in Z.

Proof (outline):
(a) If A has 1 as a lower bound then A ⊆ N and the theorem simply is the Well-Ordering Principle
(B/G theorem 2.32). Next we just assume that A is bounded below. Let a? be a lower bound of A.
Let A′ := A− a? + 1. Then a′ ≥ 1 for all a′ ∈ A′, i.e., A′ ⊆ N. and it follows from the Well-Ordering
Principle that the minimum min(A′) of A′ exists.
It is easy to see from min(A′) ∈ A′ that then m := min(A′) + a?− 1 ∈ A and that m is a lower bound
of A because a? is a lower bound of A. It follows that m = min(A).
(b) We assume that B is bounded above. Let b? be an upper bound of B. Let B′ := −B. Then B′ has
−b? as a lower bound and it follows from the already proven part (a) that the minimum min(B′) of
B′ exists. Let m := −min(B′). It follows from min(B′) ∈ B′ that m ∈ −B′ = −(−B) = B and it
follows from min(B′) ≤ b′ for all b′ ∈ B′ that m ≥ b for all b ∈ B. But then m must be the maximum
of A.
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(c) is a trivial consequence of (a) and (b) �

We have not yet given a precise definition of the real and rational numbers. That will be done
in axiom 9.1 on p.255 and Definition 9.4 on p.255. For now we have make do with the informal
definitions of ch.2.3 (Numbers) on p.24.

Example 6.4 (The Well-Ordering Principle is not true in Q and R).
(a) R: The set A := {x ∈ R : x2 < 2} is bounded in R (by ±2) but has neither min (would

have to be −
√

2 /∈ A) nor max (would have to be +
√

2 /∈ A).
But: −

√
2 is the greatest lower bound or infimum inf(A) of A, and

√
2 is the least

upper bound or supremum sup(A) of A.
(b) Q: The set B := {x ∈ Q : x2 < 2} = A ∩ Q is bounded in Q (by ±2) and also has

neither min nor max for the same reasons as A.
Further: −

√
2 is not a lower bound ofB and

√
2 is not an upper bound ofB because

those numbers are not in our “universe” Q. The set B possesses neither min, max,
inf, sup! �

Proposition 6.24. Let ∅ 6= A ⊆ B ⊆ Z.
(a) If B is bounded below (resp., above), then min(A) ≥ min(B) (resp., max(A) ≤ max(B)).
(b) If also min(B) /∈ A (resp., max(B) /∈ A), then min(A) > min(B) (resp., max(A) < max(B)).

PROOF:
This follows from prop.3.57 on p.79 and the extended well-ordering principle. �

Proposition 6.25 (N is unbounded in Z). For any k ∈ Z there exists n ∈ N such that n > k, i.e., there are
no upper bounds for N in Z.

PROOF: Assume to the contrary that there exists an upper bound of N. According to thm.6.9 (ex-
tended well-ordering principle) on p.194 N has a maximum. Let u? := max(N). Then u? + 1 belongs
to N as the sum of two natural numbers. It follows from u? + 1 > u? that u? is not an upper bound
of N and we have reached a contradiction. �

6.9 The Division Algorithm

You will find a more complete treatment of this subject in [2] Beck/Geoghegan Art of Proof, ch.6.2.

Theorem 6.10 (Division Algorithm for Integers (B/G thm.6.13)).

Let m ∈ Z and n ∈ N Then there exists a unique pair of integers q and r such that

m = qn+ r and 0 ≤ r < n.(6.41)

We call q the quotient and r the remainder when dividing n into m.

PROOF: The proof is left as exercise 6.16 (see p.210). �

The next two propositions are easy to prove with help of the division algorithm. Hint: What is n?
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Proposition 6.26 (B/G prop.6.15). Let m ∈ Z. Then m is odd if and only if there exists q ∈ Z such that
m = 2q + 1.

PROOF: Left as an exercise. �

Proposition 6.27. Any product of odd numbers is odd.

The proof is left as exercise 6.17 (see p.210). �

Proposition 6.28 (B/G prop.6.16). Let n ∈ Z. Then n is even or n+ 1 is even.

PROOF: Left as an exercise. Hint: It suffices to show that if n is odd then n+ 1 is even. WHY? �

Proposition 6.29 (B/G prop.6.17). Let n ∈ Z. Then n is even if and only if n2 is even.

PROOF: Left as an exercise. Hint: It suffices to show that if n is odd then n2 is odd, and if n is even
then n2 is even: See the proof strategy of the proof of prop.3.43 on p.73. �

Proposition 6.30 (Division Algorithm for Polynomials (B/G prop. 6.18)).

Let α, β ∈ Z≥0 and let

n(x) :=

α∑
j=0

ajx
j , m(x) :=

β∑
j=0

bjx
j ,(6.42)

be two polynomials with real coefficients aj , bj such that n(x) is not the null polynomial p(x) = 0.
Then there exist polynomials q(x) and r(x) such that r(x) has degree less than α or r(x) = 0 (and
hence has no degree), such that

m(x) := q(x)n(x) + r(x).(6.43)

PROOF:
Case 1: α = 0, i.e., n(x) = a0 = const.

Note that n 6= 0 because we assume that n(x) is not the null polynomial. Let q(x) := m(x)
a0

and
r(x) := 0. Then m(x) = n(x)q(x) + r(x) yields the desired decomposition 6.43 of m(x).
Case 2: α > 0 and β < α.
Let q(x) := 0 and r(x) := m(x). Then m(x) = n(x)q(x) + r(x) satisfies 6.43.
Case 3: α > 0 and β ≥ α.
We handle this case using strong induction on β. First some notation. Let

A :=
α−1∑
j=0

bβaj
aα

xj+β−α, B :=

β−1∑
j=0

bjx
j ,(6.44)

p(x) := m(x) −
bβ
aα
xβ−αn(x) = bβx

β + B −
bβ
aα
xβ−αaαx

α − A = B −A.(6.45)
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Note that none of the terms of A and B has a power of x with an exponent larger than β − 1 and,
hence, that any constant multiple of p(x) would be a suitable candidate for r(x) as far as the degree
is concerned.
Base case: β = α.
(6.45) yields p(x) = m(x) − bα

aα
n(x). We have m(x) = p(x) + bα

aα
n(x). Let q(x) := bα

aα
and

r(x) := p(x). Then m(x) = n(x)q(x) + r(x) yields the desired decomposition 6.43 of m(x).
Induction assumption: Any polynomial m′(x) with degree less than β can be written as m′(x) =
q′(x)n(x) + r′(x) such that r′(x) has degree less than α or r′(x) = 0.
We use again the notation of (6.44) and (6.45). We have seen that the degree of p(x) is less than β

(unless it has no degree because p(x) = 0). It follows from (6.45) that m(x) = p(x) +
bβ
aα
xβ−αn(x).

Let q(x) :=
bβ
aα
xβ−α and r(x) := p(x). It follows that m(x) = n(x)q(x) + r(x) satisfies 6.43. �

For the next proposition recall that a root of a polynomial p(x) is a number z such that p(z) = 0 (see
Definition 5.19 on p.154).

Proposition 6.31 (B/G prop.6.19).

Let p(x) be a polynomial and z ∈ R. Then z is a root of p if and only if there exists a polynomial q(x)
such that

p(x) = (x− z)q(x) for all x ∈ R.(6.46)

PROOF: Left as an exercise. Hint: Use the division algorithm for polynomials for the proof of “only
if”. �

6.10 The Integers Modulo n

In this chapter we assume that n ∈ N is fixed.

Proposition 6.32 (B/G prop.6.24).

For two integers a and b we define

a ∼ b if and only if n | (a− b).(6.47)

Then
(a) (6.47) defines an equivalence relation on Z ,
(b) The equivalence class for m ∈ Z is [m] = [r], where r is the remainder of m modulo n.

See thm.6.10 (division algorithm for integers) on p.195.
(c) If r ∈ [0, n− 1]Z then [r] = {qn+ r : q ∈ Z}.
(d) This equivalence relation has exactly n distinct equivalence classes [0], [1], . . . , [n− 1].

PROOF: See [2] Beck/Geoghegan Art of Proof, ch.6.3. �

Definition 6.13 (Equivalence Modulo n).
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(a) We write a ≡ b mod n for a ∼ b. We call n the modulus, and we say that
a equals b modulo n.

(b) We write

Zn := Z/nZ := { [0], [1], . . . , [n− 1] }(6.48)

for the set of equivalence classes resulting from the equivalence relation a ∼ b.
(See prop.6.32(b) above.) We call Zn the set of integers modulo n. �

Remark 6.11. ?

It is beyond the scope of this document to discuss the reason why mathematicians choose to write
the set Zn set as a “quotient” Z divided by nZ. If you take a course in abstract algebra then you will
learn that the subset nZ of Z is what one calls an ideal in the commutative ring with unit Z. Given a
commutative ring with unit R and an ideal x ⊆ R one can define an equivalence relation a ∼ b on R
whose set of equivalence classes R/x := {[a] : a ∈ R} is called the quotient ring of R with respect
to the ideal x The reason: One can define operations [a]⊕ [b] and [a]� [b] onR/x which render this set
into a commutative ring with unit. In the special case of R = Z and x = nZ the equivalence relation
a ∼ b turns out to be (6.47) above, the quotient ring of equivalence classes is Zn, and addition and
multiplication will be the operations defined in Definition 6.14 below. �

Remark 6.12. We want to introduce

addition [a]⊕ [b] := [a+ b] and multiplication [a]� [b] := [a · b](6.49)

as binary operations on the mod n equivalence classes.
Since binary operations on Zn are functions

⊕,� : Zn × Zn −→ Zn ,

they must define the definition of a function. For example, ⊕ is such a function, if and only if for
each ([a], [b]) ∈ Zn × Zn there is a UNIQUE [c] ∈ Zn such that(

([a], [b]), [c]
)
∈ Γ⊕ , the graph of the function ⊕.(6.50)

Considering (6.49), this can be equivalently expressed as

[a]⊕ [b] = [c] and this in turn is equivalent to a + b ∼ c .(6.51)

Why would that assertion not be obvious? Note that the integers a and b are not the only elements
of their equivalence classes

[a] = {qn+ a : q ∈ Z} ; [b] = {q′n+ b : q′ ∈ Z}(6.52)

Now, if we select some arbitrary q, q′ ∈ Z in (6.52) and define

a′ := qn + a ; b′ := q′n + b
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then the uniqueness of [c] in (6.50) with respect to the definition of ⊕ given in (6.49) and the equiv-
alent formulation given in (6.51) demands that also

[a′ � b′] = [c] i.e., a′ + b′ ∼ c .(6.53)

Here, we smade use of the definitions a′ = qn + a, b′ = q′n + b. We remove the middleman [c] in
(6.51) and (6.53) and obtain that being able to define [a]⊕ [b] := [a+ b], requires that

a+ b ∼ (qn+ a) + (q′n+ b) for all q, q′ ∈ Z .

In a likewise manner, one shows that

a · b ∼ (qn+ a) · (q′n+ b)

must be satisfied for all q, q′ ∈ Z if one wants to define [a]� [b] := [a · b]. �

Proposition 6.33 (B/G prop.6.25). Let a, a′, b, b′ ∈ Z such that a ∼ a′ and a ∼ a′, i.e., n | (a − a′) and
n | (b− b′). Then a+ b ∼ a′ + b′ and ab ∼ a′b′.

PROOF: Left as an exercise. �

According to Remark 6.12, that last proposition allows it to define operations [a] ⊕ [b] and [a] � [b]
on Zn.

Definition 6.14. Let a, b ∈ Z. We define addition [a] ⊕ [b] and multiplication [a] � [b] for the corre-
sponding equivalence classes [a], [b] ∈ Zn in terms of ordinary addition and multiplication in Z as
follows.

[a]⊕ [b] := [a+ b]; [a]� [b] := [ab].(6.54)

We further define [a]0 := [1]. �

Proposition 6.34 (B/G prop.6.26 and B/G project 6.27).
(a) The operations ⊕ and � on Zn of Definition 6.14 above turn (Zn,⊕,�) into a commutative ring

with unit.
(b) (Zn,⊕,�) is an integral domain, i.e., there are no zero divisors, if and only if n is prime. 93

PROOF: The proof is left as exercise 6.18 (see p.210). �

The following cannot be found in the B/G text.

Proposition 6.35 (Arithmetic mod n). Let m1,m2, . . .mk, a1, a2, . . . ak ∈ Z. Then

[m1 +m2 + · · ·+mk] = [m1]⊕ [m2]⊕ · · · ⊕ [mk],(6.55)
[m1 ·m2 · · ·mk] = [m1]� [m2]� · · · � [mk],(6.56)

[

k∑
j=1

ajx
j ] =

k∑
j=1

[aj ]� [x]j .(6.57)

93A prime number is an integer p ≥ 2 which can be divided evenly only by ±1 or ±p We will discuss prime numbers
in ch.6.12 (Prime Numbers) on p.202.
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PROOF: We only give the proof of (6.56). It is done by induction on the number of factors k. The
proof of (6.55) is similar and (6.57) is a simple consequence of the two first equations.
Basis: The proof is obvious for k = 1. We note that (6.56) is true for two factors (prop.6.33 and
Definition 6.14 above.
Induction assumption: We assume that (6.56) holds for some k ∈ N. We then obtain for k + 1 that

[m1 ·m2 · · ·mk+1] = [(m1 ·m2 · · ·mk) ·mk+1]

=
(
[m1 ·m2 · · ·mk]

)
� [mk+1] (B/G def. of “a� b”)

=
(
[m1]� [m2]� · · · � [mk]

)
� [mk+1]. (Induction assumption (6.56)) �

6.11 The Greatest Common Divisor

We follow [2] Beck/Geoghegan Art of Proof ch.2 and ch.6.

We learned long before college about computing the greatest common divisor of two integers. To
find, e.g., gcd(90, 225) we factor both 90 and 225 into their primes: 90 = 2 ·3 ·3 ·5, 225 = 3 ·3 ·5 ·5, and
we extract the factors both “prime factorizations” have in common. In the case above that would
be two factors 3 and one factor 5, so gcd(90, 225) = 3 · 3 · 5 = 45.

Unfortunately we need to prove certain properties of the greatest common divisor as a step-
ping stone for the proof that any natural number greater than 1 can be factored uniquely, up to
permutations of the factors, into prime numbers. We will get to that in ch.6.12 (Prime Numbers) on
p.202, but first we must learn a few things about gcds.
We start with the following lemma 94

Lemma 6.3 (B/G prop.2.34). For m,n ∈ Z let

S :=S(m,n) := {k ∈ N : k = mx+ ny for some x, y,∈ Z}.(6.58)

Then S is empty if and only if m = n = 0.

The proof is left as exercise 6.19 (see p.211). �

Lemma 6.4. For m,n ∈ Z let S(m,n) be defined as in (6.58). Then
(a) S(m,n) = S(n,m) ,
(b) S(m,n) = S(−m,n) = S(m,−n) = S(−m,−n),
(c) S(m,n) = S(|m|, |n|).

PROOF of (a): S(m,n) = S(n,m) follows from the symmetry of the expressionmx+ny with respect
to m and n.
PROOF of (b):
It suffices to prove that S(m,n) = S(−m,n) for all m,n ∈ Z, because then S(−n,m) = S(n,m), and
it follows from (a) that S(m,−n) = S(−n,m). Thus S(m,−n) = S(−n,m) = S(n,m), and we have
proven the first equation of (b). The remaining equations are shown in a similar fashion.
Now to the proof that S(m,n) = S(−m,n). Let k ∈ S(m,n), i.e., there exist x, y ∈ Z such that
k = xm + yn and k > 0. Let x′ := −x and y′ := y. Then x′, y′ ∈ Z and x′(−m) + y′n = k. It

94a lemma is a “proof subroutine” which is not remarkable on its own but very useful as a reference for other proofs
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follows from k > 0 that k ∈ S(−m,n). Since k is an arbitrary element of S(m,n), it follows that
S(m,n) ⊆ S(−m,n). We apply this result to −m instead of m and obtain, since −(−m) = m, the
reverse inclusion S(−m,n) ⊆ S

(
− (−m), n

)
= S(m,n).

PROOF of (c): This follows from (b) since |m| = m or |m| = −m, and |n| = n or |n| = −n. �

Definition 6.15 (Greatest Common Divisor). ?

For m,n ∈ Z let S = S(m,n) be the set defined in (6.58). It follows from lemma 6.3 that if m 6= 0 or
n 6= 0 then S 6= ∅, hence S possesses a minimum according to the extended well ordering principle.
We thus are allowed to define the following. Let

(6.59) gcd(m,n) :=

{
0 if m = n = 0,
min(S) otherwise.

We call gcd(m,n) the greatest common divisor of m and n. �

Proposition 6.36 (B/G prop.6.29). Let m,n ∈ Z. Then

(a) gcd(m,n) | m and gcd(m,n) | n,
(b) If m 6= 0 or n 6= 0 then gcd(m,n) > 0,
(c) Let k ∈ Z such that k | m and k | n. Then k | gcd(m,n).

PROOF: The proof given here is that of B/G prop.6.29 with some minor cosmetic changes. In the
following we abbreviate g := gcd(m,n).
Case 1: m = n = 0.
Then g = 0 according to Lemma 6.3 on p.200. Thus (a) holds since 0 | 0 and (c) holds since k | 0 is
true for any integer k.
Case 2: m 6= 0 or n 6= 0.
Then g = min(S), thus g ∈ S, thus g ∈ N, and this proves (b). We divide the proof of (a) and (c) into
two cases as follows.
Case 2a: Either m = 0 and n 6= 0 or n = 0 and m 6= 0.
We may assume m = 0 since the set S is defined symmetrically with respect to m and n. Then

S = {ny : y ∈ Z and ny > 0} = {|n|y : y ∈ N} ,

thus g = min(S) = |n|. It follows that (a) holds since |n| | n and |n| | 0. Further, (c) holds since
k | n⇒ k | |n|, i.e., k | g.
Case 2b: Both m 6= 0 and n 6= 0.
Since S(m,n) = S(|m|, |n|), we may assume that m > 0 and n > 0. Since g ∈ N by the already
proven part (b) we may apply the Division Algorithm (Theorem 6.10 on p.195) and obtain integers
q, q′, r, r′ such that

m = qg + r and n = q′g + r′ and 0 ≤ r, r′ < g .(6.60)

We now prove that r = 0. Since g = mx+ ny for suitable x, y ∈ Z it follows from (6.60) that

r = m − qg = m − q(mx+ ny) = m(1− qx) + n(−qy) ,
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thus r > 0 would imply r ∈ S. Since r < g and g = min(S) it would not be true that min(S) is a
lower bound of S. Thus the assumption that r > 0 contradicts the definition of a minimum, thus
r = 0. It follows that m = qg, i.e., g|m. We obtain in likewise manner that g|n and the proof of (a) is
done.
Proving (c) is much simpler: Assume that k ∈ Z satisfies both k|m and k|n. By definition of divisi-
bility there exist integers j, j′ such that m = jk and n = j′k. Hence, for any x, y ∈ Z,

mx + ny = (jk)x + (j′k)y = (jx+ j′y)k ,

hence k | mx + ny. Since g ∈ S, g = mx+ ny for suitable x, y ∈ Z. Thus k | g and (c) follows. �

Remark 6.13.
• Proposition 6.36(a) justifies us calling gcd(m,n) a common divisor of m and n.
• If i, j ∈ N such that i | j then i ≤ j according to Proposition 6.9 (B/G prop.2.23) on p.174.

Thus Proposition 6.36(c) shows that gcd(m,n) is in fact the largest possible of all common
divisors of m and n. �

Proposition 6.37 (B/G prop.6.30). Let k,m, n ∈ Z. Then gcd(km, kn) = |k| · gcd(m,n).

PROOF: Left as exercise 6.24 on p.211. �

6.12 Prime Numbers

Definition 6.16 (Prime numbers and prime factorizations).

(a) Let p ∈ N, p ≥ 2. p is a prime number or p is prime if q ∈ Z and q | p implies that
q = ±1 or q = ±p. We note that 1 is not prime.

(b) Let p ∈ N, p ≥ 2. p is called a composite number or just a composite if p is not
prime.

(c) Let m ∈ N,m ≥ 2. If there are primes p1, . . . , pk such that m = p1 · p2 · · · pk then
p1, . . . , pk are called factors or prime factors of m and p1 · p2 · · · pk is called a prime
factorization or just a factorization of m.

(d) If the prime factorizations of m,n ∈ N both contain the prime number p then we
call p a common factor of m and n.

(e) Ifm ∈ Z satisfiesm ≤ −2 and if p1 ·p2 · · · pk is a prime factorization of the positive(!)
integer −m then we call −

(
p1 · p2 · · · pk

)
a prime factorization of m. �

Remark 6.14. Note the following for the previous definition.
• no need for minus signs anywhere in part (c) since we assume that m is positive.
• It follows from Proposition 6.36 (B/G prop.6.29) on p.201 that p | gcd(m,n). �

Proposition 6.38 (B/G prop.6.28). Let n ∈ N such that n > 1. Then n has a prime factorization.

PROOF: The proof is left as exercise 6.20. See p.211.
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Lemma 6.5. Let p be prime and let n ∈ N. We have the following:
(a) Either gcd(p, n) = 1 or gcd(p, n) = p.
(b) If p - n (p does not divide n) then gcd(p, n) = 1.

The proof is left as exercise 6.21 (see p.211). �

Definition 6.17 (relatively prime). Let m,n ∈ Z. We say that m and n are relatively prime if their
greatest common divisor satisfies

gcd(m,n) = 1. �

Proposition 6.39. Two natural numbers m and n are relatively prime if and only if they possess no common
factors.

PROOF: The proof is left as exercise 6.22 (see p.211). �

Remark 6.15. Lemma 6.5 above can now also be formulated this way: If p is prime and n ∈ N then
(a) Either p and n are relatively prime or gcd(p, n) = p.
(b) If p - n then p and n are relatively prime.

We next look at Euclids Lemma and the unqueness of prime number factorizations. Thm.6.11 below
states the following: Every integer≥ 2 can be factored uniquely (i.e. up to permutation) into primes.
The proof of that theorem requires Euclid’s lemma which in turn uses lemma 6.5 above.

Proposition 6.40 (B/G prop.6.31: Euclid’s Lemma for Two Factors). Let p be prime and m,n ∈ N. If
p | (mn) then p | m or p | n.

PROOF: The proof is left as exercise 6.25 (see p.211). �

The generalization of Euclid’s lemma to more than two factors is a straightforward proof by induc-
tion.

Proposition 6.41 (Euclid’s Lemma for more than two factors).

Let p be prime and m1,m2, . . . ,mk ∈ N. If p | (m1m2 · · ·mk) then p | mj for some 1 ≤ j ≤ k.

PROOF: Done by strong induction on the number of factors k.
Basis: There is nothing prove for k = 1 and prop.6.40 (Euclid’s lemma for two factors) shows the
validity for k = 2.
Induction assumption: We assume that if p divides a product n = n1n2 · · ·nj) of less than k factors
then p | ni for some 1 ≤ i ≤ j.
To prove that p | mi for some 1 ≤ i ≤ k we write m1m2 · · ·mk = (m1m2 · · ·mk−1)mk. It follows
from prop.6.40 that p | mk or p | (m1m2 · · ·mk−1). If p divides mk then we are done. Otherwise we
apply the induction assumption to the product m1m2 · · ·mk−1 of less than k factors and obtain that
there is some 1 ≤ i < k such that p divides mi. �

Theorem 6.11 (B/G thm 6.32: Uniqueness of prime factorizations).

Every integer ≥ 2 can be factored uniquely (i.e., up to permutation) into primes.
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PROOF: by strong induction on n.
Base case: n = 2: 2 is its own and obviously unique prime factorization.
Induction assumption: assume that if 2 ≤ j < n then j has a unique PF (up to reordering).
We now show that n has a unique PF (up to reordering).
Case 1: n is prime: then n is the only and hence unique PF of itself.
Case 2: Else let n = p1p2 · · · pk = q1q2 · · · ql be two PFs for n. p1 | q1q2 · · · ql, hence p1 | qj0 for some
jj0 by the generalized form of Euclid’s lemma.
But then p1 = qj0 because p1 6= 1 and qj0 is the only integer bigger than 1 that divides the prime qj0 .
Let us reorder the qj in such a way that j0 = 1. Then

n = p1n2 where n2 = p2p3 · · · pk = q2q3 · · · ql

is an integer less than n. It follows from the induction assumption that q2 · · · ql is just a reordering
of p2 · · · pk. �

As an easy corollary of the uniqueness of prime factorizations up to the order in which they occur
we obtain the following proposition which will be used in ch.7 (Cardinality I: Finite and Countable
Sets) to show the existence of a bijection N→ N2.

Notation 6.1 (“The” prime factorization of an integer greater than 1).

When we talk about prime factorizations of some n ∈ [2,∞[ it usually does not matter in which order the prime
factors of n occur. We will in such instances talk about the prime factorization of n. For example, We might say,
“The prime factorization of n does not contain the number 2.” �

Remark 6.16. Let m,n ∈ [2,∞[∞ and p prime. Let the prime factorizations of m and n be

m = p1 · p2 · · · pi, n = q1 · q2 · · · qj

for suitable i, j ∈ N. The following are immediate consequences of the uniqueness of prime factor-
izations up to reordering of the factors.

(a) p1 · · · pi · q1 · · · qj is the prime factorization of m · n.
(b) If p is a prime factor of m then p = pk for some suitable 1 ≤ k ≤ i.
(c) It follows from (b) that if p > pk for each 1 ≤ k ≤ i then p is not a prime factor of m.
(d) If p is prime and p | mn then p is a prime factor of mn. If p is not a prime factor of m

then it follows from (a) that p is a prime factor of n. That is of course just a reformula-
tion of Euclid’s lemma, but note that we used the uniqueness of prime factorizations
to deduce this. �

The next proposition essentially states the same as (c) above.

Proposition 6.42 (B/G Prop.6.33). Let a, b ∈ N, and assume that a | b. Assume that p is a prime factor of
b that is not a prime factor of a. Then a | bp .

PROOF: The proof is left as exercise 6.26 (see p.211). �
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Proposition 6.43 (B/G Prop.6.34). Let p be a prime and k ∈ N such that 0 < k < p. Then p |
(
p

k

)
.

PROOF:
Since k! = 2 · 3 · · · k, (p − k)! = 2 · 3 · · · (p − k) and (p − 1)! are product of integers that belong to
[2, p− 1[, it follows from item (b) of the previous remark that p is not a prime factor of k!(p− k)!.
Obviously p divides p! =

(
p
k

)
·
(
k!(p − k)!

)
It follows from item (c) of that remark that p is a prime

factor of
(
p
k

)
, in particular that p |

(
p
k

)
�

Since
(
p
k

)
· k! = p(p− 1) · · · (p− k + 1) , it follows that p

∣∣ (p
k

)
· (k!) .

Thus p is a prime factor of
(
p
k

)
(k!). Since all prime factors of k! = 1 · 2 · · · k are bounded by k and we

assume k < p, the number p is not a prime factor of k!.
Hence p must be a prime factor of

(
p
k

)
. In particular, p |

(
p
k

)
. �

Theorem 6.12 (Fermat’s Little Theorem (B/G thm 6.35)).

If m ∈ Z and p is prime, then mp ≡ m mod p.

The proof is left as exercise ?? (see p.??). �

Remark 6.17. We note that if p = 2 then Fermat’s Little Theorem states that either both m2 and
m have remainder zero (both are even) or both have remainder 1, i.e., both are odd. This is true
according to prop.6.29 on p.196.

Proposition 6.44 (Corollary to Fermat’s Little Theorem (B/G cor.6.36)). Let p be prime and let m ∈ N
such that p - m. Then

mp−1 ≡ 1 mod p.

The proof is left as exercise 6.23 (see p.211). �

6.13 The Base–β Representation of the Integers

We have learned in school that any nonnegative integer n which is written as a string of digits

dµdµ−1 . . . d1d0 represents the number n =
µ∑
j=0

dj10j . Example: 8375 = 5 · 100 + 7 · 101 + 3 · 102 +

8 · 103. What is the difference between the ‘string” or “word” 8375 and the mathematical expression
5 · 100 + 7 · 101 + 3 · 102 + 8 · 103? None whatsoever for the mathematician who DEFINES the string
dndn−1 . . . d1d0 of decimal digits dj , i.e., integers between 0 and 9 (see Definition 6.1 on p.167), to be

the integer
n∑
j=0

dj10j .

Especially if you have done some programming you know that besides “base” 10 one also can

expess n as a sum n =
µ∑
j=0

djβ
j where the base β is an integer 2 or bigger and each dj is now an

integer between 0 and β − 1.
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If β = 2, then each dj is either zero or one, and one speaks of a binary representation. For
example, the word 10001010 which we will write as 10001010(2), i.e., we will tag it with the base in
parentheses, is a binary representation of the integer

0 · 20 + 1 · 21 + 0 · 22 + 1 · 23 + 0 · 24 + 0 · 25 + 0 · 26 + 1 · 27

which equals the word 138(10) = 8 · 100 + 3 · 101 + 1 · 102 when one chooses 10 as a base.

If β = 16, then n =
µ∑
j=0

dj16j is the hexadecimal representation of n. Here each “hexadecimal

digit” dj is an integer between 0 and 15. It is customary to write the additionally needed hex digits
as

A := 10, B := 11, C := 12, D := 13, E := 14, F := 15 .95

For example the word (60)(10) in base 10 becomes, since 60 = 3 · 16 + 1 · 12 = 3 · 161 +C · 160, the
word 3C(16) in hexadecimal representation.

To show that, given a fixed base β, we can replace a nonegative integer n with its equivalent
word of base β digits, we must do some work. First we must show that each for each such n there

exists an index µ and base β digits d0, . . . , dµ such that n =
µ∑
j=0

djβ
j Second we must show that

the association of n with d0d1 . . . dµ is unique in the following sense: If n =
µ′∑
j=0

d′jβ
j yields a second

collection of base β digits d′0, . . . , d
′
µ′ and if both representations are minimal, i.e., dµ > 0 and d′µ′ > 0,

then µ = µ′ and dj = d′j for all 0 ≤ j ≤ µ.
We will now set out to do that.

Definition 6.18. ? If β ∈ Z≥2 then we mean by a set of base β digits a set of β − 1 distinct
symbols {di : i ∈ Z, 0 ≤ i < β such that each di represents the integer i. As an example, when we
talked above about hexadecimal representations, we had defined the hex digits as{

dj := decimal digit for j ∈ Z if 0 ≤ j ≤ 9,

d9+1 := A, d9+2 := B, d9+3 := C, d9+4 := D, d9+5 := E, d9+6 := F.

No further digits are needed because 9 + 7 = β = 10(β). �

Proposition 6.45 (B/G thm.7.7: Existence of base–β representations).

Let n ∈ N and β ∈ N such that β ≥ 2. Then there exists a nonnegative integer µ = µ(n), and there
exist integers dj (0 ≤ j ≤ µ) such that 0 ≤ dj < β for each j and dµ > 0, and also

n =

µ∑
j=0

djβ
j .(6.61)

95To be picky, the right–hand sides of the equations of this line are base 10 representations
A = 10 = 9 + 1, B = 11 = 9 + 2, etc.
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PROOF: ? The proof is done by strong induction on n.

Base case n = 1: Let µ = 0 and d0 = 1. Then 1 = d0 · β0. This proves the base case.
Induction assumption. If k is a natural number such that k < n then there exists µ(k) ∈ Z≥0 and

integers cj
(
0 ≤ j ≤ µ(k)

)
such that 0 ≤ cj < β for each j and cµ(k) > 0, and such that k =

µ(k)∑
j=0

cjβ
j .

Step 1: The function j 7→ βj is strictly increasing: If i, j ∈ Z≥0 and i < j then βj−i ≥ 2, hence
βi < (βi)(βj−i) = βj . Moreover it follows from exercise 2.12 on p.48 that βn > n for n ∈ Z≥0.
All this implies that the set A := {j ∈ N : βj ≤ n} has n as an upper bound, hence it possesses a
maximum µ := max(A) (extended well–ordering principle). Clearly βµ ≤ n < βµ+1. If βµ = n then
we have a representation (6.61) for n because we can choose dj = 0 for 0 ≤ j < µ and dµ = 1. So we
rule out this case and assume from now on that

βµ < n < βµ+1.(6.62)

Step 2: Let n′ := n − βµ. It follows from (6.62) that n′ ∈ N. Since n′ < n the induction assumption
yields µ(n′) ∈ Z≥0 and integers aj

(
0 ≤ j ≤ µ(n′)

)
such that 0 ≤ aj < β for each j and aµ(n′) > 0,

and such that n′ =
µ(n′)∑
j=0

ajβ
j .

Step 3: We show that µ(n′) ≤ µ. Otherwise we would have µ(n′) ≥ µ+ 1. Since aµ(n′) ≥ 1,

n− βµ = n′ =

µ(n′)∑
j=0

ajβ
j ≥ 1 · βµ(n′) ≥ βµ+1 > n

(the last inequality results from (6.62)), and we would have reached a contradiction. If µ(n′) 6= µ,

i.e., µ(n′) < µ, we define αj = 0 for µ(n′) ≤ j ≤ µ. It follows that n′ =
µ∑
j=0

ajβ
j .

Step 4: We show that aµ < β − 1. Otherwise we would have

n− βµ = n′ =

µ∑
j=0

ajβ
j ≥ (β − 1) · βµ = βµ+1 − βµ,

hence n ≥ βµ+1, a contradiction to (6.62).

Step 5: It follows from n− βµ =
µ∑
j=0

ajβ
j and aµ < β − 1 that

n = (n− βµ) + βµ =

µ∑
j=0

ajβ
j + βµ =

µ∑
j=0

djβ
j where dj =

{
aj if j < µ,

aj + 1 if j = µ.

Since dµ = aµ + 1 6= 0 we have found a representation of the form (6.61) for n. �

Remark 6.18. The proof of prop.6.45 shows that if n =
K∑
j=0

djβ
j then the maximal index i for a

nonzero di is i = µ = max{j ∈ N : βj ≤ n}. In other words, if n < βj then dj = 0. �
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Proposition 6.46 (B/G prop.7.9: Uniqueness of base–β representations).

Let n ∈ N and β ∈ N such that β ≥ 2. Assume that

n =

µ∑
j=0

djβ
j =

µ′∑
j=0

d′jβ
j(6.63)

where µ, µ′ ∈ Z≥0, each di and each d′i is a base β digit, dµ 6= 0 and d′µ′ 6= 0. Then µ = µ′ and
di = d′i for all i.

PROOF: The proof is left as exercise 6.27 on p.??. �

We learn at a very young age that an integer is divisible by 3 if and only if the sum of its digits is
divisible by 3. For example, the number 3 | 2, 784 since 2+7+8+4 is divisible by 3, and 528 - 3 since
5 + 2 + 8 is not divisible by 3. We will prove this as an application of the base–10 Representation of
the Integers.

Proposition 6.47 (B/G Prop.7.11). Let n :=
µ∑
j=0

xj10j , where each xj is a digit and xµ 6= 0. Then

n = x0 + x1 + · · ·+ xµ mod 3.(6.64)

The proof is left as exercise 6.28 (see p.211). �

6.14 The Addition Algorithm for Two Nonnegative Numbers (Base 10)

We give a simpler version of the addition algorithm than the one found in ch.7.2 of B/G.

Remark 6.19 (Addition subroutine). Given are

x :=
K∑
n=0

xn · 10n, y :=
K∑
n=0

yn · 10n

in base–10 representation, i.e., xn, yn are digits 0, 1, 2 . . . , 9. We may choose the same ending index
K for both x and y by “filling up” the number with less digits with leading zeros.
Here is the pseudocode for a subroutine, Add( n, xn, yn, zn ), whose task it is to compute the n–th

digits zn for the sum z :=

K+1∑
n=0

zn · 10n := x+ y.

Subroutine Add( n, xn, yn, in−1, zn, in ) :
//*
//* Inputs: n, xn, yn, in−1

//* Output: zn, in
//*

If n = 0 then {
i−1 := 0;
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}

in :=

{
0 ifxn + yn + in−1 < 10

1 ifxn + yn + in−1 ≥ 10

zn := (xn + yn + in−1) − in · 10

end-of-Subroutine

Note that the “sum digit” zn and the “carry” in are associated with the “Euclidean division algo-
rithm decomposition”

xn + yn + in−1 = 10 · q + r

for the integer xn + yn + in−1 as follows:

in = q and zn = r. �

6.15 Exercises for Ch.6

Exercise 6.1. Prove prop.6.1 on p.168 of this document: If i, j, n ∈ Z and Ai = {k ∈ Z : k ≥ i} then
n+ i ∈ Ai ⇔ n+ j ∈ Aj . �

Exercise 6.2. Prove prop.6.12 on p.177 of this document: If n ∈ N then e(n) ∈ P . �

Exercise 6.3. Prove the following part of prop.6.13 on p.177 of this document:
Let m,n ∈ N. Then e(n) ≺ e(m) ⇒ n < m. �

Exercise 6.4. Let x0 = 8, x1 = 16, xn+1 = 6xn−1 − xn for n ∈ N. Prove that xn = 2n+3 for every
integer n ≥ 0. Hint: Use strong induction. �

Exercise 6.5. Prove parts (b) and (c) of prop.6.18 on p.183 of this document:
Let β ∈ Z and k,m ∈ Z≥0. Then

(b) βm � βk = βm+k,
(c) (βm)k = βmk. �

Exercise 6.6. Prove prop.6.19 on p.183 of this document: Let a ∈ R such that 0 ≤ a ≤ 1, and let
m,n ∈ N such that m ≥ n. Then am ≤ an. �

Exercise 6.7. Let R = (R,⊕,�, P ) be an ordered integral domain, let n ∈ [2,∞[Z, and let xj ∈ R for
j ∈ N. Prove by induction that

n∏
j=1

|xj | =

∣∣∣∣∣∣
n∏
j=1

xj

∣∣∣∣∣∣ .
You may use that: for any two x, y ∈ R it is true that |a| � |b| = |a� b|. �

Exercise 6.8. Prove prop.6.21 on p.183 of this document:

Let q ∈ Z. If n ∈ Z≥0 then (1− q)
n∑
j=0

qj = 1− qn+1.

Hint: Prove the case q 6= 1 by induction on n. �
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Exercise 6.9. Let R ⊆ Z2 be the divisibility relation on Z: mRn ⇔ m | n.
(a) Prove that R is reflexive and transitive.
(b) Prove that R is not antisymmetric (and hence not a partial order relation) by finding two

different integers m,n such that m|n and n|m. �

Exercise 6.10. Prove Theorem 6.4 on p.171 of this document: If k ∈ N then k ≥ 1. �

Exercise 6.11. Prove prop.6.9 on p.174 of this document: Let m,n ∈ N. If m | n then m ≤ n �

Exercise 6.12. Prove prop.6.2 on p.171 of this document: There exists no x ∈ Z such that 0 < x < 1.
�

Exercise 6.13. Prove cor.6.2 on p.171 of this document: If n ∈ Z then there exists no x ∈ Z such that
n < x < n+ 1. �

Exercise 6.14. Prove prop.6.8 on p.174: Let n ∈ N. Then n2 + 1 > n. Try to prove this with and
without the use of induction. �

Exercise 6.15. Let a ∈ Z. Prove that there exists b ∈ ]−∞, 0[ such that b < a, i.e., there are no lower
bounds for ]−∞, 0[ in Z. Do so without making use of prop.6.25 ....
Hint: ..... But base your proof on that of prop.6.25. �

Exercise 6.16. Prove prop.6.10 on p.195 of this document: Let m ∈ Z and n ∈ N Then there exists a
unique pair of integers q and r such that

m = qn+ r and 0 ≤ r < n.

(a) Prove uniqueness of the “decomposition”m = qn+r: If you have a second such decomposition
m = q̃n + r̃ then show that this implies q = q̃ and r = r̃. Start by assuming that r 6= r̃ which
means that one of them is smaller than the other and take it from there.

(b) Prove the existence of q and r. This is much harder than (a).

Hint for (b): Review the extended well–ordering principle (thm.6.9 on p.194). Its use will give the
easiest way to prove this theorem. Apply it to the set

A := A(m,n) := {x ∈ Z≥0 : x = m− kn for some k ∈ Z}

. Hint for both (a) and (b): Prop.3.61 and cor.3.5 on p.81 from ch.3.5 (Minima, Maxima, Infima and
Suprema in Ordered Integral Domains) in their formulation for (R,⊕,�, P ) = (Z,+, ·,N) will come
in handy in connection with the condition 0 ≤ r < n. �

Exercise 6.17. Prove prop.6.27 on p.196 of this document:
Any product of odd numbers is odd.
Hint: Use induction on k to prove that the product n1n2 · · ·nk of k odd numbers xj is odd. �

Exercise 6.18. Prove prop.6.34 on p.199 of this document:
(a) The operations ⊕ and � on Zn of Definition 6.14 above turn (Zn,⊕,�) into a commutative

ring with unit.
(b) (Zn,⊕,�) is an integral domain, i.e., there are no zero divisors, if and only if n is prime. �
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Exercise 6.19. Prove lemma 6.3 on p.200 of this document: For m,n ∈ Z let

S :=S(m,n) := {k ∈ N : k = mx+ ny for some x, y,∈ Z}.

Then S is empty if and only if m = n = 0.
Hint: The difficult part is proving that S is not empty if at least one of m,n is not zero. What does
S look like if m = 0 and n 6= 0? Do that case first, then do the case where both m and n are not zero.
Play around with specific number to see what happens before you attempt to do the proof. �

Exercise 6.20. Prove prop.6.38 on p.202: Any integer ≥ 2 has a prime factorization. �

Exercise 6.21. Prove lemma 6.5 on p.203 of this document: Let p be prime and let n ∈ N. We have
the following:

(a) Either gcd(p, n) = 1 or gcd(p, n) = p.
(b) If p - n (p does not divide n) then gcd(p, n) = 1. �

Exercise 6.22. Prove that two natural numbers m and n are relatively prime if and only if they
possess no common factors: �

Exercise 6.23. Prove prop.6.44 on p.205 of this document: Let p be prime and let m ∈ N such that
p - m. Then mp−1 ≡ 1 mod p.

Hint: Modify the problem so that you can apply Fermat’s Little Theorem to it. �

Exercise 6.24. Prove prop.6.37 on p.202 of this document:
Let k,m, n ∈ Z. Then gcd(km, kn) = |k| · gcd(m,n).
Hint: You must distinguish the cases where S(m,n) and/or S(km, kn) is empty from the others,
and you want to work with nonnegative k,m, n as much as possible. Do the following cases in the
sequence given:
Case 1: k = 0 • Case 2: m = n = 0 • Case 3: m ≥ 0, n ≥ 0. At least one of m,n 6= 0, k > 0 • Case 4:
k < 0, at least one of m,n 6= 0.
Cases 1 and 2 are trivial
For case 3 abbreviate g := gcd(m,n), g′ := gcd(km, kn), S := S(m,n), S′ := S(km, kn).
(i) Show that kg ∈ S′ and use that to prove that g ≤ kg′.
(ii) Show that there exists z ∈ S such that g′ = kz. Use that to prove that g ≥ kg′.
It is easy to prove case 4 using case 3 and lemma 6.4(c): S(a, b) = S(|a|, |b|). �

Exercise 6.25. Prove prop.6.40 on p.203 of this document: Let p be prime and m,n ∈ N. If p | (mn)
then p | m or p | n. �

Exercise 6.26. Prove prop.6.42 on p.204 of this document: Let a, b ∈ N, and assume that a | b.
Assume that p is a prime factor of b that is not a prime factor of a. Then a | bp . �

Exercise 6.27. Prove prop.6.46 on p.208:

Let n ∈ N and β ∈ N such that β ≥ 2. Assume that n =
∑µ

j=0 djβ
j =

∑µ′

j=0 d
′
jβ

j where µ, µ′ ∈ Z≥0,
each di and each d′i is a base β digit, dµ 6= 0 and d′µ′ 6= 0. Then µ = µ′ and di = d′i for all i. �

Exercise 6.28. Prove prop.6.47 on p.208 of this document: Let n :=
µ∑
j=0

xj10j , where each xj is a

digit and xµ 6= 0. Then n = x0 + x1 + · · ·+ xν(n)−1 mod 3. �
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6.16 Blank Page after Ch.6
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7 Cardinality I: Finite and Countable Sets

Notation: In this entire chapter, if n ∈ N, the symbol [n] does not denote an equivalence
class of any kind but the set [1, n]Z = {1, 2, . . . , n} of the first n natural numbers. we
further define [0] := ∅.

7.1 The Size of a Set

We said in the preliminary definition of the size of a set (Definition 2.12 on p.23) that the size |X| of
a set X is the number of its elements. It is surprisingly difficult to make this definition precise. The
following proposition will help us in this endeavor.

Proposition 7.1. Let n ∈ N. Let ∅ 6= A ( [n] be a proper, nonempty subset of [n]. Then there is no
surjection from A onto [n].

PROOF: There is nothing to prove for n = 1 since the set [1] = {1} does not strictly contain any sets
other than the empty set. The proof for n ≥ 2 will be done by induction on n.
Base case: Let n = 2. The only proper subsets of [2] are the singleton sets {1} and {2}. For any
function f : {1} → [2] we have either f(1) = 1 in which case 2 /∈ f({1}) or f(1) = 2 in which case
1 /∈ f({1}). It follows in either case that f is not surjective. The proof for functions {2} → [2] is
similar. This proves the base case.
Induction assumption: Let n ∈ N such that if ∅ 6= Γ ( [n−1] then there is no surjection Γ→ [n−1].
We must prove that if ∅ 6= A ( [n] then there is no surjection from A to [n].
We assume to the contrary that a surjective f : A→ [n] exists.
case 1: n /∈ A:
Then A ⊆ [n − 1]. Let Γ := A \ {f = n}. Because f is surjective, {f = n} is not empty, hence
Γ ( A ⊆ [n− 1], hence Γ is a strict subset of [n− 1].

From n ≥ 3 we obtain n 6= 1. Thus {f = 1} ∩ {f = n} = ∅, thus {f = 1} ⊆ {f = n}{, thus

A ∩ {f = 1} ⊆ A ∩ {f = n}{ = A \ {f = n} = Γ .(*)

Since f is surjective, {f = 1} ∩A 6= ∅. From this and (*) we obtain Γ 6= ∅.
We have seen earlier that Γ is a strict subset of [n − 1], thus ∅ 6= Γ ( [n − 1]. It follows that the
induction assumption applies to Γ; hence there is no surjective ψ : Γ→ [n− 1].
We will obtain a contradiction to the above and thus finish the proof of case 1 by showing that if we
restrict the domain of f to Γ and its codomain to [n− 1] then f

∣∣∣
Γ

: Γ→ [n− 1] is surjective.

So let y ∈ [n− 1]. f is surjective, hence there exists x ∈ A such that f(x) = y. Since y ≤ n− 1, y 6= n,
hence x /∈ {f = n}, hence x ∈ Γ. We found for arbitrary y ∈ [n − 1] some x in the domain of f

∣∣∣
Γ

,
hence this function is surjective. This completes the proof of case 1.
case 2: n ∈ A:
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Because A ( [n] there exists j ∈ [n− 1] such that j /∈ A. Let A′ := (A \ {n})
⊎
{j}. It follows from

prop.5.6 on p.148 that there is a bijection g : A′
∼−→ A. Hence f ◦ g : A′ → [n] is surjective as the

composition of a surjection with a bijection (see cor.5.1.b on p.147).
But A′ satisfies the conditions of case 1 since n /∈ A′, and we have already proven that such a
surjection cannot exist. Again we have reached a contradiction. �

Corollary 7.1. The following contains B/G thm.13.4 and B/G cor.13.5. Let m,n ∈ N.

(a) If m < n then there exists no surjective function f : [m]→ [n].
(b) If m > n then there exists no injective function g : [m]→ [n]. This is commonly referred to

as the pigeonhole principle.
(c) If m 6= n then there exists no bijective function f : [m]→ [n].
(d) There exists no surjective function h : [m]→ N.

The proof of (a)–(c) is left as exercise 7.1 (see p.230). �
PROOF of (d): Clearly the function

ψ : N→ [n+ 1]; m 7→ ψ(m) :=

{
m if m ≤ n+ 1,

1 if m > n+ 1

is surjective. If there were a surjective function h : [n] → N then ψ ◦ h : [n] → [n + 1] would
be surjective by cor.5.5(b) on p.147. But we have established in part (a) of this corollary that no
surjection [n]→ [n+ 1] exists. �

Remark 7.1. The fact that there is no surjective function [m]→ [n] if m < n can be expressed as fol-
lows: If a flock of m pigeons flies toward n pigeonholes for shelter then not all of those pigeonholes
will be occupied. The pigeonhole principle states the other side of the coin: If a flock of n pigeons
flies toward m pigeonholes for shelter then at least one of those pigeonholes will be occupied by
more than one pigeon. �

Cor.7.1 yields yet another important benefit: We can now make precise the preliminary definition
2.12 of the size of a set which was given on p.23, at the end of ch.2.1 (Sets and Basic Set Operations).

Definition 7.1 (Finite and infinite sets).
(a) Let X be a nonempty set. Let n ∈ N such that there exists a bijective mapping F : [n] → X .

It follows from cor.7.1(c) above that if n′ ∈ N such that there exists another bijective mapping
F ′ : [n′] → X then n = n′, i.e., n is uniquely defined by the property that [n] can be bijected to
X . This allows us to call n the size of X , and we write

∣∣X∣∣ = n.
If we write xj for F (j), we see that X is of the form

X = F ([n]) = {F (j) : j ∈ [n]} = {xj : 1 ≤ j ≤ n},

i.e., its elements can be enumerated as x1, x2, . . . , xn. This is the mathematician’s way of stating
that

∣∣X∣∣ = n is the number of elements of X .
(b) We say that the empty set ∅ has size

∣∣∅∣∣ = 0.
(c) We call a set X finite, if there exists n ∈ [0,∞[Z such that X has size n. Note that this implies

that the empty set is finite. We say that X is infinite and we write
∣∣X∣∣ =∞ if X is not finite.
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As strange as this may seem, there are ways to classify the degree of infinity when looking at infinite
sets. The “smallest degree of infinity” is found in sets that can be compared, in a sense, to the set
N of all natural numbers. We have a special name for infinite sets whose elements can be mapped
bijectively to N.

(d) Let X be a set such that there is a bijection f : N
∼−→ X . In other words, all of the elements of

X can be arranged in a sequence (xn)n∈N such that

X = { xn : n ∈ N, xn = f(n) }

Then we call X a countably infinite set.
(e) We call a set that is either finite or countably infinite a countable set.
(f) A set that is neither finite nor countably infinite is called uncountable or not countable.

We use the phrase “finitely many” items, “countably many” items, “infinitely many” items, etc.,
if they would constitute a finite set, a countable set, an infinite set, etc. �

Example 7.1. Let X := {2n : n ∈ N} be the set of all even natural numbers. Then X is countably
infinite because the function

f : N −→ X; n 7→ 2n has the function g : X −→ N; k 7→ k

2

as its inverse and hence is bijective.
Note that k2 exists (as an integer) for all k ∈ X since the even natural numbers are divisible by 2. �

Proposition 7.2. A countably infinite set is infinite (and not finite).

Proof: Assume to the contrary that a set A is both finite and countably infinite. Thus we have
bijections g : A

∼−→ N and, for a suitable n ∈ N, f : [n]
∼−→ A. By cor.5.1.b on p.147 the composition

g ◦ f : [n]
∼−→ N is bijective, thus surjective. This contradicts cor.7.1(d) on p.214. �

Proposition 7.3.

Let X and Y be two nonempty sets with a bijection f : X
∼−→ Y . Then

(a) Y is finite if and only if X is finite,
(b) Y is countably infinite if and only if X is countably infinite,
(c) Y is countable if and only if X is countable,
(d) Y is uncountable if and only if X is uncountable.
(e) |Y | = |X|.

PROOF: The proof of (a), (b) and (e) is based on prop.5.5.(c) on p.147 which states that the compo-
sition of two bijective functions is bijective.
We only need to prove the “⇒′′ directions because we obtain “⇐′′ by switching the roles of X and
Y .

PROOF of (a) and (e). IfX is finite then there exists n ∈ N and a bijection g : X
∼−→ [n]. Y

g ◦ f−1

−−−−−→ [n]
is bijective according to prop.5.5.(c) on p.147. This proves both that Y is finite and |Y | = n = |X|.
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PROOF of (b). If X is countably infinite then there exists a bijection g : X
∼−→ N. Because Y

g ◦ f−1

−−−−−→
N is bijective, Y also is countably infinite.
PROOF of (c). If X is countable then this set is either finite or countably infinite. If X is finite then
Y is finite according to part (a); if X is countably infinite then Y is countably infinite according to
part (b). This proves that Y is countable.
PROOF of (d). Assume to the contrary that X is uncountable and Y is countable. It follows from
part (c) that X is countable and we have reached a contradiction. Thus, Y is uncountable. �

Proposition 7.4.

let A and B two mutually disjoint, finite sets. Then A ]B is finite and

|A ] B| = |A| + |B| .

PROOF: There arem,n ∈ N such that |A| = m and |B| = n, i.e., there exist bijections ϕ : [1,m]Z → A
and ψ : [1, n]Z → B. The function

f : [1, n]Z → [m+ 1,m+ n]Z; j 7→ m+ j

is a bijection since the function

g : [m+ 1,m+ n]Z → [1, n]Z; i 7→ i−m

satisfies g ◦ f = id[1,n]Z and f ◦ g = id[m+1,m+n]Z , and thus g is the inverse of f .

Thus the function ψ ◦ g is a bijection [m+ 1,m+ n]Z
∼−→ B as

the composition of the two bijections g and ψ.

[1, n]Z B

[m+ 1,m+ n]Z

ψ

ψ ◦ gg

Next, let F : [1,m+ n]Z −→ A ]B be defined as F (k) :=

{
ϕ(k) if 1 ≤ k ≤ m,
ψ
(
g(k)

)
ifm+ 1 ≤ k ≤ m+ n.

We claim that F is bijective.
To prove injectivity we assume that k, k′ ∈ [1,m+ n]Z such that k 6= k′. We separately examine the
three cases k, k′ ≤ m, k, k′ > m, and k ≤ m < k′.

(a) If k, k′ ≤ m then F (k) = ϕ(k) 6= ϕ(k′) = F (k′) since ϕ is injective.
(b) If k, k′ > m then F (k) = ψ

(
g(k)

)
6= ψ

(
g(k′)

)
= F (k′) since ψ ◦ g is injective.

(c) If k ≤ m < k′ then F (k) = ϕ(k) ∈ A and F (k′) = ψ
(
g(k′)

)
∈ B. Since A and B are disjoint

we conclude that F (k) 6= F (k′).

To prove surjectivity let x ∈ A ]B. Then
(a) either x ∈ A, and the surjectivity of ϕ allows us to conclude that there exists k ∈ [1,m]Z such

that ϕ(k) = x, i.e., F (k) = x;
(b) or x ∈ B, and there exists k ∈ [m+1,m+n]Z such that F (k) = ψ◦g(k) = x since the function

ψ ◦ g is surjective.

The existence of a bijection F : [1,m+ n]Z
∼−→ A ]B proves that |A ]B| = m+ n = |a|+ |B|. �
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The assertion of the next lemma is intuitively clear. If one adds a new element ω to X then one
obtains for each existing A ⊆ X an additional subset A ∪ {ω} of X ∪ {ω}.

Lemma 7.1. Let X,Ω be sets such that X ( Ω and ω ∈ X{, and let B := {A ] {ω} : A ∈ 2X}.
Then the function F : 2X → B; A 7→ A ] {ω} is a bijection.

The proof is left as exercise ?? (see p.??). �

Proposition 7.5.

Let n ∈ Z≥0. Let Ω be a set such that |Ω| = n. Then its power set has size |2Ω| = 2n.

PROOF:
The proof is done by induction on n = |Ω|.
Base case n = 0: |Ω| = 0 means that Ω is empty. Since |∅| = 0 and 2∅ = {∅} has size 1 = 20 the base
case is proven.
Induction assumption: Let n ∈ Z≥0 such that |2Y | = 2n for all sets Y such that |Y | = n. (?)

Let |Ω| = n+ 1. We need to show that |2Ω| = 2n+1. (??)

Let ω ∈ Ω and X := Ω \ {ω}. Let B := {A ] {ω} : A ∈ 2X}. Note that 2Ω = 2X ∪ B since 2X

contains all subsets A of Ω such that ω /∈ A, and B contains all subsets B of Ω such that ω ∈ B. This
characterization of 2X and B also implies that subsets of Ω which are elements of 2X do not belong
to B and vice versa, i.e., 2X and B are mutually disjoint, thus 2Ω = 2X ]B.
We obtain from lemma 7.1 on p.217 that there is a bijection 2X

∼−→ B, hence |B| = |2X |.
It follows from Ω = X ] {ω} and |{ω}| = 1 and prop.7.4 on p.216 that

n+ 1 = |Ω| = |X|+ |{ω}| = |X|+ 1 , i.e., |X| = n .

The induction assumption (?) thus applies to the setX , and it yields |2X | = 2n. We apply once more
prop.7.4 to 2Ω = 2X ]B and obtain

|2Ω| = |2X ]B| = |2X |+ |B| = 2 · 2n = 2n+1.

We have shown (??), and the proof by induction is completed. �

7.2 The Subsets of N and Their Size

Proposition 7.6. Let ∅ 6= A ⊆ N and let Aj ⊆ A and aj ∈ A (j ∈ N) be recursively defined as follows.

A1 := A, a1 := min(A1);(7.1)

An+1 := A \ {aj : j ∈ N, j ≤ n}; an+1 :=

{
min(An+1) if An+1 6= ∅,
an else.

(7.2)

The following is true for all i, j, n ∈ N.
(a) The sequence of sets A1, A2, A3 . . . is nonincreasing: if i < j then Ai ⊇ Aj .
(b) If j < n and An 6= ∅ then aj < an.
(c) If An 6= ∅ then an ≥ n.
(d) Let n ≥ 2. If a ∈ A and a < an then a = aj for some j < n.
(e) Let n ∈ N. There is no a ∈ A such that an < a < an+1.
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(f) If An = ∅ for some n ∈ N then A is bounded. Let K := max{j ∈ N : Aj 6= ∅}. Then max(A) = aK .

Figure 7.1 illustrates this for the case K = 4. Moreover,

A = {aj : j ∈ N, j ≤ K} = {min(Aj) : j ∈ N, j ≤ K},(7.3)
If n ≥ K then an = aK .(7.4)

(g) The sequence aj : j ∈ N is nondecreasing: if i < j then ai ≤ aj .
(h) If An 6= ∅ for all n ∈ N then A is unbounded and

A = {aj : j ∈ N} = {min(Aj) : j ∈ N}.

Figure 7.1: K = 4: a4 = max(A).

{• · · · • · · • · · · · · •} A1 = A

{• · · • · · · · · •} A2 = A \ {a1}

{• · · · · · •} A3 = A \ {a1, a2}

{•} A4 = A \ {a1, a2, a3}

A5 = A6 = A7 = · · · = ∅

PROOF of (a): Let i < j. Then {ak : k ∈ N, k < i} ⊆ {ak : k ∈ N, k < j}, hence
A \ {ak : k ∈ N, k < i} ⊇ A \ {ak : k ∈ N, k < j}, i.e., Ai ⊇ Aj .
PROOF of (b): An is not empty and j < n, hence Aj ⊇ An, hence Aj 6= ∅. Thus aj = min(Aj) and
an = min(An). Since aj ∈ {ai : i ∈ N, i ≤ j}, it follows that min(Aj) = aj /∈ An. We obtain from
prop.6.24(b) on p.195 that min(Aj) < min(An), i.e., aj < an.
PROOF of (c): This is a simple proof by induction on n.
Base case n = 1: A1 = A ⊆ N, hence A1 is not empty, hence a1 = min(A1) ≥ min(N) = 1 by
prop.6.24(a). This proves the base case.
Induction assumption: Assume that An 6= ∅ and an ≥ n.
We must show that, if An+1 6= ∅, then an+1 ≥ n+ 1. It follows from (b) that an + 1 ≤ an+1 and from
the induction assumption that n+ 1 ≤ an + 1. Thus n+ 1 ≤ an + 1 ≤ an+1.
PROOF of (d): We prove this by induction on n.
Base case n = 2: a ∈ A = A1 and a < a2 = min(A2), hence a /∈ A2, hence a ∈ A1 \ A2 = {a1}, hence
a = a1. This proves the base case.
Induction assumption: If n > 2 and a ∈ A and a < an then a = aj for some j < n.
We must show that if a ∈ A and a < an+1 then a = aj for some j < n+ 1. There are three cases.
Case 1: a = an. We may choose j = n and we are done.
Case 2: a < an. The induction assumption implies that there is some j < n < n+ 1 such that a = aj
and we are done.
Case 3: an < a < an+1. We will show that this is not possible. Note that an < an+1 implies that
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An+1 is not empty. Thus part (b) implies that aj < an < a for all j ∈ [1, n[Z, hence a 6= ai for all
i ∈ [1, n]Z, hence a ∈ A \ {ai : i ∈ N, i ≤ n}, i.e., a ∈ An+1. It follows that a ≥ an+1, and we have
reached a contradiction to the assumption an < a < an+1. This finishes the proof of (d).
PROOF of (e): If an = an+1 this is obviously true. If an < an+1 it follows from (d) that if a ∈ A and
a < an+1 then a ≤ an. This proves (e).
PROOF of (f): Assume that An = ∅. It follows from (a) that Aj is empty for all j > n, hence n
is an upper bound for the set J = {i ∈ N : Ai 6= ∅}. It follows from thm.6.9 (Generalization of
the Well-Ordering Principle) on p.194 that J has a maximum, which we denote by K. Note that it
follows from AK 6= ∅ and AK+1 = ∅ and (7.2) that A \ {aj : j ∈ N, j ≤ K} = AK+1 = ∅. This proves
7.3 and also that an = aK = min(AK) for all n ≥ K.
PROOF of (g): We examine three cases separately. Let K be as defined in part (f). If i < j ≤ K
then ai < aj , according to (b). If K ≤ i < j then ai = aj , according to (7.4). If i < K < j then
ai < aK = aj , according to (b) and (7.4).
PROOF of (h): Let n ∈ N. From An 6= ∅we obtain an = min(An). Also, n ≤ an by (c).

Thus An ⊆ [an,∞[Z ⊆ [n,∞[Z, thus
⋂
n∈N

An ⊆
⋂
n∈N

[n,∞[Z = ∅ .

Let B := A \ {aj : j ∈ N} By definition, An = A \ {aj : j ∈ N, j ≤ n− 1}.
Thus B ⊆ An for all n, thus B ⊆

⋂
n∈N

An, thus B = ∅, thus A = {aj : j ∈ N}. This proves (h). �

Proposition 7.7. Let A be a nonempty subset of N. Let Aj ⊆ A and aj ∈ A (j ∈ N) be defined as in prop.
7.6 on p.217. Then

• either An 6= ∅ for all n ∈ N. In this case A is not bounded and there exists a bijection
N
∼−→ A. Further A = {an : n ∈ N}

• or An is empty for some n ∈ N. In this case A is bounded and there exists a bijection
[1,K]Z

∼−→ A for some suitable K ∈ N. Further A = {an : n ∈ N such that 1 ≤ n ≤ K}
In both cases the integers an and an+1 are adjacent for each index n in the sense that there is no
a ∈ A such that an < a < an+1.

PROOF: It is immediate that either (a) is true or (b) is true, since, either An 6= ∅ for all n or An is
empty for some n. But we still must prove, e.g., that An 6= ∅ for all n ∈ N implies that A is not
bounded and one can biject N to A.
PROOF of the statements in (a): Let F : N −→ A, defined by F (n) = an. It follows from prop.7.6(c)
that no n ∈ N is an upper bound of A because an+1 ≥ n+ 1 > n. This proves that A is unbounded.
Let n ∈ A. We just saw that an+1 ≥ n + 1 > n. It follows from prop.7.6(d) that there exists j ∈ N
such that F (j) = aj = n. This proves that F is surjective. Injectivity of F follows from prop.7.6(b).
Since F (n) = an for all n ∈ N we obtain A = F (N) = {F (n) : n ∈ N} = {an : n ∈ N}. This proves
(a).
PROOF of the statements in (b): Let

K := max{j ∈ N : Aj 6= ∅} .
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Let F : {j ∈ N : j ≤ K} → A, defined by F (n) = an. According to (7.3), A = {F (j) : j ∈ N, j ≤ K},
hence F is surjective. It follows from AK 6= ∅ and prop.7.6(b) that

F (i) < F (j) whenever 1 ≤ i < j ≤ K , hence, (i) F is injective, and (ii), F (K) = max(A) .

Thus F is bijective, and bounded by 1 and F (K). We have shown (b).
Finally, the adjacency of an and an+1 follows for both (a) and (b) from prop.7.6(e) �

We extend the results of the last proposition to subsets of integers which are bounded below.

Proposition 7.8. Let J be a nonempty set of integers which is bounded below.Then
(a) If J is bounded above then there exists K ∈ N and integers nj (1 ≤ j ≤ K) such that

J = {nj : 1 ≤ j ≤ K}.
(b) If J is not bounded above then there exist integers nj (j ∈ N) such that J = {nj : j ∈ N}.
(c) In both cases (a) and (b) the integers nj satisfy i < j ⇒ ni < nj , and nj and nj+1 are adjacent for each

index j: There is no n ∈ J such that nj < n < nj+1.

PROOF: If min(J) ≥ 1, i.e., J ⊆ N then the above is a direct consequence of prop.7.7, so we may
assume that min(J) ≤ 0. The function n 7→ n+ 1−min(J) is a bijection ϕ : J

∼−→ ϕ(J) since it has
the function m 7→ m − 1 + min(J) as its inverse. Further ϕ(J) ⊆ N since n ∈ J ⇒ n ≥ min(J) we
obtain ϕ(n) ≥ ϕ

(
min(J)

)
= 1 for all n ∈ J and thus ϕ(J) ⊆ N.

We apply prop.7.7 to ϕ(J) and obtain

either ϕ(J) = {mj : 1 ≤ j ≤ K} (case (a)) or ϕ(J) = {mj : j ∈ N} (case (b))

for suitable mj ∈ ϕ(J) and K ∈ N which satisfy the properties stated in (2). We look at the inverse
images nj := ϕ−1(mj) and obtain J = ϕ−1

(
ϕ(J)

)
. Thus J = {nj : 1 ≤ j ≤ K} (case (a)) or

J = {nj : j ∈ N} (case (b)). We have proven parts (a) and (b) of the proposition.
We still need to prove (c). Since the function ϕ−1 shifts its arguments by a constant number to the
left, it follows that i < j ⇒ ni < nj . Finally, assume to the contrary that there exists some index j
and n ∈ J such that nj < n < nj+1. It follows that the ϕ–images satisfy ϕ(nj) < ϕ(n) < ϕ(nj+1),
i.e., mj < ϕ(n) < mj+1. But ϕ(n) ∈ ϕ(J), and this contradicts the adjacency of the mj in ϕ(J). �

Notation 7.1 (Notation Alert for bounded below subsets of the integers).

If J is a nonempty subset of the integers which is bounded below then the last proposition
makes it natural to introduce the following notation:

(a) If J is finite, i.e., bounded above and hence of the form J = {nj : 1 ≤ j ≤ K}
then we also say that J consists of the numbers n1 < n2 < ... < nK .

(b) If J is infinite, i.e., not bounded above and hence of the form J = {nj : j ∈ N}
then we also say that J consists of the numbers n1 < n2 < .... �

Proposition 7.9. Let A be a nonempty, finite subset of N. Then A is bounded.

The proof is left as exercise 7.3 (see p.230). �

We will see later that the reverse also is true: Bounded subsets of N are finite. But first we must
prove
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Proposition 7.10. Let B ⊆ A ⊆ N and assume that A is finite. Then B is finite.

The proof is left as exercise 7.4 (see p.230). �

Theorem 7.1.

Let A be a nonempty subset of the natural numbers. Then
(a) A is finite if and only if A is bounded,
(b) A is countably infinite if and only if A is not bounded.
(c) All subsets of N are countable.

PROOF of (a): It follows from prop.7.9 above that nonempty, finite subsets of N are bounded. We
now prove the reverse. If A is bounded then max(A) exists according to the extended well-ordering
principle (thm.6.9 on p.194). A is a subset of the finite set [max(A)], hence A is finite according to
the previous proposition. This proves (a).
PROOF of (b): First assume that A is countably infinite. It follows from (a) and prop.6.25 (N is
unbounded in Z) on p.195 that N is infinite, hence A is infinite according to prop.7.3(a) on p.215. We
employ once more the already proven part (a) to conclude that A is not bounded.
Now assume that A is not bounded. Then A does not satisfy prop.7.7(b) above, hence A satifies
prop.7.7(a). Thus there exists a bijection N

∼−→ A, i.e., A is countably infinite. This proves (b).
PROOF of (c): Either A is bounded or A is not bounded. In the first case it follows from (a) that A
is finite, hence countable. In the second case it follows from (b) that A is countably infinite, hence
countable. This proves (c). �

Theorem 7.2.

(a) Let X be a finite set and A ⊆ X . Then A is finite.

(b) Let X1, X2, . . . , Xn be finite sets. Then
n⋃
j=1

Xj is finite.

PROOF of (a): We may assume that A 6= ∅ because the empty set is finite. Since X is finite there
exists a bijection φ : X → [1, n]Z for some suitable n ∈ N. Consider φ

∣∣
A

: A → φ(A), i.e., the
restriction of φ to A with a codomain which is shrunken from [1, n]Z to φ(A).
Then φ

∣∣
A

is bijective according to prop.5.9(a) on p.152. Moreover, since φ(A) ⊆ [1, n]Z, it follows
from prop.7.10 above that φ(A) is finite. Since A is the bijective image

(
φ
∣∣
A

)−1(
φ(A)

)
of the finite

set φ(A), It follows from prop.7.3(a) on p. 215 that |A| is finite.
PROOF of (b): We give the proof for n = 2. The proof for arbitrary n ∈ N is done by induction on n
and left as an easy exercise.
Let X := X1 ∪X2 and A := X2 \X1. Then X := X1

⊎
A. Since A ⊆ X2 and X2 is finite, A is finite

according to the already proven part (a). By Proposition 7.4 on p.216, X is finite. �

We saw in thm.7.1 on p.221 that subsets of the natural numbers are finite if they are bounded and
that they are countably infinite otherwise. We had to establish that subsets of finite subsets are finite
to extend this theorem to subsets of the integers.

Theorem 7.3.
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Let A be a nonempty set of integers. Then
(a) A is finite if and only if A is bounded,
(b) A is countably infinite if and only if A is not bounded.

PROOF:
Part 1: bounded ⇒ finite:
Let A′ := (1 − min(A)) + A = {a − min(A) + 1 : a ∈ A}. Then A′ ⊆ N and is bounded above by
max(A) − min(A) + 1, hence bounded in N, hence finite by thm.7.1 above. Moreover the function
a 7→ a−min(A) + 1 is a bijection A ∼−→ A′, hence A is finite by prop.7.3(a) on p.215.
Part 2: not bounded above ⇒ infinite:
Let A′ := A ∩ N. If A has no upper bounds then neither does A′. It follows from thm.7.1 on p.221
that A′ is not finite, and from prop.7.10 that A is not finite.
Part 3: not bounded below ⇒ infinite:
Let A′ := −A = {−m : m ∈ A}. The function ϕ : x 7→ −x is a bijection A

∼−→ A′ because it has
y 7→ −y as an inverse. It follows from (3.36) on p.80 that ϕmaps lower bounds ofA to upper bounds
of A′, thus A′ is not bounded above.
We have proven in part 2 that A′ is not finite, hence its bijective image A = ϕ−1(A′) is not finite. We
are done with the proof of part 3. �

Remark 7.2. It follows from the above proposition that subsets of the integers are finite if and only
if bounded and infinite otherwise. We will see in ch.7.4 (Countable Sets) that we also can extend
thm.7.1(c) to the integers: All subsets of Z are countable. �

7.3 Finite Sequences and Subsequences and Eventually True Properties

Definition 5.22 (p.158) of ch.5 (Relations, Functions and Families) gave the exact definition of se-
quences and subsequences, more precisely, only of infinite sequences and subsequences: We as-
sumed there that the index set of a sequence (xn)n was of the form [n?,∞[ for some n? ∈ Z, i.e., we
assumed that the index set was not bounded above and hence infinite. Now that we understand
the structure of the subsets of Z which are bounded below we are ready to study finite sequences
and finite subsequences.

Definition 7.2 (Finite sequences). Let n?, n? ∈ Z such that n? ≤ n?, let J := [n?, n
?]Z. Then J

is a finite set of integers since it is bounded below by n? and above by n?. Let X be an arbitrary
nonempty set. We call an indexed family (xn)n∈J inX with index set J a finite sequence. We write

(xn)n?≤n≤n? or (xn)n
?

n=n? or xn? , xn?+1 , . . . , xn?−1 , xn? or (xn? , xn?+1 , . . . , xn?−1 , xn?)

for such a finite sequence. We will sometimes call a sequence (yn)∞n=n? an infinite sequence if we
want to stress that its set of indices [n?,∞[ is infinite.
If all members xj of the finite sequence are (real) numbers then we also talk about a vector 96 of
dimension

∣∣[n?, n?]Z∣∣ = n? − n? + 1. In this case we always must surround the members of that

96Vectors can be of a more general nature than just being a finite sequence of numbers. See ch.11.2 (General Vector
Spaces) on p.328 (General Vector Spaces).
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finite sequence with parentheses, and we will often use a symbol with “arrow notation”

~x =
(
x1, x2, x3, . . . , xn−1, xn

)
(7.5)

to refer to such a vector. �

Example 7.2. Here are some examples of finite sequences.

(a)
(
3.5,−97π, 4,

√
8
)

is both a finite sequence and a vector of dimension 4. We have
x1 = 3.5, x2 − 97π, x3 = 4, x4 =

√
8.

(b)
(
3k + 2

)3
k=−2

= −4,−1, 2, 5, 8, 11 =
(
− 4,−1, 2, 5, 8, 11

)
is both a finite sequence and a

vector of size/dimension 6.
(c) Joe, 5, −6.8, Dolores is a finite sequence of size 4. This is not a vector because not all of its

members are numeric. �

Definition 7.3 (Finite subsequences). Assume that either J := [n?,∞[Z or J := [n?, n
?]Z (n?, n? ∈ Z

and n? ≤ n?). Let (nj)
K
j=1(K ∈ N) be a finite sequence of integers nj ∈ J such that i < j ⇒ ni < nj

for all i, j ∈ N. Note that if J = [n?,∞[Z then nj ∈ J for all j implies n? ≤ n1 < n2 < · · · < nK , and
if J = [n?, n

?]Z then this implies n? ≤ n1 < n2 < · · · < nK ≤ n?.
Let (xn)n∈J be a sequence in a nonempty set X . We call (xnj )

K
j=1 a finite subsequence of the

original sequence since its index set {nj : 1 ≤ j ≤ K} is finite and we obtain (xnj )
K
j=1 from (xn)n∈J

by omitting all members xn for which there is no nj which equals n. �

Example 7.3. Let yk := 2k+10. Then (yk)
2
k=−3 is the finite sequence 4, 6, 8, 10, 12, 14. It is a finite sub-

sequence not only of the finite sequences (yi)
10
i=−10 and (yi)

2
i=−5, but also of the (infinite) sequences

(ym)m≥−10 and (yj)
∞
j=−3. �

Definition 7.4. Let X be a nonempty set, n? ∈ Z, J := {k ∈ Z : k ≥ n?}, and let (xn)∞n=n? be a
sequence in X . If the set of indices n ∈ J for which a certain property does not hold is empty or
bounded then we say that the sequence (xn)n satisfies this property eventually or that it satisfies
this property for eventually all indices n. 97 �

Proposition 7.11.

We have the following equivalent ways to state that a sequence (xn) satisfies a property P eventually:
(a) There is K ∈ J such that if P is false for some xj then j ≤ K.
(b) There is K ∈ J such that P is true for all xj such that j > K.
(c) The set of all indices j such that P is false for xj is finite.

PROOF: Let F := {j ∈ J : P is false for xj} and T := {j ∈ J : P is true for xj} Then Definition 7.4
states that (xn)∞n=n? satisfies P eventually if and only if F is empty or bounded. If F is empty then
(xn)∞n=n? satisfies P eventually and each statement (a), (b), (c) is true, so the proposition is proven.

97You will also find in the mathematical literature the notation “for almost all indices n. We prefer not to use this
notation in this context because “almost all” is of central importance in measure and probability theory, and it means
something very different there.
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We thus may assume that F is not empty. Then (xn)∞n=n? satisfies P eventually if and only if F is
bounded. Since F is always bounded below (by n?) we conclude that

(xn)∞n=n? satisfies P eventually ⇔ F is bounded above
⇔ there exists K ≥ n? such that

[
j > K ⇒ j /∈ F

]
⇔ there exists K ≥ n? such that

[
j ∈ F ⇒ j ≤ K

]
⇔ (a).

This proves the equivalence of Definition 7.4 and (a).
Since the opposite of “there is K ∈ J such that P is false for some xj” is “there is K ∈ J such that P
is true for all xj”, and the opposite of “j ≤ K” is “j > K” we conclude that (a)⇔ (b).
By thm.7.3 on p.221 F is bounded (above) if and only if F is finite. Thus

(a) ⇔ there exists K ≥ n? such that
[
j ∈ F ⇒ j ≤ K

]
⇔ there exists K ≥ n? such that F ⊆ [n?,K]

⇔ there exists K ≥ n? such that F is bounded
⇔ there exists K ≥ n? such that F is finite ⇔ (c).

This proves the proposition. �

7.4 Countable Sets

In the last chapter we studied the sizes of subsets of natural numbers, and we were able to obtain a
complete answer in the last theorem (thm.7.1): All subsets of N are countable, and they are finite if
and only if they are bounded.

Most of the results in this chapter are for general sets and their subsets: No assumption is
made about their nature. We may not deal with natural numbers or any other kind of numbers.
They might, e.g., be sets of functions or sets of sets.

Now that we know from thm.7.1 on p.221 that all subsets of N are countable we are able to charac-
terize countable sets by means of injective and surjective functions.

Proposition 7.12 (Countability Criterion). Let X 6= ∅.

The following are equivalent:
(a) X is countable.
(b) There exists an injective function f : X → N.
(c) There exists a surjective function g : N→ X .

Proof: It follows from thm.5.2(c) on p.149 that (b) and (c) are equivalent, hence it suffices to show
that (a) and (b) are equivalent.
PROOF of (a) ⇒ (b):
Case 1: If X is finite, then there exists n ∈ N and bijective ϕ : X

∼−→ [1, n]Z. Let

f : X → N; x 7→ ϕ(x)

be the “same” function as ϕ, except that we enlarge the codomain to N. f inherits injectivity from
ϕ, and we are done.
Case 2: Otherwise, if X is infinite, i.e., countably infinite, there exists a bijective, hence injective,
function f : X

∼−→ N. We are done.
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PROOF of (b) ⇒ (a):
We modify f by shrinking its codomain from N to the range f(X) of f : Let

f ′ : X → f(X); x 7→ f(x).

Then f ′ inherits injectivity from f , and it also is surjective: If k ∈ f(X) then there is, by definition
of the direct image function, some xk ∈ X such that f(xk) = k, i.e., f ′(xk) = f(xk) = k. This proves
surjectivity, hence bijectivity, of f ′.
According to thm.7.1(c) on p.221 f(X) is countable as a subset of N Since f(X) is the codomain of
the bijecttion f ′. it follows from prop.7.3(c) on p.215 that X is countable. �

Theorem 7.4. Let X be a countable set and A ⊆ X . Then A is countable.

PROOF: If X is finite then A is finite by Theorem 7.2 on p.221, and we are done. So assume that X
is countably infinite. Then there exists a bijection φ : N→ X . Let Y := N.
Note that the inverse φ−1 : X

∼−→ Y of φ is bijective. Let B := {φ−1(a) : a ∈ A}, and let f ′ : A→ B
be defined by f ′(a) = φ−1(a) for all a ∈ A, i.e., f ′ is the restriction of φ−1 to A, with its codomain
consisting of all function values of arguments in A. Then f ′ is bijective according to prop.5.9(a) on
p.152. It follows from prop.7.3 on p. 215 that |A| = |B|.
Since B ⊆ Y and Y = N we can apply thm.7.1 on p.221. It follows that B and hence A is countable.
�

Corollary 7.2.

(a) subsets of countable sets are either finite or countably infinite.
(b) supersets of uncountable sets are uncountable.
(c) Supersets of infinite sets are infinite,

The proof is left as exercise 7.6 (see p.231). �

Proposition 7.13 (B/G prop.13.11). Every infinite set contains a proper subset that is countably infinite.

The proof is left as exercise 7.7 (see p.231). �

Proposition 7.14 (B/G prop.13.12).

A set is infinite if and only if it contains a proper subset that is countably infinite.

The proof is left as exercise ?? (see p.??). �

The next proposition is a major stepping stone for proving that countable unions of countable sets
are countable.

Proposition 7.15 (B/G Cor.13.16, p.122). N2 is countable.
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PROOF: ? Let f : N→ N2; k 7→ (i, j) = f(k) be defined recursively as follows.

f(1) := (1, 1);(7.6)

f(k + 1) :=

{
(i+ 1, j − 1) if f(k) = (i, j) and j > 1, (a)
(1, n)) if f(k) = (n− 1, 1). (b)

(7.7)

We will show that f is surjective and injective. For n ∈ N, n ≥ 2, let Dn := {(i, j) ∈ N2 : i+ j = n}.

Then The “diagonals” Dn are mutually disjoint, and N2 =
∞⊎
j=2

Dj .

The following will help to visualize the definition of f . We think of N2 as a matrix with “infinitely
many rows and columns”. The left diagram below shows the points of N2 that belong to the diag-
onals D2, . . . D5 in their (x, y)–coordinate form, the one on the right shows them as images of the
bijection f : N→ N2.
Let n := i + j. Equation (7.7)(a) specifies that you march southeast on the diagonal Dn if you are
not on the bottom row j = 1. Equation (7.7)(b) specifies that you move from the bottommost point
(n− 1, 1) of Dn to the uppermost point (1, n) of the next diagonal, Dn+1.

(1, 1) (2, 1) (3, 1) (4, 1)

(1, 2) (2, 2) (3, 2)

(1, 3) (2, 3)

(1, 4)

f(1) f(3) f(6) f(10)

f(2) f(5) f(9)

f(4) f(8)

f(7)

Assume to the contrary that f is not surjective. Let A := {n ∈ Z≥2 : Dn \ f(N) 6= ∅}, i.e., A
contains the indices of all diagonals that have at least one (i, j) ∈ N2 that is not a function value. A
is not empty because f is not surjective, so it possesses, according to the well–ordering principle, a
minimum n?. Note that D2 = {f(1)} ⊆ f(N), hence 2 /∈ A, hence n? > 2.
Let B := {i ∈ N : 1 ≤ i < n? and (i, n?− i) /∈ f(N)}. This is the set of all x–coordinates i of elements
of (i, j) ∈ Dn? which are not function values of f , and it is not empty because n? ∈ A. We apply the
well–ordering principle to B and obtain a minimum 1 ≤ i? < n?.
Case 1: i? 6= 1. Then (i? − 1, n− i? + 1) ∈ Dn? is a function value f(k) for some k ∈ N because i? is
minimal in B. It follows from (7.7)(a) that f(k + 1) = (i?, n − i?). We have reached a contradiction
because i? ∈ B, hence (i?, n− i?) is not a function value.
Case 2: i? = 1. Then (n?− 2, 1) ∈ Dn?−1 is a function value f(k) for some k ∈ N because n?− 1 /∈ A.
It follows from (7.7)(b) that f(k + 1) = (1, n? − 1). We have reached a contradiction because 1 ∈ B,
hence (1, n? − 1) is not a function value.
We have proven that f is surjective. We now prove injectivity. Let k, k′ ∈ N such that k 6= k′. We
may assume that k < k′. Let i, j, i′, j′ ∈ N such that f(k) = (i, j) and f(k′) = (i′, j′). We must prove
that f(k) 6= f(k′).

It follows from the surjectivity of f and N2 =
∞⊎
j=2

Dj that there exists (unique) n, n′ ∈ N such that

f(k) ∈ Dn and f(k′) ∈ Dn′ . If n 6= n′ then f(k) 6= f(k′) because Dn ∩Dn′ and we are done.
So let us assume that n = n′. It follows from (7.7)(a) that i′ = i+ (k′ − k) and j′ = j − (k′ − k), thus
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f(k) = (i, j) 6= (i′, j′) = f(k′). We have proven injectivity. �

The proof of prop.7.15 above employs a bijection f : N → N2 which is constructed in a way that
can be easily visualized. See the diagrams in the proof of prop.7.15. The drawback is that it was
quite complicated to prove that f is in fact bijective. In the following we will construct a different
bijection between N and N2.
We will first use the uniqueness of prime factorizations to decompose a natural number into a
product of factors 2 and an odd number.

Proposition 7.16.

Let n ∈ N. Then
(a) There exist unique k ∈ Z≥0 and m ∈ N such that m is odd and n = 2km.
(b) If n 6= 1 then k is the number of times the factor 2 occurs in its prime factorization.

Further, either m is the product of all other prime factors, or m = 1 if there are no
prime factors different from 2.

PROOF:
If n = 1 then the unique factorization 1 = 2km is obtained with k = 0 and m = 1. and we have
shown both (a) and (b).
If n > 1 then its unique prime factorization contains zero or more factors of 2. Let k be this number
of factors. Letm be the product of all those prime factors of nwhich are not 2. Then n = 2km, andm
is odd, because otherwise 2 would divide m and hence appear in the prime factorization of m. This
proves the existence of the sought after representation, and k and m are precisely as was specified
in (b).
Note that we have established on the way that the prime factorization of m does not contain the
number 2 as factors, and that the prime factorization of 2k only contains the number 2.
We now prove uniqueness. Let k′ ∈ Z≥0 and m′ ∈ N such that m′ is odd, and such that n =
2k
′
m′. Because m′ is odd, its prime factorization does not contain the number 2, and that of 2k

′
only

contains the number 2 as factors.
It follows that both m and m′ contain exactly the prime factors of n which are not 2, and that both
2k and 2k

′
contain exactly those which equal 2.

We obtain that m = m′ and k = k′, and we have established uniqueness. �

Lemma 7.2. Lemma: Let n ∈ N. Then there exist unique i, j ∈ [0,∞[Z such that n = 2i (2j + 1).

PROOF: According to prop.7.16 on p.227, there exists a unique pair (i,m) ∈ [0,∞[Z×N such that m
is odd and

n = 2i ·m(7.8)

Moreover, it follows from Proposition 6.26 (B/G prop.6.15) on p.196 that there exists j ∈ Z such that
m = 2j+ 1. This integer j is unique for the following reason. Let j′ ∈ Z such that m = 2j′+ 1. Then
0 = m−m = 2(j − j′), thus j = j′ because there are no zero divisors in Z.
The proof of the lemma is complete if we can prove that j ≥ 0 and thus j ∈ [0,∞[Z. But this is true
since m ∈ N, thus m ≥ 1, thus 2j + 1 ≥ 1, thus j ≥ 0. �
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Proposition 7.17.

(a) The function G :
(
[0,∞[Z

)2 → N; (i, j) 7→ 2i (2j + 1) is a bijection.
(b) The function F : N2 → N; (i, j) 7→ 2i−1 (2j − 1) is a bijection.

PROOF of (a): Note that if i, j ∈ [0,∞[Z then the integers 2i and 2j + 1 both are positive, hence
2i(2j + 1) ∈ N, hence the assignment (i, j) 7→ 2i(2j + 1) indeed defines a function with domain(
[0,∞[Z

)2 and codomain N. We must show that g is both injective and surjective.
According to the previous lemma any n ∈ N can be written as n = 2i (2j + 1) for suitable i, j ∈
[0,∞[Z. This proves surjectivity of G.
That lemma also showed that those numbers i and j are unique, thus G is injective.
PROOF of (b): This is an immediate consequence of (a) since, if we denote the “even factor” of n

k = 2i−1 for some i ∈ N ⇔ k = 2i for some i ∈ [0,∞[Z ,

m = 2j − 1 for some j ∈ N ⇔ m = 2j + 1 for some j ∈ [0,∞[Z .

�

Theorem 7.5 (B/G prop.13.19: Countable unions of countable sets).

The union of countably many countable sets is countable.

PROOF: Let the sets A1, A2, A3, . . . be countable and let A :=
⋃
k∈NAk. We may assume that at

least one of those setsAk is not empty: otherwise their union is empty, hence finite, hence countable,
and we are done.
As each of those Ai which is not empty is countable, either Ai is finite and we have an Ni ∈ N and
a bijective mapping ai(·) : Ai

∼−→ [Ni], or Ai is countably infinite and we have a bijective mapping
ai(·) : Ai

∼−→ N. We will write a(i,j) for ai(j)
We now define the function f : A → N2, a 7→ (ia, ja) as follows: For each a ∈ A let Ia := {i ∈ N :
a ∈ Ai}. Since A :=

⋃
k∈NAk, Ia 6= ∅ and hence has a minimum ia. Since a ∈ Aia and since sets do

not contain duplicates of their elements, there is a unique index ja such that a = a(ia,ja).
In other words, we have assigned to each a ∈ A a unique pair (ia, ja) ∈ N2 such that a = a(ia,ja).
This assignment a 7→ (ia, ja) defines a function f : A→ N2.
If a, a′ ∈ A such that f(a) = f(a′) = (ia, ja) then both a and a′ occupy the same slot ja in the same
set Aia , hence a = a′, thus f is injective. We shrink the codomain of f from N2 to f(A) and the
assignment a 7→ (ia, ja) gives us a bijective function F : A

∼−→ f(A).
f(A) is a subset of the countable set N2. This proves the theorem because any subset of a countable
set is countable (see prop.7.4 on p.225). �

The following is an easy consequence of the above theorem.

Corollary 7.3. Let the set X be uncountable and let A ⊆ X be countable. Then the complement A{ of A is
uncountable.

The proof is left as exercise 7.5 (see p.230). �

Here are two more corollaries to thm.7.5. Note that the one about the countability of Z also follows
from Theorem 7.3 on p.221.
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Corollary 7.4. The set Z of all integers is countable.

PROOF: The set −N is countable because the function n 7→ −n is a bijection N
∼−→ −N, hence

Z = N ∪ (−N) ∪ {0}

is countable as the union of three countable sets. �

Corollary 7.5. The rational numbers are countable.

PROOF: Let n ∈ N and Qn := {mn : m ∈ Z}. Then fn : Qn → Z, m
n 7→ m is a bijection because

it has as an inverse the function m 7→ m
n . It follows from cor.7.4 that Qn is countable. By thm.7.5,

Q =
⋃[

Qn : n ∈ N
]

is countable as the union of countably many sets. �

We saw in prop.7.15 that the cartesian product of the two countable factors N also is countable. The
next theorem generalizes this considerably.

Theorem 7.6 (Finite Cartesians of countable sets are countable).

The Cartesian product of finitely many countable sets is countable.

Proof by induction: LetX := X1×· · ·×Xn We may assume that none of the factor setsXj is empty:
Otherwise the Cartesian is empty too and there is nothing to prove.
The proof is a triviality for k = 1. It is more instructive to choose k = 2 for the base case instead.
So let X1, X2 be two nonempty countable sets. We now prove that X1 ×X2 is countable.
For fixed x1 ∈ X1 the function F2 : X2 → {x1}×X2; x2 7→ (x1, x2) is bijective because it has as an
inverse the function G2 : {x1} ×X2 → X2; (x1, x2) 7→ x2. It follows that {x1} ×X2 is countable.

Hence X1 ×X2 =
⋃
x∈X1

{x1} ×X2 is countable according to thm.7.5 on p.228. We have proved the

base case.
Our induction assumption is that X1 × · · · ×Xk is countable. We must prove that X1 × · · · ×Xk+1

is countable. We can “identify”

X1 × · · · ×Xk+1 =(X1 × · · · ×Xk)×Xk+1(7.9)

by means of the bijection (x1, . . . , xn, xn+1) 7→
(
(x1, . . . , xn), xn+1

)
. According to the induction

assumption the set X1 × · · · ×Xk is countable.
The proof for the base case shows that X1 × · · · × Xk+1 as the Cartesian product of the two sets
X1 × · · · ×Xk and Xk+1 is countable. This finishes the proof of the induction step. �

Corollary 7.6. Let n ∈ N. The sets Qn and Zn are countable.

PROOF: This follows from the preceding theorem because the sets Q and Z are countable. �

We will examine uncountable sets in ch.10 (Cardinality II: Comparing Uncountable Sets), but we
will state a result here concerning a very important example of an uncountable set. The proof of the
next theorem is very similar to the proof that the real numbers are uncountable. (See thm.9.12 on
p.285.)
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Theorem 7.7.

Let X be a set which contains at least two elements. Then XN = {(xn)n∈N : xj ∈ X ∀j ∈ N} (the
set of all sequences with values in X) is uncountable.

PROOF: Let a, b ∈ X such that a 6= b. We will prove that the subsetA := {a, b}N ofX is uncountable.
A certainly is not finite since it contains for each n ∈ N the sequence ~yn = (ynj )j∈N which is defined
by ynj := a if n 6= j, ynn := b. If A were finite then its subset B := {~yn : n ∈ N} also would have to be
finite. (See thm.7.4 on p.225.) But B is countably infinite since n 7→ ~yn defines a bijection N

∼−→ B.
This proves that A is not finite. We are done if we can prove that A also is not countably infinite.
So assume to the contrary that A is countably infinite, i.e., there exist ~x1, ~x2, · · · ∈ A such that
A = {~xn : n ∈ N}. Note that each ~xn itself is a sequence (xnj )j∈N in which each member xnj is either
a or b. We will reach a contradiction by constructing some ~x ∈ A which is different from ~xn for each
n ∈ N since this implies that ~x /∈ A.
We will obtain such ~x = (xj)j∈N by ensuring that each xj
will be different from the diagonal element xjj of the infinite
grid to the right. Let

xj :=

{
a ifxjj = b,

b otherwise.

~x1 : x1
1 x1

2 x1
3 x1

4 . . .

~x2 : x2
1 x2

2 x2
3 x2

4 . . .

~x3 : x3
1 32

2 x3
3 x3

4 . . .
...

...
...

...
...

...

Clearly ~x ∈ A since A = {a, b}N contains any sequence whose members are either a or b. Note
that ~x 6= ~x1 since those two sequences differ in their first elements x1 and x1

1. Further ~x 6= ~x2

since those two sequences differ in their second elements x2 and x2
2. We see that for any j ∈ N

it is true that ~x 6= ~xj since those two sequences differ in their j–th elements xj and xjj . It follows
from A = {~xn : n ∈ N} that ~x /∈ A. The assumption that A is countably infinite has allowed us to
construct some ~x such that both ~x ∈ A and ~x /∈ A. We have reached a contradiction. �

7.5 Exercises for Ch.7

Exercise 7.1. Prove the following parts of cor.7.1 on p.214 of this document:
(a) If m < n then there exists no surjective function f : [1,m]Z → [1, n]Z.
(b) If m > n then there exists no injective function g : [1,m]Z → [1, n]Z.
(c) If m 6= n then there exists no bijective function f : [1,m]Z → [1, n]Z. �

Exercise 7.2. Prove lemma.7.1 on p.217 of this document: Let X,Ω be sets such that X ⊆ Ω and
ω ∈ X{, and let B := {A ] {ω} : A ∈ 2X}.
Then the function F : 2X → B; A 7→ A ] {ω} is a bijection. �

Exercise 7.3. Prove prop.7.9 on p.220 of this document: Let A be a nonempty, finite subset of N.
Then A is bounded. �

Exercise 7.4. Prove prop.7.10 on p.221 of this document: LetB ⊆ A ⊆ N and assume thatA is finite.
Then B is finite. �

Exercise 7.5. Prove cor.7.3 on p.228 of this document:

If X is uncountable and A ⊆ X is countable then A{ is uncountable. �
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Exercise 7.6. Prove cor.7.2 on p.225 of this document:
(a) subsets of countable sets are either finite or countably infinite.
(b) supersets of uncountable sets are uncountable.
(c) Supersets of infinite sets are infinite, �

Exercise 7.7. Prove prop.7.13 on p.225 of this document: Every infinite set contains a proper subset
that is countably infinite. �

Exercise 7.8. Prove prop.7.14 on p.225 of this document: A set is infinite if and only if it contains a
proper subset that is countably infinite. �
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8 More on Sets, Relations, Functions and Families

8.1 More on Set Operations

The material in this chapter is a continuation of Chapter 2.6 (Arbitrary Unions and Intersections).

Recall that we had defined unions and intersections of arbitrary collections of sets in Definition 2.29
(Arbitrary unions and intersections) on p.38.

Definition 8.1. It is convenient to allow unions and intersections for the empty index set J = ∅. For
intersections this requires the existence of a universal set Ω. We define

(8.1)
⋃
i∈∅

Ai := ∅,
⋂
i∈∅

Ai := Ω.

Note that this definition is consistent with the fact that
• unions over fewer sets become smaller, so the union over ∅ should be the smallest set

possible, i.e., the empty set,
• intersections over fewer sets become bigger, so the intersection over ∅ should be the

largest set possible, i.e., the universal set. �

We give some more examples of non-finite unions and intersections.

Example 8.1. For any set A we have A =
⋃
a∈A
{a}. According to (8.1) this also is true if A = ∅. �

The following trivial lemma is useful if you need to prove statements of the form A ⊆ B or A = B
for sets A and B. Be sure to understand what it means if you choose J = {1, 2} (draw one or two
Venn diagrams).

Lemma 8.1 (Inclusion lemma).

Let J be an arbitrary, nonempty index set. Let U,Xj , Y, Zj ,W (j ∈ J) be sets such that

U ⊆ Xj ⊆ Y ⊆ Zj ⊆ W

for all j ∈ J . Then

(8.2) U ⊆
⋂
j∈J

Xj ⊆ Y ⊆
⋃
j∈J

Zj ⊆W.

PROOF: Note that we need at various places in this proof the existence of some j0 ∈ J , i.e. the
assumption that J 6= ∅ is essential.
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(a) Let x ∈ U . Then x ∈ Xj for all j ∈ J , hence x ∈
⋂
j∈J

Xj . This proves the first inclusion.

(b) Now let x ∈
⋂
j∈J

Xj and j0 ∈ J . Then x ∈ Xj for all j ∈ J ; in particular, x ∈ Xj0 . It follows

from Xj0 ⊆ Y that x ∈ Y and we have shown the second inclusion.
(c) Let x ∈ Y and j0 ∈ J . It follows from Y ⊆ Zj0 that x ∈ Zj0 . But then x ∈ {z : z ∈

Zj for some j ∈ J}, i.e., x ∈
⋃
j∈J

Zj . This proves the third inclusion.

(d) Finally, assume x ∈
⋃
j∈J

Zj It follows from the definitions of unions that there exists j0 ∈ J

such that x ∈ Zj0 . But then x ∈ W as W contains Zj0 . It follows that
⋃
j∈J

Zj ⊆W . This

finishes the proof of the rightmost inclusion. �

Definition 8.2 (Disjoint families).

Let J be a nonempty set. We call a family of sets (Ai)i∈J a mutually disjoint family if for
any two different indices i, j ∈ J it is true that Ai∩Aj = ∅, i.e., if any two sets in that family
with different indices are mutually disjoint. �

We recall from Chapter 2.1 (Sets and Basic Set Operations), p.22, Definition 2.11 of a partition: For
A ⊆ 2Ω, A is a partition or a partitioning of Ω if

(a) A ∩B = ∅ for any two A,B ∈ A such that A 6= B, (b) Ω =
⊎[

A : A ∈ A
]
.

We extend this to arbitrary families and hence finite collections and sequences of subsets of Ω:

Definition 8.3 (Partition).

Let J be an arbitrary nonempty set, let (Aj)j∈J be a family of subsets of Ω. We call
(Aj)j∈J a partition or a partitioning of Ω if it is a mutually disjoint family which satisfies

Ω =
⊎[

Aj : j ∈ J
]
.

In other words,
• (Aj)j∈J is a partition of Ω if and only if A := {Aj : j ∈ J} is a partition of Ω.

Note that duplicate nonempty sets cannot occur in a disjoint family of sets because otherwise the
condition of mutual disjointness does not hold. �

Example 8.2. Here are some examples of partitions.
(a) For any set Ω the collection { {ω} : ω ∈ Ω} is a partition of Ω.
(b) The empty set is a partition of the empty set and it is its only partition. Do you see that this is a
special case of (a)?
(c) The set of half open intervals { ]k, k + 1] : k ∈ Z} is a partitioning of R.
(d) Given is a strictly increasing sequence n0 = 0 < n1 < n2 < . . . of nonnegative integers. For
k ∈ N let Ak := {j ∈ N : nk−1 < j ≤ nk}. Then the set {Ak : k ∈ N} is a partition of N (not of Z≥0!)
�
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Theorem 8.1 (De Morgan’s Law). Let there be a universal set Ω (see (2.8) on p.18). Then the following
“duality principle” holds for any indexed family (Aα)α∈I of sets:

(8.3) (a)
(⋃
α

Aα
){

=
⋂
α

A{α (b)
(⋂
α

Aα
){

=
⋃
α

A{α

To put this in words, the complement of an arbitrary union is the intersection of the complements, and the
complement of an arbitrary intersection is the union of the complements.

Generally speaking the formulas are a consequence of the duality principle for set operations which
states that any true statement involving a family of subsets of a universal sets can be converted into
its “dual” true statement by replacing all unions with intersections and all intersections with unions.
PROOF of De Morgan’s law, formula (a):

1) First we prove that (
⋃
α
Aα){ ⊆

⋂
α
A{α:

Assume that x ∈ (
⋃
α
Aα){. Then x /∈

⋃
α
Aα which is the same as saying that x does not belong to

any of the Aα. That means that x belongs to each A{α and hence also to the intersection
⋂
α
A{α.

2) Now we prove that (
⋃
α
Aα){ ⊇

⋂
α
A{α:

Let x ∈
⋂
A{α. Then x belongs to each of the A{α and hence to none of the Aα. Then it also does

not belong to the union of all the Aα and must therefore belong to the complement (
⋃
α
Aα){. This

completes the proof of formula (a).
The proof of formula (b) is very similar and given as exercise 8.3 on p.249. �

You should draw the Venn diagrams involving just two sets A1 and A2 for both formulas a and b so
that you understand the visual representation of De Morgan’s law.

Proposition 8.1 (Distributivity of unions and intersections). Let (Ai)i∈I be an arbitrary family of sets
and let B be a set. Then

⋃
i∈I

(B ∩Ai) = B ∩
⋃
i∈I

Ai,(8.4) ⋂
i∈I

(B ∪Ai) = B ∪
⋂
i∈I

Ai.(8.5)

PROOF: We only prove (8.4). The proof of (8.5) is left as exercise 8.5.
PROOF of “⊆”: It follows from B ∩Ai ⊆ Ai for all i that

⋃
i(B ∩Ai) ⊆

⋃
iAi. Moreover, B ∩Ai ⊆ B

for all i implies
⋃
i(B ∩ Ai) ⊆

⋃
iB which equals B. It follows that

⋃
i(B ∩ Ai) is contained in the

intersection
(⋃

iAi

)
∩B.

PROOF of “⊇”: Let x ∈ B ∩
⋃
iAi. Then x ∈ B and x ∈ Ai? for some i? ∈ I , hence x ∈ B ∩ Ai? ,

hence x ∈
⋃
i (B ∩Ai). �
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Note that the next proposition is about finite unions and can be formulated and proven with what
has been taught in chapter 2 (Preliminaries about Sets, Numbers and Functions) on p.13.

Proposition 8.2 (Rewrite unions as disjoint unions). Let (Aj)j∈N be a sequence of sets which all are
contained within the universal set Ω. Let

Bn :=
n⋃
j=1

Aj = A1 ∪A2 ∪ · · · ∪An (n ∈ N),

C1 := A1 = B1, Cn+1 := An+1 \Bn (n ∈ N).

Then,
(a) The sequence (Bj)j is increasing: m < n⇒ Bm ⊆ Bn.

(b) For each n ∈ N,
n⋃
j=1

Aj =
n⋃
j=1

Bj .

(c) The sets Cj are mutually disjoint and
n⋃
j=1

Aj =
n⊎
j=1

Cj .

(d) The sets Cj (j ∈ N) form a partition of the set
∞⋃
j=1

Aj .

PROOF of (a) and of (b): Left as exercise 8.1 (p.249).
PROOF of c: Let 1 ≤ j ≤ n. We note that Cj ⊆ Aj ⊆ Bj ⊆ Bn and obtain

Cj ∩ Cn+1 ⊆ Bn ∩ Cn+1 = Bn ∩ (An+1 \Bn) = Bn ∩ (An+1 ∩B{n) = An+1 ∩ (Bn ∩B{n) = ∅.

We have proved that for any j, k ∈ N such that j < k the sets Cj and Ck have empty intersection
(we replaced n+ 1 with k) and it follows that the entire sequence of sets Cj is disjoint.
We finally prove that

⋃n
j=1Aj =

⋃n
j=1Bj =

⊎n
j=1Cj . The first equation follows from (b). To prove

the second equation we first show that
⊎n
j=1Cj ⊆

⋃n
j=1Aj . This is immediate from Cn ⊆ An for

all n ∈ N.
We finally prove that

⋃n
j=1Aj ⊆

⊎n
j=1Cj . Let x ∈

⋃n
j=1Aj . Then x ∈ Aj for at least one 1 ≤ j ≤ n.

Let j0 be the smallest such j. If j0 = 1 then x ∈ C1 because C1 = A1, hence x ∈
⊎n
j=1Cj and we are

done. Otherwise x /∈ Aj for all 1 ≤ j < j0, hence x /∈
⋃j0−1
j=1 Aj = Bj0−1, hence x ∈ Aj0 \Bj0−1, i.e.,

x ∈ Cj0 . It follows that x ∈
⊎n
j=1Cj .

PROOF of d: This is a trivial consequence of (c). �

8.2 Rings and Algebras of Sets ?

Note that this chapter is starred, hence optional.

Definition 8.4 (Rings, algebras, and σ–Algebras of Sets).

A subset R of 2Ω (a set of sets!) is called a ring of sets if it is closed with respect to the
operations “∪” and “\”, i.e.,

(8.6) R1 ∪R2 ∈ R and R1 \R2 ∈ R whenever R1, R2 ∈ R.
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A subset A of 2Ω is called an algebra of sets if Ω ∈ A and A is a ring of sets.
A subset F of 2Ω is called a σ–algebra if F is an algebra of sets which satisfies

(An)n∈N ∈ F ⇒
⋃
n∈N

An ∈ F

σ–algebras are fundamental objects in measure theory and graduate level probability theory. �

Parts 2a through 2h of the next proposition have already been encountered in prop.2.4 on p.21 of
ch.2.1 (Sets and Basic Set Operations). They have now been tagged with names such as “associativ-
ity of4” which emphasize the connection to the rings we studied in ch.3 (The Axiomatic Method).

Proposition 8.3.

(1) Let R be a ring of sets and A,B ∈ R. Then ∅ ∈ R, A4B ∈ R, and
A ∩B ∈ R.
(2) Let A,B,C,Ω be sets such that A,B,C ⊆ Ω. Then

(a) (A4B)4C = A4(B4C) (associativity of4)
(b) A4∅ = ∅4A = A (neutral element ∅ for4)
(c) A4A = ∅ (inverse element A−1 = A for4)
(d) A4B = B4A (commutativity of4)

Further, we have the following for the intersection operation:

(e) (A ∩B) ∩ C = A ∩ (B ∩ C) (associativity of ∩)
(f) A ∩ Ω = Ω ∩A = A (neutral element Ω for ∩)
(g) A ∩B = B ∩A (commutativity of ∩)

And we have the following interrelationship between4 and ∩:
(h) A ∩ (B4C) = (A ∩B)4(A ∩ C) (distributivity)

PROOF:
For the proof of 2.a see the one of prop.2.4. The proofs of the other properties are left as an exercise.
�

Remark 8.1 (Algebras of Sets as Rings).

(1) Prop.8.3(1) states that the assignments (A,B) 7→ A4B and (A,B) 7→ A ∩ B are
binary operations on R.

(2) Items (a) – (d) of prop.8.3(2) assert that (R,4) is an abelian group with neutral ele-
ment ∅ and inverse A−1 = A.
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(3) If Ω ∈ R, i.e., R is an algebra of sets, Items (e) – (g) of prop.8.3(2) assert that (R,∩)
is a commutative monoid with unit Ω.

(4) Assume that Ω is not empty. Then the “additive” neutral elenent ∅ is different from
Ω, the “multiplicative” neutral elenent.

(5) (1) – (4) plus Proposition 8.3(2).(h) imply that, if Ω 6= ∅, then (R,4,∩) satisfies Defi-
nition 3.7 on p.60, i.e., (R,4,∩) is a commutative ring with unit.

The above justifies calling R = (R,4,∩) a ring of sets. The name “algebra of sets” for a ring of sets
which contains Ω stems from the fact that such systems of subsets of Ω are “boolean algebras”. One
can view this “algebra of sets = commutative ring with unit” mismatch in names from a different
perspective: (R,4,∩) is a non–trivial example of what one generally calls a commutative ring in
mathematics: an algebraic structure which satisfies all properties of a commutative ring with unit
(Definition 3.7 on p.60), except that there need not be a multiplicative unit.
Note that we do not have an integral domain if Ω contains at least two elements ω and ω′: LetA ⊆ Ω

such that ω ∈ A and ω′ ∈ A{. Then A 6= ∅ and A{ 6= ∅ but A ∩ A{ = ∅, i.e., A and A{ are a pair of
zero divisors in (R,4,∩). �

8.3 Cartesian Products of More Than Two Sets

In this chapter we will extend the notion of a Cartesian product to more than two factors. Matter of
fact, we will not stop at a finite number of factors and extend that concept to the product of factors
Xi where the indices i are the members of an arbitrary index set.

Remark 8.2 (Associativity of cartesian products). Assume we have three sets A, B and C. We can
then look at

(A×B)× C = {((a, b), c) : a ∈ A, b ∈ B, c ∈ C}
A× (B × C) = {(a, (b, c)) : a ∈ A, b ∈ B, c ∈ C}

The mapping

F : (A×B)× C → A× (B × C),
(
(a, b), c

)
7→
(
a, (b, c)

)
is bijective because it has the mapping

G : A× (B × C)→ (A×B)× C,
(
a, (b, c)

)
7→
(
(a, b), c

)
as an inverse. For both (A × B) × C and A × (B × C) there are bijections to the set {(a, b, c) : a ∈
A, b ∈ B, c ∈ C} of all triplets (a, b, c): the obvious bijections would be (a, b, c) 7→

(
(a, b), c

)
and

(a, b, c) 7→
(
(a, b), c

)
. �

This remark leads us to the following definition.

Definition 8.5 (Cartesian Product of three or more sets). The cartesian product of three sets A, B
and C is defined as

A×B × C := {(a, b, c) : a ∈ A, b ∈ B, c ∈ C}

i.e., it consists of all pairs (a, b, c) with a ∈ A, b ∈ B and c ∈ C.
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More generally, for N sets X1, X2, X3, . . . , XN (N ∈ N), we define the cartesian product as 98

X1 ×X2 ×X3 × . . .×XN := {(x1, x2, . . . , xN ) : xj ∈ Xj for all 1 ≤ j ≤ N}

Note that the elements of this set are finite sequences in the sense of Definition 7.2 (finite sequences)
on p.222.
Two elements (x1, x2, . . . , xN ) and (y1, y2, . . . , yN ) of X1 × X2 × X3 × . . . × XN are called
equal if and only if xj = yj for all j such that 1 ≤ j ≤ N . In this case we write
(x1, x2, . . . , xN ) = (y1, y2, . . . , yN ) .
As a shorthand, we abbreviate XN := X ×X ×+ · · · ×X︸ ︷︷ ︸

N times

. �

Example 8.3 (N–dimensional coordinates). Here is the most important example of a cartesian prod-
uct of N sets. Let X1 = X2 = . . . = XN = R. Then

RN = {(x1, x2, . . . , xN ) : xj ∈ R for 1 ≤ j ≤ N}

is the set of points in N–dimensional space. You may not be familiar with what those are unless
N = 2 (see example 5.1 above) or N = 3.
In the 3–dimensional case it is customary to write (x, y, z) rather than (x1, x2, x3) . Each such
triplet of real numbers represents a point in (ordinary 3–dimensional) space and we speak of its
x–coordinate, y–coordinate and z–coordinate.

For the sake of completeness: If N = 1, the item (x) ∈ R1 (where x ∈ R; observe the parentheses
around x) is considered the same as the real number x. In other words, we “identify” R1 with R.
Such a “one–dimensional point” is simply a point on the x–axis.
A short note on vectors and coordinates: For N ≤ 3 you can visualize the following: Given a point
x on the x–axis or in the plane or in 3–dimensional space, there is a unique arrow that starts at the
point whose coordinates are all zero (the origin) and ends at the location marked by the point x.
Such an arrow is customarily called a vector.
Because it makes sense in dimensions 1, 2, 3, an N–tuple (x1, x2, . . . , xN ) of numbers is called a
vector of dimension N . 99 You will read more about this in ch.11 about vectors and vector spaces
on page 323.
This is worth while repeating: We can uniquely identify each x ∈ RN with the corresponding vector:
an arrow that starts in (0, 0, . . . , 0︸ ︷︷ ︸

N times

) and ends in x.

More will be said about n-dimensional space in section 11, p.323 on vectors and vector spaces. �

98If N > 3 there are many ways to group the factors of a cartesian product. For N = 4 there already are 3 times as
many possibilities as for N = 3:

X1 × (X2 ×X3 ×X4), (X1 ×X2)× (X3 ×X4), X1 × (X2 ×X3 ×X4),

Actually proving that we can group the sets with parentheses any way we like is very tedious and will not be done in
this document.

99See Definition 7.2 (finite sequences) on p.222.
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Example 8.4 (Parallelepipeds). Let a1 < b1, a2 < b2, a3 < b3 be real numbers. Then

[a1, b1]× [a2, b2]× [a3, b3] = {(x, y, z) : a1 ≤ x ≤ b1, a2 ≤ y ≤ b2, a3 ≤ z ≤ b3}

is the parallelepiped (box or quad parallel to the coordinate axes) with sides [a1, b1], [a2, b2] and
[a3, b3]. This generalizes in an obvious manner to N dimensions:
Let N ∈ N and aj < bj (j ∈ N, j ≤ N, aj , bj ∈ R). Then

[a1, b1]× [a2, b2]× · · · × [aN , bN ] = {(x1, x2, . . . , xN ) : aj ≤ xj ≤ bj , j ∈ N, j ≤ N}

is the parallelepiped with sides [a1, b1], . . . , [aN , bN ]. �

We now introduce cartesian products of an entire family of sets (Xi)i∈I .

Definition 8.6 (Cartesian Product of a family of sets). ? Let I be an arbitrary, nonempty set (the
index set). Let (Xi)i∈I be a family of nonempty sets Xi.

The cartesian product of the family (Xi)i∈I is the set

(8.7)
∏
i∈I

Xi :=
(∏

Xi

)
i∈I

:= {(xi)i∈I : xk ∈ Xk ∀k ∈ I}

of all familes (xi)i∈I each of whose members xj belongs to the corresponding set Xj .
(xi)i∈I , (yk)k∈I ∈

∏
i∈I

Xi are called equal (we write (xi)i∈I = (yk)k∈I ), if xj = yj for all j ∈ I .

If all sets Xi are equal to one and the same set X , we also write

(8.8) XI :=
∏
i∈I

X :=
∏
i∈I

Xi .

The symbol "
∏

" is the greek “upper case” letter “Pi” (whose lower case incarnation “π” you are
probably more familiar with). �

Remark 8.3. Note that, because I is not empty,
∏
i∈I

Xi = ∅ ⇔ there exists some i ∈ I such that Xi = ∅.

Further, two families are equal in the sense of the above definition if and only if they are equal in
the sense of Definition 5.21 on p.157. �

Remark 8.4. We note that each element (yx)x∈X of the cartesian product Y X is the function

y(·) : X → Y, x 7→ yx

(see Definition 5.20 (indexed families) and the subsequent remarks concerining the equivalence of
functions and families). In other words,

Y X = {f : f is a function with domain X and codomain Y }. �(8.9)
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8.4 Set Operations involving Direct Images and Preimages

Let X,Y be two nonempty sets and let f : X → Y be an arbitrary function with domain X and
codomain Y . Let A ⊆ X and B ⊆ Y . We recall from Definition 5.11 on p.141 that

f(A) = {f(x) : x ∈ A} is the direct image of A,

f−1(B) = {x ∈ X : f(x) ∈ B} is the indirect image or preimage of B.

We now will examine to which extent direct and indirect images are compatible with unions, inter-
sections, and other basic set operations.

Unless stated otherwise, X,Y and f are as defined above for the remainder of this chapter:
f : X → Y is a function with domain X and codomain Y .

Proposition 8.4 (f−1 is compatible with all basic set ops). Let J be an arbitrary index set. Let B ⊆ Y ,
Bj ⊆ Y for all j. Then

f−1(
⋂
j∈J

Bj) =
⋂
j∈J

f−1(Bj)(8.10)

f−1(
⋃
j∈J

Bj) =
⋃
j∈J

f−1(Bj)(8.11)

f−1(B{) =
(
f−1(B)

){(8.12)

f−1(B1 \B2) = f−1(B1) \ f−1(B2)(8.13)

f−1(B1∆B2) = f−1(B1)∆f−1(B2)(8.14)

PROOF of (8.10): Let x ∈ X . Then

x ∈ f−1(
⋂
j∈J

Bj) ⇔ f(x) ∈
⋂
j∈J

Bj (def preimage)

⇔ ∀j f(x) ∈ Bj (def ∩)

⇔ ∀j x ∈ f−1(Bj) (def preimage)

⇔ x ∈
⋂
j∈J

f−1(Bj) (def ∩)

(8.15)

PROOF of (8.11): Let x ∈ X . Then

x ∈ f−1(
⋃
j∈J

Bj) ⇔ f(x) ∈
⋃
j∈J

Bj (def preimage)

⇔ ∃j0 : f(x) ∈ Bj0 (def ∪)

⇔ ∃j0 : x ∈ f−1(Bj0) (def preimage)

⇔ x ∈
⋃
j∈J

f−1(Bj) (def ∪)

(8.16)
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PROOF of (8.12): Let x ∈ X . Then

x ∈ f−1(B{) ⇔ f(x) ∈ B{ (def preimage)

⇔ f(x) /∈ B (def {)

⇔ x /∈ f−1(B) (def preimage)

⇔ x ∈ f−1(B){ (def {)

(8.17)

PROOF of (8.13): Let x ∈ X . Then

x ∈ f−1(B1 \B2) ⇔ x ∈ f−1(B1 ∩B{2) (def \)

⇔ x ∈ f−1(B1) ∩ f−1(B{2) (see (8.10)

⇔ x ∈ f−1(B1) ∩ f−1(B2){ (see (8.12)

⇔ x ∈ f−1(B1) \ f−1(B2) (def \)

(8.18)

PROOF of (8.14): This follows from B1∆B2 = (B1 \B2) ∪ (B2 \B1) and (8.11) and (8.13). �

Proposition 8.5 (Properties of the direct image).

Let J be an arbitrary index set. Let A ⊆ X , Aj ⊆ X for all j. Then

f(
⋂
j∈J

Aj) ⊆
⋂
j∈J

f(Aj)(8.19)

f(
⋃
j∈J

Aj) =
⋃
j∈J

f(Aj)(8.20)

PROOF of (8.19): This follows from the monotonicity of the direct image (see 5.15):⋂
j∈J

Aj ⊆ Ai ∀i ∈ J ⇒ f(
⋂
j∈J

Aj) ⊆ f(Ai) ∀i ∈ J

⇒ f(
⋂
j∈J

Aj) ⊆
⋂
i∈J

f(Ai) (def ∩)

First proof of (8.20)) - “Expert proof”:

y ∈ f(
⋃
j∈J

Aj) ⇔ ∃ x ∈ X : f(x) = y and x ∈
⋃
j∈J

Aj (def f(A))(8.21)

⇔ ∃ x ∈ X and j0 ∈ J : f(x) = y and x ∈ Aj0 (def ∪)(8.22)
⇔ ∃ x ∈ X and j0 ∈ J : f(x) = y and f(x) ∈ f(Aj0) (def f(A))(8.23)
⇔ ∃ j0 ∈ J : y ∈ f(Aj0) (def f(A))(8.24)

⇔ y ∈
⋃
j∈J

f(Aj) (def ∪)(8.25)

Alternate proof of (8.20) - Proving each inclusion separately. Unless you have a lot of practice
reading and writing proofs whose subject is the equality of two sets you should write your proof
the following way:
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A. Proof of “⊆”:

y ∈ f(
⋃
j∈J

Aj) ⇒ ∃ x ∈ X : f(x) = y and x ∈
⋃
j∈J

Aj (def f(A))(8.26)

⇒ ∃ j0 ∈ J : f(x) = y and x ∈ Aj0 (def ∪)(8.27)
⇒ y = f(x) ∈ f(Aj0)(def f(A))(8.28)

⇒ y ∈
⋃
j∈J

f(Aj) (def ∪)(8.29)

B. Proof of “⊇”:
This follows from the monotonicity of A 7→ f(A) (see 5.15):

Ai ⊆
⋃
j∈J

Aj ∀ i ∈ J ⇒ f(Ai) ⊆ f
( ⋃
j∈J

Aj
)
∀ i ∈ J(8.30)

⇒
⋃
i∈J

f(Ai) ⊆ f
( ⋃
j∈J

Aj
)
∀ i ∈ J (def ∪) �(8.31)

The “elementary” proof is barely longer than the first one, but it is so much easier to understand!

Remark 8.5. In general you will not have equality in (8.19). Counterexample: f(x) = x2 with
domain R: Let A1 := ] − ∞, 0] and A2; = [0,∞[. Then A1 ∩ A2 = {0}, hence f(A1 ∩ A2) =
f({0}) = {0}. On the other hand, f(A1) = f(A2) = [0,∞], hence f(A1) ∩ f(A2) = [0,∞]. Clearly,
{0} ( [0,∞]. �

Proposition 8.6 (Direct images and preimages of function composition). Let X,Y, Z be arbitrary,
nonempty sets.

Let f : X → Y and g : Y → Z , and let U ⊆ X and W ⊆ Z. Then

(g ◦ f)(U) = g
(
f(U)

)
for all U ⊆ X .(8.32)

(g ◦ f)−1(W ) = f−1
(
g−1(W )

)
for all W ⊆ Z, i.e., (g ◦ f)−1 = f−1 ◦ g−1 .(8.33)

PROOF of (8.32): Left as exercise 8.10.
PROOF of (8.33):
a. “⊆”: Let W ⊆ Z and x ∈ (g ◦ f)−1(W ). Then g

(
f(x)

)
= (g ◦ f)(x) ∈ W , hence f(x) ∈ g−1(W ).

But then x ∈ f−1
(
g−1(W )

)
. This proves “⊆”.

b. “⊇”: Let W ⊆ Z, h := g ◦ f , and x ∈ f−1
(
g−1(W )

)
. Then f(x) ∈ g−1(W ), hence g(f(x)) ∈W , i.e.,

h(x) ∈W , hence x ∈ h−1(W ) = (g ◦ f)−1(W ). This proves “⊇”. �

Proposition 8.7 (Indirect image and fibers of f ). Let X , Y be nonempty sets and let f : X → Y be a
function. We define on the domain X a relation “∼” as follows:

x1 ∼ x2 ⇔ f(x1) = f(x2).(8.34)
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(a) “∼” is an equivalence relation. Its equivalence classes, which we denote by [x]f , 100 are

[x]f = {a ∈ X : f(a) = f(x)} = f−1{f(x)}. (x ∈ X)(8.35)

(b) If A ⊆ X then

f−1(f(A)) =
⋃
a∈A

[a]f .(8.36)

The proof that “∼” is an equivalence relation is left as exercise 8.11.
PROOF of (8.35): The equation on the left is nothing but the definition of the equivalence classes
generated by an equivalence relation. The equation on the right follows from f(a) = f(x) ⇔ a ∈
f−1{f(x)}, which is true according to the definition of preimages.
PROOF of (8.36):
Since f(A) = f(

⋃
a∈A{a}) =

⋃
a∈A f{a} =

⋃
a∈A{f(a)} (see 8.20), it follows that

f−1(f(A)) = f−1(
⋃
a∈A
{f(a)})(8.37)

=
⋃
a∈A

f−1{f(a)} (see 8.11)(8.38)

=
⋃
a∈A

[a]f (see 8.35) �(8.39)

Corollary 8.1.

(8.40) If A ⊆ X then f−1(f(A)) ⊇ A.

The proof is left as exercise 8.12 (see p.250). �

This next example shows how to work with fibers to prove that certain relations are equivalence
relations.

Example 8.5. The following are equivalence relations on the set X .
(a) X = R and x ∼ y ⇔ |x| = |y|.
(b) X = R6=0 = {x ∈ R : x 6= 0} and x ∼ y ⇔ |xy| > 0.
(c) X = R3 and (x, y, z) ∼ (u, v, w) ⇔ z sin(xy) = w sin(uv).

You can verify this by brute force, but here is an elegant way. Rewrite the equivalence relations as
α ∼ β ⇔ F (α) = F (β) for a suitable function F (·), then apply prop.8.7 (Indirect image and fibers
of f ).
For the above examples you do this as follows:

(a) F : X → R, x 7→ |x|.
(b) G : X → {−1, 1}, x 7→ x

|x| .
(b) H : X → R, (x, y, z) 7→ z sin(xy). �

100[x]f is called the fiber over x of the function f .
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Proposition 8.8.

If B ⊆Y then f(f−1(B)) = B ∩ f(X).(8.41)

PROOF of “⊆”:
Let y ∈ f(f−1(B)). There exists x0 ∈ f−1(B) such that f(x0) = y (def direct image). We have

(a) x0 ∈ f−1(B) ⇒ f(x0) ∈ B (def. of preimage)
(b) Of course x0 ∈ X . Hence f(x0) ∈ f(X).

(a) and (b) together imply that y = f(x0) ∈ B ∩ f(X).
PROOF of “⊇”:
This part of the proof is left as exercise 8.13 (see p.250). �

Remark 8.6. Be sure to understand how the assumption y ∈ f(X) was used. �

Corollary 8.2.

(8.42) If B ⊆ Y then f(f−1(B)) ⊆ B.

Trivial as f(f−1(B)) = B ∩ f(X) ⊆ B. �

Proposition 8.9.
(a) Let A ⊆ X . If f : X → Y is injective then f−1(f(A)) = A.
(b) Let B ⊆ Y . If f : X → Y is surjective then f

(
f−1(B)

)
= B.

(c) Let A ⊆ X and B ⊆ Y . If f : X → Y is injective and if B = f(A) then f−1(B) = A.
(d) Let A ⊆ X and B ⊆ Y . If f : X → Y is surjective and if f−1(B) = A then B = f(A).
(e) Let A ⊆ X and B ⊆ Y . If f : X → Y is bijective then B = f(A) ⇔ f−1(B) = A.

PROOF: Left as exercise 8.14 on p.250. �

Remark 8.7. It follows from prop.8.9 parts (a) and (b) together with thm.5.1 (Characterization of
inverse functions) on p.145 that if f : X → Y is a bijection between two nonempty setsX and Y then
the direct image function f : 2X → 2Y ; A 7→ {f(a) : a ∈ A} is a bijection between the two power
sets ofX and Y , and its inverse is the preimage function f−1 : 2Y → 2X ; B 7→ {x ∈ X : f(x) ∈ B}.

Proposition 8.10. Let J be an arbitrary nonempty index set and let A ⊆ X , Aj ⊆ X for all j.
Let f : X → Y be bijective. Then the following all are true:

f(
⋂
j∈J

Aj) =
⋂
j∈J

f(Aj)(8.43)

f(
⋃
j∈J

Aj) =
⋃
j∈J

f(Aj)(8.44)

f(A{) = f(A){(8.45)
f(A1 \A2) = f(A1) \ f(A2)(8.46)
f(A1∆A2) = f(A1)∆f(A2)(8.47)
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PROOF: Left as exercise 8.16 on p.250. �

Note that the remaining content of this chapter has been marked as “ ? ” (optional)!

Proposition 8.11. ? Let f : X → Y be bijective. Let J be an arbitrary nonempty index set and let
(Aj)j∈J be a partition of X , i.e., if i 6= j then Ai ∩Aj = ∅ and X =

⊎
j Aj . Assume further that none of the

Aj are enpty. For j ∈ J let Bj := f(Aj). Then
(a) (Bj)j∈J is a partition of Y .
(b) For j ∈ J we look at the restriction f

∣∣
Aj

: Aj → Y to Aj . Then f
∣∣
Aj

(Aj) = Bj and the function

fj : Aj → Bj , x 7→ fj(x) := f
∣∣
Aj

(x) = f(x)

is a bijection.

PROOF: Left as exercise 8.17 on p.250. �

Corollary 8.3. ? Let f : X → Y be bijective. Let A ⊂ X,A 6= ∅ (strict inclusion, so A{ 6= ∅). Then
both

fA : A→ f(A), x→ f(x) and fA{ : A{ → f(A{), x→ f(x)

are bijections.

PROOF: This follows from prop.8.11, applied to J = {1, 2}, A1 = A,A2 = A{. �

Corollary 8.4. ? Let f : X → Y be bijective. Let a ⊂ X and assume that X 6= {a}. Then

f̃ : X \ {a} → Y \ {f(a)}, x→ f(x)

also is bijective. 101

PROOF: This follows from 8.4 applied to A = {a} and the fact that f({a}) = {f(a)}. �

The following two propositions allow you to replace bijective and surjective functions with more
suitable ones that inherit bijectivity or surjectivity. This will come in handy when we prove propo-
sitions concerning cardinality.
The first proposition shows how to preserve bijectivity if two function values need to be switched
around.

Proposition 8.12. ? Let X,Y 6= ∅, let f : X → Y be bijective and let x1, x2 ∈ X . Let

(8.48) g(x) :=


f(x2) ifx = x1,

f(x1) ifx = x2,

f(x) ifx 6= x1, x2.

(In other words, we swap two function arguments). Then g : X → Y also is bijective.
101This is B/G [2] prop.13.2.
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PROOF: Left as exercise 8.18 on p.250. �

A more general version of the above shows how to preserve surjectivity if two function values need
to be switched around.

Proposition 8.13. ?

Let X,Y 6= ∅ and assume that Y contains at least two elements y1 and y2. Let f : X → Y be surjective.
Let A1 := f−1{y1}, A2 := f−1{y2}, and B := X \ (A1 ∪A2). Let

(8.49) g(x) :=


y2 ifx ∈ A1,

y1 ifx ∈ A2,

f(x) ifx ∈ B.

In other words, everything that f maps to y1 is now mapped to y2 and everything that f maps to y2 is now
mapped to y1. Then g : X → Y also is surjective.

PROOF: Left as exercise 8.19 on p.250. �

Proposition 8.14. ?

Let X,Y be two nonempty sets and let f : X → Y be surjective. Let ∅ 6= B ( Y so that Y = B
⊎
B{

is a partitioning of Y into two nonempty subsets B and B{. Let A := {f ∈ B}. Then the restrictions
f1 := f

∣∣∣
A

: A→ B and f2 := f
∣∣∣
A{

: A{ → B{ of f to A and A{ are surjections.

PROOF: Left as exercise 8.20 on p.250. �

8.5 Indicator Functions ?

Sometimes it is advantageous to think of the subsets of a universal set Ω as “binary” functions
Ω→ {0, 1}.

Definition 8.7 (indicator function for a set).

Let Ω be “the” universal set, i.e., we restrict our scope of interest to subsets of Ω. Let A ⊆ Ω.
Let 1A : Ω→ {0, 1} be the function defined as

(8.50) 1A(ω) :=

{
1 if ω ∈ A,
0 if ω /∈ A.

1A is called the indicator function of the set A. �

Some authors call 1A the characteristic function of A and/or write χA or 1A instead of 1A.

Recall the following about functions and families: If X and Y are two nonempty sets then Y X , the
“X–fold cartesian product of Y ”, is the set of all Y –valued families

(
yx
)
x∈X which are indexed by

X . Equivalently Y X is the set of all functions f : X → Y with domain X and codomain Y . See
Proposition 5.11 (Functions are families and families are functions) on p.160. This will be used in
the next proposition which shows that the association of a subset A of Ω with its indicator function
1A is a bijection.
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Proposition 8.15. Let F (Ω, {0, 1}) := {0, 1}Ω denote the set of all functions f : Ω → {0, 1}, i.e., all
functions f with domain Ω for which the only possible function values f(ω) are zero or one. 102

(a) The mapping

F :2Ω → F (Ω, {0, 1}), defined as F (A) := 1A(8.51)

which assigns to each subset of Ω its indicator function is injective.
(b) Let f ∈ F (Ω, {0, 1}). Further, let A := {f = 1} = f−1({1}) = {a ∈ A : f(a) = 1}. Then f = 1A.

(c) The function F above is bijective.

Its inverse function is

(8.52) G : F (Ω, {0, 1})→ 2Ω, defined as G(f) := {f = 1}.

PROOF of (a): This follows from (c) which will be proved below.
PROOF of (b): We have

f(ω) = 1 ⇔ ω ∈ {f = 1} (def. of inverse image)
⇔ ω ∈ A (because A = {f = 1})
⇔ 1A(ω) = 1 (def. of indicator function).

It follows that f(ω) = 1 if and only if 1A(ω) = 1. Since the only other possible function value is 0
we conclude that f(ω) = 0 if and only if 1A(ω) = 0. It follows that f(ω) = 1A(ω) for all ω ∈ Ω, i.e.,
f = 1A. This proves (b).
PROOF of (c): According to theorem 5.1 on p.145 about the characterization of inverse functions (c)
is proved if we can demonstrate that F and G are inverse to each other. To prove this it suffices to
show that

G ◦ F = id2Ω and F ◦G = idF (Ω,{0,1}).(8.53)

Let A ∈ 2Ω, i.e., A ⊆ Ω. Then

G ◦ F (A) = G(1A) = {1A = 1} = {ω ∈ Ω : 1A(ω) = 1} = {ω ∈ Ω : ω ∈ A} = A.

This proves G ◦ F = id2Ω . Now let f ∈ F (Ω, {0, 1} and ω ∈ Ω. Then(
F ◦G(f)

)
(ω) = F ({f = 1})(ω) = 1{f=1}(ω)

=

{
1 iff ω ∈ {f = 1},
0 iff ω /∈ {f = 1}

=

{
1 iff f(ω) = 1,

0 iff f(ω) 6= 1
=

{
1 iff f(ω) = 1,

0 iff f(ω) = 0
= f(ω).

The equation next to the last results from the fact that the only possible function values for f are
0 and 1; the equation before that follows from (5.13) (definition of the preimage). It follows from
the above chain of equations that F ◦ G(f) = f = idF (Ω,{0,1})(f) for all f ∈ F (Ω, {0, 1}), hence
F ◦G = idF (Ω,{0,1}). We have proved (8.53) and hence (c). �

102See remark 8.4 on p.239, ch.8.3 (Cartesian Products of More Than Two Sets).
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Let m,n ∈ Z. We recall from Definition 6.13 (Equivalence Modulo n) (p.197 of ch. 6.10) that m + n
mod 2 (the sum mod 2 of m and n) is given by

(8.54) m+ n mod 2 =

{
0 ⇔ (m+ n)/2 has remainder 0, i.e.,m+ n is even,
1 ⇔ (m+ n)/2 has remainder 1, i.e.,m+ n is odd.

Proposition 8.16. Let m,n, p ∈ Z. Then addition mod 2 is associative, i.e.,(
m+ n mod 2

)
+ p mod 2 = m+

(
n+ p mod 2

)
mod 2.(8.55)

PROOF: This follows from prop.6.34 on p.199 (Zn is a commutative ring with unit). 103 �

Proposition 8.17. Let A,B,C be subsets of Ω. Then

1A∪B = max(1A, 1B),(8.56)
1A∩B = min(1A, 1B),(8.57)

1A{ = 1− 1A,(8.58)
1A4B = 1A + 1B mod 2.(8.59)

PROOF: The proof of the first three equations is left as an exercise.
PROOF of (8.59): This follows easily from the the fact that

(A4B){ = {ω ∈ Ω : [ either ω ∈ A ∩B] or [ neitherω ∈ A nor ω ∈ B ]} �

Prop.8.16 above helps us to prove associativity of symmetric set differences.

Proposition 8.18 (Symmetric set differences A4B are associative). Let A,B,C ⊆ Ω. Then

(A4B)4C = A4(B4C).(8.60)

PROOF: This follows easily from (8.59) and and the associativity of a⊕ b := a+ b mod 2 as follows.
Let ω ∈ Ω. Then

ω ∈ (A4B)4C ⇔ 1(A4B)4C(ω) = 1

⇔
(
1A(ω)⊕ 1B(ω)

)
⊕ 1C(ω) = 1

⇔ 1A(ω)⊕
(
1B(ω)⊕ 1C(ω)

)
= 1

⇔ 1A4(B4C)(ω) = 1 ⇔ ω ∈ A4(B4C).

We obtained the equivalence in the middle from prop.8.16. �

103There also are elementary proofs for this proposition. See exercise 8.23 on p.251.
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8.6 Exercises for Ch.8

Exercise 8.1. Prove (a) and (b) of prop.8.2 (Rewrite unions as disjoint unions) on p.235:

Let (Aj)j∈N such that Aj ⊆ Ω for all j ∈ N. For n ∈ N let Bn :=
n⋃
j=1

Aj = A1 ∪A2 ∪ · · · ∪An

Further, let C1 := A1 = B1 and Cn+1 := An+1 \Bn (n ∈ N). Then
(a) The sequence (Bj)j is increasing: m < n⇒ Bm ⊆ Bn,

(b) For each n ∈ N,
n⋃
j=1

Aj =
n⋃
j=1

Bj . �

Exercise 8.2. (See example 5.34 on p.157). Let X := [0, 2]. For 0 ≤ x ≤ 2 let Ax := [x, 2x].

(a) What is
⋂[

Ax : x ∈ X
]
? (b) What is

⋃[
Ax : x ∈ X

]
? �

Exercise 8.3. Prove (b) of thm.8.1 (De Morgan’s Law):

Let (Aα)α∈I be a family of subsets of a universal set Ω. Then
(⋂
α

Aα
){

=
⋃
α

A{α. �

Exercise 8.4. Supply the missing proofs of prop.8.3 on p.236 of this document. �

Exercise 8.5. Prove the second formula of prop.8.1 (Distributivity of unions and intersections): Let
(Ai)i∈I be an arbitrary family of sets and let B be a set. Then⋂

i∈I
(B ∪Ai) = B ∪

⋂
i∈I

Ai. �

Exercise 8.6. Let (G, �) be a group, let (Hi)i∈J be a family of subgroups of G, and let H :=
⋂
i∈J

Hi.

Then H is a subgroup of G. �

Exercise 8.7. Let f be the function f : [−3, 3]→ R; x 7→ x2.
(a) Is f ∈ [−3, 3]R or f ∈ R[−3,3]?
(b) Write f as a family. Hint: What is the index set? Domain or codomain? �

Exercise 8.8. Let f : [−2.∞[→ R; x 7→ x2. Compute the following.
(a) f

(
f−1([−4, 4])

)
, (b) f−1

(
f([0, 3])

)
. �

Exercise 8.9. Prove prop.5.3 on p.143:
(a) f(∅) = f−1(∅) = ∅
(b) A1 ⊆ A2 ⊆ X ⇒ f(A1) ⊆ f(A2)

(c) B1 ⊆ B2 ⊆ Y ⇒ f−1(B1) ⊆ f−1(B2)
(d) x ∈ X ⇒ f({x}) = {f(x)}
(e) f(X) = Y ⇔ f is surjective
(f) f−1(Y ) = X always! �

Exercise 8.10. Prove (8.32) of prop.8.6 on p.242: Let X,Y, Z be arbitrary, nonempty sets.
Let f : X → Y and g : Y → Z . Then (g ◦ f)(U) = g

(
f(U)

)
for all U ⊆ X . �
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Exercise 8.11. LetX , Y be nonempty sets and let f : X → Y be a function. We define on the domain
X a relation “∼” as follows:

x1 ∼ x2 ⇔ f(x1) = f(x2). �

(See prop.8.7 (Indirect image and fibers of f ) on p.242). Prove that “∼” is an equivalence relation.

Exercise 8.12. Prove cor.8.1 on p.243 of this document: If A ⊆ X then f−1(f(A)) ⊇ A. �

Exercise 8.13. Prove prop.8.8 on p.244 of this document: If B ⊆ Y then f(f−1(B)) = B ∩ f(X). �

Exercise 8.14. Prove prop.8.9 on p.244.
Hint: The main tools you need are prop.8.7 on p.242, prop8.8 on p.244, and their corollaries. �

Exercise 8.15. Prove the reverse directions of prop.8.9(a) and prop.8.9(b) on p.244.
(a) If f : X → Y satisfies f−1

(
f(A)

)
= A for all A ⊆ X then f is injective.

(b) If f : X → Y satisfies f
(
f−1(B)

)
= B for all B ⊆ Y then f is surjective.

Exercise 8.16. Prove prop.8.10 on p.244.
Hint: Work with the inverse of f and apply prop.8.4 on p.240. �

Exercise 8.17. Prove prop.8.11 on p.245.
Hint: To prove (a), use prop.8.5 on p.241. �

Exercise 8.18. Prove prop.8.12 on p.245: LetX,Y 6= ∅, let f : X → Y be bijective and let x1, x2 ∈ X .
Let

g(x) :=


f(x2) ifx = x1,

f(x1) ifx = x2,

f(x) ifx 6= x1, x2.

(In other words, we swap two function arguments). Then g : X → Y also is bijective. �

Exercise 8.19. Prove prop.8.13 on p.246: Let X,Y 6= ∅ and assume that Y contains at least two
elements y1 and y2. Let f : X → Y be surjective.
Let A1 := f−1{y1}, A2 := f−1{y2}, and B := X \ (A1 ∪A2). Let

g(x) :=


y2 ifx ∈ A1,

y1 ifx ∈ A2,

f(x) ifx ∈ B.

In other words, everything that f maps to y1 is now mapped to y2 and everything that f maps to y2

is now mapped to y1. Then g : X → Y also is surjective. �

Exercise 8.20. Prove prop.8.14 on p.246: Let X,Y be two nonempty sets and let f : X → Y be
surjective. Let ∅ 6= B ( Y so that Y = B

⊎
B{ is a partitioning of Y into two nonempty subsets B

and B{. Let A := {f ∈ B}. Then the restrictions f1 := f
∣∣∣
A

: A→ B and f2 := f
∣∣∣
A{

: A{ → B{ of f

to A and to A{ are surjections. �
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Exercise 8.21. Prove prop.8.16 on p.248: Let m,n, p ∈ Z. Then(
m+ n mod 2

)
+ p mod 2 = m+

(
n+ p mod 2

)
mod 2.

directly, i.e., without referring to prop.6.34 on p.199 (Zn is CRU).
Hint: There are eight possible combinations of zeros and ones for the functions

(m,n, p) →
(
m+ n mod 2

)
+ p mod 2 and (m,n, p) → m+

(
n+ p mod 2

)
mod 2.

Complete the entries in the table below and show that the entries in the two rightmost columns
match. To save space, write m ⊕ n for m + n mod 2 . To get you started, the row for m = 1, n =
0, p = 0 has been already completed.
m n p m⊕ n n⊕ p (m⊕ n)⊕ p m⊕ (n⊕ p
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0 1 0 1 1
1 0 1
1 1 0
1 1 1
�

Exercise 8.22. See [2] B/G project 6.8 on p.58 for the following.
Prove that the following are equivalence relations on R2.

(a) (x, y) ∼ (u, v) ⇔
√
x2 + y2 =

√
u2 + v2.

(b) X = R6=0 = {x ∈ R : x 6= 0} and x ∼ y ⇔ |xy| > 0.
(c) X = R3 and (x, y, z) ∼ (u, v, w) ⇔ z sin(xy) = w sin(uv).

Hint: See example 8.5 on p.243. �

Exercise 8.23. Let m,n, p ∈ Z.
Prove that addition mod 2 is associative. (see prop.8.16 on p.248) without referring to prop.6.34.
Rather inspect what happens for each of the eight possible combinations of zeros and ones for the
functions (m,n, p)→

(
m+ n mod 2

)
+ p mod 2 and (m,n, p)→ m+

(
n+ p mod 2

)
mod 2 �

251 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

9 The Real Numbers

9.1 The Ordered Fields of the Real and Rational Numbers

Definition 9.1 (Fields). ?

Let (F,⊕,�) be a commutative ring with unit (see Definition 3.7 on p.60) such that each
nonzero element possesses an inverse element with respect to multiplication, i.e., the set
(F \ {0},�) with neutral element 1 is an abelian group. Then we call (F,⊕,�) a field. �

Remark 9.1. It follows from thm.3.2 (Uniqueness of the Inverse in Groups) on p.53. that the multi-
plicative inverse b−1 of b is unique. �

Proposition 9.1 (B/G prop.8.6). Let (F,⊕,�) be a field and a, b ∈ F \ {0}. Then

(ab)−1 = b−1a−1 .

PROOF: Since (F \ {0},�) is a group this follows from prop.3.2 on p.53. �

Proposition 9.2. Fields are integral domains.

The proof is left as exercise 9.1 (see p.302). �

Corollary 9.1 (B/G prop.8.7). Let a, b, c ∈ F and a 6= 0. If ab = ac then b = c.

PROOF: This follows from cor.3.1 on p.64. �

We defined for integers m and n their quotient n
m under the condition that m | n and m 6= 0. We did

so by defining n
m as the unique integer j which satisfies n = j ·m in case that n 6= 0 and by further

defining 0
m = 0. For a field (F,⊕,�) the group property of (F \ {0},�) gives us an alternative for

defining quotients.

Definition 9.2 (Division and Quotients).

Let a, b be elements of a field (F,⊕,�), and let b 6= 0. Since b possesses a unique multiplica-
tive inverse b−1 (see rem.9.1 on p.252) we can define the function

div : F × (F \ {0}) −→ F ; (a, b) 7→ a� b−1.

We call this function the division operation on F . It is customary to also write a
b or a/b

instead of a � b−1, and we follow that convention. In particular we may also write 1
b

instead of b−1. As in the case of the integers we call a the dividend or numerator, b the
divisor or denominator, and a

b the quotient of the expression a
b . �
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Proposition 9.3. Let (F,⊕,�, P ) be a field and let a ∈ R. If a 6= 0 then the function

D : F → F ; x 7→ a� x,

is a bijection.

The proof is left as exercise 9.2 (see p.302). �

The following propositions can be easily shown by rewriting fractions u
v as products uv−1 and

applying the rules of arithmetic that were proven for integral Domains.

Proposition 9.4 (B/G prop.11.2). Let a, b, c, d ∈ F such that b, d 6= 0.

If
a

b
=

c

d
then ad = bc .

The proof is left as exercise 9.3 (see p.302). �

Proposition 9.5 (B/G prop.11.3). Let a, b, c ∈ F such that b, c 6= 0. Then

ac

bc
=

a

b
.

The proof is left as exercise 9.4 (see p.302). �

Proposition 9.6 (B/G prop.11.6). Let a, b, c, d ∈ F such that b, d 6= 0. Then

a

b
⊕ c

d
=

ad ⊕ bc

bd
. In particular,

a

b
⊕ (	a)

b
= 0 .

The proof is left as exercise 9.5 (see p.302). �

Proposition 9.7. Let a, b, c, d ∈ F such that b, d 6= 0.

Then
a

b
� c

d
=

ac

bd
. In particular,

(
b

d

)−1

=
d

b
.

The proof is left as exercise 9.6 (see p.302). �

We introduced in ch.3.4 (Order Relations in Integral Domains) the concept of a positive cone as a
means of ordering an integral domain. Since fields are integral domains we can do the same here.

Definition 9.3 (Ordered fields). ?

Let (F,⊕,�) be a field which is ordered by a positive cone P . Then we call (F,⊕,�, P ) an
ordered field. �

Remark 9.2. It is immediate from prop.9.2 on p.252 that ordered fields are ordered integral domains.
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Notation 9.1 (Fields and ordered fields).

Unless this would lead to confusion we will usually write F for a field (F,⊕,�) or for an
ordered field (F,⊕,�, P ). �

Rules for arithmetic and for inequalities were given for integral domains in ch.3.3 and ch.3.4. We
complement those rules with the following propositions which require the existence of the mul-
tiplicative inverse x−1 for nonzero x. With them we cover all propositions given in B/G ch.8.1 –
8.3.

Proposition 9.8 (B/G prop.8.40).
(a) Let a ∈ F . Then a > 0 if and only if a−1 > 0, and a < 0 if and only if a−1 < 0.

(b) Let a, b ∈ F . If 0 < a < b then 0 <
1

b
<

1

a
.

The proof is left as exercise 9.7 (see p.302). �

Corollary 9.2 (B/G prop.11.7). Let a, b ∈ F 6=0. Then

(a)
a

b
> 0 ⇔ b

a
> 0 and

a

b
< 0 ⇔ b

a
< 0,

(b)
a

b
> 0 ⇔ either both a, b > 0 or both a, b < 0.

The proof is left as exercise 9.8 (see p.302). �

The induction axiom resulted in the discrete structure of the integers: If n ∈ Z then there are no
integers between n and n+ 1. In particular there are none between 0 and 1, and this property of the
integers lead to Z>0 = Z≥1, i.e., N = Z≥1, and 1 = min(Z>0). The existence of a−1 for any nonzero
a ∈ F creates an entirely different situation.

Theorem 9.1 (B/G thm.8.43). Let a, b ∈ F such that a < b. Then

a <
a+ b

2
< b .

PROOF: The proof is left as exercise 9.9 (see p.302). �

Theorem 9.2 (B/G thm.8.42). The positive cone P does not have a minimum.

PROOF: Assume to the contrary that p∗ := min(P ) exists. It follows from the previous theorem that

0 <
p∗
2

< p∗ .

Thus p∗
2 is an element of P strictly less than min(P ). Contradiction! �

We have repeatedly worked with Definition 2.14 for the set R of the real numbers and Definition
2.15 for the set Q of the rational numbers (see p.25) without giving precise definitions for those
mathematical objects. We now are at a point of replacing those informal definitions with mathemat-
ically exact ones. Both Q and R will turn out to be ordered fields, and this explains the title “The
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Ordered Fields of the Real and Rational Numbers” of this chapter. Fields and ordered fields are of
extreme importance in the discipline of abstract algebra but for us their only purpose is to allow a
unified presentation of many algebraic formulas and inequalities.
Recall for the following that we defined minima, maxima, infima and suprema for arbitrary integral
domains in ch.3.5 on p.76.

Axiom 9.1 (Real Numbers). We postulate the existence of a set R which satisfies the following:

(a) R is endowed with two binary operations “+” (called addition) and “·” (called mul-
tiplication) and with a positive cone R>0 such that (R,+, ·,R>0) is an ordered inte-
gral domain. As usual we denote the additive unit of this integral domain by 0 and
its multiplicative unit by 1.

(b) The set R 6=0 = {x ∈ R : x 6= 0} is a group with respect to multiplication; thus for
each x ∈ R 6=0 there exists a unique x−1 ∈ R 6=0 such that xx−1 = 1.

(c) R satisfies the completeness axiom: Any nonempty subsetA of R which is bounded
above possesses a supremum in R (i.e., sup(A) 6= ±∞).

We call this set R the set of real numbers. �

Remark 9.3.
(1) Note that (a) and (b) together are equivalent to stating that is an ordered field.

Thus the real numbers constitute an ordered field which in addition satisfies
the completeness axiom.

(2) Definition 3.12 (Intervals in Ordered Integral Domains) on p.70 applies to any
ordered integral domain, hence to any ordered field, hence to R. We thus can
write ]0,∞[ for the positive cone R>0 of the real numbers. �

Note 9.1 (The integers are a subset of the real numbers). We recall that the ordered field R is an
ordered integral domain. (See prop.9.2 on p.252.) We have seen in rem.6.4 on p.178 of ch.6.4 (Em-
bedding the Integers Into an Ordered Integral Domain) that the integers can be embedded into R in
such a way that one can consider them elements of the real numbers.

We think from this point forward of the set Z which was defined as a mathematical object
in axiom 6.1 on p.167 as a subset of R. In particular, if n ∈ Z and x ∈ R then we can do
comparisons such as n ≤ x and construct expressions such as

√
en/x by viewing n as an

element of R. �

This allows us to define the subset Q of R in terms of integers.

Definition 9.4 (Rational numbers).

We call the set

Q := {n/d : n ∈ Z, d ∈ N }
(this is a subset of R!) the set of rational numbers.

In other words rational numbers are fractions of integers. �
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Theorem 9.3 (The Rational Numbers are an Ordered Field).

(a) The assignments (a, b) 7→ a+ b and (a, b) 7→ a · b are binary operations on Q, i.e., sums and
products of rational numbers are rational numbers.

(b) The triplet (Q,+, ·) is an integral domain.
(c) Let Q>0 := R>0 ∩ Q. Then (Q,+, ·,Q>0) is an ordered integral domain which satisfies the

following: if a, b ∈ Q then a < b with respect to the ordering induced by Q>0 if and only if
a < b with respect to the ordering induced by R>0

(d) (Q6=0, ·) is a (commutative) group.

PROOF: ?

(A) It follows from prop.9.6 on p.253 and prop.9.7 on p.253 that sums and products of two rational
numbers are quotients of integers with nonzero denominator, i.e., elements of Q. Part (a) follows.
(B) Rational numbers are real numbers since they are quotients of integers and those are real num-
bers. Thus addition and multiplication of rational numbers is associative, commutative and dis-
tributive because this is true for real numbers. Further 0 = 0

1 ∈ Q and 1 = 1
1 ∈ Q. Further, prop.9.6

and prop.9.7 show the following. If m,n ∈ Z, n 6= 0 and q = m
n , then −q = −m

n . If we assume
additionally that q 6= 0, i.e., m 6= 0, then q−1 = n

m . Thus the additive and multiplicative inverses of
rational numbers not only exist as real numbers, they actually are rational numbers.
In short, (Q, ·) is a commutative monoid, and both (Q,+) and (Q \ {0}, ·) are abelian groups.
Since 0 6= 1 in R we have 0 6= 1 in Q.
(C) It follows from B that (Q,+, ·) satisfies Definition 3.7(a)–(d) on p.60 and thus is a commutative
ring with unit. Since the integral domain (R,+, ·) does not possess any zero divisors, the same is
true for (Q,+, ·). Thus this algebraic object is an integral domain. This proves part (b). We also have
seen in B that (Q, ·) is a commutative monoid. This proves part (d).
(D) We next prove that the set Q>0 := R>0 ∩ Q is a positive cone for Q. Let a, b ∈ Q>0. Then
a, b ∈ R>0, hence a+ b, ab ∈ R>0 since R>0 is a positive cone. We have seen in part A that a+ b and
ab are rational, thus they belong to R>0 ∩ Q, i.e., a+ b, ab ∈ Q>0. It follows that Q>0 satisfies (a) and
(b) of Definition 3.11 on p.68 of a positive cone.
The additive neutral element 0 does not belong to the positive cone R>0 and thus not to its subset
Q>0. Thus Definition 3.11(c) is satisfied.
Next we assume that a ∈ Q satisfies both a /∈ Q>0 and a 6= 0. We claim that a /∈ R>0. This is true
since otherwise we have a ∈ R>0∩Q, i.e., a ∈ Q>0, and this contradicts our assumption that a /∈ Q>0.
Since R>0 is a positive cone and neither a = 0 nor a /∈ R>0 it follows from Definition 3.11(d) that
a ∈ R>0. Since a is rational this implies a ∈ Q>0. Thus Definition 3.11(d) is satisfied, and we have
proven that Q>0 is a positive cone.
(E) We write “<Q” for the order induced by Q>0 and “<R” for the order induced by R>0, i.e., if
a, b ∈ Q then

a <R b ⇔ b− a ∈ R>0; a <Q b ⇔ b− a ∈ Q>0.

Let a, b ∈ Q. We now prove that a <R b ⇔ a <Q b.
First assume a <R b. Then b− a ∈ R>0. Since b− a ∈ Q, it follows that b− a ∈ Q>0. Thus a <Q b.
Now assume a <Q b. Then b− a ∈ Q>0. Since Q>0 ⊆ R>0, it follows that b− a ∈ R>0. Thus a <R b.
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We have shown that part (c) follows from D and E. The proof is complete. �

Remark 9.4.
(a) Note that Z ⊆ Q since any integer n can be written as a fraction n = n

1 . Further Q ⊆ R since
Z ⊆ R and the quotient ab of two real numbers a and b where b 6= 0 exists as a real number.

(b) It follows from theorem 9.3 that (Q,+, ·,Q>0) is an ordered field, just as is the case for the
real numbers. But the rational numbers do not satisfy the completeness axiom. See rem.9.1
on p.258. �

As mentioned before neither the real numbers nor the rational numbers possess the discrete struc-
ture of the integers since both ordered fields admit division a

b for nonzero b. We will see in subse-
quent subchapters of this chapter that both Q and R are different in many ways, but here we show
an important property that both have in common: The natural numbers which are a subset of both
Q and R are unbounded in either one of those two sets.

Theorem 9.4 (B/G thm.10.1: N is unbounded in R).

For any x ∈ R there exists n ∈ N such that n > x, i.e., there are no upper bounds for N in R.

Proof strategy: It is tempting to argue as in prop.6.25 (N is unbounded in Z) on p.195 which we
reproduce here:
Assume to the contrary that there exists an upper bound of N. According to thm.6.9 (extended well-
ordering principle) on p.194 N has a maximum. Let u? := max(N). Then u? + 1 belongs to N as the
sum of two natural numbers. It follows from u? + 1 > u? that u? is not the largest element of N and
we have reached a contradiction.
The problem is that we could apply the extended well-ordering principle to establish the existence
of u? only because it holds for nonempty subsets of the set Z of all integers, and we assumed that
there exists an upper bound of N in that set Z! But what about potential upper bounds of N which
are not integers, maybe not even rational?
To overcome this difficulty we must find an alternate way: We will again do an indirect proof and
use the completeness axiom and then work with sup(N) to obtain a contradiction.
PROOF: Assume to the contrary that there exists an upper bound of N in R. According to the
completeness axiom u? := sup(N) exists as a real number. Since u? is the least upper bound of N,
u? − 1

2 is not an upper bound of N. Thus there exists n ∈ N such that n > u? − 1
2 . Thus the natural

number n+ 1 exceeds the upper bound u? of N. Contradiction! �

Corollary 9.3. There are no upper bounds for N in Q.

The proof is left as exercise 9.11 (see p.303). �

Remark 9.5. One can prove that N is unbounded in Q without utilizing the fact that Q ⊆ R and thus
without referring to the completeness axiom as follows.
Assume to the contrary that N is bounded in Q, i.e., there exists u∗ ∈ Q such that

k ≤ u∗ for all k ∈ N .(*)
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Let m ∈ Z and n ∈ N such that u∗ = m
n . It follows from (*) and n ≥ 1 that

k ≤ kn ≤ m for all k ∈ N .

But then the integer m is an upper bound for N. This contradicts Proposition 6.25 on p.195.

Remark 9.6 (Contrasting Z and R).

The Integers:
(a) Z = (Z,+, ·) is a commutative ring with unit
(b) Cancellation rule (no zero divisors: Z is an integral domain)
(c) Ordered by the positive cone P := N
(d) Induction axiom: If A ⊆ N satisfies (1) 1 ∈ A, (2)

[
n ∈ A ⇒ n+ 1 ∈ A

]
, then

A ⊇ N

The Real Numbers:
(a) R = (R,+, ·) is a commutative ring with unit
(b) (R 6=0, ·) is an abelian group: each x 6= 0 has a multiplicative inverse 1

x (implies
the cancellation rule, hence R is an integral domain)

(c) Ordered by the positive cone P := R>0

(d) Completeness axiom: If nonempty A ⊆ R has upper bounds then sup(A)
exists (as an element of R, i.e. sup(A) <∞) �

9.2 Minima, Maxima, Infima and Suprema in R and Q

We had previously discussed minima, maxima, infima and suprema in ordered integral domains.
See ch.3.5. We now discuss this subject specifically for the real numbers and the rational numbers.

Remark 9.7.

Let A ⊆ R be nonempty.
(a) If A is bounded above then it follows from the completeness axiom that its least

upper bound sup(A) = min(Auppb) exists (see axiom 9.1 (Real Numbers) on p.255).
(b) If A is bounded below then it follows from the completeness axiom and cor.3.4 on

p.81 that its greatest lower bound inf(A) = max(Alowb) exists.

The above is the core distinction between real numbers and rational numbers. There are
bounded sets of rational numbers which do not possess a supremum in Q. �

The following counterexample to this last remark is quite similar to example 3.8(c) on p.78 and the
reader should review it. We remind the reader that there is no rational number x such that x2 = 2,
i.e.,
√

2 cannot be expressed as a quotient of two integers. 104

104You will see a strict proof of this assertion in prop.9.28 on p.275.
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Example 9.1. For this example we define

A1 := {x ∈ R : x ≥ 0 and x2 < 2},
A2 := {x ∈ R : x ≥ 0 and x2 ≤ 2},
A3 := {x ∈ Q : x ≥ 0 and x2 < 2},
A4 := {x ∈ Q : x ≥ 0 and x2 ≤ 2}.

Note that none of these sets is empty since they all contain the number zero, that each one of them
has zero as its minimum (thus also as its infimum), and that each one of them is bounded above: a
crude estimate would be 2.
We observe that the sets A3 and A4 can be considered as subsets of either the ordered field (Q,+, ·)
or the ordered field (R,+, ·) since they are subsets of Q whereas A1 and A2 are subsets of (R,+, ·)
but not of (Q,+, ·).

(a) When viewed as subsets of (R,+, ·), all four sets possess a supremum since they are
nonempty and bounded. This follows from the completeness axiom. One can show that
(i) sup(Aj)

2 = 2, i.e., sup(Aj) =
√

2 for j = 1, 2, 3, 4, and that (ii)
√

2 ∈ A2. 105 Thus max(A2)
exists (and equals sup(A2) =

√
2 because max and sup always coincide if the max exists).

We claim that max(A3) and max(A4) do not exist: Let j = 3, 4. From max(Aj) ∈ Aj ⊆ Q we
obtain max(Aj) ∈ Q, i.e.,

√
2 ∈ Q. This contradicts the fact that

√
2 is irrational.

Does max(A1) exist? If so then we have

max(A1) = sup(A1) =
√

2 , thus
√

2 ∈ A1 .

But this cannot be true since we also have(√
2
)2

= 2, thus
(√

2
)2 ≮ 2, thus (by definition of A1)

√
2 /∈ A1 .

(e) Matters are very simple for subsets of the integers: It follows from the (extended) well–
ordering principle that a nonempty subset of Z possesses a supremum ⇔ it possesses a
maximum⇔ it is bounded above. Let us see what happens for

A5 := {x ∈ Z : x ≥ 0 and x2 < 2},
A6 := {x ∈ Z : x ≥ 0 and x2 ≤ 2}.

Both are nonempty and bounded subsets of Z. It follows from the extended well–ordering
principle that both possess min and max, hence also inf and sup. This is indeed true since
A5 = A6 = {0, 1}, thus

min(A5) = inf(A5) = min(A6) = inf(A6) = 0

max(A5) = sup(A5) = max(A6) = sup(A6) = 1 . �

105See prop.9.25 on p.274 which gives an alternate proof of B/G thm.10.25
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Example 9.2 (Example a: Maximum exists). Let f(x) := 2x, and X1 := {f(x) : 0 ≤ x ≤ 1}. For each
0 ≤ x ≤ 1 we have f(x) = 2x, and the biggest possible value is f(1) = 2. So the maximum of X1

exists, and it equals max(X1) = max{f(x) : 0 ≤ x ≤ 1} = 2. �

Example 9.3 (Example b: Supremum is finite). Let f(x) := 2x, and X2 := {f(x) : 0 ≤ x < 1}, i.e.,
we now exclude the right end point 1 at which the maximum value was attained in the previous
example. For each 0 ≤ x < 1 we have f(x) < 2, so 2 is an upper bound of X2, hence sup(X2)
exists and is at most 2. We recall from calculus that the function f(x) = 2x is continuous and
hence continuous from the left at x0 = 1. 106 In other words, f(x) will “approach” the value 2 as x
approaches x = 1 from the left, and it follows that no number less than 2 is an upper bound of X2,
hence sup(X2) = sup{f(x) : 0 ≤ x < 1} = 2.
This precisely is the difference in behavior between the supremum s := sup(A) and the maximum
m := max(A) of a set A ⊆ R of real numbers: There must be an element a ∈ A so that a = m.
For the supremum it is sufficient that there is a sequence (an)n in A which approximates s from
below in the sense that the difference s− an "drops down to zero" as n approaches infinity. We will
not be more exact now, because this would require us to delve into the concepts of convergence and
contact points. 107 �

Example 9.4 (Example c: Supremum is infinite). Let f(x) := 2x, and X3 := {f(x) : x ≥ 0}. The
value 2x will exceed all potential upper bounds, and that means that the only reasonable value for
sup(X3) = sup{f(x) : x ≥ 0} is +∞.
As in case b above, the max does not exist because there is no x0 ∈ X3 such that f(x0) attains the
highest possible value among all x ∈ [0,∞[. �

Proposition 9.9. Let A ⊆ B ⊆ R. Then inf(A) ≥ inf(B) and sup(A) ≤ sup(B).

PROOF: The above was proven for ordered integral domains R in prop.3.58 on p.80 under the
condition that inf(A), inf(B) , sup(A), sup(B) exist, possibly having value ±∞. But inf(Γ) exists for
any subset Γ of R: If Γ is nonempty and has lower bounds then this follows from the completeness
axiom. If Γ = ∅ then inf(Γ) =∞. Otherwise (Γ is not empty and not bounded below) inf(Γ) = −∞.
�

Proposition 9.10 (Supremum and infimum are positively homogeneous).

Let A be a nonempty subset of R and let λ ∈ R≥0. If λ > 0 or if λ = 0 and sup(A) <∞ then

If λ > 0 or if λ = 0 and sup(A) <∞ then sup(λA) = λ sup(A),(9.1)
If λ > 0 or if λ = 0 and inf(A) > −∞ then inf(λA) = λ inf(A).(9.2)

PROOF: We only give the proof for the supremum. The proof of (9.2) is similar.

106We will get to that in a few pages in def. 9.12 on p.271 (Continuity in R) and rem.9.12 on p.9.12 about one–sided
continuity.

107We will get to that in ch.?? on metric spaces.
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(9.1) holds for λ = 0 and sup(A) <∞ because

sup(0A) = sup({0}) = 0 = 0 · sup(A).

Thus we may assume λ > 0. The set Auppb = {u ∈ R : u is upper bound of A} then satisfies

u ∈ Auppb ⇔ u ≥ a ∀a ∈ A ⇔ λu ≥ λa ∀a ∈ A ⇔ λu ∈ (λA)uppb .(9.3)

Case 1: A is unbounded.
Then λA. also in unbounded.
Thus sup(λA) = sup(A) =∞, and hence sup(λA) = λ sup(A) =∞.
Case 2: A is not empty.
It follows from sup(A) ∈ Auppb that λ sup(A) ∈ (λA)uppb ,

hence λ sup(A) ≥ min
(
(λA)uppb

)
= sup(λA). It remains to show that λ sup(A) ≤ sup(λA).

We substitute v
λ for u in (9.3) and obtain

v

λ
∈ Auppb ⇔ v ∈ (λA)uppb .

It follows from sup(λA) ∈ (λA)uppb that

sup(λA)

λ
∈ Auppb , hence

sup(λA)

λ
≥ min

(
Auppb

)
= sup(A) , hence sup(λA) ≥ λ sup(A) .

This proves λ sup(A) ≤ sup(λA). �

Definition 9.5 (bounded functions). ?

Given are a nonempty set X and a real-valued function f with domain X .

We call f bounded above if the image f(X) = {f(x) : x ∈ X} is bounded above, i.e., if
there exists a (possibly very large) number γ1 > 0 such that

(9.4) f(x) < γ1 for all arguments x.

We call f bounded below if the image f(X) = {f(x) : x ∈ X} is bounded below, i.e., if
there exists γ2 > 0 such that

(9.5) f(x) > −γ2 for all arguments x.

We call f a bounded function if it is both bounded above and below, i.e., if there exists
γ > 0 such that

(9.6) |f(x)| < γ for all arguments x. �

We note that f is bounded if and only if its range f(X) is a bounded subset of R. We further note
that we have defined infimum and supremum for any kind of set: empty or not, bounded above or
below or not. We use those definitions to define infimum and supremum for functions, sequences
and indexed families.
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Definition 9.6 (supremum and infimum of functions). Let X be an arbitrary set, A ⊆ X a subset of
X , f : X → R a real–valued function on X . Consider in the following f(A) = {f(x) : x ∈ A}, the
image of A under f .

The supremum of f(·) on A is defined as

(9.7) sup
A
f := sup

x∈A
f(x) := sup f(A)

The infimum of f(·) on A is defined as

(9.8) inf
A
f := inf

x∈A
f(x) := inf f(A). �

Definition 9.7 (supremum and infimum of families).

The supremum and infimum of a family of real numbers (xi)i∈I (xi)i∈I are defined as

sup (xi) := sup
i

(xi) := sup (xi)i := sup (xi)i∈I := sup
i∈I

xi := sup {xi : i ∈ I}.(9.9)

inf (xi) := inf
i

(xi) := inf (xi)i := inf (xi)i∈I := inf
i∈I

xi := inf {xi : i ∈ I}. �(9.10)

The definition above for families extends to sequences.

Definition 9.8 (supremum and infimum of sequences).

Let I = [k0,∞[Z and xn ∈ R for n ∈ I . Supremum and infimum of (xn)n∈I are defined as

sup (xn) := sup (xn)n∈I := sup
n∈I

xn = sup {xn : n ∈ I}(9.11)

inf (xn) := inf (xn)n∈I := inf
n∈I

xn = inf {xn : n ∈ I}. �(9.12)

We note that the “duality principle” for min and max, sup and inf (see prop.3.59, prop.3.60 and
cor.3.4 on p.80) is true in all cases above: You flip the sign of the items you examine and the sup/max
of one becomes the inf/min of the other and vice versa.

Proposition 9.11.

Let X be a nonempty set and ϕ,ψ : X → R. Let ∅ 6= A ⊆ X . Then

sup{ϕ(x) + ψ(x) : x ∈ A} ≤ sup{ϕ(y) : y ∈ A} + sup{ψ(z) : z ∈ A},(9.13)
inf{ϕ(x) + ψ(x) : x ∈ A} ≥ inf{ϕ(y) : y ∈ A} + inf{ψ(z) : z ∈ A}.(9.14)

PROOF:
We only prove (9.13). The proof of (9.14) is similar and left as exercise 9.12 on p.303. 108

Let U := {ϕ(x) + ψ(x) : x ∈ A}, V := {ϕ(y) : y ∈ A}, W := {ψ(z) : z ∈ A}. Let x ∈ A.

108(9.14) can also be deduced from (9.13) and the fact that inf{ϕ(u) : u ∈ A} = − sup{−ϕ(v) : v ∈ A}.
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Then ϕ(x) ≤ sup(V ) since sup(V ) is an upper bound of V , and ψ(x) ≤ sup(W ) since sup(W ) is an
upper bound of W , thus sup(V ) + sup(W ) ≥ ϕ(x) + ψ(x).
Since this is true for all x ∈ A, we conclude that sup(V ) + sup(W ) is an upper bound of U .
Thus sup(V ) + sup(W ) dominates the least upper bound sup(U) of U , and this proves (9.13). �

9.3 Convergence and Continuity in R

You are familiar from calculus with the concepts of convergent sequences and continuous functions
whose domain and codomain both are sets of real numbers. We discuss them here in a more rigor-
ous fashion. Convergence and continuity will be generalized in later chapters from R to so–called
metric spaces.
At the start we need to give a definition which makes precise the thought that the sequence (xn) of
real numbers has limit a if eventually 109 all of the xn will come arbitrarily close to a.

Definition 9.9 (convergence of sequences of real numbers). Let a ∈ R. We say that a sequence (xn)
of real numbers converges 110 to a for n→∞ if the following is true:

For any δ ∈ ]0,∞[ (no matter how small), there exists n0 ∈ N such that

|a− xj | < δ for all j ≥ n0.(9.15)

We write either of

a = lim
n→∞

xn or xn → a as n→∞(9.16)

and we call a the limit of the sequence (xn). �

Remark 9.8. (a) The smaller the number δ, the harder it is to enforce the validity of |a−xj | < δ , the
larger n0 may have to be chosen.

For example, let xn :=
n+ 1

n
, a := 1 .

If δ = 1/10 then we may choose any n0 ≥ 11, since

j ≥ 11 ⇒ |xj − 1| =
1

j
≤ 1

n0
≤ 1

11
<

1

10
= δ .

On the other hand, if δ = 1/100 then we need n0 to be 101 or bigger, since

|xj − 1| ≤ 1

100
⇔ 1

j
> 100 ⇔ 1

j
≥ 101 . �

(b) Definition 9.9 can be worded as follows:

• For any δ > 0, |a− xj | < δ|, eventually.

109See Definition 7.4 on p.223 and the subsequent Proposition 7.11 for the meaning of “eventually”.
110We will define convergence of a sequence of items more general than real numbers in ch.12.4 (see Definition 12.10

(convergence of sequences in metric spaces) on p.369).
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Definition 9.10 (Open ε-Neighborhood in R). 111

For x0 ∈ R and ε > 0, let

Nε(x0) := ]x0 − ε, x0 + ε[ = {x ∈ R : |x− x0| < ε}

be the set of all elements of R with a distance to x0 of strictly less than the number ε (the
open interval with center x0 and radius ε from which the points on the boundary (those
with distance equal to ε) are excluded).

(a) We call Nε(x0) the ε–neighborhood of x0. Nε(x0) is often called the open
ε–neighborhood of x0, to differentiate it from the closed interval [ x0 − ε, x0 + ε ],
which is also called the closed ε–neighborhood of x0.

(b) Let x, y ∈ R and ε > 0. We say that x and y are ε–close if |x− y| < ε. �

Remark 9.9. Clearly two real numbers x and y are ε–close ⇔ x ∈ Nε(y) ⇔ y ∈ Nε(x) �

There are two equivalent ways of expressing convergence to a ∈ R:
(a) No matter how small a δ–neighborhood of a you choose: at most finitely many of

the xn will be located outside that neighborhood.
(b) No matter how small a δ–neighborhood of a you choose: eventually all of the xn

will be found inside that neighborhood.

Example 9.5. Some simple examples for convergence to a real number:
(a) Let xn := 1/n (n ∈ N). Then xn → 0 as n→∞.
(b) Let α ∈ R and zn := α2π (n ∈ N). Then the sequence (zn)n has limit α2π .
(c) More generally let zn := x0 for some x0 ∈ R (n ∈ N). Then lim

n→∞
zn = x0. �

PROOF of (a): If δ > 0, let n0 := some integer larger than 1/δ. Such a number exists because the
natural numbers are not bounded above (see thm.9.4 on p.257). It follows for n ≥ n0 that

|xn − 0| = 1/n ≤ 1/n0 < δ.

PROOF of (b) and (c): (c) is left as exercise 9.14 on p.303, and (b) follows from (c). �

Convergence is an extremely important concept in mathematics, but it excludes the case of se-
quences such as xn := n and yn := −n (n ∈ N). Intuition tells us that xn converges to ∞ and
yn converges to −∞ because we think of very big numbers as being very to +∞ and very small
numbers (i.e., very big ones with a minus sign) as being close to −∞.

Definition 9.11 (Limit infinity). ? Given a real number K > 0, we define

NK(∞) := {x ∈ R : x > K}(9.17a)
NK(−∞) := {x ∈ R : x < −K}(9.17b)

111This will generalized to metric spaces in Definition 12.6 on p.366.
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We call NK(∞) the K–neighborhood of∞ and NK(−∞) the K–neighborhood of −∞. We say
that a sequence (xn) has limit∞ and we write either of

(9.18) xn →∞ or lim
n→∞

xn =∞

if the following is true for any K ∈ R (no matter how big): There is an integer n0 such that all xj
belong to NK(∞) for all j ≥ n0, i.e., if

for all K ∈ N there exists n0 ∈ N such that if j ≥ n0 then xj > K.

We say that the sequence (xn) has limit −∞ and we write either of

(9.19) xn → −∞ or lim
n→∞

xn = −∞

if the following is true for any K ∈ R (no matter how big): There is an integer n0 such that all xj
belong to NK(−∞) for all j ≥ n0. �

(a) There is an equivalent way of stating that the sequence (xn) has limit ∞: No matter
how big a threshold K > 0 you choose: eventually all of the xn will be located above that
threshold.
(b) xn → −∞ can also be expressed as follows: No matter how big a threshold K > 0 you
choose: eventually all of the xn will be located below −K.

Remark 9.10.

The majority of mathematicians agrees that there is no “convergence to∞” or “divergence
to∞”. Rather, they say that a sequence has the limit∞. We follow this convention �

Theorem 9.5 (Limits are uniquely determined).

Let (xn)n be a convergent sequence of real numbers. Then its limit is uniquely determined.

PROOF: The proof is left as exercise 9.15 (see p.303). �

Proposition 9.12 (B/G prop.10.11). Let a, b ∈ R. Then a = b ⇔ |a− b| < ε for all ε > 0.

PROOF: The proof is left as exercise 9.16 (see p.303). �

Proposition 9.13 (Subsequences of real number sequences with limits).

Let (xn)n be a sequence of real numbers with limit L := lim
n→∞

xn. Let (xnj ) be a subsequence.
Then lim

j→∞
xnj = L.

PROOF: The proof is done separately for L ∈ R and for L = ±∞.
(a) Assume that (xn)n is convergent, i.e., L ∈ R. Let ε > 0. Because the sequence converges, there
exists N ∈ N such that |xj − L| < ε for all j ≥ N . As nj ≥ j for all j, we conclude that nj ≥ N
whenever j ≥ N , hence |xnj − L| < ε for all j ≥ N . It follows that (xnj ) has limit L.
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(b) Assume that L =∞. Let K ∈ R. Because lim
n→∞

xn =∞, there exists N ∈ N such that xj > K for
all j ≥ N . As nj ≥ j for all j and hence nj ≥ N whenever j ≥ N , we obtain xnj > K for all j ≥ N .
It follows that (xnj ) has limit∞.
(c) The case L = −∞ is proved similarly to (b). �
Note that the above in particular means that subsequences of a convergent sequence converge to
the same limit.

Note 9.2 (Notation for limits of monotone sequences).

Let (xn) be a nondecreasing and yn a nonincreasing sequence of real numbers.
(a) If ξ = lim

k→∞
xk (that limit might be +∞), then we write • xn ↑ ξ (n→∞)

(b) If η = lim
j→∞

yj (that limit might be −∞), then we write • yj ↓ η (j →∞). �

Proposition 9.14. [See B/G prop.10.16]
Let (xn)n be a sequence of real numbers such that lim

n→∞
xn exists. Let K ∈ N. For n ∈ N let yn := xn+K .

Then (yn)n has the same limit as (xn)n.

The proof is left as exercise 9.17 (see p.303). �

Proposition 9.15 (convergent⇒ bounded).

Let (xn)n be a sequence in R.
• If the sequence converges, then it is bounded.

The proof is left as exercise 9.18 (see p.303). �

The following proposition states that the product of a sequence which converges to zero and a
bounded sequence converges to zero.

Proposition 9.16 (bounded times zero–convergent is zero–convergent).

Let (xn)n and (αn)n be two sequences in R and let α ∈ R.
• If lim

n→∞
xn = 0 and if |αj | ≤ α for all j ∈ N, then

(9.20) lim
j→∞

(αjxj) = 0.

PROOF:
Case 1: α = 0. Then αj = 0 and hence αjxj = 0 for all j ∈ N. For any δ > 0 let n0 = 1. Then

|αjxj − 0| = |αjxj | = 0 < δ for all j ∈ N such that j ≥ n0.

This proves convergence αjxj → 0.
Case 2: α 6= 0, i.e., |α| > 0. Let δ > 0. We must show that

there is n0 ∈ N such that |αjxj | < δ for all j ∈ N such that j ≥ n0.(9.21)
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Let ε := δ/|α|. Then ε > 0 and it follows from lim
j→∞

xj = 0 that

there is N ∈ N such that |xj | < ε for all j ∈ N such that j ≥ N.(9.22)

Since also |αj ≤ α for all j we obtain

|αj xj | = |αj | · |xj | < |α| · ε = δ for all j ∈ N such that j ≥ N .

We choose n0 := N and (9.21) follows. �

It is very rare that you need to apply Definition 9.9 on p.263 to compute a limit. Rather, the previous
proposition and the following set of rules are employed.

Proposition 9.17 (Rules of arithmetic for limits 112 ).

Let (xn)n and (yn)n be sequences in R and x, y, α ∈ R. Let lim
j→∞

xj = x and lim
j→∞

yj = y. Then

(a) lim
j→∞

α = α,

(b) lim
j→∞

(α · xj) = α · x, (constant sequence)

(c) lim
j→∞

(xj + yj) = x+ y,

(d) lim
j→∞

(xj · yj) = x · y,

(e) if x 6= 0 then lim
j→∞

1

xj
=

1

x
.

PROOF of (a): Exercise 9.13.
PROOF of (b):
Case 1: α = 0. Then α xj is the constant sequence 0, 0, . . . which converges to 0 = α x — Done.
Case 2: α 6= 0. Let δ > 0. We must show that

there is n0 ∈ N such that |α xj − α x| < δ for all j ∈ N such that j ≥ n0.(9.23)

Let ε := δ/|α|. Then ε > 0 and it follows from lim
j→∞

xj = x that

there is N ∈ N such that |xj − x| < ε for all j ∈ N such that j ≥ N.(9.24)

But then |α xj −α x| = |α| · |xj −x| < |α| · ε = δ for all j ∈ N such that j ≥ N . We choose n0 := N
and (9.23) is proved.
PROOF of (c):
Let δ > 0. It follows from lim

j→∞
xj = x and lim

j→∞
yj = y that there exist N1, N2 ∈ N such that

if j ≥ N1 then |xj − x| < δ/2 and if j ≥ N2 then |yj − y| < δ/2.(9.25)

It follows from the triangle inequality |A+B| ≤ |A|+ |B| (prop.2.7 on p.45) and from (9.25) that

|(xj + yj)− (x+ y)| = |(xj − x) + (yj − y)| ≤ |xj − x|+ |yj − y)| < δ/2 + δ/2 = δ(9.26)

112See [2] B/G (Beck/Geoghegan) prop.10.23
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for all j ≥ max(N1, N2). Let n0 := max(N1, N2). It follows from (9.26) that |(xj + yj)− (x+ y)| < δ
for all j ≥ n0. This proves (c).
PROOF of (d):
Let uj := (xj − x)yj and vj := x(yj − y) (j ∈ N). Then

xjyj − xy = (xjyj − xyj) + (xyj − xy) = (xj − x)yj + x(yj − y) = uj + vj .(9.27)

It follows from parts (c) and (a) that

lim
j→∞

(xj − x) = lim
j→∞

xj − lim
j→∞

x = x− x = 0,

lim
j→∞

(yj − y) = lim
j→∞

yj − lim
j→∞

y = y − y = 0,

i.e., the sequences xn − x and yn − y converge to zero.
Moreover The convergent sequences yn and x (constant sequence!) are bounded by prop.9.15. It
now follows from prop.9.16 that lim

j→∞
uj = 0 and lim

j→∞
vj = 0. We deduce from (9.27) xjyj =

xy + uj + vj is the sum of three convergent sequences. 113 It follows from part (c) that

lim
j→∞

xnyn = lim
j→∞

(xy) + lim
j→∞

uj + lim
j→∞

vj = xy + 0 + 0 = xy.

PROOF of (e):
Since lim

j→∞
xn = x and |x| > 0 there exists N1 ∈ N such that |xn − x| ≤ |x|/2 for all j ≥ N1. Thus

|x| = |(x− xn) + xn| ≤ |x− xn|+ |xn| ≤
|x|
2

+ |xn|

⇒
|x|
2
≤ |xn| ⇒ |x| |xn| ≥

x2

2
⇒

1

|xxn|
≤

2

x2
.

(9.28)

Let zn := (xxn)−1 and K := max(2/x2, |z1|, |z2|, . . . , |zN1 |). It follows from (9.28) that the se-
quence (zn)n is bounded by K, it follows from part (a) that lim

j→∞
x = x, and from part (c) that

lim
j→∞

(xn − x) = lim
j→∞

(xn)− x = 0, hence zn (x− xn)→ 0 as n→∞ by prop.9.16. Thus

lim
j→∞

(
1

xn
−

1

x

)
= lim

j→∞

1

x xn
· (x − xn) = lim

j→∞
zn (x− xn) = 0.(9.29)

Let δ > 0. On account of (9.29) there exists n0 ∈ N such that∣∣∣∣∣ 1

xn
−

1

x

∣∣∣∣∣ =

∣∣∣∣∣
(

1

xn
−

1

x

)
− 0

∣∣∣∣∣ < δ for all j ≥ n0.(9.30)

This proves convergence of 1/xn to 1/x. �

113The constant sequence (xy) has limit xy according to part (a)
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Proposition 9.18.

(a) Let xn be a sequence of real numbers that is nondecreasing, i.e., xn ≤ xn+1 for all n (see
def. 22.1 on p.510 ), and which is bounded above. Then lim

n→∞
xn exists and coincides with

sup{xn : n ∈ N}
(b) If yn is a sequence of real numbers that is nonincreasing, i.e., yn ≥ yn+1 for all n, and which

is bounded below. Then lim
n→∞

yn exists and coincides with inf{yn : n ∈ N}.

PROOF of (a): Let x := sup{xn : n ∈ N}. This is an upper bound of the sequence, hence xj ≤ x for
all j ∈ N. Let ε > 0. x is the smallest upper bound, thus x − ε

2 is not an upper bound, hence there
exists N ∈ N such that x − ε

2 ≤ xN . Because (xn)n is nondecreasing, it follows for all j ≥ N that
x− ε < x− ε

2 ≤ xN ≤ xj ≤ x, hence
ε− x > −xj ≥ −x, hence ε > x− xj ≥ 0 for all j ≥ N , hence |xj − x| = x− xj < ε for all j ≥ N .
It follows that lim

j→∞
xj = x, i.e., x = sup

n∈N
xn = lim

j→∞
xj .

The proof of (b) is similar to (a). (Alternate proof of (b): apply (a) to the sequence xn := −yn.) �

Proposition 9.19 (Domination Theorem for Limits).

Let xn, yn ∈ R be two sequences of real numbers both of which have limits. Assume there is K ∈ N
such that xn ≤ yn for all n ≥ K. Then

lim
n→∞

xn ≤ lim
n→∞

yn.

PROOF: Let x := lim
n→∞

xn and y := lim
n→∞

yn.

Case 1: Neither x nor y is ±∞.
We will show that lim

n→∞
(yn − xn) ≥ 0. This suffices to prove the proposition because, according to

prop. 9.17.c,

lim
n→∞

(yn − xn) = lim
n→∞

yn − lim
n→∞

xn.

We abbreviate zn := yn − xn and z := lim
n→∞

zn. We assume to the contrary that z < 0. Let ε := −1
2z.

Then ε > 0. It follows from the definition of limits that there exists N ∈ N such that

|zj − z| < ε, i.e., |zj + 2ε| < ε, i.e., − ε < zj + 2ε < ε, i.e., − 3ε < zj < −ε < 0 (?)

holds for all j ≥ N . Let n0 := max(K,N). We obtain for all j ≥ n0 from (?) that yj − xj = zj < 0.
This contradicts our assumption that xj ≤ yj for all such j.
Case 2: x = y = ±∞ or x = −∞, y =∞:
The proposition is obviously true in those cases.
Case 3: x =∞, y = −∞:
This is the only case not yet covered. If this is possible then the proposition is false, so our task is to
prove that this case cannot occur. We will do so by showing that if x =∞ then y =∞.
Let γ > 0. Since x = lim

n
xn = ∞ there exists, according to Definition 9.11 (Limit infinity) on p.264,

an index n0 such that xj > γ whenever j ≥ n0. Let N := max(n0,K). We assumed xj ≤ yj for all
j ≥ K, thus yj ≥ xj > γ for all j ≥ N . It follows that y = lim

n
yn =∞. �
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Corollary 9.4.

Let xn, yn ∈ R be two sequences of real numbers and L ∈ R. Assume there is K ∈ N such that
xn = yn for all n ≥ K. Then

lim
n→∞

xn = L ⇔ lim
n→∞

yn = L, lim
n→∞

xn = ±∞ ⇔ lim
n→∞

yn = ±∞.

PROOF:
This is an immediate consequence of the Domination Theorem for Limits. �

We now give an example that utilizes both convergemce of sequences and (countably) infinitely
many unions and intersections.

Proposition 9.20. For the following note that [u, v] = ∅ for u > v and ]u, v[= ∅ for u ≥ v (see (2.19) on
p.27). Let a, b ∈ R. Then

[a, b] =
⋂
n∈N

]
a− 1

n
, b+

1

n

[
.(9.31)

]a, b[ =
⋃
n∈N

[
a+

1

n
, b− 1

n

]
,(9.32)

PROOF: ?

(A) PROOF of (9.31)
Case 1: We assume that a > b. Then [a, b] = ∅, hence (9.31) is valid if we can show that there exists
N ∈ N such that ]a − 1

N , b + 1
N [ is empty. We do this as follows. Let ε := a−b

2 . Then ε > 0. Since
lim
n→∞

= 0 there exists N ∈ N such that 1
n < ε for all n ≥ N ; in particular, 1

N < ε = a−b
2 . Of course the

choice of N depends on x. It follows that

2

N
< a− b, hence b+

1

N
< a− 1

N
, hence

]
a− 1

N
, b+

1

N

[
= ∅.

Case 2: We assume that a = b. Then [a, b] = {a}. Clearly a ∈]a− 1
n , b+ 1

n [ for all n, hence we obtain
{a} ⊆

⋂
n]a − 1

n , b + 1
n [. The proof for case 2 is done if we can show that if x 6= a then there exists

N ∈ N such that x /∈ ]a− 1
N , b+ 1

N [.
If x < a, let ε := a−x > 0. Since lim

n→∞
= 0 there existsN ∈ N such that 1

N < ε = a−x, i.e., x < a− 1
N ,

hence x /∈ ]a− 1
N , b+ 1

N [.
If x > a, we can similarly find someN ∈ N such that 1

N < x−a, i.e., x > a+ 1
N , hence x /∈ ]a− 1

N , b+
1
N [.

Case 3: We assume that a < b. If n ∈ N then ]a− 1
n , b+ 1

n [⊇ [a, b], hence [a, b] ⊆
⋂
n∈N]a− 1

n , b+ 1
n [.

We finally show “⊇”. If x ∈
⋂
n∈N]a− 1

n , b+ 1
n [ then

a− 1

n
< x < b+

1

n
for all n ∈ N.(9.33)

The proof is done if we can show that this implies both x ≥ a and x ≤ b.
Assume to the contrary that x < a. Let ε := a − x. Then ε > 0. Since lim

n→∞
= 0 there exists N ∈ N

such that 1
n < ε for all n ≥ N ; in particular, 1

N < ε. Of course the choice of N depends on x.
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We obtain from a − x = ε > 1
N that x < a − 1

N . This contradicts (9.33) and we have proved that
x ≥ a. Demonstrating that x ≤ b is similar. We have proved “⊇”.
(B) PROOF of (9.32):
This proof is left as exercise 9.19. �

We now briefly address continuity of functions which map real numbers to real numbers. This
subject will be addressed in more detail and in more general settings in ch.13.1.1 on p.402. Let
A ⊆ R. Informally speaking, a continuous function f : A → R is one whose graph in the xy–
plane is a continuous line without any disconnections or gaps. This can be stated in slightly more
formal terms by saying that, if the x-values are closely together then the f(x)-values must be closely
together too.
Here is the formal definition.

Definition 9.12 (Continuity in R 114 ). Let A ⊆ R, x0 ∈ A, and let f : A→ R.

We say that f is continuous at x0 and we write

(9.34) lim
x→x0

f(x) = f(x0)

if any sequence (xn) with values in A satisfies the following:

(9.35) if xn → x0 then f(xn)→ f(x0).

In other words, the following must be true for any sequence (xn) in A:

lim
n→∞

xn = x0 ⇒ lim
n→∞

f(xn) = f( lim
n→∞

xn) = f(x0).(9.36)

We say that f is continuous if f is continuous at x0 for all x0 ∈ A. �

Remark 9.11. Important points to notice:
a) It is not enough for the above to be true for some sequences that converge to x0. Rather,

it must be true for all such sequences!
b) We restrict our universe to the domain A of f : x0 and the entire sequence (xn)n∈N must

belong to A because there must be function values for x0 and all xn. �

Remark 9.12 (One–sided Continuity). This example will illustrate the role of the set A in the defini-
tion of continuity. If A = [a, b] for two real numbers a < b then continuity of f at a means according
to (9.36) that lim

n→∞
f(xn) = f(a) for all sequences xn that approach a but stay on the right of a.

Similarly continuity of f at b means that lim
n→∞

f(xn) = f(b) for all sequences xn that approach b but
stay on the left of b.

The notation commonly used in those cases is

lim
x→a+

f(x) = f(a) and lim
x→b−

f(x) = f(b) .

One says in the first case that f is continuous from the right at a and in the second case
that f is continuous from the left at b. �

114This definition is about sequence continuity of a function. See Definition 13.1 (Sequence continuity) on p.402 where
continuity is generalized to metric spaces.
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Proposition 9.21. Let A ⊆ R and γ ∈ R. The following functions A→ R are continuous.

(a) The constant function x 7→ γ,
(b) The identity function id

∣∣∣
A

: x 7→ x.

PROOF of (a): Let a, xn ∈ A such that lim
n→∞

xn = a. Then f(xn) = γ for all n, and this constant

sequence converges to f(a) = γ. according to example 9.5(c).
PROOF of (b): Let a, xn ∈ A such that lim

n→∞
xn = a. Then f(xn) = xn for all n and thus lim

n→∞
f(xn) =

lim
n→∞

xn = a = f(a). �

Theorem 9.6 (Rules of arithmetic for continuous real–valued functions with domain in R 115 ).

Let A ⊆ R and α ∈ R. Assume that the functions

f(·), g(·), f1(·), f2(·), f3(·), . . . , fn(·) : A −→ R

all are continuous at x0 ∈ A. Then
(a) Constant functions are continuous everywhere on A.
(b) The product fg(·) : x 7→ f(x)g(x) is continuous at x0. Specifically, αf(·) : x 7→ α · f(x)

is continuous at x0. In particular −f(·) : x 7→ −f(x) = (−1) · f(x) is continuous at x0.
(c) The sum f + g(·) : x 7→ f(x) + g(x) is continuous at x0.
(d) If g(x0) 6= 0 then the quotient f/g(·) : x 7→ f(x)/g(x) is continuous at x0.

(e) Any linear combination
n∑
j=0

ajfj(·) : x 7→
n∑
j=0

ajfj(x) is continuous in x0.

PROOF: This proposition will be generalized in thm.13.3 on p.405 and a full proof will be given
there. Here we only give a proof for the product fg to demonstrate how knowledge about the
convergence of sequences can be employed to prove statements concerning continuity.
Let xn ∈ A for all n ∈ N be a sequence such that lim

n→∞
xn = x0. It follows from Definition 9.12

(continuity) on p.271 that lim
n→∞

f(xn) = f(x0) and lim
n→∞

g(xn) = g(x0). Thus lim
n→∞

f(xn)g(xn) =

f(x0)g(x0) by part (d) of prop.9.17 (Rules of arithmetic for limits) on p.267. �

Proposition 9.22. All polynomials are continuous

The proof is left as exercise 9.23 on p.304. �

Proposition 9.23 (The composition of continuous functions is continuous).

Let A,B ⊆ R be nonempty, f : A→ R continuous at x0 ∈ A, and g : B → R continuous at f(x0).
Assume further that f(A) ⊆ B, i.e., f(x) ∈ B for all x ∈ A.

Then the composition g ◦ f : X −→ Y is continuous at x0.

The proof is left as exercise 9.20 (see p.304). �

115See Definition 11.7 on p.334 about linear combinations which are referred to in part (e).
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Theorem 9.7. Let A ⊆ R, x0 ∈ A, and let f : A → R be a real–valued function with domain A. Then f is
continuous at x0 if and only if for any ε > 0, no matter how small, there exists δ > 0 such that either one of
the following equivalent statements is satisfied:

(9.37) f (Nδ(x0) ∩A) ⊆ Nε

(
f(x0)

)
,

(9.38) f
(
{x ∈ A : |x− x0| < δ}

)
⊆ {y ∈ R : |y − f(x0)| < ε},

(9.39) |x− x0| < δ ⇒ |f(x)− f(x0)| < ε for all x ∈ A.

PROOF: A generalized version of this theorem will be proved in a later chapter. 116 �

Remark 9.13. If we refer to the definition of continuity given in Definition 9.12 (Continuity in R) on
p.271 as sequence continuity and its equivalent formulation in thm.9.7 as εεε–δδδ continuity then this
theorem states that both formulations are equivalent, and it is thus OK to refer to either property
simply as continuity.

Figure 9.1: ε-δ continuity: Any
(
x, f(x)

)
such that x0 − δ < x < x0 + δ must be contained in the

shaded rectangle ]x0 − δ, x0 + δ[ × ]f(x0)− ε, f(x0) + ε[ .

The following generalization of thm.9.7 allows us to to restrict our focus to small ε > 0 and begin
the proof that a function is continuous at some point x0 with a statement similar to this one:

“Let ε > 0. We may assume without restricting generality that ε < 1.”

Being able to do so is sometimes convenient.

Proposition 9.24. Let A ⊆ R, x0 ∈ A, and let f : A → R be a real–valued function with domain A. Then
f is continuous at x0 if and only if there exists ε? > 0 which satisfies the following:
for any ε ∈ ]0, ε?[ there exists δ > 0 such that either one of the following equivalent statements is satisfied:

(a) f
(
{x ∈ A : |x− x0| < δ}

)
⊆ {y ∈ R : |y − f(x0)| < ε},

(b) |x− x0| < δ ⇒ |f(x)− f(x0)| < ε for all x ∈ A.

The proof is left as exercise 9.25 (see p.304). �
116See thm.13.1 on p.403.
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9.4 Rational and Irrational Numbers

Proposition 9.25 (B/G thm.10.25). Let A := {a ∈ R>0 : a2 < 2}.
Then r := sup(A) exists and r2 = 2.

PROOF: We write Auppb for the set of upper bounds of A (see Definition 3.16 on p.77).
First, we prove the existence of r.

It follows from 14
10 > 0 and

(
14
10

)2
< 2 that A 6= ∅. It follows from 15

10 > 0 and
(

15
10

)2
> 2 and a2 < 2

for all a ∈ A that a2 <
(

15
10

)2.
Hence, from prop.3.49 (Generalization of B/G prop.10.5), we obtain a < 15

10 for all a ∈ R and we
conclude that 15

10 is an upper bound of A.
This not only proves that r = sup(A) exists, but also that 14

10 < r ≤ 15
10

Let xn := r − 1
n and yn := r + 1

n (n ∈ N).
Second, we prove that x2

n ≤ 2 for all n.
It follows from r > 14

10 and n ≥ 1 that xn > 0. It further follows from xn < r that xn /∈ Auppb , i.e.,
xn < a for some a ∈ A, hence x2

n < a2 < 2.
Third, we prove that y2

n ≥ 2 for all n.
It follows from r + 1

n > r that yn is an upper bound of A which is different from r, its least upper
bound. We show that yn ∈ A as follows: If yn ∈ A, then yn = r+ 1

n ≤ u for any upper bound u of A,
hence r + 1

n ≤ r. We have reached a contradiction. So we have yn /∈ A and hence, as yn > 0, y2
n ≥ 2.

We conclude the proof as follows. It follows from the rules of arithmetic for limits (prop.9.17) that

lim
n→∞

y2
n − lim

n→∞
x2
n = lim

n→∞

4r

n
= 4r · lim

n→∞

1

n
,

and the latter expression is zero because lim
n→∞

1
n = 0 (see example 9.5.a on p.264). So y2

n and x2
n

have the same limit. We established in parts 2 and 3 of the proof that x2
n ≤ 2 ≤ yn. It follows from

prop.9.19 (Domination Theorem for Limits) on p.269 that

lim
n→∞

x2
n ≤ lim

n→∞
2 = 2 ≤ lim

n→∞
y2
n = lim

n→∞
x2
n,

hence lim
n→∞

x2
n = 2. We use again the rules of arithmetic for limits and lim

n→∞

1

n
= 0 to conclude

lim
n→∞

xn = r + lim
n→∞

1

n
= r, hence, 2 = lim

n→∞
x2
n =

(
lim
n→∞

xn

)2
= r2. �

Definition 9.13 (Lowest terms). We repeat here the following from Definition 2.15 on page 25 of
Chapter 2.
Let q := d

n (d, n ∈ Z, d 6= 0) be a rational number. We say that d and n are a representation of q in
lowest terms or that q is written in lowest terms if

a. d and n have no common factors,
b. n ∈ N. �

We have the following simple proposition.
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Proposition 9.26. Let q = m
n (m,n ∈ Z, n 6= 0) be a nonzero rational number. Then q is written in lowest

terms if and only if n ∈ N and m and n are relatively prime.

PROOF:
This is immediate from Proposition 6.39 on p.203 which states that two integers are relatively prime
if and only if they share no common (prime) factors. �

Proposition 9.27 (B/G prop.11.5).

Let m,n, s, t ∈ Z be such that m and n do not have any common factors.

If
m

n
=

s

t
, then m divides s and n divides t.

The proof is left as exercise 9.26 (see p.304). �

Proposition 9.28 (B/G prop.11.10). The real number
√

2 is irrational.

PROOF: The proof given here is from [2] Beck/Geoghegan: The Art of Proof.
Assume to the contrary that

√
2 ∈ Q. Then there exists a

lowest term representation
√

2 =
m

n

with m ∈ Z and n ∈ N. Matter of fact, m ≥ 0 since
√

2 ≥ 0. We have

√
2 =

m

n
⇒ 2n

m
=

m

n

prop.9.27
=⇒ n | m ⇒ m

n
∈ Z , i.e.,

√
2 ∈ Z .

thus
√

2 = m
n is an integer.

Since it is true for x, y ∈ [0,∞[ that x < y ⇔ x2 < y2 (see Proposition 3.49 on p.75) and since 12 = 1,
(
√

2)2 = 2, 22 = 4, it follows from 0 < 1 < 2 < 4 that

0 < 1 <
√

2 < 2 .

This contradicts the fact that there are no integers between 1 and 2. See Proposition 6.2 on p.171. �

Definition 9.14 (Perfect Squares).

Let n ∈ Z We call n a perfect square if there exists k ∈ Z such that n = k2. In other words,
the set of all perfect squares is the set 0, 1, 4, 9, . . . . �

Theorem 9.8 (B/G thm.11.12).

Let n ∈ Z≥0. If n is not a perfect square then
√
n is irrational.

PROOF: Left as an exercise. �
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Remark 9.14. The above theorem states that we have a dichotomy:

If n is a nonnegative integer then its square root is either an integer or irrational.

Note that the above yields another proof that
√

2 is irrational: 2 is not a perfect square. �

Proposition 9.29 (B/G prop.11.13). Let m and n be nonzero integers. Then m
n

√
2 is irrational.

PROOF: Left as an exercise. �

Theorem 9.9 (B/G ch.11: n–th root). Let n be an integer ≥ 2 and x ∈ R>0. Then there exists r ∈ R>0

such that rn = x and r is uniquely determined.

PROOF: Left as an exercise. Adopt the proof of prop.9.25 or of B/G thm.10.25. �

Definition 9.15 (n–th root).

Let n be an integer ≥ 2 and x ∈ R>0. We write n
√
x for the uniquely defined r ∈ R>0 such

that rn = x, and we extend this definition to n = 1 by defining 1
√
x := x. We call n

√
x the

n–th root of x. �

Proposition 9.30 (B/G prop.11.16). Let n ∈ Z≥2. Then n
√

2 is irrational.

PROOF: Assume to the contrary that n
√

2 = m
k for suitable k, n ∈ Z. We may assume that k and m

are in lowest terms, i.e., their prime number factorizations

m = p1p2 · · · pi and k = q1q2 · · · qj
have no factors in common. The same is also true for

mn−1 = pn−1
1 pn−1

2 · · · pn−1
i and kn−1 = qn−1

1 qn−1
2 · · · qn−1

j ,

hence the right hand side of
2k

m
=

mn−1

kn−1
also is in lowest terms. It follows from B/G prop.11.5

that kn−1|m. Further, k|kn−1, hence k|m, and we conclude that n
√

2 = m
k is an integer. Note for the

following that r > 0, i.e., mk > 0.

Case 1: mk is zero or 1, i.e., n
√

2 ≤ 1, hence 2 = ( n
√

2)n ≤ 1. We have reached a contradiction.
Case 2: mk > 1. Then m

k ≥ 2, hence

2 = (
n
√

2)n =
(m
k

)n
≥ 2n > 2 .

Again we have reached a contradiction. �

Proposition 9.31 (B/G prop.11.17).

Let x, y ∈ R such that x < y. Then there exists irrational z such that x < z < y.

The proof is left as exercise 9.28 (see p.304). �

Proposition 9.32 (B/G cor.11.18). There is no smallest positive irrational number.

PROOF: Left as exercise 9.27 on p.304 �
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9.5 Geometric Series

The following chapter provides some basic facts about geometric series. More advanced material on
series of real numbers is deferred to ch.13.2.2 (Infinite Series) on p.420 because it needs the concept
of Cauchy sequences. 117

Definition 9.16 (Real–valued Sequences and Series). ?

A sequence (aj) is called a real–valued sequence if each aj is a real number.

For any such sequence, we can build another sequence (sn) as follows:

(9.40) s1 := a1; s2 := a1 + a2; s3 := a1 + a2 + a3; · · · sn :=
n∑
k=1

ak

We write this more compactly as
a1 + a2 + a3 + · · · =

∑
ak,(9.41)

and we call any such object which represents a sequence of partial sums a series. Loosely speaking,
a series is a sum of infinitely many terms. We call (sn) the sequence of partial sums associated with
the series

∑
ak.

Let s ∈ R. We say that the series converges to s and we write

(9.42)
∞∑
k=1

ak = s

if this is true for the associated sequence of partial sums (9.40), i.e., if lim
n→∞

sn = s. We then
also say that the series has limit s.

We say that the series has limit ±∞ if lim
n→∞

sn = ±∞. In this case we write

(9.43)
∞∑
k=1

ak = ±∞.

We adopt for series the convention we did in rem.9.10 on p.265 for sequences: A series with
limit −∞ or∞ never ever converges or diverges to ±∞. Instead we simply say that

∑
ak

diverges. �

Proposition 9.33 (Limits of Geometric Series).
(a) Let |q| < 1. Then lim

j→∞
qn = 0.

(b) (9.44)

n∑
j=0

qj =
1− qn+1

1− q
,

(c) (9.45)

∞∑
j=0

qj =
1

1− q
.

117See ch.12.10 (Completeness in Metric Spaces) on p.390
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PROOF: The proof of (b) is a repetition of prop.6.21 on p.183, and (c) follows from (a) and (b).
Proof of (a): Clearly (a) is true for q = 0.
If 0 < q < 1 then qn+1 = q · qn < qn, i.e., the sequence qn is strictly decreasing and bounded below
by zero. It follows from prop.9.18(b) on p.269 that a := lim

n→∞
qn exists and 0 ≤ a ≤ q < 1. Moreover

from prop.9.14 on p.266 and prop.9.17(b) on p.267,

a = lim
n→∞

qn = lim
n→∞

qn+1 = lim
n→∞

(q · qn) = q · lim
n→∞

qn = qa,

i.e., a(1−q) = 0. Since R has no zero divisors and q < 1 this is only possible if a = 0, i.e., lim
n→∞

qn = 0.

Now assume −1 < q < 0. Let ε > 0. We just have seen that lim
n→∞

|q|n = 0, i.e., there exists N ∈ N

such that | |q|n − 0 | < ε for all n ∈ N such that n ≥ N . But then

|qn − 0| = |qn| = |q|n = |q|n − 0 = | |q|n − 0 | < ε

for all n ∈ N such that n ≥ N , i.e., lim
n→∞

qn = 0. �

Example 9.6 (Cover page of the B/G book). Examine the geometric series with q =
1

4
:

∞∑
j=0

(1/4)j =
4

3
= 1 +

∞∑
j=1

(1/4)j , i.e.,
∞∑
j=1

(1/4)j ; =
1

3

It has the following geometric meaning:

(a) each subsequent iteration has half the height (similar triangles), hence the triangles of
each iteration have 1/4 the area of the previous one. That means that if (1/4)j is the area
of each of the triangles in iteration j then (1/4) · (1/4)j is the area of each of the triangles
in iteration j + 1.

(b) in each horizontal slice the shaded triangle has 1/3 the area of the entire slice. That means
that the limit of the sum of the shaded triangles is 1/3 of the total area.

The picture to the left illustrates the
above. You can find it on the cover page
of [2] B/G: Art of Proof. �
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9.6 Decimal Expansions of Real and Rational Numbers

When we gave an informal definition of the real numbers in Definition 2.13 on p.24 of ch.2 we
introduced them as decimal numerals, i.e., strings composed of an integer followed by a decimal
point followed by a sequence of decimal digits. In this chapter, which closely follows [2] B/G: Art
of Proof, we make precise the connection between such decimal numerals and the real numbers
as we have defined them in this chapter in axiom 9.1 on p.255, i.e., as an ordered integral domain
(R,+, ·,R>0) which satisfies the completeness axiom.

Notation 9.2 (Decimal digits).

Note that [0, 9]Z is according to notations 2.1 on p.28 (and also according to Definition 3.12
on p.70 equal to the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} of decimal digits. �

Definition 9.17 (Decimal Expansion).

Let x ∈ R≥0, d0 ∈ Z≥0, and (dj)j∈N a sequence of decimal digits dj such that

x = d0 +
∞∑
j=1

dj10−j =
∞∑
j=0

dj10−j .(9.46)

Then we call both the word d0.d1d2d3 . . . (of infinite length) and also the corresponding
sequence (d0, d1, d2, . . . ) = (dj)

∞
j=0 a decimal expansion of the nonnegative real number x.

Note above and in the following definitions the “decimal period” between d0 and d1!

We do not distinguish between
∞∑
j=0

dj10−j , d0.d1d2d3 . . . , and (dj)
∞
j=0 and think of those expression

as different notations for the same real number.
We extend the above definition to x ∈ R<0 as follows. If −x has a decimal expansion

−x = d0 +
∞∑
j=1

dj10−j then we call the word −d0.d1d2d3 . . . and also the corresponding sequence

(−d0, d1, d2, . . . ) = −d0, (dj)
∞
j=1 a decimal expansion of x.

We may omit leading zeros of the integer d0 and trailing zeros of the digits d1, d2, . . . . We further
may omit the decimal point together with all digits dj to the right of that decimal point if dj = 0 for

all j ∈ N. In other words, if x =
∞∑
j=0

dj10−j and if dj = 0 for all j ∈ N then we may write either of

d0, d0., or d0.0 for x. �

Remark 9.15. We have seen in ch.6.13 (The Base–β Representation of the Integers) the following. If

we set β := 10 then the “integer part” d0 of x can be written as a sum d0 =
µ∑
i=0

d′i10i for appropriate

µ ∈ Z≥0 and decimal digits d′i ∈ [0, 9]Z. It would seem to make a lot of sense to to incorporate that
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base–10 expansion of the integer part d0 into (9.46), and thus write

x =
∞∑
j=µ′

d′j10−j .

for some suitable, possibly negative, µ′ ∈ Z and d′j ∈ [0, 9]Z (j ≥ µ′), but we will stay with (9.46)
and in this way remain consistent with [2] B/G (Beck/Geoghegan), ch.12.2 (Decimals) and also with
Wikipedia: https://en.wikipedia.org/wiki/Decimal_representation. �

Remark 9.16.

Just as we did in ch.6.13 (The Base–β Representation of the Integers) on p.205, we could
have generalized decimal representations (9.46) to representations

x = d0 +

∞∑
j=1

djβ
−j ,

i.e., we could have replaced the number 10 with β ∈ [2,∞[N, and we could have replaced
the decimal digits with base β digits dj ∈ [0, β − 1]N. We will not attempt to strive for such
generality here. �

Next, we prove the existence of a decimal representation for any nonnegative real number and
examine under what circumstances such a representation is not unique. The foundation for the
existence and uniqueness proofs of decimal representations are the formulas of prop.9.33 for geo-
metric series. We will see that now. Note that much of the following proposition is part of B/G
prop.12.4 and prop.12.5 on p.116.

Proposition 9.34 (Geometric series for decimals). Let n ∈ N and dj ∈ [0, 9]Z for j ≥ n. Then,

(a) 0 ≤ 9
∞∑
j=n

10−j =
1

10n−1
,

(b)
∞∑
j=n

dj10−j ≤
1

10n−1
,

(c)
∞∑
j=n

dj10−j =
1

10n−1
⇔ dj = 9 for all j ≥ n.

PROOF of (a) and (b): Left as exercise 9.29 (see p.305).
PROOF of (c): The contrapositive of “⇒” is the following statement: If at least one digit dj is not 9

then
∞∑
j=n

dj10−j 6= 1
10n−1 . To prove it we introduce the following notation. For k ≥ n let

sk =
k∑
j=n

dj10−j , s =
∞∑
j=n

dj10−j , s′k = 9
k∑
j=n

10−j , s′ = 9
∞∑
j=n

10−j .
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If there is j0 ≥ n such that dj0 < 9 then s′k − sk ≥ 10−j0 for all k ≥ j0. We use the Domination
Theorem for Limits (prop.9.19 on p.269) and the fact that the difference of the limits is the limit of
the differences, and we obtain

s′ − s = lim
k→∞

(s′k − sk) ≥ 10−j0 .

This proves “⇒”. The “⇐” direction is immediate from part (a). �

Lemma 9.1. Let x = m +
∞∑
j=1

dj10−j (m ∈ Z≥0, dj ∈ [0, 9]Z for all j ∈ N) be a decimal expansion of a

nonnegative real number x. Then
(a) m ≤ x ≤ m+ 1,
(b) x = m ⇔ dj = 0 for all j ∈ N,
(c) x = m+ 1 ⇔ dj = 9 for all j ∈ N.

The proof is left as exercise 9.30 (see p.305). �

The above lemma is a generalization of the following proposition.

Proposition 9.35 ((B/G prop.12.7)).

Let m ∈ Z and dj ∈ [0, 9]Z for all j ∈ N such that m +
∞∑
j=1

dj
10j

= 1. Then either m = 1 and dj = 0 for

all j ∈ N or m = 0 and dj = 9 for all j ∈ N. In other words, 1.00000... and 0.999999... are the only two
decimal representations of the number 1.

PROOF: Apply lemma 9.1(c) with m = 0. �

Theorem 9.10 (Existence of Decimal Expansions (B/G thm.12.6)). Every real number has a decimal
expansion.

PROOF: We give here the idea behind the proof. For an exact proof see ch.12 of B/G [2].
Let x ∈ R. It suffices the theorem for nonnegative x: If x < 0 then we obtain a decimal expansion
for x by taking the one for −x and preceding it with a minus sign.

We will find d0 ∈ Z≥0 and d1, d2, · · · ∈ [0, 9]Z such that x = d0 +
∞∑
j=1

dj10−j as follows.

Step 1: The intervals [k, k + 1[ (n ∈ [0,∞[Z) are a partitioning of R≥0, thus there exists a unique
nonnegative integer k such that k ≤ x < k + 1. Let d0 = k. If x = d0 we are done, otherwise we
continue.
Step 2: The intervals [d0 + k

10 , d0 + k+1
10 [ (k = 0, 1, . . . 9) are a partitioning of [d0, d0 + 1[, thus there

exists a unique digit k such that d0 + k
10 ≤ x < d0 + k+1

10 . Let d1 = k. If x = d0 + d1
10 we are done,

otherwise we continue.

Step n: The intervals

[
n−2∑
j=0

dj10−j + k
10n−1 ,

n−2∑
j=0

dj10−j + k+1
10n−1

[
(k = 0, 1, . . . 9) are a partitioning of[

n−2∑
j=0

dj10−j ,
n−2∑
j=0

dj10−j + 1
10n−2

[
, thus there exists a unique digit k such that

n−2∑
j=0

dj10−j +
k

10n−1
≤ x <

n−2∑
j=0

dj10−j +
k + 1

10n−1
.
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Let dn−1 = k. If x =
n−2∑
j=0

dj10−j + k
10n−1 we are done, otherwise we continue ... �

Theorem 9.11 (Uniqueness of Decimal Expansions (B/G thm.12.8)).

Let x ∈ R≥0 have two different decimal representations

(9.47) x = d0 +
∞∑
j=1

dj
10j

= e0 +
∞∑
j=1

ej
10j

,

where d0, e0 ∈ [0,∞[Z and dj , ej ∈ [0, 9]Z for all j ∈ N. Further, let K be the smallest subscript
such that dK 6= eK . Then we have the following:

If dK < eK , then • eK = dK + 1, • ej = 0 and dj = 9 for all j > K .

PROOF: It follows from (9.47) and dj = ej for 0 ≤ j < K that

10K
∞∑
j=K

dj
10j

= 10K
∞∑
j=K

ej
10j

, i.e., dK +
∞∑
j=1

dK+j

10j
= eK +

∞∑
j=1

eK+j

10j
,(9.48)

hence
∞∑
j=1

dK+j

10j
= (eK − dK) +

∞∑
j=1

eK+j

10j
.(9.49)

Thus
∞∑
j=1

dK+j

10j
≤

∞∑
j=1

9

10j
= 1 ≤ (eK − dK) +

∞∑
j=1

eK+j

10j
=

∞∑
j=1

dK+j

10j
.(9.50)

Here the first equality of (9.50) follows from prop.9.35 (withm = 0). We obtain the second inequality
of (9.50) from (eK − dK) ≥ 1 and eK+j ≥ 0. The last equality of (9.50) follows from (9.49).
(9.50) can only be valid if all inequalities are equalities. In particular we obtain

1 = (eK − dK) +
∞∑
j=1

eK+j

10j
=

∞∑
j=1

dK+j

10j
.

According to prop.9.35 it follows, together with eK − dK ≥ 1, that eK − dK = 1, eK+j = 0 for all
j ≥ 1, and dK+j = 9 for all j ≥ 1.
This proves the theorem. �

Remark 9.17. Note that if x ∈ R has a finite decimal expansion x = m+
K∑
j=1

dj
10j

(K ∈ N), i.e., one

in which only finitely many digits dj are not zero, then x is rational as the finite sum of rational
terms m and dj10−j . �

Corollary 9.5. If a real number has different decimal expansions then it is rational.

The proof is left as exercise 9.31 (see p.305). �

As an application of decimal representations we prove a more powerful version of thm.9.1 on p.254
which states, when applied to R (rather than Q) that for any two real numbers x and y there exists
z ∈ R such that x < z < y. It turns out that we may choose z as a rational number.
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Proposition 9.36 (B/G prop.11.8).

Let x, y ∈ R be such that x < y. Then there exists q ∈ Q be such that x < q < y.

PROOF:
Case 1: x ≥ 0, and hence y > 0.
It follows from thm.9.1 on p.254 that there exists z ∈ R be such that x < z < y. Since z is not

negative it has a decimal representation z =
∞∑
j=0

dj10−j such that d0 ∈ Z≥0 and dj is a decimal digit

for each j > 0. For n ∈ N

let zn := z −
n∑
j=0

dj10−j . Then z − zn =

∞∑
j=n+1

dj10−j ≤ 9 ·
∞∑

j=n+1

10−j = 10−n.

Thus z − zn converges to zero. Since z > x it follows that there exists n0 ∈ N such that z − zn =
|z − zn| < z − x, and hence zn > x for all n ≥ n0. In particular x < zn0 < z < y. Since zn0 is rational
as a (finite) sum of rational numbers dj10−j , q := zn0 is a rational number which satisfies x < q < y.
Case 2: x < 0 and y > 0. We choose q := 0.
Case 3: y ≤ 0, and hence x < 0.
According to the already proven case 1 there exists q′ ∈ Q such that −y < q′ < −x. Let q := −q′.
Then q ∈ Q, and q satisfies x < q < y. �

The following is copied from B/G ch.12 for convenience:

Definition 9.18 (Repeating Decimals).

A nonnegative decimal

x = m.d1d2 . . . = m +
∞∑
j=1

dj10−j (dj ∈ {0, 1, 2 . . . , 9})

is repeating if there are natural numbers N and p such that

dN+n+kp = dN+n ∀ 0 ≤ n < p, k ∈ N. �

Note that the above definition INCLUDES THE CASE p = 1 and dN = 0 (finite expansion!).

Proposition 9.37 (B/G Prop.12.11, p.119). Every repeating decimal represents a rational number.

PROOF: ? Let x = (m, d1, d2, . . . ) = m+
∞∑
j=1

be a repeating decimal, i.e., there exist N, p ∈ N

such that for all 0 ≤ n < p and for all k ∈ N,

dN+n+kp = dN+n.

Summation of the terms that span the first K periods yields

N+Kp−1∑
j=N

dj10−j =
K−1∑
k=0

p−1∑
n=0

dN+kp+n10−(N+kp+n) =
K−1∑
k=0

p−1∑
n=0

dN+n10−(N+kp+n)(9.51)
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The last equation results from the periodicity of length p. We take limits K → ∞ on both sides
above 118 and we obtain

∞∑
j=N

dj10−j = lim
K→∞

N+Kp−1∑
j=N

dj10−j

= lim
K→∞

K−1∑
k=0

p−1∑
n=0

dN+n10−(N+kp+n)

=

∞∑
k=0

p−1∑
n=0

dN+n10−(N+kp+n) .

Then

x = m +

N−1∑
j=1

dj10−j +

∞∑
j=N

dj10−j

= m +

N−1∑
j=1

dj10−j +

∞∑
k=0

p−1∑
n=0

dN+n

10N+n+kp

= m +
N−1∑
j=1

dj10−j +

p−1∑
n=0

dN+n

10N+n

∞∑
k=0

1

(10p)k

= m +

N−1∑
j=1

dj10−j +

p−1∑
n=0

dN+n

10N+n

∞∑
k=0

(10−p)k

= m +
N−1∑
j=1

dj10−j +

p−1∑
n=0

dN+n

10N+n

1

1− 10−p
.

Hence x is a finite sum of rational numbers and therefore rational. �

Example 9.7. We illustrate (9.51) with the following example. Let x = 0.1234567. Then the period
567 has length p = 3 and period 1 starts at N = 5, period 2 starts at N = 8, period 3 starts at N = 11,
period 4 starts at N = 14, period 5 starts at N = 17, . . . . Summation of the first four period (K = 4)
thus starts at j = N = 5 and ends at j = 17− 1 = 16. Formula (9.51) becomes

N+Kp−1∑
j=N

dj10−j =
5+4·3−1∑
j=5

dj10−j =
16∑
j=5

dj10−j

and the second expression becomes

K−1∑
k=0

p−1∑
n=0

dN+kp+n10−(N+kp+n) =

3∑
k=0

3−1∑
n=0

d5+3k+n10−(5+3k+n) =

3∑
k=0

2∑
n=0

d5+3k+n10−(5+3k+n)

118There is a catch in the first equation: Let si :=
∑i
j=N dj10−j(i ≥ N) and yK := sN+Kp−1 =

∑N+Kp−1
j=N dj10−j (K ∈

N). Then (yK)K is a subsequence of (si)i. How do we know that both (yK)K and (si)i have the same limit? This is
shown in prop.9.13 (Subsequences of sequences with limits) on p.265.
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In that last expression, k = 0 covers the digits from 5 to 7, k = 1 covers the digits from 8 to 10, k = 2
covers the digits from 11 to 13 and k = 3 covers the digits from 14 to 16, so the net effect is that of∑16

j=5 dj10−j : summation of the terms between j = 5 and j = 16. �

Remark 9.18. The fact that fractions are repeating decimals (including the period 0̄) (see B/G thm.
12.13) is illustrated by long division of 2÷ 7. The sequence of remainders is

2− 6− 4− 5− 1− 3− 2...

and once we have the same remainder, we are in an endless loop.

Note 9.3 (Decimal expansions of real numbers).

Let x ∈ R.
(a) x has at most two different decimal expansions.
(b) If x has two expansions then one is all zeros except for finitely many digits

and the other is all nines except for finitely many digits.
(c) If x has more than one expansion then x is rational.
(d) x is a repeating decimal if and only if x ∈ Q. �

9.7 Countable and Uncountable Subsets of the Real Numbers

We have seen that the rational numbers are countably infinite (prop.7.5 on p.229), just as the natural
numbers and the integers, even though they are “dense” on the real numbers line in the following
sense. Between any two fractions x < y there exists a fraction z such that x < z < y, e.g., their
arithmetic mean x+y

2 . In that way Q and R are alike, but the real numbers are not comparable in size
to the rational numbers (and not to the integers as well), as the next theorem will show.

Theorem 9.12. The real numbers are uncountable.

This proof is a more elaborate version of the one given in B/G [2] (thm.13.22, p.125).

Let A := {
∞∑
j=1

dj10−j : dj = 3 or dj = 4 for all j ∈ N }, i.e., A ⊆ R is the set of all decimals

0.d1d2d3 . . . for which each digit dn is either 3 or 4.

Let x, x′ ∈ A, i.e., x =
∞∑
j=1

dj10−j and x′ =
∞∑
j=1

d′j10−j for suitable digits dj and d′j , all of which are

either 3 or 4. Since no digits are 8 or 9 it follows from the uniqueness theorem for decimal expansions
(thm.9.11 on p.282) that x = x′ implies dj = d′j for all j ∈ N. This can be expressed as follows: Let

S := {3, 4}N = {(dj)j∈N : dj = 3 or dj = 4 for all j ∈ N }}. Then F : S → A; (dj)j∈N 7→
∞∑
j=1

dj10−j

is injective. But F also is surjective: If x ∈ A then x =
∞∑
j=1

dj10−j for suitable dj which are either 3

or 4. Thus (dj)j∈N ∈ S and F
(
(dj)j

)
= x. This proves surjectivity of F .

Since F is bijective we conclude that |A| = |S|. It follows from thm.7.7 on p.230 that S is uncount-
able, thus A is uncountable, thus its superset R is uncountable. �
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Remark 9.19. The above proof should look familiar: It is based on the same principle as that of
thm.7.7 on p.230. There a and b take the role of the digits 3 and 4. In fact, we can obtain the
uncountablility of R from that theorem as follows: It follows from thm.9.11 (uniqueness of decimal

expansions) on p.282 That if x, y ∈ [0, 1[ have decimal expansions x =
∞∑
j=1

dj
10j

and y =
∞∑
j=1

ej
10j

such

that each one of the digits dj , ej is either 3 or 4 then x = y ⇔ dj = ej for all j ∈ N. In other words,
if X is the set of all real numbers between 0 and 1 whose decimal expansions have digits which

are exclusively 3 or 4 then the assignment
∞∑
j=1

dj
10j
7→ (dj)j∈N defines a bijection X

∼−→ {3, 4}N.

The set {3, 4}N is uncountable by virtue of thm.9.11, thus X is uncountable, thus its superset R is
uncountable.

Real numbers can be partitioned into rational and irrational numbers. One can also partition them
into so called algebraic numbers and transcendental numbers.

Definition 9.19 (algebraic numbers).

Let x ∈ R be the root (zero) of a polynomial with integer coefficients. We call such x an alge-
braic number and we call any real number that is not algebraic a transcendental number.
�

Proposition 9.38 (B/G Prop.13.21). The set of all algebraic numbers is countable.

The proof is left as exercise 9.32 (see p.305). �

Proposition 9.39. Let k,m, n ∈ N. Then k
√

m
n is algebraic.

PROOF: Let p(x) := nxk −m. Then

p
(
k
√
m/n

)
= n

(
k
√
m/n

)k −m =
nm

n
−m = 0. �

Proposition 9.40. Let r ∈ Q. Then r is algebraic.

The proof is left as exercise 9.33 (see p.305). �

Note that if m,n > 0 then the above is a special case of prop.9.39 (let k := 1).
Here are some trivial consequences of the fact that R is uncountable (see thm. 9.12, p.9.12 and B/G
Thm.13.22).

Proposition 9.41.

The set of all transcendental numbers and that of all irrational numbers are uncountable.

PROOF: the uncountable real numbers are the disjoint union of the countable rational numbers with
the irrational numbers, and they also are the disjoint union of the countable algebraic numbers with
the transcendentals. The assertion follows from cor.7.3. �
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9.8 Limit Inferior and Limit Superior

Definition 9.20 (Tail sets of a sequence).

Let (xk)k∈N be a sequence in R. Let

(9.52) Tn := {xj : j ∈ N and j ≥ n} = {xn, xn+1, xn+2, xn+3, . . . }

be what remains in the sequence after we discard the first n − 1 elements. We call (Tn)n∈N

the n–th tail set of the sequence (xk)k. �

Remark 9.20. Some simple properties of tail sets:
a. We deal with sets and not with sequences Tn: If, e.g., xn = (−1)n then each Tn = {−1, 1} only
contains two items and not infinitely many.
b. The tail set sequence (Tn)n∈N is “decreasing”: If m < n then Tm ⊇ Tn.
c. It follows from (b) and prop.9.9 on p.260 and prop.9.18 on p.269 that

βn := sup(Tn) is nonincreasing, hence lim
n→∞

βn = inf
n
βn;

αn := inf(Tn) is nondecreasing, hence lim
n→∞

αn = sup
n
αn.

These limits can also be expressed as follows.

lim
n→∞

(
sup{xj : j ∈ N, j ≥ n}

)
= lim

n→∞

(
sup(Tn)

)
= inf

(
{sup(Tn) : n ∈ N}

)
,

lim
n→∞

(
inf{xj : j ∈ N, j ≥ n}

)
= lim

n→∞

(
inf(Tn)

)
= sup

(
{inf(Tn) : n ∈ N}

)
.

(9.53)

An expression like sup{xj : j ∈ N, j ≥ n} can be written more compactly as sup
j∈N,j≥n

{xj}. Moreover,

when dealing with sequences (xn), it is understood in most cases that n ∈ N or n ∈ Z≥0 and the last
expression simplifies to sup

j≥n
{xj}. This can also be written as sup

j≥n
(xj) or sup

j≥n
xj .

In other words, (9.53) becomes

inf
n∈N

(
sup
j≥n

xj
)

= inf
(
{sup(Tn) : n ∈ N}

)
= lim

n→∞

(
sup(Tn)

)
= lim

n→∞

(
sup
j≥n

xj
)
,

sup
n∈N

(
inf
j≥n

xj
)

= sup
(
{inf(Tn) : n ∈ N}

)
= lim

n→∞

(
inf(Tn)

)
= lim

n→∞

(
inf
j≥n

xj
)
. �

(9.54)

The above leads us to the following definition:

Definition 9.21. Let (xn)n∈N be a sequence in R with tail sets Tn = {xj : j ∈ N, j ≥ n}.
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Assume that Tn is bounded above for some n ∈ N (and hence for all n ∈ N). We call

lim sup
n→∞

xj := lim
n→∞

(
sup
j≥n

xj
)

= inf
n∈N

(
sup
j≥n

xj
)

= inf
n∈N

(
sup(Tn)

)
the lim sup or limit superior of the sequence (xn).
If, for each n, Tn is not bounded above then we say lim sup

n→∞
xj =∞.

Assume that Tn is bounded below for some n (and hence for all n ∈ N). We call

lim inf
n→∞

xj := lim
n→∞

(
inf
j≥n

xj
)

= sup
n∈N

(
inf
j≥n

xj
)

= sup
n∈N

(
inf(Tn)

)
the lim inf or limit inferior of the sequence (xn).
If, for each n, Tn is not bounded below then we say lim inf

n→∞
xj = −∞. �

(a) Given ε > 0:
• There is N1 = N1(ε): k ≥ N1 ⇒ xk − β ≤ ε

2 ;
• There is N2 = N2(ε): k ≥ N2 ⇒ α− xk ≤ ε

2 ;
• k ≥ max(N1, N2) ⇒ both |xk − β| ≤ ε

2 , |xk − α| ≤ ε
2 ;

• Hence, only finitely many xk
above β + ε or below α− ε;

(b) For any j there is nj ≥ j such that
xnj

> βnj
− 1

j ≥ β −
1
j

• Hence, with (a), eventually all xnj
satisfy |xnj

−β| < ε
• Hence, there is a subsequence xnj

such that lim
j→∞

xnj
= β.

Theorem 9.13 (Characterization of limsup and liminf).

Let (xn)n∈N be a bounded sequence in R. Then
a1. lim sup

n→∞
xn is the largest of all real numbers x for which n1 < n2 < · · · ∈ N can be found

such that x = lim
j→∞

xnj .

a2. lim sup
n→∞

xn is the only real number u such that, for all ε > 0, the following is true:

xn > u+ ε for at most finitely many n and xn > u− ε for infinitely many n.
b1. lim inf

n→∞
xn is the smallest of all real numbers x for which n1 < n2 < · · · ∈ N can be found

such that x = lim
j→∞

xnj .

b2. lim inf
n→∞

xn is the only real number l such that, for all ε > 0, the following is true:

xn < l − ε for at most finitely many n and xn < l + ε for infinitely many n.

PROOF:
Step 1: Let ε > 0. It follows from βn = sup(Tn) = sup{xj : j ≥ n} and βn ↓ β = lim supn xn that
βn < β+ ε for all n ≥ N for a suitable N = N(ε) ∈ N. But then β+ ε exceeds the upper bound βN of
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TN and follows that all of its elements, i.e., all xn with n ≥ N , satisfy xn < β + ε. Hence only some
or all of the finitely many x1, x2, . . . xN−1 can exceed β + ε. It follows that β satisfies the first half of
a2 of thm.9.13.
Step 2: We create subsequences (xnj )j and (βnj )j such that

βnj ≥ xnj > βnj − 1/j(9.55)

for all j ∈ N as follows.
β1 = sup(T1) is the smallest upper bound for T1, hence β1 − 1 is not an upper bound and we can
find some k ∈ N such that β1 ≥ xk > β1 − 1. We set n1 := k.
Having constructed n1 < n2 < · · · < nk such that βnj ≥ xnj > βnj − 1/j for all j ≤ k we now
find xnk+1

with an index nk+1 > nk as follows.
βnk+1 − 1

k+1 is not an upper bound for Tnk+1, hence there exists some i ∈ N such that xnk+i (which
belongs to Tnk+1) satisfies

xnk+i > βnk+1 −
1

k + 1
.(9.56)

Let nk+1 := nk + i. The sequence βn nonincreasing (i.e., decreasing) and it follows from

nk+1 = nk + i ≥ nk + 1

that βnk+1
≤ βnk+1. But then (9.56) implies that

xnk+1
> βnk+1

− 1

k + 1
.

We note that xnk+1
≤ βnk+1

because xnk+1
∈ Tnk+1

and βnk+1
= sup(Tnk+1

) is an upper bound for all
elements of Tnk+1

. Together with (9.56) we have

βnk+1
≥ xnk+1

> βnk+1 −
1

k + 1
.(9.57)

It follows that xnk+1
satisfies (9.55) and the the proof of step 2 is completed.

Step 3: The sequence xnj we constructed in step 2 converges to β = lim supn xn. This is true because

lim
k
βnk = β, lim

k
βnk −

1

k
= lim

k
βnk − lim

k

1

k
= β − 0 = β ,

and xnj is “sandwiched” between two sequences which both converge to the same limit β.
Step 4. No subsequence of (xn) can converge to a number u bigger than β: Let

ε :=
1

2
(u − β) .

It follows from step 1 that all but finitely many xj satisfy xj ≤ β + ε, hence xj ≤ u− ε.
We conclude that |u− xj | ≥ ε for j ≥ N and no subsequence converging to u can be extracted. This
proves a1 of thm.9.13.
Step 5. We still must prove the missing half of thm.9.13.a2: xn > β − ε for infinitely many n.
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Let ε > 0. and let j ∈ N be so big that 1/j < ε. Let xnj be the subsequence constructed in step 2.
It follows from (9.55) and βnj ≥ β and 1/j < ε that xnj > β − ε. This proves the missing half of
thm.9.13.a2.
Uniqueness of β: Let v > β and ε := (v − β)/3. Because v − ε > β + ε, at most finitely many xn
satisfy xn > v − ε. It follows that v does not satisfy part 2 of thm.9.13.a2.
Finally let v < β. Let ε := (β − v)/3. Because β − ε > v + ε, infinitely many xn satisfy xn > v + ε.
It follows that v does not satisfy part 1 of thm.9.13.a2. We have proved that lim supn xn is uniquely
determined by the inequalities of thm.9.13.a2 and we have shown both a1 and a2 of thm.9.13.
Parts b1 and b2 of thm.9.13 follow now easily from applying parts a1 and a2 to the sequence yn :=
−xn. �

Theorem 9.14 (Characterization of limits via limsup and liminf). Let (xn)n∈N be a bounded sequence
in R.

The sequence (xn) converges to a real number if and only if liminf and limsup for that sequence
coincide. Moreover, if such is the case then

lim
n→∞

xn = lim inf
n→∞

xn = lim sup
n→∞

xn.(9.58)

PROOF of “⇒”: Let L := lim
n→∞

xn. It follows from prop.9.13 (Characterization of limsup and lim-
inf) parts a1 and b1 on p.288 that subsequences can be found which converge to lim inf

n→∞
xn and to

lim sup
n→∞

xn. We also know from prop.9.13 (Subsequences of sequences with limits) on p.265 that any

convergent subsequence has limit L. This proves lim inf
n→∞

xn = lim sup
n→∞

xn = L.

PROOF of “⇐”: 119 Let L := lim inf
n→∞

xn = lim sup
n→∞

xn. Let ε > 0, J1 := {j ∈ N : xj < L − ε
2},

J2 := {j ∈ N : xj > L+ ε
2}, J := J1 ∪ j2.

It follows from thm.9.13 (Characterization of limsup and liminf) parts a2 and b2 that J1, J2, and
hence J only contain at most finitely many indices.
If J = ∅ let n0 := 1, else let n0 := max(J) + 1.
Then L− ε

2 ≤ xj ≤ L+ ε
2 , hence |xj − L| < ε for all j ≥ n0. It follows that L = lim

n→∞
xn. �

Proposition 9.42. Let xn, x′n ∈ R be two sequences of real numbers. Assume there is K ∈ N such that
xn ≤ x′n for all n ≥ K. Then

lim inf
n→∞

xn ≤ lim inf
n→∞

x′n and lim sup
n→∞

xn ≤ lim sup
n→∞

x′n.

PROOF:

119Here is a shorter proof of “⇐”. The drawback: It makes use of prop.9.43 and prop.9.44. Let
L := lim inf

n→∞
xn = lim sup

n→∞
xn. Let ε > 0. We know from (9.61), p.293 and (9.64), p.295 that L+ε/2 /∈ U and L−ε/2 /∈ L

But then there are at most finitely many n for which xn has a distance from L which exceeds ε/2. Let N be the maximum
of those n. It follows that |xn − L| < ε for all n > N , hence L = lim

n→∞
xn. �
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We only prove prove the limsup inequality because once we have that, we apply it to the sequences
(−xn)n and (−x′n)n which satisfy −x′n ≤ −xn for all n ≥ K. We obtain

− lim inf
n→∞

x′n = lim sup
n→∞

(−x′n) ≤ lim sup
n→∞

(−xn) = − lim inf
n→∞

xn,

hence lim inf
n→∞

xn ≤ lim inf
n→∞

x′n. and this proves the liminf inequality of the proposition.

Case 1: Both sequences are bounded.
Let u := lim supn xn and u′ := lim supn x

′
n. We assume to the contrary that u > u′. Then ε := u−u′

2 >
0.
According to cor.9.8 on p.294 there are infinitely many xn1 , xn2 , . . . such that xnj > u − ε. At most
finitely of those nj can be less than K. We discard those and there still are infinitely many nj ≥ K
such that xnj > u− ε.
As x′i ≥ xi for all i ≥ K, it follows that there are infinitely many nj such that

x′nj ≥ xnj > u− ε = u′ + ε.

We employ cor.9.8 a second time. It also states that there are at most finitely many x′nj such that
x′nj ≥ u

′ + ε. We have reached a contradiction.
Case 2: Not both sequences are bounded above.
If both are bounded below, lim infn xn ≤ lim infn x

′
n is obtained just as in case 1, otherwise this is

covered in case 3. We now observe what happens to the limits superior.
Case 2a: xn is not bounded above.
Then neither is x′n, hence all tailsets for both sequences have sup = ∞, hence lim supn xn =
lim supn x

′
n =∞.

Case 2b: x′n is not bounded above.
Then all tailsets for x′n have sup =∞, hence lim supn x

′
n =∞, hence lim supn xn ≤ lim supn x

′
n.

Case 3: Not both sequences are bounded below.
If both are bounded above, lim supn xn ≤ lim supn x

′
n is obtained just as in case 1, otherwise this is

covered in case 2. We now observe what happens to the limits inferior.
Case 2a: x′n is not bounded below.
Then neither is xn and we that all tailsets for both sequences have inf = −∞, hence lim infn xn =
lim infn x

′
n =∞.

Case 2b: xn is not bounded above.
Then all tailsets for xn have inf = −∞, hence lim infn xn = −∞, hence lim infn xn ≤ lim infn x

′
n.

�

Here is the first corollary to prop.9.42.

Corollary 9.6. Let xn, yn ∈ R be two sequences of real numbers. Assume there is K ∈ N such that xn = yn
for all n ≥ K. Then

lim sup
n→∞

xn = lim sup
n→∞

yn and lim inf
n→∞

xn = lim inf
n→∞

yn.

PROOF: Immediate from prop.9.42. �

Here is the second corollary to prop.9.42.
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Corollary 9.7. Let xn ≥ 0 such that lim sup
n→∞

xn = 0. Then (xn)n converges to zero.

The proof is left as exercise 9.36 (see p.305). �

Remark 9.21. Prop.9.42 leads to an easy alternate proof of prop.9.19 (Domination Theorem for
Limits) on p.269 which states that if two sequences xn, yn ∈ R satisfy xn ≤ yn eventually then
lim
n→∞

xn ≤ lim
n→∞

yn.

PROOF: Immediate from prop.9.42. �

Example 9.8. Let A ⊆ R.

(9.59) xn :=

{
1 + (−1)n/n ifn ∈ I∗ := {1, 2, 5, 6, 9, 10, 13, 14, . . . }
−1 + (−1)n/n ifn ∈ I∗ := {3, 4, 7, 8, 11, 12, 15, 16, . . . }.

We can write the elements of T ∗ as a sequence m1 < m2 < . . . and the elements of T∗ as a sequence
n1 < n2 < . . . . 120 Let j ∈ N. Clearly there exist indices k, l ∈ N which increase with j such that
xmj = 1 + 1

k and xnj = −1− 1
l . Thus xmj ↓ 1 and xnj ↑ −1 as j →∞.

Since the index sets I∗ and I∗ partition N, i.e., N = I∗
⊎
I∗, there are no subsequences of (xn) which

can have a limit other than ±1. It is immediate from parts a1 and b1 of thm.9.13 on p.288 that
lim inf
n→∞

xn = −1 and lim sup
n→∞

xn = 1.

This example also illustrates part a2 of thm.9.13: Since xnj < 0 for all j and lim
j→∞

xmj = 1 implies

that eventually all xmj will be ε–close to 1 there can be at most finitely many indices n such that

xn > lim sup
n→∞

xn + ε.

Moreover the ε–closeness to 1 of eventually all xmj implies that xmj > lim sup
n→∞

xn − ε for infinitely

many indices mj , hence

xn > lim sup
n→∞

xn − ε

for infinitely many n ∈ N. �

The remainder of this chapter on liminf and limsup is optional material.

120We can do this recursively as follows:

m1 = 1,m2 = m1 + 2 + (−1)1,m3 = m2 + 2 + (−1)2, . . . ,mj+1 = mj + 2 + (−1)j , . . . ,

and

n1 = 3, n2 = n1 + 2 + (−1)1, n3 = n2 + 2 + (−1)2, . . . , nj+1 = nj + 2 + (−1)j , . . . .

(Alternatively: nj = mj + 2.)
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Proposition 9.43. ? Let (xn)n∈N be a sequence in R which is bounded above with tail sets Tn.

(A) Let

U := {y ∈ R : Tn ∩ [y,∞[6= ∅ for all n ∈ N},
U1 := {y ∈ R : for all n ∈ N there exists k ∈ Z≥0 such that xn+k ≥ y},
U2 := {y ∈ R : ∃ subsequence n1 < n2 < n3 < · · · ∈ N such that xnj ≥ y for all j ∈ N},
U3 := {y ∈ R : xn ≥ y for infinitely many n ∈ N}.

(9.60)

Then U = U1 = U2 = U3.
(B) There exists z = z(U ) ∈ R such that U is either an interval ]−∞, z] or an interval ]−∞, z[.
(C) Let u := sup(U ). Then u = z = z(U ) as defined in part B. Further, u is the only real number such that

C1. u− ε ∈ U and u+ ε /∈ U for all ε > 0.(9.61)

C2. There exists a subsequence (nj)j∈N of integers such that u = lim
j→∞

xnj and u is the largest real

number for which such a subsequence exists.

PROOF of A:
A.1 - U = U1: This equality is valid by definition of tailsets of a sequence:

x ∈ Tn ⇔ x = xj for some j ≥ n ⇔ x = xn+k for some k ∈ Z≥0

from which it follows that x ∈ Tn ∩ [y,∞[⇔ x = xn+k ≥ y for some k ≥ 0.
A.2 - U1 ⊆ U2:
Let y ∈ U1 and n ∈ N. We prove the existence of (nj)j by induction on j.
Base case j = 1: As T1 ∩ [y,∞[6= ∅ there is some x ∈ T1 such that y ≤ x < ∞, i.e., x ≥ y. Because
x ∈ T1 = {x1, x2, . . . }we have x = xn1 for some integer n1 ≥ 1; we have proved the existence of n1.
Induction assumption: Assume that n1 < n2 < · · · < nj0 have already been picked.
Induction step: As y ∈ U1 there is k ∈ Z≥0 such that x(nj0+1)+k ≥ y. We set nj0+1 := nj0 + 1 + k. As
this index is strictly larger than nj0 , the induction step has been proved.
A.3 - U2 ⊆ U3: This is trivial: Let y ∈ U2. The strictly increasing subsequence n1 < n2 < n3 < · · · ∈
N constitutes the infinite set of indices that is required to grant y membership in U3.
A.4 - U3 ⊆ U : Let y ∈ U3. Fix some n ∈ N.
Let J = J(y) ⊆ N be the infinite set of indices j for which xj ≥ y. At most finitely many of those j
can be less than that given n and there must be (infinitely many) j ∈ J such that j ≥ n
Pick any one of those, say j′. Then xj′ ∈ Tn and xj′ ≥ y. It follows that y ∈ U

We have shown the following sequence of inclusions:

U = U1 ⊆ U2 ⊆ U3 ⊆ U

It follows that all four sets are equal and part A of the proposition has been proved.
PROOF of B: Let y1, y2 ∈ R such that y1 < y2 and y2 ∈ U .
It follows from [y2,∞[ ⊆ [y1,∞[ and Tn ∩ [y2,∞[ 6= ∅ for all n ∈ N that Tn ∩ [ y1,∞[ 6= ∅ for all
n ∈ N, i.e., y1 ∈ U .
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We conclude that U is an interval of the form ]−∞, z] or ]−∞, z[ for some z ∈ R.
PROOF of C: Let z = z(U ) as defined in part B and u := sup(U ).
PROOF of C.1 - (9.61) part 1, u− ε ∈ U :
As u − ε is smaller than the least upper bound u of U , u − ε is not an upper bound of U . Hence
there is y > u− ε such that y ∈ U . It follows from part B that u− ε ∈ U .X

PROOF of C.1 - (9.61) part 2, u+ ε /∈ U :
This is trivial as u+ ε > u = sup(U ) implies that y ≤ u < u+ ε for all y ∈ U .
But then y 6= u for all y ∈ U , i.e., u /∈ U . This proves u+ ε /∈ U .
PROOF of C.2: We construct by induction a sequence n1 < n2 < . . . of natural numbers such that

u − 1/j ≤ xnj ≤ u + 1/j.(9.62)

Base case: We have proved as part of C.1 that xn ≥ u+ 1 for at most finitely many indices n. Let K
be the largest of those.
As u − 1 ∈ U3, there are infinitely many n such that xn ≥ u − 1. Infinitely many of those n must
exceed K. We pick one of them and that will be n1. Clearly, n1 satisfies (9.62) and this proves the
base case.
Induction step: Let us now assume that n1 < n2 < · · · < nk satisfying (9.62) have been constructed.
xn ≥ u+ 1/(k + 1) is possible for at most finitely many indices n. Let K be the largest of those.
As u− 1/(k + 1) ∈ U3, there are infinitely many n such that xn ≥ u− 1/(k + 1). Infinitely many of
those n must exceed max(K,nk). We pick one of them and that will be nk+1. Clearly, nk+1 satisfies
(9.62) and this finishes the proof by induction.
We now show that lim

j→∞
xnj = u. Given ε > 0 there is N = N(ε) such that 1/N < ε. It follows from

(9.62) that |xnj − u| ≤ 1/j < 1/N < ε for all j ≥ n and this proves that xnj → u as j →∞.
We will be finished with the proof of C.2 if we can show that if w > u then there is no sequence
n1 < n2 < . . . such that xnj → w as j →∞.
Let ε := (w− u)/2. According to (9.61), u+ ε /∈ U . But then, by definition of U , there is n ∈ N such
that Tn ∩ [u+ ε,∞[ = ∅.
But u+ ε = w − ε and we have Tn ∩ [w − ε,∞[ = ∅. This implies that |w − xj | ≥ ε for all j ≥ n and
that rules out the possibility of finding nj such that lim

j→∞
xnj = w. �

Corollary 9.8. ? As in prop.9.43, let u := sup(U ). Then U = ]−∞, u] or U = ]−∞, u[.

Further, u is determined by the following property: For any ε > 0, xn > u − ε for infinitely many n and
xn > u+ ε for at most finitely many n.

PROOF: This follows from U = U3 and parts B and C of prop.9.43. �

When we form the sequence yn = −xn then the roles of upper bounds and lower bounds, max and
min, inf and sup are reversed. Example: x is an upper bound for {xj : j ≥ n} if and only if −x is a
lower bound for {yj : j ≥ n}.

The following “dual” version of prop. 9.43 is a direct consequence of the duality of upper/lower
bounds, min/max, inf/sup. See prop.3.59, prop.3.60 and cor.3.4 on p.80.

Proposition 9.44. ? Let (xn)n∈N be a sequence in R which is bounded below with tail sets Tn.
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(A) Let

L := {y ∈ R : Tn∩]−∞, y] 6= ∅ for all n ∈ N},
L1 := {y ∈ R : for all n ∈ N there exists k ∈ Z≥0 such that xn+k ≤ y},
L2 := {y ∈ R : ∃ subsequence n1 < n2 < n3 < · · · ∈ N such that xnj ≤ y for all j ∈ N},
L3 := {y ∈ R : xn ≤ y for infinitely many n ∈ N}.

(9.63)

Then L = L1 = L2 = L3.
(B) There exists z = z(L ) ∈ R such that L is either an interval [z,∞[ or an interval ]z,∞[.
(C) Let l := inf(L ). Then l = z = z(L ) as defined in part B. Further, l is the only real number such that

C1. l + ε ∈ L and l − ε /∈ L(9.64)

C2. There exists a subsequence (nj)j∈N of integers such that l = lim
j→∞

xnj and l is the smallest real

number for which such a subsequence exists.

PROOF: Let yn = −xn and apply prop.9.43. �

Proposition 9.45. ? Let (xn) be a bounded sequence of real numbers. As in prop. 9.43 and prop 9.44,
let

u = sup(U ) = sup{y ∈ R : Tn ∩ [y,∞[6= ∅ for all n ∈ N},
l = inf(L ) = inf{y ∈ R : Tn∩]−∞, y] 6= ∅ for all n ∈ N},

(9.65)

Then u = lim sup
n→∞

xj and l = lim inf
n→∞

xj .

Proof that u = lim sup
n→∞

xj : Let

βn := sup
j≥n

xj , β := inf
n
βn = lim sup

n→∞
xn.(9.66)

We will prove that β has the properties listed in prop.9.43.C that uniquely characterize u: For any
ε > 0, we have

β − ε ∈ U and β + ε /∈ U

Another way of saying this is that

b ∈ U for b < β and a /∈ U for a > β.(9.67)

We now prove the latter characterization.
Let a ∈ R, a > β = inf{βn : n ∈ N}. Then a is not a lower bound of the βn: βn0 < a for some n0 ∈ N.
As the βn are not increasing in n, this implies strict inequality βj < a for all j ≥ n0. By definition,
βj is the least upper bound (hence an upper bound) of the tail set Tj . We conclude that xj < a for
all j ≥ n0.
From that we conclude that Tn ∩ [a,∞[ = ∅ for all j ≥ n0. It follows that a /∈ U .

295 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

Now let b ∈ R, b < β = g.l.b{βn : n ∈ N}. As β ≤ βn we obtain b < βn for all n.
In other words, b < sup(Tn) for all n: It is possible to pick some xk ∈ Tn such that b < xk.
But then Tn ∩ [b,∞[ 6= ∅ for all n and we conclude that b ∈ U .
We put everything together and see that β has the properties listed in (9.67). This finishes the proof
that u = lim sup

n→∞
xj . The proof that l = lim inf

n→∞
xj follows again by applying what has already been

proved to the sequence (−xn). �

The material presented above will allow a greatly shortened proof of thm.9.13 (Characterization of
limsup and liminf) on p.288.

Remark 9.22 (Simplified proof of thm.9.13 (Characterization of limsup and liminf)). ?

We know from prop.9.45 on p.295 that lim sup
n→∞

xn is the unique number u described in part C of

prop.9.43, p.293:
u− ε ∈ U and u+ ε /∈ U for all ε > 0

and u is the largest real number for which there exists a subsequence (nj)j∈N of integers such that
u = lim

j→∞
xnj .

u−ε ∈ U = U3 (see part A of prop.9.45) means that there are infinitely many n such that xn ≥ u−ε
and u+ ε /∈ U = U3 means that there are at most finitely many n such that xn ≥ u+ ε. This proves
a1 and a2.
We also know from prop.9.45 that lim inf

n→∞
xn is the unique number l described in part C of prop.9.44,

p.294: l + ε ∈ L and l − ε /∈ L for all ε > 0 and l is the smallest real number for which there
exists a subsequence (nj)j∈N of integers such that u = lim

j→∞
xnj .

l+ ε ∈ L = L3 (see part A of prop.9.45) means that there are infinitely many n such that xn ≤ l+ ε
and l − ε /∈ L = L3 means that there are at most finitely many n such that xn ≤ l − ε. This proves
b1 and b2. � �

9.9 Sequences of Sets and Indicator functions and their liminf and limsup ?

Let Ω be a nonempty set and let fn : Ω → R be a sequence of real-valued functions. Let ω ∈
Ω. Then

(
fn(ω)

)
n∈N is a sequence of real numbers for which we can examine lim infn fn(ω) and

lim supn fn(ω). We will look at those two expressions as functions of ω.

Example 9.9. The following are examples of sequences of real–valued functions.
(a) fn : [0, 1]→ R; x 7→ xn is a sequence of real–valued functions.
(b) Let Ω := {(x, y) ∈ R2 : x2 + y2 ≤ 1}. be the unit circle in the Euclidean plane. Then

ϕn : Ω→ R; ϕn(x, y) :=
√
x2 + y2 is a sequence of real–valued functions.

(c) Let f := R→ R be a (fixed, but arbitrary) function which is infinitely often differentiable
at all its arguments, i.e., Dnf(x0) := f (n)(x0) = dnf

dxn

∣∣
x=x0

exists for all x0 ∈ R and all
n ∈ N. Then hn : R→ R; x 7→ Dnf(x) is a sequence of real–valued functions. �

Definition 9.22. ? [limsup and liminf of a sequence of real–valued functions]
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Let Ω be a nonempty set and let fn : Ω→ R be a sequence of real-valued functions such that
fn(ω) is bounded for all ω ∈ Ω. We define

lim inf
n→∞

fn : Ω→ R as follows: ω 7→ lim inf
n→∞

fn(ω),(9.68)

lim sup
n→∞

fn : Ω→ R as follows: ω 7→ lim sup
n→∞

fn(ω). �(9.69)

It is possible to extend the above definition to situations in which the sets {fn(ω) : n ∈ N} are not
bounded. 121

Remark 9.23. We recall from thm.9.13 (Characterization of limsup and liminf) on p.288 that

lim inf
n→∞

fn(ω) = inf{α ∈ R : lim
j→∞

fnj (ω) = α for some subsequence n1 < n2 < . . . },(9.71)

lim sup
n→∞

fn(ω) = sup{β ∈ R : lim
j→∞

fnj (ω) = β for some subsequence n1 < n2 < . . . }. �(9.72)

We now characterize lim infn fn and lim supn fn for functions fn such that fn(ω) is either zero or one.
We have seen in prop.8.15 on p.247 that any such function is the indicator function 1A of the set

A := {fn = 1} = f−1
n

(
{1}
)

= {ω ∈ Ω : fn(ω) = 1} ⊆ Ω.

Proposition 9.46 (liminf and limsup of {0, 1}–functions). Let Ω 6= ∅ and fn : Ω → {0, 1}. Let ω ∈ Ω.
Then both lim infn fn(ω) and lim supn fn(ω) can only be equal to zero or one. Further,

lim inf
n→∞

fn(ω) = 1 ⇔ fn(ω) = 1 eventually,(9.73)

lim sup
n→∞

fn(ω) = 1 ⇔ fn(ω) = 1 for infinitely many n ∈ N.(9.74)

PROOF: It follows from (9.71), (9.72) and 0 ≤ fn(ω) ≤ 1 that 0 ≤ lim infn fn(ω) ≤ lim supn fn(ω) ≤ 1.
We conclude from (9.71) that lim infn fn(ω) = 0 if a subsequence n1 < n2 < . . . can be found such
that fnj (ω) = 0 for all j and that lim infn fn(ω) = 1 if no such subsequence exists, i.e., if fn(ω) = 1
for all except at most finitely many n. This proves not only (both directions(!) of) (9.73) but also that
either lim infn fn(ω) = 1 or lim infn fn(ω) = 0

121In more advanced texts you will find the following

Definition 9.23 (Extended real–valued functions). ? The set R := R ∪ {∞} ∪ {−∞} is called the extended real

numbers line. A mapping F whose codomain is a subset of R is called an extended real–valued function. �

The above allows to define the functions lim infn fn and lim supn fn even if there are arguments ω for which
lim infn fn(ω) and/or lim supn fn(ω) assumes one of the values ±∞. There are many issues with functions that allow
their arguments to be ±∞. Example 1: if F (x) = ∞ and F (y) = ∞, what is F (x)− F (y)?) Example 2: The following
rule is applied to products of extended real numbers:

0 · ±∞ = ±∞ · 0 = 0(9.70)
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We conclude from (9.72) that lim supn fn(ω) = 1 if a subsequence n1 < n2 < . . . can be found such
that fnj (ω) = 1 for all j and that lim supn fn(ω) = 0 if no such subsequence exists, i.e., if fn(ω) = 0
for all except at most finitely many n. This proves not only (both directions(!) of) (9.74) but also that
either lim supn fn(ω) = 1 or lim supn fn(ω) = 0. �

Next, we look at indicator functions 1An of a sequence of sets An ⊆ Ω.

Definition 9.24. ?

Let An ⊆ Ω (n ∈ N). We define

(9.75) A? :=
⋃
n∈N

⋂
j≥n

Aj , A? :=
⋂
n∈N

⋃
j≥n

Aj . �

Proposition 9.47.

Let ω ∈ Ω. Then

ω ∈ A? ⇔ ω ∈ An eventually, i.e., ω ∈ An for all except at most finitely many n ∈ N.(9.76)
ω ∈ A? ⇔ ω ∈ An for infinitely many n ∈ N,(9.77)

(a) Proof that ω ∈ A? ⇒ ω ∈ An for all except at most finitely many n ∈ N:
We will prove the contrapositive: Assume that there exists 1 ≤ n1 < n2 < . . . such that ω /∈ Anj for
all j ∈ N. We must show that ω /∈ A?.
Let k ∈ N. Then k ≤ nk (think!) and it follows from ω /∈ Ank and Ank ⊇

⋂
j≥nk

Aj ⊇
⋂
j≥k

Aj that

there is no k ∈ N such that ω ∈
⋂
j≥k

Aj .

But then ω /∈
⋃
k

⋂
j≥k

Aj = A? and we are done with the proof of (a).

(b) Proof that ω ∈ An for all except at most finitely many n ∈ N implies ω ∈ A?:
By assumption there exists some N = N(ω) ∈ N such that ω ∈ An for all n ≥ N .

It follows that ω ∈
⋂
n≥N

An ⊆
⋃
m∈N

⋂
n≥m

An = A? and (b) has been proved.

(c) Proof that ω ∈ A? ⇒ ω ∈ An for infinitely many n ∈ N:
Let ω ∈ A?. We will recursively construct 1 ≤ n1 < n2 < . . . such that ω ∈ Anj for all j ∈ N.

We observe that ω ∈
⋃
j≥n

Aj for all n ∈ N. As ω ∈
⋃
j≥1Aj there exists n1 ≥ 1 such that ω ∈ An1

and we have constructed the base case.
Let k ∈ N. If we already have found n1 < n2 < . . . nk such that ω ∈ Anj for 1 ≤ j ≤ k then we
find nk+1 as follows: As ω ∈

⋃
j≥nk+1Aj there exists nk+1 ≥ nk + 1 such that ω ∈ Ank+1

. We have
constructed our infinite sequence and this finishes the proof of (c).
(d) Proof that if ω ∈ An for infinitely many n ∈ N ⇒ ω ∈ A?:
For n ∈ N we abbreviate Γn :=

⋃
j≥nAj .

298 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

Let 1 ≤ n1 < n2 < . . . such that ω ∈ Anj for all j ∈ N. Let k ∈ N.
Then nk ≥ k, hence ω ∈ Ank ∈ Γnk ⊆ Γk for all k ∈ N, hence ω ∈

⋂
k∈N Γk = A?. We have proved

(d). �

Proposition 9.48 (liminf and limsup of indicator functions).

Let An ⊆ Ω (n ∈ N) and let A?, A? be the sets defined in (9.75). Then

1A? = lim inf
n→∞

1An and 1A? = lim sup
n→∞

1An(9.78)

PROOF: Let ω ∈ Ω. Then

1A?(ω) = 1 ⇔ ω ∈ A? ⇔ ω ∈ An for all except at most finitely many n ∈ N

⇔ 1An(ω) = 1 for all except at most finitely many n ∈ N

⇔ lim inf
n

1An(ω) = 1

(9.79)

The second equivalence follows from prop.9.47 and the last equivalence follows from prop.9.46 and
this proves the first equation. Similarly we have

1A?(ω) = 1 ⇔ ω ∈ A? ⇔ ω ∈ An for infinitely many n ∈ N

⇔ 1An(ω) = 1 for infinitely many n ∈ N

⇔ lim sup
n

1An(ω) = 1

(9.80)

Again the second equivalence follows from prop.9.47 and the last equivalence follows from
prop.9.46. �

This last proposition is the reason for the following definition.

Definition 9.25. ? [limsup and liminf of a sequence of sets]

Let Ω be a nonempty set and let An ⊆ Ω (n ∈ N). We define

lim inf
n→∞

An :=
⋃
n∈N

⋂
j≥n

Aj ,(9.81)

lim sup
n→∞

An :=
⋂
n∈N

⋃
j≥n

Aj .(9.82)

We call lim inf
n→∞

An the limit inferior and lim sup
n→∞

An the limit superior of the sequence An.

We note that lim inf
n→∞

An = lim sup
n→∞

An if and only if the functions lim inf
n→∞

1An and lim sup
n→∞

1An

coincide (prop. 9.48) which is true if and only if the sequence 1An(ω) has a limit for all ω ∈ Ω
(thm.9.14 on p.290). In this case we define

lim
n→∞

An := lim inf
n→∞

An = lim sup
n→∞

An(9.83)

and we call this set the limit of the sequence An. �
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Note 9.4 (Notation for limits of monotone sequences of sets). 122

Let (An) be a nondecreasing sequence of sets, i.e., A1 ⊆ A2 ⊆ . . . and let A :=
⋃
nAn.

Further let Bn be a nonincreasing sequence of sets, i.e., B1 ⊇ B2 ⊇ . . . and let B :=
⋂
nBn.

We write suggestively

An ↑A (n→∞), Bn ↓ B (n→∞). �

Example 9.10. Let An ⊆ Ω.

(a) If An ↑ then lim inf
n→∞

An = lim sup
n→∞

An =
⋃
n∈N

An.(9.84)

(b) If An ↓ then lim inf
n→∞

An = lim sup
n→∞

An =
⋂
n∈N

An. �(9.85)

Note 9.5 (Liminf and limsup of number sequences vs their tail sets). Let xn ∈ R be a sequence of
real numbers. We then can associate with this sequence that of its tail sets Tn := {xj : j ≥ n}.

4!4!4! (a) Do not confuse lim inf
n→∞

xn = sup
n

(
inf(Tn)

)
with lim inf

n→∞
Tn =

⋃
n

( ⋂
k≥n

Tk
)
.

(b) Do not confuse lim sup
n→∞

xn = inf
n

(
sup(Tn)

)
with lim sup

n→∞
Tn =

⋂
n

( ⋃
k≥n

Tk
)
.

Those two concepts are very different: lim inf
n

xn (lim sup
n

xn) is a number: it is the lowest possible

(highest possible) limit of a convergent subsequence (xnj )j∈N. On the other hand we deal with a
set(!) lim infn Tn = lim supn Tn =

⋂
n Tn. The last equality follows from example 9.10 and the fact

the the sequence of tailsets Tn is always nonincreasing. �

We conclude this subchapter with a remark about the usefulness of the liminf and limsup of a
sequence of sets.

Remark 9.24. In probability theory one models events, i.e., pre–images that correspond to collec-
tions of random outcomes, as sets. For example, if we have “random variables”

XK : Ω −→ [1, 6]Z ; Xk(ω) = k–th throw of a die (ω indicates randomness)

then Ak := {Xk = 5 or Xk = 6} = X−1
k

(
{5, 6}

)
is the event that the k − th throw resulted in a 5 or a 6.
Proposition 9.47 on p.298 then implies, in connection with Definition 9.25, the following.

122See note 9.2 on p.266.
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If (An)n is a sequence of events then

lim inf
n→∞

An = the event that An happens eventually ,

lim sup
n→∞

An = the event that An happens infinitely often .

Considering that “eventually” means that there are at most finitely many exceptions,

lim inf
n→∞

An = the event that An does NOT happen at most finitely many times .

In the context of repeatedly rolling a die,

lim inf
n→∞

{Xn = 5 or Xn = 6} = the event that a 5 or 6 will be rolled eventually ,

lim sup
n→∞

{Xn = 5 or Xn = 6} = the event that a 5 or 6 will be rolled infinitely often .

An example for the usefulness of is Kolmogorov’s zero–one law: Let P (B) denote the probability
that the event B happens. If the events An happen independently of each other then

either P
(

lim inf
n→∞

An
)

= 0 or P
(

lim inf
n→∞

An
)

= 1 ,

either P
(

lim sup
n→∞

An
)

= 0 or P
(

lim sup
n→∞

An
)

= 1 . �

9.10 Sequences that Enumerate Parts of Q ?

We will briefly study the following remarkable property of the real numbers: One can find a single
sequence qn ∈ R of real numbers whose members come arbitrarily close to every real number.
We informally defined the real numbers in ch.2.3 (Numbers) on p.24 as the set of all decimals, i.e.,
all numbers x which can be written as

x = m +

∞∑
j=1

dj10−j where dj is a digit, i.e., dj = 0, 1, 2, . . . , 9,(9.86)

i.e., x = lim
k→∞

xk where xk = m +

k∑
j=1

dj10−j .(9.87)

Each xk is a (finite) sum of fractions, hence xk ∈ Q.
We proved in cor.7.5 on p.229 that Q and hence all of its subsets are countable: If A ⊆ Q there is a
sequence (qn)n of fractions such that A = {qn : n ⊆ N}. We apply this to A := Q as follows.
Let x ∈ R have the representation (9.87). Then xk ∈ Q for each k ∈ N, hence there is some n ∈ N
such that xk = qn. Of course n depends on k, i.e., we have a functional dependency n = n(k) = nk.
It follows from (9.87) that qnk → x as k →∞. In other words, we have proved the following

Theorem 9.15 (Universal sequence of rational numbers with convergent subsequences to any real
number).
There is a sequence (qn)n∈N of fractions which satisfies the following: For any x ∈ R there is a sequence
n1, n2, n3, . . . , of natural numbers such that x = lim

k→∞
qnk �.
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Remark 9.25.
(a) The above theorem can be phrased as follows: There is a sequence (qn)n∈N of fractions such

that for any x ∈ R one can find a subsequence (qnj )j∈N of (qn)n which converges to x.
(b) What is remarkable about thm.9.15: A single sequence (qn)n is so rich that its ingredients can

be used to approximate any item in the uncountable! set R
(c) Let A := {x ∈ R : x2 ≤ 2} = [ −

√
2,
√

2 ] and let AQ := A ∩ Q = {q ∈ Q : q2 ≤ 2}. A is of such

a shape that for any x ∈ A the partial sums xk = m +
k∑
j=1

dj10−j which converge to x belong

to AQ. (Why? Especially, why also for x = ±
√

2?) �

9.11 Exercises for Ch.9

9.11.1 Exercises for Ch.9.1 (The Ordered Fields of the Real and Rational Numbers)

Exercise 9.1. Prove prop.9.2 on p.252 of this document: Fields are integral domains. �

Exercise 9.2. Prove prop.9.3 on p.253 of this document: yadayada �

Exercise 9.3. Prove prop.9.4 on p.253 of this document:
Let a, b, c, d ∈ F such that b, d 6= 0. If ab = c

d then ad = bc. �

Exercise 9.4. Prove prop.9.5 on p.253: If a, b, c ∈ F such that b, c 6= 0. then ac
bc = a

b . �

Exercise 9.5. Prove prop.9.6 on p.253: If a, b, c, d ∈ F such that b, d 6= 0 then a
b + c

d = ad+bc
bd . �

Exercise 9.6. Prove prop.9.7 on p.253:
If a, b, c, d ∈ F such that b, d 6= 0. then a

b ·
c
d = ac

bd . In particular, ( bd)−1 = d
b . �

Exercise 9.7. Prove prop.9.8 on p.254 of this document:
(a) Let a ∈ F . Then a > 0 if and only if a−1 > 0.
(b) Let a, b ∈ F . If 0 < a < b then 0 < 1

y <
1
x . �

Exercise 9.8. Prove prop.9.2 on p.254 of this document: Let a, b ∈ F 6=0. Then

(a) a
b > 0 if and only if b

a > 0 and a
b < 0 if and only if b

a > 0,
(b) a

b > 0 if and only if either both a, b > 0 or both a, b < 0. �

Exercise 9.9. Prove thm.9.1 on p.254 of this document:
Let a, b ∈ R such that a < b. Then there exists c ∈ R such that a < c < b. �

Exercise 9.10. Prove thm.9.3 on p.256 of this document:
(a) The assignments (a, b) 7→ a + b and (a, b) 7→ a · b are binary operations on Q, i.e., sums

and products of rational numbers are rational numbers.
(b) The triplet (Q,+, ·) is an integral domain.
(c) Let Q>0 := R>0 ∩ Q. Then (Q,+, ·,Q>0) is an ordered integral domain which satisfies the

following: if a, b ∈ Q then a < b with respect to the ordering induced by Q>0 if and only
if a < b with respect to the ordering induced by R>0

(d) (Q6=0, ·) is a (commutative) group.
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Hint: We suggest you break down the proof as follows.
(a) The assignments (a, b) 7→ a + b and (a, b) 7→ a · b are binary operations on Q, i.e., sums

and products of rational numbers are rational numbers.
(b) It follows from Q ⊆ Q ⊆ R (HOW?) that both “+” and “·” are associative and commuta-

tive, that they satisfy distributivity (see Definition 3.7(c) on p.60) and that 0 and 1 are the
neutral elements for “+” and “·” respectively and the are rational numbers.

(c) Supply the missing pieces which prove that (Q,+, ·).
(d) Use what you know about R>0 to first show that Q>0 satisfies Definition 3.11(a) – (c) of a

positive cone (see p.68).
(e) Use what you know about R>0 to show that Q>0 satisfies Definition 3.11(d) of a positive

cone (not as obvious as proving properties Definition 3.11(a) – (c)).
(f) Prove that if a, b ∈ Q then a < b with respect to the ordering induced by Q>0 if and only

if a < b with respect to the ordering induced by R>0.
(g) Prove that any rational nonnegative number possesses a multiplicative inverse. �

Exercise 9.11. Prove cor.9.3 on p.257 of this document: There are no upper bounds for N in Q. �

9.11.2 Exercises for Ch.9.2 (Minima, Maxima, Infima and Suprema)

Exercise 9.12. Prove (9.14) of prop.9.11 on p.262 of this document: Let X be a nonempty set and
ϕ,ψ : X → R. Let A ⊆ X . Then inf{ϕ(x) +ψ(x) : x ∈ A} ≥ inf{ϕ(y) : y ∈ A} + inf{ψ(z) : z ∈ A}.
�

9.11.3 Exercises for Convergence

Exercise 9.13. Prove example 9.5 part (c): Let zn := x0 for some x0 ∈ R (n ∈ N). Then lim
n→∞

zn = x0.

If that is too abstract, try to prove the special case (b) first. �

Exercise 9.14. Prove example 9.5(c) on p.264 of this document: Let zn := x0 for some x0 ∈ R (n ∈ N).
Then lim

n→∞
zn = x0. �

Exercise 9.15. Prove thm.9.5 on p.265 of this document: Let (xn)n be a convergent sequence of real
numbers. Then its limit is uniquely determined. �

Exercise 9.16. Prove prop.9.12 on p.265 of this document: Let a, b ∈ R. Then a = b ⇔ |a − b| < ε
for all ε > 0. �

Exercise 9.17. Prove prop.9.14 on p.266: Let (xn)n be a sequence of real numbers such that lim
n→∞

xn

exists. Let K ∈ N. For n ∈ N let yn := xn+K . Then (yn)n has the same limit.
Hint: Use prop.9.13. �

Exercise 9.18. Prove prop.9.15 on p.266 of this document: Let (xn)n be a sequence in R with limit
a ∈ R. Then this sequence is bounded. �

Exercise 9.19. Prove (9.32) of prop.9.20 on p.270: Let a, b ∈ R. Then ]a, b[ =
⋃
n∈N

[a+ 1/n, b− 1/n].

Adapt the proof of (9.31) but note that this one is simpler. There are only two cases to worry about:
a ≥ b (very easy!) vs a < b. �
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9.11.4 Exercises for Continuity

Exercise 9.20. Prove prop.9.23 on p.272 of this document: Let A,B ⊆ R be nonempty, f : A → R
continuous at x0 ∈ A and g : B → R continuous at f(x0). Assume further that f(A) ⊆ B, i.e.,
f(x) ∈ B for all x ∈ A. Then the composition g ◦ f : X → Y is continuous at x0. �

Exercise 9.21. Let A ∈ R be an interval with endpoints a < b, i.e., A is either of ]a, b[, ]a, b ], [ a, b[,
[ a, b ]. Let a < c < b and A1 := {x ∈ A : x ≤ c} and A2 := {x ∈ A : x ≥ c}.
Let f1 : A1 → R and f2 : A2 → R be two continuous, real–valued functions such that f1(c) = f2(c).
Prove that the “spliced” function

(9.88) f(x) :=

{
f1(x) for x ∈ A1,

f2(x) for x ∈ A2

is continuous on A. �

Exercise 9.22. Let a, b, c, d ∈ R such that a < b and c < d. Let f :]a, b[→]c, d[ be bijective and strictly
monotone, i.e., strictly increasing or decreasing. Prove that both f and f−1 are continuous.
Hint: Use thm.9.7 on p.273.

Exercise 9.23. Prove prop.9.22 (All polynomials are continuous) on p.272. �

Exercise 9.24. Let n ∈ N and let p(x) :=

n∑
j=0

ajx
j (aj ∈ R, an 6= 0) be a polynomial. Let A ⊆ R be

unbounded. Prove that the direct image p(A) is unbounded. Hint: Show that there is a sequence
xn ∈ A such that xn → ∞ or xn → −∞. Examine yk := p(xk)

anxnk
and use prop.9.17 (rules of arithmetic

for limits). �

Exercise 9.25. Prove prop.9.24 on p.273 of this document:
LetA ⊆ R, x0 ∈ A, and let f : A→ R be a real–valued function with domainA. Then f is continuous
at x0 if and only if there exists ε? > 0 which satisfies the following:
for any ε ∈]0, ε?] there exists δ > 0 such that either one of the following equivalent statements is
satisfied:

(a) f
(
{x ∈ A : |x− x0| < δ}

)
⊆ {y ∈ R : |y − f(x0)| < ε},

(b) |x− x0| < δ ⇒ |f(x)− f(x0)| < ε for all x ∈ A.

Hint: If ε > ε?, what can you say about the sets {y ∈ R : |y − f(x0)| < ε?} and
{y ∈ R : |y − f(x0)| < ε} �

9.11.5 Exercises for Ch.9.4 (Rational and Irrational Numbers)

Exercise 9.26. Prove prop.9.27 on p.275 of this document: Let m,n, s, t ∈ Z be such that m and n do
not have any common factors. If mn = s

t then m divides s and n divides t. �

Exercise 9.27. Prove cor.9.32 on p.276 of this document: There is no smallest positive irrational
number. �

Exercise 9.28. Prove prop.9.31 on p.276 of this document: If x, y ∈ R such that x < y then there
exists irrational z such that x < z < y. �
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9.11.6 Exercises for Geom. series and Decimal Expansions

Exercise 9.29. Prove (a) and (b) of prop.9.34 on p.280 of this document:
Let n ∈ Z≥0 and dj ∈ [0, 9]Z for j ≥ n. Then

(a) 0 ≤ 9

∞∑
j=n

10−j =
1

10n−1
, (b)

∞∑
j=n

dj10−j ≤
1

10n−1
. �

Exercise 9.30. Prove lemma 9.1 on p.281 of this document: Let x = m+
∞∑
j=1

dj10−j (m ∈ Z≥0, dj ∈

[0, 9]Z for all j ∈ N) be a decimal expansion of a nonnegative real number x. Then
(a) m ≤ x ≤ m+ 1,
(b) x = m ⇔ dj = 0 for all j ∈ N,
(c) x = m+ 1 ⇔ dj = 9 for all j ∈ N. �

Exercise 9.31. Prove cor.9.5 on p.282 of this document:
If x ∈ R has different decimal expansions then x ∈ Q. �

9.11.7 Exercises for Ch.9.7 (Countable and Uncountable Subsets of the Real Numbers)

Exercise 9.32. Prove prop.9.38 on p.286 of this document:
The set of all algebraic numbers is countable.

Hint: Show that the sets Pn := {polynomials p(x) =
n∑
j=0

ajx
j : aj ∈ Z and − n ≤ aj ≤ n} are

finite. Everything else will be easy. �

Exercise 9.33. Prove prop.9.40 on p.286 of this document: Let r ∈ Q. Then r is algebraic. �

9.11.8 Exercises for Ch.9.8 (Limit Inferior and Limit Superior)

Exercise 9.34. Let a, b ∈ R such that a < b and let (xn)n be a sequence such that xj ∈ {a, b} for all j.
Prove the following:

(a) If xj = a eventually then lim sup
j→∞

xj = a, else lim sup
j→∞

= b.

(b) If xj = b eventually then lim inf
j→∞

xj = b, else lim inf
j→∞

= a.

Exercise 9.35. Prove cor.9.6 on p.291:
Let xn, yn ∈ R be two sequences of real numbers. Assume there is K ∈ N such that xn = yn for all
n ≥ K. Then

lim sup
n→∞

xn = lim sup
n→∞

yn and lim inf
n→∞

xn = lim inf
n→∞

yn. �

Exercise 9.36. Prove cor.9.7 on p.292 of this document:
Let xn ∈ [0,∞[ such that lim sup

n→∞
xn = 0. Then (xn)n converges to zero. �

Exercise 9.37. Let xn := (−1)n for n ∈ N. Prove that lim infn xn = −1 and lim supn xn = 1 by
working with the tailsets of that sequence. Do not use anything after Definition 9.20 (Tail sets of a
sequence) on p.287! Hint: What is αn and βn?
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Very similar to the previous exercise, but slightly more difficult:

Exercise 9.38. Let xn := (−1)(n + 1
n) for n ∈ N. Prove that lim infn xn = −1 and lim supn xn = 1

by working with the tailsets of that sequence. Do not use anything after Definition 9.20 (Tail sets
of a sequence) on p.287! Hint: Compute αn and βn for n = 1, 2, 3, 4, 5, 6 to see the pattern: Look
separately at odd and even indices to prove that both |βn− 1| and |αn + 1| are either 1

n or 1
n+1 . What

follows for the convergence behavior of αn and βn?

Exercise 9.39. Prove the assertions of example 9.10 on p.300. �

Exercise 9.40. It was mentioned in rem.9.21 on p.292 that use of prop.9.42 leads to an easy, alternate,
proof of prop.9.19 (Domination Theorem for Limits):
If two sequences xn, yn ∈ R satisfy xn ≤ yn eventually then lim

n→∞
xn ≤ lim

n→∞
yn.

Do this alternate proof! �
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10 Cardinality II: Comparing Uncountable Sets

If we want to compare sets based on their sizes then we have a good idea how to go about it, at least
as far as finite sets (excluding the empty set) and countable sets are concerned. We can biject them
to a subset of the natural numbers, and then compare their images in N: If X1 and X2 are finite sets

such that we have bijective functions X1
f1−→ [n1] and X2

f2−→ [n2] such that n1 ≤ n2, and if C is
countably infinite with a bijection C c−→ N, then we have

0 = |∅| < |X1| = n1 ≤ |X2| = n2 < |C| = ∞.(10.1)

At times, when we compare sets, we want to know more about them than just a single number (if
we think of infinity as a number). Note that we have a corresponding chain of injections

∅ � X1 � X2 � C.(10.2)

Would it be feasible to use injective functions as a means to compare sets as far as their size is con-
cerned? Of course we lose information if we boil down the information about two sets to whether
or not there exists an injection from one of them to the other, but for many purposes it turns out
to be fruitful to know whether such is the case, and still not worry about any more detail. For ex-
ample, all countably infinite and uncountable sets have the same size∞, but it turns out that there
are many degrees of uncountability if one considers a set X no biger than a set Y if there exists an
injection X � Y .
The above leads us to the definition of cardinality.

10.1 The Cardinality of a Set

Definition 10.1 (Cardinality Comparisons). Given are two arbitrary sets X and Y . We say that

(a) X,Y have same cardinality, and we write card(X) = card(Y ), if either both
X,Y 6= ∅ and there is a bijection f : X

∼−→ Y , or if both X and Y are empty.
Otherwise we write card(X) 6= card(Y )

(b) the cardinality of X is less than or equal to the cardinality of Y , and we write
card(X) ≤ card(Y ), if there is an injective mapping f : X → Y or if X is empty.

(c) the cardinality of X is less than the cardinality of Y , and we write
card(X) < card(Y ), if both card(X) ≤ card(Y ) and card(Y ) 6= card(X), i.e.,
if either X = ∅ and Y 6= ∅, or there is an injective mapping but not a bijection
f : X → Y .

(d) the cardinality of X is greater than or equal to the cardinality of Y , and we write
card(X) ≥ card(Y ), if card(Y ) ≤ card(X).

(e) the cardinality of X is greater than the cardinality of Y , and we write
card(X) > card(Y ), if card(Y ) < card(X). �

Note the following concerning the above definition.
(a) It does not specify how card(X) itself is defined. This will be done in Definition 10.2 on p.308.
(b) It covers the cases X = ∅ and/or Y = ∅. We have card(∅) ≤ card(Y ) for any set Y ,

card(∅) 6= card(Y ) if Y is not empty, and card(X) = card(Y ) if X = Y = ∅. �

307 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

Example 10.1. Let A,B be two sets such that A ⊆ B. Then card(A) ≤ card(B).

PROOF:
Case 1: A = ∅. It then is true by definition that card(∅) ≤ card(B) for any set B.
Case 2: A 6= ∅. It follows from B ⊇ A that B 6= ∅. Further the mapping x 7→ x is injective. This
proves card(A) ≤ card(B). �

Theorem 10.1 (B/G thm.13.31).

Let X be a set. Then card(X) < card(2X).
In other words, X can be injected into 2X , but it is not possible to find bijective f : X

∼−→ 2X .

Proof: The function x 7→ {x} is an injection from X into 2X , hence card(X) ≤ card(2X).
It remains to show that there is no bijective function f : X

∼−→ 2X . We will show that it is not even
possible to find surjective f with domain X and codomain 2X .
We assume to the contrary that such f exists. Let

Γ := {x ∈ X : x /∈ f(x)}.

Obviously Γ ⊆ X , i.e., Γ ∈ 2X . f is surjective, hence there exists x0 ∈ X such that f(x0) = Γ.
Case 1: Assume x0 ∈ Γ. Then x0 /∈ f(x0), i.e., x0 /∈ Γ. We have a contradiction.
Case 2: Assume x0 /∈ Γ. Then x0 ∈ f(x0), i.e., x0 ∈ Γ. Again, we have a contradiction.

We conclude that there is no surjective f : X → 2X .

Proposition 10.1. Let X,Y be two sets such that card(X) = card(Y ). Then card(2X) = card(2Y ).

PROOF: The proof is left as exercise 10.2. �

10.2 Cardinality as a Partial Ordering

We assume in this subchapter that all sets are subsets of a universal set Ω. Having such a universal
set allows us to declare on its power set 2Ω equivalence relations. If we work with specific sets, e.g.
the set R of all real numbers, we assume implicitly that those sets are contained in Ω.
We defined in Definition 10.1 on p.307 the meaning of card(X) = card(Y ) and card(X) ≤ card(Y )
for two sets X and Y but we never defined the expression card(X) per se. This will be done now.

Definition 10.2 (Cardinality as an Equivalence Class). ? Let X,Y ⊆ Ω.

We call X and Y equivalent and we write X ∼ Y , if and only if card(X) = card(Y ), i.e.,
either both X and Y are empty, or both are not empty and there is a bijection f : X

∼−→ Y .

The proposition following this definition shows that “∼” is indeed an equivalence relation on 2Ω.
This justifies to define for a set X ⊆ Ω its cardinality as follows:
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card(X) := [X] (the equivalence class of X w.r.t “∼”) .(10.3)

In other words,
card(∅) := {∅},(10.4)

card(X) := {Y ⊆ Ω : ∃ bijection X → Y } if X 6= ∅. �(10.5)

Proposition 10.2. X ∼ Y as defined above is an equivalence relation on 2Ω.

PROOF:
Proof strategy: How about this? The equals relation is reflexive symmetric and transitive. Since
X ∼ Y , if and only if card(X) = card(Y ), X ∼ Y inherits those properties from the equals relation
card(X) = card(Y ).
Here is the problem. When we defined card(X) = card(Y ) in Definition 10.1 on p.307 we did
so without giving any meaning to the expressions card(X) and card(Y ). Rather, we defined this
expression, and hence X ∼ Y , to mean the following:

X ∼ Y ⇔ either X = Y = ∅ or
[
X,Y 6= ∅ and there exists a bijection X ∼−→ Y

]
(10.6)

For this reason a correct proof of this proposition must refer to (10.6).
Let X,Y, Z ⊆ Ω.
Case 1. X = ∅.

Reflexivity: Clearly, X = X = ∅, hence X ∼ X .
Symmetry: If X ∼ Y then it follows from (10.6). that Y = ∅. Thus X = Y = ∅, thus Y ∼ X .
Transitivity: Assume that X ∼ Y and Y ∼ Z. Since X = ∅ and X ∼ Y it follows from (10.6) that

Y = ∅. Since Y = ∅ and Y ∼ Z it follows from (10.6) that Z = ∅. Thus X = Z = ∅,
thus X ∼ Z.

Case 2. X 6= ∅.
Reflexivity: idX : x 7→ x is a bijection X → X , hence X ∼ X .
Symmetry: If X ∼ Y then it follows from (10.6) and X 6= ∅ that Y 6= ∅ and that there exists a

bijection f : X
∼−→ Y . The inverse f−1 : Y → X then is a bijection Y

∼−→ X . It
follows that Y ∼ X

Transitivity: Assume that X ∼ Y and Y ∼ Z. Since X 6= ∅ and X ∼ Y it follows from (10.6)
that Y 6= ∅ and that there exists a bijection f : X

∼−→ Y . Since Y 6= ∅ and Y ∼ Z
it follows from (10.6) that Z 6= ∅ and that there exists a bijection g : Y

∼−→ Z. It
follows from prop.5.5(c) that the composition g ◦ f of the two bijective functions f
and g is a bijection X ∼−→ Z. �

Next we collect some material to prove the Cantor–Schröder–Bernstein Theorem. This theorem
allows us to prove antisymmetry of the relation

card(X) ≤ card(Y ), defined on the set AAA := {card(X) : X ⊆ Ω} .
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Proposition 10.3. Let X ′, X ′′, Y ′, Y ′′ be nonempty sets such that X ′ ∩X ′′ = ∅ and Y ′ ∩ Y ′′ = ∅
Let f ′ : X ′ → Y ′ and f ′′ : X ′′ → Y ′′. Then the function

f : X ′
⊎
X ′′ −→ Y ′

⊎
Y ′′ ; x 7→

{
f ′(x) ifx ∈ X ′,
f ′′(x) ifx ∈ X ′′,

satisfies the following:
(a) If f ′ and f ′′ are injective then f is injective.
(b) If f ′ and f ′′ are surjective then f is surjective.
(c) If f ′ and f ′′ are bijective then f is bijective.

The proof is left as exercise 10.3 (see p.322). �

The following theorem from Tarski and the proof of the subsequent Cantor–Schröder–Bernstein
Theorem have been found in the online article
https://chiasme.wordpress.com/2013/11/20/a-short-proof-of-cantor-bernstein-schroeder-theorem/

(A short proof of Cantor–Bernstein–Schröder Theorem). The suggestion to prove Cantor–Schröder–
Bernstein with help of Tarski’s Theorem was given to the author by David Biddle.

Theorem 10.2 (Tarski’s Fixed Point Theorem).

Let Ω be a set and let ϕ : 2Ω −→ 2Ω be nondecreasing with respect to “⊆”, i.e.,

A,B ⊆ Ω and A ⊆ B ⇒ ϕ(A) ⊆ ϕ(B) .

Then ϕ has a fixed point, i.e., there exists an argument A0 ∈ 2Ω such that ϕ(A0) = A0.

PROOF: Let
F := {A ∈ 2Ω : A ⊆ ϕ(A)} , A0 :=

⋃
[A : A ∈ F] .

We will show that A0 is a fixed point for ϕ. First we prove

A0 ⊆ ϕ(A0) .(A)

To see this we observe that

A ∈ F ⇒ A ⊆ ϕ(A) . Since ϕ is nondecreasing and A ⊆ A0, ϕ(A) ⊆ ϕ(A0) .

Thus A ⊆ ϕ(A0) for all A ∈ F , Thus A0 =
⋃

[A : A ∈ F] ⊆ ϕ(A0) .

We have shown (A). It remains to prove

ϕ(A0) ⊆ A0 .(B)

We just proved that A0 ⊆ ϕ(A0). Since ϕ is nondecreasing, ϕ(A0) ⊆ ϕ
(
ϕ(A0)

)
.

Thus ϕ(A0) ∈ F, thus ϕ(A0) ⊆
⋃

[A : A ∈ F] , i.e., ϕ(A0) ⊆ A0 .

We have shown that A0 is a fixed point for ϕ. �
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Example 10.2. Can one replace in Tarski’s fixed point theorem the assumption ϕ nondecreasing
with ϕ nonincreasing? In other words, if ϕ : 2Ω −→ 2Ω satisfies

A,B ⊆ Ω and A ⊆ B ⇒ ϕ(A) ⊇ ϕ(B) ,

will there be A0 ⊆ Ω such that ϕ(A0) = A0?
Here is a counterexample. Assume that Ω contains at least two arguments. Let a∗ ∈ Ω and define

ϕ(A) :=

{
∅ if a∗ ∈ A ,
Ω if a∗ ∈ A ,

(A ⊆ Ω).

The table below shows both that ϕ is nonincreasing and that there is no fixed point.
Let B ⊆ A ⊆ Ω. We look at all possible cases, de-
pending on whether or not a∗ ∈ B, a∗ ∈ A. Note that
a∗ ∈ B and a∗ ∈ A cannot happen, since B ⊆ A.

a∗ ∈ B a∗ ∈ A ϕ(B) = ∅ ϕ(A) = ∅
a∗ /∈ B a∗ /∈ A ϕ(B) = Ω ϕ(A) = Ω
a∗ /∈ B a∗ ∈ A ϕ(B) = Ω ϕ(A) = ∅ �

Theorem 10.3 (Cantor–Schröder–Bernstein’s Theorem 123 ).

Let X and Y be nonempty sets. Let there be injective functions

f : X � Y and g : Y � X .

Then there exists a bijection X ∼−→ Y .

PROOF: The proof given here is based on the Tarski Fixed Point Theorem. Let

ϕ : 2X −→ 2X ; A 7→ g
(
Y \ f(X \A)

)
.

Since A 7→ X \ A is nonincreasing and the direct image function U 7→ f(U) is nondecreasing,
A 7→ f(X \A) is nonincreasing, thus A 7→ Y \ f(X \A) is nondecreasing.
Since the direct image function V 7→ g(V ) is nondecreasing, ϕ : A 7→ g

(
Y \ f(X \A)

)
is nondecreas-

ing. It follows from Theorem 10.2 (Tarski’s Fixed Point Theorem) on p.310 that there exists A0 ∈ X
such that ϕ(A0) = A0.
Let X∗ ⊆ X and Y∗ ⊆ Y . Since f and g are injective, it follows from Proposition 5.9 on p.152 that
the restrictions

f∗ : X∗ −→ f(X∗) ; x 7→ f(x) and g∗ : Y∗ −→ g(Y∗) ; y 7→ g(y)

are bijections. We apply this to the sets X∗ := X \A0 and Y∗ := Y \ f(X \A0):

g∗ : Y \ f(X \A0)
∼−→ g

(
Y \ f(X \A0)

)
and f∗ : X \A0

∼−→ f(X \A0)

thus are bijections. Since A0 = ϕ(A0) = g
(
Y \ f(X \A0)

)
, we have bijections

(g∗)
−1 : A0

∼−→ Y \ f(X \A0) and f∗ : X \A0
∼−→ f(X \A0).(A)

123Named after the German mathematicians Friedrich Wilhelm Karl Ernst Schröder (1841 – 1902), Georg Ferdinand
Ludwig Philipp Cantor (1845 – 1918), Felix Bernstein (1878 – 1956)
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The picture to the right illustrates those bijec-
tions.
Next, we observe that any two sets U and V
satisfy U ∪ V = (U \ V )

⊎
U . Hence,

• if V ⊆ U then U = U ∪ V = (U \ V )
⊎
U .

It follows that we have unions of disjoint sets
• X = (X \A0)

⊎
A0

• Y =
(
Y \ f(X \A0)

) ⊎
f(X \A0).

By Proposition 10.3 on p.310, the bijections (g∗)
−1 and f∗ in (A) can be combined into a bijection

h : A0

⊎
X(\A0)

∼−→
(
Y \ f(X \A0)

)⊎
f(X \A0) i.e., X

∼−→ Y . �

Corollary 10.1.

The relation card(X) ≤ card(Y ) partially orders the set AAA := {card(X) : X ⊆ Ω} .

PROOF: We must show reflexivity, antisymmetry, and transitivity.
Case 1: None of the sets involved is empty.
Reflexivity is obvious, antisymmetry follows from Cantor-Schröder-Bernstein and transitivity fol-
lows from prop.5.5(a): The composition of two injective functions is injective.
Case 2: At least one of the sets involved is empty:
We use the fact that if card(A) ≤ card(B) and B = ∅ then A = ∅.
As an example we prove antisymmetry: If X = ∅ and card(X) ≤ card(Y ) and card(Y ) ≤ card(X)
then the second “≤” implies Y = ∅, i.e.,X = Y . On the other hand, If Y = ∅ and card(X) ≤ card(Y )
and card(Y ) ≤ card(X) then the first “≤” implies X = ∅, i.e., X = Y . �

Theorem 10.4.

Let X,Y ⊆ Ω. Then

card(X) ≤ card(Y ) or card(Y ) ≤ card(X)

In other words, “≤” is a total ordering 124 on the set of all cardinalities for subsets of Ω.

PROOF: The proof will be given in thm.15.2, p.454, of ch.15 (Applications of Zorn’s Lemma). �

As an application of the Cantor–Schröder–Bernstein theorem we will prove that one can biject any
two intervals of real numbers, no matter whether one or both of them are open, closed, or half–open.

Theorem 10.5.

Let a, b ∈ R such that a < b. Let A be one of ]a, b[, ]a, b ], [ a, b[, [ a, b ].

Then card(A) = card(R) .

124See Definition 5.5 (Linear orderings) on p.131.
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PROOF:

(a) F : R→ ]− 1, 1[ ; x 7→ x
|x|+1 has the function G(y) :=

{
y

1−y ifx ≥ 0,
y

1+y ifx < 0.
as an inverse. The proof

of this is tedious but elementary if one observes that y ≥ 0 if and only if x ≥ 0. This makes it easy
to solve y = x

|x|+1 for x. The details are left to the reader. It follows that card(]− 1, 1[) = card(R).

(b) Let c > 0. The function x 7→ cx is a bijection from ] − 1, 1[ to ] − c, c[ because it has the function
y 7→ y

c as an inverse. It follows from part (a) that card(]− c, c[) = card(R).

(c) If λ ∈ R then x 7→ x+ λ bijects A to A+ λ (Inverse: y 7→ y − λ). Let c := b−a
2 and B := A− a+b

2 .
Then B is the interval with endpoints −c and c where either endpoint of B is included/excluded
if and only if such is the case for the corresponding endpoint of A. Note that card(B) = card(A)
because B is the image of A under the bijection x 7→ x− b−a

2 .
(d) It follows from ] − c, c[ ⊆ B and part (b) that card(R) = card(] − c, c[) ≤ card(B), and it then
follows from B ⊆ R that card(R) ≤ card(B) ≤ card(R).
It is a consequence of the Cantor–Schröder–Bernstein Theorem which is formulated and proved
later on (ch.10.2 125 , thm.10.3 on p.311) that there exists a bijection between B and R. We saw in
part (c) that card(B) = card(A). This proves card(A) = card(R). �

We have previously seen that R is uncountable by proving that the subset of all real numbers x =
∞∑
j=1

dj10−j such that dj = 3 or dj = 4 can be bijected to the uncountable set {3, 4}N. See Theorem

9.12 on p.285. The next theorem, which is another application of the Cantor–Schröder–Bernstein
Theorem, uses this fact to prove that the set of real numbers and the power set of N can be bijected.

Theorem 10.6. (10.7) card(R) = card(2N) .

PROOF: First, we show that there exists an injection f : 2N → R.
(a) Proposition 8.15 on p.247 shows that there is a bijection f1 : 2N → {0, 1}N.
(b) Clearly, the function defined by 0 7→ 3 and 1 7→ 4 is a bijection f2 : {0, 1}N → {3, 4}N.
(c) Moreover, the proof of Theorem 9.12 on p.285 shows that {3, 4}N can be bijected to the

subset {x = 0.d1d2d3 · · · : dj = 3 or dj = 4} of R. Thus, we have an injection f3 : {3, 4}N →
R.

(d) It follows that f : f3 ◦ f2 ◦ f1 is an injection 2N → R.

Next, we show that there exists an injection g : R→ 2N.
(e) Since Q is countable, there is a sequence qn ∈ Q such that Q = {qn : n ∈ N}.
(f) x 7→ {n ∈ N : qn < x} defines a function g : R→ 2N. We claim that g is injective:

Let x, x′ ∈ R such that x 6= x′. We may assume that x < x′. According to Proposition 9.36
on p.283, there exists n∗ ∈ N such that x < qn∗ < x′. Since n∗ /∈ g(x1) and n∗ ∈ g(x2), it
follows that g(x1) 6= g(x2). This proves injectivity of g

125“Cardinality as a Partial Ordering”. The proof of the Cantor–Schröder–Bernstein Theorem is by no means trivial.
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It follows from (d) and (g) that there are injections f : 2N → R and g : R → 2N. We apply Cantor–
Schröder–Bernstein and conclude that R and 2N can be bijected. Thus, card(R) = card(2N). �

10.3 Alternate Proofs of the Cantor–Schröder–Bernstein Theorem ?

The author has seen different proofs of the Cantor–Schröder–Bernstein Theorem. They all are a lot
more complicated than the one given in Chapter , They are given here since they are interesting
exercises with respect to working with sets.
I - First alternate proof:
The following proof of the Cantor–Schröder–Bernstein Theorem and the material that precedes it
closely follow Chapter 11 of [6] Chartrand, G., Polimeni, A. and Zhang, Ping: Mathematical Proofs:
A Transition to Advanced Mathematics.

Definition 10.3. Let ∅ 6= Y ⊆ X and f : X → Y . Then we define for each n ∈ [0,∞[Z,

fn : X −→ Y ; f0(x) := x , fn(x) := f
(
fn−1(x)

)
if n ∈ N .

We call fn the n–th iterate of f . �

Remark 10.1. It follows from Y ⊆ X and the monotonicity of the direct image function that

X ⊇ Y ⊇ f(X) , thus f(X) ⊇ f(f(X)) = f2(X) , thus f2(X) ⊇ f(f2(X)) = f3(X) , . . .

It follows that Y is big enough to function as codomain for each iterate f1, f2, . . . since

Y ⊇ f(X) ⊇ fm(X) ⊇ fn(X) , for all integers 1 ≤ m < n . �(10.8)

Example 10.3. Let f : [0, 1/2]→ [0, 1/3];x 7→ x2.
Note that [0, 1/3] ⊆ [0, 1/2] Then f0(x) = f(x) = x2 and fn(x) = x2n.
Also note that 0 ≤ x ≤ 1/2 implies 0 ≤ x2n ≤ 1/(22n) < 1/3 and thus [0, 1/3] is sufficiently large as
codomain for each fn (except n = 0). �
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Lemma 10.1. Let ∅ 6= B ⊆ A such that there exists an injection f : A� B. Then there exists a bijection
between A and B.

PROOF: If B = A then the identity idA bijects A to B and the proof is finished. We thus assume
B ( A, hence A \B 6= ∅. Since nothing needs to be shown if f is surjective we also assume that

f(A) 6= B , i.e., B \ f(A) 6= ∅ .(A)

Let B′ := {fn(x) : x ∈ A \B, n ∈ N}(B)

We obtain from (A) that B \ f(A) 6= ∅, hence B′ 6= ∅.
It follows from (10.8) on p.314 that fn(x) ∈ f(A) for all x ∈ A and n ∈ N, hence

B′ ⊆ f(A) , for all n ∈ N .(C)

Let C := B′ ∪ (A \B) and D := B \B′ .(D)

It follows from f0(x) = x, hence f0(A \B) = A \B, that

C = {fn(x) : x ∈ A \B, n ∈ [0,∞[Z} .(E)

We want to define functions which have C and D as their domains and/or codomains, and this
requires C 6= ∅ and D 6= ∅. Clearly, C 6= ∅ because ∅ 6= A \B ⊆ C.
To see that D 6= ∅, note that (A) and (C) yield B \ f(A) 6= ∅ and B′ ⊆ f(A). Thus

∅ 6= B \ f(A) ⊆ B \B′ = D .

Next we show that f(C) ⊆ B′, i.e., if x ∈ C then f(x) ∈ B′. We separately consider x ∈ A \ B and
x ∈ B′.
(i) x ∈ A \B: Since f(x) = f1(x), we obtain from (B) that f(x) ∈ B′.
(ii) x ∈ B′: It follows from (B) that there exists n ∈ N and x̃ ∈ A \B such that x = fn(x̃), thus, again
by (B), f(x) = fn+1(x̃) ∈ B′.
Since f(C) ⊆ B′ we can downsize the codomain of f to B′ if we restrict f to C. In other words, the
following is a valid definition of a function.

fC : C −→ B′ fC(x) := f(x) .(F)

Next we prove that fC is bijective, i.e., fC is surjective and injective.
Let y ∈ B′. It follows from (B) that there exists n ∈ N and x ∈ A \B such that y = fn(x).
(i) n = 1: Then y = f(x). Since x ∈ A \ B and A \ B ⊆ C and thus fC(x) = f(x), we found x ∈ C
such that fC(x) = y.
(ii) n > 1, i.e., n = k + 1 for some k ∈ N: Let x̃ = fk(x). Then x̃ ∈ B′ by (B). Since B′ ⊆ C and
fC(c) = f(c) for all c ∈ C, we found x̃ ∈ C such that

fC(x̃) = f(x̃) = f
(
fk+1(x)

)
= f

(
fn(x)

)
= y .
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(i) and (ii) imply that fC is surjective. Moreover, fC is injective as a restriction of the injection f to a
smaller domain. Thus fC is bijective. Next we show

B′ ∩D = ∅ and C ∩D = ∅ .(G)

It is trivial that B′ ∩ D = ∅ since D = B \ B′ by (D) shows that D and B′ have no elements in
common. This also helps to see that C ∩D = ∅:

D ∩ C = (B \B′) ∩
(
(A \B) ∪B′

)
= B ∩ (A \B′) ∩

(
(A \B) ∪B′

)
⊆ B ∩ (A \B′).

Assume x ∈ D. In other words, x ∈ B \B′. Then (i): x ∈ B, thus x /∈ A \B. Also, (ii): x /∈ B′. Thus
(i) and (ii) together imply that x /∈ (A \B) ∪B′, i.e., x /∈ C
We have shown that x ∈ D ⇒ x /∈ C and thus C ∩D = ∅. We have proved (G). We recall that fC
bijects C to B′. Obviously the identity function idD : x 7→ x bijects D to itself. By Proposition 10.3
on p.310, the function

h : C
⊎
D −→ B′ ]D ; x 7→

{
fC(x) ifx ∈ C,
x ifx ∈ D,

(H)

bijects C
⊎
D to B′

⊎
D

Next we show that C
⊎
D = A. It follows from (E) that

C ⊇ {f0(x) : x ∈ A \B} .C = {x : x ∈ A \B} = A \B .(I)

Moreover, since C ⊇ B′,

C ∪D = C ∪ (B \B′) ⊇ C ∪ (B \ C) ⊇ C ∪B .(J)

Since C ⊇ A \B by (I) and C ∪D ⊇ C ∪B by (J),

C ∪D = C ∪B ⊇ (A \B) ∪B ⊇ A .

But all sets occurring above are subsets of A. It follows that C
⊎
D = A.

Next we show that B′
⊎
D = B. It follows from (C) that B′ ⊆ f(A). Since B is the codomain of f

we further have f(A) ⊆ B. Thus B′ ⊆ B, thus B′ ∪ (B \B′) = B, thus

B′ ∪D = B′ ∪ (B \B′) = B .

It follows that the function h defined in (H) is a bijection

h : A
∼−→ B .

We have proved the lemma. �

With the help of Lemma 10.1 the proof of the Cantor–Schröder–Bernstein Theorem is a simple affair.
ALTERNATE PROOF I of Theorem 10.3:
Since g is injective, the function

g∗ : Y −→ g(Y ) ; y 7→ g(y)
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is bijective.

Since the function ϕ := g∗ ◦ f : X −→ g(Y ) is injective as
the composition of two injective functions

X Y

g(Y )

f

g∗g∗ ◦ f

and since g(Y ) ⊆ X we can apply Lemma 10.1 withX instead ofA and g(Y ) instead ofB. It follows
that there exists a bijection

h : X
∼−→ g(Y ) .

The function g∗ is bijective, hence it has an inverse g−1
∗ :

g(Y )
∼−→ Y . Thus g−1

∗ ◦ h : X
∼−→ Y is bijective as the

composition of two bijections. �

X g(Y )

Y

h

g−1
∗g−1

∗ ◦ h

II - Second alternate proof:
The next proof of the Cantor–Schröder–Bernstein Theorem and the material that precedes it closely
follow the presentation in [11] Haaser/Sullivan: Real Analysis.

Lemma 10.2. Let A1, A2, A3 be nonempty sets such that A1 ⊇ A2 ⊇ A3. and such that there exists a
bijection f : A1

∼−→ A3. Then there exists a bijection g : A1
∼−→ A2.

PROOF: We define a sequence of sets An for n ≥ 4 as An := f(An−2). Note that if follows from the
surjectivity of f that f(A1) = A3 and thus we obtain

An = f(An−2) for n ≥ 3.

Next we define sets Bk as follows:

B0 :=
∞⋂
n=1

An; Bk := Ak \Ak+1 for n ∈ N.

We will prove the following:
(a) The sequence (An)∞n=1 is nonincreasing, i.e., k < n ⇒ Ak ⊇ An.
(b) The sets Bk are mutually disjoint: i, j ∈ [0,∞[⇒ Ai ∩Aj = ∅.

(c) c1. A1 =
∞⋃
k=0

Bk; c2. A2 =
⋃[

Bk : k ≥ 0, k 6= 1
]
.

(d) k ∈ N ⇒ f(Bk) = Bk+2.

(e) The function g defined as g(x) :=

{
f(x) if x ∈

⊎[
B2k−1 : k ≥ 1

]
,

x if x ∈
⊎[

B2k : k ≥ 0
] is a bijection A1

∼−→ A2.

The function g defined in (e) above is the bijection which this lemma claims to exists.
PROOF of (a):
We reformulate (a) as follows: Let n ∈ N. For all i < j ≤ n it is true that Ai ⊇ Aj . The proof is done
by strong induction on n.
Base cases: n ≤ 3 The above is true for n = 1, 2, 3 since we assumed A1 ⊇ A2 ⊇ A3.
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Induction assumption: Since the base cases cover n + 1 ≤ 3 we may assume that n + 1 ≥ 4, i.e.,
n ≥ 3:
We have some n ≥ 3 such that if 1 ≤ i < j ≤ n then Ai ⊇ Aj . (IA)
We must prove that if 1 ≤ i, j ≤ n+ 1 then Ai ⊇ Aj . (?) .
There is nothing to prove if i = j. We may also assume that j = n+ 1 since otherwise 1 ≤ i < j ≤ n
and the induction assumption allows us to conclude that Ai ⊇ Aj . There is no need for the variable
j since it has been fixed to n+ 1.
We moreover may assume that i ≥ 3: If we can prove (?) for 3 ≤ i < n + 1 then it is true that
A3 ⊇ An+1. Since A1 ⊇ A2 ⊇ A3. Ai ⊇ An+1 will also be true for i = 1 and i = 2.
Thus it suffices to prove that if 3 ≤ i < n+ 1 then Ai ⊇ An+1. (?) .
That is trivial: Since 1 ≤ i−2 < n−1 the induction assumption yieldsAi−2 ⊇ An−1. Since the direct
image function is monotone (see 5.16 on p.143) it follows that f(Ai−2) ⊇ f(An−1), i.e., Ai ⊇ An+1.
PROOF of (b):
Let 1 ≤ i < j. Then

Bi ∩Bj = (Ai \Ai+1) ∩ (Aj \Aj+1) ⊆ (Ai \Ai+1) ∩Aj ⊆ (Ai \Ai+1) ∩Ai+1 = ∅.

Here the last “⊆” follows from the fact that An is nonincreasing and j ≥ i+ 1, and the last equation
follows from the definition of “\”.
PROOF of c1: For the proof of “⊇” we note that A1 ⊇ Ak ⊇ Ak \ Ak+1 = Bk for all k ∈ N, and that

trivially A1 ⊇ B0 =
∞⋂
k=1

Ak.

For the reverse inclusion let x ∈ A1 and J := {j ∈ N : x ∈ Aj}. There are two cases: Case 1: J
is unbounded. Then J = N since the sets Aj are nonincreasing. Thus x ∈ Aj for all j ≥ 0, thus

x ∈
∞⋂
n=1

An, i.e., x ∈ B0, thus x ∈
∞⋃
k=0

Bk. Case 2: J is bounded. Note that J 6= ∅ since 1 ∈ J , thus

j∗ := max(J) exists according to the extended well-ordering principle. It follows from x ∈ Aj∗ and

x /∈ Aj∗+1 that x ∈ Bj∗ = Aj∗ \Aj∗+1, thus x ∈
∞⋃
k=0

Bk.

PROOF of c2: For the proof of “⊇” we note that A2 ⊇ Ak ⊇ Ak \ Ak+1 = Bk for all k ≥ 2, and that

trivially A2 ⊇ B0 =
∞⋂
k=1

Ak.

For the reverse inclusion let x ∈ A2 and J := {j ∈ Z : j ≥ 2 and x ∈ Aj}. Case 1: J is unbounded.

Then J = [2,∞[Z since the sets Aj are nonincreasing. Thus x ∈ Aj for all j ≥ 2, thus x ∈
∞⋂
n=2

An

which equals
∞⋂
n=1

An since A1 ⊇
∞⋂
n=2

An, i.e., x ∈ B0.It follows hat x ∈
⋃[

Bk : k ≥ 0, k 6= 1
]
. Case

2: J is bounded. Then j∗ := max(J) exists according to the extended well-ordering principle. It
follows from x ∈ Aj∗ and x /∈ Aj∗+1, thus x ∈ Bj∗ = Aj∗ \Aj∗+1, thus x ∈

⋃[
Bk : k ≥ 0, k 6= 1

]
.

PROOF of (d): Since the bijective f is compatible with all set operation we have f(U \ V ) = f(U) \
f(V ) for any two sets U, V (see (8.46) on p.244). It follows for any k ∈ N that

f(Bk) = f(Ak \Ak+1) = f(Ak) \ f(Ak+1) = Ak+2 \Ak+3 = Bk+2.

PROOF of (e): Let O :=
⊎[

B2k−1 : k ≥ 1
]

and E :=
⊎[

B2k : k ≥ 0
]
. We note that it is appropriate

to write ] instead of ∪ since we proved in (b) that the sets Bk are mutually disjoint, and that this
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then implies that the assignment x 7→ g(x) is unambiguous: either x ∈ O and g(x) = f(x) or x ∈ E

and g(x) = x. Further we obtain from c1 that the domain O ] E =
∞⋃
k=0

Bk of f equals A1. Since f

satisfies f
(⋃

i
Ui
)

=
⋃
i
f(Ui) for any family (Ui)i such that each Ui belongs to the domain A1 of f

(see prop.8.5 (Properties of the direct image) on p.241) ) it follows that

g(A1) = g(O
⊎
E) = g(O) ∪ g(E) = f(O) ∪ E = f

( ⊎
k≥1

B2k−1

)
∪
⊎
k≥0

B2k : k ≥ 0.

We proved in (d) that f(Bk) = f(Bk+2) for all k ∈ N. Thus

g(A1) =
⊎
k≥1

f(B2k−1) ∪
⊎
k≥0

B2k =
⊎
k≥1

B2k+1 ]
⊎
k≥0

B2k = B0 ]
⊎[

Bj : k ≥ 2
]

= A2.

We have proven that the function g : A1 → A2 is surjective. All that remains to prove the lemma,
i.e., that there exists a bijection A1

∼−→ A2 is to show that g is injective.
So let x, x′ ∈ A1 such that x 6= x′. It follows from (b) and c1 that there exist unique indices j, k ≥ 0
such that x ∈ Bj and x′ ∈ Bk. Since both mappings x 7→ f(x) and x 7→ x are injective g(x) 6= g(x′)
in the case that j = k.
We may thus assume that j 6= k. If both j and k are odd then it follows from the injectivity of f that
g(x) = f(x) 6= f(x′) = g(x′) and we are done. If both j and k are even then g(x) = x 6= x′ = g(x′).
Again we are done.
Finally assume that j is odd and k is even. Then j + 2 is odd and thus must be different from the
even index k, thusBj+2 andBk are disjoint. Since g(x) ∈ g(Bj) = f(Bj) = Bj+2 and g(x′) = x′ ∈ Bk
and those two sets have empty intersection it follows that g(x) 6= g(x′). We have proven injectivity
and thus bijectivity of g : A1

∼−→ A2. �

ALTERNATE PROOF II of Theorem 10.3:
Let B1 := f ′(X), A2 := g′(Y ), A3 := g′(B1).
Then B1 ⊆ Y and A2 ⊆ X , thus A3 = g′(B1) ⊆ g′(Y ) = A2 ⊆ X .
Further, g′

(
f ′(X)

)
= g′(B1) = A3.

Since the function g′ ◦ f ′ is injective as the composition of two injective functions this proves that
g′ ◦ f ′ : X ∼−→ A3 is bijective.
It follows from lemma 10.2 above that there exists a bijection

f : X
∼−→ A2 = g′(Y ) .

Since g′ : Y → A is injective we obtain from this function a bijection

g : Y
∼−→ A2

by simply downsizing the codomain to g′(Y ) But then the function

g−1 ◦ f is a bijection X
∼−→ Y

as the composition of two bijective functions. �
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III - Third alternate proof:
The follwing last proof of the Cantor–Schröder–Bernstein’s Theorem is a more detailed version of
the one found in the chapter Further Topics F: Cardinal Number and Ordinal Number of [2] B/G
(Beck/Geoghegan).

ALTERNATE PROOF III of Theorem 10.3:
We have no interest in any particulars of the sets X and Y . We only are interested in establishing
the existence of a bijection h : X → Y . We hence may assume that X and Y are mutually disjoint,
replacing X with {1} ×X and Y with {2} × Y if necessary (see remark 5.16 on p.150).
Let f : X

∼−→ f ′(X) and g : Y
∼−→ g′(Y ) be the bijective functions obtained from the injections

f ′ and g′ by restricting their codomains to the images of their domains. We note that the subsets
f ′(X) ⊆ Y and g′(Y ) ⊆ X also are disjoint and that f(X) = f ′(X), g(Y ) = g′(Y ). Let

σ : f(X)
⊎
g(Y ) → X

⊎
Y ; z 7→

{
f−1(z) if z ∈ f(X),

g−1(z) if z ∈ g(Y ),
(10.9)

i.e., σ
∣∣
f(X)

= f−1 and σ
∣∣
g(Y )

= g−1. Note that if y ∈ f(X) then σ(y) ∈ X ; if x ∈ g(Y ) then
σ(x) ∈ Y . We can create iterates

σ2(z) = σ
(
σ(z)

)
, σ3(z) = σ

(
σ2(z)

)
, . . . , σn+1(z) = σ

(
σn(z)

)
, . . . ,

just as long as σn(z) ∈ f(X)
⊎
g(Y ). We further define σ0 for all z ∈ f(X)

⊎
g(Y ) as σ0(z) := z. We

associate with each z ∈ X
⊎
Y a “score” N(z) ∈ Z≥0 ∪ {∞} as follows.

(a) If σk(z) ∈ f(X)
⊎
g(Y ) for all k ∈ N then N(z) :=∞.

(b) If σk(z) /∈ f(X)
⊎
g(Y ) for some k ∈ N then N(z) := min{ j ≥ 0 : σj(z) /∈ f(X)

⊎
g(Y ) }.

Note that (b) implies the following: If z = σ0(z) /∈ f(X)
⊎
g(Y ) then N(z) = 0.

Depending on whether we start out with x ∈ g(Y ) or y ∈ f(X), we obtain the following finite or
infinite sequences:

if x ∈ g(Y ) : x
σ→ f−1(x)

σ→ g−1(f−1(x))
σ→ f−1(g−1(f−1(x)))

σ→ . . . ,

if y ∈ f(X) : y
σ→ g−1(y)

σ→ f−1(g−1(y))
σ→ g−1(f−1(g−1(y)))

σ→ . . . .

If N(z) <∞ then the sequence will terminate after N(z) iterations. Let

XE := {x ∈ X : N(x) is even }, XO := {x ∈ X : N(x) is odd }, X∞ := {x ∈ X : N(x) =∞},
YE := {y ∈ Y : N(y) is even }, YO := {y ∈ Y : N(y) is odd }, Y∞ := {y ∈ Y : N(y) =∞}.

The above defines partitions X = XE
⊎
XO

⊎
X∞ and Y = YE

⊎
YO
⊎
Y∞ of X and Y .

Each of the functions f, g, σ changes the score of its argument from odd to even and from even to
odd. Hence

f(XE) ⊆ YO, f−1(YO) ⊆ XE , f(XO) ⊆ YE , f−1(YE) ⊆ XO,

g(YE) ⊆ XO, g
−1(XO) ⊆ YE , g(YO) ⊆ XE , g−1(XE) ⊆ YO,

f(X∞) ⊆ Y∞, f−1(Y∞) ⊆ X∞, g(Y∞) ⊆ X∞, g−1(X∞) ⊆ Y∞,
(10.10)
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We define a bijection h : X
∼→ Y as follows:

h : X → Y ; x 7→

{
σ(x) = g−1(x) if x ∈ XO

⊎
X∞,

f(x) if x ∈ XE .

Note that g−1(x) is defined for all x ∈ XO
⊎
X∞ because we then have N(x) > 0.

We show that h is injective: Let x1, x2 ∈ X such that x1 6= x2. There are four cases.
Case 1: Both x1, x2 ∈ XO

⊎
X∞. Then h(x1) = g−1(x1) 6= g−1(x2) = h(x2) because the bijectivity of

g implies that of g−1. In particular, g−1 is injective.
Case 2: Both x1, x2 ∈ XE . Then h(x1) = f(x1) 6= f(x2) = h(x2) because f is injective.
Case 3: x1 ∈ XO

⊎
X∞ and x2 ∈ XE . It follows from (10.10) that h(x1) = g−1(x1) ∈ YE ] Y∞ and

that h(x2) = f(x2) ∈ YO. Because YE ] Y∞ and YO have no elements in common, it follows that
h(x1) 6= h(x2). We have proved that h is injective.
Case 4: x2 ∈ XO

⊎
X∞ and x1 ∈ XE . Injectivity of h follows from case 3 because we can switch the

roles of x1 and x2.
We finally show that h is surjective: Let y ∈ Y . There are two cases.
Case (i): y ∈ YE

⊎
Y∞. It follows from (10.10) that g(y) ∈ XO

⊎
X∞, hence

h(g(y)) = σ(g(y)) = g−1(g(y)) = y.

Here the second equation follows from (10.9). We have found an item in X which is mapped by h
to y. and this proves that h is surjective.
Case (ii): y ∈ YO. It follows from (10.10) that f−1(y) ∈ XE , hence h(f−1(y)) = f(f−1(y)) = y. Again
we have found an item in X which is mapped by h to y. We have proved that h is surjective also in
this case. �

10.4 Exercises for Ch.10

Exercise 10.1. Let Ω be a set and let ϕ : 2Ω → 2Ω satisfy A,B ⊆ Ω and A ⊆ B ⇒ ϕ(A) ⊆ ϕ(B) .

Let F := {A ∈ 2Ω : A ⊆ ϕ(A)} , A0 :=
⋃

[A : A ∈ F] .

The proof of Tarski’s fixed point theorem (Theorem 10.2 on p.310) shows that A0 is a fixed point for
ϕ, i.e., ϕ(A0) = A0. Modify this proof to show the following:

Let EEE := {B ∈ 2Ω : ϕ(B) ⊆ B} , B0 :=
⋂

[B : B ∈ EEE ] .

Then B0 also is a fixed point for ϕ.

Exercise 10.2. Prove prop.10.1 on p.308:
Let X,Y be two sets such that card(X) = card(Y ). Then card(2X) = card(2Y ). �
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Exercise 10.3. Prove prop.10.3 on p.310 of this document: Let X,X ′, Y, Y ′ be nonempty sets such
that X ∩X ′ = ∅ and Y ∩ Y ′ = ∅ Let f : X � Y and f ′ : X ′� Y ′ injective functions. Then

h : X
⊎
X ′ −→ Y ] Y ′ ; x 7→

{
f(x) ifx ∈ X,
f ′(x) ifx ∈ X ′,

is an injection.
Note that part of the proof is showing that the relation {(x, y) ∈ (X

⊎
X ′) × (Y ] Y ′) : y = h(x)}

indeed defines the graph of a function. �
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11 Vectors and Vector spaces

11.1 Rn: Euclidean Space

Most if not all of the material of this chapter with the exception of ch.11.2.2 (normed Vector Spaces)
on p.341 is familiar to anyone who took a linear algebra course or, in case of two or three dimen-
sional space, to those who took a course in multivariable calculus.

11.1.1 n–Dimensional Vectors

The following definition of an n–dimensional vector is a special case of a vector, something which
will be defined as an element of an abstract “vector space” . 126

Definition 11.1 (n–dimensional vectors). ?

Let n ∈ N. An n–dimensional vector is a finite, ordered collection ~v = (x1, x2, . . . , xn) of
real numbers x1, x2, . . . , xn, n is called the dimension of the vector ~v. �

Thus, ~v is an element of Rn. 127

Here are some examples of vectors:

Example 11.1 (Two–dimensional vectors). The two–dimensional vector ~v with coordinates x = −1.5
and y =

√
2 is written (−1.5,

√
2) and we have (−1.5,

√
2) ∈ R2. Order matters, so this vector is

different from (
√

2,−1.5) ∈ R2. �

Example 11.2 (Three–dimensional vectors). ~vt =
(
3 − t, 15,

√
5t2 + 22

7

)
∈ R3 with coordinates x =

3 − t, y = 15 and z =
√

5t3 + 22
7 is an example of a parametrized vector (parametrized by t). Each

specific value of t defines an element of ∈ R3, e.g., ~v−2 =
(
5, 15,

√
20 + 22

7

)
. note that

F : R→ R3 t 7→ F (t) = ~vt

defines a function from R into R3 in the sense of definition ( 5.7 ) on p.134. Each argument s has

assigned to it one and only one argument ~vs =
(
3− s, 15,

√
5s2 + 22

7

)
∈ R3.

Or, is it rather that we have three functions
x(·) : R→ R t→ x(t) = 3− t,
y(·) : R→ R t→ y(t) = 15,

z(·) : R→ R t→ z(t) =
√

5t2 + 22
7 ,

and t→ ~vt = (x(t), y(t), z(t)) is a vector of three real–valued functions x(·), y(·), z(·)?
Both points of view are correct and it depends on the specific circumstances how you want to inter-
pret ~vt. �

126The definition of an abstract vector space will be given in Definition 11.5 on p.329.
127See Definition 8.5 (Cartesian Product of three or more sets) on p.237) concerning Rn = R× R× · · · × R︸ ︷︷ ︸

ntimes

. .
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Example 11.3 (One–dimensional vectors). A one-dimensional vector has a single coordinate.
For example, ~w1 = (−3) ∈ R1 with coordinate x = −3 ∈ R and ~w2 = (5.7a) ∈ R1 with coordinate
x = 5.7a ∈ R are one–dimensional vectors. ~w2 is not a fixed number but parametrized by a ∈ R.
Mathematicians do not distinguish between the one–dimensional vector (x) and its coordinate
value, the real number x. For brevity, they will simply write ~w1 = −3 and ~w2 = 5.7a. �

Example 11.4 (Vectors as functions). An n–dimensional vector ~x = (x1, x2, x3, · · · , xn) can be inter-
preted as a real–valued function

f~x(·) : {1, 2, 3, · · · , n} −→ R m 7→ xm, i.e.,
f~x(1) = x1, f~x(2) = x2, · · · , f~x(n) = xn,

(11.1)

This can be done in reverse. Any real–valued function f(·) : {1, 2, 3, · · · , n} −→ R can be associated
with the vector ~vf(·) that lists the function values f(j):

~vf(·) := (f(1), f(2), f(3), · · · , f(n)) ∈ Rn. �(11.2)

Definition 11.2 (Transposed matrix). ?

Let A be a matrix with m rows and n columns.
We will write A =

((
aij
))

to express that aij de-
notes the “cell” at the intersection of row i and
column j. (i ∈ [1,m]Z and j ∈ [1, n]Z).

A =


a11, a12, ..., a1n
a21, a22, ..., a2n

...
...

...
am1, am2, ..., amn(t)

 .

If A is a matrix with m rows and n columns, and if aij denotes the “cell” at the intersection
of row i and column j, then we denote by A> the “flipped” matrix which has row i of A as
its i–th column, and column j of A as its j–th row.

In other words, ifA =
((
aij
))

and ifA> =
((
a∗k`
))

then
a∗ij = aji for all i ∈ [1,m]Z and j ∈ [1, n]Z. We call A>

the transpose or transposed matrix of A.
A> =


a11, a21, ..., am1
a12, a22, ..., am2

...
...

...
a1n, a2n, ..., amn(t)

 .

We usually do not work with matrix multiplication and do not care
whether we think of a vector as a column vector or a row vector. For
theoretical reasons, most books on linear algebra define vectors ~x ∈ Rn

as column vectors, as seen on the right.

~x =

 x1
x2

...
xn

 .
Since this is very annoying to typeset column vectors, we will often write instead

~x = (x1, . . . , xn)>

and indicate by means of the transpose symbol (·)> that ~x is a column vector. �
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11.1.2 Addition and Scalar Multiplication for n–Dimensional Vectors

Definition 11.3 (Addition and scalar multiplication in Rn). ? Given are two n–dimensional
vectors
~x = (x1, x2, . . . , xn) and ~y = (y1, y2, . . . , yn) and a real number α.
We define the sum ~x+ ~y of ~x and ~y as the vector ~z with the components

(11.3) z1 = x1 + y1; z2 = x2 + y2; . . . ; zn = xn + yn;

We define the scalar product α~x of α and ~x as the vector ~w with the components

(11.4) w1 = αx1; w2 = αx2; . . . ; wn = αxn. �

Figure 11.1 below describes vector addition.

��
���

���
�:

�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
�
�>

�
�
�
�
�
���

~v

~w

~v shifted

~v + ~w

Figure 11.1: Adding two vectors.

Adding two vectors ~v and ~w means that you take one of them, say ~v, and shift it in parallel (without
rotating it in any way or flipping its direction), so that its starting point moves from the origin to the
endpoint of the other vector ~w. Look at the picture and you see that the vectors ~v, ~w and ~v shifted
form three pages of a parallelogram. ~v + ~w is then the diagonal of this parallelogram which starts
at the origin and ends at the endpoint of ~v shifted.

11.1.3 Length of n–Dimensional Vectors and the Euclidean Norm

It is customary to write ‖~v‖2 for the length, often also called the Euclidean norm, of the vector ~v.

Example 11.5 (Length of one–dimensional vectors). For a vector ~v = x ∈ R its length is its absolute
value ‖~v‖2 = |x|. This means that ‖ − 3.57‖2 = | − 3.57| = 3.57 and ‖

√
2‖2 = |

√
2| ≈ 1.414. �

Example 11.6 (Length of two–dimensional vectors). We start with an example. Look at ~v = (4,−3).
Think of an xy-coordinate system with origin (the spot where x-axis and y-axis intersect) (0, 0).
Then ~v is represented by an arrow which starts at the origin and ends at the point with coordinates
x = 4 and y = −3 (see figure 11.2). How long is that arrow?
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Z
Z
Z
Z
Z
Z
Z
ZZ~

-~a

~v B

Figure 11.2: Length of a 2–dimensional vectors.

Think of it as the hypothenuse of a right angle triangle whose two other sides are the horizontal
arrow from (0, 0) to (4, 0) (the vector ~a = (4, 0) ) and the vertical line B between (4, 0) and (4,−3).
Note thatB is not a vector because it does not start at the origin! Obviously (I hope this is obvious)
we have ‖~a‖2 = 4 and length–of(B) = 3. Pythagoras tells us that

‖~v‖22 = ‖~a‖22 +
(
length–of–B

)2
and we obtain for the vector (4,−3) that ‖~v‖2 =

√
16 + 9 = 5.

The above argument holds for any vector ~v = (x, y) with arbitrary x, y ∈ R. The horizontal leg
on the x-axis is then ~a = (x, 0) with length |x| =

√
x2 and the vertical leg on the y-axis is a line

equal in length to ~b = (0, y) the length of which is |y| =
√
y2. The theorem of Pythagoras yields

‖(x, y)‖22 = x2 + y2 which becomes, after taking square roots on both sides,

(11.5) ‖(x, y)‖2 =
√
x2 + y2 �

Example 11.7 (Length of three–dimensional vectors). This is not so different from the two–
dimensional case. We build on the previous example. Let ~v = (4,−3, 12). Think of an xyz-
coordinate system with origin (the spot where x-axis, y-axis and z-axis intersect) (0, 0, 0). Then
~v is represented by an arrow which starts at the origin and ends at the point with coordinates x = 4,
y = −3 and z = 12. How long is that arrow?
Remember what the standard 3–dimensional coordinate system looks like: The x-axis goes from
west to east, the y-axis goes from south to north and the z-axis goes vertically from down below
to the sky. Now drop a vertical line B from the point with coordinates (4,−3, 12) to the xy–plane
which is “spanned” by the x-axis and y-axis. This line will intersect the xy–plane at the point with
coordinates x = 4 and y = −3 (and z = 0. Why?)
Note that B is not a vector because it does not start at the origin! It should be clear that
length–of(B) = |z| = 12.
We connect the origin (0, 0, 0) with the point (4,−3, 0) in the xy–plane (the endpoint ofB).
We can apply what we know 2–dimensional vectors because this arrow is contained in the xy–plane.
Matter of fact, we have a genuine two–dimensional vector ~a = (4,−3) because the line starts at the
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origin. Observe that ~a has the same values 4 and −3 for its x– and y–coordinates as the original
vector ~v. 128 We know from the previous example about two–dimensional vectors that

‖~a‖22 = ‖(x, y)‖22 = x2 + y2 = 16 + 9 = 25.

At this point we have constructed a right angle triangle with a) hypothenuse ~v = (x, y, z) where we
have x = 4, y = −3 and z = 12, b) a vertical leg with length |z| = 12 and c) a horizontal leg with
length

√
x2 + y2 = 5. Pythagoras tells us that

‖~v‖22 = z2 + ‖(x, y)‖22 = 144 + 25 = 169, hence ‖~v‖2 = 13.

None of what we just did depended on the specific values 4, −3 and 12. Any vector (x, y, z) ∈ R3

is the hypothenuse of a right triangle where the square lengths of the legs are z2 and x2 + y2. We
conclude that it is true in general that ‖(x, y, z)‖2 = x2 + y2 + z2, hence

(11.6) ‖(x, y, z)‖ =
√
x2 + y2 + z2 �

The previous examples show how to extend the concept of “length” to vector spaces of any finite
dimension:

Definition 11.4 (Euclidean norm).

Let n ∈ N and ~v = (x1, x2, . . . , xn) ∈ Rn be an n–dimension vector. The Euclidean norm
‖~v‖2 of ~v is defined as follows:

(11.7) ‖~v‖2 =
√
x1

2 + x2
2 + . . .+ xn2 =

√√√√ n∑
j=1

xj2. �

The above definition is important enough to write the special cases for n = 1, 2, 3 where ‖~v‖2 coin-
cides with the length of ~v:

1–dimensional : ‖(x)‖2 =
√
x2 = |x|

2–dimensional : ‖(x, y)‖2 =
√
x2 + y2

3–dimensional : ‖(x, y, z)‖2 =
√
x2 + y2 + z2

(11.8)

Proposition 11.1 (Properties of the Euclidean norm).

Let n ∈ N. Then the Euclidean norm has the following properties, when viewed as a function

‖ · ‖2 : Rn → R; ~v = (x1, x2, . . . , xn) 7→ ‖~v‖2 =

√√√√ n∑
j=1

xj2 :

128You will learn in the chapter on vector spaces that the vector ~a = (4,−3) is the projection on the xy–coordinates
π1,2(·) : R3 → R2; (x, y, z) 7→ (x, y) of the vector ~v = (4,−3, 12) . See Example 11.19) on p.337.
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‖~v‖2 ≥ 0 ∀~v ∈ Rn and ‖~v‖2 = 0 ⇔ ~v = 0 (positive definiteness)(11.9a)
‖α~v‖2 = |α| · ‖~v‖2 ∀~v ∈ Rn, ∀α ∈ R (absolute homogeneity)(11.9b)
‖~v + ~w‖2 ≤ ‖~v‖2 + ‖~w‖2 ∀ ~v, ~w ∈ Rn (triangle inequality)(11.9c)

PROOF:
(a) It is certainly true that ‖~v‖2 ≥ 0 for any n–dimensional vector ~v because it is defined as
+
√
K where the quantity K is, as a sum of squares, nonnegative. If 0 is the zero vector

with coordinates x1 = x2 = . . . = xn = 0 then obviously ‖0‖2 =
√

0 + . . .+ 0 = 0. Conversely, let

~v = (x1, x2, . . . , xn) be a vector in Rn such that ‖~v‖2 = 0. This means that

√
n∑
j=1

xj2 = 0 which is

only possible if everyone of the nonnegative xj is zero. In other words, ~v must be the zero vector 0.
(b) Let ~v = (x1, x2, . . . , xn) ∈ Rn and α ∈ R . Then

‖α~v‖2 =

√√√√ n∑
j=1

(αxj)
2 =

√√√√ n∑
j=1

α2xj2 =

√√√√α2

n∑
j=1

xj2 =
√
α2

√√√√ n∑
j=1

xj2

=
√
α2‖~v‖2 = |α| · ‖~v‖2

because it is true that
√
α2 = |α| for any real number α (see assumption 2.1 on p.28).

(c) The proof will only be given for n = 1, 2, 3.
n = 1n = 1n = 1 : (11.9.c) simply is the triangle inequality for real numbers (see (2.5) on 28) and we are done.
n = 2, 3n = 2, 3n = 2, 3 : Look back at the picture about addition of vectors in the plane or in space (see p.325).
Remember that for any two vectors ~v and ~w you can always build a triangle whose sides have
length ‖~v‖2, ‖~w‖2 and ‖~v + ~w‖2. It is clear that the length of any one side cannot exceed the sum of
the lengths of the other two sides, so we get specifically ‖~v + ~w‖2 ≤ ‖~v‖2 + ‖~w‖2 and we are done.
The geometric argument is not exactly an exact proof but I used it nevertheless because it shows the
origin of the term "triangle inequality" for property (11.9.c). An exact proof will be given for arbi-
trary n ∈ N as a consequence of the so–called Cauchy–Schwartz inequality (cor.11.1). The inequality
itself is stated and proved in prop.11.12 on p.343 in the section which discusses inner products (dot
products) on vector spaces. �

11.2 General Vector Spaces

11.2.1 Vector spaces: Definition and Examples

Part of this follows [4] Brin, Matthew and Marchesi, Gerald: Linear Algebra, a text for Math 304,
Spring 2016.
Mathematicians are very fond of looking at different objects and figuring out what they have in
common. They then create an abstract concept whose items have those properties and examine
what they can conclude. For those of you who have had some exposure to object oriented program-
ming: It’s like defining a base class, e.g., "mammal", that possesses the core properties of several
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concrete items such as "horse", "pig", "whale" (sorry – can’t require that all mammals have legs). We
have looked at the following items that seem to be quite different:

real numbers
n–dimensional vectors
real–valued functions

Well, that was disingenuous. We saw that real numbers and one–dimensional vectors are sort of
the same (see 11.3 on p.324). We also saw that n–dimensional vectors can be thought of as real–
valued functions with domain X = {1, 2, 3, · · · , n}. (see 11.4 on p.324). Never mind, I’ll introduce
you now to vector spaces as sets of objects which you can "add" and multiply with real numbers
according to rules which are guided by those that apply to addition and multiplication of ordinary
numbers.
Here is quick reminder on how we add n–dimensional vectors and multiply them with scalars (real
numbers) (see (11.1.2) on p.325). Given are two n–dimensional vectors
~x = (x1, x2, . . . , xn) and ~y = (y1, y2, . . . , yn) and a real number α.
Then the sum ~z = ~x+ ~y of ~x and ~y is the vector with the components

z1 = x1 + y1; z2 = x2 + y2; . . . zn = xn + yn;

and the scalar product ~w = α~x of α and ~x is the vector with the components

w1 = αx1; w2 = αx2. . . . wn = αxn;

Example 11.8 (Vector addition and scalar multiplication). We use n = 2 in this example:
Let a = (−3, 1/5), b = (5,

√
2) We add those vectors by adding each of the coordinates separately:

a+ b = (2, 1/5 +
√

2)

and we multiply a with a scalar λ ∈ R, e.g. λ = 100, by multiplying each coordinate with λ:

100a = 100(−3, 1/5) = (−300, 20). �

In the last example we avoided using the notation "~x" with the cute little arrows on top for vectors.
The reason is that this notation is not all that popular in math, even for n–dimensional vectors,
and definitely not for abstract vectors as elements of a vector space. Here now is the definition
of a vector space, taken almost word for word from the book "Introductory Real Analysis" (Kol-
mogorov/Fomin [12]). This definition is quite lengthy because a set needs to satisfy many rules to
be a vector space.

Definition 11.5 (Vector spaces (linear spaces)). ? A nonempty set V is called a vector space or
linear space and we call its elements vectors if V satisfies the following:
(A) There exists a binary operation + : V × V → V ; (x, y) 7→ x + y on V such that (V,+) is an
abelian group (see def. 3.2 on p.52). We call x + y the sum of x and y. Note that (V,+) being an
abelian group means that the following properties hold for “+”:

1. x+ y = y + x for all x, y ∈ V ( commutativity );
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2. (x+ y) + z = x+ (y + z) for all x, y, z ∈ V ( associativity );

3. There exists an element 0 ∈ V , called the zero element, or zero vector, or null vector, with
the property that x+ 0 = x for each x ∈ V ;

4. For every x ∈ V , there exists an element −x ∈ V , called the negative of x, with the property
that x+ (−x) = 0 for each x ∈ V . When adding negatives, then there is a convenient short
form. We write x− y as an abbreviation for x+ (−y);

(B) There exists a function · : R × V → V ; (α, x) 7→ α · x, i.e., any real number α and vector x
uniquely determine a vector α · x . It is customary to simply write αx for α · x. This vector is called
the scalar product of α and x, and it has the following properties:

1. α(βx) = (αβ)x;

2. 1x = x;

(C) The operations of addition and scalar multiplication obey the two distributive laws

1. (α+ β)x = αx+ βx;

2. α(x+ y) = αx+ αy; �

Remark 11.1. ? We state for the reader’s convenience the above definition of a vector space V
one more time in a more easily remembered form.

(a) V is nonempty and comes with two assignments:
+ : V × V → V ; (x, y) 7→ x+ y , the sum of x and y,
· : R× V → V ; (α, x) 7→ α · x, (also written αx), the scalar product of α and x.

(c) (V,+) is an abelian group. We write 0 (null vector) for its neutral element, −x for the
inverse of a vector x, and x− y for x+ (−y).

(d) α(βx) = (αβ)x for all α, β ∈ R and x ∈ V .
(e) 1 · x = x for all x ∈ V . (1 is the real number 1).
(f) Two distributive laws:

(α+ β)x = αx+ βx,
α(x+ y) = αx+ αy. �

Definition 11.6 (Subspaces of vector spaces). ?

Let V be a vector space and let A ⊆ V be a nonempty subset of V such that

• For any x, y ∈ A and α ∈ R the sum x+ y and the scalar product αx also belong to A.

Then A is called a subspace of V .
The set {0}which only contains the null vector 0 of V is called the nullspace. �
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Remark 11.2 (Closure properties of linear subspaces).
(a) Note that if α = 0 then αx = 0. it follows that the null vector belongs to any subspace.
(b) We ruled out the case A = ∅ but did not require that A be a strict subset of V ((2.3) on

p.16). In other words, the entire vector space V is a subspace of itself.
(c) It is trivial to verify that the nullspace {0} is a subspace. �

Proposition 11.2 (Subspaces are vector spaces).

A subspace of a vector space is a vector space, i.e., it satisfies all requirements of definition (11.5).

PROOF: None of the equations that are part of the definition of a vector space magically ceases to
be valid just because we look at a subset. The only thing that could go wrong is that some of the
expressions might not belong to A anymore. Such can never be the case. Here is the proof for the
second distributive law of part C.
We must prove that for any x, y ∈ A and λ ∈ R

λ(x+ y) = λx+ λy.

First, x + y ∈ A because a subspace contains the sum of any two of its elements. It follows that
λ(x+y) as product of a real number with an element ofA again belongs toA because it is a subspace.
Hence the left–hand side of the equation belongs to A.
Second, both λx and λy belong to A because each is the scalar product of λ with an element of A
and this set is a subspace. It follows for the same reason that the right–hand side of the equation as
the sum of two elements of the subspace A belongs to A.
Equality of λ(x+ y) and λx+ λy holds because it holds for x and y as elements of V . �

Remark 11.3 (Closure properties). If a subset B of a larger set X has the property that certain
operations on members of B will always yield elements of B, then we say that B is closed with
respect to those operations. �

A subspace is a subset of a vector space which is closed with respect to vector addition and
scalar multiplication.

You have already encountered the following examples of vector spaces:

Example 11.9 (Vector space R). The real numbers R are a vector space if you take the ordinary
addition of numbers as "+" and the ordinary multiplication of numbers as scalar multiplication. �

Example 11.10 (Vector space Rn). The sets Rn of n–dimensional vectors become vector spaces if
addition and scalar multiplication are defined as in (11.3) on p.325. �

The following example should be thought of as the definition of the very important func-
tion spaces FFF (X,R), BBB(X,R), CCC (X,R).
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Example 11.11 (Vector spaces of real–valued functions). Let X be an arbitrary, nonempty set. Then

FFF (X,R) := {f(·) : f(·) is a real–valued function on X}(11.10)

denotes the set of all real–valued functions with domain X 129 and

BBB(X,R) := {g(·) : g(·) is a bounded real–valued function on X}

denotes the subset of all bounded real–valued functions with domain X .
Let A ⊆ R. Then

CCC (A,R) := {ψ(·) : ψ(·) is a continuous real–valued function on A}

denotes the set of all real–valued continuous functions with domain A. 130

We list separately the case X = [a, b] where a, b ∈ R such that a < b. Then

CCC ([a, b],R) := {h(·) : h(·) is a continuous real–valued function for a ≤ x ≤ b}

denotes the set of all contnuous real–valued functions with domain [a, b]. Note that, for continuous
functions, we had to restrict our choice of domain to subsets of real numbers because there is no
notion of continuity for functions on abstract domains (and codomains).
If you define addition and scalar multiplication as in (5.17) on p.153, then each of these sets of
real–valued functions becomes a vector space for the following reasons:
I: You can verify properties A, B, C of a vector space by looking at the function values for a specific
argument x ∈ X because then you just deal with ordinary real numbers.
II: The sum of two bounded functions and the product of a bounded function with a scalar is
a bounded function. In other words, “+′′ associates with any two elements f, g ∈ BBB(X,R) a third
item f+g ∈BBB(X,R) and “·′′ associates with any f ∈BBB(X,R) and α ∈ R a third item α·f ∈BBB(X,R).
III: Likewise, the sum of two continuous functions and the product of a continuous function with
a scalar is a continuous function. As for bounded functions, “+′′ associates with any two elements
f, g ∈ CCC ([a, b],R) a third item f + g ∈ CCC ([a, b],R) and “·′′ associates with any f ∈ CCC ([a, b],R) and
α ∈ R an item α · f ∈ CCC ([a, b],R).
It follows from the above that all three function sets are vector spaces and also that 1) BBB(X,R) is a
subspace of FFF (X,R), 2) CCC (X,R) is a subspace of FFF (X,R).
We will see in ch.14 (Compactness) on p.434 that continuous functions defined on a closed interval
are bounded. It follows that

CCC ([a, b],R) ⊆ BBB([a, b],R) ⊆ FFF ([a, b],R).

We deduce from this that 3) CCC ([a, b],R) also is a subspace of BBB([a, b],R).
It should be noted that, for example, continuous function need not be bounded on open intervals
]a, b[, as the example f(x) = 1

x demonstrates for a = 0 and b = 1.
We summarize the above:

129Note that FFF (X,R) = RX (see remark 8.4, p.239 which follows Definition 8.6 of the Cartesian Product of a family of
sets.)

130Continuity for such functions was discussed in ch.9.3 on p.263.
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FFF (X,R) = {f(·) : f(·) is a real–valued function on X}
BBB(X,R) = {g(·) : g(·) is a bounded real–valued function on X}

CCC ([a, b],R) = {h(·) : h(·) is a continuous real–valued function for a ≤ x ≤ b}

• We have subspace relationships BBB(X,R) ⊆ FFF (X,R)
• We have subspace relationships CCC ([a, b],R) ⊆ BBB([a, b],R) ⊆ FFF ([a, b],R) �

Here are some more examples.

Example 11.12 (Subspace {(x, y) : x = y} ). The set V := {(x, x) : x ∈ R} of all vectors in the plane
with equal x and y coordinates has the following property: For any two vectors ~x = (a, a) and
~y = (b, b) ∈ V (a, b ∈ R) and real number α the sum ~x+ ~y = (a+ b, a+ b) and the scalar product
α~x = (αa, αa) have equal x–and y–coordinates, i.e., they again belong to V . It follows that the
subset L of R2 is a subspace of R2 (see (11.6) on p.330). �

A proof for the following is omitted even though it is not difficult:

Example 11.13 (Subspace {(x, y) : y = αx} ). Any subset of the form

Vα := {(x, y) ∈ R2 : y = αx}

is a subspace of R2 (α ∈ R). Draw a picture: Vα is the straight line through the origin in the xy–plane
with slope α. �

Example 11.14 (Embedding of linear subspaces). The last example was about the subspace of a
bigger space. Now we switch to the opposite concept, the embedding of a smaller space into a
bigger space. We can think of the real numbers R as a part of the xy–plane R2 or even 3–dimensional
space R3 by identifying a number awith the two-dimensional vector (a, 0) or the three-dimensional
vector (a, 0, 0). Let m < n. It is not a big step from here that the most natural way to uniquely
associate an n–dimensional vector with an m–dimensional vector ~x := (x1, x2, . . . , xm) by adding
zero-coordinates to the right:

~x := (x1, x2, . . . , xm, 0, 0, . . . , 0︸ ︷︷ ︸
n−m times

) �

Example 11.15 (All finite–dimensional vectors). Let

S :=
⋃
n∈N

Rn = R1 ∪ R2 ∪ . . . ∩ Rn ∪ . . .

be the set of all vectors of finite (but unspecified) dimension.
We can define addition for any two elements ~x, ~y ∈ S as follows: If ~x and ~y both happen to have
the same dimension n then we add them as usual: the sum will be x1 + y1, x2 + y2, . . . , xn + yn,. If
not, then one of them, say ~x will have dimension m smaller than the dimension n of ~y. We define
the sum ~x+ ~y as the vector

~z := (x1 + y1, x2 + y2, . . . , xm + ym, ym+1, ym+2, . . . , yn) �
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Example 11.16 (All sequences of real numbers). Let RN =
∏
j∈N

R (see (8.7) on p.239). Is this the same

set as S from the previous example? The answer is No for the following reason: Each element
x ∈ S is of some finite dimension, say n, meaning that it has no more than n coordinates. Each
element y ∈ RN is a collection of numbers y1, y2, . . . none of which need to be zero. In other words,
RN is the vector space of all sequences of real numbers. Addition is of course done coordinate by
coordinate and scalar multiplication with α ∈ R is done by multiplying each coordinate with α.
There is again a natural way to embed S into RN as follows: We transform an n–dimensional vector
(a1, a2, . . . , an) into an element of RN (a sequence (aj)j∈N) by setting aj = 0 for j > n. �

Definition 11.7 (linear combinations). ?

Let V be a vector space and let x1, x2, x3, . . . , xn ∈ V be a finite number of vectors in V .
Let α1, α2, α3, . . . , αn ∈ R. We call the finite sum

(11.11)
n∑
j=0

αjxj = α1x1 + α2x2 + α3x3 + . . .+ αnxn

a linear combination of the vectors xj . The multipliers α1, α2, . . . are called scalars. �

In other words, linear combinations are sums of scalar multiples of vectors. The expression in
(11.11) always is an element of V , no matter how big n ∈ N was chosen:

Proposition 11.3 (Vector spaces are closed w.r.t. linear combinations).

Let V be a vector space and let x1, x2, x3, . . . , xn ∈ V be a finite number of vectors in V . Let

α1, α2, α3, . . . , αn ∈ R. Then the linear combination
n∑
j=0

αjxj also belongs to V . Note that this is

also true for subspaces, because those are vector spaces, too.

PROOF: Trivial. �

Proposition 11.4.

Let V be a vector space and let (Wi)i∈I be a family of subspaces of V . Let W :=
⋂[

Wi : i ∈ I
]
.

Then W is a subspace of V .

PROOF: It suffices to show that W is not empty and that any linear combination of items in W
belongs to W . As 0 ∈Wi for each i ∈ I , it follows that 0 ∈W , hence W 6= ∅.
Let x1, x2, . . . xk ∈ W and α1, α2, . . . αk ∈ R(k ∈ N). Let x :=

∑k
j=1 αjxj . Then x ∈ Wi for all i

because each Wi is a vector space, hence x ∈W . �

Definition 11.8 (Linear span). ?
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Let V be a vector space and A ⊆ V . Then the set

(11.12) span(A) := {
k∑
j=1

αjxj : k ∈ N, αj ∈ R, xj ∈ A (1 ≤ j ≤ k) }.

of all linear combinations of vectors in A is called the span or linear span of A. �

Proposition 11.5.

Let V be a vector space and A ⊆ V . Then span(A) is a subspace of V .

PROOF: Let yj ∈ span(A) for j = 1, 2, . . . k, i.e. yj is a linear combination of vectors
xj,1, xj,2, . . . xj,nj ∈ A. But then any linear combination of y1, y2, . . . yk is a linear combination of
the vectors

x1,1, x1,2, . . . , x1,n1 , x2,1, x2,2, . . . , x2,n2 , . . . , xk,1, xk,2, . . . , xk,nk . �

Theorem 11.1.

Let V be a vector space and A ⊆ V .

Let VVV := {W ⊆ V : W ⊇ A and W is a subspace of V }. Then span(A) =
⋂[

W : W ∈ VVV
]
.

PROOF: Clearly, span(A) ⊇ A It follows from prop.11.5 that span(A) ∈ V, hence span(A) ⊇
⋂[

W :
W ∈ V

]
.

On the other hand, Any subspace W of V that contains A also contains all its linear combinations,
hence span(A) ⊆W for all W ∈ V. But then span(A) ⊆

⋂[
W : W ∈ V

]
. �

Remark 11.4 (Linear span(A) = subspace generated by A). Let V be a vector space and A ⊆ V .
Theorem 11.1 justifies to call span(A) the subspace generated by A. �

Definition 11.9 (linear mappings). ?

Let V1, V2 be two vector spaces. Let the function f(·) : V1 → V2 satisfy

f(x+ y) = f(x) + f(y) ∀x, y ∈ V1 additivity(11.13a)
f(αx) = αf(x) ∀x ∈ V1, ∀α ∈ R homogeneity(11.13b)

Then we call f(·) a linear function or linear mapping. �

Note 11.1 (Note on homogeneity). We encountered “absolute homogeneity” when examining the
properties of the Euclidean norm ((11.9) on p.328). That is not the same concept as homogeneity for
linear functions because you had to take the absolute value |α| instead of α. �
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Remark 11.5 (Linear mappings are compatible with linear combinations). We saw in the last propo-
sition that vector spaces are closed with respect to linear combinations. Linear functions and linear
combinations work harmoniously in the following sense:

(A): The image of the sum is the sum of the images,
(B): The image of the scalar multiple is the scalar multiple of the image,
(C): The image of the linear combination is the linear combination of the images.

In other words, linear mappings preserve or are structure compatible with linear combinations.
Matter of fact, (A) asserts that f is a homomorphism (V1,+)→ (V2,+) from the group (V1,+) to the
group (V2,+). See Definition 3.6 (Homomorphisms and isomorphisms) on p.59 and the preceding
remarks on structure compatibility. �

The proof of item C in the previous remark is given in the next proposition.

Proposition 11.6 (Linear mappings preserve linear combinations).

Let V1, V2 be two vector spaces. Let f(·) : V1 → V2 be a linear map and let x1, x2, x3, . . . , xn ∈ V1

be a finite number of vectors in the domain V1 of f(·). Let λ1, λ2, λ3, . . . , λn ∈ R.
Then f(·) preserves any such linear combination, i.e.,

(11.14) f(
n∑
j=0

λjxj) =
n∑
j=0

λjf(xj).

PROOF by induction on n: We first note that f(λx) = λf(x) because linear mappings preserve scalar
multiples. This proves the base case n = 1. Because linear mappings also preserve the addition of
any two vectors, the proposition holds for n = 2. Our induction assumption is

f(
k∑
j=0

λjxj) =
k∑
j=0

λjf(xj) for all 1 ≤ k < n.

We use it in the second equation (k = 2) and the third equation (k = n− 1) of the following:

f(
n∑
j=0

λjxj) = f(
n−1∑
j=0

λjxj +λnxn) = f(
n−1∑
j=0

λjxj)+f(λnxn) =
n−1∑
j=0

λjf(xj)+f(λnxn) =
n∑
j=0

λjf(xj)

�

Here are some examples of linear mappings.

Example 11.17 (Projection on the first coordinate). Let n ∈ N. The map

π1(·) : Rn → R (x1, x2, . . . , xn) 7→ x1

is called the projection on the first coordinate or the first coordinate function. �

Example 11.18 (Projections on any coordinate). More generally, let n ∈ N and 1 ≤ j ≤ n.

πj(·) : Rn → R (x1, x2, . . . , xn) 7→ xj

is called the projection on the jth coordinate or the jth coordinate function.
A specific example for n = 2: Let ~v := (3.5,−2) ∈ R2. Then π1(~v) = 3.5 and π2(~v) = −2. �
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Example 11.19 (Projections on any lower dimensional space). In the last two examples we projected
Rn onto a one–dimensional space. More generally, we can project Rn onto a vector space Rm of
lower dimension m (i.e., we assume m < n) by keeping m of the coordinates and throwing away
the remaining n−m coordinates. Mathematicians express this as follows:
Let m,n, i1, i2, . . . , im ∈ N such that m < n and 1 ≤ i1 < i2 < · · · < im ≤ n. The map

(11.15) πi1,i2,...,im(·) : Rn → Rm (x1, x2, . . . , xn) 7→ (xi1 , xi2 , . . . , xim)

is called the projection on the coordinates i1, i2, . . . , im . 131 �

Example 11.20. Let x0 ∈ A. The mapping

(11.16) εx0 : FFF (A,R)→ R; f(·) 7→ f(x0)

which assigns to any real–valued function on A its value at the specific point x0 is linear because if

h(·) =
n∑
j=0

ajfj(·) then

εx0(

n∑
j=0

ajfj) = εx0(h) = h(x0) =

n∑
j=0

ajfj(x0) =

n∑
j=0

ajεx0(fj).

εx0(·) is called the abstract integral with respect to point mass at x0. �

Lemma 11.1 (F ◦ span = span ◦ F ). [4] Brin/Marchesi Linear Algebra, general lemma 4.1.7: Let V,W be
two vector spaces and F : V →W a linear mapping from V to W . Let A ⊆ V . Then

F (span(A)) = span(F (A)).(11.17)

Proof: See Brin/Marchesi Linear Algebra, general lemma 4.1.7. �

Definition 11.10 (Linear dependence and independence). ?

Let V be a vector space and A ⊆ V
(a) A is called linearly dependent if the following is true: There exist distinct vectors

x1, x2, . . . xk ∈ A and scalars α1, α2, . . . αk ∈ R (k ∈ N) such that

• not all scalars αj are zero (1 ≤ j ≤ k) •
k∑
j=1

αjxj = 0.

(b) A is called linearly independent if A is not linearly dependent, i.e., if the following
is true: Let x1, x2, . . . xk ∈ A and α1, α2, . . . αk ∈ R (k ∈ N).

• If
k∑
j=1

αjxj = 0 then αj = 0, for all 1 ≤ j ≤ k. �

131You previously encountered an example where we made use of the projection

π1,2(·) : R3 → R2 (x, y, z) 7→ (x, y).

This was in the course of computing the length of a 3–dimensional vector (see (11.5) on p.325).
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Definition 11.11 (Basis of a vector space). ?

Let V be a vector space and B ⊆ V . B is called a basis of V if both
• B is linearly independent • span(B) = V . �

For the Kronecker delta which appears in the next item, see Definition 2.21 on p.29.

Definition 11.12 (Standard basis of Rn). ?

Let n ∈ N. For i ∈ [1, n]Z, let ~e(i) :=
(
δi1, δi2, . . . , δin)

>.
Here, δij denotes the Kronecker delta: δii = 1 for all i and δij = 0 for i 6= j. Thus,

~e(1) =


1
0
0
...
0

 , ~e(2) =


0
1
0
...
0

 , . . . , ~e(n) =


0
0
0
...
1

 .
Let B := {~e(i) : i ∈ [1, n]Z}. Then B is a basis of Rn which we call the standard basis, also
the canonical basis, of Rn. �

Remark 11.6. If ~x =
(
x1, . . . , xn

)>, then

~x =

 x1
x2

...
xn

 =

 x1
0
...
0

+

 0
x2

...
0

+

 0
0
...
xn

 =

n∑
i=1

xi~e
(i) .

From this it is immediate that
• The left hand side of the above is the zero vector if and only if x1 = x2 = · · · = xn = 0. Thus,

the standard basis is a set of linearly independent vectors.
• Every ~x ∈ Rn is a linear combination of ~e(1), . . . , ~e(n). Thus, the linear span of B is Rn.

It follows that the standard basis is, in fact, a basis of Rn. �

Lemma 11.2.

Let V be a vector space and A ⊆ V . Assume that A is linearly independent but not a basis.
Let y ∈ span(A){. Then A ∪ {y} is linearly independent.

Proof: Let A′ := A∪ {y} and let x1, x2, . . . xk be distinct elements of A′ and α1, α2, . . . αk ∈ R (k ∈ N)
such that

k∑
j=1

αjxj = 0(11.18)

We must show that each αj is zero.
Case 1: y 6= xj for all j:
Then {x1, . . . , xk} ⊆ A′ \ {y} = A. It follows from the linear independence of A that each αj is zero.
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Case 2: y = xj0 for some 1 ≤ j0 ≤ k:
We first show that αj0 = 0. This is true because otherwise

xj0 =
∑
j 6=j0

−αj
αj0

xj(11.19)

would be a linear combination of elements ofA, contrary to the assumption that xj0 = y ∈ span(A){.
We deduce from (11.18) and αj0 = 0 that ∑

j 6=j0

αjxj = 0.(11.20)

It follows from {xj : j 6= j0} ⊆ A′ \ {y} = A and the linear independence of A that αj = 0 for all
j 6= j0. �

Theorem 11.2.

Let V be a vector space with a finite basis B = {b1, . . . , bk}. then any other basis of V has the same
size k.

PROOF:
See, e.g., [4] Brin/Marchesi Linear Algebra. �

This last theorem gives rise to the following definition.

Definition 11.13 (Dimension of vector spaces). ?

• Let V be a vector space with a finite basis B = {b1, . . . , bk}. We call k the dimension
of V and we write dim(V ) = k.

• If V does not possess a finite basis then we say that V has infinite dimension and we
write dim(V ) =∞. �

The following proposition gives an example of an infinite linearly independent set.

Proposition 11.7.

For a ∈ R define fa(·) ∈ B(R,R) as follows.

fa(x) :=

{
0 ifx 6= a,

1 ifx = a.

Then A := {fa : a ∈ R} is a linearly independent subset of B(R,R).

PROOF:
We write 0(·) for the zero function on R. Let n ∈ N, a1, . . . an ∈ R, and α1, . . . αn ∈ R such that

f :=
k∑
j=1

αjfaj = 0(·), i.e., f(x) =
k∑
j=1

αjfaj (x) = 0 for all x ∈ R.
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We must show that then αi = 0 for all integers 1 ≤ i ≤ k. We have 0 = f(ai) =
k∑
j=1

faj (ai) = αi.

�

Proposition 11.8.

Let V be a vector space and let U be a (linear) subspace of V . Let x0 ∈ V .
Let Ũ := {u+ λx0 : u ∈ U and λ ∈ R}. Then Ũ = span(U ∪ {x0}).

PROOF:
PROOF of⊆): Let x ∈ Ũ , i.e., x = u+λx0 for some u ∈ U and λ ∈ R. Clearly x is a linear combination
of u ∈ U and x0, hence x ∈ span(U ∪ {x0}).
PROOF of ⊇): Let x ∈ span(U ∪ {x0}). By the definition of spans there exists k ∈ N, u1, . . . , uk ∈ U

and α, α1, . . . αk ∈ R such that x =
k∑
j=1

αjuj + αx0. Let u :=
k∑
j=1

αjuj . Then x = u + αx0, hence

x ∈ Ũ . �

Proposition 11.9.

Let V and V ′ be two vector spaces and let U be a proper (linear) subspace of V , i.e., U ( V . Let
x0 ∈ U{, y0 ∈ V ′. Let f := U → V ′ be a linear function from U into V ′. Let α ∈ R. Then

(11.21) g : U
⊎
{x0} → V ′; g(x) :=

{
f(x) ifx ∈ U,
y0 ifx = x0,

uniquely extends to a linear function f̃ : span(U
⊎
{x0})→ V ′ as follows:

(11.22) f̃(x+ αx0) := f(x) + α y0 for x ∈ U,α ∈ R .

PROOF:
Let Ũ := span(U

⊎
{x0}). It follows from prop.11.8 on p.340 that any x ∈ Ũ is of the form x = u+αx0

for some suitable u ∈ U and α ∈ R.
It follows that the function f̃ defined in (11.22) is in fact defined on all of Ũ . Clearly f̃ coincides
with g on U

⊎
{x0}, hence f̃ extends g from U

⊎
{x0} to Ũ .

Proof of linearity of f̃ :
Let x1 and x2 ∈ Ũ , i.e., there exist u1, u2 ∈ U and α1, α2 ∈ R such that x1 = u1 + α1x0 and
x2 = u2 +α2x0. Let λ ∈ R. To prove linearity of f̃ we must show that f̃(x1 + λx2) = f̃(x1) + λf̃(x2).

f̃(x1 + λx2) = f̃
(
(u1 + α1x0) + λ(u2 + α2x0)

)
= f̃

(
(u1 + λu2) + (α1x0 + λα2x0)

)
= f̃

(
(u1 + λu2) + (α1 + λα2)x0

)
= f(u1 + λu2) + (α1 + λα2)y0

=
(
f(u1) + λf(u2)

)
+ (α1y0 + λα2y0) =

(
f(u1) + α1y0

)
+ λ

(
f(u2) + α2y0

)
= f̃(x1) + λf̃(x2).

The linearity of f on U was used in the fifth equation. Everything else is utilizing (11.22) and
grouping terms differently. This finishes the proof of linearity of f̃ on Ũ .
It remains to show the uniqueness of f̃ . So let h : Ũ → V ′ linear such that h(x) = f̃(x) for all
x ∈ U

⊎
{x0}. We must prove that h(x) = f̃(x) for all x ∈ Ũ . Let x ∈ Ũ , i.e., x = u + αx0 for some

340 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

u ∈ U and α ∈ R. Then

h(x) = h(u+ αx0) = h(u) + αh(x0) = f̃(u) + αf̃(x0) = f̃(u+ αx0) = f̃(x).

The third equality results from h
∣∣∣
U

⊎
{x0}

= f̃
∣∣∣
U

⊎
{x0}

, the second and fourth equalities from the

linearity of h and f̃ . This proves uniqueness of f̃ . �

11.2.2 Normed Vector Spaces

Definition 11.4 on p.327 in ch.11.1.3 (Length of n–Dimensional Vectors and the Euclidean Norm)

gave the definition of the Euclidean norm ‖~x‖2 =
√∑n

j=1 x
2
j in Rn. We saw that in dimensions n =

1, 2, 3 that ‖~x‖2 equals the length of the vector ~x and that prop.11.1 on p. 327 “proved” informally
for n = 1, 2, 3 that ‖ · ‖2 satisfies the following three properties:

(a) positive definiteness,
(b) absolute homogeneity,
(c) triangle inequality.

In this chapter we define the norm ‖x‖ of a vector x in an abstract vector space as a function which
satisfies the above three properties, and hence generalizes the concept of the length of a vector in
n–dimensional space to more general vector spaces. Before we give give this definition, we first
introduce the concept of an inner product x • y of two vectors x and y. We will see that some of the
most important norms, the Euclidean norm among them, can be derived from inner products.
The following definition of inner products and proof of the Cauchy–Schwartz inequality were taken
from "Calculus of Vector Functions" (Williamson/Crowell/Trotter [17]).

Definition 11.14 (Inner product 132 ).

Let V be a vector space with a function

•(·, ·) : V × V → R; (x, y) 7→ x • y := •(x, y)

which satisfies the following:

x • x ≥ 0 ∀x ∈ V and x • x = 0 ⇔ x = 0 positive definiteness(11.23a)
x • y = y • x ∀x, y ∈ V symmetry(11.23b)
(x+ y) • z = x • z + y • z ∀ x, y, z ∈ V additivity(11.23c)
(λx) • y = λ(x • y) ∀ x, y ∈ V ∀ λ ∈ R homogeneity(11.23d)

We call such a function an inner product. �

Note that additivity and homogeneity of the mapping x 7→ x • y for a fixed y ∈ V imply linearity
of that mapping and the symmetry property implies that the mapping y 7→ x • y for a fixed x ∈ V
is linear too. In other words, an inner product is binear in the following sense:

Definition 11.15 (Bilinearity). ?

132also called dot product, e.g., in [4] Brin/Marchesi Linear Algebra, ch.6, Orthogonality.
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Let V be a vector space with a function

B : V × V → R; (x, y) 7→ B(x, y).

B(·, ·) is called bilinear if it is linear in each argument, i.e., the mappings

B1 :V → R; x 7→ B(x, y)

B2 :V → R; y 7→ B(x, y)

are both linear. �

Proposition 11.10 (Algebraic properties of the inner product).

Let V be a vector space with inner product •(·, ·). Let a, b, x, y ∈ V . Then

(a+ b) • (x+ y) = a • x + b • x + a • y + b • y(11.24a)
(x+ y) • (x+ y) = x • x + 2(x • y) + y • y(11.24b)
(x− y) • (x− y) = x • x − 2(x • y) + y • y(11.24c)

PROOF of (b) and (c): Left as an exercise.
PROOF of a:

(a+ b) • (x+ y) = (a+ b) • x + (a+ b) • y
= a • x + b • x + a • y + b • y.

We used linearity in the second argument for the first equality and linearity in the first argument
for the second equality.
The proof of (b) and (c) is left as exercise 11.2 (see p.357). �

The following is the most important example of an inner product.

Proposition 11.11 (Inner product on Rn)).

Let n ∈ N. Then the real–valued function

(11.25) (~x, ~y) 7→ x1y1 + x2y2 + . . .+ xnyn =

n∑
j=1

xjyj ,

where ~x = (x1, . . . xn) and ~y = (y1, . . . yn), is an inner product on Rn × Rn.

PROOF:

(a) For ~x = ~y we obtain ~x • ~x =

n∑
j=1

x2
j and positive definiteness of the inner product follows from

n∑
j=1

x2
j = 0 ⇔ x2

j = 0 ∀j ⇔ xj = 0 ∀j.

(b) Symmetry is clear because xjyj = yjxj .
(c) Let ~z = (z1, . . . zn). Additivity follows from the fact that (xj + yj)zj = xjzj + yjzj .
(d) Homogeneity follows from the fact that (λxj)yj = λ(xjyj). �
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Proposition 11.12 (Cauchy–Schwartz inequality for inner products).

Let V be a vector space with an inner product

•(·, ·) : V × V → R; (x, y) 7→ x • y := •(x, y)

Then,
(x • y)2 ≤ (x • x) (y • y).

PROOF:
Step 1: We assume first that x • x = y • y = 1. Then

0 ≤ (x− y) • (x− y)

= x • x− 2x • y + y • y = 2− 2(x • y)

where the first equality follows from proposition (11.10) on p.342. Thus 2(x • y) ≤ 2, i.e.,

x • y ≤ 1.(11.26)

Since this inequality holds for any vectors x, y such that x • x = y • y = 1 and since absolute
homogeneity (11.23d) implies (−x) • (−x) = (−1)2x • x = 1 we may replace x with −x and obtain

−(x • y) = (−x) • y ≤ 1.(11.27)

It follows from (11.26) and (11.27) that |x • y| ≤ 1, thus (x • y)2 ≤ 1, i.e., (x • y)2 ≤ (x • x) (y • y).
The Cauchy–Schwartz inequality is thus true under the assumption x • x = y • y = 1.
Step 2: General case: We do not assume anymore that x • x = y • y = 1. If x or y is zero then the
Cauchy–Schwartz inequality is trivially true because, say if x = 0 then the left–hand side becomes

(x • y)2 = (0x • y)2 = 0(x • y)2 = 0

whereas the right–hand side is, as the product of two nonnegative numbers x • x and y • y , non-
negative.
So we can assume that x and y are not zero. On account of the positive definiteness we have
x • x > 0 and y • y > 0. This allows us to define u := x/

√
x • x and v := y/

√
y • y. But then

u • u = (x • x)/
√
x • x2

= 1

v • v = (y • y)/
√
y • y2 = 1.

We have already seen in step 1 that u • v ≤ 1. It follows that

(x • y)/(
√
x • x√y • y) = (x/

√
x • x) • (y/

√
y • y) ≤ 1

We multiply both sides with
√
x • x√y • y,

x • y ≤
√
x • x√y • y.

We replace x by −x and obtain
−(x • y) ≤

√
x • x√y • y.

Because |x • y| is either of −(x • y) or (x • y), it follows from the last two inequalities that

|x • y| ≤
√
x • x√y • y.
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We square this and obtain
(x • y)2 ≤ (x • x) (y • y)

and the Cauchy–Schwartz inequality is proven. �

Definition 11.16 (sup–norm of bounded real–valued functions).

Let X be an arbitrary, nonempty set. Let f : X → R be a bounded real–valued function on
X , i.e., there exists K ≥ 0 such that |f(x)| ≤ K for all x ∈ X . Let

(11.28) ‖f‖∞ := sup{|f(x)| : x ∈ X}
We call ‖f‖∞ the supremum norm or sup–norm of the function f . �

Proposition 11.13 (Properties of the sup norm).

Let X be an arbitrary, nonempty set. Let

BBB(X,R) := {h(·) : h(·) is a bounded real–valued function on X}
(see example 11.11 on p. 332). Then the sup–norm

‖ · ‖∞ : BBB(X,R)→ R+, h 7→ ‖h‖∞ = sup{|h(x)| : x ∈ X}
satisfies the following:

‖f‖∞ ≥ 0 ∀ f ∈BBB(X,R) and ‖f‖∞ = 0 ⇔ f(·) = 0 positive definiteness(11.29a)
‖αf(·)‖∞ = |α| · ‖f(·)‖∞ ∀ f ∈BBB(X,R), ∀ α ∈ R absolute homogeneity(11.29b)
‖f(·) + g(·)‖∞ ≤ ‖f(·)‖∞ + ‖g(·)‖∞ ∀ f, g ∈BBB(X,R) triangle inequality(11.29c)

PROOF: The proof is left as exercise 11.1 on p.357. �

Note 11.2. We previously discussed the Euclidean norm

(11.30) ‖~x‖2 =

√√√√ n∑
j=1

xj2

for n–dimensional vectors ~x = (x1, x2, . . . , xn). You saw in (11.1) on p.327 that it satisfies positive
definiteness, absolute homogeneity and the triangle inequality, just like the sup–norm. 133 Those are
properties which you associate with the length or size of an object. A very rich mathematical theory
can be developed for a generalized definition of length which is based just on those properties. �

As mentioned before, mathematicians like to define new objects that are characterized by a certain
set of properties. As an example we had the definition of a vector space which encompasses objects
as different as finite–dimensional vectors and real–valued functions. Accordingly we give a special
name to a function defined on a vector space which satisfies positive definiteness, homogeneity and
the triangle inequality.

133Actually, the proof that ‖ · ‖2 satisfies the triangle inequality was given only for dimensions 1, 2, 3. It will be proved
in this chapter that it is true for all dimensions n. See cor.11.1 (Inner products define norms) on p.347.

344 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

Definition 11.17 (Normed vector spaces). Let V be a vector space with a real–valued function

‖ · ‖ : V → R x 7→ ‖x‖

which satisfies

‖x‖ ≥ 0 ∀x ∈ V and ‖x‖ = 0 ⇔ x = 0 positive definiteness(11.31a)
‖αx‖ = |α| · ‖x‖ ∀x ∈ V,∀α ∈ R absolute homogeneity(11.31b)
‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀ x, y ∈ V triangle inequality(11.31c)

We call ‖ · ‖ a norm on V and we call V a normed vector space.

We write (V, ‖ · ‖) instead of V when we wish to emphasize what norm on V we are discussing. �

Example 11.21 (Vector space of polynomials with sup–norm). Let A ⊆ R. It follows from (5.10)
and (9.22) that the set P := {p(·) : p(·) is a polynomial on A} of all polynomials on an arbitrary
nonempty subset A of the real numbers is a subspace of the vector space CCC (A,R). (see exam-
ple (13.1) on p.406.
If A is bounded then any polynomial p on A is bounded, hence its sup–norm

‖p‖∞ = sup{|p(x)| : x ∈ A}

is finite, and (P, ‖ · ‖∞) is a normed vector space.
If A is not bounded, then ‖p‖∞ is not finite for all p ∈ P . Matter of fact, it can be shown that, if A
is not bounded, then the only polynomials for which ‖p(·)‖∞ <∞ are the constant functions on A.
�

Remark 11.7. Let (V, ‖ · ‖) be a normed vector space and let γ > 0.
Let p : V → R be defined as p(x) := γ‖x‖. Then p also is a norm.

PROOF: The proof is left as exercise 11.3. �

Definition 11.18 (p–norms for Rn). ?

Let p ≥ 1. It will be proved in prop.11.16 on p.350 that the function

~x 7→ ‖~x‖p :=
( n∑
j=1

|xj |p
)1/p

(11.32)

is a norm on Rn). This norm is called the p–norm on Rn). The Euclidean norm is a p–norm;
it is the 2-norm on Rn). �

Remark 11.8. We have seen that a vector space can be endowed with more than one norm.
(a) We have seen in Remark11.7 that if x 7→ ‖x‖ is a norm on a vector space V and β > 0

then x 7→ β · ‖x‖ also is a norm on V .
(b) The p–norms define a collection of different norms for Rn. �
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The following theorem shows that an inner product can be associated in a natural fashion with a
norm.

Theorem 11.3 (Inner products define norms).

Let V be a vector space with an inner product

•(·, ·) : V × V → R; (x, y) 7→ x • y
Then ‖ · ‖• : x 7→ ‖x‖ =

√
(x • x)

defines a norm on V

PROOF:
Positive definiteness : follows immediately from that of the inner product.
Absolute homogeneity : Let x ∈ V and λ ∈ R. Then

‖λx‖• =
√

(λx) • (λx) =
√
λλ(x • x)) = |λ|

√
x • x = |λ|‖x‖•.

Triangle inequality : Let x, y ∈ V . Then

‖x+ y‖•2 = (x+ y) • (x+ y)

= x • x + 2(x • y) + y • y
≤ x • x + 2|x • y| + y • y
≤ x • x + 2

√
x • x√y • y + y • y

= ‖x‖•2 + 2‖x‖• ‖y‖• + ‖y‖•2

=
(
‖x‖• + ‖y‖•

)2
.

The second equation uses bilinearity and symmetry of the inner product. The first inequality
expresses the simple fact that α ≤ |α| for any number α. The second inequality uses Cauchy–
Schwartz. The next equality just substitutes the definition ‖x‖• =

√
(x • x) of the norm. The next

and last equality is the binomial expansion (a+ b)2 = a2 + 2ab+ b2 for the ordinary real numbers
a = ‖x‖• and b = ‖y‖•.
We take square roots in the above inequality ‖x+ y‖•2 ≤

(
‖x‖• + ‖y‖•

)2 and obtain ‖x + y‖• ≤
‖x‖• + ‖y‖•, the triangle inequality we set out to prove. �

Definition 11.19 (Norm for an inner product).

Let V be a vector space with an inner product

•(·, ·) : V × V → R; (x, y) 7→ x • y
Then

(11.33) ‖ · ‖• : x 7→ ‖x‖• :=
√

(x • x)

is called the norm associated with the inner product •(·, ·). �

It was stated in prop.11.1 on p. 327 that the Euclidean norm is in fact a norm but only positive
definiteness and homogeneity were proved. We now can easily complete the proof.
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Corollary 11.1.

The Euclidean norm in Rn: ‖(x1, x2, . . . , xn)‖2 =

√
n∑
j=1

xj2 (see def.11.4 on p.327) is a norm.

PROOF: This follows from the fact that

~x • ~y =
n∑
j=1

xjyj where ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn) ∈ Rn

defines an inner product on Rn × Rn (see prop.11.11) for which ‖(x1, x2, . . . , xn)‖2 is the associated
norm. �

We now look at an inner product on the vector space CCC ([a, b],R) of all continuous real–valued
functions on the interval [a, b] which was defined in example 11.11 (Vector spaces of real–valued
functions) on p.332. We use the terminology of [15] Stewart, J: Single Variable Calculus) for the
following.

Definition 11.20. ? Let a, b ∈ R, a < b and assume that f, g : [a, b]→ R are integrable functions.
(See example 5.21 on p.140.)

(a) We call the definite integral
∫ b

a
f(x)dx the net area between the graph of f , the x–axis,

and the vertical lines through (a, 0) (y = a) and (b, 0) (y = b). The above integral treats
areas above the x–axis as positive and below the x–axis as negative, i.e., the net area is
the difference between the areas above the x–axis and those below the x–axis.

(b) We call
∫ b

a
|f(x)|dx the area between the graph of f , the x–axis, and the vertical lines

y = a and y = b. Note that f(x) has been replaced by its absolute value |f(x)|. In contrast
to the net area, areas below the x–axis are also counted positive. �

(c) We call
∫ b

a
f(x)− g(x)dx the net area between the graphs of f and g and the vertical lines

y = a and y = b. We call
∫ b

a
|f(x)− g(x)|dx the area between the graphs of f and g and

the vertical lines y = a and y = b. �

Example 11.22. Let f : [−1, 1]; x 7→ 4x3. The antiderivative (see example 5.21 on p.140) of f(·) is
x 7→ x4 and we compute net area and area as follows:

(a) Net area =
∫ 1

(−1)
4x3dx = x4

∣∣∣1
−1

= 1− 1 = 0;

(b) Area =
∫ 1

(−1)
4|x3|dx =

∫ 0

(−1)
(−4x3)dx +

∫ 1

0
4x3dx

= −x4
∣∣∣0
−1

+ −x4
∣∣∣1
0

=
(
0− (−1)

)
+
(
1− 0

)
= 2. �

Let a, b ∈ R such that a < b. We remember from example 5.21 on p.140 that continuous functions
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are integrable. This allows us to compare for f ∈ CCC ([a, b],R) the expressions

‖f‖∞ = sup{|f(x)| : x ∈ X},
∫ b

a
|f(x)|dx, and

∫ b

a

(
f(x)

)2
dx.(11.34)

All three expressions give in a sense the size of f . The sup–norm measures it as the biggest possible
displacement from zero, the integral over the absolute value measures the area between the graphs
of the functions x 7→ f(x) and x 7→ 0, and the last expression does the same with the square of f . In
many respects the use of areas is superior to using the biggest difference to zero.
Squaring f(·) rather than using its absolute value has some mathematical advantages. One of them

is that the function (f, g) 7→
∫ b

a
f(x)g(x)dx defines an inner product on CCC ([a, b],R) whose associ-

ated norm is f 7→
∫ b

a

(
f(x)

)2
dx. We will discuss that now. In preparation we prove the following

proposition.

Proposition 11.14.

Let a, b ∈ R such that a < b. and let f : [a, b]→ R be continuous. Then,∫ b

a
f(x)dx = 0 if and only if f(x) = 0 for all x ∈ ]a, b[. �

PROOF: Assume that there is a < x0 < b such that f(x0) 6= 0, i.e., f(x0) > 0. Let ε := f(x0)
2 . As f is

continuous at x0 there exists according to thm.9.7 on p.273 some δ > 0 such that

|f(x0)− f(x)| < ε, hence f(x) > f(x0)− ε =
f(x0)

2
= ε for all x0 − δ < x < x0 + δ.(11.35)

Continuity at x0:

If |x− x0| < δ then |f(x0)− f(x)| < ε:
The graph of f stays within the rectangle
with corners (x0 ± δ, f(x0)± ε).

Let g : [a, b]→ R be defined as follows.

g(x, y) =

{
ε if x0 − δ < x < x0 + δ

0 else.

It follows from (11.35) that f ≥ g, hence
∫ b
a f(x)dx ≥

∫ b
a g(x)dx = (2δ)ε > 0. �
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Proposition 11.15.

Let a, b ∈ R such that a < b. Then the mapping

(11.36) (f, g) 7→ f • g :=

∫ b

a
f(x)g(x)dx

defines an inner product on f ∈ CCC ([a, b],R) . �

PROOF: We must prove positive definiteness, symmetry, and linearity in the left argument. In the
following let f, g, h ∈ CCC ([a, b],R) and λ ∈ R.

(a) Positive definiteness: It follows from f2(x) ≥ 0 that f •f =
∫ b
a f

2(x)dx ≥ 0. Clearly, if 0 denotes
as usual the zero function x 7→ 0 then 0 • 0 = 0. It remains to be shown that if

∫ b
a f

2(x)dx ≥ 0 then
f = 0. This follows from prop.11.14.
(b) Symmetry:

f • g =

∫ b

a
f(x)g(x)dx =

∫ b

a
g(x)f(x)dx = g • f.

(c) Additivity and homogeneity: This can be deduced from the well–known formulas∫ b

a
f(x) + g(x)dx =

∫ b

a
f(x)dx +

∫ b

a
g(x)dx and

∫ b

a
λg(x)dx = λ

∫ b

a
g(x)dx.

as follows:

(f + g) • h =

∫ b

a

(
f(x) + g(x)

)
h(x)dx =

∫ b

a
f(x)h(x)dx +

∫ b

a
g(x)h(x)dx = f • h+ g • h,

(λf) • g =

∫ b

a
λf(x)g(x)dx = λ

∫ b

a
f(x)g(x)dx = λ(f • g). �

According to Definition 11.19 (norm for an inner product) and thm.11.3 (inner products define
norms) we now define the norm associated with f • g =

∫ b
a f(x)g(x)dx.

Definition 11.21 (L2–Norm for continuous functions).

Let a, b ∈ R such that a < b. Let f • g be the the following inner product on the space
CCC ([a, b],R) of all continuous functions [a, b]→ R:

(11.37) f • g :=

∫ b

a
f(x)g(x)dx.

The L2–norm. of f is the norm associated with that inner product:

(11.38) ‖ · ‖L2 : f 7→ ‖f‖• =

√∫ b

a
f2(x)dx .

�

We saw in Definition 11.18 that the Euclidean norm is the p–norm ‖~x‖p =
( n∑
j=1
|xj |p

)1/p
for the

special case p = 2. There is an analogue for the L2 norm.
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Definition 11.22 (Lp–norms for CCC ([a, b],R)). ?

Let a, b ∈ R such that a < b and p ≥ 1. It will be shown in prop.11.17 (The Lp–norm is a
norm) on p.350 that

(11.39) f 7→ ‖f‖Lp :=
(∫ b

a
|f(x)|pdx

)1/p

is a norm on CCC ([a, b],R). This norm is called the Lp–norm of f . �

11.2.3 The Inequalities of Young, Hoelder, and Minkowski ?

Note that this chapter is starred, hence optional.

Proposition 11.16 (The p–norm in Rn is a norm).

Let p ∈ [1,∞[. Then the p-norm ~x 7→ ‖~x‖p =
(∑n

j=1 |xj |p
)1/p

is a norm in Rn.

PROOF:
(a). Positive definiteness:
Clearly,

∑n
j=1 |xj |p ≥ 0 because each term |xj |p is nonnegative, hence ‖~x‖p =

√∑n
j=1 |xj |p ≥ 0.

Note that ‖~x‖p = 0 is only possible if |xj |p = 0 for all indices j, because, if xj0 6= 0 for some j0 then
|xj0 |p > 0, hence

(
‖~x‖p

)1/p ≥ |xj0 |p > 0.
(b). Absolute homogeneity:
If λ ∈ R then

‖(λ~x)‖p =
( n∑
j=1

(|λ| |xj |)p
)1/p

=
(
|λ|p

n∑
j=1

|xj |p
)1/p

= |λ|
( n∑
j=1

|xj |p
)1/p

= |λ|‖~x‖p.

(c). Triangle inequality for p = 1:
It follows from |xj + yj | ≤ |xj |+ |yj | for all j that

‖~x+ ~y‖1 =

n∑
j=1

|xj + yj | ≤
n∑
j=1

|xj | +

n∑
j=1

|yj | = ‖~x‖1 + ‖~y‖1.

(d). Triangle inequality for p > 1:
This is Minkowski’s inequality for (Rn, ‖ · ‖p) (thm.11.7 below). That ‖ · ‖2 satisfies the triangle
inequality (i.e., p = 2) also follows independently from cor.11.1 on p.347. �

Proposition 11.17 (The Lp–norm is a norm).

Let p ∈ [1,∞[ and let a, b ∈ R such that a < b.

Then the Lp-norm f 7→ ‖f‖Lp =
( ∫ b

a |f(x)|p
)1/p

is a norm in CCC ([a, b],R).
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PROOF:
(a). Positive definiteness:
Follows from prop.11.14 on p.348 and the fact that x 7→ |f(x)|p is a nonnegative and continuous
function.
(b). Absolute homogeneity:
If λ ∈ R then

‖(λf)‖Lp =
(∫ b

a
(|λ| |f(x)|)p dx

)1/p

=
(
|λ|p

∫ b

a
|f(x)|p dx

)1/p
= |λ|

(∫ b

a
|f(x)|p dx

)1/p
= |λ|‖f‖Lp .

(c). Triangle inequality for p = 1:
It follows from |f(x) + g(x)| ≤ |f(x)|+ |g(x)| for all x that

‖f + g‖L1 =

∫ b

a
|f(x) + g(x)| dx ≤

∫ b

a
(|f(x)| + |g(x)|) dx

=

∫ b

a
|f(x)| dx +

∫ b

a
|g(x)| dx = ‖f‖L1 + ‖g‖L1 .

(d). Triangle inequality for p > 1:
This is Minkowski’s inequality for Lp–norms (thm.11.5 below). That ‖ · ‖L2 satisfies the triangle
inequality (i.e., p = 2) also follows independently from cor.11.1 on p.347. �

We were referring to Minkowksi’s inequalities for (Rn, ‖ · ‖p) and Lp–norms when proving the tri-
angle inequality for those norms. We now build the machinery that will allows us to prove those
inequalities.

Proposition 11.18 (Young’s Inequality).

Let a, b > 0 and let p, q > 1 be conjugate indices, i.e.,

1

p
+

1

q
= 1.(11.40)

Then Young’s inequality holds:

ab ≤ ap

p
+

bq

q
.(11.41)

PROOF:
Step 1: We show that q − 1 = 1

p−1 :

1

p
+

1

q
= 1 ⇒ q + p = pq ⇒ q(1− p) = −p

⇒ q =
p

p− 1
⇒ q − 1 =

p− (p− 1)

p− 1
=

1

p− 1
.

(11.42)
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Step 2: The functions

ϕ : [0,∞[→ [0,∞[; x 7→ xp−1 and ψ : [0,∞[→ [0,∞[; y 7→ yq−1

are inverse to each other because we have

ψ
(
ϕ(x)

)
= ψ

(
xp−1

)
=
(
xp−1

)q−1 (?)
=

(
xp−1

)1/(p−1)
= x

((?) follows from step 1). We further have

ϕ
(
ψ(y)

)
= ϕ

(
yq−1

)
=
(
yq−1

)p−1 (??)
=

(
yq−1

)1/(q−1)
= y

((??) again follows from step 1). Note that those two functions are continuous (actually, differen-
tiable) and strictly increasing because ϕ′(t) = (p − 1)t(p−2) > 0 and ψ′(t) = (q − 1)t(q−2) > 0 for all
t ≥ 0. We further have ϕ(0) = 0 = ψ(0).
Step 3: Let f : [0,∞[→ [0,∞[ be a continuous and strictly increasing (hence invertible) function
such that f(0) = 0. Then the following is true for any two real numbers a, b > 0:

ab ≤
∫ a

0
f(x)dx +

∫ b

0
f−1(y)dy.(11.43)

To prove this, we distinguish three cases. Either b < f(a) or b > f(a) or b = f(a).

The picture to the right shows what happens if b < f(a): The
rectangle ab is covered by the areas determined by the two
integrals, but not all of the area of

∫ a
0 f(x)dx is covered by the

rectangle.
Source: https://brilliant.org/wiki/youngs-inequality/

If b > f(a) then the situation is similar, except that now not all of the area of
∫ b

0 f
−1(y)dy is covered

by the rectangle ab. Finally, if b = f(a), the area covered by the two integrals matches the rectangle.
Step 4: We now apply the above to the function y = f(x) = xp−1.
The inverse function is x = f−1(y) = y1/(p−1) = yq−1 (see (11.42)). We integrate and obtain

∫ a

0
f(x)dx =

∫ a

0
xp−1 =

xp

p

∣∣∣∣∣
a

0

=
ap

p
,

∫ a

0
f−1(y)dy =

∫ a

0
yq−1 =

yq

q

∣∣∣∣∣
b

0

=
bq

q
.

Young’s inequality (11.41) now follows from (11.43). �

Theorem 11.4 (Hoelder’s inequality for Lp–norms).
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Let a, b ∈ R such that a < b. Let p, q > 1 be conjugate indices, i.e.,

1

p
+

1

q
= 1.(11.44)

Then Hoelder’s inequality is true:

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq , i.e.,

∫ b

a
|f(x)g(x)|dx ≤

(∫ b

a
|f(x)|pdx

)1/p (∫ b

a
|g(x)|qdx

)1/q
.

(11.45)

PROOF: We note that the composite function x 7→ |f(x)|p is continuous, hence integrable, as the
composite of the three continuous functions x 7→ f(x), y 7→ |y|, and z 7→ zp.
Note that ‖f‖Lp = 0 is only possible if |f(x)|p = 0, i.e., f(x) = 0 for all x (see prop.11.14 on p.348).
Likewise, ‖g‖Lq = 0 implies g(x) = 0 for all x. In either case,

∫ b
a f(x)g(x) = 0 and (11.45) is trivially

satisfied. So we may assume that both ‖f‖Lp > 0 and ‖g‖Lq > 0 For some fixed x ∈ [a, b] let

A := ‖f‖Lp , ax :=
|f(x)|
A

, B := ‖g‖Lq , bx :=
|g(x)|
B

.

It follows from Young’s inequality (11.41) that axbx ≤
a px
p

+
b qx
q

. We integrate both sides of that

inequality
∫ b
a · · · dx and obtain from the monotonicity of the integral (see example 5.21 on p.140)

that ∫ b

a
axbxdx ≤

∫ b

a

(a px
p

+
b qx
q

)
dx.(11.46)

i.e.,

1

AB

∫ b

a
|f(x)g(x)| dx ≤

∫ b

a

( |f(x)|p

pAp
+
|g(x)|q

qBq

)
dx

=
1

pAp

∫ b

a
|f(x)|p dx +

1

qBq

∫ b

a
|g(x)|q dx.

(11.47)

We use ∫ b

a
|f(x)|pdx = (‖f‖Lp)p,

∫ b

a
|g(x)|qdx = (‖g‖Lq)q(11.48)

in (11.47) and obtain

1

AB

∫ b

a
|f(x)g(x)|dx ≤ Ap

pAp
+

Bq

qBq
=

1

p
+

1

q
= 1.

It follows from the definition of A and B that∫ b

a
|f(x)g(x)|dx ≤ AB = ‖f‖Lp ‖g‖Lq . �
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Theorem 11.5 (Minkowski’s inequality for Lp–norms).

Let a, b ∈ R such that a < b and let p ∈ [1,∞[. Then Minkowski’s inequality is true:

‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp , i.e.,(11.49) (∫ b

a
|f(x) + g(x)|p dx

)1/p
≤
(∫ b

a
|f(x)|p dx

)1/p
+
(∫ b

a
|g(x)|p dx

)1/p
.(11.50)

PROOF: This follows for p = 1 from part (c) of the proof of prop.11.17. We may assume that p > 1.
Let q be the conjugate index to p, i.e.,

1

p
+

1

q
= 1, hence (p− 1)q = p(11.51)

(see (11.42)). Let a ≤ x ≤ b. Then

|f(x) + g(x)|p = |f(x) + g(x)| |f(x) + g(x)|p−1 ≤ |f(x)| |f(x) + g(x)|p−1 + |g(x)| |f(x) + g(x)|p−1.

The last inequality follows from |f(x)+g(x)| ≤ |f(x)|+ |g(x)| and |f(x)+g(x)|p−1 ≥ 0. We integrate
and obtain∫ b

a
|f(x) + g(x)|p dx ≤

∫ b

a
|f(x)| |f(x) + g(x)|p−1 dx +

∫ b

a
|g(x)| |f(x) + g(x)|p−1 dx.(11.52)

We apply Hoelder’s inequality to the first of the two integrals on the right–hand side of (11.52) and
obtain ∫ b

a

(
|f(x)|

) (
|f(x) + g(x)|p−1

)
dx ≤

( ∫ b

a

(
|f(x)|

)p
dx
)1/p ( ∫ b

a

(
|f(x) + g(x)|p−1

)q
dx
)1/q

=
( ∫ b

a
|f(x)|p dx

)1/p ( ∫ b

a
|f(x) + g(x)|(p−1)q dx

)1/q
=
( ∫ b

a
|f(x)|p dx

)1/p ( ∫ b

a
|f(x) + g(x)|p dx

)1/q
.

(11.53)

The last equality results from (p−1)q = p (see (11.51)). Similarly, we obtain from the second integral
on the right–hand side of (11.51) the following:∫ b

a

(
|g(x)|

) (
|f(x) + g(x)|p−1

)
dx ≤

( ∫ b

a
|g(x)|p dx

)1/p ( ∫ b

a
|f(x) + g(x)|p dx

)1/q
.(11.54)

We apply (11.53) and (11.54) to (11.52) and obtain∫ b

a
|f(x) + g(x)|p dx ≤

( ∫ b

a
|f(x)|p dx

)1/p ( ∫ b

a
|f(x) + g(x)|p dx

)1/q
+
( ∫ b

a
|g(x)|p dx

)1/p ( ∫ b

a
|f(x) + g(x)|p dx

)1/q
.

(11.55)
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Minkowski’s inequality (11.50) is trivially satisfied if
∫ b
a |f(x)+g(x)|pdx = 0, so we may assume that∫ b

a |f(x) + g(x)|pdx > 0. This allows us to divide each term in (11.55) by
( ∫ b

a |f(x) + g(x)|pdx
)1/q.

We obtain ( ∫ b

a
|f(x) + g(x)|p dx

)1−1/q ≤
( ∫ b

a
|f(x)|p dx

)1/p
+
( ∫ b

a
|g(x)|p dx

)1/p
.(11.56)

Note that 1− 1
q = 1

p because 1
q + 1

p = 1, and (11.56) reads

( ∫ b

a
|f(x) + g(x)|p dx

)1/p ≤ ( ∫ b

a
|f(x)|p dx

)1/p
+
( ∫ b

a
|g(x)|p dx

)1/p
. �

Theorem 11.6 (Hoelder’s inequality for the p–norms).

Let n ∈ N
and ~x = (x1, . . . xN ), ~y = (y1, . . . yN ) ∈ Rn. Let p, q > 1 be conjugate indices, i.e.,

1

p
+

1

q
= 1.(11.57)

Then Hoelder’s inequality in Rn is true:

n∑
j=1

|xjyj | ≤ ‖~x‖p‖~y‖q, i.e.,

n∑
j=1

|xjyj | ≤
( n∑
j=1

|xj |p
)1/p ( n∑

j=1

|yj |q
)1/q

.(11.58)

PROOF: Let ~x, ~y ∈ Rn. If ~x = 0 or ~y = 0 then
∑n

j=1 |xjyj | = 0 and (11.58) is trivially satisfied. We
hence may assume that both ~x 6= 0 and ~y 6= 0.
It follows from part (a) of the proof of prop.11.16 (positive definiteness of ‖ · ‖p for all p) on p.350
that ‖~x‖p > 0 and ‖~y‖q > 0 For some fixed index 1 ≤ j ≤ n let

A := ‖~x‖p, aj :=
|xj |
A
, B := ‖~y‖q, bx :=

|yj |
B
.

It follows from Young’s inequality (11.41) that

ajbj ≤
apj
p

+
bqj
q
.

We take sums
∑n

j=1 · · · of both sides of that inequality and obtain from the monotonicity of sum-
mation

n∑
j=1

ajbj ≤
n∑
j=1

((aj)
p

p
+

(bj)
q

q

)
,(11.59)

i.e.,

1

AB

n∑
j=1

|xjyj | ≤
n∑
j=1

( |aj |p
pAp

+
|bj |q

qBq

)
=

1

pAp

n∑
j=1

|aj |p +
1

qBq

n∑
j=1

|bj |q.(11.60)
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But
n∑
j=1

|xj |p = (‖f‖p)p,
n∑
j=1

|yj |q = (‖g‖q)q.(11.61)

It follows from (11.60) that

1

AB

n∑
j=1

|xjyj | ≤
Ap

pAp
+

Bq

qBq
=

1

p
+

1

q
= 1,

and we deduce from the definition of A and B that
n∑
j=1

|xjyj | ≤ AB = ‖~x‖p ‖~x‖q. �

Theorem 11.7 (Minkowski’s inequality for (Rn, ‖ · ‖p)).

Let n ∈ N and ~x = (x1, . . . xN ),
~y = (y1, . . . yN ) ∈ Rn. Let p ∈ [1,∞[. Then Minkowski’s inequality for (Rn, ‖ · ‖p) is true:

‖~x+ ~y‖p ≤ ‖~x‖p + ‖~y‖p, i.e.,(11.62) (∑
j

|xj + yj |p
)1/p

≤
(∑

j

|f(x)|p
)1/p

+
(∑

j

|g(x)|p
)1/p

.(11.63)

PROOF: This follows for p = 1 from part (c) of the proof of prop.11.17. We hence may assume that
p > 1. Let q be the conjugate index to p, i.e.,

1

p
+

1

q
= 1, hence (p− 1)q = p(11.64)

(see (11.42)). Let a ≤ x ≤ b. Then

|xj + yj |p = |xj + yj | |xj + yj |p−1 ≤ |xj | |xj + yj |p−1 + |yj | |xj + yj |p−1.

The last inequality follows from |xj + yj | ≤ |xj |+ |yj | and |xj + yj |p−1 ≥ 0. We sum and obtain∑
j

|xj + yj |p ≤
∑
j

|xj | |xj + yj |p−1 +
∑
j

|yj | |xj + yj |p−1.(11.65)

Hoelder’s inequality applied to the first of the two integrals on the right–hand side of (11.65) yields∑
j

(
|xj |
) (
|xj + yj |p−1

)
≤
(∑

j

(
|xj |
)p)1/p (∑

j

(
|xj + yj |p−1

)q)1/q
=
(∑

j

|xj |p
)1/p (∑

j

|xj + yj |(p−1)q
)1/q

=
(∑

j

|xj |p
)1/p (∑

j

|xj + yj |p
)1/q

.

(11.66)
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The last equality results from (p−1)q = p (see (11.64)). Similarly, we obtain from the second integral
on the right–hand side of (11.65) the following:∑

j

(
|yj |
) (
|xj + yj |p−1

)
≤
(∑

j

|yj |p
)1/p (∑

j

|xj + yj |p
)1/q

.(11.67)

We apply (11.66) and (11.67) to (11.65) and obtain∑
j

|xj + yj |p ≤
(∑

j

|xj |p
)1/p (∑

j

|xj + yj |p
)1/q

+
(∑

j

|yj |p
)1/p (∑

j

|xj + yj |p
)1/q

.
(11.68)

Minkowski’s inequality (11.63) is trivially satisfied if
∑

j |xj + yj |p = 0, so we may assume that∑
j |xj + yj |p > 0. We divide each term in (11.68) by

(∑
j |xj + yj |p

)1/q and obtain(∑
j

|xj + yj |p
)1−1/q ≤

(∑
j

|xj |p
)1/p

+
(∑

j

|yj |p
)1/p

.(11.69)

Note that 1− 1
q = 1

p because 1
q + 1

p = 1, and (11.69) reads(∑
j

|xj + yj |p
)1/p ≤ (∑

j

|xj |p
)1/p

+
(∑

j

|yj |p
)1/p

. �

In chapter ?? on the topology of metric spaces (p. ??) you will learn about metric spaces as a concept
that generalizes the measurement of distance (or closeness, if you prefer) for the elements of a
nonempty set.

11.3 Exercises for Ch.11

Exercise 11.1. Prove prop.11.13 on p.344: Let X be an arbitrary, nonempty set. Then the function
‖ · ‖∞ : BBB(X,R)→ R+, h→ ‖h‖∞ = sup{|h(x)| : x ∈ X} defines a norm. �

Exercise 11.2. Prove parts (a) and (b) of prop.11.10 (Algebraic properties of the inner product) on
p.342:
Let V be a vector space with inner product •(·, ·). Let a, b, x, y ∈ V . Then

(a) (a+ b) • (x+ y) = a • x + b • x + a • y + b • y
(b) (x+ y) • (x+ y) = x • x + 2(x • y) + y • y
(c) (x− y) • (x− y) = x • x − 2(x • y) + y • y �

Exercise 11.3. Prove Remark 11.7 on p.345:
Let (V, ‖ · ‖) be a normed vector space and let γ > 0. Let p : V → R be defined as p(x) := γ‖x‖. Then
p also is a norm. �

Exercise 11.4. Prove that the p–norm (see Definition 11.18 on p.345) is a norm on Rn for the special
case p = 1:

‖~x‖1 =
n∑
j=1

|xj | �
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12 Metric Spaces and Topological Spaces – Part I

There is a branch of Mathematics, called topology, which deals with the concept of closeness. The
definition of the limit of a sequence (xn)n is based on closeness: The points of the sequence must
get “arbitrarily close” to its limit as n → ∞. Continuity also can be phrased in terms of closeness:
Continuous functions map arbitrarily close elements of the domain to arbitrarily close elements of
the codomain. In the most general setting Topology is about neighborhoods of a point without
having the concept of measuring the distance of two points. We mostly won’t deal with such a
level of generality in this document. Instead we’ll we’ll focus on metric spaces (X, d): sets X that
are equipped with a distance function (x, y) 7→ d(x, y). Even this limited context will significantly
generalize the material of ch.9.3 (Convergence and Continuity in R) and ch.11.2.2 (Normed Vector
Spaces).

12.1 Definition and Examples of Metric Spaces

A metric is a real–valued function of two arguments which associates with any two points x, y ∈ X
their "distance" d(x, y).
It is clear how you measure the distance (or closeness, depending on your point of view) of two
numbers x and y: you plot them on an x–axis where the distance between two consecutive inte-
gers is exactly one inch, grab a ruler and see what you get. Alternate approach: you compute the
difference. For example, the distance between x = 12.3 and y = 15 is x− y = 12.3− 15 = −2.7.
Actually, we have a problem: There are situations where direction matters and a negative distance
is one that goes into the opposite direction of a positive distance, but we do not want that in this
context and understand the distance to be always nonnegative, i.e.,

dist(x, y) = |y − x| = |x− y|

More importantly, you must forget what you learned in your in your science classes: “Never ever
talk about a measure (such as distance or speed or volume) without clarifying its dimension”. Is
the speed measured in miles per hour our inches per second? Is the distance measured in inches
or miles or micrometers? In the context of metric spaces we measure distance simply as a number,
without any dimension attached to it. For the above example, you get

dist(12.3, 15) = |12.3− 15| = 2.7.

In section 11.1.3 on p.325 it is shown in great detail that the distance between two two–dimensional
vectors ~v = (v1, v2) and ~w = (w1, w2) is

dist(~v, ~w) =
√

(w1 − v1)2 + (w2 − v2)2

and the distance between two three–dimensional vectors ~v = (v1, v2, v3) and ~w = (w1, w2, w3) is

dist(~v, ~w) =
√

(w1 − v1)2 + (w2 − v2)2 + (w3 − v3)2.

In the next chapter we will generalize the concept of distance to more general objects.

Definition 12.1 (Metric spaces). Let X be an arbitrary, nonempty set.
A metric on X is a real–valued function of two arguments

d(·, ·) : X ×X → R, (x, y) 7→ d(x, y)
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with the following three properties:

d(x, y) ≥ 0 ∀x, y ∈ X and d(x, y) = 0 ⇔ x = y(12.1a)
d(x, y) = d(y, x) ∀x, y ∈ X(12.1b)
d(x, z) ≤ d(x, y) + d(y, z) ∀ x, y, z ∈ X(12.1c)

positive definiteness
symmetry
triangle inequality

Let x, y ∈ X and ε > 0. We say that x and y are ε–close if d(x, y) < ε. The pair (X, d(·, ·)), usually
just written as (X, d), is called a metric space. We’ll write X for short if it is clear which metric we
are talking about. �

To appreciate that last sentence, you must understand that there can be more than one metric on X .
See the examples below.

Remark 12.1 (Metric properties). Let us quickly examine what those properties mean.

“Positive definite”: The distance is never negative and two items x and y have
distance zero if and only if they are equal.

“symmetry”: the distance from x to y is no different to that from y to x. That
may come as a surprise to you if you have learned in Physics
about the distance from point a to point b being the vector ~v
that starts in a and ends in b and which is the opposite of the
vector ~w that starts in b and ends in a, i.e., ~v = −~w . We only
care about size and not about direction.

“Triangle inequality”: If you directly drive from x to z then this will take less fuel
than if you make a stopover at an intermediary y. �

Remark 12.2. Do not make the mistake and think of X as a set of numbers or vectors! For example,
we might deal with

X := { all students who are currently taking this class }.

We can define the distance of any two students s1 and s2 as

d(s1, s2) =

{
0 for s1 = s2,

1 for s1 6= s2.

We will learn later in this subchapter that the above function is called the discrete metric on X and
satisfies indeed the definition of a metric. 134 �

The triangle inequality generalizes to more than two terms.

134see Definition 12.3 on p.362 and prop.12.2 directly thereafter.
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Proposition 12.1.

Let (X, d) be a metric space. Let n ∈ N and x1, x2, . . . , xn ∈ X . Then

(12.2) d(x1, xn) ≤
n−1∑
j=1

d(xj , xj+1) = d(x1, x2) + d(x2, x3) + d(xn−1, xn).

The proof is left as exercise 12.1 on p.398. �

Before we give some examples of metric spaces, here is a theorem that tells you that a vector space
with a norm (see Definition 11.17 on p.345), becomes a metric space as follows:

Theorem 12.1 (Norms define metric spaces).

Let (V, ‖ · ‖) be a normed vector space. Then the function

d‖·‖(·, ·) : V × V → R≥0; (x, y) 7→ d‖·‖(x, y) := ‖y − x‖(12.3)

defines a metric space (V, d‖·‖).

PROOF: The proof is left as exercise 12.2 on p.398. �

Definition 12.2 (Metric induced by a norm 135 ).

We say that the metric d‖·‖(·, ·) defined by (12.3) is induced by the norm ‖ · ‖. and that
d‖·‖(·, ·) is derived from the norm ‖ · ‖, or that d‖·‖(·, ·) is associated with the norm ‖ · ‖. �

Here are some examples of metric spaces.

Example 12.1 ((R with d|·|(a, b) = |b − a|). According to thm.12.1 (R, d|·|) is a metric space because
the Euclidean norm |·| is a norm on R = R1.
Here is a direct proof; It is obvious that if x, y are real numbers then the difference x− y, and hence
its absolute value, is zero if and only if x = y and that proves positive definiteness.
Symmetry follows from d|·|(x, y) = |x− y| = |−(y − x)| = |y − x| = d|·|(y, x).
The triangle inequality for a metric follows from |a+ b| ≤ |a|+ |b| (see prop.2.5 on p.28):

d|·|(x, z) = |x− z| = |(x− y)− (z − y)|
≤|x− y|+ |z − y| = d|·|(x, y) + d|·|(z, y) = d|·|(x, y) + d|·|(y, z). �

Example 12.2 (bounded real–valued functions with d‖·‖∞f, g) = sup–norm of g(·)− f(·) ).

d‖·‖∞(f, g) = ‖g − f‖∞ = sup{|g(x)− f(x)| : x ∈ X}(12.4)

is a metric on the set BBB(X,R) of all bounded real–valued functions onX . This follows from thm.12.1
and prop.11.13 on p. 344, according to which (BBB(X,R), ‖ · ‖∞) is a normed vector space. �

135Compare this to Definition 11.19 (Norm for an inner product) on p.346.
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Example 12.3 (continuous real–valued functions on [a,b ]with d‖·‖L2
(f, g) = ‖g− f‖L2). We will see

in ch.12.2 on p.362 that ‖g − f‖∞ is a good measure for the difference of the functions f and g and
that an often even better measure is that of the area difference between their graphs which is given
by the netric

d‖·‖L2
(f, g) = ‖g − f‖L2 =

√∫ b

a

(
g(x)− f(x)

)2
dx.(12.5)

(See Definition 11.21 on p.349). �

Example 12.4 (Rn with the Euclidean metric).

d‖·‖2(~x, ~y) =

√
(y1 − x1)2 + (y2 − x2)2 + . . .+ (yn − xn)2 =

√√√√ n∑
j=1

(yj − xj)2

This follows from the fact that the Euclidean norm is a norm on the vector space Rn (see cor.11.1 on
p.347.) �

Just in case you think that all metrics are derived from norms, here is an extremely important coun-
terexample.

Definition 12.3 (Discrete metric).

Let X be nonempty. Then the function

d(x, y) =

{
0 for x = y

1 for x 6= y

on X ×X is called the discrete metric on X. �

The above definition makes sense because of the following proposition.

Proposition 12.2. The discrete metric satisfies the properties of a metric.

PROOF: Obviously the function is nonnegative and it is zero if and only if x = y. Symmetry is
obvious too.
The triangle inequality d(x, z) ≤ d(x, y) + d(y, z) is certainly true in the special case x = z. (Why?)
So let us assume x 6= z. But then x 6= y or y 6= z or both must be true. (Why?) That means that

d(x, z) = 1 ≤ d(x, y) + d(y, z),

and this proves the triangle inequality. �

12.2 Measuring the Distance of Real–Valued Functions

How do we compare two functions? Let us make our lives easier: How do we compare two real–
valued functions f(·) and g(·)? One answer is to look at a picture with the graphs of f(·) and
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g(·) and look at the shortest distance |f(x)− g(x)| as you run through all x. That means that
the distance between the functions f(x) = x and g(x) = x2 is zero because f(1) = g(1) = 1. The
distance between f(x) = x+ 1 and g(x) = 0 (the x–axis) is also zero because f(−1) = g(−1) = 0.
Do you really think this is a good way to measure closeness? You really do not want two items to
have zero distance unless they coincide. It’s a lot better to look for an argument x where the value
|f(x)− g(x)| is largest rather than smallest. Now we are ready for a proper definition.

Definition 12.4 (Maximal displacement distance between real–valued functions 136 ).

Let X be an arbitrary, nonempty set and let f(·), g(·) : X → R be two real–valued functions
on X . We define the maximal displacement distance , also called the sup–norm distance
or ‖ · ‖∞ distance , between f(·) and g(·) as

(12.6) d∞(f, g) := ‖f(·)− g(·)‖∞ = sup{|f(x)− g(x)| : x ∈ X},

i.e., as the metric induced by the sup–norm on the set BBB(X,R) of all bounded real–valued
function on X . �

Remark 12.3. We will see in prop.13.7 on p.417 of ch.13.2.1 on convergence of function sequences
that the sup–norm induced metric is suitable to measure what will be called “uniform convergence”
of real–valued functions. As a metric, the distance measure of two functions f, g satisfies positive
definiteness, symmetry and the triangle inequality. We have seen in other contexts what those
properties mean.
“Positive definite”: The distance is never negative and two functions f(·) and g(·) have distance
zero if and only if they are equal, i.e., if and only if f(x) = g(x) for each argument x ∈ X .
“Symmetry”: the distance from f(·) to g(·) is no different than that from g(·) to f(·). Symmetry
implies that you do not obtain a negative distance if you walk in the opposite direction.
“Triangle inequality”: If you directly compare the maximum deviation between two functions f(·)
and h(·) then this will never be more than than using an intermediary function g(·) and adding the
distance between f(·) and g(·) to that between g(·) and h(·). �

Remark 12.4. Figure 12.1 illustrates the last definition. Plot the graphs of f and g as usual and find
the the spot x0 on the x–axis for which the difference |f(x0)− g(x0)| (the length of the vertical line
that connects the two points with coordinates (x0, f(x0)) and (x0, g(x0))) has the largest possible
value. The domain of f and g is the subset of R that corresponds to the thick portion of the x–axis.

136See example 12.2 on p.361.
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- x

6
y

x0

d∞(f, g)

Figure 12.1: Distance of two real–valued functions.

Figure 12.2 allows you to visualize for a given δ > 0 and f : X → R the “δ–neighborhood” of f(·)
defined as

(12.7) Nδ(f) := {g : X → R : d(∞f, g) < δ} = {g(·) : X → R : sup
x∈X
|f(x)− g(x)| < δ},

i.e., the set of all functions g(·) with distance less than δ from f(·).
You draw the graph of f(·) + δ (the graph of f(·) shifted up by the amount of δ) and the graph
of f(·)− δ (the graph of f(·) shifted down by the amount of δ). Any function g(·) which stays
completely inside this band, without actually touching it, belongs to the δ–neighborhood of f(·).

Figure 12.2: δ–neighborhood of a real–valued function.

In other words, assuming that the domain A is a single, connected chunk and not a collection of
several separate intervals, the δ–neighborhood of f(·) is a "band" whose contours are made up on
the left and right by two vertical lines and on the top and bottom by two lines that look like the
graph of f(·) itself but have been shifted up and down by the amount of δ. �
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Definition 12.5 (Mean distances between real–valued functions). Let a, b ∈ R such that a < b and
let f(·), g(·) : X → R be two continuous real–valued functions on X . We define the mean square
distance between f(·) and g(·) on [a, b] as

(12.8) dL2(f, g) := d‖·‖L2 (f,g) = ‖g − f‖L2 =

(∫ b

a
(g(x)− f(x)2dx

)1/2

,

i.e., as the metric induced by the L2–norm on the set CCCBBB([a,b],R) of all continuous and bounded
real–valued function on [a, b].
We further define the mean distance between f(·) and g(·) on [a, b] as

(12.9) dL1(f, g) := d‖·‖L1 (f,g) = ‖g − f‖L1 =

∫ b

a
|g(x)− f(x|dx,

i.e., as the metric induced by the L1–norm on the set CCCBBB([a,b],R). �

Remark 12.5. We saw in Definition 11.20, example 11.22, and Definition 11.21 on pp.347 that both

dL1(f, g) := d‖·‖L1 (f,g) = ‖g − f‖L1 =

∫ b

a
|g(x)− f(x)|dx,(12.10)

dL2(f, g) := d‖·‖L2 (f,g) = ‖g − f‖L2 =

(∫ b

a
(g(x)− f(x)2dx

)1/2

,(12.11)

are often better suitable than the distance derived from the sup–norm to measure the distance of
two functions. One of the drawbacks from an instructor’s perspective is that there is no picture
like figure 12.2 to visualize the set of all functions with an L1–distance or L2–distance from a given
function.

12.3 Neighborhoods and Open Sets

(A) Given a point x0 ∈ R (a real number) and ε > 0, we can look at

Nε(x0) = (x0 − ε, x0 + ε) = {x ∈ R : x0 − ε < x < x0 + ε}
= {x ∈ R : d(x, x0) = |x− x0| < ε}

(12.12)

which is the set of all real numbers x with a distance to x0 of strictly less than a number ε (the open
interval with end points x0 − ε and x0 + ε). (see example (12.1) on p.361).
(B) Given a point ~x0 = (x0, y0) ∈ R2 (a point in the xy–plane), we can look at

Nε(~x0) = {(x, y) ∈ R2 : (x− x0)2 + (y − y0)2 < ε2}
= {~x ∈ R2 : d‖·‖2(~x, ~y) = ‖~x− ~x0‖2 < ε}

(12.13)

which is the set of all points in the plane with a distance to ~x0 of strictly less than a number ε (the
open disc around ~x0 with radius ε from which the points on the boundary (those with distance
equal to ε) are excluded).

365 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

(C) Given a point ~x0 = (x0, y0, z0) ∈ R3 (a point in the 3–dimensional space), we can look at

Nε(~x0) = {(x, y, z) ∈ R3 : (~x− ~x0)2 + (~y − ~y0)2 + (~z − ~z0)2 < ε2}
= {~x ∈ R3 : d‖·‖2(~x, ~y) = ‖~x− ~x0‖2 < ε}

(12.14)

which is the set of all points in space with a distance to ~x0 of strictly less than a number ε (the open
ball around ~x0 with radius ε from which the points on the boundary (those with distance equal to
ε) are excluded).
(D) Given a normed vector space (V, ‖ · ‖) and a vector x0 ∈ V , we can look at

(12.15) Nε(x0) = {x ∈ V : ‖x− x0‖ < ε}

which is the set of all vectors in V with a distance to x0 of strictly less than a number ε (the open set
around x0 with ”radius” ε from which the points on the boundary (those with distance equal to ε)
are excluded).
(E) Given a bounded real–valued function f ∈ BBB(X,R), we can look at the sets Nε(f) (ε > 0)
defined in (12.7) on p.364, i.e., the set of all functions g(·) with distance less than ε from f(·).
(F) Given is a closed interval [a, b] (a, b ∈ R). For a continuous (hence bounded) real–valued function
f ∈BBB([a, b],R), we can look at the sets

Nε(f) = {g ∈BBB([a, b],R) : ‖g − f‖L2 < ε},(12.16)

i.e., the set of all functions g(·) such that
√∫ b

a

(
g(x)− f(x)

)2
dx < ε (see Definition 11.21 on p.349)

There is one more item more general than neighborhoods of elements belonging to normed vector
spaces, and that would be neighborhoods in metric spaces. We have arrived at the final definition:

Definition 12.6 (ε-Neighborhood).

Given a metric space (X, d), x0 ∈ X and ε > 0, let

(12.17) Nε(x0) = {x ∈ X : d(x, x0) < ε}
be the set of all elements of X with a distance to x0 of strictly less than the number ε (the
open set around x0 with ”radius” ε from which the points on the boundary (those with
distance equal to ε) are excluded). We call Nε(x0) the ε–neighborhood of x0. �

The following should be intuitively clear: Look at any point a ∈ Nε(x0). You can find δ > 0 such
that the entire δ–neighborhood Nδ(a) of a is contained inside Nε(x0). Just in case you do not trust
your intuition, this is shown in prop. 12.4 just a little bit further down.

It then follows that any a ∈ Nε(x0) is an interior point of Nε(x0) in the following sense:

Definition 12.7 (Interior points in metric spaces).

Given is a metric space (X, d).
An element a ∈ A ⊆ X is called an inner point or interior point of A if we can find some
ε > 0 (no mattter how small), so that Nε(a) ⊆ A. �
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Definition 12.8 (Open sets in metric spaces).

Given is a metric space (X, d).
A set all of whose members are interior points is called an open set. �

Proposition 12.3.

Let (X, d) be a metric space. Let x, y ∈ X and ε > 0 such that y ∈ Nε(x).

If δ > 0 Then Nδ(y) ⊆ Nδ+ε(x) .

PROOF: Let z ∈ Nδ(y). Then

d(z, x) ≤ d(z, y) + d(y, x) < δ + ε.

In other words, each element z of Nδ(y) is δ + ε–close to x. Hence Nδ(y) ⊆ Nδ+ε(x). �

Proposition 12.4. Nε(x0) is an open set

PROOF: It is worth while to examine this proof 137 closely because you can see how the triangle
inequality is put to work.
a ∈ Nε(x0) means that ε− d(a, x0) > 0, say,

ε− d(a, x0) = 2δ(12.18)

where δ > 0. Let b ∈ Nδ(a). The claim is that any such b is an element of Nε(x0). How so?

d(b, x0) ≤ d(b, a) + d(a, x0) < δ + (ε− 2δ) = ε− δ < ε

In the above chain, the first inequality is a consequence of the triangle inequality. The second one
reflects the fact that b ∈ Nδ(a) and uses (12.18).
We have proved that for any b ∈ Nδ(a) it is true that b ∈ Nε(x0) hence Nδ(a) ⊆ Nε(x0).
This proves that a is an interior point of Nε(x0). But a is an arbitrary point in Nε(x0). It follows that
Nε(x0) is open. �

Proposition 12.5 (Open intervals are open in (R, d|·|) ).

Let a, b ∈ R such that a < b. Then the open interval ]a, b[ is an open set in (R, d|·|).

PROOF: The proof is left as exercise 12.3 on p.398. �

Definition 12.9 (Neighborhoods in Metric Spaces).

Let (X, d) be a metric space, x0 ∈ X . Any open set that contains x0 is called an open
neighborhood of x0. Any superset of an open neighborhood of x0 is called a neighborhood
of x0. �

137A shorter proof can be given if the previous proposition is used.
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Remark 12.6.

(a) You will see very often that the important neighborhoods are the small ones, not
the big ones. The definition above says that, for any neighborhood Ax of a point
x ∈ X , one can find an open neighborhood Ux of x such that Ux ⊆ Ax. Thus, very
often the open neighborhoods are the important ones. Accordingly, there are many
theorems where it is assumed that some given neighborhood is open.

(b) The empty set is not a neighborhood of any x ∈ X , since the condition x ∈ ∅ is never
satisfied. �

Proposition 12.6 (Metric Spaces are Hausdorff Spaces).

Let (X, d) be a metric space and let x, y be two different elements of X . Then there exist neighbor-
hoods Nx of x and Ny of y such that Nx ∩Ny = ∅.

PROOF:
Let ε := 1

2d(x, y) and let x′ ∈ Nε(x). We must show that x′ /∈ Nε(y), i.e., d(x′, y) ≥ ε. Assume to the
contrary that d(x′, y) < ε. It follows from x′ ∈ Nε(x) that d(x, x′) < ε. Thus

d(x, y) ≤ d(x, x′) + d(x′, y) < ε+ ε = d(x, y).

We have reached a contradiction. �

Remark 12.7. ? We will encounter in Chapter.12.5 objects more general than metric spaces, the
so called topological spaces, which allow to define neighborhoods of a point. There are such spaces
for which this proposition is not true. See Remark 12.13 on p.374 about the “indiscrete topology”.
A topological space with the property that any two of its elements can be “separated” by disjoint
neighborhoods is called a Hausdorff space 138 or also a T2 space. �

Theorem 12.2 (Metric spaces are topological spaces).

The following is true about open sets of a metric space (X, d):

An arbitrary union
⋃
i∈I

Ui of open sets Ui is open.(12.19a)

A finite intersection U1 ∩ U2 ∩ . . . ∩ Un (n ∈ N) of open sets is open.(12.19b)
The entire set X is open and the empty set ∅ is open.(12.19c)

PROOF of a: Let U :=
⋃
i∈I

Ui and assume x ∈ U . We must show that x is an interior point of U . An

element belongs to a union if and only if it belongs to at least one of the participating sets of the
union. So there exists an index i0 ∈ I such that x ∈ Ui0 .
Because Ui0 is open, x is an interior point and we can find a suitable ε > 0 such that Nε(x) ⊆ Ui0 .
But Ui0 ⊆ U , hence Nε(x) ⊆ U . It follows that x is interior point of U . But xwas an arbitrary point
of U =

⋃
i∈I

Ui which therefore is shown to be an open set.

138so named after the German mathematician Felix Hausdorff
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PROOF of b: Let x ∈ U := U1 ∩ U2 ∩ . . . ∩ Un. Then x ∈ Uj for all 1 ≤ j ≤ n according to the
definition of an intersection and it is inner point of all of them because they all are open sets. Hence,
for each j there is a suitable εj > 0 such that Nεj (x) ⊆ Uj Now define

ε := min{ε1, ε2, ε3, . . . , εn}
Then ε > 0 and 139

Nε(x) ⊆ Nεj (x) ⊆ Uj (1 ≤ j ≤ n), hence Nε(x) ⊆
n⋂
j=1

Uj .

We have shown that an arbitrary x ∈ U is interior point of U and this proves part b.
PROOF of c: First we deal with the set X . Choose any x ∈ X . No matter how small or big an ε > 0
you choose, Nε(x) is a subset of X . But then x is an inner point of X , so all members of x are inner
points and this proves that X is open.
Now to the empty set ∅. You may have a hard time to accept the logic of this statement: All elements
of ∅ are interior points. But remember, the premise “let x ∈ X” is always false and you may conclude
from it whatever you please (see ch.4 (Logic). �
This last theorem provides the underpinnings for the definition of abstract topological spaces, a
subject which will be touched upon in ch.12.5 on p.372.

12.4 Convergence

You have already encountered the precise definition of the convergence of sequences of real num-
bers in ch.9.3. It is only a small step to generalize this concept to all metric spaces and therefore also
to all normed vector spaces.

Definition 12.10 (Convergence of Sequences in Metric Spaces).

Given is a metric space (X, d). We say that a sequence (xn) of elements of X converges
to a ∈ X for n→∞ if the xn will eventually come arbitrarily close to a in the following
sense:
Let δ be a (arbitrarily small) positive real number. Then there is a (possibly extremely large)
integer n0 such that all xj belong to Nδ(a) just as long as j ≥ n0.

This can also be expressed as follows:

(12.20) For all δ > 0 there exists n0 ∈ N such that d(a, xj) < δ for all j ≥ n0.

Here is an yet another way of expressing convergence of (xn)n to a:
• No matter how small a neighborhood of a is given, all members xn will eventually

be inside that neighborhood.

We write either of

(12.21) a = lim
n→∞

xn or xn → a

and we call a the limit of the sequence (xn) �

139This is the exact spot where the proof breaks down if you deal with an infinite intersection of open sets: the minimum
would have to be replaced by an infimum and there is no guarantee that it would be strictly larger than zero.
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Theorem 12.3 (Limits in metric spaces are uniquely determined).

Let (X, d) be a metric space and let (xn)n be a convergent sequence in X . Then its limit is uniquely
determined.

PROOF: Otherwise there would be two different points L1, L2 ∈ X such that both lim
n→∞

xn = L1 and

lim
n→∞

xn = L2 Let ε := d(L1, L2)/2. There will be N1, N2 ∈ N such that

d(xn, L1) < ε ∀n ≥ N1 and d(xn, L2) < ε ∀n ≥ N2.

It follows that, for n ≥ max(N1, N2), 140

d(L1, L2) ≤ d(L1, xn) + d(xn, L2) < 2ε = d(L1, L2)

and we have reached a contradiction. �

Proposition 12.7.

Let (X, d) be a metric space and L, xn ∈ X (n ∈ N). Let δn ∈ R>0 such that δn → 0 as n → ∞.
Assume further that xn ∈ Nδn(L) for all n ∈ N. Then lim

n→∞
xn = L.

PROOF:
Let ε > 0. It follows from lim

k→∞
δk = 0 that there exists n0 ∈ N such that δk < ε for all k ≥ n0. Because

xk ∈ Nδk(L) implies d(xk, L) < δk, we conclude that d(xk, L) < ε for all k ≥ n0, and hence that
lim
k→∞

xn = L. �

For the special case δn = 1
n we obtain

Corollary 12.1.

Let (X, d) be a metric space and L, xn ∈ X (n ∈ N) such that d(xn, L) ≤ 1
n for all n ∈ N.

Then lim
n→∞

xn = L.

PROOF: Obvious from prop.12.7. �

We proved for constant sequences of real numbers that they are convergent. This is also true for
sequences with values in metric spaces.

Proposition 12.8.

Let (X, d) be a metric space, L ∈ X and xn = L for all n ∈ N. Then lim
n→∞

xn = L.

PROOF:
This follows from cor.12.1 above since xn = L ⇒ d(xn, L) = 0 ⇒ d(xn, L) ≤ 1

n for all n ∈ N but
we should be able to prove this directly from the definition of convergence. This is how:

140You could have used N1 +N2 instead. Do you see why?
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Let δ > 0 and n0 = 1. Then d(xn, L) = 0 < δ for all n ≥ 1, i.e., (12.10) on p.369 is satisfied. �

The following proposition shows that the limit behavior of a sequence is a property of its tail, i.e., it
does not depend on the first finitely many indices.

Proposition 12.9. 141

Let xn, yn be two sequences in a metric space (X, d). Assume there is K ∈ N such that xn = yn for
all n ≥ K. Let L ∈ X Then

lim
n→∞

xn = L ⇔ lim
n→∞

yn = L.

PROOF: The proof is left as exercise 12.9 on p.399. �

Compare the next proposition to Proposition 9.13 on p.265.

Proposition 12.10 (Subsequences of sequences with limits).

Let (xn)n be a sequence in a metric space (X, d) with limit L := lim
n→∞

xn. Then it is true for any
subsequence (xnj )j , that lim

j→∞
xnj = L.

PROOF: Let ε > 0. Because the sequence converges, there exists N ∈ N such that d(xj , L) < ε for
all j ≥ N . As nj ≥ j for all j, we conclude that nj ≥ N whenever j ≥ N , hence |xnj − L| < ε for all
j ≥ N . It follows that (xnj ) has limit L. �

The following is a simple corollary.

Proposition 12.11. 142

Let xn be a convergent sequence in a metric space (X, d) with limit L ∈ X . Let K ∈ N. For n ∈ N
let yn := xn+K . Then lim

n→∞
(yn)n = L.

PROOF: The proof is left as exercise 12.10 on p.399. �

Remark 12.8.

The following allows us to prove convergence of xn to L ∈ (X, d) by utilizing what we
know about convergence in (R, d| · |).

lim
n→∞

xn = L ⇔ lim
n→∞

d(xn, L) = 0 . �

Remark 12.9 (Opposite of convergence). Given a metric space (X, d), what is the opposite of
lim
k→∞

xk = L? Beware! It is NOT the statement that lim
k→∞

xk 6= L, because such a statement would

mislead you to believe that such a limit exists, it just happens not to coincide with L.

141See cor.9.4 on p.270.
142See prop.9.14 on p.266.
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The correct answer is as follows:[[[
limk→∞ xk = L is NOT true

]]]
⇔[[[

there exists some ε > 0 such that for all N ∈ N there exists some natural number
j = j(N) such that j ≥ N and d(xj , L) ≥ ε

]]]
. �

It is easy to prove from the Remark 12.9 (Opposite of convergence) the following:

Proposition 12.12 (Opposite of convergence).

A sequence (xk)k with values in (X, d) does not have L ∈ X as its limit if and only if there exists
some ε > 0 and n1 < n2 < n3 < · · · ∈ N such that d(xnj , L) ≥ ε for all j. In other words, we can
find a subsequence (xnj )j which completely stays out of some ε–neighborhood of L.

PROOF: The proof is left as exercise 13.1. �

12.5 Abstract Topological spaces

Theorem 12.2 on p.368 gives us a way of defining neighborhoods for sets which do not have a
metric.

Definition 12.11 (Abstract topological spaces). Let X be an arbitrary nonempty set and let U be a
set of subsets 143 of X whose members satisfy the properties a, b and c of (12.19) on p.368:

An arbitrary union
⋃
i∈I

Ui of sets Ui ∈ U belongs to U,(12.22a)

U1, U2, . . . , Un ∈ U (n ∈ N) ⇒ U1 ∩ U2 ∩ . . . ∩ Un ∈ U,(12.22b)
X ∈ U and ∅ ∈ U.(12.22c)

Then (X,U) is called a topological space The members of U are called open sets of (X,U).
The collection U of open sets is called the topology of X . �

Remark 12.10. Let (X, d) be a metric space and let

Ud := {U ⊆ X : U is an open subsets of (X, d)},(12.23)

i.e., U ∈ Ud ⇔ U consist of interior points only: for each x ∈ U there exist ε > 0 such that

Nε(x) = {y ∈ X : d(x, y) < ε} ⊆ U

(see (12.7) on p.366). Then thm.12.2 on p.368 asserts the following.

Every metric space (X, d) is a topological space in the following sense: If Ud denotes the
open sets of (X, d) then (X,Ud) is a topological space.

143We encountered subsets of 2X with special properties previously when looking at rings of sets in Definition 8.4
(Rings, algebras, and σ–algebras of Sets) on p.235.
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Remark 12.11. Let V be a vector space with a norm ‖ · ‖. We recall that this norm defines a metric
d‖·‖(·, ·) via d‖·‖(x, y) = ‖x− y‖ (see thm.12.1 on p.361). According to part A the norm ‖ ·‖ defines
open sets

U‖·‖ := Ud‖·‖(12.24)

in the metric space (V, d‖·‖).

Every normed vector space (V, ‖ · ‖) is a topological space in the sense that If Ud denotes the
open subsets of a metric space (X, d) then (V,Ud) is a topological space. �

We now discuss the terminology for topologies that are the open sets of metric spaces and, in par-
ticular, normed vector spaces.

Definition 12.12 (Metric Topology and Norm Topology). ?

(a) Let (X, d) be a metric space and let Ud be as defined in (12.23). We say that Ud is induced by
the metric d(·, ·) or that it is generated by the metric d(·, ·). or that it is the metric topology
of X . If it is clear which metric d on X we mean then we also simply refer to “the” metric

topology.

(b) Let (V, ‖ · ‖) be a normed vector space, and let U‖·‖ be as defined in (12.24), i.e., U‖·‖ is the
topology defined by the metric d‖·‖. We say that this topology is induced by the norm ‖ · ‖
or that it is generated by the norm ‖ · ‖. If it is clear which norm on V we are studying then
we call the topology associated with this norm the norm topology of V . �

We defined the discrete metric earlier in this chapter. (See Definition 12.3 on p.362.)

Definition 12.13 (Discrete topology). ?

Let X be a nonempty set with the discrete metric

d(x, y) =

{
0 for x = y,

1 for x 6= y.

We call the topology associated with the discrete metric the discrete topology of X . �

Proposition 12.13.

Let (X, d) be a metric space with the discrete metric. Then its associated topology is

Ud = 2X = {A : A ⊆ X}.

PROOF: The proof is left as exercise 12.12. �
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Remark 12.12. It follows from prop.12.13 that the discrete metric defines the biggest possible topol-
ogy on X , i.e., the biggest possible collection of subsets of X whose members satisfy properties a,
b, c of definition 12.11 on p.372. �

We now discuss the example of a topology which is not generated by a metric.

Proposition 12.14.

Let X be an arbitrary nonempty set and let U := {∅, X}. Then (X,U) is a topological space.

PROOF:
This is trivial because any intersection of members of U is either ∅ (if at least one member is ∅) or X
(if all members are X). Moreover, any union of members of U is either ∅ (if all members are ∅) or X
(if at least one member is X). �

Definition 12.14 (Indiscrete topology).

Let X be a nonempty set. The topology {∅, X} is called the indiscrete topology of X . �

Remark 12.13.
(a) It follows from prop.12.14 that the indiscrete topology is the smallest possible topology on

X . i.e., the smallest possible collection of subsets of X whose members satisfy properties a,
b, c of definition 12.11 on p.372.

(b) Prop.12.6 (Metric Spaces are Hausdorff Spaces) on p.368 guarantees that any two different
points x and y in a metric space can be separated by appropriately chosen disjoint neigh-
borhoods. This is not true for the indiscrete topology since the only superset of a nonempty
open set is X , so the only neighborhood for x is X , and the same is true for y. �

Remark 12.14.

z

The picture to the right 144 demonstrates that there are
exactly three mutually exclusive choices how a point
in (X,U) is related to a subset S of X :

(a) either like the point x: There exists an open
set U such that x ∈ U ⊆ S,

(b) or like the point z: There exists an open set
U such that z ∈ U ⊆ S{,

(c) or like the point y: There is no open set U
such that y ∈ U ⊆ S or y ∈ U ⊆ S{, i.e.,
every open set that contains y intersects both
S and S{.

Thus we can classify any element x ∈ X accordingly: Either x satisfies (a) or x satisfies (b) or x
satisfies (c). This leads to the definitions of interior points, exterior points, and boundary point of
S ⊆ X .

144Source: Wikipedia, https://en.wikipedia.org/wiki/Interior_(topology). The author does not like to use the letter S
for subsets of topological spaces, but it came with the picture.
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Definition 12.15 (Neighborhoods and interior points in topological spaces). Let (X,U) be a topo-
logical space, x ∈ X and S ⊆ X . It is not assumed that S be open.

(a) S is called a neighborhood of x and x is called an inner point or interior point of
S if there exists an open set U such that

x ∈ U ⊆ S.
We call the set So := { all interior points of S} the interior of S. An alternate but
less commonly used notation for So is int(S).

(b) x is called an exterior point of S if x is an inner point of S{, i.e., there exists an open
set U ′ such that

x ∈ U ′ ⊆ S{,
We call the set ext(S) := { all exterior points of S} the open exterior of S.

The expression ’‘open exterior” has been adopted from Wikipedia. 145

(c) x is called a boundary point of S if any neighborhood of x intersects both S and S{.
We call this set the boundary of S and denote it ∂S. �

Remark 12.15. Be sure you understand from the definitions of interior points and neighborhood
above that the following is true:

If S is an arbitrary subset of X , U is an open subset of X , and x ∈ X , then

(a) x is an interior point of S ⇔ S is a neighborhood of x.
(b) x is an interior point of U ⇔ x ∈ U .
(c) If U ⊆ S then all elements of U are interior points of S, i.e., U ⊆ So.

To see that (c) is true observe that any u ∈ U satisfies
u ∈ open set U ⊆ S .

In other words, u, U , and S satisfy the relationship (??) of the definition of interior points. �

Remark 12.16. For metric spaces (X, d) we first defined interior points, and afterward we defined
an open subset as one which consists entirely of interior points. 146 Since openness is the defining
property of topological spaces and thus at the very beginning it should not come as a surprise that
for such spaces we had to proceed in reverse and define interior points and neighborhoods in terms
of open sets. �

Proposition 12.15. Let (X,U) be a topological space and let A ⊆ X . Then

(12.25) Ao =
⋃[

U ∈ U : U ⊆ A
]
.

In other words, the interior of A is the union of all open subsets of A.

145Source: https://en.wikipedia.org/wiki/Interior_(topology)
146See Definition 12.7 on p.366.
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PROOF: For convenience we abbreviate B :=
⋃[

U ∈ U : U ⊆ A
]
.

We first prove that Ao is an open set, i.e., for each x ∈ Ao there is an open set Ux such that

x ∈ Ux ⊆ Ao .(a)

By definition of Ao, x is interior to A, thus there exists U ∈ U such that x ∈ U ⊆ A. It follows from
Remark 12.15(c) that U ⊆ Ao, thus Ux := U satisfies (a).
Next we show that Ao ⊆ B. Since Ao is open, Ao ∈ {U ∈ U : U ⊆ A}. But then,

Ao ⊆
⋃[

U ∈ U : U ⊆ A
]
, i.e., Ao ⊆ B .

We finally prove that B ⊆ Ao. So let x ∈ B. We must show that x ∈ Ao.
By definition of B there exists U ∈ U such that U ⊆ A and x ∈ U . Again we conclude from Remark
12.15(c) that U ⊆ Ao, hence x ∈ Ao. �

That last proposition shows that Ao is an open set which is, as a union of subsets of A, also a subset
of A. Because Ao is the union of all such sets, we conclude that

The interior Ao of A is the largest of all open subsets of A.

Proposition 12.16.

Let (X,U) be a topological space.

If A ⊆ B ⊆ X then Ao ⊆ Bo. �

PROOF: The proof is left as exercise 12.19. �

The following proposition is worth while remembering: If we fix a subset A of a topological space
X then each point x ∈ X belongs either to the interior or the open exterior or the boundary of A.

Proposition 12.17.

Let (X,U) be a topological space and let A ⊆ X . Then,

(12.26) X = Ao
⊎

ext(A)
⊎

∂(A) .

Thus, X is partitioned into the interior, open exterior and boundary of anyone of its subsets.

PROOF: Obvious from the fact that any x ∈ X falls into exactly one of the following categories:
(a) either there exists an open set U such that x ∈ U ⊆ S, i.e., x ∈ Ao,
(b) or there exists an open set U such that z ∈ U ⊆ S{, i.e., x ∈ ext(A),
(c) or there is no open set U such that x ∈ U ⊆ S or x ∈ U ⊆ S{, i.e., every open set that

contains x intersects both S and S{, i.e., i.e., x ∈ ∂(A).
See rem.12.14 on p.374. �

We’ll conclude this chapter with a summary of what we have learned about the classification of sets
with a concept of closeness of points.
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Remark 12.17 (Hierarchy of topological spaces). We have seen the following:

(a) Rn, in particular R = R1, is an inner product space (see prop.11.11 on p.342).
(b) All inner product spaces are normed spaces (see thm.11.3 on p.346).
(c) All normed spaces are metric spaces (see thm.12.1 on p.361).
(d) All metric spaces are topological spaces (see Definition 12.11 on p.372, Definition

12.12 on p.373).

12.6 Bases and Neighborhood Bases ?

This chapter has been marked as optional but we suggest that you skim its contents since
some of the concepts taught here will be referred to in subsequent chapters.

Definition 12.16 (Base of the topology).

Let (X,U) be a topological space. A subset B of U of open sets is called a base of the
topology if any nonempty open set U can be written as a union of elements of B:

(12.27) U =
⋃
i∈I

Bi (Bi ∈ B for all i ∈ I)

where I is a suitable index set, which of course will in general depend on U . �

We note that, because X itself is open, (12.27) implies that X =
⋃ [

B : B ∈ B
]
.

A base of the topology is a subset of that topology, i.e., a collection of open sets, which contains
enough small open sets. We can localize that definition to a point x of X by looking at collections
of open neighborhoods of x which contain enough small open neighborhoods of x and we arrive at
the definition of neighborhood bases of x.

Definition 12.17 (Neighborhood base of a point).

Let (X,U) be a topological space.
(a) The following set of subsets of X ,

(12.28) N(x) := {A ⊆ X : A is a neighborhood of x} ,

is called the neighborhood system of x

(b) Given a point x ∈ X , any subset B := B(x) ⊆ N(x) of the neighborhood system of
x is called a neighborhood base of x if it satisfies the following condition:
• For any A ∈ N(x), there exists a set B ∈ B(x) such that B ⊆ A. �

In many propositions where proving closeness to some element is the issue, It often suffices to show
that something is true for all sets that belong to a neighborhood base of x rather than having to show
it for all neighborhoods of x. The reason is that often only the small neighborhoods matter and a
neighborhood base has “enough” of those.
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Definition 12.18 (First axiom of countability).

Let (X,U) be a topological space.
We say thatX satisfies the first axiom of countability orX is first countable if we can find
for each x ∈ X a countable neighborhood base. �

Here are some propositions about bases, neighborhood bases, and first countability for metric
spaces.

Proposition 12.18 (ε-neighborhoods are a base of the topology).

Let (X, d) be a metric space. Then both

B1 := {Nε(x) : x ∈ X, ε > 0} and B2 := {N1/n(x) : x ∈ X,n ∈ N}
are bases for the topology of (X, d) (see 12.16 on p.377)

PROOF: To show that B1 (resp., B2) is a base we must prove that any open subset of X can be
written as a union of (open) sets all of which belong to B1 (resp., B2). We prove this for B2.
Let U ⊆ X be open. As any x ∈ U is an interior point of U we can find some ε = ε(x) > 0 such that
Nε(x)(x) ⊆ U . We note that for any such ε(x) there is n(x) ∈ N such that 1/n(x) ≤ ε(x).
We observe that U ⊆

⋃[
N1/n(x)(x) : x ∈ U

]
⊆ U .

The first inclusion follows from {x} ⊆ N1/n(x)(x) for all x ∈ U and the second inclusion follows
from N1/n(x)(x) ⊆ Nε(x)(x) ⊆ U and the inclusion lemma (lemma 8.1 on p.232).
We obtain U =

⋃[
N1/n(x)(x) : x ∈ U

]
and we have managed to represent our open U as a union

of elements of B2. This proves that B2 is a base for the topology of (X, d).
As B2 ⊆ B1 it follows that B1 also is such a base. �

Theorem 12.4 (Metric spaces are first countable).

Let (X, d) be a metric space. Then X is first countable.

Proof (outline): For any x ∈ X let

(12.29) B(x) := { N1/n(x) : n ∈ N }.

Then B(x) is a neighborhood base of x because, by Definition 12.7 and Definition 12.9 (Interior
points and neighborhoods in metric spaces), any neighborhood of x will contain one of the form
Nε(x) and for any such ε > 0 there exists n ∈ N such that 1

n < ε. �

Proposition 12.19.

Let (X, d) be a metric space and let B := {N1/k(x) : x ∈ X, k ∈ N}. Then B is a base of the
topology for the associated topological space (X,Ud).

PROOF: The proof is left as exercise 12.15 on p.400. �
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Definition 12.19 (Second axiom of countability).

Let (X,U) be a topological space.
We say that X satisfies the second axiom of countability or X is second countable if we
can find a countable base for U. �

The next theorem is related to the material in chapter 9.10 (Sequences that Enumerate Parts of Q).

Theorem 12.5 (Euclidean space Rn is second countable).

Let B be the following collection of open subsets of Rn:

(12.30) B := { N1/j(~q) : ~q ∈ Qn, j ∈ N }.
Here,

Qn = {~q = (q1, . . . , qn) : qj ∈ Q, 1 ≤ j ≤ n}
is the set of all points in Rn with rational coordinates. Then B is a countable base of Rn.

PROOF (outline): Let U ∈ U be an arbitrary open set in X . Any vector ~x ∈ U is interior point of
U , hence we can find some n~x ∈ N such that the entire 2

n~x
–neighborhood N2/(n~x)(~x) is contained

within U .
As any vector can be approximated by vectors with rational coordinates, there exists ~q = ~q~x ∈ Qn

such that d(~x, ~q~x) < 1
n~x

, hence ~x ∈ N1/n~x(~q~x).

It follows from N2/(n~x)(~x) ⊆ U and prop.12.3 on p.367, applied to δ = ε = 1
n~x

, that

N1/n~x(~q~x) ⊆ N2/n~x(~x) ⊆ U for all ~x ∈ U.

Hence U =
⋃
~x∈U
{~x} ⊆

⋃ [
N1/n~x(~q~x) : ~x ∈ U

]
⊆ U.

We have managed to write the arbitrarily chosen open set U as a union of the sets N1/n~x(~q~x) which
belong to B. This proves that B is a basis of the topology.
We recall from cor.7.6 on p. 229 that Qnis countable. For j ∈ N let Bj := { N1/j(~q) : ~q ∈ Qn}.
Then each Bj is countable because ~q 7→ N1/j(~q) is a surjection from the countable set Qn onto Bj . It
follows that the base of the topology B =

⋃
j Bj∈N is countable as the countable union of countable

sets. �

12.7 Metric and Topological Subspaces

It is often advantageous to focus our attention on a subsetA of a metric space (X, d) or a topological
space (X,U). It would be nice if one could find a way to define a metric d′ (a topology U′) on A
which coexists harmoniously with the metric d (the topology U) defined on X .
For example let X be the real numbers with the standard metric d(x, y) = |b−a| and A = [0, 1]. This
allows us, e.g., to talk of the assignment x 7→

√
x which cannot be extended beyond A as a function

f : (A, d′)→ (R, d) for which both domain and codomain are metric spaces.
The solution to this problem is different for metric spaces and topological spaces, but both amount
to the following:
A set U will be open in A if and only if U = V ∩A for some suitable set V which is open in X .

379 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

Definition 12.20 (Metric subspaces).

Given is a metric space (X, d) and a nonempty A ⊆ (X, d). Let

d
∣∣
A×A : A×A→ R≥0 be the restriction d

∣∣
A×A(x, y) := d(x, y)(x, y ∈ A)

of the metric d to A×A (see Definition 5.15 on p.151).
It is trivial to verify that (A, d

∣∣
A×A) is a metric space in the sense of Definition 12.1 on p.359.

We call (A, d
∣∣
A×A) a metric subspace of (X, d) and we call d

∣∣
A×A the metric induced by d

or the metric inherited from (X, d). �

Remark 12.18.

4!4!4!
Metric subspaces come with their own collections of open and closed sets,
neighborhoods, ε-neighborhoods, convergent sequences, ...
Watch out when looking at statements and their proofs whether those concepts
refer to the entire space (X, d) or to the subspace (A, d

∣∣
AxA

). �

Notation 12.1.

a) Because the only difference between d and dA×A is the domain, it is customary to
write d instead of d

∣∣
A×A to make formulas look simpler, if doing so does not give

rise to confusion.
b) We often shorten “open in (A, d

∣∣
A×A)” to “open in A”, “closed in (A, d

∣∣
A×A)” to

“closed in A”, “convergent in (A, d
∣∣
A×A)” to “convergent in A”, ..... �

Example 12.5. Consider A :=]0, 1] ∪ ]2, 3[ ∪ {4} ∪ {5} ∪ {6} as a subset of (R, d|.|), i.e., the real
numbers with the Euclidean metric. Then {4, 5} is OPEN in A and {1} is interior to A. �

Definition 12.21 (Traces of sets in a metric subspace). ?

Let (X, d) be a metric space and A ⊆ X a nonempty subset of X , viewed as a metric sub-
space (A, d

∣∣
A×A) of (X, d). Let Q ⊆ X .

We call Q ∩A the trace of Q in A.

For ε > 0 and a ∈ A let Nε(a) be the ε-neighborhood of a (in (X, d)). We define

(12.31) NA
ε (a) = Nε(a) ∩A.

i.e., NA
ε (a) is defined as the trace of Nε(a) in A. �

Proposition 12.20 (Open sets in metric subspaces are traces of open sets in X). Let (X, d) be a metric
space and A ⊆ X a nonempty subset of X .
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(a) Let ε > 0 and a ∈ A. Then

(12.32) NA
ε (a) = Nε(a) ∩A = {x ∈ A : d

∣∣
A×A(x, a) < ε} ,

i.e., NA
ε (a) is the “ordinary” ε–Neighborhood of a in the metric space (A, d

∣∣
A×A) (as it

was originally defined in Definition 12.6 on p.366). It thus follows from (12.31) that each
ε-neighborhood in the subspace A is the trace of an ε-neighborhood in X .

(b) Generalization: U ⊆ A is open in (A, d
∣∣
A×A) ⇔ there is an open V ⊆ (X, d) such that

(12.33) U = V ∩A .
In other words, U is the trace of a set V which is open in X .

PROOF of (a): First we prove (12.32). As d
∣∣
A×A is the restriction of d to A×A it follows that

NA
ε (a) = Nε(a) ∩A = {x ∈ X : d(x, a) < ε} ∩A

= {x ∈ A : d(x, a) < ε} = {x ∈ A : d
∣∣
A×A(x, a) < ε}.

This finishes the proof of (a)
PROOF of (b): First we show that if V is open in X then U := V ∩A is open in the subspace A.
Let a ∈ U . We must prove that a is an interior point of U with respect to (A, d

∣∣
A×A).

Because a ∈ V and V is open in X , there is ε > 0 such that Nε(a) ⊆ V . It follows that
NA
ε (a) = Nε(a) ∩A ⊆ V ∩A = U . As NA

ε (a) is open in A, a is an interior point of U with respect to
the subspace (A, d

∣∣
A×A).

Finally we prove that if U ⊆ A is open in A then there is V ⊆ X open in X such that U = V ∩A:
We can write U =

⋃[
NA
ε(a)(a) : a ∈ U

]
for suitable ε(a) > 0 (see the proof of prop.12.18 on p.378).

Let V :=
⋃[

Nε(a)(a) : a ∈ U
]
. V is open in (X, d) as union of the open sets Nε(a)(a). Further,

V ∩A = A ∩
⋃[

Nε(x)(x) : x ∈ U
]

=
⋃[

Nε(x)(x) ∩A : x ∈ U
]

=
⋃[

NA
ε(x)(x) : x ∈ U

]
= U

(the second equalitity follows from prop.8.1 on p.234). This finishes the proof. �

Remark 12.19 (Convergence does not necessarily extend to metric subspaces).

Let (X, d) be a metric space, A ⊆ (X, d) and an ∈ A for all n ∈ N. Be aware that convergence
of the sequence (an) in the space (X, d) (i.e., there exists x ∈ X such that x = lim

n→∞
an) does

NOT imply convergence of the sequence in the subspace (A, d
∣∣
A×A)! Rather, we have the

following dichotomy:
(a) x ∈ A: Then an converges to x in the subspace (A, d

∣∣
A×A) (and also in (X, d)).

(b) x ∈ A{: Then an converges to x in (X, d) but not in (A, d
∣∣
A×A). �

Proposition 12.20 (Open sets in metric subspaces are traces of open sets in X) justifies to define
subspaces of abstract topological spaces as follows.
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Definition 12.22 (Topological subspaces). ?

Let (X,U) be a topological space and A ⊆ X . We say that V ⊆ A is open in A if V is the
trace of an open set in X , i.e., if there is some U ∈ U such that V = U ∩ A. We denote the
collection of all open sets in A as UA. In other words,

UA = {V ∩A : V ∈ U}.
We call (A,UA) a topological subspace or also just a subspace of (X,U) and we call UA the
subspace topology induced by (X,U) or the subspace topology inherited from (X,U). �

Proposition 12.21 (Topological subspaces are topological spaces).

Let (X,U) be a topological space, A ⊆ X , and let UA be the collection of all open sets in A. Then
(A,UA) is a topological space, i.e., it satisfies Definition 12.11 on p.372 of an abstract topological
space.

PROOF:
(a) Let (Ui)i∈I be a family of open sets in A. For each Ui there exists Vi open in X such that

Ui = Vi ∩ A. According to prop.8.1 (Distributivity of unions and intersections) on p.234
we obtain

A ∩
⋃
i∈I

Vi =
⋃
i∈I

(A ∩ Vi) =
⋃
i∈I

Ui

and this proves that
⋃
i∈I Ui is the trace of the open set

⋃
i∈I Vi in A, hence open in A.

(b) Let U1, U2, . . . Un (n ∈ N) be open in A. For each Ui there exists Vi open in X such that
Ui = Vi ∩A. Because the intersection of sets is commutative we obtain

U1∩ . . . Un = (V1∩A)∩ . . . (Vn∩A) = (A∩· · ·∩A)∩ (V1∩· · ·∩Vn) = A∩ (V1∩· · ·∩Vn)

and this proves that U1 ∩ . . . Un is the trace of the open set V1 ∩ · · · ∩ Vn in A, hence open
in A.

(c) It follows from ∅ = ∅ ∩A, A = X ∩A, and X, ∅ ∈ U, that ∅, A ∈ UA. �

12.8 Contact Points and Closed Sets

If you look at any closed interval [a, b] = {y ∈ R : a ≤ y ≤ b} of real numbers, then all of its points
are interior points, except for the end points a and b. Moreover a and b are contact points according
to the following definition which makes sense for any abstract topological space.

Definition 12.23 (Contact points 147 ). Given is a topological space (X,U).

Let A ⊆ X and x ∈ X (x may or may not to belong to A). x is called a contact point of A if

(12.34) A ∩N 6= ∅ for any neighborhood N of x. �

147German: Berührungspunkt - see [16] Von Querenburg, p.21
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Note 12.1. Note that any a ∈ A is a contact point of A but not necessarily the other way around:
(a) Let a ∈ A. Then any neighborhood Ua of a contains a, hence UA ∩ A is not empty, hence

a is a contact point of A. This proves that any a ∈ A is a contact point of A.
(b) Here is a counterexample which shows that the converse need not be true.

Let (X, d) := R with the standard Euclidean metric and letA be the subset ]0, 1[. We show
now that 0 is a contact point of A.

Any neighborhood A0 of 0 contains for some small enough δ > 0 the entire interval
]− δ, δ[. Let x := min(δ/2, 1/2).
Clearly, x ∈ ]− δ, δ[ ⊆ A0 and x ∈ ]0, 1[ = A.
It follows that x ∈ A ∩ A0. As A0 was an arbitrary neighborhood of 0, we have proved
that 0 is a contact point of A, even though 0 /∈ A.

(c) The above counterexample can be proven much faster if the criterion for contact points
in metric spaces is employed: Let xn := 1/n (n ≥ 2) Then xn ∈ ]0, 1[ for all n and the
sequence converges to 0. It follows that 0 is a contact point of ]0, 1[. �

Definition 12.24 (Closed sets). Let (X,U) be topological space and A ⊆ X . Let the set Ā be

(12.35) Ā := {x ∈ X : x is a contact point of A} .

We call Ā the closure of A. A set that contains all its contact points is called a closed set. �

Proposition 12.22. If A is a subset of a topological space then

Ā = A ∪ ∂(A) = Ao ∪ ∂(A).(12.36)

PROOF of Ā = Ao ∪ ∂(A):
We recall from prop.12.16 on p.376 that any x ∈ X either belongs to the interior Ao or to the open
exterior ext(A) or to the boundary ∂(A). Since it is precisely the set ext(A) for whose elements one
can find neighborhoods of x which do not intersect with A, we obtain

x ∈ Ā ⇔ x /∈ ext(A) ⇔ x ∈ Ao ∪ ∂(A).

This proves the assertion.
PROOF of Ā = A ∪ ∂(A):
It follows from the definitions of Ao and Ā that Ao ⊆ A ⊆ Ā, thus

Ao ∪ ∂(A) ⊆ A ∪ ∂(A) ⊆ Ā ∪ ∂(A).(12.37)

Since Ā = Ao ∪ ∂(A) formula (12.37) yields

Ā = Ao ∪ ∂(A) ⊆ A ∪ ∂(A) ⊆ Ā ∪ ∂(A) = Ā.(12.38)
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We obtained the last equation from Ā = Ao ∪ ∂(A) since this equation implies

∂(A) ⊆ Ā , thus ∂(A) ∪ Ā ⊆ Ā ∪ Ā = Ā .

Formula (12.38) shows that the set A ∪ ∂(A) is both subset and superset of Ā. It follows that A ∪
∂(A) = Ā. �

Remark 12.20. It follows from note 12.1(a) that A ⊆ Ā. ; �

The following theorem shows that we can characterize contact points of subsets of metric spaces by
means of sequences.

Theorem 12.6 (Sequence criterion for contact points in metric spaces).

Given is a metric space (X, d). Let A ⊆ X and x ∈ X . Then x is a contact point of A if and only if
there exists a sequence x1, x2, x3, . . . of members of A which converges to x.

PROOF of “⇒”: Let x ∈ X be such thatN∩A 6= ∅ for any neighborhoodN of x. Let xn ∈ N1/n(x)∩A.
Such xn exists because the neighborhood N1/n(x) has nonempty intersection with A.

Given ε > 0, let N ∈ N be chosen such that 1
N < ε. This is possible because N is not bounded

(above) in R.
For any j ≥ N we obtain d(xj , x) < 1/j ≤ 1/N < ε. This proves convergence xn → x.
PROOF of “⇐” Let x ∈ X and assume there is (xn)n∈N such that xn ∈ A for all n and xn → x.
We must show that if Ux is a (open) neighborhood of x then Ux ∩ A 6= ∅. Let ε > 0 such that
Nε(x) ⊆ Ux.
It follows from xn → x that there is N = N(ε) such that xn ∈ Nε(x) for all n ≥ N , especially,
xN ∈ Nε(x). By assumption, xN ∈ A, hence xN ∈ Nε(x) ∩A ⊆ Ux ∩A, hence Ux ∩A 6= ∅. �

Proposition 12.23. The complement of an open set is closed.

PROOF of 12.23: Let A be an open set in a topological space (X,U). and assume x ∈ X is a contact
point of A{. We want to prove that A{ is a closed set, so we must show that x ∈ A{.
We assume to the contrary that x is a contact point of A{ such that x /∈ A{. Then x ∈ A.
A is open, so x is an interior point of A. Hence there is a neighborhood Nx that contains x and is
entirely contained in A, hence Nx ∩A{ = ∅.
We also assumed that x is a contact point of A{. This implies that Nx ∩ A{ 6= ∅. We have reached a
contradiction. �

Proposition 12.24. The complement of a closed set is open.

PROOF: We will give two proofs of the above.
(a) First proof of prop.12.24, valid for all topological spaces:

Let A be closed set and b ∈ A{.
The closed set A contains all its contact points, so b /∈ A implies that b is not a contact point of
A. According to Definition 12.23 there exists some neighborhood V of b such that V ∩ A = ∅, i.e.,
V ⊆ A{.
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We have shown that an arbitrary b ∈ A{ is an interior point of A{, i.e., the complement of the closed
set A is open. This proves the proposition.
(b) Alternate proof of prop.12.24, valid for metric spaces only, since it works with sequences. We
give it to illustrate the use of Theorem 12.6, the sequence criterion for contact points.

Let A ⊂ (X, d) be closed. If A{ is not open then there must some be b ∈ A{ which is not an interior
point of A{.

We show that this assumption leads to a contradiction. Because b is not an interior point ofA{, there
is no δ-neighborhood, for whatever small δ, that entirely belongs to A{. So, for each j ∈ N, there is
an xj ∈ N1/j(b) which does not belong to A{, i.e., xj ∈ A.
We have constructed a sequence xj which is entirely contained in A and which converges to b. The
latter is true because, for any j, all but finitely many members are contained in N1/j(b).
The closed set A contains all its contact points and it follows from the criterion for contact points
that b ∈ A.
But we had assumed at the outset that b ∈ A{ and we have a contradiction. �

Theorem 12.7 (Open iff complement is closed).

Let (X, d) be a metric space and A ⊆ X . Then A is open if and only if A{ is closed.

PROOF: Immediate from prop.12.23 and prop.12.24 �

Remark 12.21. Many books define closed sets as the complements of open sets and only afterwards
define contact points as we did. No surprise then that our definition of closed sets becomes their
theorem: It is then proven from those definitions that closed sets are exactly those that contain all
their contact points. �

Here is an easy consequence of the fact that open sets are the complements of closed sets and vice
versa.

Proposition 12.25.

Let (X,U) be a topological space. The closed sets of X satisfy the following property:

(12.39) (a) An arbitrary intersection of closed sets is closed.
(b) A finite union of closed sets is closed.
(c) The entire set X is closed and ∅ is closed.

The proofs of (a) and (b) follow easily from De Morgan’s law (the duality principle for sets: see (8.1)
on p.234). Observe that X plays the role of a universal set because all members U of U and their
complements U{ are subsets of X .

PROOF of (a): Let (Cα) be an arbitrary familiy of closed sets. Then Uα := C{α is an open set for each
α. Observe that C{α = Uα because the complement of the complement of any set gives you back
that set. Let C :=

⋂
α
Cα. Then

C{ =
(⋂
α

Cα
){

=
⋃
α

C{α =
⋃
α

Uα.
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In other words C{ is an arbitrary union of open sets which is open by the very definition of open
sets of a topological space. We have proved (a).

PROOF of (b): Let C1, C2, . . . Cn be closed sets. Then Uj := C{j is an open set for each j. Let
C :=

⋃
1≤j≤n

Cj . Then

C{ =
(⋃
j

Cj
){

=
⋂
j

C{j . =
⋂
j

Uj

Hence, C{ is the intersection of finitely many open sets. This shows that C{ is open, i.e., C is closed.
We have proved (b).
PROOF of (c): Trivial because

X{ = ∅ and ∅{ = X. �

We now derive some immediate properties of closures.

Proposition 12.26. Let (X,U) be a topological space and A ⊆ B ⊆ X . Then Ā ⊆ B̄.

PROOF: The proof is left as exercise 12.18 on p.400. �

Proposition 12.27.

Let (X,U) be a topological space and A ⊆ X . Then,

(12.40) ∂A = Ā ∩A{ .
In other words, x ∈ X is a boundary point of A if and only if x is a contact point of both A and A{.

PROOF: Left as exercise 12.17 on p.400. �

Proposition 12.28 (Minimality of the closure of a set).

Let (X,U) be a topological space and A ⊆ X . Then

(12.41) Ā =
⋂[

C ⊇ A : C is closed
]
.

In other words, the closure Ā of A is the smallest of all closed supersets of A.

PROOF: Let C := {C ⊃ A : C is closed } and let F :=
⋂
C. We need to show that Ā = F .

It follows from prop.12.25(a) that F is closed, hence F = F̄ . It follows from C ⊇ A for all C ∈ C that
F ⊇ A, hence F = F̄ ⊇ Ā.
It remains to be shown that F ⊆ Ā. It is true that Ā ∈ C because Ā is a closed set which contains A,
hence Ā ⊇

⋂
C = F . (See prop.12.26 on p.386). �
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Proposition 12.29 (Closure of a set as a hull operator 148 ).

Let (X,U) be a topological space. Consider the closure of sets as a function

¯ : 2X −→ 2X ; A 7→ Ā .

Then this function has the following properties for all A,B ⊆ X :

(a) ∅̄ = ∅, (b) A ⊆ Ā, (c) ¯̄A = Ā, (d) A ∪B = Ā ∪ B̄.

PROOF: (a) follows from (12.39)(c) and (b) follows from remark 12.20.
The proof of (c) and (d) is left as exercise 12.20 on p.400.

Besides contact points there also is the concept of a limit point. We will not work with limit points
in this document and only give its definition to make the reader aware that those two concepts are
different and s/he must be mindful of this fact because many other writers work exclusively with
limit points and often do not define contact points.
Here is the definition (see [13] Munkres, a standard book on topology):

Definition 12.25 (Contact points vs Limit points). ?

Given is a topological space (X,U). Let A ⊆ X and x0 ∈ X . x0 is called a limit point or
cluster point or point of accumulation of A if every neighborhood U of x0 intersects A in
at least one point other than x0, i.e.,

U ∩ (A \ x0) 6= ∅. �

Remark 12.22. Not every element of a set A ⊆ (X,U) is necessarily a limit point of A. An example
for this are the so called isolated points. 149 �

12.9 Bounded Sets and Bounded Functions in Metric Spaces

Definition 12.26 (bounded sets). Given is a subset A of a metric space (X, d).
148This proposition states that the closure is a so–called closure operator which is defined to be a function

cl : 2X → 2X ; A 7→ cl (A) := Ā

on some abstract, nonempty set X (which need not be a topological space) such that the following are satisfied:

(a) cl (∅) = ∅, (b) A ⊆ cl (A), (c) cl (cl (A)) = cl (A), (d) cl (A ∪B) = cl (A) ∪ cl (B).

It can be shown that if we define
U := {A{ : cl (A) = A}

then (X,U) satisfies the properties of a topological space.

149

a ∈ A is called an isolated point of A if there is a neighborhood U of a such that U ∩ A = {a}, i.e., the
“punctured neighborhood” U \ {a} of a has empty intersection with A. Here is an example: Let X := R with
the topology induced by the Euclidean metric d(x, x′) := |x − x′|. Then the subset A := [0, 1] ∪ {3} ∪ {4}
possesses 3 and 4 as isolated points. You should convince yourself that those two elements of A are NOT limit
points of A.
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The diameter of A is defined as

(12.42) diam(∅) := 0, diam(A) := sup{d(x, y) : x, y ∈ A} if A 6= ∅.
We call A a bounded set if diam(A) <∞. �

Remark 12.23.
(a) Note that we needed a metric d(x, y) to define the boundedness of a set. We cannot

generalize this concept to topological spaces.
(b) A set can be bounded in one metric and unbounded in another. For example, let d be the

Euclidean metric on R and let d′ be the discrete metric on R. Then each of the sets N,Q,R
is bounded in (R, d′) (by the number 1), but it is unbounded in (R, d). �

Proposition 12.30.

Given is a metric space (X, d) and a nonempty subset A. The following are equivalent:

(a) diam(A) <∞, i.e., A is bounded.
(b) There exists γ > 0 and x0 ∈ X such that A ⊆ Nγ(x0).

(c) For all x ∈ X there exists γ > 0 such that A ⊆ Nγ(x).

(12.43)

PROOF of “(b)⇒ (a)”: For any x, y ∈ A we have

d(x, y) ≤ d(x, x0) + d(x0, y) ≤ 2γ

and it follows that diam(A) ≤ 2γ.
PROOF of “(a)⇒ (b)”: Pick an arbitrary x0 ∈ A and let γ := diam(A) . Then for all a ∈ A

d(x0, a) ≤ sup
x∈A

d(x, a) ≤ sup
x,z∈A

d(x, z) = diam(A) = γ.

It follows that A ⊆ Nγ(x0).
PROOF of “(c)⇒ (a)”: We pick an arbitrary x0 ∈ A which is possible as A is not empty. Then there
is γ = γ(x0) such that A ⊆ Nγ(x0). For any y, z ∈ A we then have

d(y, z) ≤ d(y, x0) + d(x0, z) ≤ 2γ

and it follows that diam(A) ≤ 2γ <∞.
PROOF of “(a)⇒ (c)”: Given x ∈ X , pick an arbitrary x0 ∈ A and let γ := d(x, x0) + diam(A) + 1.
Then

y ∈ A ⇒ d(x, y) ≤ d(x, x0) + d(x0, y) ≤ d(x, x0) + sup
u∈A

d(u, y)

≤ d(x, x0) + sup
u,z∈A

d(u, z) = d(x, x0) + diam(A) = γ.

It follows that A ⊆ Nγ(x). �
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Proposition 12.31.

Let (X, d) be a metric space. For n ∈ N let An ⊆ X such that δn := diam(An) → 0 as n → ∞.
Let A :=

⋂
nAn. Then,

either A = ∅, or there is some a ∈ X such that A = {a}.

PROOF: Let a, a′ ∈ A and let δ := d(a, a′). It follows from A ⊆ An that

d(a, a′) ≤ sup{d(x, x′) : x, x′ ∈ An} = diam(An), i.e., d(a, a′) ≤ δn

for all n ∈ N. It follows from δn → 0 that d(a, a′) = 0, i.e., a = a′. We have shown that A contains at
most one element. �

In metric spaces the points in the closure of a set A can be approaced by sequences that live in A. It
should not come as a surprise that diam(A) does not increase when one replaces A by its closure.

Proposition 12.32.

Let (X, d) be a metric space and A ⊆ X . Then,

diam(A) = diam(Ā) .

PROOF:
It follows from A ⊆ Ā that diam(A) ≤ diam(Ā). It remains to prove that diam(Ā) ≤ diam(A).
Nothing needs to be shown if A is unbounded, i.e., diam(A) = ∞, because x ≤ ∞ is true for any
x ∈ R

⊎
{±∞}. We hence may assume that A is bounded.

Let ε > 0 and x, y ∈ Ā. It follows from Thm.12.6 (Sequence criterion for contact points in metric
spaces) on p.384 that there are sequences (xn)n and (yn)n inA such that lim

n→∞
xn = x and lim

n→∞
yn = y.

Thus there exist Nx, Ny ∈ N such that d(xj , x) < ε
2 for all j ≥ Nx and d(yj , y) < ε

2 for all j ≥ Ny. Let
n := max(Nx, Ny). Then

d(x, y) ≤ d(x, xn) + d(xn, yn) + d(yn, y) < d(xn, yn) + ε ≤ diam(A) + ε.

The inequality d(x, y) ≤ diam(A) + ε is true for arbitrary x, y ∈ Ā, hence diam(A) + ε is an upper
bound for the set {d(x, y) : x, y ∈ Ā}. We conclude that

diam(Ā) = sup
(
{d(x, y) : x, y ∈ Ā}

)
≤ diam(A) + ε

. The above holds for arbitrary ε > 0, and we conclude that diam(Ā) ≤ diam(A). �

Proposition 12.33.

Let (X, d) be a metric space. Let A1 ⊇ A2 ⊇ . . . be subsets of X such that diam(An) → 0 as
n→∞ and let A :=

⋂
j Āj . Let xn ∈ An for all n. Then,

• (xn)n converges if and only if A is not empty.
• If A 6= ∅, then A is the singleton set A =

{
lim
n→∞

xn

}
.

xx
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PROOF:
The proof is done in two stages.
(a) We first prove that if xn has a limit x ∈ X then A = {x}.
Let n, k ∈ N such that k ≥ n. It follows from xk ∈ Ak ⊆ An that xk ∈ An. Thm.12.6 (Sequence
criterion for contact points in metric spaces) on p.384 yields x = lim

n→∞
xn ∈ Ān. As n was arbitrary,

we obtain x ∈
⋂
j Āj , i.e., x ∈ A.

It follows from Proposition 12.32 and diam(An) → 0, that diam(Ān) → 0. It now follows from
Proposition 12.31 that the intersection A has size zero or one. Since x ∈ A,A = {x}. This concludes
the proof of b1.
(b) It remains to prove that if A 6= ∅ then (xn)n converges.
Let x ∈ A. Then x ∈ Ān for all n. We use again that diam(An) = diam(Ān) and obtain

d(xn, x) ≤ diam(Ān) = diam(An) = δn → 0 as n→∞.(12.44)

Let ε > 0. It follows from lim
k→∞

δk = 0 that there exists n0 ∈ N such that δk < ε for all k ≥ n0. We

conclude from (12.44) that d(xk, x) < ε for all k ≥ n0, and hence that lim
k→∞

xn = x. �

Remark 12.24. You may wonder whether it can ever happen that a sequence of nonempty sets
A1 ⊇ A2 ⊇ · · · and diam(An)→ 0 as n→∞ can ever have a non–empty intersection A.
Yes, it can: Let (X, d) be the rational numbers with the standard metric d(q, q′) = |q − q′|. Let

An := { q ∈]0,∞[Q: 2 − 1

n
< q2 < 2 +

1

n
}

In other words, An is the open neighborhood of
√

2 with radius 1/n. Clearly,
⋂
nAn = {

√
2}. Well,

since
√

2 ∈ R, this would be correct in the metric space (R, d). But, since
√

2 /∈ Q,
⋂
nAn = ∅! �

12.10 Completeness in Metric Spaces

Often you are faced with a situation where you need to find a contact point a and all you have is
a sequence which behaves like one converging to a contact point in the sense of inequality 12.20
(page 369)

Definition 12.27 (Cauchy sequences). 150 Given is a metric space (X, d).

A sequence (xn) in X is called a Cauchy sequence or, in short, it is Cauchy if for any ε > 0
(no matter how small), there exists some index n0 ∈ N such that

(12.45) d(xi, xj) < ε for all i, j ≥ n0

This is called the Cauchy criterion for convergence of a sequence. �

Example 12.6 (Cauchy criterion for real numbers). In R we have d(x, y) = |x− y| and the Cauchy
criterion requires for any given ε > 0 the existence of n0 ∈ N such that

(12.46) |xi − xj | < ε for all i, j ≥ n0. �
150so named after the great french mathematician Augustin–Louis Cauchy (1789–1857) who contributed massively to

the most fundamental ideas of Calculus.

390 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

Proposition 12.34.

Let (X, d) be a metric space and xn ∈ X (n ∈ N). Then the following are equivalent:
(a) (xn)n is Cauchy.
(b) The diameters of the tail sets Tn = {xj : j ≥ n} converge to zero.
(c) There exists a nonincreasing sequence A1 ⊇ A2 ⊇ . . . of subsets of X such that xn ∈ An

and diam(An)→ 0 as n→∞.

PROOF:
PROOF of (a) ⇒ (b):
Let ε > 0. It follows from the definition of Cauchy sequences that there exists n0 ∈ N such that
d(xi, xj) < ε for all i, j ≥ n0. From this we obtain

diam(Tn0) = sup{d(xi, xj) : i, j ≥ n0} ≤ ε.

It follows from prop.12.7 on p.370 that lim
n→∞

diam(Tn) = 0.

PROOF of (b) ⇒ (c):
We choose An := Tn as our nonincreasing sequence of sets.
PROOF of (c) ⇒ (a):
Let ε > 0. It follows from the definition of convergence diam(An)→ 0 that there exists n0 ∈ N such
that diam(An0) < ε. Let k ∈ N, k ≥ n0. Then Ak ⊆ An0 , hence diam(Ak) ≤ diam(An0) < ε.
Let i, j ∈ N such that i, j ≥ n0. By assumption, xi ∈ Ai ⊆ An0 and xj ∈ Aj ⊆ An0 , hence xi, xj ∈ An0 ,
hence d(xi, xj) ≤ diam(An0) < ε. This proves that (xn)n is Cauchy. �

Proposition 12.35. A Cauchy sequence in a metric space is bounded.

PROOF: Let (xn)n be a Cauchy sequence in a metric space (X, d). There is N = N(1/2) such that
d(xi, xj) < 1/2 for all i, j ≥ N . In particular, d(xi, xN ) < 1/2.
Let M := max{d(xj , xN ) : j < N}. We obtain for any two indices i, j ∈ N that

d(xi, xj) ≤ d(xi, xN ) + d(xN , xj).

d(xi, xN ) is bounded by M in case that i < N and by 1/2 if i ≥ N ; hence d(xi, xN ) < 1/2 + M . We
use the same reasoning to conclude that d(xN , xj) < 1/2 + M and obtain d(xi, xj) < 1 + 2M . This
proves the boundedness of (xn)n. �

Theorem 12.8 (Convergent sequences are Cauchy).

Let (xn)n be a convergent sequence in a metric space (X, d). Then (xn)n is Cauchy.

PROOF: Let L ∈ X and xn → L. Let ε > 0. There exists N ∈ N such that

k ≥ N ⇒ d(xk, L) < ε/2.(12.47)

It follows from (12.47) that, for any i, j ≥ N ,

d(xi, xj) ≤ d(xi, L) + d(L, xj) < ε/2 + ε/2 = ε.
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It follows that the sequence satisfies (12.45) of the definition of a Cauchy sequence (def. 12.27 on
p.390). �

Proposition 12.36. Let (xn)n be a Cauchy sequence in a metric space (X, d).

If some subsequence xnj converges to a limit x0. Then
(a) ANY subsequence of (xn)n converges to L.
(b) (xn)n is a convergent sequence.

Further, any subsequence ynj of a convergent sequence (yn)n converges to the limit of (yn)n.

PROOF of (a): Let n1 < n2 < n3 . . . be such that xnj converges to L. For k ∈ N let yk := xnk .
Let ε > 0. Convergence yj → L implies that there is N ∈ N such that

d(yj , L) < ε/2 for all j ≥ N.(12.48)

Because (xj) is Cauchy there also exists N ′ ∈ N such that

d(xi, xj) < ε/2 for all i, j ≥ N ′.(12.49)

Let K := max(nN , N
′) and j ≥ K. Then

d(xj , L) ≤ d(xj , yK) + d(yK , L)

It follows from nK ≥ K and j ≥ K and (12.49) that d(xj , yK) = d(xj , xnK ) < ε/2 and it follows from
(12.48) that d(yK , L) < ε/2. We conclude that d(xj , L) < ε for all j ≥ K and this proves convergence
xj → L.
PROOF of (b): This is trivial: The full sequence x1, x2, . . . is a subsequence, and it converges by
assumption to L
PROOF of the addendum: This is trivial, too: The convergent sequence (xn)n is Cauchy, and the
assumption now follows from part (a) �

Here is the formal definition of a complete set in a metric space.

Definition 12.28 (Completeness in metric spaces).

A subset A of a metric space (X, d) is called complete, if any Cauchy sequence (an) with
elements in A converges to some a ∈ A. �

Remark 12.25.
(a) It is NOT sufficient that lim

n→∞
xn exists in X . It must not belong to the complement of A!

(b) In particular, X itself is complete iff any Cauchy sequence in X converges.
(c) A is complete as a subset of (X, d) iff the subspace ((A, d

∣∣
A×A) is complete “in itself”. �

The following theorem of the completeness of the set of all real numbers 151 states that any Cauchy
sequence converges to a real number. This is a big deal: To show that a sequence in R has a finite

151Remember the completeness axiom for R (axiom 9.1(c) on p.255) which states that any subset A of R which possesses
upper bounds has a least upper bound (the supremum sup(A)). This axiom was needed to establish the validity of
thm.9.14 (Characterization of limits via limsup and liminf) on p.290, a theorem which will be used in this chapter to
prove the completeness of R as a metric space.
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limit one need not provide the actual value of that limit. All one must show is that this sequence
satisfies the Cauchy criterion. One can say that this preoccupation with proving existence rather
than computing the actual value is one of the major points which distinguish mathematics from
applied physics and the engineering disciplines.

Theorem 12.9 (Completeness of the real numbers).

Let (xn) be a Cauchy sequence in R. then there exists a real number L such that L = lim
n→∞

xn.

PROOF: It follows from prop.12.35 that xn is bounded, hence (xn)n possesses finite liminf and
limsup. 152 We now show that lim inf

n→∞
xn = lim sup

n→∞
xn.

Let ε > 0 and N ∈ N such that |xi − xj | ≤ ε for all i, j ≥ N .
Let Tn := {xj : j ≥ n} be the tail set of the sequence (xn)n. Let αn := inf Tn, βn := supTn.
There is some i ≥ N such that |xi − αN | = xi − αN ≤ ε and there is some j ≥ N such that
|βN − xj | = βN − xj ≤ ε. It follows that

0 ≤ βN − αN = |βN − αN | ≤ |βN − xj | + |xj − xi| + |xi − αN | ≤ 3ε.

Further, if k ≥ N then Tk ⊆ TN , hence αk ≥ αN and βk ≤ βN . It follows that

0 ≤ inf βk − supαk ≤ βN − αN ≤ 3ε.

But then

0 ≤ lim sup
k→∞

xk − lim inf
k→∞

xk = inf
k
βk − sup

k
αk ≤ 3ε.

ε > 0 was arbitrary, hence lim sup
k→∞

xk = lim inf
k→∞

xk.

Figure 12.3: liminf = limsup for Cauchy sequences

.

152See ch.9.2 (Minima, Maxima, Infima and Suprema).
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Part 3: It follows from theorem 9.14 on p.290 that the sequence (xn)n converges to L := lim sup
k→∞

xk

and the proof is finished. �

Now that the completeness of R has been established, it is not very difficult to see that n–
dimensional space Rn also is complete.

Theorem 12.10 (Completeness of Rn).

Let (~xj) be a Cauchy sequence in Rn. Then there exists ~a ∈ Rn such that ~a = lim
j→∞

~xj .

PROOF (outline): Let ~xj = (xj,1, xj,2, . . . , xj,n) be Cauchy in Rn. For fixed k, each coordinate se-
quence (xj,k)j is Cauchy because, if ε > 0, there existsK ∈ N such that if i, j ≥ K then ‖~xi−~xj‖2 < ε.
Hence

|xi,k − xj,k| =
√
|xi,k − xj,k|2 ≤

√√√√ n∑
k=1

|xi,k − xj,k|2 = ‖~xi − ~xj‖2 < ε.

It follows from the completeness of R as a metric space that there exist real numbers

a1, a2, a3, . . . , an such that ak = lim
n→∞

xn,k (1 ≤ k ≤ n).

For a given ε > 0 we can find natural numbers N0,1, N0,2, . . . , N0,n such that

|xn,k − ak| <
ε

n
for all n ≥ N0,k and for all 1 ≤ k ≤ n.

Let N? := max(N0,1, N0,2, . . . , N0,n) and ~a := (a1, a2, . . . , an). It follows that

d(~xj − ~a) =

√√√√ n∑
k=1

|xj,k − ak|2 ≤
√
n ·
( ε
n

)2
=

ε√
n
≤ ε for all j ≥ N?.

This proves convergence of ~xj to ~a.

You have learned in multivariable calculus that the limit of a sequence of vectors can be computed
as the vector of the limits, taken separately for each coordinate. The proof is very similar to that of
Theorem 12.10.

Proposition 12.37.

Let ~xj = (xj,1, xj,2, . . . , xj,n) and~b ∈ Rn. Then,

(12.50) lim
j→∞

~xj = ~b ⇔ lim
j→∞

xj,k = bk for all 1 ≤ k ≤ n .

PROOF of “⇒”: If ~xj converges to ~b then this sequence is Cauchy. We have seen in the proof of
thm.12.10 that it has as limit a vector ~a := (a1, a2, . . . , an) whose k–th coordinate ak was obtained as
ak = lim

j→∞
xj,k. In other words, ak = bk. This proves “⇒”.
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PROOF of “⇐”: Assume that lim
j→∞

xj,k = bk for all 1 ≤ k ≤ n. We copy word for word the second

half of the proof of thm.12.10.
For a given ε > 0 we can find natural numbers N0,1, N0,2, . . . , N0,n such that

|xn,k − bk| <
ε

n
for all n ≥ N0,j and for all 1 ≤ k ≤ n.

Let N? := max(N0,1, N0,2, . . . , N0,n). It follows that

d(~xj −~b) =

√√√√ n∑
k=1

|xj,k − bk|2 ≤
√
n ·
( ε
n

)2
=

ε√
n
≤ ε for all j ≥ N?.

This proves convergence of ~xj to~b and hence “⇐”. �

Example 12.7 (Approximation of decimals). The following illustrates Cauchy sequences and com-
pleteness in R. We have seen in ch.9.6 (Decimal Expansions of Real and Rational Numbers) that any
real number x ≥ 0 can be written as a decimal

x = m +
∞∑
j=1

dj · 10−j (m ∈ Z≥0, dj ∈ {0, 1, 2, . . . , 9}).

Further, any such infinite series is a real number since each partial sum sn = m +
n∑
j=1

dj · 10−j is

bounded (above) by m + 9
∞∑
j=1

10−j = m+ 1, and thus, x is a real number as the supremum of the

bounded and nondecreasing sequence (sn)n.
What just has been illustrated is that there a natural way to construct for a given x ∈ R Cauchy
sequences of rational numbers that converge toward x. (Each sn is rational as the sum of the finitely
many rational numbers m and dj

10j
. The completeness of R states that the reverse also is true: For

any Cauchy sequence sn ∈ Q there is an element x ∈ R toward which this sequence converges. �

The existence of irrational numbers tells us that the limit of a sequence of rational partial sums need
not be rational. This can be used to construct metric spaces which are not complete.

Proposition 12.38. The metric space (Q, d|·|) (Euclidean metric) is not complete.

PROOF: Let us work for the time being in the metric space (R, d|·|) of all real numbers, not in the
subspace (Q, d|·|) which we are interested in.

Let x ∈ R be any positive irrational number, e.g., x = π = 3.1415 . . . or x =
√

2 = 1.414 . . . . x has

a decimal representation x = m+
∞∑
j=1

dj10−j where each dj ∈ Z≥0 is a digit, i.e., 0 ≤ dj ≤ 9. Let

sn = m+
n∑
j=1

dj10−j Then,

|x− sn| = x− sn =

∞∑
j=n+1

dj10−j ≤ 9 ·
∞∑

j=n+1

10−j = 10−n .
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It follows, not surprisingly, that x = lim
n→∞

xn.

We know from thm.12.8 (Convergent sequences are Cauchy) on p.391 that the sequence sn is Cauchy
in (R, d|·|). But sn ∈ Q for all n and the distance d|·|(sn, sm) = |sn − sm| is the same in (R, d|·|) and
(Q, d|·|).
It follows that sn is Cauchy in (Q, d|·|). We had constructed this sequence in such a way that it does
not have a limit in Q, and it follows that (Q, d|·|) is not complete. �

A byproduct of this next proposition is that the discrete metric is complete.

Proposition 12.39.

Let d be the discrete metric on a nonempty set X and let (xn)n a sequence in X . Then,

(xn)n is Cauchy ⇔ (xn)n converges ⇔ (xn)n is constant eventually.

PROOF:
We show the equivalence of (a) and (c). It follows from the definition of Cauchy sequences that
there exists n0 ∈ N such that d(xi, xj) < 1 for all i, j ≥ n0 For the discrete metric d(xi, xj) < 1 means
the same as d(xi, xj) = 0, thus xi = xj for all i, j ≥ n0. This proves that xn is eventually constant.
On the other hand, if xn is eventually constant, then it follows from the definition of a property
holding eventually that there exists n0 ∈ N such that xi = xj for all i, j ≥ n0 Thus d(xi, xj) = 0
for such i and j (in any metric!). Let δ > 0. It follows that d(xi, xj) < δ for all i, j ≥ n0, i.e., (xn)n
is Cauchy. Matter of fact, since d(xn0 , xj) = 0 < δ for all j ≥ n0, it follows that the sequence is
convergent with xn0 as its limit. �

An easy corollary is

Corollary 12.2. Discrete metric spaces are complete.

PROOF: We must show that all Cauchy sequences converge in discrete metric spaces. This follows
from the first equivalence of prop.12.39 above. �

Theorem 12.11. ] Any complete subset of a metric space is closed.
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Figure 12.4: complete ⇒ closed

.

PROOF: Let (X, d) be a metric space andA ⊆ X . Let a ∈ X be a contact point of A. The theorem is
proved if we can show that a ∈ A.
a) We employ Definition 12.23 on p.382: A point x ∈ X is a contact point ofA if and only ifA∩V 6= ∅
for any neighborhood V of x.
Let m ∈ N. Then N1/m(a) is a neighborhood of the contact point a, hence hence A

⋂
N1/m(a) 6= ∅

and we can pick a point from this intersection which we name xm.
b) We prove next that (xm)m is Cauchy. Let ε > 0 and let N ∈ N be such that N > 2

ε . if j ∈ N and
k ∈ N both exceed N then

d(xj , xk) ≤ d(xj , a) + d(a, xk) ≤
1

j
+

1

k
≤ 1

N
+

1

N
< ε.

It follows that the sequence (xj) is Cauchy.
c) Because A is complete, this sequence must converge to some b ∈ A. But b cannot be different
from a. Otherwise we could “separate” a and b by two disjoint neighborhoods: choose the open
ρ–balls Nρ(a) and Nρ(b) where ρ is one half the distance between a and b (see the proof of thm.12.3
on p.370).
Only finitely many of the xn are allowed to be outside Nρ(a) and the same is true for Nρ(b). That is
a contradiction and it follows that b = a, i.e., a ∈ A.
d) We summarize: if a is a contact point of A then a ∈ A. It follows that A is closed. �

The following is the reverse of thm.12.11.

Theorem 12.12 (Closed subsets of a complete space are complete).

Let (X, d) be a complete metric space and let A ⊆ X be closed. Then A is complete, i.e., the metric
subspace (A, d

∣∣
A×A) is complete.

PROOF: Let (xn)n be Cauchy in A. We must show that there is a ∈ A such that xn → a. Note that
(xn) also is Cauchy in X because the Cauchy criterion is entirely specified in terms of members of
the sequence (xn).
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Because X is complete there exists x ∈ X such that xn → x. All xn belong to A. According to
thm.12.6 (Sequence criterion for contact points in metric spaces), x is a contact point of A.
As the set A is assumed to be closed, it contains all its contact points. It follows that x ∈ A, i.e., the
arbitrary Cauchy sequence (xn) in A converges to an element of A. We conclude that A is complete.
�

12.11 Exercises for Ch.12

12.11.0.1 Exercises for Ch.12.1 (Definition and Examples of Metric Spaces)

Exercise 12.1. Prove prop.12.1 on p.360: Let (X, d) be a metric space. Let n ∈ N and x1, x2, . . . , xn ∈
X . Then

d(x1, xn) ≤
n−1∑
j=1

d(xj , xj+1) = d(x1, x2) + d(x2, x3) + d(xn−1, xn). �

Exercise 12.2. Prove thm.12.1 (Norms define metric spaces) on p.361: Let (V, ‖ · ‖) be a normed
vector space. Then the function

d‖·‖(·, ·) : V × V → R≥0; (x, y) 7→ d‖·‖(x, y) := ‖y − x‖

defines a metric space (V, d‖·‖).
Hint: This proof is very easy. Even the triangle inequality for the metric d(x, y) = ‖x − y‖ follows
easily from the triangle inequality for the norm. �

12.11.0.2 Exercises for Ch.12.2 (Measuring the Distance of Real–Valued Functions)

12.11.0.3 Exercises for Ch.12.3 (Neighborhoods and Open Sets)

Exercise 12.3. Prove prop.12.5 on p.367: Let a, b ∈ R such that a < b. Then the open interval ]a, b[
is an open set in (R, d|·|). �

Exercise 12.4. Let A := {(x1, x2) ∈ R2 : x1 > 0, x2 > 0} be the first quadrant in the plane (the points
on the coordinate axes are excluded). Prove that each element of A is an inner point, i.e., A is open
in R2. See the picture for a hint.

Hint: Find for ~a = (a1, a2) small
enough ε such that Nε(~a) ⊆ A

�
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Exercise 12.5. Let a, b ∈ R such that a < b.
(a) The closed interval [ a, b ] is not open in (R, d|·|).
(b) The complement of the closed interval [ a, b ] is open in (R, d|·|). �

Exercise 12.6.
(a) Let m ∈ Z, viewed as a subset of the metric space (R, d|·|). Prove that m is a boundary point of Z.
(b) Prove that the above also holds both for the set of rational numbers: Q ⊆ ∂(Q) and for the set of
all irrational numbers: R \ Q ⊆ ∂(R \ Q). �

12.11.0.4 Exercises for Ch.12.4 (Convergence)

Exercise 12.7. Given is a metric space (X, d).
Prove the following: A sequence (xn) of elements of X converges to a ∈ X as n → ∞ iff for any
neighborhood U of a there exists some n0 ∈ N such that the n0–tail set Tn0 = {xj : j ≥ n0} is
contained in U (see Definition 9.20 (Tail sets of a sequence) on p.287.) �

Exercise 12.8. Prove remark 12.8 on p.371: Let (X, d) be a metric space and xn, L ∈ (X, d). Then

lim
n→∞

xn = L ⇔ lim
n→∞

d(xn, L) = 0 . �

Exercise 12.9. Prove prop.12.9 on p.371:
Let xn, yn be two sequences in a metric space (X, d). Assume there is K ∈ N such that xn = yn for
all n ≥ K. Let L ∈ X Then

lim
n→∞

xn = L ⇔ lim
n→∞

yn = L. �

Exercise 12.10. Prove prop.12.11 on p.371:
Let xn be a convergent sequence in a metric space (X, d) with limit L ∈ E. Let K ∈ N. For n ∈ N let
yn := xn+K . Then lim

n→∞
(yn)n = L. �

Exercise 12.11. Let fn, f ∈ BBB([0, 1],R) n ∈ N be continuous such that f = lim
n→∞

fn in

(BBB([0, 1], d‖·‖∞)(!) Prove lim
n→∞

∫ 1

0
fn(x)dx =

∫ 1

0
f(x)dx. You must use the ε,N definition of con-

vergence.
Hints: (a) No need to mention that continuous functions are both bounded and integrable and
that they attain both max and min on closed and bounded intervals. (b) Use the mean value
theorem: For cont. h(·) on [0, 1] let α := min

x∈[0,1]
h(x), β := max

x∈[0,1]
h(x). Then ∃ λ ∈ [α, β] such that

lim
n→∞

∫ 1

0
h(x)dx = λ ( = λ(1− 0). (c) Use without proof that

∣∣∣ ∫ 1

0
h(x)dx

∣∣∣ ≤ ∫ 1

0
|h(x)|dx for any

integrable h(·) on [0, 1] (d) Apply (b) and (c) to hn(x) = |fn(x)−f(x)|. (So you deal with αn, λn, βn).
�

12.11.0.5 Exercises for Ch.12.5 (Abstract Topological spaces)

Exercise 12.12. It was stated in prop.12.13 on p.373 that the discrete topology which is induced by
the discrete metric d(x, y) = 1 if x 6= y and 0 if x = y is the entire power set 2X of X . Prove it. �
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Exercise 12.13. Let (X,U) be a topological space and A ⊆ X . Prove that the open exterior of A is

ext(A) =
(
A{
)o
. �

Exercise 12.14. Let X be a set that contains. at least two elements. 153 Prove that there is no metric
d on X such that Ud = {∅, X}, i.e., such that its only open sets are the empty set and X .. �

12.11.0.6 Exercises for Ch.12.6 (Bases and Neighborhood Bases)

Exercise 12.15. Let (X, d) be a metric space and let B := {N1/k(x) : x ∈ X, k ∈ N}. Then B is a
base of the topology for the associated topological space (X,Ud). �

12.11.0.7 Exercises for Ch.12.7 (Metric and Topological Subspaces)

12.11.0.8 Exercises for Ch.12.9 (Bounded Sets and Bounded Functions)

12.11.0.9 Exercises for Ch.12.8 (Contact Points and Closed Sets)

Exercise 12.16. Let A ⊆ R be a closed, nonempty set which is bounded above. Prove that the
maximum of A exists and that sup(A) = max(A). �

Exercise 12.17. Prove prop.12.27 on p.386: Let (X,U) be a topological space and A ⊆ X . Then
∂A = Ā ∩A{. �

Exercise 12.18. Prove prop.12.26 on p.386: Let (X,U) be a topological space and A ⊆ B ⊆ X . Then
Ā ⊆ B̄. �

Exercise 12.19. Prove prop.12.16 on p.376: Let (X,U) be a topological space. If A ⊆ B ⊆ X then
Ao ⊆ Bo. �

Exercise 12.20. Prove parts (c) and (d) of prop.12.29 (Closure of a set as a hull operator) on p.387:
Let A and B be subsets of a topological space (X,U). Then (c) ¯̄A = Ā, (d) A ∪B = Ā ∪ B̄. �

12.11.0.10 Exercises for Ch.12.10 (Completeness in Metric Spaces)

Exercise 12.21. Let (X, d) be a metric space and A ⊆ X , A 6= ∅. Let

γ := γ(A) := inf{d(x, y) : x, y ∈ A and x 6= y}.

(a) Prove that if γ > 0 then A is complete.
(b) The reverse is not true. Find a counterexample. �

Exercise 12.22. Let (X, d) be a metric space and let A ⊆ X be a finite subset. Prove that A is
complete. �

153See exercise 12.14 on p.400
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Exercise 12.23. Given is R with the Euclidean metric d(x, y) = |x− y|. We look at N and Q as metric
subspaces of R. We know that Q is not complete.
(a) Is N complete as a subspace of Q?
(b) Is N complete as a subspace of R?
Prove your answer. �

Exercise 12.24. LetX be a nonempty set with the discrete metric d(x, y) = 1−1{x}(y), i.e., d(x, y) = 0
if x = y and 1 else. Prove that (X, d) is complete. �
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13 Metric Spaces and Topological Spaces – Part II

13.1 Continuity

13.1.1 Definition and Characterizations of Continuous Functions

We have briefly discussed in ch.9.3 on p.263. the continuity of functions with arguments and values
in R. We now extend this definition to functions that map from metric spaces to metric spaces and,
more generally, from topological spaces to topological spaces.

Definition 13.1 (Sequence continuity).

Given are two metric spaces (X, d1) and (Y, d2). Let A ⊆ X , x0 ∈ A and let f : A → Y be a
mapping from A to Y . We say that f is sequence continuous at x0 and we write

(13.1) lim
x→x0

f(x) = f(x0) ,

if the following is true for any sequence (xn) with values in A:

(13.2) if xn → x0 then f(xn)→ f(x0).

In other words, the following must be true for any sequence (xn) in A and x0 ∈ A:

(13.3) lim
n→∞

xn = x0 ⇒ lim
n→∞

f(xn) = f( lim
n→∞

xn) = f(x0).

We say that f is sequence continuous if f is sequence continuous at x0 for all x0 ∈ A. �

Remark 13.1. Important points to notice:
a) It is not enough for the above to be true for some sequences that converge to x0. Rather, this

must be true for ALL such sequences!
b) We restrict our universe to the domain A of f : x0 and the entire sequence (xn)n∈N must belong

to A, because we need function values for all x-values. In other words, f is continuous at
x0 ∈ A if and only if f is continuous at x0 in the metric subspace (A, d

∣∣
A×A). �

Definition 13.2 (ε-δ continuity).

Given are two metric spaces (X, d1) and (Y, d2). Let A ⊆ X , x0 ∈ A and let f(·) : A → Y
be a mapping from A to Y . We say that f(·) is ε–δ continuous at x0 if the following is
true: For any (whatever small) ε > 0 there exists δ > 0 such that either one of the following
equivalent statements is satisfied:

f
(
Nδ(x0) ∩A

)
⊆ Nε(f(x0)),(13.4)

d1(x, x0) < δ ⇒ d2(f(x), f(x0)) < ε for all x ∈ A.(13.5)

We say that f(·) is ε-δ continuous if f(·) is ε-δ continuous at a for all a ∈ A. �
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Figure 13.1: ε-δ continuity

.

Remark 13.2. We recall from thm.12.32 on p.381 that

Nδ ∩A = NA
δ (a) = {x ∈ A : d

∣∣
A×A(x, a) < δ}.(13.6)

Hence (13.4) states that

f is ε-δ continuous at x0 ⇔ for all ε > 0 there exists δ > 0 s.t. f
(
NA
δ (x0)

)
⊆ Nε(f(x0)). �

Theorem 13.1 (Continuity criterion).

Let (X, d1) and (Y, d2) be two metric spaces. Let A ⊆ X , x0 ∈ A and let f(·) : A→ Y . Then,
• f is sequence continuous at x0 ⇔ f is ε-δ continuous at x0.
• In particular f is sequence continuous (on A) if and only if f is ε-δ continuous.

PROOF:
a)⇒a)⇒a)⇒: Proof that sequence continuity implies ε-δ-continuity:
We assume to the contrary that there exists some function f which is sequence continuous but not
ε-δ-continuous at x0, i.e., there exists some ε > 0 such that neither (13.4) nor the equivalent (??) is
true for any δ > 0.
a.1. In other words, No matter how small δ is choosen, there is at least one x = x(δ) ∈ A such that
d1(x, x0) < δ but d2(f(x), f(x0)) ≥ ε. In particular we obtain for δ := 1/m(m ∈ N) that

(13.7) there exists some xm ∈ N1/m(x0) ∩A such that d2(f(xm), f(x0)) ≥ ε.

a.2. It follows from prop.12.7 on p.370 that the sequence (xm)m∈N converges to x0.
a.3. Clearly

(
f(xm)

)
m∈N does not converge to f(x0), as that requires d2(f(xm), f(x0)) < ε for all

sufficiently bigm, contrary to (13.7) which implies that there is not even one suchm. In other words,
the function f is not sequence continuous, contrary to our assumption. We have our contradiction.
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b)⇐b)⇐b)⇐: Proof that ε-δ-continuity implies sequence continuity:
Let xn → x0. Let yn := f(xn) and y0 := f(x0). We must prove that yn → y0 as n→∞.
b.1. Let ε > 0. We can find δ > 0 such that (13.4) and hence (??) is satisfied. Since we assumed that
xn → x0 there exists N := N(δ) ∈ N such that d1(xn, x0) < δ for all n ≥ N .
b.2. It follows from (??) that d2(yn, y) = d2(f(xn), f(x0)) < ε for all n ≥ N . In other words, yn → y0

as n→∞ and the proof of “⇐” is finished.
It follows from the proofs of (a) and (b) that f is sequence continuous ⇔ f is ε-δ continuous. �

Definition 13.3 (Continuity in metric spaces).

From now on we can use the terms “ε-δ continuous at x0” and “sequence
continuous at x0” interchangeably for functions between metric spaces and
we will simply speak about continuity of f at x0. �

Remark 13.3 (continuity for real–valued functions of real numbers). Let (X, d1) = (Y, d2) = R. In
this case equation (??) on p.?? becomes

|x− x0| < δ ⇒ |f(x)− f(x0)| < ε.

See thm.9.7 on p.273. �

We saw in the ε-δ continuity definition of a function with metric spaces for both domain and
codomain and the subsequent remark 13.2 that continuity of f : (A, d1

∣∣
A×A) → (Y, d2) in x0 ∈ A

was equivalent to demanding that for any ε–neighborhood of f(x0) there is a δ–neighborhood of x0

such that
f
(
NA
δ (x0)

)
⊆ Nε(f(x0)).

The fact that any neighborhood of a point z in a metric space contains a γ–neighborhood of z for
suitably small γ, is at the basis of the following theorem.

Theorem 13.2 (Neighborhood characterization of continuity). Let (X, d1) and (Y, d2) be two metric
spaces. Let A ⊆ X , x0 ∈ A, and let f(·) : A→ Y be a mapping from A to Y . Then,

f is continuous at x0 if and only if for any neighborhood Vf(x0) of f(x0), there exists a neighborhood
Ux0 of x0 in the metric space (X, d1), such that

(13.8) f(Ux0 ∩A) ⊆ Vf(x0) .

Equivalently, (13.8) can be stated in terms of the subspace (A, d1

∣∣
A×A) as follows.

for any neighborhood Vf(x0) of f(x0) there exists a neighborhood UAx0
of x0 in the metric space

(A, d1

∣∣
A×A) such that

(13.9) f(UAx0
) ⊆ Vf(x0).

PROOF:
a)⇒a)⇒a)⇒): Assume that f is continuous, i.e., ε-δ continuous at a. Let Vf(x0) be a neighborhood of f(x0).
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Then f(x0) is interior point of Vf(x0) and we can find suitable ε > 0 such that Nε(f(x0)) ⊆ Vf(x0).
ε-δ continuity at a implies the existence of δ > 0 such that f

(
Nδ(x0) ∩ A

)
⊆ Nε(f(x0)), hence

f
(
Nδ(x0) ∩A

)
⊆ Vf(x0).

This proves both (13.8) (choose Ux0 := Nδ(x0)) and (13.9) (choose UAx0
:= Nδ(x0) ∩A).

b)⇐b)⇐b)⇐): Assume that (13.8) is satisfied for any arbitrary neighborhood Vf(x0) of f(x0).
Let ε > 0. We need to show that there exists δ > 0 such that

f(Nδ(x0) ∩A) ⊆ Nε(f(x0)).(13.10)

Nε(f(x0)) is a neighborhood of f(x0). It follows from (13.8) that there exists a neighborhood Ux0 of
x0 such that

f(Ux0 ∩A) ⊆ Nε(f(x0)).(13.11)

x0 is interior point of any of its neighborhoods. In particular, it is interior to Ux0 .
Accordingly, there exists δ > 0 such that Nδ(x0) ⊆ Ux0 , hence Nδ(x0)∩A ⊆ Ux0 ∩A. It follows from
the monotonicity of the direct image Γ 7→ f(Γ) that

f
(
Nδ(x0) ∩A

)
⊆ f

(
Ux0 ∩A

)
⊆ Nε(f(x0)).(13.12)

The second inclusion relation follows from (13.11). We have proved the existence of δ > 0 such that
(13.10) is satisfied. This finishes the proof of “⇐)”. �
Before we generalize continuity to topological spaces we will now generalize thm.9.6 of ch.9.3 which
was stated for real–valued function with domain A ⊆ R. to real–valued function with domain
A ⊆ (X, d) where (X, d) is a metric space. The proof of this theorem demonstrates how to work
with the definitions

Theorem 13.3 (Rules of arithmetic for continuous real–valued functions).

Given is a metric space (X, d). Let the functions

f(·), g(·), f1(·), f2(·), f3(·), . . . , fn(·) : A −→ R

all be continuous at x0 ∈ A ⊆ X . Then,

(a) Constant functions are continuous everywhere on A.
(b) The product fg(·) : x 7→ f(x)g(x) is continuous at x0. Specifically, αf(·) : x 7→ α · f(x)

where α ∈ R is continuous at x0. In particular (α = −1) the function −f(·) : x 7→ −f(x) is
continuous at x0.

(c) The sum f + g(·) : x 7→ f(x) + g(x) is continuous at x0.
(d) If g(x0) 6= 0 then the quotient f/g(·) : x 7→ f(x)/g(x) is continuous at x0.

(e) Any linear combination 154
n∑
j=0

ajfj(·) : x 7→
n∑
j=0

ajfj(x) is continuous in x0.

PROOF of (a):
Let f : A → R; x 7→ α for some α ∈ R. Let xn ∈ A for all n ∈ N such that xn → x0 as n → ∞. Then
f(xn) = f(x0) = α for all n ∈ N, i.e., the sequence f(xn)n is constant with value f(x0) = α, and it
thus converges to f(x0) by prop.12.8 on p.370. This proves (a).
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PROOF of (b): Since it follows from the already proven part (a) that the constant function x 7→ α
and thus in particular the function x 7→ −1 are continuous everywhere on A it remains to prove
that fg is continuous at x0.
Let xn ∈ A for all n ∈ N such that xn → x0 as n → ∞. All we need to show is convergence
f(xn)g(xn)→ f(x0)g(x0). This follows from prop.9.17 (Rules of arithmetic for limits) on p.267, thus
we have shown that fg is continuous at x0. We have proven (b).
PROOF of (c): Let xn ∈ A for all n ∈ N such that xn → x0 as n → ∞. We must show convergence
f(xn) + g(xn)→ f(x0) + g(x0). This again follows from prop.9.17 and we have proved (c).
proof of (d) (outline): The proof is done by (strong) induction.
Base case: For n = 2 the proof is obvious from parts (a), (b) and (c).
Induction step: Write

n+1∑
j=0

ajfj(x) =
( n∑
j=0

ajfj(x)
)

+ an+1fn+1(x) = U + V.

The left term U is continuous by the induction assumption, thus the sum U + V is continuous as
the sum of two continuous functions (we showed this in (c)). This proves (d). �

The last theorem allows us to conclude that certain sets of continuous functions are vector spaces
since sums f + g and scalar products αf involving continuous functions are continuous.

Example 13.1 (Vector spaces of continuous real–valued functions). Let (X, d) be a metric space.
Then

CCC (X,R) := {f(·) : f(·) is a continuous real–valued function on X}(13.13)

of all real continuous functions onX is a vector space. Note that we have seen this before in example
11.11 (Vector spaces of real–valued functions) on p.332 for the special case of X ⊆ (R, d|·|).
The sup–norm

‖f(·)‖∞ = sup{|f(x)| : x ∈ X}

(see (11.16) on p.344) is not a real–valued function on all of CCC (X,R) because ‖f(·)‖∞ = +∞ for any
unbounded f(·) ∈ CCC (X,R). To avoid complications from dealing with infinity, we often restrict the
scope to the subspace

CCCBBB(X,R) := {h : h is a bounded continuous real–valued function on X}

(see prop.11.13 on p. 344) of the normed vector space BBB(X,R) of all bounded real–valued functions
on X . On this subspace the sup–norm truly is a real–valued function since ‖f(·)‖∞ <∞. �

Remark 13.4. The equivalence of (13.8) and (13.9) in thm.13.2 (neighborhood characterization of
continuity) has some profound consequences:
Assume that we have proven a statement about continuity at x0 ∈ X for all functions which have
metric spaces as domain and codomain. Let’s say we use the notation f : (X, d) → (Y, d′). This
statement then remains true for all functions g : (A, d

∣∣
A×A) → (Y, d′) as long as the proof does not

make use of a property of X which its subset A does not satisfy.
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A good example for this is thm.13.3 (rules of arithmetic for continuous real–valued functions). For
example, if a function ϕ is continuous on all of X then its restriction ϕ

∣∣
A

to A ⊆ X does not lose
this property, and if it satisfies in addition ϕ(x0) 6= 0 for some x0 ∈ A then it remains true that
ϕ
∣∣
A

(x0) 6= 0.
Here is a somewhat contrived counterexample. If the assumptions state thatX must be unbounded,
i.e., diam(X) =∞, then the validity of the statement does not necessarily extend to bounded subsets
of X . 155 �

The last theorem allows us to generalize the notion of continuity to functions between abstract
topological spaces.

Definition 13.4 (Continuity for topological spaces). Given are two topological spaces (X,U1) and
(Y,U2). Let A ⊆ X , x0 ∈ A and let f : A→ Y be a mapping from A to Y .

We say that f is continuous at x0 if the following is true:
For any neighborhood Vf(x0) of f(x0), there exists a neighborhood Ux0 of x0 in the topolog-
ical space (X,U1), such that

(13.14) f(Ux0 ∩A) ⊆ Vf(x0) .

Equivalently, continuity at x0 can be stated in terms of the subspace (A,U1A) as follows.
For any neighborhood Vf(x0) of f(x0) there is a neighborhood UAx0

of x0 in (A,U1A) such that

(13.15) f(UAx0
) ⊆ Vf(x0).

We say that f is continuous if f is continuous at a for all a ∈ A. �

Remark 13.5. Let (X, d) and (Y, d′) be metric spaces with associated metric topologies Ud and Ud′ . 156

Let A ⊆ X and f : A → Y . Since the condition (13.8) for continuity at x0 ∈ A of f as a function
between the metric spaces (X, d) and (Y, d′) is identical to the condition (13.14) for continuity at x0 ∈
A of f as a function between the associated topological spaces (X,Ud) and (Y,Ud′) it follows that
any statement that we prove for continuity in topological spaces is automatically true for continuity
in metric spaces. �

[2] B/G: Art of Proof defines in appendix A, p.136, continuity of a function f as follows:
“f−1(open) = open”. The following proposition proves that their definition coincides with the
one given here: the validity of (13.14) for all x0 ∈ X .

Proposition 13.1 (“f−1(open) = open” continuity).

Let (X,U) and (Y,V) be two topological spaces and let f : X → Y . Then,

• f is continuous (on X) ⇔ All preimages f−1(V ) of open V ⊆ Y are open in X .

155Better counterexamples involve completeness and compactness, important subjects you will learn about later. It is
possible for the entire space to be complete and/or compact and for certain subsets not to have that property.

156See Definition 12.12 on p.373.
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PROOF of “⇒”: Let V be an open set in Y . Let U := f−1(V ), a ∈ U and b := f(a). Then b ∈ V by
the definition of inverse images. b is inner point of V because V is open. According to Definition
13.4 there exists a neighborhood Ua of a such that f(Ua) ⊆ V .
We conclude from the monotonicity of direct and inverse images and prop.8.1 on p.243 that

Ua ⊆ f−1
(
f(Ua)

)
⊆ f−1(V ) = U.

It follows that the arbitrarily chosen a ∈ U is an interior point of U and this proves that U is open.
PROOF of “⇐”: We now assume that all inverse images of open sets in Y are open in X .
Let a ∈ X, b = f(a), and let Vb be a neighborhood of b. Any neighborhood of b contains an open
neighborhood of b, hence we may assume that Vb is open. We are done if we can find an open
neighborhood Ua of a such that

f(Ua) ⊆ Vb(13.16)

Let Ua := f−1
(
Vb
)
. Then Ua is open as the inverse image of the open set Vb It follows from the

monotonicity of direct and inverse images and prop.8.8 on p.244 that

f(U) = f
(
f−1(Vb)

)
= Vb ∩ f(X) ⊆ Vb.

We have proved (13.16) �

Note that the previous proposition only addresses “global” continuity of f for all x ∈ X
and there is no local version which handles continuity at a specific x0.

Note also that it is easily generalized to f : A→ Y (∅ 6= A ⊆ X) by demanding that f−1(V ) be open
in (A,UA) for all V ∈ V.

Remark 13.6. Remark 13.4 on p.406 for metric spaces can be rephrased for topological spaces as
follows:
In the interest of simplicity one may assume for statements involving continuity of a function f
between topological spaces(X,U) and (Y,V) that f is defined on all ofX rather than assuming more
generally that f is defined (only) on some arbitrary subset A of X . The general case of f : A→ Y is
then covered by replacing (X,U) with (A,UA), i.e., we deal with f : (A,UA)→ (Y,V) just as long as
the proof does not make use of a property of X which its subset A does not satisfy.
It is easy to see that this condition is satisfied for prop.13.2, prop.13.3, and prop.13.4 below.

The next proposition was previously stated for real–valued functions of a real variable. See
prop.9.23 on p.272.

Proposition 13.2 (The composition of continuous functions is continuous).

Let (X,U), (Y,V) and (Z,W) be topological spaces. Let f : X → Y be continuous at x0 ∈ X and
g : Y → Z continuous at f(x0).
• Then, the composition g ◦ f : X → Y is continuous at x0.

PROOF: The proof is left as exercise 13.4 (see p.432). �

We now give some examples of continuous functions.
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Proposition 13.3 (continuity of constant functions).

Let (X,U) and (Y,V) be topological spaces and y0 ∈ Y .
• Then, the constant function f : x 7→ y0 is continuous.

PROOF: It suffices to show that inverse images of open sets are open. So let V ∈ V. Then either
x0 ∈ V in which case f−1(V ) = X , or x0 /∈ V in which case f−1(V ) = ∅. Since both X and ∅ are
open in X it follows that f−1(open) = open, hence f is continuous. �

Proposition 13.4 (continuity of the identity mapping).

Let (X,U)be a topological space and let

idX : X → X; x 7→ x

be the identity function on X. Then idX is continuous.

PROOF: It suffices to show that inverse images of open sets are open. So let V ∈ U. Then id−1
X (V ) =

V , hence id−1
X (V ) is open. This finishes the proof. �

Remark 13.7. The proof just given also applies to metric spaces but it is instructive to give a direct
proof of this proposition which works with the metric.
So let (X, d) be a metric space and let idX be the identity function on X. Let x ∈ X and ε > 0. let
δ := ε. If x′ ∈ X such that d(x, x′) < δ, then

d(idX(x), idX(x′)) = d(x, x′) < δ = ε.

We have verified condition (??) of the ε–δ characterization of continuity and it follows that idX is
continuous at x. x was an arbitrary point in X , and it follows that the identity is continuous. 157 �

The next proposition gives a very simple example that the behavior of a function with respect to
continuity strongly depends on the choice of metric on domain and/or codomain.

Proposition 13.5.

Let d be the standard Euclidean metric and let d′ be the discrete metric on the set R of all real numbers.
Let

f : (R, d′)→ (R, d); x 7→ x and g : (R, d)→ (R, d′); x 7→ x

both be the identity function on R. Then,
• f is continuous at every point of R
• g is not continuous anywhere on R.

The proof is left as exercise 13.6 (see p.433). �
Because of their importance we state here once more rem.13.4, rem.13.5, and rem.13.6.

157Actually, we have proved a very strong form of continuity. Generally speaking, δ = δ(ε, x0) is tailored not only to
the given ε, but also to the particular argument x0 at which continuity needs to be verified. We were able to find δ which
does not depend on the argument x0 but only on ε. We will learn later that this makes idX uniformly continuous on its
domain X . See Definition 13.5 (Uniform continuity of functions) on p.410.

409 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

Remark 13.8.

(a) All statements about continuity proven for topological spaces are also true for the
special case of metric spaces.

(b) One may assume for statements involving continuity of a function f between metric
spaces (X, d) and (Y, d′) or between topological spaces(X,U) and (Y,V) that f is
defined on all of X rather than assuming more generally that f is defined (only) on
some arbitrary subset A of X .
The general case of f : A → Y is then covered for metric spaces by replacing (X, d)
with (A, d

∣∣
A×A) (we deal with f : (A, d

∣∣
A×A) → (Y, d′)), and it is covered for topo-

logical spaces by replacing (X,U) with (A,UA) (we deal with f : (A,UA) → (Y,V)),
just as long as the proof does not make use of a property of X which its subset A
does not satisfy. �

13.1.2 Uniform Continuity

It will be proved in theorem 14.13 (Uniform continuity on sequence compact spaces) on p.449 158

that continuous real–valued functions on the compact set [0, 1] are uniformly continuous in the
sense of the following definition. 159

Definition 13.5 (Uniform continuity of functions).

Let (X, d1), (Y, d2) be metric spaces and let A be a subset of X . A function

f(·) : A→ Y is called uniformly continuous

if, for any ε > 0 there exists a (possibly very small) δ > 0 such that

(13.17) d2(f(x)− f(y)) < ε for any x, y ∈ A such that d1(x, y) < δ. �

Remark 13.9. f : (X, d1)→ (Y, d2) is uniformly continuous on A ⊆ X if and only if the following is
true: For all ε > 0 there is δ > 0 such that[

B ⊆ A such that diam(B) ≤ δ ⇒ diam
(
f(B)

)
≤ ε

]
. �

Remark 13.10 (Uniform continuity vs. continuity). Note the following:
a.a.a. Condition (13.17) for uniform continuity looks very close to the ε–δ characterization of ordinary
continuity (??) on p.??. Can you spot the difference?
Uniform continuity is more demanding than plain continuity because, when dealing with the latter,
you can ask for specific values of both ε and x0 according to which you must find a suitable δ. In
other words, for plain continuity

δ = δ(ε, x0).

158see chapter 14.4 (Continuous Functions and Compact Spaces) on p.447
159For the special case of (X, d) = (R, d|·|) where d|·|(x, y) = |y − x|, see [2] Beck/Geoghegan, Appendix A.3, “Uniform

continuity”.
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In the case of uniform continuity all you get is ε. You must come up with a suitable δ regardless of
what arguments are thrown at you. To write that one in functional notation,

δ = δ(ε).

b.b.b. It follows that uniform continuity implies continuity but the opposite need not be true.
c.c.c. Many concepts that are defined in metric spaces can be generalized to topological spaces Ex-
amples were neigborhoods, interior points and contact points, subspaces and continuity. Uniform
continuity is not a concept that can be defined without a metric. 160 �

Example 13.2 (Uniform continuity of the identity mapping). Let us have another look at rem.13.7
where we proved the continuity of the identity mapping on a metric space. We chose δ = ε no
matter what value of x we were dealing with and it follows that the identity mapping is always
uniformly continuous. �

Example 13.3. Let f(x) := 1
x on ]0, 1] with the Euclidean metric. Then f is NOT uniformly continu-

ous on ]0, 1]. See exercise 13.2 �

Remark 13.11. Now that you have learned the definitions for both continuity and uniform conti-
nuity, have a closer look at example 4.28, p.112 in ch.4.5.3 (Quantifiers for Statement Functions of
more than Two Variables) where it was explained how you could obtain one definition from the
other just by switching around a ∀ quantifier and a ∃ quantifier. �

13.1.3 Continuity of Linear Functions

Lemma 13.1.

Let f : (V, ‖ · ‖)→ (W,
·) be a linear function between two normed vector spaces. Let

a := sup{
f(x)

 : x ∈ V, ‖x‖ = 1},
b := sup{

f(x)
 : x ∈ V, ‖x‖ ≤ 1},

c := sup{
f(x)


‖x‖

: x ∈ V, x 6= 0}.

Then, a = b = c.

PROOF: We introduce the following three sets for this proof:

A :={
f(x)

 : x ∈ V, ‖x‖ = 1},
B :={

f(x)
 : x ∈ V, ‖x‖ ≤ 1},

C :=
{ f(x)


‖x‖

: x ∈ V, x 6= 0
}
.

160That is not entirely accurate: There is a notion of “uniform spaces” which generalize the concept of a metric but are
less general than topological spaces and there is a notion of uniform continuity for those sets.
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Proof that a = b:
It follows fromA ⊆ B that a ≤ b. On the other hand let x ∈ B such that x 6= 0 (if x = 0 then f(x) = 0
certainly could not exceed a). Let y := ‖x‖−1x. Then y ∈ A and ‖x‖−1 ≥ 1, hencef(y)

 =
f(x/‖x‖) = (1/‖x‖)

f(x)
 ≥ f(x)

 .

We conclude that the sup over the bigger set B does not exceed the sup over A, hence a = b.
Proof that a = c:
Let x ∈ C and y := ‖x‖−1x. Then y ∈ A andf(x)

 /‖x‖ =
f(x)/‖x‖

 =
f(x/‖x‖) =

f(y)
 .

It follows that the sup over the bigger set C does not exceed the sup over A, hence c = b. �

Definition 13.6 (norm of linear functions). ? Let f : (V, ‖ · ‖) → (W,
·) be a linear function

between two normed vector spaces. We denote the quantity a = b = c from lemma 13.1 by ‖f‖, i.e.,

‖f‖ = sup{
f(x)

 : x ∈ V, ‖x‖ = 1}
= sup{

f(x)
 : x ∈ V, ‖x‖ ≤ 1}

= sup{
f(x)


‖x‖

: x ∈ V, x 6= 0}.
(13.18)

‖f‖ is called the norm of the linear function f .

The justification for calling f 7→ ‖f‖ a norm 161 will be given in thm.13.5 on p.413.
We note that ‖f‖ need not be finite. �

Theorem 13.4 (Continuity criterion for linear functions).

Let f : (V, ‖ · ‖) → (W,
·) be a linear function between two normed vector spaces. Then the

following are equivalent.
(A) f is continuous at x = 0,
(B) f is continuous in all points of V ,
(C) f is uniformly continuous on V ,
(D) ‖f‖ <∞ .

Moreover, such a continuous linear function satisfies the inequality

(13.19)
f(x)

 ≤ ‖f‖ · ‖x‖ , for all x ∈ V.

PROOF: Clearly we have C⇒ B⇒ A. We now show A⇒ D.
It follows from the continuity of f at 0 that there exists δ > 0 such that

if z ∈ V and ‖z‖ < δ then
f(z)

 =
f(z)− f(0)

 < 1.(13.20)

161Note that we use the same notation ‖·‖ for both the norm on V and the norm of the linear function f . Do not confuse
the two!
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Let x ∈ V such that ‖x‖ ≤ 1. Then ‖δ/2 · x‖ ≤ δ/2 < δ, hence, according to (13.20),

δ/2 ·
f(x)

 =
f(δ/2 · x)

 < 1, hence
f(x)

 < 2/δ.

Because this last inequality is true for all x ∈ V with norm bounded by 1, it follows that

‖f‖ = sup{
f(x)

 : x ∈ V, ‖x‖ ≤ 1} < 2/δ <∞.

We have proved that A⇒ D.
We finally show D⇒ C and we do this in two steps.
First we show D ⇒ (13.19). The inequality trivially holds for x = 0 because linearity of f implies
f(0) = 0. If x 6= 0 then ‖x‖ > 0 (norms are positive definite) and the inequality follows from the last
characterization of ‖f‖ in (13.18).
Second step: Let ε > 0 and δ := ε/‖f‖. Let x, y ∈ V such that ‖x − y‖ < δ. If we can prove that
this implies

f(x)− f(y)
 < ε, then f is indeed uniformly continuous and the proof is done. We

show this as follows.f(x)− f(y)
 =

f(x− y)
 (13.19)

≤ ‖f‖ · ‖x− y‖ < ‖f‖ · δ = ‖f‖ · ε/‖f‖ = ε. �

Theorem 13.5 (‖f‖ is a norm). ? Let

(13.21)
CCC lin(V,W ) := CCC lin

(
(V, ‖ · ‖), (W,·)

)
:= {f : V →W : f is linear and continuous }.

Then, CCC lin(V,W ) is a vector space and

(13.22) f 7→ ‖f‖ = sup{
f(x)

 : ‖x‖ = 1}
defines a norm on CCC lin(V,W ).

PROOF:
In all of this proof let A := x ∈ V : ‖x‖ = 1.
(A) Proof that CCC lin(V,W ) is a vector space.
Let f, g,∈ CCC lin(V,W ). We need to show that f + g ∈ CCC lin(V,W ), i.e., f + g is both linear and
continuous. Linearity is immediate. We now show continuity.
Let x ∈ A. Then f(x) + g(x)

 ≤ f(x)
 +

f(x)
 ≤ ‖f‖+ ‖g‖ < ∞.(13.23)

The first inequality holds because the norm
f(x)

 satisfies the triangle inequality for norms. The
second follows from (13.18) on p.412, and the finiteness of ‖f‖+ ‖g‖ is, according to the continuity
criterion for linear functions (thm.13.4 on p.412), equivalent to the continuity of both f and g.
We still must show that if f ∈ CCC lin(V,W ) and λ ∈ R then λf : x 7→ λf(x) ∈ CCC lin(V,W ), i.e., we must
show that this function is linear and continuous. Again, linearity is immediate. To show continuity
we proceed as follows.
Let x ∈ A. · is absolutely homogeneous. Henceλf(x)

 =
|λ|f(x)

 = |λ| ·
f(x)

 .(13.24)
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It follows from prop.9.10 (positive homogeneity of inf and sup) on p.260 that

‖λf‖ = sup{
λf(x)

 : ‖x‖ = 1} = sup{
|λ|f(x)

 : ‖x‖ = 1}(13.25)
= |λ| · sup{

f(x)
 : ‖x‖ = 1} = |λ| · ‖f‖ < ∞.(13.26)

This proves that λf is continuous.
(B) Proof that ‖f‖ is a norm on CCC lin(V,W ).
Because (13.23) is valid for all x ∈ A, we obtain

‖f + g‖ = sup{
f(x) + g(x)

 : x ∈ A} ≤ ‖f‖+ ‖g‖.(13.27)

This proves the triangle inequality.
Likewise, we obtain from the validity of (13.25) for all x ∈ A,

‖λf‖ = sup{
|λ|f(x)

 : x ∈ A} = |λ| sup{
f(x)

 : x ∈ A} = |λ|‖f‖.(13.28)

This proves absolute homogeneity.
Finally we show positive definiteness. Clearly ‖f‖ is nonnegative as the sup of nonnegative num-
bers

f(x)
. Assume that ‖f‖ > 0. Then δ := 1

2‖f‖ > 0 and there exists x0 ∈ A such that

sup{
f(x)

 : x ∈ A} −
f(x0)

 < δ, i.e., ‖f‖ −
f(x0)

 < δ, hence
f(x0)

 > δ.(13.29)

Positive definiteness of · implies that f(x0) 6= 0 and hence f 6= 0. We have proved positive
definiteness of ‖ · ‖. �

13.2 Function Sequences and Infinite Series

13.2.1 Convergence of Function Sequences

Notation 13.1 (Functions with argument “·”).

This chapter makes heavy use of the notation f(·) instead of f for a function X → R to em-
phasize when sequences of functions fn(·) are used and when function values (real num-
bers) fn(x) are used. �

Vectors are more complicated than numbers because an n–dimensional vector v ∈ Rn represents a
list of only finitely many real numbers. Any such vector (x1, x2, x3, · · · , xn) can be interpreted as a
real–valued function (remember: a real–valued function is one which maps it arguments into R)

(13.30) f(·) : {1, 2, 3, · · · , n} → R j 7→ xj

(see (11.4) on p.324).
Next come sequences (xj)j∈N which can be interpreted as real–valued functions

(13.31) g(·) : N→ R j 7→ xj .

Finally we deal with real–valued functions

(13.32) h(·) : X → R x 7→ h(x)
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which are defined on an arbitrary domain X as the most general case.
Now we add more complexity by not just dealing with one or two or three real–valued functions
but with an entire sequence of functions

(13.33) fn(·) : X → R x 7→ fn(x)

For any fixed argument x0 we have a sequence f1(x0), f2(x0), f3(x0), · · · of real numbers which we
can examine for convergence. This sequence may converge for some or all arguments x0 ∈ X to
some limit L = L(x0) ∈ R. 162 Examination of the limit behavior of a function sequence is not only
of interest if those functions are real–valued but also if their codomain is a metric space (Y, d).
It is time now for some definitions.

Definition 13.7 (Pointwise convergence of function sequences).

Let X be a nonempty set, (Y, d) a metric space and let fn(·) : X → Y and f(·) : X → Y
be functions on X (n ∈ N) . Let A ⊆ X be a nonempty subset of X .
We say that fn(·) converges pointwise or, simply, converges to f(·) on A and we write
fn(·)→ f(·) on A as n→∞, or simply fn(·)→ f(·) on A, if

(13.34) fn(x)→ f(x) as n→∞ for all x ∈ A.
We omit the phrase “on A” if it is clear how A is defined, in particular if A = X . �

Definition 13.8 (Uniform convergence of function sequences). Let X be a nonempty set, (Y, d) a
metric space, let fn(·) : X → Y and f(·) : X → Y be functions on X (n ∈ N) , and let A ⊆ X .

We say that fn(·) converges uniformly to f(·) on A and we write

(13.35) fn(·) uc−→ f(·) on A ,

if, for each ε > 0 (no matter how small), there exists an index n0 which can be chosen once
and for all, independently of the specific argument x, such that

(13.36) d(fn(x), f(x)) < ε for all x ∈ A and n ≥ n0.

We omit the phrase “on A” if it is clear how A is defined, in particular if A = X . �

Note that the notation “ fn(·) uc→ f(·) ” is not very widely used.

Remark 13.12 (Uniform convergence implies pointwise convergence). Take another look at defini-
tion Definition 12.10 (convergence of sequences in metric spaces) on p.369. Note that (13.36) im-
plies, for any given x ∈ A, ordinary convergence f(x) = lim

n→∞
fn(x). The reason is that the number

n0 = n0(ε) chosen in (13.36) will also satisfy (12.20) of that definition for xn = fn(x) and a = f(x).
In other words, unform convergence implies pointwise convergence. But what is the difference
between pointwise and uniform convergence? The difference is that, for poinwise convergence, the
number n0 will depend on both ε and x: n0 = n0(ε, x). In the case of uniform convergence, the
number n0 will still depend on ε but can be chosen independently of the argument x ∈ A. �

162We previously examined sequences of functions in ch.9.9 (Sequences of Sets and Indicator functions and their liminf
and limsup) on p.296.
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Example 13.4 (Constant sequence of functions). Let X be a set and let f : X → R be a real–valued
function on X which may or may not be continuous anywhere. Define a sequence of functions

fn : X → R (n ∈ N) as f1 = f2 = · · · = f

i.e.,
f1(x) = f2(x) = · · · = f(x) ∀n ∈ N, ∀x ∈ X.

In other words, we are looking at a constant sequence of functions (not to be confused with a se-
quence of constant functions – seriously!).
We obtain d(fn(x), f(x)) = 0 < ε for all x ∈ X and ε > 0. Thus (13.36) in the definition of uniform
convergence is trivially satisfied, hence fn(·) uc→ f(·) . �

PROOF of the example: This is trivial. No matter how small an ε and n0 we choose and no matter
what argument x ∈ X we are looking at, we have

|fn(x)− f(x)| = 0 < ε for all x ∈ A and n > n0 �

The next proposition furnishes an example of a function sequence that converges pointwise, but not
uniformly. The reader is suggested to draw a picture of the functions fn.

Proposition 13.6. Let X = [0, 1],
i.e., X is the closed unit interval {x ∈ R : 0 ≤ x ≤ 1} . Let the functions fn be defined as follows on X :

fn(x) =

{
n2x for 0 ≤ x ≤ 1

n
1
x for 1

n ≤ x ≤ 1

Let the function f(·) : [0, 1]→ R be defined as follows.

f(x) =

{
1
x for 0 < x ≤ 1

0 for x = 0

Then the functions fn(·) converge pointwise but not uniformly to f(·) on the entire unit interval. �

PROOF:
Before we start, note that both pieces of fn fit together in the point x = 1/n because the
“ 1
x definition” gives fn(a) = 1

1/n = n and the “n2x definition” gives the same value n = n2 1
n .

We encourage you to draw a picture to convince yourself that fn(·) is continuous at every point of
[0, 1]. You are asked in exercise 13.3 on p.432 to give a proof of the continuity of fn. Finally note that
the limit function f is not continuous at all points of [0, 1].
PROOF of pointwise convergence:
first we inspect the point a = 0. We have f(0) = 0 = n2 · 0 = fn(0) and the constant sequence of
zeros certainly converges to zero. Now assume a > 0. If n > 1/a then fn(a) = 1

a for all such n.
We have a constant sequence ( 1

a ) except for the first finitely many n and this sequence converges to
1
a = f(a). See cor.9.4 on p.270. We have thus proved pointwise convergence.
PROOF that there is no uniform convergence:
To prove that (13.36) is not satisfied, we must find ε > 0 and points xN so that for no matter how
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big a natural number N we choose, there will be at least one j > N such that |fj(xN )− f(xN )| ≥ ε.
Let N ∈ N be any natural number and let xN := 1

N2 . Then

fN (xN ) =
N2

N2
= 1,

f2N (xN ) =
(2N)2

N2
= 4.

Hence ∣∣f2N (xN )− fN (xN )
∣∣ = 3.

To recap: We found ε > 0 so that for each N ∈ N there is at least one j ≥ N and xN ∈ [0, 1] such
that |fj(XN )− fN (xN )| > ε : we chose

ε = 2, j = 2N, xN =
1

N2

We have proved that convergence is pointwise but not uniform. �

Let X be a nonempty set and BBB(X,R) the set of all bounded real–valued functions on X . We recall
from Theorem 13.5 (‖f‖ is a norm) on p.413, that BBB(X,R) is a vector space with the norm

‖f‖∞ = sup{|f(x)| : x ∈ X}
and it is a metric space with the corresponding metric

d‖·‖∞(f, g) = sup{|g(x)− f(x)| : x ∈ X}
(see example 12.2 on p.361).

Proposition 13.7 (Uniform convergence is ‖ · ‖∞ convergence).

The following is true for any a nonempty set X and fn, f ∈BBB(X,R):

fn(·) uc→ f(·) ⇔ fn(·) ‖·‖∞→ f(·) , i.e.,

fn(·) uc→ f(·) ⇔ fn converges to f in the metric space
(
BBB(X,R), d‖·‖∞(·, ·)

)
.

PROOF of “⇒”: Assume that fn(·) uc→ f(·). Let ε > 0. According to Definition 13.8 (Uniform con-
vergence of function sequences) on p.415, there exists an index n0 = n0(ε) (which does not depend
on the function argument x ∈ X) such that

d(fn(x), f(x)) = |fn(x)− f(x)| < ε/2 for all x ∈ X and n ≥ n0.

Note that here the metric space Y in Definition 13.8 is R, so d(fn(x), f(x)) becomes |fn(x) − f(x)|.
We obtain

‖fn − f‖∞ = sup{|fn(x)− f(x)| : x ∈ X} ≤ ε/2 for all n ≥ n0,

i.e., d‖·‖∞(fn, f) < ε for all n ≥ n0. It follows that fn(·) ‖·‖∞→ f(·).

PROOF of “⇐”: Assume that fn
‖·‖∞→ f , i.e., lim

n→∞
fn = f in the metric space

(
BBB(X,R), d‖·‖∞

)
.
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Let ε > 0. There exists n0 ∈ N such that

d‖·‖∞(fn, f) = ‖fn − f‖∞ = sup{|fn(x)− f(x)| : x ∈ X} < ε for all n ≥ n0

But then

|fn(x)− f(x)| < ε for all x ∈ X and all n ≥ n0.

This proves fn(·) uc→ f(·). �

The last proposition justifies the next definition.

Definition 13.9 (Norm and metric of uniform convergence). ?

We also call the sup–norm on BBB(X,R) the norm of uniform convergence on X and its
associated metric d‖·‖∞(·, ·) the metric of uniform convergence on X . �

Theorem 13.6 (Uniform limits of continuous functions are continuous).

Let (X, d1) and (Y, d2) be metric spaces and let fn(·) : X → Y and f(·) : X → Y be functions
on X (n ∈ N) . Let x0 ∈ X and let V ⊆ X be a neighborhood of x0. Assume the following:

(a) The functions fn(·) are continuous at x0 for all n.
(b) fn(·) uc→ f(·) on V .

Then, f is continuous at x0

PROOF: Let ε > 0.
(A) Uniform convergence fn(·) uc→ f(·) on V guarantees the existence of some N = N(ε) such that

d2

(
fn(x), f(x)

)
<
ε

3
for all x ∈ V and n ≥ N.

In particular, for n = N ,

d2

(
fN (x), f(x)

)
<
ε

3
for all x ∈ V .(13.37)

(B) All functions fn and in particular fN are continuous in V . There is δ̃ > 0 such that

d2(fN (x), fN (x0)) <
ε

3
for all x ∈ Nδ̃(x0).(13.38)

(C) As x0 is an interior point of V , there exists δ̂ > 0 such that Nδ̂(x0) ⊆ V . Let δ be the smaller of δ̂
and δ̃.
Then (13.37) and (13.38) both hold for any x ∈ Nδ(x0). Because x0 ∈ Nδ(x0) we obtain

d(f(x), f(x0)) ≤ d(f(x), fN (x)) + d(fN (x), fN (x0)) + d(fN (x0), f(x0)) <
ε

3
+

ε

3
+

ε

3
= ε.

418 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

The proof is finished. �

For an example of uniform convergence we return to the n–th Bernstein Polynomials

Bf
n(x) =

n∑
k=0

(
n

k

)
f
(k
n

)
xk(1− x)n−k,

which are defined for any f : [0, 1]→ R. It will be shown in ch.16.3 (The Weierstrass Approximation
Theorem), that if f is any continuous function on the unitinterval, then Bf

n(·) uc→ f(·) on [0, 1] as
n→∞.
We have done already most of the work to prove this for the three continuous functions x → 1,
x→ x, and x→ x2.

Proposition 13.8. ?

Let f : [0, 1]→ R be one of the functions

1 : x 7→ 1; id : x 7→ x; id2 : x 7→ x2; (0 ≤ x ≤ 1).

Then,
Bf
n(·) uc→ f(·) on [0, 1] as n→∞.

PROOF: We derived in prop.6.23 on p.188 the formulas

B1
n(x) = 1, Bid

n (x) = x, Bid2

n (x) =
1

n
x +

n− 1

n
x2 (x ∈ R).

Note that
(
B1
n

)
n

is the constant function sequence p1
n(·) = 1, and

(
Bid
n

)
n

is the constant function
sequence Bid

n (·) = id. We have seen in example 13.4 (Constant sequence of functions) on p.416
that any constant function sequence has itself as uniform limit, thus the proposition is true for the
functions 1 and id.
The function id2 : x 7→ x2 needs a little more work. Let ε > 0. If 0 ≤ x ≤ 1 then

d
(
Bid2

n (x), id2(x)
)

=
∣∣∣( 1

n
x +

n− 1

n
x2
)
− x2

∣∣∣
=
∣∣∣ 1
n
x − 1

n
x2
∣∣∣ =

1

n
· |x| · |1− x| ≤ 1

n
.

We choose n0 ∈ N such that n0 > 1
ε . This is always possible since the natural numbers are not

bounded above in R. Let n ≥ n0. Then 1
n ≤

1
n0
< ε, hence d

(
Bid2

n (x), id2(x)
)
< ε for all x ∈ [0, 1]. It

follows that (13.36) in the definition of uniform convergence is satisfied, hence Bid2

n
uc→ id. �

Proposition 13.9.

Let X be a nonempty set, (Y, d) a metric space and let fn, f : X → Y (n ∈ N) . Then,
f is the uniform limit of the function sequence (fn)n

⇔ there exists a sequence δn ≥ 0 such that 1) δn → 0 as n→∞, and
2) d

(
fn(x), f(x)

)
≤ δn for all x ∈ X and n ∈ N.
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PROOF:
(A) First we prove that uniform convergence fn

uc→ f implies that there are real numbers δn ≥ 0 that
satisfy both (1) and (2): It follows from Definition 13.8 on p.415 (Uniform convergence of function
sequences) that the numbers δn := sup{d

(
fn(x), f(x)

)
: x ∈ X} converge to zero and thus define

such a sequence.
(B) We now prove that the existence of a sequence δn ≥ 0 that satisfies both (1) and (2) implies
fn

uc→ f on X . Let ε > 0. It follows from lim
k→∞

δk = 0 that there exists n0 ∈ N such that δk < ε for all

k ≥ n0. Thus d
(
fk(x), f(x)

)
≤ δk < ε for all x ∈ X and k ≥ n0. It follows from Definition 13.8 that

fn
uc→ f on X . �

13.2.2 Infinite Series

We start by repeating the definition of a sequence given in section 5.2 on p.131: (xj) is nothing but
a family of things xj which are indexed by a consecutive set of integers, usually the natural num-
bers or the nonnegative integers. We make throughout this chapter on infinite series the following
assumption:

Unless explicitly stated otherwise, sequences are always indexed 1, 2, 3, . . . , i.e., the first
index is 1 and, given any index, you obtain the next one by adding 1 to it. �

Proposition 13.10 (Convergence criteria for series).

A series s :=
∑
ak of real numbers converges if and only if for all ε > 0 there exists no ∈ N such

that one of the following is true: ∣∣∣ ∞∑
k=n

ak

∣∣∣ < ε for all n ≥ n0(13.39a)

∣∣∣ m∑
k=n

ak

∣∣∣ < ε for all m,n ≥ n0(13.39b)

PROOF: Write

(13.40) s =

∞∑
k=1

ak =

n∑
k=1

ak +

∞∑
k=n+1

ak = sn +

∞∑
k=n+1

ak

Remember the convergence criteria for real–valued sequences. Convergence of a sequence (sn) to
a real number s means that, for any ε > 0, all but finitely many members sn will be inside the ε–
neighborhood Nε(s) of s. Expressed in terms of the distance to s this means there exists a suitable
n0 ∈ N such that

|s− sn| < ε for all n ≥ n0

(see (12.10) on p.369). According to (13.40) we can write that as∣∣∣ ∞∑
k=n+1

ak

∣∣∣ < ε for all n ≥ n0,
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which is the same as (13.39.a) because it does not matter whether we look at the sum of all terms
bigger than n or n+ 1.
Alternatively, there was the Cauchy criterion

|si − sj | < δ for all i, j ≥ n0

(see (12.27) on p.390) which ensures convergence to some number s without specifying what it
might actually be. Again we use (13.40) and obtain, assuming without loss of generality that i < j,∣∣∣ j∑

k=i+1

ak

∣∣∣ < δ for all j > i ≥ n0 �

Corollary 13.1. If a series
∑
aj converges then lim

n→∞
an = 0.

PROOF: Let ε > 0. It follows from 13.39b that there is some n0 ∈ N such that

|am − 0| =
∣∣ m∑
k=m

ak
∣∣ < ε for all m ≥ n0. But this means that the sequence an converges to zero.

�

Here is a second corollary.

Corollary 13.2 (Dominance criterion for series 163 ).

Let N ∈ N and let
∑
aj and

∑
bj be two series such that |bk| ≤ ak for all k ≥ N .

It follows that if
∑
ak converges, then

∑
bk converges.

Moreover, if |bk| ≤ ak for all k ∈ N, then,
∣∣∣ ∞∑
k=1

bj

∣∣∣ ≤ ∞∑
k=1

aj

PROOF: Let ε > 0. It follows from 13.39b that there is some n0 ∈ N such that
∣∣ n∑
k=m

ak
∣∣ < ε

for all m,n ≥ n0. Let M := max(n0, N). We obtain∣∣∣ j∑
k=i+1

bj

∣∣∣ ≤ j∑
k=i+1

|bj | ≤
j∑

k=i+1

aj < ε for all j > i ≥M.

We conclude from (13.39b) that
∑
bk converges.

Now assume that |bk| ≤ ak for all k ∈ N. Let

sn :=

n∑
k=1

|ak|, s := lim
n→∞

sn, tn :=

n∑
k=1

bk, t := lim
n
tn .

It follows from the triangle inequality for real numbers that |tn| ≤ sn for all n ∈ N. We apply
prop.9.19 on p.269 to deduce that

|t| = lim
n
|tn| ≤ lim

n
sn = s .

163This is a generalization of [2] B/G (Beck/Geoghegan) prop.12.3, p.115.

421 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

This completes the proof. �

Remark 13.13. It is very important to remember that a series either converges to a finite number or

it diverges. If it diverges it may be the case that
∞∑
k=1

ak =∞ or
∞∑
k=1

ak = −∞ or there is no limit

at all. As an example for a series which has no limit, look at the oscillating sequence

(13.41) a0 = 1; a1 = −1; a2 = 1; a3 = −1; · · · sn =

n∑
k=0

(−1)n

The above is an example of a series that starts with an index other than 1 (zero). sn obviously does
not have limit +∞ or−∞ because sn is 1 for all even n and 0 for all odd n. Do not make the mistake
of thinking that the limit of the series is zero because you fail to notice the odd indices and only see
that s0 = s2 = s4 = · · · = s2j = 0.
Note that for any j ∈ N we have |sj − sj−1| = 1 because at each step we either add or subtract 1.
This means that no matter what real number a and how big a number n0 ∈ N we choose, it will
never be true that |a− sj | < 1 for all j ∈ N and a cannot be a limit of the series. 164

Just so you understand the difference between limits and contact points (see (Definition 12.23) on
p.382): Even though neither (aj)j nor (sj)j has a limit, the tail sets for both have two contact points
each. The ones for (aj)j have the contact points {1,−1} and the ones for (sj)j have the contact
points {0, 1}. �

We now turn our attention to convergence properties of series. We copy from Chapter 7 (Cardinality
I: Finite and Countable Sets) the notation [N ] = [1, N ]N for N ∈ N.

Definition 13.10 (Finite permutations). ?

Let N ∈ N. A permutation of [N ] is a bijection

π(·) : [N ]→ [N ]; j 7→ π(j) .

As usual
π−1(·) : [N ]→ [N ]; π(j) 7→ π−1π(j) = j,

denotes the inverse function of π(·). We recall that it associates with each image π(j) the
unique argument j, which is mapped by π(·) to π(j). It is customary to write

i1 instead of π(1), i2 instead of π(2), . . . , ij instead of π(j), . . . . �

We extend the previous definition from [N ] to N.

Definition 13.11 (Permutations of N).

A permutation of N is a bijective function

π(·) : N→ N; j 7→ π(j). �

164We could also have concluded as follows: |sj − sj−1| = 1 implies that the Cauchy formulation of the convergence
criteria for series (see (13.39a) on p.420) is not satisfied, hence no convergence of the series.
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Permutations are the means of describing a rearrangement or reordering of the members of a finite
or infinite sequence or series. Look at any sequence (aj). Given a permutation π(·) of the natural
numbers, we can form the sequence (bk) := (aπ(k)), i.e.,

b1 = aπ(1), b2 = aπ(2), . . . , bk = aπ(k), . . .

We can use the inverse permutation, π−1(·), to regain the aj from the bj because

bπ−1(k) = aπ−1(π(k)) = ak.

Proposition 13.11.

Let (an) be a sequence of nonnegative real numbers. Exactly one of the following is true:
(a) Either the series

∑
an converges (to a finite number). In that case,

∞∑
n=1

an =

∞∑
n=1

aπ(n) for any permutation π(·) of N.

(b) Or the series
∞∑
n=1

an has limit∞. In that case, it is true for any permutation π(·) of N, that

the reordered series
∞∑
n=1

aπ(n) also has limit∞.

PROOF of (a): Let bj := aπ(j) and, hence, ak = bπ−1(j). Let N ∈ N . Let

(13.42) α := max{π(j) : j ≤ N} and β := max{π−1(k) : k ≤ N}.

Note that α ≥ N and β ≥ N . Because all terms aj , bk are nonnegative it follows that

N∑
j=1

bj =
N∑
j=1

aπ(j) ≤
α∑
k=1

ak ≤
α∑
k=1

ak +
∞∑

k=α+1

ak =
∞∑
k=1

ak,

N∑
k=1

ak =
N∑
k=1

bπ−1(k) ≤
β∑
j=1

bj ≤
β∑
j=1

bj +
∞∑

j=β+1

bj =
∞∑
j=1

bj .

We take limits as N →∞ and it follows from prop.9.19 on p.269 that

∞∑
j=1

bj ≤
∞∑
k=1

ak and
∞∑
k=1

ak ≤
∞∑
j=1

bj , hence
∞∑
k=1

ak =

∞∑
j=1

bj .

This proves part (a) of the proposition.
PROOF of (b): Assume that

∑
aj diverges. Because all terms aj are nonnegative, the sequence sn

of the partial sums is nondecreasing and hence has a limit s. s /∈ R because we assumed that
∑
aj

is not convergent and we can rule out s = −∞ because s ≥ a0 ≥ 0. It follows that s =∞.
Assume to the contrary that there is a rearrangement

∑
bj :=

∑
aπ(j) of

∑
aj which converges

to a limit t ∈ R. According to the already proved part (a) the rearrangement
∑
aj =

∑
bπ−1(j)

converges to the same (finite) limit t. We have reached a contradiction. �
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Definition 13.12 (absolutely convergent series).

A series
∑
aj is absolutely convergent, if the corresponding series

∑
|aj | of its absolute

values converges. �

Proposition 13.12.

Let
∑
ak be an absolutely convergent series. Then

∑
ak converges and

(13.43)
∣∣ ∞∑
k=1

ak
∣∣ ≤ ∞∑

k=1

|ak|.

PROOF: This follows from the dominance criterion (cor.13.2) �

It follows from prop.13.11 on p.423 that if a series of nonnegative terms converges then its value is
invariant under rearrangements of that series. The next theorem states that any absolutely conver-
gent series also has that property and we will see later 165 that the reverse is also true: Any series
whose value is invariant under rearrangements is absolutely convergent.

Theorem 13.7. 166

Let
∑
ak be an absolutely convergent series. Let π : N → N be a permutation of N, i.e., the series∑

bk with bk := aπ(k) is a rearrangement of the series
∑
ak. Then

∑
bk converges and has the same

limit as
∑
ak. (Note that

∑
ak converges according to Proposition 13.12.)

PROOF: As a first step we prove that
∑
bk converges: Since

∑
|bk| is a rearrangement of

∑
|ak|,∑

|bk| converges by Proposition 13.11 on p.423. By Proposition 13.12,
∑
bk converges.

Let s :=
∞∑
k=1

ak, t :=
∞∑
k=1

bk. For n ∈ N let sn :=
n∑
k=1

ak and tn :=
n∑
k=1

bk.

Let ε > 0. Since
∑
|ak| converges, there exists n0 ∈ N such that

n0+m∑
k=n0+1

|ak| ≤
∞∑

k=n0+1

|ak| < ε for all m ∈ N.(13.44)

Let A := {π(j) : 1 ≤ j ≤ n0} and p0 := max(A). This maximum exists because the set A is finite.
Then p0 ≥ n0. Each of a1, a2, . . . , an0 is a term of sn0 , hence of sp0 .
Moreover each of b1 = aπ(1), b2 = aπ(2), . . . , bp0 = aπ(p0) is a term of tp0 .
Let n, p ≥ p0. Then each of a1, a2, . . . , an0 is a term of sn
and each of b1 = aπ(1), b2 = aπ(2), . . . , bp0 = aπ(p0) is a term of tp.
p0 = max(A) is so big that each of a1, . . . , an0 is one of b1, . . . , bp0 .
It follows from all this that each of a1, . . . , an0 is a term both of sn and tp, hence none of those terms
appears in the difference sn − tp. We obtain from (13.44) for big enough m ∈ N (the bigger of

165see cor.13.4 on p.432
166This was proved by the German mathematician Peter Gustav Lejeune Dirichlet (1805-1859).
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max({π(j) : 1 ≤ j ≤ n}) and p) that

|sn − tp| ≤
n0+m∑
k=n0+1

|ak| < ε.

This implies

|s− tp| ≤ |s− sn|+ |sn − tp| ≤ |s− sn| +

n0+m∑
k=n0+1

|ak| < |s− sn|+ ε.

We had chosen n ≥ n0 and it follows from (13.44) that |s− sn| < ε, hence |s− tp| < 2ε.
But p could be any integer ≥ p0, and p0 only depends (via n0) on ε.
To summarize: for all ε > 0 there exists p0 such that p ≥ p0 implies |s−tp| < 2ε. But then lim

p→∞
tp = s.

On the other hand, lim
p→∞

tp = t =
∑
p→∞

bk.

This concludes the proof that
∑
p→∞

ak =
∑
p→∞

bk. �

Proposition 13.13.

Let
∑
an be an absolutely convergent series. Let (ank)k be a subsequence of (an)n.

Then,
∑
ank converges absolutely.

PROOF: The proof is left as exercise 13.10. �

The last proposition allows us to use the following simplified summation notation for absolutely
convergent series.

Remark 13.14.

Assume that
∑
an is absolutely convergent. Let n1 < n2 < . . . be a subsequence of all

natural numbers and let J := {nj : j ∈ N}.

• Then we write
∑
j∈J

anj :=
∞∑
j=1

anj .

• In particular, we write
∑
j∈N

aj :=

∞∑
j=1

aj , for the full sequence nj = j of indices. �

There are series which are convergent but not absolutely convergent. They are given a special name:

Definition 13.13 (conditionally convergent series).

A series
∑
aj is called conditionally convergent, if it is convergent but not absolutely

convergent. �

We introduce alternating series to give a simple example of a conditionally convergent series.
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Definition 13.14 (Alternating Series). ?

A series
∑
aj is called an alternating series if it is of the form

∑
(−1)jaj with either all

terms aj being strictly positive or all of them being strictly negative. �

Proposition 13.14 (Leibniz Test for Alternating Series).

Let a1 ≥ a2 ≥ . . . ↓ 0 be a nonincreasing sequence which decreases to zero.
Then, the alternating series

∑
(−1)kak converges.

PROOF: For each n ∈ N we have

s2n+1 =s2n−1 + (s2n − s2n+1) ≥ s2n−1,

s2n+2 =s2n − (s2n+1 − s2n+2) ≤ s2n,

s2n−1 ≤s2n+1 = (s2n − a2n+ 1) ≤ s2n.

Hence, if k, n ∈ N such that k ≥ n then

s2n+1 ≤s2k+1 ≤ s2k ≤ s2n, |s2n − s2n+1| = s2n − s2n+1 = a2n+1.(13.45)
(13.46)

Let ε > 0. It follows from lim
n→∞

an = 0 that there exists n0 ∈ N such that aj < ε for all j ≥ n0. Let
N := 2n0 + 1. Let i, j ∈ N such that i ≥ N . Then either i = 2k or i = 2k+ 1 for some suitable natural
number k ≥ n0. Likewise, either j = 2′ or j = 2k′ + 1 for some suitable natural number k′ ≥ n0.
It follows from (13.45) that s2n0+1 ≤ si, sj ≤ s2n0 . Because |s2n0 − s2n0+1| = a2n0+1 < ε, we have
proven that the sequence sn is Cauchy, hence converges because R is complete. �

Example 13.5 (Alternating series). The series
∑

(−1)n and the alternating harmonic series∑
(−1)n/n are examples of alternating series.

It is known from calculus that the harmonic series
∑

1/n is divergent:
∞∑
j=1

1

n
=∞. On the other

hand, according to the Leibniz test,
∑

(−1)n/n converges. It follows that the alternating harmonic
series is convergent but not absolutely convergent, i.e., it is conditionally convergent. �

We are going to prove Riemann’s Rearrangement Theorem, from which it can be easily deduced
that if

∑
aj is conditionally convergent and x ∈ R, a rearrangement

∑
aπj can be found which

converges to x. In preparation we will prove the following lemma.

Lemma 13.2. ?

Let
∑
ak be a series. We split it into two series

∑
pk and

∑
qk as follows.

• pj denotes the jth strictly positive member of the sequence (ak)k.
• qj denotes the jth strictly negative member of that sequence.

Then, the following is true:
(a) If

∑
ak is absolutely convergent, then both

∑
pk and

∑
qk are (absolutely) convergent.

(b) If
∑
ak is conditionally convergent, then

∑
pk has limit∞ and

∑
qk has limit −∞.
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PROOF of (a): Let α :=
∑∞

i=1 |ai| and let j ∈ N.
Let m be the index such that am is the jth (not mth!) strictly positive member of the sequence (ak)k.
Then each pi for i ≤ j is some |ak| for a suitable k ≤ m. It follows from m ≥ j that

j∑
i=1

pi ≤
m∑
i=1

|ai| ≤
∞∑
i=1

|ai| < ∞.

The above is true for all j ∈ N and it follows that
∞∑
i=1

pi < ∞. The proof that
∑
qk has a finite limit

is similar.
PROOF of (b): The proof will be done in three parts. In part 1 we will show that not both

∑
pk and∑

qk can converge. In part 2 we will show that
∑
pk =∞ and

∑
qk ∈ R leads to a contradiction. In

part 3 we will show that
∑
qk = −∞ and

∑
pk ∈ R leads to a contradiction.

Part 1: Let us assume that
∑
pk <∞ and

∑
qk > −∞.

For any n ∈ N we have
n∑
k=1

|ak| ≤
n∑
k=1

pk +
n∑
k=1

(−qk).

This is true because each one of a1, . . . , an is one of the first n strictly positive numbers p1, . . . , pn or
one of the strictly positive numbers −q1, . . . ,−qn or it is zero, in which case it contributes nothing
to the series. Both series

∑
ak and

∑
(−qk) are nondecreasing, hence for each fixed n,
n∑
k=1

|ak| ≤
∞∑
k=1

pk −
∞∑
k=1

qk.

It follows that if both
∑
pk and

∑
qk are convergent then so is

∑
|ak|, i.e., this series is absolutely

convergent. We have a contradiction.
Part 2: Let us assume that

∑
pk =∞ and

∑
qk ∈ R.

We fix n ∈ N. Let Mn be the index of pn, i.e., Mn is the smallest index j such that aj = pn. Note that

aMn = pn (?) and Mn ≥ n. (??)

Let

In := {i ≤Mn : ai > 0}, Jn := {j ≤Mn : ai < 0}.

Then
Mn∑
k=1

ak =
∑
i∈In

ak +
∑
j∈Jn

ak
(?)
=

n∑
i=1

pi +
∑
j∈Jn

ak ≥
n∑
i=1

pi +
∑

qk.(13.47)

It follows from (??) that if n→∞ then Mn →∞. Hence, from (13.47),∑
ak = lim

n→∞

n∑
k=1

ak = lim
n→∞

Mn∑
k=1

ak ≥ lim
n→∞

( n∑
i=1

pi +
∑

qk

)
= ∞,

contrary to the assumption that
∑
ak converges. We have reached a contradiction.

Part 3: Let us assume that
∑
qk =∞ and

∑
pk ∈ R.

We obtain a contradiction by applying part 2 to the series
∑

(−ak). �
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Theorem 13.8 (Riemann’s Rearrangement Theorem). 167

Let α, β ∈ R such that α ≤ β. and let the series
∑
ak be conditionally convergent.

Then a rearrangement
∑
bk of

∑
ak exists such that

lim inf
n→∞

n∑
k=1

bk = α and lim sup
n→∞

n∑
k=1

bk = β .

PROOF: ?

We may assume that aj 6= 0 for all j ∈ N because terms of value zero do not contribute anything
to the partial sums, hence omitting them leaves the limit of the series and any rearrangement un-
changed.
We split

∑
aj into the series

∑
pj of its positive members and

∑
qj of its negative members in the

same way as was done in lemma 13.2:
pj is the jth strictly positive member of the sequence (ak)k;
qj is the jth strictly negative member of (ak)k.

It was proved in lemma 13.2 that
∞∑
k=1

pk = ∞ and
∞∑
k=1

qk = −∞.

case 1: β ≥ 0.
Let U1 := {k ∈ N : p1 + p2 + · · · + pk > β}. U1 is not empty because

∑
pj has limit ∞, hence

u1 := min(U1) exists. We call the list p1, p2, . . . , pu1 the first upcrossing of the (unfinished) series∑
bk.

We now construct the first piece of the desired rearrangement
∑
bk. Let

n1 := u1; b1 := p1, b2 := p2, . . . , bn1 := pu1 ; σ1 :=

n1∑
j=1

bj .

Note that n1 is the first (and so far, only) index n of the series
∑
bk for which

∑n
k=1 bk exceeds β.

Let L1 := {k ∈ N : σ1 +
∑k

j=1 qj < α}. L1 is not empty because
∑
qj has limit −∞, hence

l1 := min(L1) exists. We call the list q1, q2, . . . , ql1 the first downcrossing of
∑
bk.

We add more terms to b1, b2, . . . , bn1 .

n2 := n1 + l1; bn1+1 := q1, bn1+2 := q2, . . . , bn2 := ql1 ; σ2 :=

n2∑
j=1

bj .

Note that n2 is the first index n of
∑
bk for which

∑n
k=1 bk drops below α.

Let U2 :=
{
k ∈ N : k > u1 and σ2 +

u1+k∑
j=u1+1

pj > β
}

. U2 is not empty because
∞∑

j=u1+1

pj has limit∞,

hence u2 := min(U2) exists. We call pu1+1, pu1+2, · · · , pu2 the second upcrossing of
∑
bk.

167This was proved by the German mathematician Bernhard Riemann (1826-1866).
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We add more terms to b1, b2, . . . , bn2 .

n3 := n2 + u2; bn2+1 := pu1+1, bn2+2 := pu1+2, . . . , bn3 := pu1+u2 ; σ3 :=

n3∑
j=1

bj .

Note that n3 is the second index n of the series
∑
bk for which

∑n
k=1 bk exceeds β.

Let L2 :=
{
k ∈ N : k > l1 and σ3 +

l1+k∑
j=l1+1

qj < α
}

. L2 is not empty because
∞∑

j=l1+1

qj has limit −∞,

hence l2 := min(L2) exists. We call ql1+1, ql1+2, · · · , ql2 the second downcrossing of
∑
bk.

We add more terms to b1, b2, . . . , bn3 .

n4 := n3 + l2; bn3+1 := ql1+1, bn3+2 := ql1+2, . . . , bn4 := ql1+l2 ; σ4 :=

n4∑
j=1

bj .

Note that n4 is the second index n of the series
∑
bk for which

∑n
k=1 bk drops below α.

It should be clear how we proceed. Let us assume that we have constructed the N th upcrossing
puN−1+1, puN−1+2, · · · , puN and from it

n(2N−1) := n(2N−2) + uN ;

b(n(2N−2)+1) := p(u(N−1)+1), b(n(2N−2)+2) := p(u(N−1)+2), . . . , b(n(2N−1)) := puN ,

σ(2N−1) :=

n(2N−1)∑
j=1

bj .

Let us further assume that we have constructed the N th downcrossing
qlN−1+1, qlN−1+2, · · · , qlN and from it

n(2N) := n(2N−1) + lN ;

b(n(2N−1)+1) := q(l(N−1)+1), b(n(2N−1)+2) := q(l(N−1)+2), . . . , bn(2N)
:= qlN ,

σ2N :=

n(2N)∑
j=1

bj .

We proceed to construct the (N + 1)th upcrossing and the (N + 1)th downcrossing as follows.

Let UN+1 :=
{
k ∈ N : k > uN and σ2N +

uN+k∑
j=uN+1

pj > β
}

. UN+1 is not empty because
∞∑

j=uN+1

pj has

limit ∞, hence uN+1 := min(UN+1) exists. We call p(uN+1), p(uN+2), · · · , pu(N+1)
the (N + 1)th

upcrossing of
∑
bk.

We add more terms to b1, b2, . . . , bn2N .

n(2N+1) := n(2N) + u(N+1);

b(n(2N)+1) := p(uN+1), b(n(2N)+2) := p(uN+2), . . . , b(n(2N+1)) := pu(N+1)
,

σ(2N+1) :=

n(2N+1)∑
j=1

bj .
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Let LN+1 :=
{
k ∈ N : k > lN and σ2N+1 +

lN+k∑
j=lN+1

qj < α
}

. LN+1 is not empty because
∞∑

j=lN+1

qj has

limit∞, hence lN+1 := min(LN+1) exists. We call q(lN+1), q(lN+2), · · · , ql(N+1)
the (N + 1)th down-

crossing of
∑
bk.

We add more terms to b1, b2, . . . , bn(2N+1)
.

n(2(N+1)) := n(2N+1) + l(N+1);

b(n(2N+1)+1) := q(lN+1), b(n(2N+1)+2) := q(lN+2), . . . , b(n2(N+1)) := ql(N+1)
,

σ2(N+1) :=

n2(N+1)∑
j=1

bj .

We have defined by recursion
nm∑
k=1

bk for all m ∈ N

We now show that the increasing sequence (nm)m∈N is not bounded above. We observe that n(2m)

is the number of terms that belong to the first m upcrossings plus the first m downcrossings. Each
upcrossing and each downcrossing must have at least one term because at least one term pj is
needed to move a partial sum from below α to above β and at least one term qj is needed to move a
partial sum from above β to below α. Hence n2m ≥ 2m and this proves that the sequence (nm)m∈N

is indeed not bounded above.
It follows that

∑
bk has infinitely many terms.

We note that all positive terms pj and all negative terms qj are being used in sequence, starting with
the first one. This shows that each one of the terms of

∑
ak has become part of

∑
bk and it follows

that
∑
bk is indeed a rearrangement of

∑
ak.

Let sn :=
∑n

j=1 bj . n1, n3, n5, . . . are (precisely the) integers n for which sn > β and n2, n4, n6, . . .
are (precisely the) integers n for which sn < α. There are infinitely many of each and it follows from
thm.9.13 (Characterization of limsup and liminf) on p.288 that

lim inf
n→inf

sn ≤ α and lim sup
n→inf

sn ≥ β.(13.48)

We now prove that for any ε > 0

lim inf
n→inf

sn ≥ α− ε and lim sup
n→inf

sn ≤ β + ε.(13.49)

Let ε > 0. The terms (an)n of the original series
∑
ak converge to zero because

∑
ak converges (see

cor.13.1 on p.421). It follows that there exists n0 ∈ N such that |aj | < ε for all j ≥ n0. We show next
that

|pj | = pj < ε and |qj | = −qj < ε for all j ≥ n0.(13.50)

|pj | = pj < ε is true whenever j ≥ n0 because pj is the jth positive member of (an)n, hence pj = ai
for some i ≥ j ≥ n0. Likewise, |qj | = −qj < ε whenever j ≥ n0 because qj is the jth negative
member of (an)n, hence qj = ai for some i ≥ j ≥ n0. We have proved (13.50).
We recall that n1, n3, n5, . . . are precisely the integers n for which sn > β, so

s(n1−1) ≤ β, s(n3−1) ≤ β, . . . , s(n(2j−1)−1) ≤ β, . . . .
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But then s(n(2j−1)) ≤ β + ε because less than ε was added to the previous term (which is no bigger
than β) for any j so big that the last item in the jth upcrossing is less than ε
It follows from (13.50) that j is certainly big enough if j ≥ n0 because each upcrossing has size of
at least 1. This shows that there are at most finitely many indices n such that sn > β + ε and we
conclude that lim supn sn ≤ β+ε. A similar reasoning allows us to conclude that lim infn sn ≥ α−ε.
We have proved (13.49) and this implies, together with (13.48), that

lim inf
n→inf

sn = α and lim sup
n→inf

sn = β.

The picture to the right illus-
trates how the partial sums

σn =
n∑
j=1

bj alternatingly rise

above β and fall below α.
|pj | = pj and |qj | = −qj ⇒
both |pj | and |qj | drop below
ε eventually.
Thus β ≤ lim supn σn ≤ ε+ β
and β − ε ≤ lim infn σn ≤ β
eventually, thus{

lim supn σn = β,

lim infn σn = α.

We have proved the theorem for case 1: β ≥ 0

case 2: β < 0. We proceed exactly as in case 1. The only difference is that we start with a down-
crossing that gets us below α rather than an upcrossing to obtain a rearrangement

∑
ck for which a

partial sum
∑n

j=1 aj exceeds α when n is the last term of an upcrossing and it drops below β when
n is the last term of a downcrossing.
Because aj converges to zero there will again only be finitely many upcrossings and downcrossings
with terms that exceed ε. For all others the partial sums cannot exceed β or drop below α by more
than ε and we conclude as before that

lim inf
n→inf

n∑
k=1

ck = α and lim sup
n→inf

n∑
k=1

ck = β. �

Corollary 13.3.

Let the series
∑
ak be conditionally convergent and let α ∈ R.

Then, a rearrangement
∑
bk of

∑
ak exists such that

lim
n→∞

n∑
k=1

bk = α.

PROOF: We apply Riemann’s Rearrangement Theorem to the special case β = α: There is a rear-
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rangement
∑
bj of

∑
aj such that

lim inf
n→∞

n∑
k=1

bk = α and lim sup
n→∞

n∑
k=1

bk = α.

It follows now from thm.9.14 on p.290 that
∑
bj converges to α. �

We have seen that if a series is absolutely convergent then it is convergent and each rearrangement
converges to the same limit. Here is the reverse.

Corollary 13.4.

Let
∑
ak be a convergent series with limit α ∈ R such that

∑
bk = α , for each rearrangement.

Then,
∑
ak converge absolutely.

PROOF: We assume to the contrary that the series
∑
ak is not absolutely convergent, i.e.,

∑
ak is

conditionally convergent. We apply Riemann’s Rearrangement Theorem and find that there is a
rearrangement of

∑
aj which converges to a different real number, contrary to our assumption. �

Corollary 13.5 (Dichotomy for convergent series).

Let series
∑
ak be a convergent series. Then

(a) either all rearrangements of
∑
ak converge to the same limit,

(b) or, for any α ∈ R, there is a rearrangement of
∑
ak which converges to α.

PROOF: Either
∑
ak is absolutely convergent and (a) is true according to Riemann’s Rearrangement

Theorem or the series it is conditionally convergent and (b) is true according to cor.13.3. �

13.3 Exercises for Ch.13

13.3.1 Exercises for Ch.13.1

Exercise 13.1. Prove prop.12.12 (Opposite of continuity) on p.372:
A sequence (xk)k with values in (X, d) does not have L ∈ X as its limit if and only if there exists
some ε > 0 and n1 < n2 < n3 < · · · ∈ N such that d(xnj , L) ≥ ε for all j. �

Exercise 13.2. Prove that f(x) := 1
x is not uniformly continuous on ]0, 1]. See example 13.3 on p.411.

Hint: Examine the sequence xn := 1
n . �

Exercise 13.3. In prop13.6 on p.416 the functions fn(·) were defined as follows on the closed unit
interval [ 0, 1 ]:

fn(x) :=

{
n2x for 0 ≤ x ≤ 1

n
1
x for 1

n ≤ x ≤ 1

Prove that fn is continuous for all n ∈ N. �

Exercise 13.4. Prove prop.13.2 on p.408 of this document: Let (X,U), (Y,V) and (Z,W) be topolog-
ical spaces. Let f : X → Y be continuous at x0 ∈ X and g : Y → Z continuous at f(x0). Then the
composition g ◦ f : X → Y is continuous at x0. �
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Exercise 13.5. Give alternate proofs of exercise 13.4 above in the special case of metric spaces by
using the sequence continuity definition (Definition 13.1 on p.402): Let (X, d), (Y, d′) and (Z, d′′) be
metric spaces. Let f : X → Y be continuous at x0 ∈ X and g : Y → Z continuous at f(x0). Then
the composition g ◦ f : X → Y is continuous at x0. �

Exercise 13.6. Prove prop.13.5 on p.409 of this document: Let d be the standard Euclidean metric
and let d′ be the discrete metric on the set R of all real numbers. Let

f : (R,′ )→ (R, d); x 7→ x and g : (R, d)→ (R, d′); x 7→ x

both be the identity function on R. Then f is continuous at every point of R, but g is not continuous
anywhere on R. �

Exercise 13.7. Let X := [1,∞[ equipped with the standard Euclidean metric d(x, x′) = |x− x′|.
Let fn : X → R; x 7→ nx+5

(nx+3)2 . Prove that fn(·) uc→ 0 on X . �

Exercise 13.8. Let X := R, equipped with the Euclidean metric d(x, x′) = |x− x′|. Let

fn : R→ R; x 7→ sin(n2x)

n
.

(a) Prove that fn(·) uc→ 0 on R.
(b) Prove that there is x0 ∈ R such that the sequence f ′n(x0) does not converge (pointwise).

�

Exercise 13.9. Let X := R equipped with the standard Euclidean metric d(x, x′) = |x− x′|.
Let fn : R→ R be the following sequence of functions:

fn(x) :=


0 if |x| > 1

n ,

nx+ 1 if −1
n ≤ x ≤ 0,

−nx+ 1 if 0 ≤ x ≤ 1
n ,

i.e., the point
(
x, fn(x)) is on the straight line between (− 1

n , 0) and (0, 1) for −1
n ≤ x ≤ 0, it is on the

straight line between (0, 1) and ( 1
n , 0) for 0 ≤ x ≤ −1

n , and it is on the x–axis for all other x. Draw a
picture! Let f(x) := 0 for x 6= 0 and f(0) := 1.

(a) Prove that fn converges pointwise to f on R.
(b) Prove that fn does not converge uniformly to f on R. �

You may use without proof that each of the functions fn is continuous on R.

13.3.2 Exercises for Ch.13.2

Exercise 13.10. Prove prop.13.13 on p.425: Let
∑
an be an absolutely convergent series. Let (ank)k

be a subsequence of (an)n. Then
∑
ank converges absolutely. �
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14 Compactness

Let us say informally that a family (Ui)i∈I covers or is a cover of a set A if A ⊆
⋃

[Ui : i ∈ I].
This chapter will show that (A), (B) and (C) below are equivalent statements for any subspace
(K, d

∣∣
K×K) of a metric space (X, d):

(A) Any sequence in K has a convergent subsequence with limit in K.
(B) K is complete and, given any ε > 0, no matter how small, K can be covered by

finitely many ε–neighborhoods.
(C) Any open covering (Ui)i of K has a finite subcovering: one can find finitely many

indices i1, . . . , in such that K ⊆ Ui1 ∪ · · · ∪ Uin

Such metric spaces K will be called “compact”. Moreover, we will see that the following is true for
the metric space Rn with the Euclidean metric: For X = Rn, each of (A), (B) and (C) is equivalent to

(D) K is bounded and closed.

Property (C) is the only one that makes sense for abstract topological spaces and will be used to
define compactness for such spaces.

14.1 ε-Nets and Total Boundedness

Introduction 14.1. We start out with a few elementary observations for subsets of R2.
(a) Let C be a square with side length ε > 0 and “edge points” ~p1, ~p2, ~p3, ~p4. Then each

point in C belongs to one or more of the ε–neighborhoods Nε(~p1), . . . , Nε(~p4), i.e., C ⊆
4⋃
j=1

Nε(~pj).

(b) Let A be a bounded subset of R2, i.e., 168 there exists γ > 0 and ~x0 ∈ R2 such that A ⊆
Nγ( ~x0). Then, if ε > 0, this circle of radius γ can be covered by a finite number of squares
with side length ε.

(c) Put (a) and (b) together: Any bounded set A can be covered by finitely many ε–
neighborhoods.

(d) Equivalently, for any bounded set A ⊆ R2 and ε > 0 there exists a finite set G ⊆ R2 such
that A ⊆

⋃
g∈G

Nε(g)

An exact proof will be given in Proposition 14.1 below that all of the above is true for all bounded
subsets of Rn, for any n ∈ N. On the other hand, there are metric spaces (X, d) with bounded subsets
which do not possess property (d). �

Here is a simple counterexample to (d) of the introduction to this chapter.

Example 14.1. Let X be an infinite set, furnished with the discrete metric d. Then any subset of X ,
including X , is bounded, since diam(X) = 1.
On the other hand, if ε ≤ 1, then Nε(x) = {x} for all x ∈ X . thus X is not the union of a finite
number of such ε–neighborhoods. �

168See Proposition 12.30 on p.388.
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Considering this counterexample, it makes sense to give a special name for subsets of metric spaces
which satisfy (d). We will call such sets totally bounded and refer to G as an ε–net or ε–grid.

Definition 14.1 (ε–nets).

Let ε > 0. Let (X, d) be a metric space and A ⊆ X . let G ⊆ X be a subset of X with the
following property:

(14.1) For each x ∈ A there exists g ∈ G such that x ∈ Nε(g), i.e.,
⋃
g∈G

Nε(g) ⊇ A.

In other words, the points of G form a “grid” or “net” fine enough so that no matter what
point x of A you choose, you can always find a “grid point” g with distance less than ε to x,
because that is precisely the meaning of x ∈ Nε(g).
We call G an ε–net or ε–grid for A and we call g ∈ G a grid point of the net. �

The relation
⋃
g∈G

Nε(g) ⊇ A asserts that the family (Nε(g))g∈G is a collection of open sets which

“covers” all of A We will later call a family of open sets (Ui)i which satisfies
⋃
i Ui ⊇ A an open

cover of A.

Definition 14.2 (Total boundedness).

Let (X, d) be a metric space and let A be a subset of X . We say that A is totally bounded if,
for each ε > 0, there exists a finite(!) ε–grid for A. �

Remark 14.1.
(A) A ⊆ (X, d) is totally bounded if and only if for each ε > 0 there is a finite collection Gε =
{g1, . . . gn} of points in X whose ε–balls Nε(gj) cover A: For any a ∈ A there is j = j(a) such that
d(a, gj) < ε.
(B) Let ε > 0. Since all sets A satisfy A =

⋃
a∈A
{a} ⊆

⋃
a∈A

Nε{a}, all finite sets are totally bounded

(C) Note that the definition of total boundedness of a set A does not demand that the gridpoints are
elements of A.
This allows us, for example, to accept the set G := {(i, j) : i, j ∈ Z} of all points in the plane with
integer coordinates, as a 1–grid for the set A := { (i+ π, j + π) : i, j ∈ Z}. �

Proposition 14.1 (ε–nets in Rn). ? Let (X, d) be Rn with the Euclidean metric.

(A) Let ε > 0. Then the set

εZn = {ε~z : ~z ∈ Zn} = {(εz1, . . . , εzn) : zj ∈ Z for j = 1, . . . , n}
is an (ε

√
n)–net for (any subset of) Rn.

(B) Let A be a bounded set in Rn and ε > 0. Then there is k ∈ N and g1, . . . gk ∈ εZn such that

A ⊆ Nε(g1) ∪ Nε(g2) ∪ . . . , ∪ Nε(gk),

i.e., A is covered by finitely many ε–neighborhoods of points in the (ε/
√
n)–grid εZn.
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PROOF of (A)
Let ~x = (x1, x2, . . . , xn) ∈ Rn. For j = 1, . . . , n, let kj be the integer such that

εkj ≤ xj < ε(kj + 1) .(14.2)

It is obvious from (14.2) that ~x ∈ C, the n–dimensional cube of side length ε, defined by

C := C(~x) := {~y = (y1, . . . , yn) ∈ Rn : εkj ≤ yj < ε(kj + 1)}

Note that this is the following cube: 169 Its 2n edgepoints are the vectors (e1, . . . , en) for which

the j–th coordinate is either ej = εkj , or ej = ε(kj + 1) .(14.3)

Let ~x? = (x?1, . . . , x
?
n) ∈ Rn be defined as follows. For j = 1, . . . , n, let

x?j :=

{
εkj ifxj ≤ ε(kj + 1/2) ,

ε(kj + 1) else .

Thus ~x? is an edge point of the cube C(~x) since each x?j is of the form (14.3). Moreover, since each
x?j satisfies |xj − x?j | ≤ ε/2,

d(~x, ~x?) =

√√√√ n∑
j=1

(xj − x?j )
2 ≤

√
n ·
(ε

2

)2
=

ε
√
n

2
< ε
√
n .(14.4)

We have found for arbitrary ~x ∈ Rn a vector ~x? ∈ εRn such that ~x ∈ Nε
√
n(~x?). 170 This proves that

εZn is an ε
√
n–net in Rn.

PROOF of (B)
Intuitively clear but very messy. Here is an outline.
For convenience, let ε′ := ε/

√
n.

First we choose a radius R so big that A ⊆ NR(~0). This is possible according to Proposition 12.30
on p.388. Next we choose M ∈ N which is so big that Mε′ > R. Let ~c(1),~c(2), . . . ,~c(2n) be the 2n

points in Rn for which each coordinate is either Mε′ or −Mε′. Those are the edge points of the
n–dimensional cube

C := {~x = (x1, x2, . . . , xn) ∈ Rn : |xj | ≤Mε for all j = 1, . . . , n} .

Since there are only 2M + 1 integers m such that |m| ≤ M , there are only finitely many points
~y = (y1, y2, . . . , yn) ∈ Rn which belong to both C and εZn, i.e., such that each coordinate yj is of the
form yj = ε′m for some integer m which satisfies

−ε′M ≤ yj ≤ ε′M , i.e., −M ≤ m ≤ M .

169Draw pictures for dimensions 1, 2, 3 with ε = 1!
170Here is an example. If n = 5, ε = 1, and ~x = (12.85,−12.35, 1

3
, 9,−π), then the associated grid point is

~x? = (13,−12, 0, 9,−3). The distance is:

d(~x, ~x?) =
√
.152 + .352 + (1/3)2 + 0 + (π − 3)2 ≤

√
1/2 + 1/2 + 1/2 + 0 + 1/2 ≤ ε ·

√
n.

We see that partAAA of the lemma is true for this specific example.
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Those points ~y are the edge points of (2M)n n–dimensional cubes C1, C2, . . . , C(2M)n of side length
ε′ whose union equals C.
We have seen in the proof of (A) that each Ci is covered by the

√
n · ε′–neighborhoods of its 2n edge

points. Since
√
n · ε′ = ε, each Ci is covered by a finite number of ε–neighborhoods. Since

C =
⋃[

Cj : j = 1, . . . , (2M)n
]
,

C also is covered by a finite number of ε–neighborhoods. Since A ⊆ C, it follows that A is covered
by a finite number of ε–neighborhoods. �
Note for part (A) thatεZn is as intuitive a grid as you can think of, especially if you look at the
2–dimensional plane or 3–dimensional space and consider ε = 1.

Theorem 14.1. Bounded subsets of Rn are totally bounded.

PROOF: This is immediate from Proposition14.1(B). �

We have seen that all bounded subsets in Rn are totally bounded. In the remainder of this subchap-
ter we will see that
• the reverse is true in any metric space: totally bounded subsets are always bounded,
• a subset A of a metric space is totally bounded if and only if all sequences in A possess

subsequences which are Cauchy.

We start by proving the following:
(a) All sequences in a totally bounded set possess a subsequence which is Cauchy.
(b) All sequences in a bounded subset of Rn possess a subsequence which is Cauchy.

We saw earlier in this subchapter that all bounded subsets in Rn are totally bounded. Thus a proof
of (a) also is a proof of (b). We will prove (b) anyway and do so first, since this proof is easier to
visualize than that of (a)

Proposition 14.2.

Let A be a bounded subset of Rn and let (xn)n be a sequence such that xn ∈ A for all n.
Then there exists a subsequence xnj which is Cauchy.

PROOF:
We will construct a sequence of sets A = A0 ⊇ A1 ⊇ A2 ⊇ . . . with diameters δj ↓ 0 and such that
each Aj contains infinitely members of (xn)n. This allows us to find indices n0 < n1 < . . . such that
xnj ∈ Aj for all j. It then follows from Proposition 12.34 in the chapter on completeness in metric
spaces that

(
xnj
)
j

is Cauchy.

Step 0: Since A0 is bounded, there exists an n–dimensional cube C0 such that A0 ⊆ C0. Let γ be the
side length, δ0 the diameter, and let ~a(0) = (a

(0)
1 , . . . , a

(0)
n ) be the center of that cube.

The following is a very generous estimate of δ0. Let ~x = (x1, . . . , xn) ∈ C0. Since ~a(0) is the center of
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C0, |xj − a(0)
j | ≤ γ/2 for each j. Thus

d(~x,~a(0)) =

√√√√ n∑
j=1

(xj − a(0)
j )2 ≤

√
n ·
(γ

2

)2
=

γ
√
n

2
< γ
√
n .(14.5)

It follows from A0 ⊆ C0 that

δ0 ≤ diam(C0) ≤ γ
√
n .(14.6)

Step 1: We subdivide C0 into 2n cubes C1,1, . . . C1,2n of side length γ/2 = 2−1γ.
It follows from A0 ⊆ C0 that A0 = (C1,1∩A0)∪· · ·∪ (C1,2n ∩A0). Since (xn)n is an infinite sequence,
there is at least one index m1 ∈ [1, 2n]Z such that C1,m1 ∩A0 possesses infinitely many members

x1,1 := xn1 , x1,2 := xn2 , x1,3 := xn3 , . . .

of that sequence. Let A1 := C1,m1 ∩A0 and δ1 := diam(A1). Then (14.6) yields

δ1 ≤ diam(C1,m1) =
1

2
· diam(C0) =

γ
√
n

21
.

Since xn ∈ A for all n, we also have x1,n ∈ A for all n. Thus the infinite subsequence (x1,n)n of the
original sequence (xn)n lives in the subset A1 of A with diameter ≤ (γ

√
n) · 2−1.

Step k: Assume that we have obtained sets A0 ⊇ A1 ⊇ · · · ⊇ Ak such that, for each j ∈ [1, k]Z, the
following holds true:

(1) Aj = Cj,mj ∩Aj−1 for a suitable cube Cj,mj of side length 2−jγ

(2) δj := diam(Aj) ≤ γ
√
n

2j
, 171

(3) Aj contains an infinite subsequence (xj,n)n = xj,1, xj,2, . . . of the original sequence (xn)n.

Step k + 1: We subdivide the cube Ck,mk into 2n cubes Ck+1,1, . . . Ck+1,2n of side length
γ/2 = 2−(k+1)γ.
It follows from Ak ⊆ Ck,mk that Ak = (Ck+1,1 ∩Ak) ∪ · · · ∪ (Ck+1,2n ∩Ak).
Since (xk,n)n is an infinite sequence, there is at least one index mk+1 ∈ [1, 2n]Z such that Ck+1,mk+1

∩
Ak possesses infinitely many members

xk+1,1 := xk,n1 , xk+1,2 := xk,n2 , xk+1,3 := xk,n3 , . . .

of that subsequence.
Let Ak+1 := Ck+1,mk+1

∩Ak and δk+1 := diam(Ak+1). Then (14.6) yields

δk+1 ≤ diam(Ck+1,mk+1
) =

1

2
· diam(Ck,mk) =

γ
√
n

2k+1
.

Since xn ∈ A for all n, we also have xk+1,n ∈ A for all n, thus We have an infinite subsequence
(xk+1,n)n of the original sequence xn which lives in the subsetAk+1 ofAwith diameter≤ (γ

√
n)·2−1.

171(this actually follows from (1) by means of a computation like the one done in (14.5)),
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To summarize, we have achieved what we set out to do at the beginning of the proof: We have
constructed a sequence of sets A = A0 ⊇ A1 ⊇ A2 ⊇ . . . with diameters δn ↓ 0 such that each Aj
contains infinitely members of the sequence (xn)n.
• Since A1 contains infinitely members of (xn)n, there exists n1 > n0 such that xn1 ∈ A1.
• Since A2 contains infinitely members of (xn)n, there exists n2 > n1 such that xn2 ∈ A2.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
• Since Ak contains infinitely members of (xn)n, there exists nk > nk−1 such that xnk ∈ Ak.

Let zk := xnk . Then (zk)k is a subsequence of (xn)n such that zk ∈ Ak. Since lim
k→∞

δk = 0, it follows

from Proposition 12.34 on p.391 that
(
xnj
)
j

is Cauchy. �

The proof that allows us to extend Proposition 14.2 to totally bounded sets in arbitrary metric spaces
is almost identical to the one given above. The main difference is that we no longer can subdivide
the set Ak into 2n subsets of smaller diameters from which to choose Ak+1. Rather, we must work
directly with the definition of total boundedness to obtain Ak.

Theorem 14.2.

Let A be a totally bounded subset of a metric space (X, d). Let (xn)n be a sequence such that xn ∈ A
for all n. Then there exists a subsequence xnj which is Cauchy.

PROOF:
Let A0 := A. As in the proof of Proposition 14.2, we will construct A0 ⊇ A1 ⊇ A2 ⊇ . . . with
diameters δn := diam (An) ↓ 0 such that each Aj contains infinitely members of (xn)n.

Step 1: Let δ1 := 2−1 = 1
2 . Since A0 is totally bounded, there exists a finite grid of length δ1, i.e.,

there is a finite set G1 = {g1,1, g1,2, . . . , g1,M1} such that A0 ⊂
⋃

[Nδ1(g1,j) : j = 1, . . . ,M1].
Since A0 =

⋃
[Nδ1(g1,j) ∩A0 : j = 1, . . . ,M1] and A0 contains the entire (infinite) sequence (xn)n,

there exists m1 ∈ [1,M1]Z such that Nδ1(g1,m1) ∩A0 contains an infinite subsequence

x1,1 := xn1 , x1,2 := xn2 , x1,3 := xn3 , . . .

of that sequence.
Let A1 := A0 ∩Nδ1(g1,m1). Then diam(A1) ≤ diam(Nδ1(g1,k1)), i.e., diam(A1) ≤ δ1.

Step 2: Let δ2 := 2−2. Since A0 is totally bounded, there exists a finite grid of length δ2, i.e., there
exists a finite set G2 = {g2,1, g2,2, . . . , g2,M2} such that A0 ⊂

⋃
[Nδ2(g2,j) : j = 1, . . . ,M2].

Since A1 ⊆ A0, it follows that A1 =
⋃

[Nδ2(g2,j) ∩A1 : j = 1, . . . ,M2]. Since A1 contains the in-
finite sequence (x1,n)n, there exists m2 ∈ [1,M2]Z such that Nδ2(g2,m2) ∩ A1 contains an infinite
subsequence

x2,1 := x1,n1 , x2,2 := x1,n2 , x2,3 := x1,n3 , . . .

of that subsequence.
Let A2 := A1 ∩Nδ2(g2,m2). Then diam(A2) ≤ diam(Nδ2(g2,m2)), i.e., diam(A2) ≤ δ2.

Step k: Assume that we have obtained sets A0 ⊇ A1 ⊇ · · · ⊇ Ak such that, for each j ∈ [1, k]Z, the
following holds true:

(1) Let δj := 2−j . Then Aj = Nδj (gj,mj ) ∩Aj−1 for a suitable gj,mj ∈ X .
(2) Aj contains an infinite subsequence (xj,n)n = xj,1, xj,2, . . . of the original sequence (xn)n.
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Step k + 1: Let δk+1 := 2−(k+1). Since A0 is totally bounded, there exists a finite grid of length δk+1,
i.e., there exists a finite set Gk+1 = {gk+1,1, gk+1,2, . . . , gk+1,Mk+1

} such that
A0 ⊂

⋃[
Nδk+1

(gk+1,j) : j = 1, . . . ,Mk+1

]
.

Since Ak ⊆ A0, it follows that Ak =
⋃[

Nδk+1
(gk+1,j) ∩Ak : j = 1, . . . ,Mk+1

]
. Since Ak contains the

infinite sequence (xk,n)n, there exists mk+1 ∈ [1,M2]Z such that Nδk+1
(gk+1,mk+1

) ∩ Ak contains an
infinite subsequence

xk+1,1 := xk,n1 , xk+1,2 := xk,n2 , xk+1,3 := xk,n3 , . . .

of that subsequence.
Let Ak+1 := Ak ∩ Nδk+1

(gk+1,mk+1
). Then diam(Ak+1) ≤ diam

(
Nδk+1

(gk+1,mk+1
)
)
. In other words,

diam(Ak+1) ≤ δk+1.

Since xn ∈ A for all n, we also have xk+1,n ∈ A for all n. This infinite subsequence (xk+1,n)n of the
original sequence xn lives in the subset Ak+1 of A with diameter ≤ δk+1 = 2−k+1.
To summarize, we have achieved what we set out to do at the beginning of the proof: We have
constructed a sequence of sets A = A0 ⊇ A1 ⊇ A2 ⊇ . . . with diameters δj ↓ 0 such that each Aj
contains infinitely members of the sequence (xn)n.
• Since A1 contains infinitely members of (xn)n, there exists n1 > n0 such that xn1 ∈ A1.
• Since A2 contains infinitely members of (xn)n, there exists n2 > n1 such that xn2 ∈ A2.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
• Since Ak contains infinitely members of (xn)n, there exists nk > nk−1 such that xnk ∈ Ak.

Let zk := xnk . Then (zk)k is a subsequence of (xn)n such that zk ∈ Ak. Since lim
k→∞

δk = 0, it follows

from Proposition 12.34 on p.391 that
(
xnj
)
j

is Cauchy. �

Proposition 14.3. Totally bounded subsets of metric spaces are bounded.

PROOF:
Let A be a subset of a metric space (X, d). We show the contrapositive: We assume that A is not
bounded, i.e., diam(A) =∞, and we will show that A is not totally bounded.
We may assume that A is not empty because otherwise there is nothing to prove.
Step 1: We prove by induction that there exists a sequence xn ∈ A such that d(xi, xj) ≥ 1 for any
i 6= j.
Base case: Let x0 ∈ A. Since A is not bounded, there exists x1 ∈ A such that r1 := d(x0, x1) ≥ 1.
Induction step: We assume that n elements x1, . . . xn such that d(xi, xj) ≥ 1 for any 1 ≤ i < j ≤ n
have aready been chosen. Let

β := max{d(x0, xj) : j ≤ n} , r := β + 1 .

Since A is not bounded, we can pick xn+1 ∈ A \Nr(x0). We obtain for each j ∈ [1, n]Z,

β + 1 ≤ d(xn+1, x0) ≤ d(xn+1, xj) + d(xj , x0) ≤ d(xn+1, xj) + β, i.e., 1 ≤ d(xn+1, xj).

We have constructed a sequence (xn) for which any two items have distance no less than 1.
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Step 2: It follows that (xn)n does not possess a Cauchy subsequence. According to Theorem 14.2,
all sequences in totally bounded sets have Cauchy subsequences. It follows that A is not totally
bounded. �

Corollary 14.1. If A ⊆ Rn, then A is bounded ⇔ A is totally bounded.

PROOF: This is immediate from Proposition 14.3 above and Theorem 14.1 on p.437.

Next we prove the reverse of Theorem 14.2 on p.439.

Theorem 14.3.

Let A be a subset of a metric space (X, d) such that each sequence in A contains a Cauchy subse-
quence. Then A is totally bounded.

PROOF: 172 We prove the contrapositive: If a set is not totally bounded, then there exists a sequence
without any Cauchy subsequences.
So assume that A is not totally bounded. Thus there is ε > 0 such that the following holds for any
n ∈ N: If z1, z2, . . . zn ∈ A then the union

⋃
1≤j≤nNε(zj) does not coverA: There exists z ∈ A outside

any one of those ε–neighborhoods, i.e., z ∈ A \
⋃ [

Nε(zj) : 1 ≤ j ≤ n
]
.

This allows us to create an infinite sequence (xj)j∈N such that d(xj , xn) ≥ ε for all j, n ∈ N such that
j 6= n, say, j < n, as follows: We pick

x1 ∈ A; x2 ∈ A \Nε(x1); x3 ∈ A \
(
Nε(x1) ∪Nε(x2)

)
; . . . xn ∈ A \

⋃
j<n

Nε(xj); . . .

Note that xn ∈ A \
⋃
j<nNε(xj) implies d(xj , xn) ≥ ε for all indices j < n. Since this is true for

arbitrary n ∈ N, it is true that

d(xi, xj) ≥ ε for all i, j ∈ N such that i 6= j .

If (xnj )j were a Cauchy subsequence of (xn)n then there would be n0 ∈ N such that

d(xi, xj) < ε for all i, j ∈ N such that i, j ≥ n0 .(A)

But the xn were constructed such that d(xm, xk) ≥ ε for all m 6= k, in particular for m := ni
and k := nj if i 6= j. Since ni 6= nj whenever i 6= j, it is not possible to construct a subsequence
(xnj )j which satisfies (A). We have shown that sets which are not totally bounded possess sequences
without any Cauchy subsequences. �

Corollary 14.2.
Let A be a subset of a metric space (X, d). Then,

A is totally bounded ⇔ every sequence in A possesses a Cauchy subsequence.

PROOF: This follows from Theorem 14.2 on p.439 and Theorem 14.3 above. �

172The proof is similar to that of Proposition 14.3.
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14.2 Sequence Compactness

We saw that totally bounded sets are those where every sequence possesses a Cauchy subsequence.
Since all Cauchy sequences converge but the opposite usually is not true, total boundedness of a set
A should be a weaker property than the following:
any sequence in A possesses a convergent subsequence.
In this subchapter we will examine sets with that property.

Definition 14.3 (Sequence compactness). Let (X, d) be a metric space and let A ⊆ X .

We say that A is sequence compact or sequentially compact if it has the following prop-
erty: Given any sequence (an) of elements of A, there exists a ∈ A and a subset

n1 < n2 < . . . < nj < . . . of indices such that a = lim
j→∞

anj ,

In other words, there exists a subsequence 173 (anj ) which converges to a. �

Remark 14.2. It is important that you understand that is is not sufficient that lim
j→∞

anj ∈ X . Rather,

we demand that this limit belongs to the smaller set A!
For example, the open unit interval ]0, 1[ is totally bounded as a bounded subset of R = R1. (Can
you prove this directly?) But this set is not sequence compact, since the sequence xn := 1

n does not
possess a convergent subsequence: Any such convergent subsequence would have limit zero, and
zero is not an element of ]0, 1[. �

Proposition 14.4 (Sequence compactness implies total boundedness).

Let (X, d) be a metric space and let A be a sequentially compact subset of X .
Then A is totally bounded.

PROOF: Let (xn)n be a sequence in A. Since convergent subsequences are Cauchy, there exists a
Cauchy subsequence. It follows from Corollary 14.2 on p.441 that A is totally bounded. �

Proposition 14.5 (Sequence compact implies completeness).

Let (X, d) be a metric space and let A be a sequence compact subset of X .
Then A is complete, i.e., any Cauchy sequence (xnj ) in A converges to a limit L ∈ A.

PROOF: Let (xn) be a Cauchy sequence in A. Because A is sequence compact, we can extract a
subsequence zj := xnj and find L ∈ A such that zj → L as j → ∞. It follows from prop.12.36 on
p.392 that the entire Cauchy sequence (xn) converges to L. �
The last two propositions have proved that any sequence compact set in a metric space is both
totally bounded and complete. As the next theorem shows, the reverse is also true.

173See Definition 5.22 on p.158.
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Theorem 14.4 (Sequence compact ⇔ totally bounded and complete).

Let A be a subset of a metric space (X, d).
Then, A is sequence compact if and only if A is totally bounded and complete.

PROOF: We have already seen in prop.14.4 on p.442 and prop.14.5 on p.442 that if A is sequentially
compact then A is totally bounded and complete. We now show the other direction.
LetA be totally bounded and complete and let (xn)n be a sequence inA. SinceA is totally bounded,
we can extract a Cauchy subsequence (xnj )j . Since A is complete, this subsequence has a limit
L ∈ A. Thus (xn)n is a convergent subsequence of (xn)n. �

Theorem 14.5 (Sequence compact sets are closed and bounded).

Let A be sequence compact subset of a metric space (X, d). Then A is a bounded and closed set.

PROOF: Sequence compact spaces are totally bounded and complete by Theorem 14.4 on p.443.
Since they are totally bounded, they also are bounded by Proposition 14.3 on p.440.
Since they are complete, they also are closed by Theorem 12.11 on p.396. �

Remark 14.3. We obtain from the results of this and the previous subchapter the following:

A subset of a metric space is sequentially compact
⇔ it is totally bounded and complete
⇒ it is bounded and closed. �

In subsets of Rn the last implication of Remark14.3 becomes an equivalence:

Theorem 14.6.
A subset of Rn is sequentially compact

⇔ it is totally bounded and complete
⇔ it is bounded and closed.

PROOF:
Let A ⊆ Rn. It suffices to prove that A is totally bounded and complete if A is bounded and closed
since, as we mentioned in Remark14.3, everything else has already been established.
So assume that A is bounded and closed. Since A is closed and Rn is complete, A is complete by
Theorem 12.12 on p.397. Since A is bounded, A also is totally bounded by Theorem 14.1. Thus A is
both totally bounded and complete. �

14.3 Open Coverings and the Heine–Borel Theorem

We now discuss families of open sets called “open coverings”. You should review the concept of an
indexed family and how it differs from that of a set (see (5.20) on p.156).
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Definition 14.4 (Coverings and open coverings).

Let X be an arbitrary nonempty set and A ⊆ X . Let Ui ∈ X (i ∈ I) such that A ⊆
⋃
i∈I

Ui.

We call such a family a covering of A.
A finite subcovering of a covering (Ui)i∈I of the set A is a finite collection

(14.7) Ui1 , . . . , Uin (ij ∈ I for 1 ≤ j ≤ n) such that A ⊆ Ui1 ∪ Ui2 ∪ . . . ∪ Uin .

Assume in addition that X is a topological space, e.g., a normed vector space or a metric
space. If all members Ui are open then we call (Ui)i∈I an open covering of A.
We also write cover, finite subcover, open cover instead of covering, finite subcovering,
open covering �

Remark 14.4.
(a) Partitions 174 are coverings.
(b) Formula 14.1 (ε–nets definition, p.435) tells us that, if G is an ε–grid for A ⊆ (X, d), then

{Nε(g)}g∈G is an open covering of A.
(c) If (Ui)i∈I is a covering of A then (Ui ∩A)i∈I is a covering of A which satisfies

(14.8)
⋃
j∈I

(Uj ∩A) = A. �

Definition 14.5 (Compact sets).

Let (X,U) be a topological space and K ⊆ X .
•We call K compact, if K possesses the “extract finite open subcovering” property:

Given any open covering (Ui)i∈I of K, one can extract a finite subcovering. In other words,
there is n ∈ N and indices

i1, i2, . . . , in ∈ I such that A ⊆
n⋃
j=1

Uij . �

Remark 14.5.
(a) An open covering for the entire space X is a collection of open sets (Ui)i∈I

such that X =
⋃

[Ui : i ∈ I].
(b) Any subcovering of an open covering necessarily consists exclusively of open sets, i.e., it is

again an open covering of A.

174see Definition 8.3 on p.233
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(c) Let (X, d) be a metric space. Then

K ⊆ (X, d) is compact if and only if the metric subspace (K, d
∣∣
K×K) is compact,

i.e., for any collection of subsets (Ui)i∈I of K which are open in K there exist finitely many
indices i1, . . . , in ∈ I such that K = Ui1 ∪ · · · ∪ Uin . This is true because the open subsets of
(K, d) are the traces in K of sets which are open in (X, d) (see Definition 12.21 on p.380). �

Example 14.2. Here are some simple examples.
(a) Any finite topological space is compact.
(b) Any topological space that only contains finitely many open sets is compact. In particular

a set with the indiscrete topology (Definition 12.14 on p.374) is compact
(c) A space with the discrete metric (Definition 12.3 on p.362) is compact if and only if it is

finite.

And here is a counterexample.
The open interval ]0, 1[ with the Euclidean metric is not compact because it is not possi-
ble to extract a finite covering from the open covering

(
] 1
n , 1[

)
n∈N. �

Example 14.3. for sequence compactness in metric spaces we have the following results which
correspond to the previous example.

(a) Any finite metric space is sequence compact.
(b) Any metric space that only contains finitely many open sets is sequence compact. 175

(c) A space with the discrete metric is sequence compact if and only if it is finite.

The counterexample also fits in:
The open interval ]0, 1[ with the Euclidean metric is not sequence compact because it is
not possible to extract a convergent subsequence from the sequence xn := 1/n (the limit
zero does not belong to ]0, 1[ ). �

We will now see that the correspondence in the above two examples is not a coincidence. The next
two theorems show that (subspaces of) metric spaces are compact if and only if they are sequentially
compact.

Theorem 14.7 (Compact metric spaces are sequence compact).

Let (X, d) be a compact metric space. Then X is sequence compact.

PROOF: We assume to the contrary that X is compact and that there is a sequence (xn)n in X from
which one cannot extract a convergent subsequence.
Let F := {x ∈ X : x = xj for some j ∈ N} 176 be the set of distinct(!) members of (xn)n. Let z ∈ X .
There exists an open neighborhood Uz of z such that Uz ∩ F is finite, because otherwise one could
construct a subsequence (xjm)m of (xn)n which converges to z. (See exercise 9.24 on p.304).

175We had to remove the example of the indiscrete topology because this topology does not come from a metric.
176We could have written more concisely F := {xj : j ∈ N} but the above definition was chosen to remind you that F

does not contain any duplicates. Note that F can be very small even if there are infinitely many indices j: If xj = (−1)j

then F = {−1, 1} only contains two elements!
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It follows from {z} ⊆ Uz that (Uz)z∈X is an open covering of X . X is compact, thus we can extract
a finite subcovering Uz1 , Uz2 , . . . , Uzk .

F = F ∩X = F ∩
k⋃
j=1

Uzj =

k⋃
j=1

(Uzj ∩ F )

is a finite union of the finite sets Uzj ∩F ⊆ Uzj and thus finite. We conclude that the entire sequence
(xn)n consists of only finitely many distinct members.
But then at least one of those members, say xk? , will appear infinitely often in that sequence: there
is k1 < k2 < . . . such that xk1 = xk2 = · · · = xk? . This constant subsequence converges (to xk?). We
have reached a contradiction. �

The next proposition does most of the work in establishing the reverse direction: Sequence com-
pactness implies compactness.

Proposition 14.6.

Let (X, d) be a sequence compact metric space. Let (Ui)i∈I be an open cover of X . Then, one can
find for (Ui)i∈I a number ρ > 0 which possesses the following property:

• For each x ∈ X there exists i ∈ I such that Nρ(x) ⊆ Ui.

PROOF: Assume to the contrary that no such ρ > 0 exists. We then can find for any n ∈ N some
xn ∈ X such that N1/n(xn) is not contained in any of the Ui. X is sequence compact, so there exists
x ∈ X and a subsequence (xnj )j which converges to x. (Ui)i∈I covers X , so there exists i0 ∈ I such
that x ∈ Ui0 .
(?) Because Ui0 is an open neighborhood of x there exists ε > 0 such that Nε(x) ⊆ Ui0 .
(??) Because (xnj )j converges to x there are infinitely many j ∈ N such that d(xnj , x) < ε/2, hence
there is at least one j such that j > 2/ε. It follows from nj ≥ j that nj > 2/ε, i.e. 1/nj < ε/2.
(? ? ?) It follows from d(xnj , x) < ε/2 and lemma 12.3 on p.367 that Nε/2(xnj ) ⊆ Nε/2+ε/2(x) =
Nε(x).
We apply first (??), then (? ? ?), then (?) and obtain

N1/nj (xnj ) ⊆ Nε/2(xnj ) ⊆ Nε(x) ⊆ Ui0 .

But this contradicts our assumption that each xnj was chosen in such a fashion that N1/n(xn) is not
contained in any of the Ui. �

Remark 14.6. Consider The number ρ of Proposition 14.6 above. Then λ = 2ρ is called a Lebesgue
number of (Ui)i∈I . In other words, the Lebesgue number is the diameter of the ρ–neighborhoods.
Note that if λ is a Lebesgue number of an open cover, then any λ′ which satisfies 0 < λ′ < λ also is
a Lebesgue number. of that same cover. �

We now can prove the converse of thm.14.7.

Theorem 14.8. Sequence compact metric spaces are compact.
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PROOF: Let (X, d) be a sequence compact metric space and let (Ui)i∈I be an open covering of X .
According to prop.14.6 there exists ρ > 0 as follows: For each x ∈ X there exists i(x) ∈ I such that
Nρ(x) ⊆ Ui(x).
Since X is totally bounded (see thm.14.4 on p.443) there exist finitely many x1, . . . , xk ∈ X such
that {Nρ(xj) : j = 1, ..k} forms an open covering of X . It then follows from Nρ(xj) ⊆ Ui(xj) that
Ui(x1), Ui(x2), . . . , Ui(xk) also forms an open covering of X . We have extracted a finite subcovering
from (Ui)i∈I . �

Theorem 14.9 (Sequence compactness coincides with compactness in metric spaces).

Let (X, d) be a metric space and let A be a subset of X . Then,

A is sequence compact ⇔ A is compact, i.e.,
A is sequence compact ⇔ every open cover of A possesses a finite subcover.

PROOF: Theorems 14.7 and 14.8. �

An easy consequence is the Heine–Borel theorem.

Theorem 14.10 (Heine–Borel Theorem).

A subset of Euclidean space Rn is compact ⇔ this set is closed and bounded.

PROOF: We have seen in thm.14.6 on p.443 that closed and bounded subsets of Rn are sequence
compact. Since sequence compact metric spaces are compact (thm.14.8) it follows that closed and
bounded subsets of Rn are compact.
On the other hand, let K be a compact subset of Rn. Then K is sequence compact by Theorem 14.9
on p.447. Thus K is closed and bounded according to Theorem 14.5 on p.443. �

14.4 Continuous Functions and Compact Spaces

Theorem 14.11 (Closed subsets of compact topological spaces are compact).

Let A be a closed subset of a compact topological space (X,U). Then A is a compact subspace.

In other words, the open sets
UA = {V ∩A : V ∈ U}

of the subspace (A,UA) possess the “extract finite open subcovering” property of Definition 14.5 on p.444.

PROOF: Let (Uj)j∈J be a family of sets open in A whose union is A. According to Definition 12.22
on p.382 there are open sets Vj in X such that Uj = Vj ∩ A. It follows that

⋃
j∈J

Vj ⊇ A, hence the

family (Vj)j∈J , augmented by the (open!) set X \A is an open cover of (X, d).
As X is compact, we can extract finitely many members from that extended family such that they
still cover X . If one of them happens to be X \ A then we remove it and we still obtain that the
remaining ones, say, Vi1 , Vi2 , . . . , Vin , cover A. But then the traces in A (Definition 12.21 on p.380)

Ui1 = Vi1 ∩A, Ui2 = Vi2 ∩A, . . . , Uin = Vin ∩A
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of those open sets in X are open in A and hence form an open covering of the subspace (A,UA). We
have proved that the given open covering of A has contains a finite subcover of A. �

Corollary 14.3 (Closed subsets of compact metric spaces are compact).

Let A be a closed subset of a compact metric space (X, d). Then (A, d
∣∣
A×A) is a compact subspace.

PROOF: Immediate from thm.14.11. �

Let (X,U) and (Y,V) be topological spaces and A ⊆ X . We recall that continuity for functions
f : A→ (Y,V) was defined in Definition 13.4 on p.407.

Theorem 14.12 (Continuous images of compact topological spaces are compact).

Let (X,U) and (Y,V) be two topological spaces. and let f : X → Y be continuous on X .
• If X is compact then the direct image f(X) is compact.

In other words, the topological subspace (f(X),Vf(X)) of Y is compact.

PROOF: Let (Vj)j∈J be a family of sets open in Y whose union contains f(X). Let the sets Wj :=
Vj ∩ f(X) be the traces of Vj in f(X). Then the Wj are open in the subspace (f(X),Vf(X)) of Y and
they form an open cover of f(X). We note that any open cover of f(X) is obtained in this manner
from open sets in Y .
Let Uj := f−1(Vj). Then⋃

j∈J
Uj =

⋃
j∈J

f−1(Vj) = f−1
( ⋃
j∈J

Vj

)
⊇ f−1

(
f(X)

)
⊇ X.(14.9)

The second equation above follows from prop. 8.4 (f−1 is compatible with all basic set ops) on p.240
and the last one follows from the fact that f−1

(
f((Γ)

)
⊇ Γ for any subset Γ of the domain of f (see

cor. 8.1 on p. 243). The “⊇” relation follows from the assumption that
⋃[

Vj : j ∈ J
]
⊇ f(X)

According to prop.13.1 (“f−1(open) = open” continuity) on p.407, each Uj is open as the inverse
image of the open set Vj under the continuous function f .
It follows from (14.9) that (Uj)j∈J is an open covering of the compact space X . We can extract a
finite subcover Ui1 , Ui2 , . . . , Uin .
It follows from the interchangeability of unions with direct images (see (8.20) on p.241) that

f(X) = f(Uj1 ∪ · · · ∪ Ujn) = f(Uj1) ∪ · · · ∪ f(Ujn)

= f
(
f−1(Vj1)

)
∪ · · · ∪ f

(
f−1(Vjn)

)
⊆ Vj1 ∪ · · · ∪ Vjn .

The inclusion relation above follows from the fact that f(f−1(B)) = B ∩ f(X) for any subset B of
the codomain of f (see prop.8.8 on p. 244).
We have proved that the arbitrary open cover (Vj)j∈J of f(X) contains a finite subcover Vj1 , . . . , Vjn
and it follows that f(X) is indeed a compact metric subspace of Y . �

Corollary 14.4 (Continuous images of compact metric spaces are compact).

Let (X, d1) and (Y, d2) be two metric spaces. and let f : X → Y be continuous on X .
IfX is compact, then its image f(X) is compact, i.e., the metric subspace (f(X), d2) of Y is compact.
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PROOF: Immediate from thm.14.12 �

Read the following remark for an easier way to prove the above theorem.

Remark 14.7. We could have proved the last two theorems 14.11 14.12 in the special case of metric
spaces more easily using sequence compactness instead of covering compactness, but the following
proofs do not generalize to abstract topological spaces.
Alternate proof of cor.14.3 which uses sequence compactness.
Given is a sequence xn ∈ A. X is compact, hence sequence compact and it follows that there is
x ∈ X and a subsequence xnj ∈ A such that xnj converges to x. It follows from theorem 12.6
(Sequence criterion for contact points in metric spaces) on p.384 that x is a contact point of A and
hence x ∈ Ā = A. This proves that A is (sequence) compact. �
Alternate proof of cor.14.4 which uses sequence compactness (outline).
Given a sequence yn ∈ f(X) we construct a convergent subsequence ynj as follows: For each n
there is some xn ∈ X such that yn = f(xn) X is compact, hence sequence compact and it follows
that there is x ∈ X and a subsequence xnj such that xnj converges to x. We now use (sequence)
continuity of f at x to conclude that ynj = f(xnj ) converges to f(x) ∈ f(X). �

Corollary 14.5.

Let (X,U) be a topological space, let (Y, d) be a metric space, and let f : X → Y be continuous.

• If X is compact then f is bounded.
• In particular, any continuous function on a closed interval of real numbers is bounded.

The proof is left as exercise 14.3 (see p.451). �

Corollary 14.6 (Continuous real–valued functions attain max and min on a compact domain).

Let (X,U) be a topological space, A ⊆ X a compact subspace and f : A→ R continuous on A.
Then there exist x?, x? ∈ A such that

f(x?) = min
x∈A

f(x) and f(x?) = max
x∈A

f(x).

PROOF: It follows from thm.14.12 on p.448 and thm.14.5 on p.443 that f(A) is closed and bounded
in R. It follows from exercise 12.16 on p.400 that min(

(
f(A)

)
and max

(
f(A)

)
exist, i.e., according to

the definition of preimages, there exist elements in the domain A of f which are mapped to those
two values. �

The following theorem relates compactness and uniform continuity. 177

Theorem 14.13 (Uniform continuity on sequence compact spaces).

Let (X, d1), (Y, d2) be metric spaces and let A be a compact subset of X . Then,
• any continuous function A→ Y is uniformly continuous on A.

177See Definition 13.5 on p.410.
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PROOF: Let us assume to the contrary that f is continuous but not uniformly continuous and find
a contradiction. Because f is not uniformly continuous, there exists ε > 0 such that no δ > 0 , how-
ever small, will satisfy (13.17) on p.410 for all pairs x, y such that d1(x, y) < δ. Looking specifically
at δ := 1/j for all j ∈ N, we can find xj , x

′
j ∈ A such that

(14.10) d1(xj , x
′
j) <

1

j
but d2(f(xj), f(x′j)) ≥ ε.

Because A is compact, it is sequence compact. There is a subsequence (xjk) of the xj which con-
verges to an element x ∈ A We have

(14.11) d1(x′jk , x) ≤ d1(x′jk , xjk) + d1(xjk , x) ≤ 1

jk
+ d1(xjk , x).

Both right–hand terms converge to zero as k →∞. This is obvious for 1/jk because jk ≥ k for all k
and it is true for d1(xjk , x) because xjk converges to x.
It follows from (14.11) that (x′jk) also converges to x. The (ordinary) continuity of f gives us

f(x) = lim
k→∞

f(x′jk) = lim
k→∞

f(xjk).

Since lim
k→∞

f(xjk) = f(x) and lim
k→∞

f(x′jk) = f(x) there exist N,N ′ ∈ N such that

d2(f(x), f(xjk)) <
ε

2
for k ≥ N ; d2(f(x), f(x′jk)) <

ε

2
for k ≥ N ′.

Both inequalities are true whenever k ≥ max(N,N ′). It follows for all such k that

d2(f(xjk), f(x′jk)) < d2(f(xjk), f(x)) + d2(f(x), f(x′jk)) <
ε

2
+
ε

2
= ε

and we have a contradiction to (14.10). �

Corollary 14.7 (Uniform continuity on closed intervals). Let a, b be two real numbers such that a ≤ b.

Any continuous real–valued function on the closed interval [a, b] is uniformly continuous:
For any ε > 0, there exists δ > 0 such that

(14.12) |f(x)− f(y)| < ε for all x, y ∈ [a, b] such that |x− y)| < δ

PROOF: This follows from the previous theorem (14.13) because closed intervals [a, b] are closed
and bounded sets and, in R, any closed and bounded set is sequence compact . �

14.5 Exercises for Ch.14

Exercise 14.1. Let N ∈ N. Let X := {x1, x2, . . . , xN} be a finite set with a metric d(·, ·) (so (X, d) is a
metric space). Prove that X is compact three different ways:

(a) Show sequence compactness to prove that X is compact.
(b) Show that X has the “extract finite open subcovering” property to prove that it is com-

pact.
(c) Show that X is complete and totally bounded to prove that it is compact. �
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Hints:
(a) ANY sequence in X possesses a constant subsequence (WHY?)
(b) If (Ui)i covers X then for each x there exists (at least one) i such that x ∈ Ui (WHY?) How

many of those Ui do you need to cover X if X has only N elements?
(c) Prop.12.36 on p.392 should prove useful.

Exercise 14.2. Prove the following which was used in the proof of thm.14.7 (Compact metric spaces
are sequence compact) on p.445: Let (X, d) be a metric space and let (xn)n be a sequence in X .
Let F := {x ∈ X : x = xj for some j ∈ N}. Let z ∈ X be such that any neighborhood U of z
contains infinitely many points of F . Then one can extract a subsequence (xnj )j of (xn)n such that
d(xnj , z) <

1
j . �

Exercise 14.3. Prove Corollary 14.5 on p.449 of this document:
Let (X,U) be a topological space, let (Y, d) be a metric space, and let f : X → Y be continuous. If X
is compact then f is bounded.
In particular, if h : [a, b] → R is a continuous function on the closed interval [a, b] of real numbers
(and both [a, b] and R carry the Euclidean metric), then h is bounded. �
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15 Applications of Zorn’s Lemma

15.1 More on Partially Ordered Sets

Some of the following was copied almost literally from [9] Dudley.

Definition 15.1.

Let (X,�) be a POset (partially ordered set), A ⊆ X , and m ∈ A.

• m is called maximal for A iff there is no a ∈ A such that a 6= m and m � a. m is
called a maximum of A if a ∈ A and a � m for all a ∈ A.

• m is called minimal for A iff there is no a ∈ A such that a 6= m and m � a. m is
called a minimum of A if a ∈ A and a � m for all a ∈ A.

Proposition 15.1 below shows that such a maximum or minimum is unique. Thus, we may
write max(A) for the maximum of A and min(A) for the minimum of A. �

It will be proved in prop.15.1 below that if A possesses a maximum and/or a minimum then it is
unique. Thus we may write max(A) for the maximum of A and min(A) for the minimum of A.

Proposition 15.1.

Let (X,�) be a nonempty POset and A ⊆ X . If A has a maximum then it is unique.

PROOF: The proof is left as exercise 15.1. �

Note 15.1 (Notes on maximal elements and maxima).

(a) If (X,�) is not linearly ordered, then its subsets may have many maximal elements.
For example, for the trivial partial ordering x � y if and only if x = y, every element
is maximal. A maximum is a maximal element, but the converse is often not true.

(b) If an ordering is not specified, then we always mean set inclusion.
(c) Let A ⊆ X . If m ∈ A is a maximum of A then this implies that m must be related to

all other elements of A. �

For the following example we recall from Definition 5.5 (Linear orderings) on p.131 that a chain C
in a POset (X,�) is a subset C ⊆ X which is totally ordered, i.e., for any x, x′ ∈ C at least one of
x � x′ or x′ � x is true.

Example 15.1 (Maximal elements, maxima and chains). (A) Let X be the collection of all intervals
[a, b] of length b − a ≤ 2 such that a, b ∈ R and a ≤ b. These intervals are partially ordered by
inclusion. Any interval of length equal to 2 is a maximal element in (X,⊆). There is no maximum.
(B) Let

A := { [ 3 + 1/n, 5− 1/n ] : n ∈ N} ,
B := { [ 4 + 1/n, 5 + 1/n ] : n ∈ N} ,
C := { [ 8− 1/n, 8 + 1/n ] : n ∈ N} .

Then A and C are chains in (X,⊆), but B is not a chain in (X,⊆). �
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A hundred years ago the following was seen as extremely controversial by mathematicians who
specialize in the foundations of mathematics.

Axiom 15.1 (Zorn’s Lemma).

Zorn’s Lemma: Let (X,�) be a partially ordered set with the ZL property:

Every chain C ⊆ X , possesses an upper bound u ∈ X , i.e., c � u for all c ∈ C. (ZL)

Then X has a maximal element. �

Remark 15.1. Zorn’s Lemma is an axiom rather than a theorem or a proposition in the following
sense: It is impossible to verify its truth or falsehood from the axioms of “a” (meaning there are
more than one) “reasonable” axiomatic set theory. In that sense mathematicians are free to accept
or reject Zorn’s Lemma when building their mathematical theories. Two notes on that remark:
(a) Today the mathematicians who refuse to accept proofs which make use, directly or indirectly, of
Zorn’s Lemma, are a very small minority.
(b) It can be proven that if one accepts (rejects) Zorn’s Lemma as a mathematical tool then this is
equivalent to accepting (rejecting) the Axiom of Choice which states the following.
Let AAA be a collection of nonempty sets and let Ω be a set such that

⋃
[A : A ∈ AAA ] ⊆ Ω. Then there

exists a choice function on AAA , i.e., a function c : AAA → Ω that satisfies c(A) ∈ A for all A ∈ AAA , c(·)
picks or chooses an element c(A) for each argument A ∈AAA : See Definition 5.23 on p.161).
(c) Moreover the Axiom of Choice, hence Zorn’s Lemma, is equivalent to prop.5.8(b) on p.148: For
arbitrary, not empty sets A,B the following is true. If ϕ : A → B is surjective then ϕ has a right
inverse, i.e., a function ψ : B → A such that ϕ ◦ ψ = idB . For a proof see the optional Chapter 5.3
(Right Inverses and the Axiom of Choice). �

We will see now how Zorn’s Lemma allows a surprisingly simple proof to the effect that any vector
space has a basis.

15.2 Existence of Bases in Vector Spaces

The following is thematically a continuation of the material in chapter 11 (Vectors and vector
spaces).
We will prove that every vector space, even if it does not possess a finite subset which spans the
entire space, possesses a basis (see Definition 11.11 (Basis of a vector space) on p.338).

For the remainder of this chapter we assume that V is a vector space and define

(15.1) B := {A ⊆ V : A is linearly independent }.

Obviously B is a partially ordered set with respect to set inclusion. The next lemma allows us to
apply Zorn’s Lemma. For the definition of a chain, see Definition 5.5 on p.452.

Lemma 15.1. Every chain C in (B,⊆) possesses an upper bound.
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PROOF: Let U :=
⋃[

C : C ∈ C
]
. We will show that U is linearly independent, i.e., U ∈ B. As

U ⊇ C for all C ∈ C it then follows that U is an upper bound of C and the proof is finished.
Let x1, x2, . . . xk ∈ U and α1, α2, . . . αk ∈ R (k ∈ N) such that

(15.2)
k∑
j=1

αjxj = 0.

We must show that each αj is zero. For each 0 ≤ j ≤ k there is some Cj ∈ C such that xj ∈ Cj . C is
totally ordered, hence Ci ⊆ Cj or Cj ⊆ Ci for any two indices 0 ≤ i, j ≤ k. But then there exists an
index j0 such that Cj0 ⊇ Cj for all j, hence x1, x2, . . . xk ∈ Cj0 . The set Cj0 is linearly independent
because Cj0 ∈ C ⊆ B. It follows that α1 = · · · = αk = 0. �

Theorem 15.1. Every vector space V has a basis.

PROOF: It follows from lemma 15.1 and Zorns Lemma (axiom 15.1 on p. 453) that the set B of
all independent subsets of the vector space V contains a maximal element (subset of V ) which we
denote by B. As membership in B guarantees its linear independence we only need to prove that
span(B) = V .

Let us assume to the contrary that there exists y ∈ span(B){. It follows from lemma 11.2 on p.338
that the set B′ := B ∪ {y} is linearly independent, hence B′ ∈ B. Clearly, B ( B′. This contradicts
the maximality of B in the partially ordered set (B,⊆). �

15.3 The Cardinal Numbers are a totally ordered set

As another application of Zorn’s Lemma we now prove thm.10.4, p.312, of ch.10.2 (Cardinality as a
Partial Ordering).

Theorem 15.2. Let X,Y ⊆ Ω. Then card(X) ≤ card(Y ) or card(Y ) ≤ card(X)

PROOF: 178 The result is immediate if X = ∅ or Y = ∅. Assume X and Y are not empty. Let

F := {Df
f−→ Cf : Df ⊆ X, Cf ⊆ Y, and f is bijective}

be the set of all bijective functions with domain contained in X and codomain contained in Y . We

define a partial order � on F as follows: Let Df
f−→ Cf and Dg

g−→ Cg. Then

f � g if and only if Df ⊆ Dg, Cf ⊆ Cg, and g
∣∣∣
Df

= f.

We will prove that F has the ZL property: Let C be a chain in F . Let Du
u−→ Cu be defined as

follows:
Du :=

⋃
[Df : f ∈ C], Cu :=

⋃
[Cf : f ∈ C], u(x) := g(x) for x ∈ Dg.

Note that the assignment u(x) = g(x) for x ∈ Dg is unambiguous: If there also is g′ ∈ C such that
x ∈ Dg′ then we obtain from the total ordering of C that g′ � g, i.e., g is an extension of g′, or g � g′,
i.e., g′ is an extension of g. In either case it follows that g′(x) = g(x).

178See [11] Haaser/Sullivan: Real Analysis.
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Moreover u is injective: If x1, x2 ∈ Du and x1 6= x2 then there exist f, g ∈ C such that x1 ∈ Df and
x2 ∈ Dg. Since f extends g or vice versa, say, f extends g, we may assume that both x1, x2 ∈ Df . It
follows from the injectivity of f that f(x1) 6= f(x2), hence u(x1) 6= u(x2).
Also note that u is surjective: If y ∈ Cu then y ∈ Cf for some f ∈ C and surjectivity gives us x ∈ Df

such that f(x) = y. But then x ∈ Du and u(x) = f(x) = y.
A bijective function u has been constructed in such a fashion that it extends any g ∈ C and hence is
an upper bound of C. It follows that the partially ordered set (F ,�) possesses the ZL property (see

axiom 15.1 (Zorn’s Lemma) on p.453), hence there exists a maximal element Dh
h−→ Ch in F .

We claim that Dh = X or Ch = Y (or both). Otherwise there would be x0 ∈ D{h and y0 ∈ C{h and the
function

ψ : Dh ∪ {x0} −→ Ch ∪ {y0},

{
x 7→ h(x) ifx ∈ Dh,

x 7→ y0 ifx = x0

is a bijective extension of h, thus, ψ ∈ F , and h � ψ. Since ψ 6= h, this contradicts the maximality of
h.

Case 1: Dh = X . Then changing Ch to Y makes h an injective function which maps X into
Y , i.e., card(X) ≤ card(Y ).

Case 2: Ch = Y . Then h : Dh
∼→ Y is a bijective function whose inverse h−1 : Y

∼→ Dh is an
injection from Y into the subset Dh of X , i.e., card(Y ) ≤ card(X). �

15.4 Extensions of Linear Functions in Arbitrary Vector Spaces

We now turn our attention to extending a linear real–valued function f from a subspace F ⊆ V to
the entire vector space V . Note that setting f(x) = 0 for all x ∈ F { does not yield a linear extension
of f . See exercise 15.3 on p.466.

Lemma 15.2.

Let V be a vector space and let F be a (linear) subspace of V . Let f : F → R be linear. Let

G := {(W, fW ) : W is a subspace of V, W ⊇ F, fW : W → R is a linear extension of f to W} .
Then the following defines a partial ordering on G :

(U, fU ) � (W, fW ) ⇔ V ⊆W and fW
∣∣
U

= fU .

Moreover this ordering satisfies the requirements of Zorn’s Lemma:
Every chain in (G ,�) possesses an upper bound (in G ).

PROOF:
Reflexivity and transitivity of “�” are trivial. The latter is true because the extension of an extension
is again an extension.
Antisymmetry: If both (U, fU ) � (W, fW ) and (W, fW ) � (U, fU ) then both U ⊆ W and W ⊆ U ,
hence U = W . But then fW is an extension of fU to itself, i.e., fU = fW . It follows that � is indeed a
partial order on G .
Now let C be a chain in G . We must find an upper bound for C . Let W :=

⋃[
U : (U, fU ) ∈ C

]
.
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We show that W is a subspace of E: If x, y ∈ W and λ ∈ R then there are (C1, f1), (C2, f2) ∈ C such
that x ∈ C1 and y ∈ C2. Because C is a chain we have C1 ⊆ C2 or C2 ⊆ C1, say, C1 ⊆ C2. It follows
that x, y ∈ C2. But C2 is a subspace of V and we conclude that x + λy ∈ C2, hence x + λy ∈ W . It
follows that W is a subspace of V .
Let fW : W → R be defined as follows: If x ∈ W then there is some (C, fC) ∈ C such that x ∈ C.
We define fW (x) := fC(x). This definition is unambiguous even if x belongs to (possibly infinitely)
many elements of C . To see this let (C, fC), (D, fD) ∈ C such that x ∈ C and x ∈ D. Then C ⊆ D
or D ⊆ C. We may assume that C ⊆ D. But as fD

∣∣
C

= fC we conclude that fC(x) = fD(x), i.e., the
definition of fW (·) is unambiguous. The above specifically holds for x ∈ W and we note that fW is
an extension of f .
Next we show linearity of fW . Let x, y ∈ W and α ∈ R. Then there are (C, fC), (D, fD) ∈ C such
that x ∈ C and y ∈ D. Again we may assume that C ⊆ D. It follows from the linearity of fD that

fW ((x+ αy) = fD((x+ αy) = fD((x) + αfD(y) = fW ((x) + αfW (y).

and we have proved that fW is linear (on all of W ).
To summarize, W is a subspace of V and fW is a linear extension of f to W . But then (W, fW ) ∈ G
and (W, fW ) � (C, fC) for all (C, fC) ∈ C . It follows that (W, fW ) is an upper bound of C . �

Theorem 15.3 (Extension theorem for linear real–valued functions).

Let V be a vector space and let F be a (linear) subspace of V . Let f : F → R be a linear mapping.
Then there is an extension of f to a linear mapping f̃ : V → R.

PROOF:
Let G := {(W, fW ) : W is a subspace of V,W ⊇ F, fW : W → R is a linear extension of f to W}
and let (U, fU ) � (W, fW ) ⇔ U ⊆W and fW

∣∣
U

= fU .
We have seen in lemma 15.2 that� is a partial ordering on G such that any chain in (G ,�) possesses
an upper bound. We apply Zorn’s Lemma (axiom 15.1 on p.453) and conclude that G possesses a
maximal element (F ′, f ′) .
We show that F ′ = V .
If this was not true then we could find a ∈ V \F ′ and, according to prop.11.9 on p.340, applied with
V ′ = R and y0 = α, extend f ′ to a linear function f̃ on span(F ′ ] {a}). It follows that

(
span(F )′ ]

{a}, f̃
)
∈ G and (F ′, f ′) �

(
span(F )′ ] {a}, f̃

)
.

This contradicts the maximality of (F ′, f ′). and we have reached a contradiction. �

Next, we will make a digression and talk about dual vector spaces and dual linear functions. All
the material is ? optional reading.

Definition 15.2 (Dual vector space). ? Let V and W be vector spaces, and let L : V → W be
linear.

(a) We call V ∗ := {f : f is a linear function V → R} the dual or algebraic dual of V .
(b) We call L∗ : W ∗ → V ∗, defined by L∗(f) := f ◦ L,

i.e., L∗(f)(x) = f(Lx) ∀ x ∈ V , the dual function or dual mapping of L. �
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This is not a course about linear algebra, so we give here some elementary properties of algebraic
duals of vector spaces 179 and dual functions without proof.

Proposition 15.2. ?

For the following see Definition 11.2 (Transposed matrix) on p.324.

(a) V ∗ is a vector space, i.e., f, g,∈ V ∗ and α, β ∈ R ⇒ αf + βg ∈ V ∗.
(b) Since V ∗ is a vector space, its dual V ∗∗ :=

(
V ∗
)∗ exists.

(c) Assume that V = Rn and W = Rm. For every linear function L : Rn → Rm there exists
a matrix A =

((
aij
))

such that for every column vector ~x, L(~x) = A~x, i.e., the function
value ~y = L(~x) has coordinates yi =

∑
j=1n aijxj .

(d) If V is a finite dimensional vector space, then there is a bijection V → V ∗ which is linear in
both directions. 180 This allows us to “identify”

(
Rn
)∗ with Rn, thus, the dual function of L

from Definition 15.2 is a linear function L∗ : Rm → Rn (Careful: Switched dimensions!).
According to part (c) of this remark, there exists a matrix A∗ =

((
ak`
))

such that the
following is true. If ~y∗ ∈ Rm and ~x∗ ∈ Rn are column vectors such that ~x∗ = L∗

(
~y∗
)
, then

~x∗ = A∗~y, the product of the matrix A∗ and the column vector ~y.
This matrix A∗ is the transpose A> of A: a∗k` = a`k for k = 1, . . . n and ` = 1, . . . ,m. �

PROOF: To be found in text books on linear algebra. �

The following can be found as an exercise in [10] Friedberg, Insel, Spence: Linear Algebra.

Theorem 15.4. ?

Let L : V → W be a linear function between two vector spaces V and W . Let L∗ : W ∗ → V ∗ be
the associated dual function of L. Then,

L is injective ⇔ L∗ is surjective ; L∗ is injective ⇔ L is surjective .

PROOF:“ We will show that L∗ is injective ⇔ L is surjective.
Be aware that 0 can be the zero vector in any of V,W, V ∗,W ∗. In the latter two cases 0 denotes the
(linear) zero function which maps any vector to zero.
PROOF of “⇒):”
We prove the contrapositive. We assume that L is not surjective and will show that L∗ is not injec-
tive. Let R := L(V ) be the range of L. Since L is not surjective, R (W . Let w0 ∈W \R. Let ψ ∈W ∗
be defined as follows.

ψ(w) = 0 for w ∈ R, ψ(αw0) = α .

Then ψ is defined, so far, on span(W
⊎
{w0}). According to Theorem 15.3 (Extension theorem for

linear real–valued functions), ψ can be extended to a real–valued, linear function on all ofW , which
we call again ψ.

179If you work with vector spaces that carry a topology, e.g., normed vector spaces (V, ‖·‖), then there also is the concept
of the topological dual V ′ := { f ∈ V ∗ : f is continuous }. If V is a finite dimensional normed space then one can show
that V ′ = V ∗, but this will not necessarily be true for normed spacea of infinite dimension,

457 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

Obviously, ψ 6= 0, since ψ(α) = 1. On the other hand. for any v ∈ V ,

L∗(ψ)(x) = (ψ ◦ L)(x) = ψ
(
L(x)

)
= 0 .

since L(x) ∈ L(V ) = R, and we assumed that ψ = 0 on R. Thus L∗(ψ) = 0. Since also L∗(0) = 0
and ψ 6= 0, we conclude that L∗ is not injective.

PROOF of “⇐):”
We show directly that L is surjective ⇒ L∗ is injective. Let ϕ,ψ ∈ W ∗ such that L∗(ϕ) = l∗(ψ). We
must show that ϕ = ψ. It follows from L∗(ϕ) = l∗(ψ) and the definition of the dual function that,
for all v ∈ V ,

ϕ
(
L(v)

)
= L∗(ϕ)(v) = L∗(ψ)(v) = ψ

(
L(v)

)
.(A)

Let w ∈W . Since L is surjective, there exists v ∈ V such that w = L(v). It follows from (A) that

ϕ(w) = ϕ
(
L(v)

)
= ψ

(
L(v)

)
= ψ(w) .

Since w ∈W was arbitrary, this shows that ϕ = ψ. This concludes the proof. �

Corollary 15.1.

Let A =
((
aij
))

be a matrix with m rows and n columns. Then (a) ⇔ (b), where
(a) The set of m linear equations in n unknowns ~x = (x1, . . . , xn)>,

A ~x = ~y ,

has a solution ~x for any choice of right hand side ~y = (y1, . . . , ym)>.
(b) the set of n linear equations in m unknowns ~ξ = (ξ1, . . . , ξm)>,

A> ~ξ = ~η ,

has at most one solution ~ξ for any ~η = (η1, . . . , ηn)>.

PROOF: This follows from Theorem 15.4 and the fact that the linear function L : ~x 7→ A~x has as its
dual the function L∗ : ~ξ 7→ ~ξ A>. �

15.5 The Hahn-Banach Extension Theorem ?

Note that this chapter is starred, hence optional. The proof given here is a more detailed version
of the one found in [7] Choquet.
Let V be a vector space and let F be a (linear) subspace of V . Let f : F → R be linear function. The
Hahn-Banach Extension Theorem shows how to extend f from its domain F to a linear function on
entire space V , subject to some majorization condition.
If V is a normed space (hence a metric space) and if f is continuous on F then this majorization
condition can be chosen in such a fashion that the linear extension will be continuous on all of V .
In preparation for this subject matter we must study sublinear functions, which generalize both
linear functions and norms.
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15.5.1 Sublinear Functionals

Definition 15.3 (Sublinear functionals). Let V be a vector space and p : V → R such that

(a) if λ ∈ R≥0 and x ∈ V then p(λx) = λp(x) (positive homogeneity)
(b) if x, y ∈ V then p(x+ y) ≤ p(x) + p(y) (subadditivity)

Then we call p a sublinear functional on V . �

The term “functional” has several meanings in mathematics. We use it here to denote a real–valued
function whose domain is a vector space.

Proposition 15.3.

Let V be a vector space and p : V → R sublinear. Let x ∈ V . Then
(a) p(0) = 0,
(b) −p(x) ≤ p(−x),

PROOF of (a): p(0) = p(0 · 0) = 0 · p(0) = 0.
PROOF of (b): This follows from 0 = p(0) = p(x+ (−x)) ≤ p(x) + p(−x). �

Example 15.2 (Norms are sublinear). Let (V, ‖, ·‖) be a normed vector space. Then the function
p(x) := ‖x‖ is sublinear.
Indeed, norms are absolutely homogenous: We have ‖λx‖ = |λ| · ‖x‖ not only for λ ≥ 0 but for all
λ ∈ R. Further, subadditivity is just the validity of the triangle inequality. �

Example 15.3 (Linear functions are sublinear). Let V be a vector space and let f := V → R be a
linear function. Then f is sublinear.
Indeed, linear functions f satisfy f(λx) = λ · f(x) not only for λ ≥ 0 but for all λ ∈ R.
Further linear functions satisfy additivity: f(x+ y) = f(x) + f(y),
hence also subadditivity f(x+ y) ≤ f(x) + f(y). �

More about sublinearity can be found in chapter 15.6 on p.463

15.5.2 The Hahn-Banach extension theorem and its Proof

This chapter follows closely [7] Choquet.
As mentioned previously, the subject of this chapter is the extension of a linear, real–valued function
from a subspace to the entire vector space in such a fashion that some majorization condition will be
preserved. The Hahn-Banach extension theorem (theorem 15.5 below) states that if p is a sublinear
functional defined on all of a vector space V and if a linear, real–valued function f is defined on a
subspace F of V such that f ≤ p on F , then f can be linearly extended to V in such a way that p
dominates this extension everywhere on V . Once we have that, it is not very difficult to prove what
we truly want, thm.15.6 (Continuous extensions of continuous linear functions).

The following remark is about first extending f to “one more dimension”.
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Remark 15.2. Let V be a vector space, let F be a linear subspace of V and let f := F → R be a
linear function. Let a ∈ V \ F . We saw in prop.11.9 on p.340 that any linear extension f̃ of f to
span(F ] {a}) is uniquely determined by its value k := f̃(a).
Indeed, any x ∈ span(F ] {a}) can be written as u + λa for some u ∈ F and λ ∈ R. It follows from
the linearity of f̃ that

f̃(x+ λa) = f̃(x) + λf̃(a) = f(x) + λk. �(15.3)

Theorem 15.5 (Hahn–Banach extension theorem).

Let V be a vector space and p : V → R a sublinear function.
Suppose F is a (linear) subspace of V and f : F → R is a linear mapping such that f ≤ p on F .
Then there is an extension of f to a linear map f̃ : V → R such that f̃ ≤ p on V .

Before proving this theorem, first we prove two lemmata.

Lemma 15.3. Suppose F is a subspace of V , f : F → R is a linear mapping, a ∈ V \ F , and k ∈ R. Let f̃
be the linear extension of f to span(F

⊎
{a}) given in prop.11.9 on p.340, choosing V ′ = R and y0 = k:

f̃(x+ λa) := f(x) + λk, i.e., f̃(a) = k.(15.4)

Then,

k ≤ inf
u∈F
{p(u+ a)− f(u)} ⇔ f̃(x+ λa) ≤ p(x+ λa) for all λ > 0 and x ∈ F,(15.5)

k ≥ sup
v∈F
{f(v)− p(v − a)} ⇔ f̃(x+ λa) ≤ p(x+ λa) for all λ < 0 and x ∈ F.(15.6)

Further,

sup
v∈F
{f(v)− p(v − a)} ≤k ≤ inf

u∈F
{p(u+ a)− f(u)}

⇔ f̃(x+ λa) ≤ p(x+ λa) for all λ ∈ R and x ∈ F,
(15.7)

Proof of (15.5),⇒): Let us assume that λ > 0 and x ∈ F . Then u := x
λ ∈ F because F is a subspace.

On account of the left–hand side of (15.5),

f̃(x+ λa) = f(x) + λk = λ
(
f(x/λ) + k

)
= λ

(
f(u) + k

)
≤ λ

(
f(u) +

(
p(u+ a)− f(u)

))
= λp(u+ a) = λp(x/λ+ a) = p(x+ λa)

The inequality follows from the left–hand side of (15.5), and we used the positive homogeneity of p
for the last equation.
Proof of (15.5),⇐): We assume f̃(x + λa) ≤ p(x + λa) for all λ > 0 and x ∈ F . We will show that
k = f̃(a) ≤ p(u+ a)− f(u) for all u ∈ F .

p(u+ a)− f(u) ≥ f̃(u+ a)− f(u) = f̃(u) + f̃(a)− f(u) = f(u) + f̃(a)− f(u) = f̃(a) = k.

Proof of (15.6),⇒): Let us assume that λ < 0 and x ∈ F . Then v := x
λ ∈ F because F is a subspace.
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Because of the left–hand side of (15.6) and λ < 0 and positive homogeneity of p,

k ≥ f(v)− p(v − a) ⇒ λk ≤ f(λv)− λp(v − a)

⇒ − f(λv) + λk ≤ (−λ)p(v − a) = p
(
(−λ)(v − a)

)
= p

(
(−λ)v + λa

)
.

Since x = λv, and since linearity of f implies −f(x) = f(−x), that last inequality yields

f(−x) + λk = −f(x) + λk ≤ p(−x+ λa), hence f̃(−x+ λa) = f(−x) + λk ≤ p(−x+ λa)

We can switch from −x to x as the above holds for all x in the subspace F and because −x ∈ F if
and only if x ∈ F . It follows that p indeed dominates f̃ for all x ∈ F and λ < 0.
Proof of (15.6),⇐): We assume f̃(x+ λa) ≤ p(x+ λa) for all λ < 0 and x ∈ F . We now show that
k = f̃(a) ≥ f(v)− p(v − a) for all v ∈ F .
We apply f̃(x+ λa) ≤ p(x+ λa) with x := v and λ := −1 and obtain

−p(v − a) + f(v) ≤ − f̃(v − a) + f(v) = f̃(a− v) + f(v) = f̃(a)− f̃(v) + f(v) = f̃(a) = k.

Proof of (15.7),⇒): Let us assume that λ ∈ R and x ∈ F . For λ 6= 0, validity of the right–hand side
of (15.7) follows from (15.5) and (15.6). If λ = 0 then we must show that f̃(x) ≤ p(x). This is true
because x ∈ F implies f̃(x) = f(x) and we assumed that f ≤ p on F .
Proof of (15.7),⇐): This is immediate from (15.5) and (15.6). �

Lemma 15.4. Let V be a vector space and p : V → R a sublinear function. Let F ( V be a genuine subspace
of V and a ∈ V \ F . Let f : F → R be a linear mapping with f ≤ p on F . Let G := span(F ] {a}) be the
subspace of all linear combinations that can be created by a and/or vectors in F . Then

(a) there exists a linear extension f̃ of f to G such that f̃ ≤ p on G,
(b) This extension is unique if and only if supv∈F {f(v)− p(v− a)} = infu∈F {p(u+ a)− f(u)} .

Proof of a. For u, v ∈ F we have

f(u) + f(v) = f(u+ v) ≤ p(u+ v) = p
(
(u+ a) + (v − a)

)
≤ p(u+ a) + p(v − a),

and hence f(v)− p(v − a) ≤ p(u+ a)− f(u). Therefore

sup
v∈F
{f(v)− p(v − a)} ≤ inf

u∈F
{p(u+ a)− f(u)}.(15.8)

For a fixed k ∈ R, we define f̃(x+ λa) = f(x) + λk. We claim that f̃ ≤ p if and only if we have

sup
v∈F
{f(v)− p(v − a)} ≤ k ≤ inf

u∈F
{p(u+ a)− f(u)}(15.9)

which will conclude the proof of (a) since such a k exists by 15.8.
Our claim holds because f(x) + λk = f̃(x+ λa) ≤ p(x+ λa) for all λ if and only if

k ≤ p(u+ a)− f(u) for all u ∈ F
and k ≥ f(v)− p(v − a) for all v ∈ F

(the cases λ > 0 and λ < 0 respectively). This was proved in lemma 15.3.
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Proof of b. From (15.9) we deduce that k is unique if and only if

sup
v∈F
{f(v)− p(v − a)} = inf

u∈F
{p(u+ a)− f(u)}.

Because the extension f̃(x+λa) = f(x) +λk of f to G is uniquely determined by k and vice versa,
we have proven b. �

PROOF of thm.15.5 (Hahn–Banach Extension Theorem):
Let G = {(V ′, g) : V ′ is a subspace of V, V ′ ⊇ F, g : V ′ → R is linear, g

∣∣
F

= f, and g ≤ p on V ′}.
We define a partial order “�” on G as follows:

(V1, g1) � (V2, g2) ⇔ V1 ⊆ V2 and g2 is an extension of g1.(15.10)

Note that G is not empty because (F, f) ∈ G .
(a) We first prove that any chain C ⊆ (G ,�) has an upper bound: Let W :=

⋃[
V ′ : (V ′, g) ∈ C

]
.

Then W is a subspace of V because if x, y ∈ W and λ ∈ R then there are (V1, g1), (V2, g2) ∈ C such
that x ∈ V1 and y ∈ V2. Because C is a chain we have V1 ⊆ V2 or V2 ⊆ V1, say, V1 ⊆ V2. It follows
that x, y ∈ V2. But V2 is a subspace, and we conclude that x+ λy ∈ V2, hence x+ λy ∈W . It follows
that W is a subspace.
Next we construct a linear h : W → R such that h ≤ p on W and h

∣∣
V ′

= g for all (V ′, g) ∈ C , i.e.,
h is a linear extension of g for all (V ′, g) ∈ C . If we find such h then it follows that (W,h) ∈ G and
(W,h) is an upper bound of C .
Let x ∈ W . Then x ∈ V1 for some (V1, g1) ∈ C . We define h(x) := g1(x). This assignment is
unambiguous because if x ∈ V2 for some other (V2, g2) ∈ C then one of them, say V1, is contained
in the other and g2 is an extension of g1, i.e., h(x) = g1(x) = g2(x). As (V1, g1) ∈ G we conclude that
h(x) = g1(x) ≤ p(x), i.e., h ≤ p on W .
Next we show that h is linear. Let x, y ∈ W and λ ∈ R. We repeat the argument from the proof that
W is a subspace to conclude that both x, y belong to some subspace V ′ such that (V ′, g) ∈ C . We
obtain

h(x+ λy) = g(x+ λy) = g(x) + λg(y) = h(x) + λh(y)

This completes the proof that (W,h) ∈ G . Let (V ′, g) ∈ C . Clearly, V ′ ⊆ W =
⋃[

U : U ∈ C
]
. We

have seen that h is linear, dominated by p, and constructed in such a manner that h(x) = g(x) for all
x ∈ V ′. It follows that (W,h) � (V ′, g) for all (V ′, g) ∈ C , and we have proved that C has an upper
bound in (G ,�).
(b) It follows from (a) that we can apply Zorn’s Lemma (axiom 15.1 on p.453), and hence conclude
that (G ,�) possesses a maximal element (M,m).
We show that M = V . Assume to the contrary that there exists a ∈ V \M . According to lemma
15.4 on p.461, we can extend m to a linear function m̃ on M ] {a} in such a fashion that m̃ ≤ p on
M ] {a}. It follows that (M ] {a}, m̃) ∈ G . Further, (M,m) � (M ] {a}, m̃) because (M $M ] {a}.
This contradicts the maximality of (M,m). We conclude that M = V .
The proof is finished: m is the linear extension of f to V we were looking for. �

Theorem 15.6 (Continuous extensions of continuous linear functions).

Let (V, ‖ · ‖) be a normed vector space. Let F be a (linear) subspace of V . Then,
• any continuous, linear f : F → R possesses a continuous, linear extension f̃ : V → R.
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PROOF: Let p(x) := ‖f‖ · ‖x‖ 181 Because p is a positive multiple of the norm ‖ · ‖ on all of V , it also
is a norm on V (see Remark 11.7) on p.345), hence sublinear by example 15.2 on p.459. According
to the Hahn-Banach extension theorem there exists a linear extension f̃ of f to all of V such that

f̃(x) ≤ p(x) for all x ∈ V.(15.11)

We replace x with −x and obtain from the linearity of f̃ that −f̃(x) = f̃(−x) ≤ p(−x).
We note that p(x) = p(−x) because p is a norm. Hence

−f̃(x) ≤ p(−x) = p(x), i.e., f̃(x) ≥ −p(x).

Together with (15.11) this shows that

−p(x) ≤ f̃(x) ≤ p(x) for all x ∈ V,

and thus

|f̃(x)| ≤ p(x) = ‖f‖ · ‖x‖ for all x ∈ V(15.12)

It follows from (15.12) that f has been extended in such a way that ‖f̃‖ ≤ ‖f‖. We aply the continu-
ity criterion for linear functions (thm.13.4 on p.412 ) twice in a row to finish the proof as follows: It
follows from the continuity of f that ‖f‖ <∞. But then ‖f̃‖ <∞ and this proves the continuity of
f̃ . �

15.6 Convexity ?

Note that this chapter is starred, hence optional.

Definition 15.4 (Concave-up and convex functions).

Let −∞ ≤ α < β ≤ ∞ and let I := ]α, β[ be the open interval of real numbers with
endpoints α and β. Let f : I → R.

(a) The epigraph of f is the set epi(f) := {(x1, x2) ∈ I × R : x2 ≥ f(x1)} of all points in the
plane that lie above the graph of f .

(b) f is convex if for any two vectors ~a,~b ∈ epi(f) the entire line segment
S := {λ~a+ (1− λ)~b} : 0 ≤ λ ≤ 1 is contained in epi(f). See Figure 15.1.

(c) Let f be differentiable at all points x ∈ I . Then f is concave-up, if the function
f ′ : x 7→ f ′(x) = df

dx(x) is increasing. �

Proposition 15.4 (Convexity criterion).

f is convex if and only if the following is true: For any

α < a ≤ x0 ≤ b < β

let S(x0) be the unique number such that the point (x0, S(x0)) is on the line segment that connects
the points (a, f(a)) and (b, f(b)). Then

(15.13) f(x0) ≤ S(x0).

181See Definition 13.6 on p.412 for the definition of ‖f‖

463 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

Figure 15.1: Convex function
182

Note that any x0 between a and b can be written as x0 = λa + (1 − λ)b for some 0 ≤ λ ≤ 1 and
that the corresponding y-coordinate S(x0) = S(λa + (1 − λ)b) on the line segment that connects
(a, f(a)) and (b, f(b)) then is S(λa + (1 − λ)b) = λf(a) + (1 − λ)f(b). Hence we can rephrase
the above as follows:
f is convex if and only if for any a < b such that a, b ∈ I and 0 ≤ λ ≤ 1 it is true that

(15.14) f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b).

PROOF of “⇒”: Any line segment S that connects the points (a, f(a)) and (b, f(b)) in such a way
that S is entirely contained in the epigraph of f will satisfy (x0, S(x0)) ∈ epi(f) and hence f(x0) ≤
S(x0) for all a ≤ x0 ≤ b. It follows that convexity of f implies (15.13).

PROOF of “⇐”: Let (15.13) be valid for all a, b ∈ I . Let ~a = (a1, a2),~b = (b1, b2) ∈ epi(f). Then

a2 ≥ f(a1) and b2 ≥ f(b1).(15.15)

We must show that the entire line segment S := {λ~a+ (1− λ)~b} : 0 ≤ λ ≤ 1 is contained in epi(f).

Let ~a′ := (a1, f(a1)). Let S′ := {λ~a′ + (1− λ)~b : 0 ≤ λ ≤ 1} be the line segment obtained by leaving
the right endpoint~b unchanged and pushing the left one downward until a2 matches f(a1). Clearly,
S′ nowhere exceeds S.
Let~b′′ := (b1, f(b1)). Let S′′ := {λ~a′ + (1− λ)~b′ : 0 ≤ λ ≤ 1} be the line segment obtained by leaving
the left endpoint ~a′ unchanged and pushing the right one downward until the b2 matches f(b1).
Clearly, S′′ nowhere exceeds S′.
We view any line segment T between two points with abscissas a1 and b1 as a function T (·) :
[a1, b1] → R which assigns to x ∈ [a1, b1] that unique value T (x) for which the point

(
x, T (x)

)
lies

on T .
The segment S′′ connects the points (a, f(a)) and (b, f(b)) and it follows from assumption (b) that for
any a ≤ x0 ≤ b we have f(x0) ≤ S′′(x0). We conclude from S(·) ≥ S′(·) ≥ S′′(·) that S(x0) ≥ f(x0),
i.e. (x0, S(x0)) ∈ epi(f). As this is true for any a ≤ x0 ≤ b it follows that the line segment S is
entirely contained in the epigraph of f . �

Proposition 15.5 (Convex vs concave-up). Let f : R→ R be concave-up. Then f is convex.
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PROOF: Assume to the contrary that f is (differentiable and) concave-up and that there are
a, b, x0 ∈ I such that a < x0 < b and f(x0) > S(x0). Here S(x0) denotes the unique number such
that the point (x0, S(x0)) is on the line segment that connects the points (a, f(a)) and (b, f(b)).
Let m be the slope of the linear function S(·) : x 7→ S(x), i.e.,

m =
S(b)− S(a)

b− a
.

It follows that

m =
S(b)− S(x0)

b− x0
>

S(b)− f(x0)

b− x0
=

f(b)− f(x0)

b− x0
= f ′(ξ)(15.16)

for some x0 < ξ < b (according to the mean value theorem for derivatives). Further

m =
S(x0)− S(a)

x0 − a
<

f(x0)− S(a)

x0 − a
=

f(x0)− f(a)

x0 − a
= f ′(η)(15.17)

for some a < η < x0 (according to the mean value theorem for derivatives).
Because f is concave up we have

f ′(a) ≤ f ′(η) ≤ f ′(x0) ≤ f ′(ξ) ≤ f ′(b).

From (15.16) and (15.17) we obtain

m < f ′(η) ≤ f ′(x0) ≤ f ′(ξ) < m,

and we have reached a contradiction. �

Proposition 15.6 (Sublinear functions are convex). Let f : R→ R be sublinear. Then f is convex.

PROOF: Let 0 ≤ λ ≤ 1 and x, y ∈ R. Then

p(λx+ (1− λ)y) ≤ p(λx) + p((1− λ)y) = λp(x) + (1− λ)p(y).(15.18)

It follows from prop.15.4 that f is concave-up. �

15.7 Exercises for Ch.15

Exercise 15.1. Prove prop.15.1 on p.452: Let (X,�) be a nonempty POset and A ⊆ X . If A has a
maximum then it is unique. �

Exercise 15.2. Let A ⊆ R2 and ~x1 = (x1, y1), ~x2 = (x2, y2) ∈ A. Let

~x1 � ~x2 ⇔ x1 ≤ x2 and y1 ≤ y2.

(a) Prove that “�” defines a partial order on A.
(b) Prove that no maximal elements exist if A = R2.
(c) What are the maximal elements of A = {~x ∈ R2 : ‖~x‖2 = 1}? �
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Exercise 15.3. The following was stated at the beginning of ch.15.4 (Extensions of Linear Functions
in Arbitrary Vector Spaces) on p.455.
Let F ⊆ V be a subspace of a vector space V and let f : F → R be linear. Let

g :F → R; x 7→

{
f(x) ifx ∈ F,
0 ifx ∈ F {.

Then g is linear only if f(x) = 0 for all x ∈ F . Prove it. �
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16 Approximation theorems ?

Note that this chapter is starred, hence optional,

Introduction 16.1. Everyone who knows about limits is familiar with the concept of approxima-
tions. For example the sequence

(
1
n

)
n

becomes arbitrarily close to the number zero, i.e., it approxi-
mates zero since lim

n→∞
1
n = 0. Another example is the sequence

(
sn(x)

)
n

which we define for x ∈ R

as sn(x) :=
n∑
j=0

xj

j! . It converges for each x to the number ex and thus approximates that number. We

can rephrase this last example as the approximation of the function f : x 7→ ex by the sequence of

functions sn : x 7→
n∑
j=0

xj

j! .

Here is another example about the approximation of functions with sequences of functions. For Let
U be an open subset of R and let f : U → R be a function which is differentiable for each x ∈ U . For
each n ∈ N let

4f
n : U → R; x 7→ 4f

n(x) :=

{
1
n

(
f(x+ 1

n)− f(x)
)

ifx+ 1
n ∈ U,

0 otherwise.

Since U is open x is an interior point of U , thus x+ 1
n ∈ U eventually, thus lim

n→∞
4f
n(x) = f ′(x), the

derivative of f at x

The convergence lim
n→∞

n∑
j=0

xj

j! = ex is much better behaved than the convergence lim
n→∞

4f
n(x) = f ′(x)

since one can prove that it is uniform on each interval [a, b] where a, b ∈ R. Matter of fact the

following is true for any “power series” s(x) :=
∞∑
j=0

cj(x− x0)j where x0 ∈ R and the “coefficients”

cj ∈ R for all j. If r, a, b ∈ R such that x0 − r < a < b < x0 + r (thus r > 0!) and such that the

partial sum functions sn(x) :=
n∑
j=0

cj(x − x0)j converge pointwise to s(x) for a ≤ x ≤ b then this

convergence is uniform in x.

On the other hand the convergence of the difference quotient functions 4f
n(·) to the derivative

f ′ will generally not be uniform on such closed and bounded intervals, and how could it? The
function f is continuous on U since it is differentiable at each x ∈ U , thus4f

n(·) is continuous as the
scalar multiple of the difference of the two continuous functions f(·+ 1

n) and f . But it follows from
thm.13.6 on p.418 that uniform limits of continuous functions are continuous, and there are plenty
of differentiable functions which are not continuous at all points.
Here is an example.

Let f(x) :=

{
−x2 ifx < 0,

x2 ifx ≥ 0.
Then f ′(x) =

{
−2x ifx < 0,

2x ifx ≥ 0
= 2|x|

is not differentiable at x = 0. �

So the question arises what kind of functions are the uniform limit of functions of a more specialized
nature. Weierstrass found in the late 19th century a very general answer in his approximation
theorem:
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For any continuous function f on a closed and bounded interval [a, b] one can find a se-
quence of polynomials pn(x) such that f is the uniform limit of those polynomials.

We will prove Weierstrass’s approximation theorem in this chapter.

16.1 The Positive, Linear Operators f 7→ Bf
n

Introduction 16.2. We examined in ch.6.7 (Bernstein Polynomials) the n–th Bernstein polynomial

Bf
n : R→ R; x 7→ Bf

n(x) =
n∑
k=0

(
n

k

)
f
(k
n

)
xk(1− x)n−k

which one can associate with any function f : [0, 1]→ R, no matter how badly it may behave.

If we think of f as the argument of an assignment f 7→ Bf
n then this mapping defines a function

Bn : FFF ([0, 1],R) → FFF ([0, 1],R) from the set FFF ([0, 1],R) of all real–valued functions on the unit
interval to itself.
We will see in prop.16.2 below that each of those functions Bn is a linear function from the vector
space FFF ([0, 1],R) to itself. This proposition further shows that eachBn is positive in the sense that if
the argument f is nonnegative, i.e., f(x) ≥ 0 for all 0 ≤ x ≤ 1 then its image Bf

n also is nonnegative.

The functions Bf
n are continuous since all polynomials are continuous, and this would allow us to

shrink the codomain of Bn to the set CCC ([0, 1],R) of all continuous, real–valued functions on the unit
interval, or even to the set of all polynomials p(x) where 0 ≤ x ≤ 1. We prefer not to do so for the
following reason:
It is customary to call a linear function F : FFF →FFF which possesses a vector space FFF of real–valued
functions both as domain and codomain a linear operator on FFF , and to call a linear operator on FFF
which assigns nonnegative functions to nonnegative functions a positive linear operator on FFF . In
short, we will see in this chapter that the assignments Bn : FFF ([0, 1],R) → CCC ([0, 1],R) are positive
linear operators for each n ∈ N. �

Definition 16.1 (Positive linear operators).

Let (X, d) be a metric space, and let FFF be a subspace of the vector space FFF (X,R), i.e., with
any two functions f(·), g(·) ∈FFF their sum f + g also belongs to FFF and that the function
λf (λ ∈ R) also belongs to FFF .
A linear operator T on FFF is a linear function 183 T : FFF →FFF
A positive linear operator T on FFF is a linear operator on FFF with the following property:

(16.1) f ≥ 0 ⇒ Tf ≥ 0, i.e., f(x) ≥ 0 for all x ∈ X ⇒ Tf(x) ≥ 0 for all x ∈ X.

Proposition 16.1 (Properties of positive linear operators).
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Let T be a positive linear operator on a subspace FFF of FFF (X,R). Then,
(a) T is monotone increasing, i.e., for any two functions f, g ∈FFF such that f ≤ g it is true

that T (f) ≤ T (g). In other words,
(16.2) f(x) ≤ g(x) for all x ∈ X ⇒ T (f)(x) ≤ T (g)(x) for all x ∈ X.

(b) Assume that T (|f |) is defined for a function f ∈FFF . Then |T (f)| ≤ T (|f |). In other words,

(16.3) |T (f)(x)| ≤ T (|f |)(x) for all x ∈ X.

Proof of (a):
If f ≤ g then g−f ≥ 0, hence T (g−f) ≥ 0 since T is positive. Linearity of T then yields T (g)−T (f) =
T (g − f) ≥ 0. But T (g)− T (f) ≥ 0 means the same as T (f) ≤ T (g), and we have proven part (a).
Proof of (b):
We have f ≤ |f | since f(x) ≤ |f(x)| for all x ∈ X . It follows from (a) that T (f) ≤ T (|f |). We also
have −f ≤ |f | since −f(x) ≤ |f(x)| for all x ∈ X . It now follows from (a) that T (−f) ≤ T (|f |). But
T is linear, so T (−f) = −T (f), thus we have -T (f) ≤ T (|f |). In summary we have shown that both

T (f)(x) ≤ T (|f |)(x) and − T (f)(x) ≤ T (|f |)(x) for all x ∈ X.

It now follows from prop.3.54 on p.76 that |T (f)(x)| ≤ T (|f |)(x) for all x ∈ X , i.e., |T (f)| ≤ T (|f |).
and we have proven part (a). We have proven part (b). �

Proposition 16.2 (Linearity and positivity of Bernstein polynomial assignments).
(a) Let f(·), g(·) be two real–valued functions on [0, 1] and α, β ∈ R. Let h : [0, 1]→ R be defined as

h := αf + βg, i.e., h(x) = αf(x) + βg(x) (0 ≤ x ≤ 1).

Then Bh
n = αBf

n + βBg
n, i.e., Bh

n(x) = αBf
n(x) + βBg

n(x) (x ∈ R).

To express this more succinctly:

(16.4) Bαf+βg
n = αBf

n + βBg
n.

(b) Let f be a real–valued function on [0, 1] which is nonnegative, i.e., f(x) ≥ 0 for 0 ≤ x ≤ 1. Then
Bf
n(·) ≥ 0 on [0, 1] (but not necessarily for x /∈ [0, 1]).
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PROOF of (a): For any x ∈ [0, 1] we have

Bh
n(x) =

n∑
k=0

(
n

k

)
h( kn) xk (1− x)n−k

=
n∑
k=0

(
n

k

)(
αf( kn) + βg( kn)

)
xk (1− x)n−k

=
n∑
k=0

(
n

k

)
αf( kn) xk (1− x)n−k +

n∑
k=0

(
n

k

)
βg( kn) xk (1− x)n−k

= α
n∑
k=0

(
n

k

)
f( kn) xk (1− x)n−k + β

n∑
k=0

(
n

k

)
g( kn) xk (1− x)n−k

= αBf
n(x) + βBg

n(x)

PROOF of (b): For any x ∈ [0, 1] we have both 0 ≤ x ≤ 1 and 0 ≤ (1− x) ≤ 1. It follows that both
xk and (1− x)n−k are nonnegative as products of nonnegative numbers.
Note that 0 ≤ k ≤ n implies that k

n ∈ [0, 1]. We assumed that f ≥ 0 on [0, 1], thus all numbers
f(k/n) are nonnegative. Finally, any binomial coefficient is nonnegative because it is defined as
n!

k!(n−k)! , and the numbers n!, k! and (n− k)! all are nonnegative.

Thus each summand
(
n
k

)
f
(
k
n

)
xk (1 − x)n−k is nonnegative as a product of nonnegative numbers.

It follows that Bf
n(x) is nonnegative as the sum of nonnegative items.

To summarize: If restricted to the continuous functions CCC ([0, 1],R), each Bn(·) is a positive linear
operator on CCC ([0, 1],R). �

Corollary 16.1. Let n ∈ N. Then Bn(·) is a positive linear operator on CCC ([0, 1],R).

PROOF:
SinceBf

n

(
CCC ([0, 1],R)

)
⊆ Bf

n

(
FFF ([0, 1],R)

)
⊆ Bf

n

(
CCC ([0, 1],R)

)
it follows from prop.16.2 above that the

restriction of Bf
n to CCC ([0, 1],R) is a linear positive operator on CCC ([0, 1],R).

�

16.2 Korovkin’s First Theorem

Introduction 16.3. The main task of this chapter will be the proof of Korovkin’s first theorem. This
theorem gives a simple condition which guarantees that a sequence Tn of positive linear operators
defined on CCC ([a, b],R) has the property that T fn converges uniformly to f for any continuous func-
tion f defined on the closed and bounded interval [a, b] of two real numbers a and b. The proof
given here follows Bauer [1]. �
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Unless stated differently we assume the following for all of this subchapter:
a and b are two real numbers such that a < b , and

Tn(·) : CCC ([a, b],R)→ CCC ([a, b],R); f(·) 7→ T fn (·) = Tn(f)(·)

is a sequence of positive linear operators on CCC ([a, b],R). This means in particular that for
each continuous real–valued function f(·) on [a, b] the image

T fn : x 7→ T fn (x)

is itself a continuous, real–valued function on [a, b].

Before we state and prove Korovkin’s First Theorem, there are two technical issues which we will
prove separately in form of two lemmata so that the proof of the theorem itself does not become to
lengthy.

Lemma 16.1. Let there be real numbers a < b, and let f be a continuous, real–valued function on [a, b]. Let
ε > 0. Then there exists (a potentially very large) number α ∈ R such that

(16.5) |f(x)− f(y)| < ε + α(x− y)2 for all x, y ∈ [a, b].

This number α can be chosen once and for all, independently of x and y.

PROOF: The interval [a, b] is a closed and bounded subset of R and hence compact. This follows
from the Heine–Borel Theorem (14.10 on p.447).
Since f is continuous it follows from cor.14.6 on p.449 that the set f([a, b]) possesses a min and a
max, in particular that that this set is bounded: If γ = max(|a|, |b|) then

(16.6) |f(x)| < γ for all x ∈ [a, b].

It further follows from cor.14.7 on p.450 that the continuous function f is uniformly continuous on
[a, b]. Thus we can find for any ε > 0, no matter how small, some δ? > 0 such that

|f(x)− f(y)| < ε for all x, y ∈ [a, b] such that |x− y| < δ?.

Let δ := δ?2. The uniform continuity characterization above then reads

(16.7) |f(x)− f(y)| < ε for all x, y ∈ [a, b] such that (x− y)2 < δ.

Let γ be the constant from (16.6), i.e., |f(z)| < γ for all z ∈ [a, b]. We will show that

α :=
2γ

δ

satisfies (16.5) by looking separately at the two cases (x− y)2 ≤ δ and (x− y)2 > δ.
Case 1: Assume that (x− y)2 ≤ δ.
Observe that it is always true that

ε < ε + α(x− y)2
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since α(x− y)2 ≥ 0. The rest is easy. According to (16.7), we have

(x− y)2 ≤ δ ⇒ |f(x)− f(y)| < ε ≤ ε + α(x− y)2,

and case 1 is proven.
Case 2: Assume that (x− y)2 > δ, i.e., δ < (x− y)2.
γ was chosen such that |f(x)| < γ on [a, b] (see (16.6)). Thus we have

|f(x)− f(y)| ≤ |f(x)|+ |f(y)|
< γ + γ = αδ < α(x− y)2 < ε + α(x− y)2,

(16.8)

i.e., case 2 also holds, and hence α satisfies (16.5). This concludes the proof of the lemma. �

Lemma 16.2. If the sequence of positive linear operators Tn on CCC ([a, b],R) satisfies

i) T 1
n

uc−→ 1, ii) T idn
uc−→ id, iii) T id

2

n
uc−→ id2.

Then lim
n→∞

‖T id2

n − 2idT idn + id2T 1
n‖∞ = 0.

PROOF: Let An := T id
2

n − 2idT idn + id2T 1
n . Then

An = T id
2

n − id2T 1
n + 2id2T 1

n − 2idT idn

= (T id
2

n − id2T 1
n) + 2(id2T 1

n − idT idn ) = Bn + 2Cn

where we define Bn := T id
2

n − id2T 1
n and Cn := id2T 1

n − idT idn . Since

0 ≤ ‖Bn + 2Cn‖∞ ≤ ‖Bn‖∞ + 2‖Cn‖∞

it suffices to prove that lim
n→∞

‖Bn‖∞ = lim
n→∞

‖Cn‖∞ = 0.

Proof that lim
n→∞

‖Bn‖∞ = 0:

We rewrite Bn = (T id
2

n − id2) + id2(1 − T 1
n). The continuous function id2 : x 7→ x2 assumes

a maximum on [a, b] which we call γ. Thus ‖Bn‖∞ ≤ ‖T id
2

n − id2)‖∞ + γ‖1 − T 1
n‖∞. Uniform

convergence T 1
n

uc−→ 1 and T id
2

n
uc−→ id2 yields

lim
n→∞

‖T id2

n − id2)‖∞ = 0 and lim
n→∞

γ‖1− T 1
n‖∞ = γ lim

n→∞
‖1− T 1

n‖∞ = 0,

hence lim
n→∞

‖Bn‖∞ = 0

Proof that lim
n→∞

‖Cn‖∞ = 0:

Cn = id2T 1
n − idT idn = (id2T 1

n − id2 + id2)− (idT idn + id2 − id2)

= id2(T 1
n − 1) + id2 − id(T idn − id)− id2

= id2(T 1
n − 1) − id(T idn − id)

hence

‖Cn‖∞ ≤ ‖id2(T 1
n − 1)‖∞ + ‖id(T idn − id)‖∞.
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But |id(x)| = |x| ≤ γ′ := max(|a|, |b|), and we saw that |id2(x)| = x2 ≤ γ for all a ≤ x ≤ b. Thus

‖Cn‖∞ ≤ γ‖(T 1
n − 1)‖∞ + γ′‖(T idn − id)‖∞.

It now follows from T 1
n

uc−→ 1 and T idn
uc−→ id that

lim
n→∞

γ‖T 1
n − 1)‖∞ = 0 = γ lim

n→∞
‖T 1

n − 1)‖∞ = 0 and lim
n→∞

γ′‖T idn − id‖∞ = γ′ lim
n→∞

T idn − id‖∞ = 0,

hence lim
n→∞

‖Cn‖∞ = 0.

We noted earlier that the convergence of ‖Bn‖∞ and ‖Cn‖∞ was sufficient to prove the lemma. �
We have now assembled everything to formulate and prove Korovkin’s First Theorem.

Theorem 16.1 (Korovkin’s First Theorem). Assume we have uniform convergence 184 T fn (·) uc−→ f(·)
for the following three elements f of CCC ([a, b],R):

1(·) :x 7→ 1 the constant function 1,

id(·) :x 7→ x the identity on [a, b],

id2(·) :x 7→ x2.

Then T fn
uc−→ f for all f ∈ CCC ([a, b],R).

PROOF: Let ε > 0. According to lemma 16.1 on p.471 there exists α > 0 such that

(16.9) |f(x)− f(y)| < ε + α(x− y)2 for all x, y ∈ [a, b].

We interpret the above as an inequality where x acts as a variable (a function argument) and y is
“fixed but arbitrary”. We thus obtain for each y the inequality of functions,

(16.10) |f(·)− f(y)| < ε + α(id(·)− y)2 for all y ∈ [a, b].

According to (16.3) on p.469, |T hn (·)| does not exceed Tn|h| for any h ∈ CCC ([a, b],R). We thus obtain
for h : x 7→ f(x)− f(y)

|Tnf(·)− f(y)Tn1(·)| = |Tn
(
f(·)− f(y)1(·)

)
|

≤ Tn(|f − f(y)1|)
= Tn(|f − f(y)|)

(16.11)

which is, according to (16.9), smaller than

Tn(ε + α(id− y)2 = Tnε + αTn(id− y · 1)2

= εTn(1) + α
(
Tn(id2)− 2yTn(id) + y2Tn(1)

)
.

(16.12)

We combine (16.11) and (16.12) and obtain

|Tnf − f(y)Tn1| ≤ εTn1 + α
(
Tnid

2 − 2yTnid+ y2Tn1
)
.

184see (13.35) on p.415
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For the next step we recall that each of the expressions Tnf,−Tn1, Tnid
2, Tnid is a function on the

interval [a, b]. We evaluate them at the argument y and obtain

(16.13) |Tnf(y)− f(y)Tn1(y)| ≤ εTn1(y) + α
(
Tnid

2(y)− 2yTnid(y) + y2Tn1(y)
)
.

This last inequality we can in turn interpret as one for the functions

y 7→|Tnf(y)− f(y)Tn1(y)|

y 7→εTn1(y) + α
(
Tnid

2(y)− 2id(y)Tnid(y) + id(y)2Tn1(y)
)
.

It then follows from (16.13) that

(16.14) |Tnf − fTn1| ≤ εTn1 + α
(
Tnid

2 − 2idTnid+ id2Tn1
)
.

The function f is continuous and hence bounded on the closed interval [a, b]. Thus there exists γ > 0
such that |f(x)| < γ for all x ∈ [a, b]. (See Corollary 14.5 on p.449 of this document>)
We use the triangle inequality twice in the following:

|Tnf − f | = |Tnf − fTn1 + fTn1− f |
= |Tnf − fTn1 + f(Tn1− 1)|
≤ |Tnf − fTn1| + |f(Tn1− 1)|
≤ |Tnf − fTn1| + γ|(Tn1− 1)|.

(16.15)

We combine (16.15) and (16.14) and obtain

|Tnf − f | ≤ |Tnf − fTn1| + γ|(Tn1− 1)|

≤ εTn1 + α
(
Tnid

2 − 2idTnid+ id2Tn1
)

+ γ|(Tn1− 1)|

≤ ε‖Tn1‖∞ + α‖Tnid2 − 2idTnid+ id2Tn1‖∞ + γ‖(Tn1− 1)‖∞.

This inequality is true for each argument a ≤ x ≤ b, thus

sup
a≤x≤b

|Tnf(x)− f(x)| ≤ ε‖Tn1‖∞ + α‖Tnid2 − 2idTnid+ id2Tn1‖∞ + γ‖(Tn1− 1)‖∞,

i.e.,

‖Tnf − f‖∞ ≤ ε‖Tn1‖∞ + α‖Tnid2 − 2idTnid+ id2Tn1‖∞ + γ‖(Tn1− 1)‖∞.(16.16)

It follows from Tn1
uc−→ 1 that there exists N1 ∈ N such that ‖Tn1− 1‖∞ ≤ 1 for all n ≥ N1, thus

‖εTn1‖∞ = ‖ε + ε(Tn1− 1)‖∞ ≤ ‖ε‖∞ + ε‖(Tn1− 1)‖∞ ≤ 2ε for all n ≥ N1.(16.17)

It also follows from Tn1
uc−→ 1 that lim

n→∞
‖(Tn1− 1)‖∞ = 0, hence

lim
n→∞

γ|(Tn1− 1)| ≤ γ lim
n→∞

‖(Tn1− 1)‖∞ = 0.
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Thus there exists N2 ∈ N such that

γ|(Tn1− 1)| ≤ ε for all n ≥ N2.(16.18)

It moreover follows from lemma 16.2 above that

lim
n→∞

α‖T id2

n − 2idT idn + id2T 1
n‖∞ = α lim

n→∞
‖T id2

n − 2idT idn + id2T 1
n‖∞ = 0.

Thus there exists N3 ∈ N such that

α‖T id2

n − 2idT idn + id2T 1
n‖∞ ≤ ε for all n ≥ N3.(16.19)

Let N := max(N1, N2, N3). It follows from (16.16), (16.17), (16.18) and (16.19) that

‖Tnf − f‖∞ ≤ 4ε for all n ≥ N3.

Of course the choice of N will depend on the choice of ε, but the fact of importance is that such
N = N(ε) can be found for any ε > 0, no matter how small. It follows that

lim
n→∞

‖Tnf − f‖∞ = 0, i.e., T fn
uc−→ f.

Since f ∈ CCC ([a, b],R) was arbitrarily chosen we are finished with the proof of Korovkin’s First
Theorem. �

16.3 The Weierstrass Approximation Theorem

Introduction 16.4. We have seen earlier that the mappings

Bn : CCC ([0, 1],R)→ CCC ([0, 1],R); f(·) 7→ Bf
n(·)

which assign to a function f : [0, 1]→ R it’s nth Bernstein polynomial

x 7→ Bf
n(x) =

n∑
k=0

(
n

k

)
f(
k

n
) id(·)k (1− id(·))n−k

have the following properties:
(a) They are linear positive operators on the space CCC ([0, 1],R) of all continuous real–valued func-
tions on the unit interval [0, 1]. (see prop.16.2 on p.469).

(b) We have uniform convergence Bf
n(·) uc→ f(·) for the three functions

1 : x 7→ 1; id(·) : x 7→ x; id2(·) : x 7→ x2; (0 ≤ x ≤ 1).

(see proposition (13.8) on p.419). We will obtain as an easy consequence of Korovkin’s First Theo-
rem that any continuous real–valued function defined on the unit interval is the uniform limit of
a sequence of polynomials, and we then generalize this result to any closed and bounded interval
[a, b]. This result was first proven (by entirely different means by Weierstrass in the 1880s. �

Proposition 16.3 (Weierstrass Approximation Theorem on [0, 1] ). Any continuous real–valued func-
tion on the unit interval [0, 1] can be uniformly approximated by a sequence of polynomials. �
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PROOF: We have seen in cor.16.1 on p.470 that the Bernstein polynomial assignments Bn(·) form
a sequence of positive linear operators on CCC ([0, 1],R). We also have seen that if f is one of the
three continuous functions 1 : x 7→ 1, id : x 7→ x, id2 : x 7→ x2 then Bf

n(·) uc→ f(·) It follows from
Korovkin’s First Theorem that this uniform convergence extends to all continuous functions on the
unit interval. This proves the theorem since all functions x 7→ Bf

n(x) are Bernstein polynomials and
hence polynomials. �

The trick that we will use to generalize this last result from [0, 1] to [a, b] consists of using the fact
that those intervals can be bijected by functions of the form ψ(x) = mx + b, and that uniform
convergence fn

uc−→ f implies that of fn ◦ ϕ
uc−→ f ◦ ϕ and vice versa.

Lemma 16.3 (B/G prop.2.34). Let n ∈ [0,∞[Z, αj ,m, b ∈ R, αn 6= 0.

Let p : R→ R be a polynomial p(x) =
n∑
j=0

αjx
j , and let ϕ : R→ R be defined as ϕ(x) = mx+ b.

Then p ◦ ϕ : R→ R; x 7→
n∑
j=0

αj(mx+ b)j is a polynomial.

The proof is left as exercise 16.1 (see p.477). �

Proposition 16.4. Let A ⊆ R, ϕ : R→ R defined as ϕ(x) = mx+ b (m, b ∈ R), and let
fn, f ∈ CCC (ϕ(A),R) (n ∈ N), i.e. fn and f are continuous functions defined on ϕ(A) = {ϕ(x) : x ∈ A}.
Assume further that fn

uc−→ f on ϕ(A). Then fn ◦ ϕ
uc−→ f ◦ ϕ on A.

PROOF:
For any a ∈ A we have ϕ(a) ∈ ϕ(A), thus

|fn ◦ ϕ(a)− f ◦ ϕ(a)| ≤ sup
y∈ϕ(A)

|fn(y)− f(y)| = ‖fn − f‖∞.

But a ∈ A was arbitrary, thus ‖fn ◦ ϕ− f ◦ ϕ‖∞ ≤ ‖fn − f‖∞ It follows from fn
uc−→ f on ϕ(A) that

lim
n→∞

‖fn − f‖∞ = 0, hence lim
n→∞

‖fn ◦ ϕ− f ◦ ϕ‖∞ = 0, hence fn ◦ ϕ
uc−→ f ◦ ϕ on A. �

Corollary 16.2. Let a, b ∈ R such that a < b and ϕ : [a, b]→ [0, 1] defined as ϕ(x) := x−a
b−a .

(a). ϕ is a bijection [a, b]
∼−→ [0, 1].

(b). Let hn, h ∈ CCC ([0, 1],R) (n ∈ N) such that hn
uc−→ h on [0, 1]. Then hn ◦ ϕ

uc−→ h ◦ ϕ on [a, b].

PROOF of (a): It is easily verified that ψ : [0, 1] → [a, b] defined as ψ(t) := a + t(b − a) defines the
inverse of ϕ.
PROOF of (b): This follows from prop.16.4 on p.476 settingA := [a, b] since then ϕ(x) = 1

b−a ·x−
a
b−a

is of the form mx+ b, and since it follows from (a) that ϕ(A) = ϕ([a, b]) = [0, 1]. �
The Weierstrass approximation theorem for continuous functions on the unit interval (prop.16.3
on p.475) is now easily generalized to continuous functions on an arbitrary closed and bounded
interval.

Theorem 16.2 (Weierstrass Approximation Theorem). Let a, b ∈ R such that a < b . Then any contin-
uous real–valued function on [a, b] can be uniformly approximated by a sequence of polynomials. �
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PROOF: Let f ∈ CCC ([a, b],R, and let ϕ : [a, b]
∼−→ [0, 1] be defined as ϕ(x) := x−a

b−a . We recall from
cor.16.2 on p.476 that ϕ is bijective. Let h := f ◦ ϕ−1. Then h is continuous on the unit interval
and thus, according to prop.16.3, f is the uniform limit of a sequence of polynomials hn (we might
choose, e.g., the Bernstein polynomials hn := Bf◦ϕ−1

n ). It follows from prop.16.4 on p.476 that
hn ◦ ϕ

uc−→ h ◦ ϕ on ϕ−1[0, 1]. But h ◦ ϕ = f ◦ ϕ−1 ◦ ϕ = f and ϕ−1[0, 1] = [a, b], thus hn ◦ ϕ
uc−→ f on

[a, b].
We finally note that it follows from lemma 16.3 on p.476 that the functions pn := hn ◦ ϕ are polyno-
mials since the hn are polynomials. Since pn

uc−→ f on [a, b] we have proven the theorem. �

16.4 Exercises for Ch.16

Exercise 16.1. Prove lemma 16.3 on p.476 of this document: Let n ∈ [0,∞[Z, αj ,m, b ∈ R, αn 6= 0.

Let p : R→ R be a polynomial p(x) =
n∑
j=0

αjx
j , and let ϕ : R→ R be defined as ϕ(x) = mx+ b.

Then p ◦ ϕ : R→ R; x 7→
n∑
j=0

αj(mx+ b)j is a polynomial.

Hint: Apply the binomial theorem to (mx+ b)j . �
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16.5 Blank Page after Ch.16

This page is intentionally left blank.
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17 Algebraic Structures ?

This chapter is at its very beginnings. It has been created because it is mentioned in one of the first
lectures that the axiomatically defined set Z of the first chapter of [2] B/G forms a group.
Note that this chapter is starred and hence optional.

17.1 More on Groups (?)

This chapter adds to the material of ch.3.1 (Semigroups and Groups) on p.50.

Example 17.1. Being a group is a lot more specific than just being a semigroup or monoid. Not all
types of numbers form groups for addition and/or multiplication:

Natural numbers: Neither (N,+) nor (N, ·) are groups: (N,+) does not even have a neutral
element, (N, ·) has 1 as a neutral element but there is no multiplicative
inverse for, say, 5 because 1/5 /∈ N.

Integers: We have seen in example 3.4 that (Z,+) is an abelian group but (Z,+)
is not a group.

Rational numbers: (Q,+) is an abelian group but (Q, ·) is not a group because the number 0
does not have a multiplicative inverse: There is no number x such that
0 · x = 1. But note that the set Q? of all non-zero rational numbers is an
abelian group.

Real numbers: (R,+) is an abelian group but (R, ·) is not a group for the same reason
as (Q, ·). Again, the set R? of all non-zero real numbers is an abelian
group.

Complex numbers: (C,+) is an abelian group but (C, ·) is not a group for the same reason
as (Q, ·). However the set C? of all non-zero complex numbers is an
abelian group. �

We now turn our attention to functions which map from a group to another group in such a way
that they are, in a sense, compatible with the binary operations on their domain and codomain.

Example 17.2. Let (G, �) and (H, •) be defined as follows:

G := {g ∈ R : g = ex for some x ∈ R}, ex � ey := ex · ey = ex + y,(17.1)
H := {h ∈ R : h = ln(x) for some u ∈]0,∞}, lnu • ln v := lnu+ ln v = ln(xy).(17.2)

(a) Both (G, �) and (H, •) are abelian groups G has neutral element 1 and H has neutral element 0.
(Exercise: Prove it. What are the inverses?)
(b) Let the functions ϕ and ψ be defined as follows:

ϕ : (G, �)→ (H, •), ϕ(g) := ln g,(17.3)

ψ : (H, •)→ (G, �), ψ(h) := eh.(17.4)

Then ϕ and ψ satisfy the following:

ϕ(g1 � g2) = ϕ(g1) • ϕ(g2), ϕ(1) = 0, ϕ(g−1) = ϕ(g)−1,(17.5)

ψ(h1 • h2) = ψ(h1) � ψ(h2), ψ(0) = 1, ψ(h−1) = ψ(h)−1.(17.6)
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Further, the functions ϕ and ψ are inverse to each other, i.e.,

ψ
(
ϕ(g)

)
= g and ϕ

(
ψ(h)

)
= h(17.7)

for all g ∈ G and h ∈ H . �

If you talk about ϕ and ψ as “the functions” and � and • as “the operations” you might state the
results (17.5) and (17.6) as follows:
The functions are structure compatible with the group operations on their domains and codomains:
See also Example 3.7 on p.58.

17.2 More on Commutative Rings and Integral Domains

This chapter adds to the material of ch.3.2 (Commutative Rings and Integral Domains) on p.60.
The following is an example of a commutative ring with unit which contains zero divisor. This is
not a document on algebra and we only give an outline. See, e.g., [2] Beck/Geoghegan ch.6 for
details.

Theorem 17.1 (Division Algorithm for Integers). See [2] Beck/Geoghegan, thm.6.13.
Let n ∈ N and m ∈ Z. There exist two integers q (the quotient) and r (the remainder) such that

m = qn+ r(17.8)
0 ≤ r < n(17.9)

q and r are uniquely determined by m and n.

PROOF: Will not be given. �

Example 17.3. The following examples illustrate the division algorithm.
(a) m = 63, n = 10: Then q = 6 and r = 3 because 63 = 6 · 10 + 3 and 0 ≤ 3 < 10.
(b) m = 63, n = 13: Then q = 4 and r = 11 because 63 = 4 · 13 + 11 and 0 ≤ 11 < 13.
(c) m = −63, n = 13: Then q = −5 and r = 2 because −63 = (−5) · 13 + 2 and 0 ≤ 2 < 13.
(d) m = 63, n = 7: Then q = 9 and r = 0 because 63 = 9 · 7 + 0 and 0 ≤ 0 < 7. �
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18 Construction of the Number Systems ?

18.1 The Peano Axioms

Note that this chapter is starred, hence optional.

Definition 18.1 (Set of nonnegative integers). We define the set N0 (the nonnegative integers)
axiomatically as follows:

Ax.1 There is an element “0” contained in N0.
Ax.2 There is a function σ : N0 → N0 such that

Ax.2.1 σ is injective,
Ax.2.2 0 /∈ σ(N0) (range of σ),
Ax.2.3 Induction axiom: Let U ⊆ σ(N0) such that (a) 0 ∈ U , (b) If n ∈ U then σ(n) ∈ U .

It then follows that U = N0.
We define N := N0 \ {0}. �

Definition 18.2 (Iterative function composition). Let X 6= ∅ and f : X → X . We now use the
induction axiom above to define fn for an arbitrary function f : X → X .
(a) f0 := idX : x 7→ x, (b) f1 := f , (c) f2 := f ◦ f (function composition), (c) fσ(n) := f ◦ fn. �

Proposition 18.1. fn is defined for all n ∈ N0.

PROOF: Let U := {k ∈ N0 : fk is defined }. Then 0 ∈ U as f0 = idA and if k ∈ U , i.e., fk is defined
then fσ(k) = f ◦ fk also is defined, i.e., σ(k) ∈ U . It follows from Ax.2.3 that U = N0. �

Remark 18.1 (σ(·) as successor function). Of course the meaning of σ(n) will be that of n+ 1:

0
σ7→ 1

σ7→ 2
σ7→ 3

σ7→ . . . �

Definition 18.3 (Addition and multiplication on N0). Let m,n ∈ N0. Let

m+ n := σn(m),(18.1)
m · n := (σm)n(0).(18.2)

Note that we know the meaning of (σm)n: f := σm is a function A→ A and we have established in
prop.18.1 the meaning of fn, i.e., (σm)n. �

Proposition 18.2. Addition and multiplication satisfy all rules of arithmetic we learned in high school such
as

m+ n = n+m commutativity of addition(18.3)
k + (m+ n) = (k +m) + n associativity of addition(18.4)

m · n = n ·m commutativity of multiplication(18.5)
k · (m · n) = (k ·m) · n associativity of multiplication(18.6)
k · (m+ n) = k ·m+ k · n distributivity of addition(18.7)

n · 1 = 1 · n = n neutral element for multiplication(18.8)
(18.9)

Here 1 is defined as 1 = σ(0).
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PROOF: Drudge work. �

Definition 18.4 (Order relation m < n on N0). Let m,n ∈ N0.
(a) We say m is less than n and we write m < n if there exists x ∈ N such that n = m+ x.
(b) We say m is less or equal than n and we write m ≤ n if m < n or m = n.
(c) We say m is greater than n and we write m > n if n < m. We say m is greater or equal than n
and we write m ≥ n if n ≤ m. �

Proposition 18.3. “<” and “≤” satisfy all the usual rules we learned in high school such as
Trichotomy of the order relation: Let m,n ∈ N0. Then exactly one of the following is true:

m <n, m = n, m > n.

PROOF: Drudge work. �

18.2 Constructing the Integers from N0

For the following look at B/G project 6.9 in ch.6.1 and B/G prop.6.25 in ch.6.3.

Definition 18.5 (Integers as equivalence classes). We define the following equivalence relation
(m1, n1) ∼ (m2, n2) on the cartesian product N0 × N0:

(m1, n1) ∼ (m2, n2) ⇔ m1 + n2 = n1 +m2(18.10)

We write Z := {[(m,n)] : m,n ∈ N0}. In other words, Z is the set of all equivalence classes with
respect to the equivalence relation (18.10).
We “embed” N0 into Z with the following injective function e : N0 → Z: e(m) := [(m,0)].
From this point forward we do not distinguish between N0 and its image e(N0) ⊆ Z and we do not
distinguish between N and its image e(N) ⊆ Z. In particular we do not distinguish between the two
zeros 0 and [(0, 0)] and between the two ones 1 and [(1, 0)].
Finally we write −n for the integer [(0, n)]. �

With those abbreviation we then obtain

Proposition 18.4 (Trichotomy of the integers). Let z ∈ Z. Then exactly one of the following is true:
Either (a) z ∈ N, i.e., z = [(m, 0)] for some m ∈ N or (b) −z ∈ N, i.e., z = [(0, n)] for some n ∈ N
or (c) z = 0.

PROOF: Drudge work. �

Remark 18.2. (a) The intuition that guided the above definition is that the pairs
(4, 0), (7, 3), (130, 126) all define the same integer 4 and the pairs (0, 4), (3, 7), (126, 130) all
define the same integer −4.
(b) If it had been possible to define subtractionm−n for allm,n ∈ N0 then (18.10) could be rewritten
as

(m1, n1) ∼ (m2, n2) ⇔ m1 − n1 = m2 − n2.

Looking at the equivalent pairs (4, 0), (7, 3), (130, 126) we get 4− 0 = 7− 3 = 130− 126 = 4 and
for (0, 4), (3, 7), (126, 130) we get 0− 4 = 3− 7 = 126− 130 = −4. �
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Definition 18.6 (Addition, multiplication and subtraction on Z). Let [(m1, n1)] and [(m2, n2)] ∈ Z.
We define

−[(m1, n1)] := [n1,m1],(18.11)
[(m1, n1)] + [(m2, n2)] := [(m1 +m2, n1 + n2)](18.12)
[(m1, n1)] · [(m2, n2)] := [(m1m2 + n1n2,m1n2 + n1m2)](18.13)

We write [(m1, n1)]− [(m2, n2)] (“[(m1, n1)] minus [(m2, n2)]”)
as an abbreviation for [(m1, n1)] +

(
− [(m2, n2)]

)
.

We write [(m1, n1)] < [(m2, n2)] if [(m2, n2)] − [(m1, n1)] ∈ N, i.e., if there is k ∈ N such that
[(m2, n2)]− [(m1, n1)] = [(k, 0)]. We then say that [(m1, n1)] is less than [(m2, n2)].
We write [(m1, n1)] ≤ [(m2, n2)] if [(m1, n1)] < [(m2, n2)] or if [(m1, n1)] = [(m2, n2)] and we then say
that [(m1, n1)] is less than or equal to [(m2, n2)].
We write [(m1, n1)] > [(m2, n2)] if [(m2, n2)] < [(m1, n1)] and we then say that [(m1, n1)] is greater
than [(m2, n2)].
We write [(m1, n1)] ≥ [(m2, n2)] if [(m2, n2)] ≤ [(m1, n1)] and we then say that [(m1, n1)] is greater
than or equal to [(m2, n2)].
We write Z≥0 for the set of all integers z such that z ≥ 0 and Z6=0 for the set of all integers z such
that z 6= 0. You should convince yourself that Z≥0 = N0. �

It turns out that all three operations are “well defined” in the sense that the resulting equivalence
classes on the right of each of the three equations above do not depend on the choice of representa-
tives in the classes on the left. Further we have

Proposition 18.5. Let m,n ∈ N0. Then

[(m,n)] + [(0, 0)] = [(0, 0)] + [(m,n)] = [(m,n)],(18.14) (
− [(m,n)]

)
+ [(m,n)] = [(m,n)] +

(
− [(m,n)]

)
= [0, 0](18.15)

[(m,n)] · [(1, 0)] = [(1, 0)] · [(m,n)] = [(m,n)],(18.16)

i.e., [(0, 0)] becomes the neutral element with respect to addition, [(1, 0)] becomes the neutral element with
respect to multiplication and −[(m,n)] becomes the additive inverse of [(m,n)].

PROOF: Drudge work. �

Remark 18.3. Again, if it had been possible to define subtraction m − n for all m,n ∈ N0 then it
would be easier to see why addition and multiplication have been defined as you see it in Definition
18.6:
Addition is defined such that (m1 − n1) + (m2 − n2) = (m1 +m2)− (n1 + n2)
and multiplication: (m1 − n1) · (m2 − n2) =

(
m1m2 + (−n1)(−n2)

)
−
(
m1n2 + n1m2

)
. �

18.3 Constructing the Rational Numbers from Z

For the following look again at B/G project 6.9 in ch.6.1 and B/G prop.6.25 in ch.6.3.
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Definition 18.7 (Fractions as equivalence classes). We define the following equivalence relation
(p, q) ∼ (r, s) on the cartesian product Z× Z6=0:

(p, q) ∼ (r, s) ⇔ p · s = q · r(18.17)

We write Q := {[(p, q)] : p, q ∈ Z and q 6= 0}. In other words, Q is the set of all equivalence classes
with respect to the equivalence relation (18.17).
We “embed” Z into Q with the injective function e : Z→ Q defined as e(z) := [(z, 1)]. �

Remark 18.4. (a) The intuition that guided the above definition is that the pairs
(12, 4), (−21,−7), (105, 35) all define the same fraction 3/1 and the pairs (4,−12), (−7, 21), (−35, 105
all define the same fraction −1/3.
(b) If it had been possible to define division p/q for all p, q ∈ Z for which q 6= 0 then (18.17) could be
rewritten as

(p, q) ∼ (r, s) ⇔ p/q = r/s

Looking at the equivalent pairs (12, 4), (−21,−7), (105, 35) we get 12/4 = (−21)/(−7) = 105/35 =
3 and for (4,−12), (−7, 21), (−35, 105) we get 4/(−12) = (−7)/21 = (−35)/105 = −1/3.
(c) It is easy to see that (p, q) ∼ (r, s) if and only if there is (rational) α 6= 0 such that r = αp and
s = αq. A formal proof is just drudgework. �

Definition 18.8 (Addition, multiplication, subtraction and division in Q). Let [(p1, q1)] and
[(p2, q2)] ∈ Q. We define

−[(p1, q1)] := [(−p1, q1)],(18.18)
[(p1, q1)] + [(p2, q2)] := [(p1q2 + q1p2, n1n2)](18.19)
[(p1, q1)]− [(p2, q2)] := [(p1, q1)] +

(
− [(p2, q2)]

)
(18.20)

[(p1, q1)] · [(p2, q2)] := [(p1p2, q1q2)](18.21)

[(p1, q1)]−1 := [(1, 1)]
/

[(p1, q1)] := [(q1, p1)] (if p1 6= 0),(18.22)

[(p1, q1)]
/

[(p2, q2)] := [(p1q2, q1p2)] = [(p1, q1)] · [(p2, q2)]−1 (if p2 6= 0) �(18.23)

It turns out that operations above are “well defined” in the sense that the resulting equivalence
classes on the right of each of the three equations above do not depend on the choice of representa-
tives in the classes on the left. 185

Further we have

Proposition 18.6 (Trichotomy of the rationals). Let x ∈ Q. Then exactly one of the following is true:
Either (a) x > 0, i.e., x = [(p, q)] for some p, q ∈ N or (b) −x > 0, i.e., x = [(−p, q)] for some p, q ∈ N
or (c) x = 0.

PROOF: Drudge work. �

185This was shown for multiplication [(p1, q1)] · [(p2, q2)] = [(p1p2, q1q2)] in exercise 5.16 on p.165.
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18.4 Constructing the Real Numbers via Dedekind Cuts

The material presented here, including the notation, follows [14] Rudin, Walter: Principles of Math-
ematical Analysis.
Note that in this section small greek letters denote sets of rational numbers!
The idea behind real numbers as intervals of rational numbers with no lower bounds, called
Dedekind cuts, is as follows:
Given a real number x you can associate with it the set {q ∈ Q : q < x} which we call the cut or
Dedekind cut associated with x The mapping

Φ : x 7→ Φ(x) := {q ∈ Q : q < x}(18.24)

is injective because if x, y ∈ R such that x 6= y, say, x < y, then we have {q ∈ Q : q < x} ( {q ∈
Q : q < y} because there are (infinitely many) rational numbers in the open interval ]x, y[ and we
get surjectivity of Φ for free if we take as codomain the set of all cuts. Because Φ is bijective we can
“identify” any real number with its cut. We now go in reverse: we start with a definition of cuts
which does not reference the real number x, i.e., we define them just in terms of rational numbers
and define addition, multiplication and the other usual operations on those cuts and show that
those cuts have all properties of the real numbers as they were axiomatically defined in B/G ch.8,
including the completeness axiom which states that each subset A of R with upper bounds has a
least upper bound sup(A), i.e., a minimum in the set of all its upper bounds.

Definition 18.9 (Dedekind cuts). (Rudin def.1.4)
We call a subset α ⊆ Q a cut or Dedekind cut if it satisfies the following:

(a) α 6= ∅ and α{ 6= ∅
(b) Let p, q ∈ Q such that p ∈ α and q < p. Then q ∈ α.
(c) α does not have a max: ∀p ∈ α ∃q ∈ α such that p < q.

Given a cut α, let p ∈ α and q ∈ α{. We call p a lower number of the cut α and we call q an upper
number of α. �

Theorem 18.1. (Rudin thm.1.5)
Let α ⊆ Q be a cut. Let p ∈ α, q ∈ α{. Then p < q.

Assume to the contrary that q ≤ p. Then we either have p = q which means that either both p, q
belong to α or both belong to its complement, a contradiction to our assumption. Or we have q < p.
It then follows from p ∈ α and Definition 18.9.b that q ∈ α, contrary to our assumption. �

Theorem 18.2. (Rudin thm.1.6)
Let r ∈ Q. Let r? := {p ∈ Q : p < r}. Then r? is a cut and r = min

(
(r?){

)
.

PROOF: In the following let p, q, r ∈ Q.

PROOF of Definition 18.9.a: r − 1 < r ⇒ r − 1 ∈ r? ⇒ r? 6= ∅. Further, r ∈ (r?){ ⇒ (r?){ 6= ∅.
PROOF of Definition 18.9.b: Let q < p and p ∈ r?. Then also q ∈ r? = {p′ ∈ Q : p′ < r}.
PROOF of Definition 18.9.c: Let p ∈ r?. Then p < (p + r)/2 < r, hence (p + r)/2 ∈ r? and r cannot
be the max of r?. �
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Definition 18.10 (Rational cuts). Let r ∈ Q. The cut r? = {p ∈ Q : p < r} from the previous theorem
is called the rational cut associated with r. �

Remark 18.5. If we define intervals in Q in the usual way for p, q ∈ Q:

]p, q[ := {r ∈ Q : p < r < q}, [p, q] := {r ∈ Q : p ≤ r ≤ q}, etc.

then rational cuts r?(r ∈ Q) are those for which r? =] −∞, r[ and (r?){ = [r,∞[ whereas for non-
rational cuts α we cannot specify the “thingy” that should take the role of r. It would be the sup(α)
if we already had defined the set of all real numbers and we could understand α as a subset of those
real numbers. �

Definition 18.11 (Ordering Dedekind cuts). (Rudin def.1.9) Let α, β be two cuts.
We say α < β if α ( β (strict subset) and we say α ≤ β if α < β or α = β, i.e., α ⊆ β. �

Proposition 18.7 (Trichotomy of the cuts). (Rudin thm.1.10)
Let α, β be two cuts. Then either α < β or α > β or α = β.

PROOF: We only need to show that if α * β then β ( α.
So let α * β. Then α \ β is not empty and there exists q ∈ α \ β.
But then q > b for all b ∈ β. Also, if a ∈ Q and a ≤ q then a ∈ α (we applied Definition 18.9.b twice.)
As b < q for all b ∈ β it follows that β ⊆ α. We saw earlier that α \ β 6= ∅ and this proves that β 6= α,
i.e., β ( α. �

Theorem 18.3 (Addition of two cuts). (Rudin thm.1.12) Let α, β be two cuts and let

α+ β :={a+ b : a ∈ α, b ∈ β}.

Then the set of all cuts is an abelian group with this operation. In other words, + is commutative and
associative with a neutral element (which turns out to be 0?, the rational cut corresponding to 0 ∈ Q) and a
suitably defined cut −α for a given cut α which satisfies α+ (−α) = (−α) + α = 0?

Having defined negatives −α for all cuts we then also can define their absolute values

|α| :=

{
α ifα ≥ 0?,

−α ifα < 0?.

PROOF: Not given here. �

Theorem 18.4 (Multiplication of two cuts). Let α ≥ 0?, β ≥ 0? be two nonnegative cuts. Let

α · β :=


{q ∈ Q : q < 0} ∪ {ab : a ∈ α, b ∈ β} ifα ≥ 0?, β ≥ 0?,

−|α| · |β| ifα < 0?, β ≥ 0? or α ≥ 0?, β < 0?,

|α| · |β| ifα < 0?, β < 0?.

Then the set α · β is a cut, called the product of α and β.
It can be proved that for each cut α 6= 0? there is a cut α−1 uniquely defined by the equation α · α−1 = 1?.
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Theorem 18.5 (The set of all cuts forms a field). Let Let R be the set of all cuts. Then R satisfies axioms
8.1 - 8.5 of B/G:
Addition and multiplication are both commutative and associative and the law of distributivity
α · (β + γ) = α · β + α · γ holds.
The cut 0? is the neutral element for addtition and the cut 1? is the neutral element for multiplication.
−α is the additive inverse of any cut α and α−1 is the multiplicative inverse of α 6= 0?.
Further the set R>0 := {α ∈ R : α > 0?} satisfies B/G axiom 8.26.

PROOF: It follows from prop.18.7 on p.486 that R>0 satisfies B/G axiom 8.26. Proofs of the other
properties of R are not given here. �
In the remainder of this section we will see that the completeness axiom B/G ax.8.52 (every subset
of R with upper bounds has a supremum) is a consequence from the properties of cuts and there is
no need to state it as an axiom.

Theorem 18.6. (Rudin thm.1.29) Let α, β ∈ R and let α < β. Then there exists q ∈ Q such that α < q? < β

PROOF: Any q ∈ β \ α will do. �

Theorem 18.7. (Rudin thm.1.30) Let α ∈ R, p ∈ Q. Then p ∈ α ⇔ p? < α, i.e., p? ( α

PROOF of⇐): Let p ∈ α. it follows for any q ∈ p? that q < p ∈ α, hence q ∈ α, hence p? ⊆ α. As
p /∈ p? = {p′ ∈ Q : p′ < p} but p ∈ α we have strict inclusion p? ( α.
PROOF of⇒): As p? ( α there exists q ∈ α \ p?. As q ≥ p and q ∈ α we obtain p ∈ α from Definition
18.9.b. �

Theorem 18.8 (Dedekind’s Theorem). (Rudin thm.1.32) Let R = A
⊎
B a partitioning of R such that

(a) A 6= ∅ and B 6= ∅
(b) α ∈ A, β ∈ B ⇒ α < β (i.e., α ( β).

Then there exists a unique cut γ ∈ R such that if α ∈ A then α ≤ γ and if β ∈ B then γ ≤ β.

PROOF: We first prove uniqueness and afterwards the existence of γ.
PROOF of uniqueness: Assume there is γ′′ ∈ R which satisfies α ≤ γ′′ for all α ∈ A and γ′′ ≤ β for
all β ∈ B.
We may assume that γ < γ′′. It follows from thm.18.6 on p.487 that there is γ′ ∈ R (matter of fact,
a rational cut) such that γ < γ′ < γ′′. But γ < γ′ implies that γ′ ∈ B and γ′ < γ′′ implies that
γ′ ∈ A = B{. We have reached a contradiction and conclude that γ must be unique.
PROOF of existence of γ: Let γ :=

⋃[
α : α ∈ A

]
.

Step 1: We now show that γ is a cut.

We first show that Definition 18.9.a is satisfied. As B 6= ∅ there is some β ∈ B. As β{ 6= ∅ there
is some q ∈ β{. It follows from α ⊆ β for all α ⊆ γ =

⋃[
α : α ∈ A

]
that γ ⊆ β, hence γ{ ⊇ β{.

It follows from q ∈ β{ that q ∈ γ{, hence γ{ 6= ∅. Further, it follows from A 6= ∅ that γ 6= ∅. We
conclude that Definition 18.9.a is satisfied.
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Next we show the validity of Definition 18.9.b. Let p ∈ γ, i.e., p ∈ α0 for some α0 ∈ A. Let q < p.
Then q ∈ α0 ⊆

⋃[
α : α ∈ A

]
, i.e., q ∈ γ. We conclude that Definition 18.9.b is satisfied.

Now we show the validity of Definition 18.9.c. Let p ∈ γ, i.e., p ∈ α0 for some α0 ∈ A. As the cut
α0 does not have a maximum there exists some q ∈ α0 such that q > p. As α0 ⊆ γ, hence q ∈ γ We
have seen that any p ∈ γ is strictly dominated by some q ∈ γ. It follows that γ does not have a max
and this shows that Definition 18.9.c is satisfied. We conclude that γ is a cut and step 1 of the proof
for existence is completed.
Step 2: It remains to show that α ≤ γ ≤ β for all α ∈ A and β ∈ B. It is trivial that α ≤ γ for all
α ∈ A because γ :=

⋃[
α : α ∈ A

]
.

To show that γ ≤ β for all β ∈ B we prove that the opposite statement that

γ >β, i.e., γ \ β 6= ∅ for some cut β ∈ B(18.25)

will lead to a contradiction. As q ∈ γ there is some α0 ∈ A such that q ∈ α0. Actually, q ∈ α0 \ β
because q /∈ β. But then α0 ≮ β even though α0 ∈ A and β ∈ B, contrary to the assumptions about
the partitioning A

⊎
B of R. �

Corollary 18.1. Let R = A ]B be a partitioning of R such that

(a) A 6= ∅ and B 6= ∅
(b) α ∈ A, β ∈ B ⇒ α < β (i.e., α ( β).

Then either max(A)(= l.u.b.(A)) exists or min(B)(= g.l.b.(B)) exists.

PROOF: According to thm.18.8 there exists γ ∈ R such that if α ∈ A then α ≤ γ and if β ∈ B then
γ ≤ β. Clearly γ is an upper bound of α and a lower bound of β. It follows that if γ ∈ A then
max(A) = γ and if γ /∈ A, i.e., γ ∈ B, then min(B) = γ. �

Theorem 18.9 (Completeness theorem for R). (Rudin thm.1.36)
Let ∅ 6= E ⊂ R and assume that E is bounded above. Then E has a least upper bound which we denote by
sup(E) or l.u.b.(E).

PROOF: Let B be the set of all upper bounds for E, i.e., b ∈ B if and only if b ≥ x for all x ∈ E. Then
B is not empty by assumption. Let A := B{ = {α ∈ R : α < x i.e., α ( x for some x ∈ E}. In other
words, α ∈ A if and only if α is not an upper bound of E.
A is not empty either: As E 6= ∅ there is some x ∈ E. Let α := x− 1. Cleary x ≤ α is not true for all
x ⊆ E. It follows that α is not an upper bound of E, hence α ∈ A, hence A is not empty.
Moreover we have α < β for all α ∈ A and β ∈ B. Because for any α ∈ A there is some x ∈ E such
that α < x and we have x ≤ β for all upper bounds β, i.e., for all β ∈ B.
It follows that the sets A and B form a partition which satisfies the requirements of Dedekind’s
Theorem (thm.18.8). Hence there exists γ ∈ R such that α ≤ γ ≤ β for all α ∈ A and β ∈ B.
We now show that the assumption γ ∈ A leads to a contradiction. As γ is not an upper bound of
A there exists x ∈ E such that γ < x. According to thm.18.6 on p. 487 there exists γ′ ∈ R such that
γ < γ′ < x. It follows that γ′ /∈ B, i.e., γ′ ∈ A, in contradiction to the fact that γ ≥ a for all a ∈ A.
It follows that γ /∈ A, i.e., γ ∈ B and we conclude from cor.18.1 that γ = min(B), i.e., γ = sup(E).
�
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18.5 Constructing the Real Numbers via Cauchy Sequences

This chapter was created after discussions with Nguyen-Phan Tam about teaching the Math 330
course: she plans to construct the real numbers from the rationals by means of equivalence classes
of Cauchy sequences in Q.
In the following we always assume that i, j, k,m, n ∈ N, ε, p, q, r, s, pn, pi,j , · · · ∈ Q,
x, y, z, xn, xi,j , · · · ∈ R.

(a) def. convergence in Q: lim
n→∞

qn = q ⇔ ∀ pos. ε ∈ Q ∃ N ∈ Q such that if n ≥ N then |qn − q| < ε.

(b) def. Cauchy seqs. in Q: (qn)n is Cauchy ⇔ ∀ pos. ε ∈ Q ∃ N ∈ Q such that if i, j ≥
N then |qi − qj | < ε.

(c) Let C := { all Cauchy sequences in Q}. For (qn)n, (rn)n we define (qn)n ∼ (rn)n iff
lim
n→∞

(rn − qn) = 0.

(d) Let q ∈ Q and qn := q ∀ n. Write q for [(qn)n].
(e) Let R := C/∼. Show that for [(pn)], [(qn)] ∈ C the operations ([(pn)n], [(qn)n]) 7→ [(pn +

qn)n] and ([(pn)n], [(qn)n]) 7→ [(pn · qn)n] are well defined (do not depend on the particular
members chosen from the equivalence classes).

(f) Let [(pn)n] 6= 0 (i.e., lim
n
pn 6= 0), i.e., we may assume pn 6= 0 for all n. Show −[(qn)n] :=

[(−qn)n] and [(pn)n]−1 := [(1/pn)n] are additive and multiplicative inverses
g1. Define [(pn)n] < [(qn)n] iff ∃ ε > 0 and N ∈ N such that qn − pn ≥ ε ∀ n ≥ N .
g2. Define [(pn)n] ≤ [(qn)n] iff ∀ ε > 0 exists N ∈ N such that qn − pn ≥ −ε ∀ n ≥ N .
g3. show that [(pn)n] < [(qn)n] iff [(pn)n] ≤ [(qn)n] and [(pn)n] 6= [(qn)n].
(h) Show that (R,+, ·, <) satisfies the axioms of B/G ch.8 with the exception of the complete-

ness axiom.
Easy to see this specific item: If [(pn)n] > 0 then there is [(qn)n] > 0 such that [(qn)n] <
[(pn)n]: choose ε > 0 as in g1 (remember: ε ∈ Q) and set qn := ε/2.

(i) Embed Q into R: q 7→ q̄ := [(q, q, q, . . . )].
(j) Define limits and Cauchy sequences in R just as in (a) and (b).
k. Let (qn)n be Cauchy in Q. Prove that q̄n → [(qj)j ]
l. Let xn ∈ R such that (xn)n is Cauchy in R. With a density argument we find qn ∈ Q such

that xn ≤ q̄n ≤ xn+1/n. Now show that (1) (qn)n is Cauchy and then (2) lim
n
xn = [(qn)n].

m. Prove completeness according to B/G: If nonempty A ⊆ R is bounded above then its set
of upper bounds U has a min: Let Qn := {i/j : i, j ∈ Z and j ≤ n}. Let Un := U ∩ Qn.
Let un := min(Un) (exists because n · Un ⊂ Z is bounded below and has a min. Easy to
see that un is Cauchy (in Q and, because distance(un, A) ≤ 1/n, [(un)n] is the least upper
bound of A.

Proofs for (k) and l in particular and an entire section on constructing R from Q by means of equiv-
alence classes of Cauchy sequences can be found in [11] Haaser/Sullivan: Real Analysis.
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19 Measure Theory ?

Note that this entire section is starred, hence optional.
Introduction:
The following are the best known examples of measures (aj , bj ∈ R):

Length : λ1([a1, b1]) := b1 − a1,

Area : λ2([a1, b1]× [a2, b2]) := (b1 − a1)(b2 − a2),

Volume : λ3([a1, b1]× [a2, b2]× [a3, b3]) := (b1 − a1)(b2 − a2)(b3 − a3).

Then there also are probability measures: P{ a die shows a 1 or a 6} = 1/3.
We will explore in this chapter some of the basic properties of measures.

19.1 Basic Definitions

Definition 19.1 (Extended real–valued functions).

R+ := R+ ∪ {+∞} = {x ∈ R : x ≥ 0} ∪ {+∞}

is the set of all nonnegative real numbers augmented by the elements∞ and −∞.
A function F : X → Y whose codomain Y is a subset of

R := R ∪ {∞} ∪ {−∞}

is called an extended real–valued function.

There are many issues with functions that allow some arguments to have infinite value (hint: if
F (x) =∞ and F (y) =∞, what is F (x)− F (y)?)
We only list the following rule which might come unexpected to you:

0 · ±∞ = ±∞ · 0 = 0. �(19.1)

This convention is very convenient, but it comes at a price: it is no longer true that all sequences
(an)n and (bn)n of real numbers that have limits a = lim

n→∞
an, b = lim

n→∞
bn, satisfy lim

n→∞
anbn = ab.

Counterexample: an = n, bn = 1
n .

The definition of a σ–algebra was given previously in Definition 8.4 (Rings, algebras, and σ–
Algebras of Sets) on p.235. We repeat it here in equivalent terms for your convenience.

Definition 19.2 (σ–algebras). Let Ω be a nonempty set and let F be a set that contains some, but not
necessarily all, subsets of Ω.
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F is called a σ–algebra or σ–field for Ω if it satisfies the following:

∅ ∈ F,(19.2a)

A ∈ F ⇒ A{ ∈ F(19.2b)

(An)n∈N ∈ F ⇒
⋃
n∈N

An ∈ F(19.2c)

• The pair (Ω,F) is called a measurable space.
• The elements of F (they are set!) are called measurable sets. �

Remark 19.1. IfF is a σ–algebra then

∅ ∈ F and Ω ∈ F(19.3a)

A ∈ F ⇒ A{ ∈ F(19.3b)

(An)n∈N ∈ F ⇒ and
⋂
n∈N

An ∈ F(19.3c)

The last assertion is a consequence of De Morgan’s laws (Theorem 8.1 on p.234).

If F is a σ–algebra then If countably many (i.e., a finite or infinite sequence of) operations
are performed that involve
• unions, • intersections, • complements, • set differences, • symmetric differences

of elements of F then the resulting set also belongs to F. �

Proposition 19.1 (Minimal sigma–algebras). Let Ω be a nonempty set.
AAA: The intersection of arbitrarily many σ–algebras is a σ–algebra.
BBB: Let E be a set which contains subsets of Ω. It is not assumed that E is a σ–algebra. Then there exists a
σ–algebra which contains E and is minimal in the sense that it is contained in any other σ–algebra that also
contains E. We name this σ–algebra σ(E) because it clearly is uniquely determined by E. It is constructed as
follows:

(19.4) σ(E) =
⋂
{F : F ⊇ E and F is a σ–algebra for Ω}.

PROOF ofAAA:
We must prove (19.2a), (19.2b) and (19.2c). Let (Fα)α be an arbitrary family of σ–algebras for Ω.
Let

F :=
⋂
α

Fα.

∅ and Ω belong to each σ–algebra according to (19.2a). It follows that they both belong to the
intersection

⋂
α Fα , i.e., F satisfies (19.2a). Let A ∈ F. Then A ∈ Fα for each α. {A belongs to

each σ–algebra according to (19.2b). It follows that {A ∈
⋂
α Fα , i.e., F satisfies (19.2b). Finally, let

An ∈ F for all n ∈ N. Then An ∈ Fα for all n ∈ N and for each α, ∪n∈NAn and
⋂
n∈NAn both
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belong to each σ–algebra according to (19.2c). It follows that they both belong to the intersection⋂
α Fα , i.e., F satisfies (19.2c). It follows that F is a σ–algebra.

PROOF ofBBB:
First of all, we know that σ(E) is an intersection of σ–algebras and, according to part AAA of this
proposition, really is a σ–algebra. We now prove that σ(E) contains E and is the minimal σ–
algebra with that property. First let us prove that σ(E) ⊇ E. But that is obvious because it is the
intersection of sets all of which contain E. On the other hand, σ(E) is the intersection of all σ–
algebras that contain E, so it is impossible for any other σ–algebra to both be a strict subset of σ(E)
and also contain E. �

Definition 19.3 (Abstract measures). Let (Ω,F) be a measurable space.

A measure on F is an extended real–valued function

µ(·) : F→ R+; A 7→ µ(A) such that

µ(∅) = 0 (positivity)(19.5)
A,B ∈ F and A ⊆ B ⇒ µ(A) ≤ µ(B) (monotony)(19.6)

(An)n∈N ∈ Fdisjoint ⇒ µ
(⊎
n∈N

An

)
=
∑
n∈N

µ(An) (σ–additivity)(19.7)

• The triplet (Ω,F, µ) is called a measure space
• We call µ a finite measure on F if µ(Ω) <∞.
• If µ(Ω) = 1 then µ(·) is called a probability measure. �

Disjointness in (19.7) means that Ai ∩Aj = 0 for any i, j ∈ N such that i 6= j (see Definition 2.6
on p.17).

A measure space can support many different measures.
Traditionally, mathematicians write P (A) rather than µ(A) for probability measures and the ele-
ments of F (the measurable subsets) are thought of as events for which P (A) is interpreted as the
probability with which the event A might happen.

Example 19.1 (Lebesgue measure). The most important measures we encounter in real life are those
that measure the length of sets in one dimension, the area of sets in two dimensions and the volume
of sets in three dimensions. Given intervals [a, b] ∈ R, rectangles [a1, b1] × [a2, b2] ∈ R2, boxes or
quads [a1, b1] × [a2, b2] × [a3, b3] ∈ R3 and n-dimensional parallelepipeds [a1, b1] × [a2, b2] × · · · ×
[an, bn] ∈ Rn, we define

λ1([a, b]) := b− a,
λ2([a1, b1]× [a2, b2]) := (b1 − a1)(b2 − a2),

λ3([a1, b1]× [a2, b2]× [a3, b3]) := (b1 − a1)(b2 − a2)(b3 − a3),

λn([a1, b1]× · · · × [an, bn]) := (b1 − a1)(b2 − a2) . . . (bn − an)

(19.8)

It can be shown that any measure that is defined on all parallelepipeds in Rn can be uniquely ex-
tended to a measure on the σ-algebra Bn generated by those parallelepipeds 186 λn is called n-
dimensional Lebesgue measure

186This is not entirely correct: we must demand that the measure is σ-finite, i.e., there are measurable sets with finite
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Note that Lebesgue measure is not finite. �

Example 19.2. You can easily verify that the following set function defines a measure on an arbitrary
nonempty set Ω with an arbitrary σ-field F.

µ(∅) := 0; µ(A) := ∞ if A 6= ∅

Keep this example in mind if you contemplate infinity of measures. �

Remark 19.2 (Finite disjoint unions). The σ–additivity of measures is what makes working with
them such a pleasure in many ways. You can now express it as follows: Given any mutually disjoint
sequence of measurable sets, the measure of the disjoint union is the sum of the measures. The last
property (19.2c) for σ–algebras is required for exactly that reason: you cannot take advantage of the
σ–additivity of a measure µ if its domain does not contain countable unions and intersections of all
its constituents.
Note that if we have only finitely many sets then “σ–additivity” which stands for “addi-
tivity of countably many” becomes simple additivity. We obtain the following by setting
AN+1 = AN+2 = . . . = 0:

A1, A2, . . . , AN ∈ F mutually disjoint
⇒ µ(A1 ]A2 ] . . . ]AN ) = µ(A1) + µ(A2) + . . .+ µ(AN ) (additivity).

(19.9)

In the case of only two disjoint measurable sets A and B the above simply becomes

µ(A ]B) = µ(A) + µ(B). �

In many circumstances you have a set function on a σ–algebra which behaves like a measure but
you can only prove that it is additive instead of σ–additive. You should not be surprised that there
is a special name for those “generalized measures”:

Definition 19.4 (Contents as additive measures). Let Ω be a nonempty set and let F be a σ–algebra
for Ω.
A content on F is a real–valued function m(·) : F→ R, A 7→ m(A) which satisfies

m(∅) = 0 (positivity)(19.10a)
A,B ∈ F and A ⊆ B ⇒ m(A) ≤ m(B) (monotony)(19.10b)

A1, A2, . . . , AN ∈ F mutually disjoint ⇒ m
( N⊎
n=1

An

)
=

N∑
n=1

m(An) (additivity). �(19.10c)

Note that µ(Ω) <∞ for a content µ. After this digression on contents let us go back to measures.

Proposition 19.2 (Simple properties of measures). Let A,B,∈ F and let µ be a measure on F. Then

measure whose union is the entire space. Such is the case for Lebesgue measure: Let Ak := [−k, k]n. The union of those
sets is Rk and λn(AK) = (2k)n <∞.
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µ(A) ≥ 0 for all A ∈ F,(19.11a)
A ⊆ B ⇒ µ(B) = µ(A) + µ(B \A),(19.11b)
µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B).(19.11c)

If µ is finite then also

A ⊆ B ⇒ µ(B \A) = µ(B)− µ(A),(19.12a)
µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B).(19.12b)

PROOF: The first property follows from the fact that µ(∅) = 0, ∅ ⊆ A for all A ∈ F and (19.6.
To prove the second property, observe that B = A ] (B \A).
Proving the third property is more complicated because neither A nor B may be a subset of the
other. We first note that because A \ B ⊆ A, B \ A ⊆ A and A ∩ B ⊆ A, µ(A ∪ B) =∞ can only be
true if µ(A) = ∞ or µ(B) = ∞. In this case (19.11c) is obviously true. Hence we may assume that
µ(A ∪B) <∞. We have

A ∪B = (A ∩B) ] (B \A) ] (A \B)(19.13a)
A ∪B = A ] (B \A) = B ] (A \B)(19.13b)

It follows from (19.13a) that

(19.14) µ(A ∪B) = µ(A ∩B) + µ(B \A) + µ(A \B)

It follows from (19.13b) that

(19.15) 2 · µ(A ∪B) = µ(A) + µ(B \A) + µ(B) + µ(A \B)

We subtract the left and right sides of (19.14) from those of (19.15) and obtain

µ(A ∪B) = µ(A) + µ(B \A) + µ(B) + µ(A \B)− µ(A ∩B)− µ(B \A)− µ(A \B)

= µ(A) + µ(B)− µ(A ∩B)

and the third property is proved. �

19.2 Sequences of Sets – limsup and liminf

Assumption 19.1 (Existence of a universal set). We assume the existence of a set X which contains
all sets An, Bn, Cn that are used here in sequences. �

Definition 19.5 (Monotone set sequences). A sequence Ak of arbitrary subsets of X is called

nondecreasing if A1 ⊆ A2 ⊆ . . .(19.16a)
nonincreasing if A1 ⊇ A2 ⊇ . . .(19.16b)

strictly increasing if A1 ( A2 ( . . .(19.16c)
strictly decreasing if A1 ) A2 ) . . .(19.16d)

Each one of those sequences is called a monotone set sequence. �

494 Version: 2024-11-25



Math 330 – Lecture Notes Student edition with proofs

Might as well define limits of monotone sequences of sets. It’s certainly intuitive enough:

Definition 19.6 (Limits of monotone set sequences). Given are sets An, Bn ⊆ X (n ∈ N). Assume
that

A1 ⊆ A2 ⊆ A3 ⊆ . . . and let A :=
⋃
k∈N

Ak

B1 ⊇ B2 ⊇ B3 ⊇ . . . and let B :=
⋂
k∈N

Bk

We say that A is the limit of the sequence (Aj)j∈N and B is the limit of the sequence (Bj)j∈N and
we write

A = lim
n→∞

An or An ↑ A for n→∞,(19.17a)

B = lim
n→∞

Bn or Bn ↓ B for n→∞. �(19.17b)

The above are not terribly useful definitions. What does it matter whether we write A = lim
n→∞

An

or A = ∪k∈NAk? Things would be very different if we went further and defined limits of sequences
of sets. Doing so is at the very beginning of a branch of Mathematics called Measure Theory and its
(slightly) more applied version, Abstract Probability Theory.

Definition 19.7 (lim inf and lim sup of set sequences). Given are sets An, Bn ⊆ X (n ∈ N). Let

lim inf
n→∞

An :=
⋃
n∈N

⋂
k≥n

Ak (limit inferior)(19.18)

lim sup
n→∞

An :=
⋂
n∈N

⋃
k≥n

Ak (limit superior)(19.19)

In general those two will not coincide. But if they do then we define

(19.20) lim
n→∞

An := lim inf
n→∞

An = lim sup
n→∞

An

We call lim
n→∞

An the limit of the sequence (An) and we write

An → A for n→∞. �

The following comments should make matters easier to understand if you abbreviate

Lemma 19.1 (lim inf and lim sup as monotone limits). Given are sets An, Bn ⊆ X (n ∈ N). Let

A?n :=
⋂
k≥n

Ak Then A?n ↑ lim inf
n→∞

An(19.21)

A?n :=
⋃
k≥n

Ak Then A?n ↓ lim sup
n→∞

An(19.22)
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PROOF: Let m,n ∈ N such that m < n. Then

A?m =

n−1⋂
k=m

Ak ∩
⋂
k≥n

Ak =

n−1⋂
k=m

Ak ∩ A?n ⊆ A?n

A?m =
n−1⋃
k=m

Ak ∪
⋃
k≥n

Ak =
n−1⋃
k=m

Ak ∪ A?n ⊇ A?n

This proves that A?n is nondecreasing and A ∗ ?n is nonincreasing. By the very definition of the
limit of a monotone sequence of sets it is true that

lim
n→∞

A?n =
⋃
n∈N

A?n = lim inf
n→∞

An

lim
n→∞

A?n =
⋂
n∈N

A?n = lim sup
n→∞

An

�

19.3 Conditional Expectations as Generalized Averages

EMPTY!!
EMPTY!!
EMPTY!!
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20 Appendix: Addenda to Beck/Geoghegan’s “The Art of Proof”

This chapter contains extensions of material found in [2] Beck/Geoghegan, the book which is meant
to be read in conjunction with these lecture notes. Some of this material is referenced in earlier
chapters.

Notation 20.1.

Even though the subject matter of this chapter is primarily the book [2] Beck/Geoghegan:
The Art of Proof, a reference such as prop.9.7 will refer to proposition 9.7 of this document.
Proposition 9.7 of the Beck Geoghegan book will be referenced as “B/G prop.9.7” or “[2]
B/G prop.9.7” or something similar. �

20.1 AoP Ch.1: Integers

Note that B/G ch.1, axioms 1.1 – 1.5 for the set Z of the integers match the definition of an integral
domain which was given in Definition 3.10 on p.63 of this document. Does that mean that “integral
domain” is just a fancy name for the set Z = {0,±1,±2, . . . }? The answer is No! We have seen
in prop.3.12 of ch.3 (The Axiomatic Method) that not only the integers, but also the rational num-
bers and the real numbers with the binary operations of addition and multiplication are integral
domains.
So what is going on here? The answer: B/G chose to specify the set Z in stages. The first set of
axioms, the one just mentioned, specifies the algebraic properties of addition and multiplication.
B/G axioms 2.1(i) – 2.1(iv) are added in their second chapter to tell us that the integral domain
Z is an ordered integral domain with positive cone N. See Definition 3.11 on p.68. Finally, B/G
ax.2.15, the induction axiom, is added. Only at this point is Z completely specified. We chose in this
document to define the integers “in one shot” rather than piecemeal. See axiom 6.1 on p.6.1. We
duplicated the material of B/G ch.1 in ch.refssec:arithm-integral-domains (Arithmetic in Integral
Domains) on p.64 and the material of B/G ch.2.1 and 2.2 in ch.3.4 (Order Relations in Integral
Domains) on p.68.

20.1.1 Ch.1.1 – Axioms

There are no addenda at this point in time.

20.2 AoP Ch.2: Natural Numbers and Induction

The following remark is also part of rem.3.4 on p.64.

Remark 20.1. B/G ch.1, axioms 1.1 – 1.5 plus 2.1(i) – 2.1(iv) for the set Z of the integers state that Z
is an ordered integral domain with positive cone N. See Definition 3.11 on p.68. �

Remark 20.2.
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It follows from the last remark that all of the material in B/G ch.2.1 and 2.2, i.e., all of the
propositions and corollaries and definitions inbetween B/G prop.2.1 and prop.2.13, extend
to any ordered integral domain (R,⊕,�, P ). An example would be prop.3.33 on p.70 which
corresponds to B/G ch.1 prop.2.2. �

20.2.1 AoP Ch.2.2 (Ordering the Integers)

The material given here complements ch.2.2 (Ordering the Integers) of [2] Beck/Geoghegan.

Remark 20.3. B/G Axioms 1.1 – 1.5 together with axiom 2.1 do not suffice to characterize the inte-
gers; a symbol different from Z might have been more appropriate. These axioms are also satisfied
by the set Q of all rational numbers (fractions), provided one interprets the set N described by axiom
2.1 as the set of all (strictly) positive fractions. They are also satisfied by the set R of all real numbers
(decimals), provided one interprets N as the set of all (strictly) positive decimals. Only addition of
the induction axiom (B/G axiom 2.15) excludes Q and R. �

Accordingly, all propositions and theorems of the B/G text before the induction axiom ap-
ply not only to integers but to rational and real numbers as well.

20.2.2 AoP Ch.2.3 (Induction)

There are no addenda at this point in time.

20.2.3 Bounded Sets in Z

There are no addenda at this point in time.

20.2.4 Exercises for Ch.20.2

There are no exercises at this point in time.

20.3 AoP Ch.3: Some Points of Logic

Here are some references for items discussed in ch.3 of the B/G text to where they appear in ch.4
(Logic) on p.84 of this document.

(a) Universal quantifier ∀, existental quantifier ∃, unique existental quantifier ∃!: ch.4.5.1 on
p.108.

(b) “(∀ x)(∀ y) has the same meaning as (∀ x and y)”: part a of Definition 4.17 (Doubly
quantified expressions) in ch.4.5.2 on p.110.

We recommend that you look at prop.4.1 and the note which precedes it. The latter is
reproduced here:

(1) The order in which the qualifiers are applied is important.
∀x∃y generally does not mean the same as ∃y∀x.

(2) Interchanging variable names in the qualifiers is not OK.
∀x∃y generally does not mean the same as ∀y∃x.
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(c) Skip part (c) if you have no knowledge of logic beyond what is in ch.3 of B/G.
If you have had some training in logic you may have learned to express “if P (is true)
then Q (is true)” as “P → Q” rather than “P ⇒ Q”. There is a difference: Proving a
statement of the form “if P then Q” means to show that the statements P and Q are
related in a fashion that makes it “logically impossible”, 187 for P to be true and Q to be
false. “P ⇒ Q” has the combination

(
P is true,Q is false

)
marked as irrelevant (logically

impossible); the remaining three combinations give the same outcome as for P → Q, i.e.,
they all evaluate to true.

Example: Let us assume that x is an integer. Let P be the statement P : “x = 100′′, and
let Q be the statement Q : “x > 10′′. Then it is correct to write P ⇒ Q because, no matter
the value of x, it is not possible that P is true and Q is false.

(d) The equivalent forms of “if P then Q” such as “Q whenever P” are listed in ch.4.2.5
(Arrow and Implication Operators) on p.95. There you also find the definition of the
converse and the contrapositive of an implication.

Here are some notes about B/G ch.3.3: Negations.
(a) The negation of “A and B” is “(not A) or (not B)”, and the negation of “A or B” is

“(not A) and (not B)”. This is known as “De Morgan’s law” for statements (see thm.4.3
on p.101). Do you see the connection to De Morgan’s law for sets? (see thm.8.1 on p.234).

(b) Skip part (b) if you have no knowledge of logic beyond what is in ch.3 of B/G.
B/G states that the negation of “P ⇒ Q” is “P and not Q”. This should be stated more
appropriately as follows: The negation of “P ⇒ Q” is “P and (not Q)”. The reason for
this equivalence is that “P ⇒ Q” is defined as “not (P orQ)”: we can apply De Morgan’s
laws to obtain the negation.

(c) We chose to write parentheses in the above expression to avoid ambiguity. But note that
there is a “binding power” or preference for the logical operators: The negation “not P”
of a statement P has higher preference than “P and Q” and “P or Q”:
The meaning of “not P or Q” is “(not P ) or Q”, not “not (P or Q).”

20.4 AoP Ch.4: Recursion

There are no addenda at this point in time.

20.5 AoP Ch.5: Underlying Notions in Set Theory

There are no addenda at this point in time.

187See ch.4.2.2, Definition 4.7 on p.90.
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20.6 AoP Ch.6: Equivalence Relations and Modular Arithmetic

20.6.1 Equivalence Relations

Remark 20.4. B/G defines in this chapter the absolute value for integers as usual:

|m| =

{
m ifm ≥ 0,

−m ifm < 0.

See Definition 2.20 on p.28. Note that this document has generalized this concept to integral do-
mains. See Definition 3.13 on p.75. �

20.6.2 The Division Algorithm

There are no addenda at this point in time.

20.6.3 The Integers Modulo n

There are no addenda at this point in time.

20.6.4 Prime Numbers

There are no addenda at this point in time.

20.6.5 Exercises for Ch.20.6

There are no exercises at this point in time.

20.7 AoP Ch.7: Arithmetic in Base Ten

20.7.1 Base–Ten Representation of Integers

You will find the material of this B/G chapter represented somewhat differently in ch.6.13 (The
Base–β Representation of the Integers) of this document.

20.8 AoP Ch.8: Real Numbers

B/G ch.8 axiomatically defines the set R of all real numbers. It was stated in ch.2.3 (Numbers) on
p.24 that real numbers are the same as decimal numbers. A proof of this will be given in B/G ch.12
(Decimal Expansions).

20.8.1 Axioms

Remark 20.5.

Note that B/G axioms 8.1 – 8.5 and axiom 8.26 do not suffice to determine what we think
of as the real numbers because the set Q also satisfies each one of them. Only the addition
of axiom 8.52 (completeness axiom) will accomplish this.
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We encountered a similar situation in the first two chapters of B/G with the set Z of all integers
where axioms 1.1 – 1.5 and 2.1 also are valid for Q and axiom 2.15 (induction axiom) was needed to
completely determine the set Z. �

Remark 20.6. For the following see also rem20.2 on p. 497.
Note that B/G axioms 8.1 – 8.5 in ch.8.1 for the set R of the real numbers together with B/G prop.8.7
(the cancellation rule holds in R) imply that R is an integral domain, but one with the additional
property that (R 6=0, ·) is an abelian group 188 (see Definition 3.2 on p.52). B/G prop.8.8 – prop.8.24
only depend on the integral domain properties of R, just as the corresponding propositions of B/G
ch.1 only depend on the integral domain properties of Z,
This explains the remark preceding B/G prop.8.8 in which it is reasoned that the proofs of B/G
prop.8.8 through B/G prop.8.24 in B/G ch.8.1 are literally the same as those for the corresponding
propositions in B/G ch.1. S �

20.9 AoP Ch.9: Embedding Z in R

Remark 20.7. Note that B/G prop.9.10 and prop.9.12 are covered by thm.5.2 on p.149. �

20.10 AoP Ch.10: Limits and Other Consequences of Completeness

There are no addenda at this point in time.

20.11 AoP Ch.11: Rational and Irrational Numbers

There are no addenda at this point in time.

20.12 AoP Ch.12: Decimal Expansions

There are no addenda at this point in time.

20.13 AoP Ch.13: Cardinality

There are no addenda at this point in time.

20.14 Exercises for Ch.20

All exercises appear at the end of the individual subchapters.

188such an integral domain is called a field.
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21 Exam Preparation

Last update: February 23, 2018.

Most of this chapter features problems which are typical for what you might find on one of my
Math 330 exams. You will also find here a list of definitions which you need NOT to learn by heart.
Be aware though that those definitions may be referenced later in the text.
I plan to add to those lists in the future and also include Sample Problems for more topics.

Note that solutions have been written here for many but not all problems!

21.1 Sample Problems for Induction

Problem 21.1. (Induction). Let x1 = 1, x2 = 1 + 1
2 , . . . , xk =

∑k
j=1

1
j (k ∈ N).

Prove by induction that
∑n

k=1 xk = (n+ 1)xn − n (n ∈ N).

Solution to #21.1: See Grimaldi Discrete Math 4ED, Exercise 4.1, # 2c, p.176 �

Problem 21.2. (Induction). Prove by induction that
∑n

j=1 j(j!) = (n+ 1)!− 1 (n ∈ N).

Solution to #21.2:
Base case n = 1: LS = 1 · (1!) = ·1 = 1 = 2− 1 = (2!)− 1 = RS.
Induction assumption (?):

∑n
j=1 j(j!) = (n+ 1)!− 1 for all j ∈ Z such that 0 ≤ j < n.

Need to show (??):
∑n+1

j=1 j(j!) = (n+ 2)!− 1.

LS of (??) =
n∑
j=1

j(j!) + (n+ 1)(n+ 1)!
(?)
= (n+ 1)!− 1 + (n+ 1)(n+ 1)!

= (1)(n+ 1)! + (n+ 1)(n+ 1)!− 1 = (n+ 2)(n+ 1)!− 1 = RS of (??).

Thus (??) is valid. This finishes the proof by induction. �

Problem 21.3. (Strong Induction). Let x0 = 1, x1 = 2, x2 = 3, . . . , xn = xn−1 + xn−2 + xn−3

(n ∈ N, n ≥ 3). Prove by strong induction that xn ≤ 3n for all n ∈ Z≥0.

Solution to #21.3:
Base cases are n = 0, n = 1, n = 2. (We need three base cases because the recursion formula)
xn = xn−1 + xn−2 + xn−3 requires the knowledge of three predecessors.)
n = 0 is valid since x0 = 1 = 30.
n = 1 is valid since x1 = 2 < 3 = 31.
n = 2 is valid since x2 = 3 < 9 = 32.

Induction assumption (?): xj ≤ 3j for all j ∈ Z such that 0 ≤ j < n.
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Need to show (??): xn ≤ 3n for all n ≥ 3.
It follows from (?) that xn−3 ≤ 3n−3, xn−2 ≤ 3n−2, xn−1 ≤ 3n−1.
Thus (a) xn−1 + xn−2 + xn−3 ≤ 3n−3 + 3n−2 + 3n−1 ≤ 3 · 3n−1.

Since n ≥ 3, LS of (??) = xn = xn−1 + xn−2 + xn−3

(a)
≤ 3 · 3n−1 = 3n = RS of (??).

Thus (??) is valid. This finishes the proof by induction. �

Problem 21.4. (Strong Induction).
Let x0 = 2, x1 = 4, xn+1 = 3xn − 2xn−1 for n ∈ N. Prove by strong induction that xn = 2n+1 for
every integer n ≥ 0. Hint: Is one number enough for the base case?

Solution to #21.4:
Base cases: n = 0, 1: x0 = 2 = 20+1. Further, x1 = 4 = 21+1. This proves the base cases.
Induction assumption (?): Let n ∈ N. Assume that xj = 2j+1 for all 0 ≤ j ≤ n.
Need to show (??): xn+1 = 2n+2.

LS of (??) = xn+1 = 3xn − 2xn−1 (the recursive definition)

= 3(2n+1)− 2(2n) ((?) was applied both to j = n and j = n− 1 )

= 6 · 2n − 2 · 2n = 4 · 2n = 2n+2 = RS of (??).

Thus (??) is valid. This finishes the proof by induction. �

Problem 21.5. (Strong Induction).
Let x0 = 1, x1 = 3, xn+1 = 2xn + 3xn−1 for n ∈ N. Prove by strong induction that xn = 3n for
every integer n ≥ 0. Hint: Is one index enough for the base case?

Solution to #21.5:
Base cases: n = 0, 1: x0 = 1 = 30. Further, x1 = 3 = 31. This proves the base cases.
Induction assumption (?): Let n ∈ N. Assume that xj = 3j for all 0 ≤ j ≤ n.
Need to show (??): xn+1 = 3n+1..

LS of (??) = xn+1 = 2xn + 3xn−1 (the recursive definition)

= 2(3n) + 3(3n−1) ((?) was applied both to j = n and j = n− 1 )

= 2 · 3n + 1 · 3n = 3 · 3n = 3n+1 = RS of (??).

Thus (??) is valid. This finishes the proof by induction. �

Problem 21.6. (Recursion).
Let x1 = 3, xn+1 = xn + 2n+ 3 (n ∈ N. Prove by induction that xn = n(n+ 2) (n ∈ N).

Solution to #21.6:
Base case n = 1: LS = 3 = 1(1 + 2) = 1 = RS.
Induction assumption (?): xn = n(n+ 2).
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Need to show (??): xn+1 = (n+ 1)(n+ 3)

LS of (??) = xn+1
def.
= xn + 2n+ 3

(?)
= n(n+ 2) + 2n+ 3 = n2 + 4n+ 3 = (n+ 1)(n+ 3) = RS of (??).

Thus (??) is valid. This finishes the proof by induction. �

21.2 Sample Problems for Functions and Relations

Problem 21.7. (Partial order relations). Remark 5.5.D on p.130 states that if (X,�) is a POset and
if A ⊆ X then the relation �A on A defined as x �A y if and only if x � y (x, y ∈ A) is a partial
ordering on A. Prove it.

Solution to #21.7:
We must prove reflexivity, antisymmetry, and transitivity.
(a) Proof of reflexivity: Let a ∈ A. We must prove that a �A a. Since x ∈ X and “�” is reflexive as a
partial ordering on X we obtain a � a, i.e., a �A a.
(b) Proof of antisymmetry: Let a, b ∈ A such that a �A b and b �A a. We must prove that a = b. Since
a, b ∈ X , “�” is antisymmetric as a partial ordering on X, a �A b ⇒ a � b, and b �A a ⇒ b � a,
we obtain a = b.
(c) Proof of transitivity: Let a, b, c ∈ A such that a �A b and b �A c. We must prove that a �A c.
Since a, b, c ∈ X , “�” is transitive as a partial ordering on X. Moreover a �A b ⇒ a � b, and
b �A c ⇒ b � c, thus a � c, i.e., a �A c. �

Problem 21.8. (Functions). Given is a function f : A −→ B (A,B 6= ∅). Give the definitions of each
of the following:
(a) f is injective.
(b) f is surjective.
(c) f is bijective.
(d) f has a left-inverse g.
(e) f has a right-inverse h.

For (d) and (e), give the “arrow diagram” which show domain and
codomain for each function involved. In both cases it will like the
one to the left. Each symbol S denotes a (possibly different) set and
each symbol ϕ denotes a (possibly different) function.

S S

S

ϕ

ϕϕ

Solution to #21.8:
Solution to problems a,b,c:
Injective means one-one: If a1, a2 ∈ A and f(a1) = f(a2) then a1 = a2.
Surjective means onto: If b ∈ B then there is a ∈ A such that f(a) = b.
Bijective means both injective and surjective.
Solution to problem d: If this diagram commutes:
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A B

A

f

g1A

i.e., g ◦ f = 1A, then we call g a left inverse of f (“to the left
of the reference object f”), i.e., f has a left inverse (namely the
function g).

Solution to problem e: If this diagram commutes:

B A

B

h

f1B

i.e., f ◦h = 1B , then we call h a right inverse of f (“to the right
of the reference object f )”, i.e., f has a right inverse (namely
the function h). �

Problem 21.9. (Equivalence relations and partial order relations).
(a) Let a, b ∈ Z. State as precisely as possible the definition of a | b.
(b) Is the relation a ∼ b ⇔ a | b reflexive? symmetric? antisymmetric? transitive? If true,

prove it. If false, give a counterexample.

Solution to #21.9:
(a) There is z ∈ Z such that az = b.
(b) Is the relation a ∼ b ⇔ a | b
• reflexive: TRUE: If a ∈ Z then a = 1 · a, hence a | a, hence a ∼ a.
• symmetric: FALSE: Counterexample: 5 | 10 but 10 - 5.
• antisymmetric: FALSE: Counterexample: −1 | 1 and 1 | −1, but 1 6= −1.
• transitive: TRUE: Let a, b, c ∈ Z such that a ∼ b and b ∼ c.

Then a | b, i.e., b = ma, and b | c, i.e., c = nb for suitable m,n ∈ Z.
Thus c = (mn)a. Since (mn) ∈ Z, a | c, hence a ∼ c. �

Problem 21.10. (Functions and equivalence relations).
Let f : X → Y (X,Y 6= ∅). Prove that a ∼ b ⇔ f(a) = f(b) is an equivalence relation on X .

The solution to this problem is not given here. �

21.3 Sample Problems for Convergence and Uniform Convergence

Problem 21.11. (Convergence in Metric Spaces).
Prove closed book prop.13.9 on p.419.

Problem 21.12. (Convergence in Metric Spaces).
Prove closed book thm.12.3 on p.370.

Problem 21.13. (Convergence in Metric Spaces).
Prove closed book prop.12.7 on p.370.

Problem 21.14. (Convergence in Metric Spaces).
Prove closed book prop.12.8 on p.370.

Problem 21.15. (Uniform convergence).
Let (X, d) := ([0, 1], d|·|) be the unit interval, equipped with the standard Euclidean metric d(x, x′) =
|x− x′|, and let (Y, d′) := ([0, 1], d‖·‖L2

) be the same set, but equipped with the metric derived from
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the L2–norm ‖f‖L2 =
√∫ b

a f(x)2dx. (See Definition 11.21 on p.349).

For n ∈ N let fn(x) := (−1)n if 0 ≤ x ≤ 1
n and 0 if 1

n < x ≤ 1.

(a) Prove that fn(·)→ 0 on (Y, d′).
(b) Prove that f ′n(x) does not converge pointwise on (X, d). Hint: What exactly must you

show?

Solution to #21.15:

PROOF of (a): Let δ > 0. Then d′(fn, 0) =
√∫ 1/n

0 12dt +
∫ 1

1/n 02dt =
√

1
n , and this expression

is less than δ whenever n > 1
δ2 . Let N := min{j ∈ N : j > 1

δ2 }. It follows that d′(fn, 0) < δ for all
n ≥ N . This proves that fn(·)→ 0 on (Y, d′).
PROOF of (b): We have fn(0) = (−1)n for all n ∈ N. This sequence is not Cauchy in (X, d) since
d(fj(0), fj+1(0) = 2 for all j ∈ N and hence not convergent (see thm.12.8 (Convergent sequences are
Cauchy) on p.391). �

21.4 Other Topics

Problem 21.16. (Logic). Given a function f : X → Y , negate the following statements:
(a) There exists x ∈ X and y ∈ Y such that f(x) = y,
(b) For all x ∈ X there exists y ∈ Y such that f(x) = y,
(c) ∃x ∈ X such that ∀y ∈ Y such that f(x) 6= y.
(d) ∀x1, x2 ∈ X : if x1 6= x2 then f(x1) 6= f(x2).

Solution to #21.16:
(a) ∀x ∈ X,∀y ∈ Y : f(x) 6= y,
(b) ∃x ∈ X such that ∀y ∈ Y : f(x) 6= y,
(c) ∀x ∈ X ∃y ∈ Y such that f(x) = y,
(d) ∃x1, x2 ∈ X such that f(x1) = f(x2). �

Problem 21.17. (Sets). Prove AND REMEMBER the set identities 2.a through 2.g of prop.8.3 on
p.236:

(b) A4∅ = ∅4A = A (neutral element ∅ for4)
(c) A4A = ∅ (inverse element ∅ for4) 189

(d) A4B = B4A (commutativity of4)
(e) (A ∩B) ∩ C = A ∩ (B ∩ C) (associativity of ∩)
(f) A ∩ Ω = Ω ∩A = A (neutral element Ω for ∩)
(g) A ∩B = B ∩A (commutativity of ∩)

Solution to #21.17:
Trivial (we omitted the tough one, 2.h). �

Problem 21.18. (Set functions). Given is an arbitrary collection of sets (Aj)j∈J . Determine for each

189The inverse element for A in the sense of Definition 3.3 on p.53. is A itself!
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assertion below whether it is true or false. If it is true, prove it. If it is false, give a counterexample.

(a) f(
⋃
j∈J

Aj) ⊆
⋃
j∈J

f(Aj); (b)
⋃
j∈J

f(Aj) ⊆ f(
⋃
j∈J

Aj);

(c) f(
⋂
j∈J

Aj) ⊆
⋂
j∈J

f(Aj); (d)
⋂
j∈J

f(Aj) ⊆ f(
⋂
j∈J

Aj);

You may use the fact that the direct image is increasing with its argument: A ⊆ B ⇒ f(A) ⊆ f(B)
.

Solution to #21.18:
Solution to a:

y ∈ f(
⋃
j∈J

Aj) ⇒ ∃x ∈
⋃
j∈J

Aj such that f(x) = y (def. direct image)

⇒ ∃j0 ∈ J such that x ∈ Aj0 (def. union)
⇒ y = f(x) ∈ f(Aj0) (def. direct image)

⇒ y = f(x) ∈
⋃
j∈J

f(Aj0) (def. union)

Solution to b: As the direct image is increasing with its argument and Ai ⊆
⋃
j∈J Aj for all i ∈ J it

follows that f(Ai) ⊆ f
(⋃

j∈J Aj
)

for all i ∈ J . Hence⋃
i∈J

f(Ai) ⊆
⋃
i∈J

(
f
( ⋃
j∈J

Aj
))

= f
( ⋃
j∈J

Aj
)

The equality on the right hand side results from the fact that the set f
(⋃

j∈J Aj
)

does not depend
on the index variable i ∈ J with respect to which the “outer” union takes place. �

Problem 21.19. (Cardinality).
Give an alternate proof of thm.9.12 (The real numbers are uncountable) on p.285 which is based on
the fact that the cardinality of a set is less than that of its power set (thm.10.1 on p.308). Hint: Find

bijections f : {x ∈ R : x =
∞∑
j=1

dj10−j and dj = 3 or 4 ∀j} ∼−→ {3, 4}N and g : {3, 4}N ∼−→ 2N.

Solution to #21.19:

Let Γ := {x ∈ R : x =
∞∑
j=1

dj10−j and dj = 3 or 4 ∀j}.

Both f : Γ
∼−→ {3, 4}N;

∞∑
j=1

dj10−j 7→ (dj)j∈N and g : {3, 4}N ∼−→ 2N; (dj)j∈N 7→ {j ∈ N : dj = 4}

are bijections, thus g ◦ f is a bijection from Γ ⊆ R to 2N. According to thm.10.1 the cardinality of the
latter exceeds that of N. Since N is countably infinite we obtain that Γ and hence its superset R is
uncountable. �

Problem 21.20. (Continuity). Let a, b, c, d ∈ R such that a < b and c < d. Let f :]a, b[→]c, d[ be
bijective and strictly monotone, i.e., strictly increasing or decreasing. Prove that both f and f−1 are
continuous.
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Hint: Use ε–δ continuity.

The solution to this problem is not given here. �

Problem 21.21. (Continuity).
Let (X,U) and (Y,V) be topological spaces and f : X → Y . Prove that f is continuous if and only
if the preimage f−1(F ) of any closed F ⊆ Y is closed in X .

Solution to #21.21:
PROOF: We utilize for both directions prop.13.1 on p.407: f is continuous if and only if the preimage
f−1(V ) of any open V ⊆ Y is open in X , and also the fact that

if B ∈ Y then
(
f−1(B{)

){
= f−1(B) .(?)

This equation follows from 8.12 on p.240: the complement of the inverse image is the inverse image
of the complement.
(a) PROOF of f is continuous ⇒ f−1 (closed) = closed:
Let F ∈ Y be closed. We must prove that f−1(F ) is closed. Complements of closed sets are open and

vice versa, hence F { is open, hence continuity of f implies that f−1(F {) is open. Thus
(
f−1(F {)

){
is closed According to (?) that closed set equals f−1(F ). This proves (a).
(b) PROOF of f−1 (closed) = closed ⇒ f is continuous:
It suffices to show that f−1(V ) is open for any open V ⊆ Y because this implies the continuity of
f . So let V ⊆ Y be open. Then V { is closed, hence f−1(V {) is closed by our assumption, hence its

complement
(
f−1(V {)

){ is open According to (?) that open set equals f−1(V ). This proves (b). �

Problem 21.22. (Continuity). Let X := R, equipped with the standard Euclidean metric d(x, x′) =

|x− x′|. Let fn : R→ R; x 7→ sin(n2x)
n .

(a) Prove that fn(·) uc→ 0 on R.
(b) Prove that f ′n(x) does not converge pointwise on R. Hint: What exactly must you show?

Solution to #21.22:
PROOF of (a): Let δ > 0. It follows from lim

n→∞
1
n = 0 that there existsN ∈ N such that 1

n = | 1n−0| < δ

for all n ≥ N . We conclude from | sin t| ≤ 1 for all t ∈ R that |fn(x) − 0| = sin(n2x)
n ≤ 1

n < δ for all
n ≥ N and also for all x ∈ X . This proves that fn(·) uc→ 0 on X .

PROOF of (b): Let x ∈ R and n ∈ N. Then f ′(x) = n2 cos(n2x)
n = n cos(n2x). Thus f ′n(0) = n cos(0) =

n. It follows that lim
n→∞

f ′n(0) =∞, thus f ′n(x) does converge at x = 0. �

Problem 21.23. (Compactness).
Let (X,U) be a topological space. Prove that X is compact if and only if every family (Fi)i∈I of
closed sets has the finite intersection property (short: fip), i.e., (Fi)i∈I satisfies the following: If
every finite selection Fi1 , Fi2 , . . . , Fik of members of (Fi)i has nonempty intersection then

⋂
i∈I

Fi 6= ∅.

Note that an equivalent formulation is the contrapositive: If
⋂
i∈I

Fi = ∅ then there must be finitely

many members Fi1 , Fi2 , . . . , Fin such that Fi1 ∩ · · · ∩ Fin = ∅.
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Solution to #21.23:
PROOF: We recall the definition of compactness: Every family (Ui)i∈I of open sets which covers X
possesses a finite selection Ui1 , Ui2 , . . . , Uik which covers X .
(a) PROOF of X is compact ⇒ every family (Fi)i∈I of closed sets has the fip:

We work with the contrapositive: Assume that
⋂
i∈I

Fi = ∅ For each i ∈ I let Ui := F {i . Then each

Ui is open as the complement of a closed set. It follows from de Morgan that
⋃
i∈I

Ui = ∅{ = X ,

i.e., the family (Ui)i is an open covering of X . Since X is compact we can extract a finite subcover
Ui1 , . . . , Uik : Ui1 ∪ · · · ∪Uik = X . We obtain from de Morgan that Fi1 ∪ · · · ∪Fik = X{ = ∅. It follows
that (Fi)i∈I has the fip, and this proves (a). Since

⋃
i∈I

Ui = X de Morgan yields
⋃
i∈I

Ui = X

(b) PROOF that if every family (Fi)i∈I of closed sets has the fip then X is compact:
Let (Ui)i∈I be a family of open sets which coversX . We must extract a finite covering. For each i ∈ I
let Fi := U{i . Then Fi is closed as the complement of an open set. Since

⋃
i∈I

Ui = X de Morgan yields⋂
i∈I

Fi = X{ = ∅. But the family of closed sets (Fi)i∈I possesses the fip, thus there exist finitely many

members Fi1 , . . . , Fik such that Fi1∩· · ·∩Fik = ∅. From de Morgan we obtainUi1∪· · ·∪Uik = ∅{ = X .
We have extracted a finite covering from the family (Ui)i∈I , thus X is compact. This proves (b). �

21.5 Non–essential Definitions

A non–essential Definition is one which the student need not remember in the sense that it will not
occur in a quiz or exam. It is possible though that such a definition will be referenced in later parts
of the document.
For example, the non–essential term “abelian group”, defined in Definition 3.2 on p.52, is referenced
in example 3.4 which can be found on p.53.
This chapter contains the beginnings of a list of non–essential definitions. It is broken down into
several lists on a chapter by chapter basis.

Generally speaking, any definition that is given in an optional (starred) chapter or in a
construct other than a proper definition, e.g., in a footnote or a remark, is considered non–
essential, and it very likely will not be included in those lists

Ch.3: The Axiomatic Method:
binary operation (not essential until its formal definition in ch.5) • semigroup, monoid •
abelian group (but remember commutative group) • linear function, additivity, homogene-
ity • commutative ring with unit

Ch.5: Functions and Relations:
linear/total ordering • linearly/totally ordered set • inverse relation •maps to operator (but
remember assignment operator)
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22 Other Appendices

22.1 Greek Letters

The following section lists all greek letters that are commonly used in mathematical texts. You do
not see the entire alphabet here because there are some letters (especially upper case) which look
just like our latin alphabet letters. For example: A = Alpha B = Beta. On the other hand there
are some lower case letters, namely epsilon, theta, sigma and phi which come in two separate forms.
This is not a mistake in the following tables!

α alpha θ theta ξ xi φ phi
β beta ϑ theta π pi ϕ phi
γ gamma ι iota ρ rho χ chi
δ delta κ kappa % rho ψ psi
ε epsilon κ kappa σ sigma ω omega
ε epsilon λ lambda ς sigma
ζ zeta µ mu τ tau
η eta ν nu υ upsilon

Γ Gamma Λ Lambda Σ Sigma Ψ Psi
∆ Delta Ξ Xi Υ Upsilon Ω Omega
Θ Theta Π Pi Φ Phi

22.2 Notation

This appendix on notation has been provided because future additions to this document may use
notation which has not been covered in class. It only covers a small portion but provides brief
explanations for what is covered.
For a complete list check the list of symbols and the index at the end of this document.

Notation 22.1. a) If two subsets A and B of a space Ω are disjoint, i.e., A ∩ B = ∅, then we often
writeA

⊎
B rather thanA∪B orA+B. BothA{ and, occasionally, {A denote the complement Ω\A

of A.
b) R>0 or R+ denotes the interval ]0,+∞[, R≥0 or R+ denotes the interval [0,+∞[,
c) The set N = {1, 2, 3, · · · } of all natural numbers excludes the number zero. We write N0 or Z+ or
Z≥0 for N

⊎
{0}. Z≥0 is the B/G notation. It is very unusual but also very intuitive. �

Definition 22.1. Let (xn)n∈N be a sequence of real numbers. We call that sequence nondecreasing
or increasing if xn ≤ xn+1 for all n ∈ N.
We call it strictly increasing if xn < xn+1 for all n ∈ N.
We call it nonincreasing or decreasing if xn ≥ xn+1 for all n.
We call it strictly decreasing if xn > xn+1 for all n ∈ N. �
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List of Symbols

(X, d(·, ·)) – metric space , 360
(x1, x2, . . . , xn) – n–dimensional vector , 323
−A , 27
−x – negative of x , 330
A+ b , 27
F0 – contradiction stmt , 91
NK(∞), NK(−∞), 264
T0 – tautology stmt , 91
[a, b[, ]a, b] – half-open intervals , 27, 70
[a, b] – closed interval , 27
[a, b]R – closed interval , 70
⇔ – logical equivalence , 93
7→ – maps to , 134
⇒ – implication , 18
⇒ – implication , 95
U universe of discourse , 85
~x – vector, 223
Ā – closure of A , 383
∅ – empty set, 15
∃ – exists , 109
∃! – exists unique , 109
∀ – for all , 108
↔ – double arrow logic op. , 93
1A – indicator function of A , 246
P(Ω), 2Ω – power set , 22
¬ – negation , 88
±∞ – ± infinity , 27
inf(A) – infimun of A , 77
inf (xi), inf (xi)i∈I , inf

i∈I
xi – families , 262

inf (xn), inf (xn)n∈N, inf
n∈N

xn – sequences , 262

lim infn→∞ xj – limit inferior , 288
lim supn→∞ xj – limit superior , 288
lim
n→∞

xn , 263

sup(A) – supremun of A , 77
sup (xn), sup (xn)n∈N, sup

n∈N
xn – sequences , 262

→ – arrow operator , 95
∨ – disjunction , 93
|x| – absolute value , 28, 75
∧ – conjunction , 89
]a, b[Q – interval of rational #s , 28
]a, b[Z – interval of integers , 28
]a, b[ – open interval , 27, 70
a < b – ordered integral domain, 69

a	 b ring: difference, 61
f(·) – function , 31
f(·) = (X,Y,Γ) – function , 134
f(·) – function , 134
g ◦ f – function composition , 136
r? – rational cut , 486
x ∈ X – element of a set, 14
x /∈ X – not an element of a set, 14
xn → −∞, 265
xn →∞, 265
xn → a, 263
n∏
j=k

xj – product, 180

n∑
j=k

xj – sum, 180

⊕
	∞ – plus or minus infinity (integral domains)

, 70
A×B – cartesian product of 2 sets , 126
A{ – complement of A , 18
X1 × . . .×XN – cartesian product , 238
λA+ b – translation/dilation , 27
N – natural numbers, 167
N0 – nonnegative integers, 27
Q – rational numbers, 255
R – real numbers, 255
R? – non-zero real numbers, 27
R+ – positive real numbers, 27
R>0 – positive real numbers, 27
R≥0 – nonnegative real numbers, 27
R 6=0 – non-zero real numbers, 27
R+ – nonnegative real numbers, 27
Z – integers, 167
Z≥0 – nonnegative integers, 27
Z+ – nonnegative integers, 27
N – natural numbers, 24
Q – rational numbers, 25
R – real numbers, 25
Z – integers, 24
Z – integers, 24
R = R ∪ {−∞,∞} – extended real numbers ,

297
CCC (X,R) – continuous real–valued functions on

X , 406
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n
√
x – nth–root , 276

x ∼ x′ – equivalent items , 128
xor – exclusive or , 94

A> – transpose , 324
(xı)ı∈J – family , 156
(xi)i∈J – family , 36
(A,UA) – topol. subspace , 382
(V, ‖ · ‖) – normed vector space , 345
1A – indicator function of A , 246
2Ω,P(Ω) – power set , 22
[n] = {1, 2, . . . , n} , 213
[x]f – fiber of f over x , 243
fn(·)→ f(·) – pointwise convergence , 415
fn(·) uc→ f(·) – uniform convergence , 415
χA – indicator function of A , 246
{A – complement , 510
δij – Kronecker delta , 29
n
d – division , 172
n
m – division , 252(
n

k

)
– binomial coefficient , 184

λ1, λ2, . . . , λn, – Lebesgue measure , 492
N,N0 , 510
R+,R>0 , 510
R+,R≥0 , 510
R>0,R+ , 510
R≥0,R+ , 510
Z+,Z≥0 , 510
UA – subspace topology , 382
epi(f) – epigraph , 463
max(A),maxA – maximum of A , 77, 452
min(A),minA – minimum of A , 77, 452
	A , 61
∂A – boundary of A , 375
inf
x∈A

f(x) – infimum of f(·) , 262

infA f – infimum of f(·) , 262
lim infn→∞An , 299
lim infn→∞ fn , 297
lim supn→∞An , 299
lim supn→∞ fn , 297
lim
n→∞

xn , 369

lim
x→x0

f(x) – continuous at x0 , 271, 402

max(A),maxA – maximum of A , 452
min(A),minA – minimum of A , 452
sup
x∈A

f(x) – supremum of f(·) , 262

supA f – supremum of f(·) , 262
sup (xi), sup (xi)i∈I , sup

i∈I
xi – families , 262

‖~x‖p – p–norm of Rn , 345
‖f‖ – norm of linear f , 412
‖f‖L2 – L2–norm , 349
‖f‖Lp – Lp–norm of CCC ([a, b],R) , 350
|X| – size of a set , 23, 214
‖x‖• – Norm for x • y , 346
{} – empty set, 15
A
⊎
B – disjoint union , 510

A ∩B – A intersection B, 17
A⊕ b , 61
A \B – A minus B , 18
A ⊂ B – A is strict subset of B, 16
A ⊆ B – A is subset of B , 16
A ( B – A is strict subset of B, 16
A4B – symmetric difference of A and B , 18
A ]B – A disjoint union B , 17
A{ – complement , 510
Alowb – lower bounds of A , 77
Auppb – upper bounds of A , 77
B ⊃ A – B is strict superset of A, 16
B ) A – B is strict superset of A, 16
Bf
n(x) – n–th Bernstein Polynomial , 188

f : X → Y – function, 31
f(A) – direct image , 141
f−1(B) – indirect image, preimage , 141
g ◦ f(x) – function composition , 136
g−1 – group: inverse element, 53
n/d – division , 172
n/m – division , 252
n÷ d – division , 172
n÷m – division , 252
n | m – n divides m , 172
n - m – n does not divide m , 172
NA
ε (a) – Trace of NA

ε (a) in A , 380
n(β) – base β representation , 206
x • y – inner product , 341
x • y – inner product , 341
x � y – binary operation , 150
x• – unary operation, 150
xn → a , 369
(Ω,F) – measurable space , 491
(Ω,F, µ) – measure space , 492
(A, dA×A) – metric subspace , 380
(X,U) – topological space , 372
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(x1, x2, . . . , xN ) – N–tuple , 238
(xn) – sequence , 159
(xnj ) subsequence , 159
−f(·),−f – negative function , 154
0(·) – zero function , 137
[x]∼, [x] – (equivalence class , 128
α~x – scalar product , 325
αf – scalar product of functions , 153
αx, α · x – scalar product , 330
n⋂
j=1

Aj – union of Aj , 17

n⋃
j=1

Aj – union of Aj , 17

{A – complement of A , 18
Γf ,Γ(f) – graph of f , 134
λA⊕ b , 61
7→ – maps to , 30
B – base of a topology , 377
F – σ–algebra , 491
N(x) – neighborhood system , 377
U topology , 372
span(A) – linear span , 335
µ(·) – finite measure , 492
µ(·) – measure , 492
R = R ∪ {−∞,∞} – extended real numbers ,

490
R+ – nonnegative extended , 490
πj(·) – jth coordinate function , 336
πi1,i2,...,im(·) – m–dim projection , 337
BBB(X,R) – bounded real–valued functions on X

, 331
CCC (A,R) – cont. real–valued functions on A ⊆ R

, 331
FFF (X,R) – real–valued functions on X , 331
�A – partial order on subset , 130
inf(x, y) – infimum , 78
lim inf
n→∞

An – limit inferior for sets , 495
lim sup
n→∞

An – limit superior for sets , 495

max(x, y) – maximum , 78
min(x, y) – minimum , 78
sup(x, y) – supremum , 78
∴ – therefore , 118
εx0 – point mass , 337
‖~v‖2 – length or Euclidean norm of ~v , 325
‖f‖∞ – sup–norm , 344
‖x‖ – norm on a vector space , 345

CCCBBB(X,R) , 406
U‖·‖ – norm topology , 373
Ud(·,·) – metric topology , 372
~x+ ~y – vector sum , 325
A ∪B – A union B , 16
A ⊇ B – A is superset of B, 16
Df – natural domain of f , 132
d‖·‖ – metric induced by norm , 361
dA×A – induced/inherited metric , 380
f : X

∼−→ Y – bijective function , 144
f + g – sum of functions , 153
f − g – difference of functions , 153
f/g – quotient of functions , 153
f−1(·) – inverse function , 144
fg, f · g – product of functions), 153
int(A) – interior of A , 375
Nε(x0) – ε–neighborhood , 264, 366
x � y – precedes , 130
x � y – succeeds , 130
xRy – equivalent items , 127
x+ y – vector sum , 329
xn ↓ ξ as n→∞ , 266
xn ↑ ξ as n→∞ , 266
‖~v‖2 – Euclidean norm , 327
false , 84
true , 84
card(X) < card(Y ) , 307
card(X) = card(Y ) , 307
card(X) > card(Y ) , 307
card(X) ≥ card(Y ) , 307
card(X) ≤ card(Y ) , 307
dim(V ) – dimension of vector space V , 339
L/I – logically impossible , 90

F – false , 84

g.l.b.(A) – greatest lower bound of A , 77

l.u.b.(A) – least upper bound of A , 77

T – true , 84
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Index

L2–norm, 349
N–tuple, 238
‖ · ‖∞ distance, 363
σ–algebra, 236, 491
σ–field, 491
ε-δ continuous function, 402
ε–closeness, 264
ε–grid, 435
ε–neighborhood, 366
ε–neighborhood in R, 264
ε–net, 435
ε-δ continuous function, 273
ε–closeness, 360
n–th iterate of a function, 314
n–th root, 276

abelian group, 52
absolute convergence, 424
absolute value, 28

ordered integral domain, 75
abstract integral, 337
addition, 60
after, 130
algebra of sets, 236
algebraic dual, 456
algebraic number, 286
algebraic structure, 61
almost all indices, 223
alternating harmonic series, 426
alternating series, 426
antecedent, 96
antiderivative, 47
antisymmetric relation, 127
area, 347

net area, 347
argument, 31, 135
arrow operator, 95
assertion, 114

valid, 114
assignment operator, 31, 135
associativity, 50, 330
axiom, 114
Axiom of Choice, 149, 453

base β digits, 206

base (of a topology), 377
basis, 182, 338
before, 130
Bernstein polynomial, 188
bijection, 144
bilinear, 342
binary operation, 150
binary operator, 89
binomial coefficient, 184
bound variable, 85
boundary, 375
bounded, 76
bounded above, 76
bounded below, 76

cancellation rule, 62
canonical basis, 338
Cantor–Schröder–Bernstein’s Theorem, 311
cardinality

comparison of, 307
equality, 307

cardinality (equivalence class), 308
cartesian product, 37, 126, 237

diagonal, 127
cartesian product of N sets, 238
cartesian product of a family, 239
Cauchy criterion, 390
Cauchy sequence, 390
chain, 131
characteristic function, 246
choice function, 161
closed interval, 27, 70
closed set (in a metric space), 383
closed with repect to an operation, 331
closure (in a metric space), 383
closure operator, 387
cluster point, 387
codomain, 31, 134
common factor, 202
commutative group, 52
commutative ring with unit, 60
commutativity, 52, 329
compact, 444

covering compact, 444
sequentially, 442

515



Math 330 – Lecture Notes Student edition with proofs

complement, 18
complete set, 392
completeness axiom, 255, 485
composite, 202
composite number, 202
composition, 136
compound statement, 88
compound statement function, 88
concave-up, 463
conclusion, 96
conditionally convergent series, 425
conjecture, 114
conjugate indices, 351
conjunction operator, 89
connective, 87

negation, 88
consequent, 96
contact point (in a metric space), 382
content, 493
continuity

from the left at x0, 271
from the right at x0, 271

continuity at x0, 271, 404
continuous real–valued function, 271
contradiction, 91
contradictory, 90
contrapositive, 96
convergence, 369
convergence in R, 263
convergence, uniform, 415
converse, 96
convex, 463
coordinate function, 336
corollary, 115
countable set, 215
countably infinite set, 215
countably many, 215
cover, 444
covering, 444

extract finite open subcovering property, 444
cut, 485

De Morgan’s Law, 20, 234
decimal, 24

repeating, 283
decimal digit, 24, 168
decimal expansion, 279

decimal numeral, 24
decimal point, 24
decreasing sequence, 510
Dedekind cut, 485

lower number, 485
upper number, 485

degree of a polynomial, 155
denominator, 172, 252
dense set, 26
diagonal, 127
difference, 61
digit, 24, 168
digits

base β, 206
dimension, 323, 339
direct image, 141
direct image function, 141
discrete metric, 362
discrete topology, 373
disjoint, 17, 39
disjunction operator, 93
distributive laws, 330
distributivity, 60
dividend, 172, 252
divides, 172
divisible, 172
division, 252
divisor, 172, 252
domain, 31, 134
dot product, 341
double arrow operator, 93
dual, 456

algebraic, 456
dual function, 456
dual mapping, 456
dummy variable

functions, 136
dummy variable (setbuilder), 14

element of a set, 14
embed, 333
empty set, 15
epigraph, 463
equal functions, 135
equality

arbitrary cartesian products, 239
cartesian products, 126
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finite cartesian products, 238
equality modulo n, 198
equality of sets, 16
equivalence class, 128
equivalence operator, 93
equivalence relation, 128
equivalent, 128
Euclidean norm, 327
even, 24, 172
event, 492
eventually, 223
eventually all indices, 223
exclusive or operator, 94
existence and uniqueness statement, 67
existential quantification, 108
existential quantifier, 109
expansion

decimal, 279
expectation, 193
expected value, 193
exponent, 182
extended real numbers line, 297
extended real–valued function, 297, 490
extended well-ordering principle, 194
extension of a function, 152
exterior point, 375
exterior point (topological space), 375
extract finite open subcovering property, 444

factor (prime), 202
factorial, 184
factorization (prime), 202
family, 36, 156

disjoint, 39
mutually disjoint, 39, 233
partition, 39
supremum, 262

fiber over x, 243
field, 252, 501

ordered, 253
finite geometric series, 183
finite intersection property, 508
finite measure, 492
finite sequence, 34, 222
finite set, 214
finite subcover, 444
finite subcovering, 444

finite subsequence, 223
finitely many, 215
first axiom of countability, 378
first countable, 378
fixed point, 310
function, 31, 134
‖ · ‖∞ distance, 363
ε-δ continuous, 402
ε-δ continuous, 273
n–th iterate, 314
argument, 31, 135
assignment operator, 31, 135
bijection, 144
bijective, 144
bilinear, 342
bounded above, 261
bounded below, 261
bounded function, 261
codomain, 31, 134
composition, 136
constant function, 137
continuous in topological spaces, 407
convergence, 415
difference, 153
direct image, 141
direct image function, 141
domain, 31, 134
domain, natural, 132
dual function, 456
equality, 135
extension, 152
fiber over x, 243
function value, 31, 135
identity, 137
image, 135
independent variable, 135
indirect image function, 141
infimum, 262
injection, 144
injective, 144
inverse, 32, 144
left inverse, 149
linear function on R, 56
maps to operator, 31, 135
maximal displacement distance, 363
mean distance, 365
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mean square distance, 365
natural domain, 132
negative function, 154
one to one, 144
onto, 144
pointwise convergence, 415
preimage, 134
preimage function, 141
product, 153
quotient, 153
range, 135
real function, 153
real–valued function, 136, 153
restriction, 152
right inverse, 149
scalar product, 153
sequence continuous, 273, 402
sum, 153
sup–norm distance, 363
supremum, 262
surjection, 144
surjective, 144
target, 134
uniform continuity, 410
uniform convergence, 415
zero function, 137

function value, 31, 135

geometric series
finite, 183

graph, 31, 134
greater than, 69
greater than or equal, 69
greatest common divisor, 201
greatest lower bound, 77
greek letters, 510
grid point, 435
group, 52

homomorphism, 59
isomorphic, 59
isomorphism, 59
structure compatible functions, 59
subgroup, 57

half-open interval, 27, 70
harmonic series, 426
Hausdorff space, 368

Hoelder’s inequality, 353
Hoelder’s inequality in Rn, 355
homomorphism, 59, 178

integral domain, 179
ring, 179

hypothesis, 96

ideal, 198
identifying, 25
identity, 51, 137
identity function, 51
iff, 16
image, 135
implication, 95
implication operator, 95
impossible, logically, 90
inadmissible, 85
increasing sequence, 510
independent variable, 135
index, 35
index set, 33, 36, 156
indexed family, 36, 156
indexed item, 35
indicator function, 246
indirect image, 141
indirect image function, 141
indirect proof, 71
indirect proof by contrapositive, 42
indiscrete topology, 374
induced metric, 380
induced order, 69
induced subspace topology, 382
induction

proof by, 44, 169
induction axiom, 167
induction principle, 44, 169

strong, 169
infimum, 77
infimum of a family, 262
infinite sequence, 34, 222
infinite set, 214
infinitely many, 215
inherited metric, 380
inherited subspace topology, 382
injection, 144
injective function, 144
inner point (metric space), 366
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inner point (topological space), 375
inner product, 341

norm, 346
integer, 26

even, 24, 172
odd, 24, 172

integers, 167
integers modulo n, 198
integral

definite, 46
indefinite, 47

integral domain, 63
homomorphism, 179
ordered, 69
positive cone, 68

integral domain, ordered
greater than, 69
greater than or equal, 69
less than, 69
less than or equal, 69

interior, 375
interior point (metric space), 366
interior point (topological space), 375
intersection

family of sets, 38
subsets of sets, 38

interval
closed, 27, 70
half-open, 27, 70
open, 27, 70

inverse element, 52
inverse function, 32, 144
inverse relation, 131
irrational number, 26
isolated point, 387
isomorphic groups, 59
isomorphism, 59

Kronecker delta, 29
Kronecker symbol, 29

L/I (logically impossible), 90
least upper bound, 77
Lebesgue measure, n-dimensional, 492
Lebesgue number, 446
left inverse, 149
lemma, 115

less than, 69
less than or equal, 69
lim inf, 288
lim sup, 288
limit, 263, 369
limit (set sequence), 495
limit inferior, 288
limit inferior (set sequence), 495
limit point, 387
limit superior, 288
limit superior (set sequence), 495
linear combination, 334
linear function, 335

norm, 412
linear function on R, 56
linear mapping, 335
linear operator, 468

monotone increasing, 469
positive, 468

linear ordering relation, 131
linear space, 329
linear span, 335
linearly dependent, 337
linearly independent, 337
linearly ordered set, 131
logic

antecedent, 96
assertion, 114
axiom, 114
bound variable, 85
compound statement, 88
compound statement functions, 88
conclusion, 96
conjecture, 114
consequent, 96
contrapositive, 96
converse, 96
corollary, 115
existential quantification, 108
existential quantifier, 109
hypothesis, 96
implication, 95
inadmissible, 85
L/I, 90
lemma, 115
predicate, 85
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premise, 96
proof, 114
proposition, 84
proposition function, 85
rule of inference, 114
statement, 84
statement function, 85
theorem, 115
truth value, 84
unique existential quantification, 109
unique existential quantifier, 109
universal quantification, 108
universal quantifier, 108
universe of discourse, 85
UoD (universe of discourse, 85
valid assertion, 114

logic operators
arrow, 95
conjunction, 89
disjunction, 93
double arrow, 93
equivalence, 93
exclusive or, 94
implication, 95

logical equivalence, 89
logical operator, 87
logically equivalent, 93
logically impossible, 90
lower bound, 76
lowest terms, 26, 274

mapping
dual mapping, 456
inverse, 144

mapping (see function), 134
maps to operator, 31, 135
mathematical induction principle, 44, 169
matrix

transpose, 324
maximal displacement distance, 363
maximal element, 452
maximum, 76, 452
mean distance, 365
mean square distance, 365
measurable space, 491
measure, 492
measure space, 492

member of a set, 14
member of the family, 36, 156
metric, 359

induced, 380
inherited, 380

metric associated with a norm, 361
metric derived from a norm, 361
metric induced by a norm, 361
metric of uniform convergence, 418
metric space, 360

ε–closeness, 264
ε–closeness, 360
continuity at x0, 404
inner point, 366
interior point, 366

metric subspace, 380
metric topology, 373
minimal element, 452
minimum, 76, 452
Minkowski’s inequality, 354
Minkowski’s inequality for (Rn, ‖ · ‖p), 356
modulo

integers modulo n, 198
modulus, 198

equality modulo n, 198
monoid, 50
monomial, 155
monotone increasing linear operator, 469
monotone set sequence, 494
multiplication, 60
mutually disjoint, 17, 39

natural domain, 132
natural embedding of the integers, 175
natural number, 26
natural numbers, 167
negation operator, 88
negative, 330
negative element, 69
neighborhood, 366, 375

ε–neighborhood (metric spaces), 366
ε–neighborhood in R, 264
of −∞, 265
of∞, 265

neighborhood (metric space), 367
neighborhood base, 377
neighborhood in R, 264
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neighborhood of −∞, 265
neighborhood of∞, 265
neighborhood system, 377
net area, 347
neutral element, 50
nondecreasing sequence, 510
nondecreasing set sequence, 494
nonincreasing sequence, 510
nonincreasing set sequence, 494
nonnegative element, 69
nonpositive element, 69
norm

Lp–norm on CCC ([a, b],R), 350
p-norm of Rn, 345
Euclidean norm, 327
sup–norm, 344
supremum norm, 344

norm associated with an inner product, 346
norm of uniform convergence, 418
norm on a vector space, 345
norm topology, 373
normed vector space, 345
not countable set, 215
null vector, 330
nullspace, 330
number

composite, 202
numbers

algebraic number, 286
integer, 24
integers, 167
irrational number, 26
natural numbers, 24, 167
rational numbers, 25
real numbers, 25, 255
transcendental number, 286

numerator, 172, 252

odd, 24, 172
one to one function, 144
onto function, 144
open cover, 444
open covering, 444

Lebesgue number, 446
open exterior, 375
open exterior (topological space), 375
open interval, 27, 70

open neighborhood (metric space), 367
open set, 367

trace, 381
open set (topological space), 372
open sets in a subspace, 382
operator

linear, 468
positive linear, 468

or
exclusive, 24
inclusive, 24

order induced by positive cone, 69
ordered field, 253
ordered integral domain, 69

absolute value, 75
ordered pair, 126
ordering

partial, 130
origin, 238

parallelepiped, 239
parallelepiped, n-dimensional, 492
partial order

reflexive, 130
strict, 130

partial order relation, 130
partial ordering, 130

after, 130
before, 130

partially ordered set, 130
partition, 22, 39, 233
partitioning, 22, 233
Pascal triangle, 184
perfect square, 275
period, 25
period length, 25
permutation, 422

infinite, 422
pigeonhole principle, 214
point of accumulation, 387
pointwise convergence, 415
polynomial, 154

degree, 155
root, 155

POset, 130
maximal element, 452
maximum, 452
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minimal element, 452
minimum, 452

positive cone, 68
positive element, 69
positive linear operator, 468
power, 182
power set, 22
predicate, 85
preimage, 141
preimage function, 141
premise, 96
prime, 202

relatively, 203
prime factor, 202
prime factorization, 202
prime number, 202
principle of mathematical induction, 44, 169
principle of strong mathematical induction, 169
product, 180
projection, 336
projection on coordinates i1, i2, . . . , im , 337
proof, 114

indirect proof, 71
indirect proof by contrapositive, 42
proof by counterexample, 52

proof by cases, 20
proof by counterexample, 52
proposition, 84
proposition function, 85
punctured neighborhood, 387

quotient, 172, 252, 480
quotient (division algorithm), 195

range, 135
rational cut, 486
rational number, 26, 255

lowest terms, 26, 274
real number, 26
real numbers, 255
real–valued function, 136

continuous, 271
rearrangement, 423
recurrence relation, 43
recursion, 43
reflexive, 127
reflexive partial order, 130

related items x and y, 127
relation, 127

antisymmetric, 127
empty, 128
equivalence relation, 128
equivalent items, 128
inverse, 131
linear ordering, 131
partial order, 130
reflexive, 127
symmetric, 127
total ordering, 131
transitive, 127

relatively prime, 203
remainder, 195, 480
reordering, 423
repeating decimal, 25, 283
replacement principle for statements, 100
restriction of a function, 152
right inverse, 149
ring

cancellation rule, 62
commutative, with unit, 60
homomorphism, 179
ideal, 198
integral domain, 63
quotient, 198
zero divisor, 62

ring homomorphism, 179
ring of sets, 235
root of a polynomial, 155
rule of inference, 114

scalar, 334
scalar product, 330
second axiom of countability, 379
second countable, 379
semigroup, 50
sequence, 33, 158

almost all indices, 223
decreasing, 510
eventually all indices, 223
eventually true, 223
finite, 34, 222
finite subsequence, 34, 223
increasing, 510
index set, 33
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infimum, 262
infinite, 34, 222
nondecreasing, 510
nonincreasing, 510
partial sums, 277
real–valued, 277
start index, 33, 158
strictly decreasing, 510
strictly increasing, 510
subsequence, 34, 158
supremum, 262
tail set, 287

sequence compact, 442
sequence continuous function, 273, 402
sequentially compact, 442
series, 159, 277

absolute convergence, 424
alternating, 426
alternating harmonic, 426
conditionally convergent, 425
convergence, 277
harmonic, 426
limit, 277
rearrangement, 423
reordering, 423

set, 14
bounded, 388
compact, 444
complete, 392
countable, 215
countably infinite, 215
cover, 444
covering, 444
dense, 26
diameter, 388
difference, 18
difference set, 18
disjoint, 17, 39
equality, 16
finite, 214
finite subcover, 444
finite subcovering, 444
infinite, 214
intersection, 17
limit, 495
limit inferior, 495

limit superior, 495
linearly ordered, 131
monotone sequence, 494
mutually disjoint, 17, 39
nondecreasing sequence, 494
nonincreasing sequence, 494
not countable, 215
open cover, 444
open covering, 444
partially ordered, 130
POset, 130
proper subset, 16
proper superset, 16
setbuilder notation, 14
size, 23, 214
strict subset, 16
strict superset, 16
strictly decreasing sequence, 494
strictly increasing sequence, 494
subset, 16
superset, 16
symmetric difference, 18
totally ordered, 131
uncountable, 215
union, 16, 17

sets
limit, 299
limit inferior, 299
llimit superior, 299
ring, 235

sigma–algebra, 236
simple statement, 88
size, 23, 214
source, 134
span, 335
standard basis, 338
start index, 33, 158
statement, 84

logical equivalence, 89, 93
replacement principle, 100

statement function, 85
strict partial order, 130
strictly decreasing sequence, 510
strictly decreasing set sequence, 494
strictly increasing sequence, 510
strictly increasing set sequence, 494
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strong induction
proof by, 169

structure compatible functions, 59
subgroup, 57
sublinear functional, 459
subsequence, 34, 158

finite, 34, 223
subspace

metric, 380
open sets, 382
topological, 382

subspace (of a vector space), 330
subspace, generated, 335
subsript, 35
sum, 180, 329
sup–norm, 344
sup–norm displacement distance, 363
supremum, 77
supremum norm, 344
supremum of a family, 262
supremum of a sequence, 262
surjection, 144
surjective function, 144
symmetric, 127

T2 space, 368
tail set, 287
target, 134
tautology, 91
theorem, 115
topological space, 372

boundary, 375
boundary point, 375
continuous function, 407
first axiom of countability, 378
first countable, 378
open set, 372
second axiom of countability, 379
second countable, 379

topological spaces
exterior point, 375
inner point, 375
interior point, 375
open exterior, 375

topological subspace, 382
topology, 372

discrete topology , 373

generated by metric, 373
generated by norm, 373
indiscrete topology , 374
induced by metric, 373
induced by norm, 373
metric topology, 373
norm topology , 373
subspace, 382

total ordering relation, 131
totally bounded, 435
totally ordered set, 131
trace, 380
transcendental number, 286
transitive, 127
transpose, 139, 324
transposed matrix, 324
triangle inequality, 28, 45
truth table, 89
truth value, 84

unary operation, 150
unary operator, 89
uncountable set, 215
uncountably many, 215
uniform continuity, 410
uniform convergence, 415

metric, 418
norm, 418

uniformly continuous, 409
union

family of sets, 38
subsets of sets, 38

unique existential quantification, 109
unique existential quantifier, 109
universal quantification, 108
universal quantifier, 108
universal set, 18
universe of discourse, 85
UoD (universe of discourse), 85
upper bound, 76

valid assertion, 114
vector, 222

Euclidean norm, 325
length , 325
norm, Euclidean, 327
scalar product, 325
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sum, 325, 329
transpose, 139

vector (element of a vector space), 329
vector space, 323, 329

algebraic dual, 456
basis, 338
dual, 456
normed, 345

vector, n–dimensional, 323

well-ordering principle
extended, 194

xor, 94

Young’s inequality, 351

zero divisor, 62
zero element, 330
zero function, 137
zero polynomial, 155
zero vector, 330
ZL property (Zorn’s Lemma), 453
Zorn’s Lemma, 453
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