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1 Before You Start

“All models are wrong, but
some are useful”.

Attributed to the statistician George E. P. Box (1919-
2013)

This quote certainly applies to stochastic models in mathematical finance. The price of financial
instruments such as stocks, bonds and stock options is usually assumed to be a Markov process,
i.e., the future development of those prices does not depend on their past development, but only on
their current value. As debatable as it is to completely ignore the history of a stock when predicting
its future, those stochastic models are in wide use by institutions and individuals that trade financial
securities.

Consider how far we have come in the last 120 years. In 1900 the French mathematician Louis
Bachelier published his thesis, [1], Théorie de la spéculation, in which he modeled stock price as
a Brownian motion. As a consequence, stock prices would be negative with positive probability.
Today even the most basic models involving the pricing of stock options such as puts and calls are
much improved in that they prevent stock prices from ever becoming negative.

This course attempts to convey the basics of continuous time stochastic models in mathematical
finance. Unfortunately this is not possible in any reasonable manner without the concept of con-
tinous time martingales, and those again need a very sophisticated understanding of conditional
probabilities and conditional expectations. Accordingly, a substantial part of these lecture notes is
dedicated to conveying the necessary material. Much of which usually is taught in a probability the-
ory for beginning graduate students. Thus proofs, even where they are given, are often considered
optional.

1.1 About This Document

Remark 1.1 (The purpose of this document). The intent is to put some core definitions and theorems
into these lecture notes, in particular, if there is a substantial difference in notation and/or presen-
tation to that used in the text for this class, [11] Shreve, Steven: Stochastic Calculus for Finance II:
Continuous-Time Models. O
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Remark 1.2 (Acknowledgements). I am indepted to Prof. Dikran Karagueuzian from the Depart-
ment of Mathematical Sciences at Binghamton University for sharing his notes from teaching this
class at an earlier time. [J
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2 Preliminaries about Sets, Numbers and Functions

Introduction 2.1. You find here a range of mathematical definitions and facts that you should be
familiar with. [

The student should read this chapter carefully, with the expectation that it contains material
that they are not familiar with, as much of it will be used in lecture without comment. Very

likely candidates are power sets, a function f : X — Y where domain X and codomain Y
are part of the definition.

2.1 Sets and Basic Set Operations

Introduction 2.2. This first subchapter of ch.2 is different from the following ones in that the treat-
ment of sets given here is sufficiently exact for a PhD in math unless s/he works in the areas of
logic or axiomatic set theory. The only exception is the end of the chapter where the preliminary
definition of the size of a set (def.2.10 on p.14) needs to refer to finiteness.

Ask a mathematician how her or his Math is different from the kind of Math you learn in high
school, in fact, from any kind of Math you find outside textbooks for mathematicians and theoretical
physicists. One of the answers you are likely to get is that Math is not so much about numbers but
also about other objects, among them sets and functions. Once you know about those, you can
tackle sets of functions, set functions, sets of set functions, ... 0O

An entire book can be filled with a mathematically precise theory of sets. ! For our purposes the
following “naive” definition suffices:

Definition 2.1 (Sets). A set is a collection of stuff called members or elements which satisfies the
following rules: The order in which you write the elements does not matter and if you list an
element two or more times then it only counts once.

We write a set by enclosing within curly braces the elements of the set. This can be done by listing
all those elements or giving instructions that describe those elements. For example, to denote by X
the set of all integer numbers between 18 and 24 we can write either of the following:

X = {18,19,20,21,22,23,24} or X := {n:nisanintegerand 18 < n < 24}

Both formulas clearly define the same collection of all integers between 18 and 24. On the left the
elements of X are given by a complete list, on the right setbuilder notation, i.e., instructions that
specify what belongs to the set, is used instead.

It is customary to denote sets by capital letters and their elements by small letters but this is not a
hard and fast rule. You will see many exceptions to this rule in this document.

We write 1 € X to denote that an item x; is an element of the set X and z2 ¢ X to denote that an
item z is not an element of the set X. Occasionally we follow Shreve’s example and write z; in X
and 75 ¢ X. 2

For the above example we have 20 € X,27 -6 € X, 38 ¢ X, Jimmy' ¢ X. O

!See remark 2.2 (“Russell’s Antinomy”) below.
*This alternate notation is particularly likely to appear when sets of measurable functions (see Definition 4.8 (Measur-
able function) on p.54) are involved.
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Example 2.1 (No duplicates in sets). The following collection of alphabetic letters is a set:
S1 ={a,e,i,0,u}

and so is this one:
Sy ={a,e,e,i,i,i,0,0,0,0,u,u,u,u,u}

Did you notice that those two sets are equal? [J

Remark 2.1. The symbol n in the definition of X = {n : nisanintegerand 18 < n < 24} isa
dummy variable in the sense that it does not matter what symbol you use. The following sets all
are equal to X:

{z : zis an integer and 18 < x < 24},
{a: aisaninteger and 18 = « < 24},
{3 :3isanintegerand 18 =< 3 = 24} O

Remark 2.2 (Russell’s Antinomy). Care must be taken so that, if you define a set with the use of
setbuilder notation, no inconsistencies occur. Here is an example of a definition of a set that leads
to contradictions.

(2.1) A :={B:Bisasetand B ¢ B}

What is wrong with this definition? To answer this question let us find out whether or not
this set A is a member of A. Assume that A belongs to A. The condition to the right of the colon
states that A ¢ A is required for membership in A, so our assumption A € A must be wrong. In
other words, we have established “by contradiction” that A ¢ A is true. But this is not the end of it:
Now that we know that A ¢ A it follows that A € A because A contains all sets that do not contain
themselves.

In other words, we have proved the impossible: both A € A and A ¢ A are true! There is no
way out of this logical impossibility other than excluding definitions for sets such as the one given
above. Itis very important for mathematicians that their theories do not lead to such inconsistencies.
Therefore, examples as the one above have spawned very complicated theories about “good sets”.
It is possible for a mathematician to specialize in the field of axiomatic set theory (actually, there
are several set theories) which endeavors to show that the sets are of any relevance in mathematical
theories do not lead to any logical contradictions.

The great majority of mathematicians take the “naive” approach to sets which is not to worry
about accidentally defining sets that lead to contradictions and we will take that point of view in
this document. [

Definition 2.2 (empty set). () or {} denotes the empty set. Itis the one set that does not contain any
elements. [J

Remark 2.3 (Elements of the empty set and their properties). You can state anything you like about
the elements of the empty sets as there are none. The following statements all are true:
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a: If z € () then z is a positive number.
If z € () then  is a negative number.
c¢:  Define a ~ b if and only if both are integers and a — b is an even number.
For any z,y, z € () it is true that
cl:x ~ 2z,
2:if z ~ y theny ~ x,
3:ifz ~yandy ~ zthen z ~ z.
d: Let Abeany set. If x € () then z € A.

As you will learn later, c1+c2+¢3 means that “~” is an equivalence relation (see def.?? on p.??) and
d: means that the empty set is a subset (see the next definition) of any other set. [

Definition 2.3 (subsets and supersets). We say that a set A is a subset of the set B and we write
A C B if any element of A also belongs to B. Equivalently we say that B is a superset of the set A
and we write B O A . We also say that B includes A or A is included by B. Note that A C A and
() C Ais true for any set A.

B

()

Figure 2.1: Set inclusion: AC B, BD A

If A C Bbut A # B, ie, there is at least one = € B such that z ¢ A, then we say that A is a strict
subset or a proper subset of B. We write “A C B” or “A C B”. Alternatively we say that B is a
strict superset or a proper superset of A and we write “B D A”)or “B D> A”. O

Two sets A and B are equal means that they both contain the same elements. In other words, A = B
iff AC Band B C A.

“iff” is a short for “if and only if”: P iff Q for two statements P and Q means that if P is valid then
Qs valid and vice versa. 3

To show that two sets A and B are equal you show that
a.ifx € Athenz € B,
b.if z € Bthenx € A.

Definition 2.4 (unions, intersections and disjoint unions). Given are two arbitrary sets A and B.
No assumption is made that either one is contained in the other or that either one contains any
elements!

*A formal definition of “if and only if” will be given in def.?? on p.?? where we will also introduce the symbolic
notation P < Q. Informally speaking, a statement is something that is either true or false.
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The union A U B (pronounced "A union B") is defined as the set of all elements which belong to A
or B or both. *

The intersection A N B (pronounced "A intersection B") is defined as the set of all elements which
belong to both A and B.

We call A and B disjoint , also mutually disjoint , if AN B = (. We then usually write A ¥ B
(pronounced “A disjoint union B”) rather than AU B. O

AU B: AUBUC: AN B: ANnBNC:

» @ v &

Figure 2.2: Union and intersection of sets

Remark 2.4. It is obvious from the definition of unions and intersections and the meaning of the
phrases “ all elements which belong to A or B or both”, “all elements which belong to both A and
B” and “A C B if any element of A also belongs to B” that the following is true for any sets A, B
and C.

(2.2) ANB C A C AUB,
(2.3) ACB = AnNB=Aand AUB = B,
(2.4) ACB = ANC C BNnCand AUC C BUC.

The symbol = stands for “allows us to conclude that”. So A € B = AN B = A means
“From the truth of A C B we can conclude that AN B = A is true”. Shorter: “From A C B
we can conclude that AN B = A”. Shorter: “If A C B then it follows that AN B = A”.
Shorter: “If A C B then AN B = A”. More technical: A C B implies AN B = A.

You will learn more about implication in ch.?? of this document and in ch.3 (Some Points of Logic)
of [4] Beck/Geoghegan: The Art of Proof. [

Definition 2.5 (set differences and symmetric differences). Given are two arbitrary sets A and B.
No assumption is made that either one is contained in the other or that either one contains any
elements!

*We could have shortened the phrase “all elements which belong to A or B or both” to “all elements which belong
to A or B”, and we will almost always do so because it is understood among mathematicians that “or” always means
at least one of the choices. If they mean instead exactly one of the choices #1, #2, ... #n then they will use the phrase
“either #1 or #2 or ...or #n. See rem?? on p.??. We will also see in a moment that there is a special symbol AA B which
denotes the items which belong to either A or B (but not both).
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The difference set or set difference A \ B (pronounced "A minus B") is defined as the set of all
elements which belong to A but not to B:

(2.5) A\B:={zxe€A:x ¢ B}

The symmetric difference AA B (pronounced "A delta B") is defined as the set of all elements which
belong to either A or B but not to both A and B:

(2.6) AAB:=(AUB) \ (ANB) O
Definition 2.6 (Universal set). Usually there always is a big set 2 that contains everything we are

interested in and we then deal with all kinds of subsets A C €. Such a set is called a “universal”
set. [

For example, in this document, we often deal with real numbers and our universal set will then be
R. ° If there is a universal set, it makes perfect sense to talk about the complement of a set:

Definition 2.7 (Complement of a set). The complement of a set A consists of all elements of {2 which
do not belong to A. We write AL, or CA In other words:

2.7) AL=CA=Q\A={weQ:a¢ A} O

A\ B: AAB: Universal set: AL

: ¢ : @

Figure 2.3: Difference, symmetric difference, universal set, complement

Remark 2.5. Note that for any kind of universal set (2 it is true that

(2.8) o =0 =00

Example 2.2 (Complement of a set relative to the unit interval). Assume we are exclusively dealing
with the unit interval, i.e., Q =[0,1] ={x € R: 0 < 2z < 1}. Leta € [0,1] and § > 0 and

(2.9) A={ze€0,1]:a—d <z <a+d}

°R is the set of all real numbers, i.e., the kind of numbers that make up the z-axis and y-axis in a beginner’s calculus
course (see ch.2.2 (“Classification of numbers”) on p.15).
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the d-neighborhood ¢ of a (with respect to [0, 1] because numbers outside the unit interval are not
considered part of our universe). Then the complement of A is

AC = {ze0,]]:z<a—0orx=a+d6}. O

Draw some Venn diagrams to visualize the following formulas.

Proposition 2.1. Let A, B, X be subsets of a universal set Q) and assume A C X. Then

(2.10a) AUl =4 AnD=10
(2.10b) AUQ =Q; ANQ=A
(2.10¢) AuAb=0; Anat=y
(2.10d) AAB = (A\ B)w (B\ A)
(2.10e) A\A=0

(2.10f) AND = A; ANA =10
(2.10g) XAA=X\A

(2.10h) AUB = (AAB)W (AN B)
(2.10i) ANB=(AUB)\ (AAB)
(2.10j) AAB =10 ifandonlyif B= A

PROOF: The proof is left as exercise 2.2. See p.31. W

Next we give a very detailed and rigorous proof of a simple formula for sets. The reader should
make an effort to understand it line by line.

Proposition 2.2 (Distributivity of unions and intersections for two sets). Let A, B, C be sets. Then

(2.11) (AUB)NC =(ANC)U (BN CO),
(2.12) (ANB)UC =(AUC)n (BUOQ).

PROOF: We only prove (2.11). The proof of (2.12) is left as exercise 2.1.

PROOF of “C”: Letz € (A U B) N C. It follows from (2.2) on p.10 thatz € (A U B),ie.,x € Aor
x € B (or both). It also follows from (2.2) that x € C. We must show thatz € (A N C) U (B n C)
regardless of whether v € Aor x € B.

Case 1: z € A. Since also z € C, we obtain x € ANC, hence, againby (2.2),z € (AN C) U (BN C),
which is what we wanted to prove.

Case 2: v € B. We switch the roles of A and B. This allows us to apply the result of case 1, and we
againobtainz € (A N C) U (B N C).

PROOF of “D": Letx € (AN C) U (BN C),ie,z € AN Corx € B N C (or both). We must
show that x € (A U B) N C regardless of whetherx € A N Corzc B N C.

Casel: z € A N C. It follows from A C A U Band (24) onp.10 thatx € (A U B) N C,and we
are done in this case.

®Neighborhoods of a point will be discussed in the chapter on the topology of R™ (see (??) on p.??). In short, the
d—neighborhood of a is the set of all points with distance less than ¢ from a.
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Case 2: x € B N C. This time it follows from A C A U Bthatz € (A U B) N C. This finishes the
proof of (2.11).

Epilogue: The proofs both of “C” and of “2>” were proofs by cases, i.e., we divided the proof into
several cases (to be exact, two for each of “C” and “2”), and we proved each case separately. For
example we proved that z € (AU B) N C implies z € (AN C) U (BN C) separately for the cases
xz € Aand z € B. Since those two cases cover all possibilities for = the assertion “if v € (AUB)NC
thenz € (ANC)U(BNC)”is proven. W

Proposition 2.3 (De Morgan’s Law for two sets). Let A, B C . Then the complement of the union is
the intersection of the complements, and the complement of the intersection is the union of the complements:

(2.13) a. (AUB)t = ACn B b. (AnB) = Abu Bt

PROOF of a:

1) First we prove that (AU B)E c At n Be:

Assume that z € (AU B)E. Then z ¢ AU B, which is the same as saying that x does not belong
to either of A and B. That in turn means that = belongs to both AP and BP and hence also to the
intersection A® N BE.

2) Now we prove that (AU B)E > At n B

Let z € AN BL. Then z belongs to both AP BC, hence neither to A nor to B, hence = ¢ A U B.
Therefore = belong to the complement of A U B. This completes the proof of formula a.

PROOF of b:

The proof is very similar to that of formula a and left as an exercise. W

Formulas a through g of the next proposition are very useful. You are advised to learn them by
heart and draw pictures to visualize them. You also should examine closely the proof of the next
proposition. It shows how a proof which involves 3 or 4 sets can be split into easily dealt with cases.

Proposition 2.4. Let A, B, C, <) be sets such that A, B,C' C ). Then
a. (AAB)AC = AA(BAC)
b. AAN) = 0ANA = A
c. ANA =0
d AAB = BAA

Further we have the following for the intersection operation:
e. (ANB)NC = ANn(BNC)
f. AnNQ =0QnA =4
g8 ANDB = BNA

And we have the following interrelationship between A\ and N:
h. AN(BAC) = (ANB)A(ANCQC)

PROOF:

Only the proof of a is given here. It is very tedious and there is a much more elegant proof, but that
one requires knowledge of indicator functions 7 and of base 2 modular arithmetic (see, e.g., [4] B/G
(Beck/Geoghegan) ch.6.2).

“Indicator functions will be discussed in ch.3.3 on p.41 and in ch.?? on p.??.
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By definition € UAV if and only if eitherx € Uorz € V, i.e,

(either) [r e Uandz ¢ V]or [z € Vandz ¢ U |

Hence x € (AAB)AC means either x € (AAB)orx € C, ie,

either [z € A,z ¢ Borz € B,z ¢ A] orz € C,i.e., wehave one of the following four combinations:

a. z€A x¢B x¢C
b. ¢ A ze€B x2¢C
c¢. z€A xz€B ze(C
d. z¢A x¢B ze€C

and z € AA(BAC) means either z € Aorz € (BAC), i.e,
eitherx € Aor [:1: eEBx¢CorxeC,x¢ B ] ,i.e., we have one of the following four combinations:

1. z€¢A zeB zeC
2. €A z¢B z¢C
3. z¢A ze€B z¢C
4. ¢ A z¢B z€C
We have a perfect match a <+ 2, b <+ 3, ¢ <+ 1, d <+ 4. and this completes the proof of a.
[ |

Definition 2.8 (Partition). Let 2 be a set and 2 C 22. We call 2 a partition or a partitioning of (2 if

a. ANB = {forany two A, B € 2 such that A # B, i.e., 2 consists of mutually disjoint
subsets of (2 (see def.2.4),

b. Q= @[A:Aem}. 0

Example 2.3.

a. Forn e Zlet A, := {n}. Then A := {A, : n € Z} is a partition of Z. A is not a partition
of N because not all its members are subsets of N and it is not a partition of Q or R. The
reason: % € Q and hence % € R, but % ¢ A, for any n € Z, hence condition b of def.2.8 is
not satisfied.

b. ForneNletB, :=[n% (n+1)?[= {r€R:n?> <z < (n+1)?}. ThenB := {B, : n € N}
is a partition of [1,00[. O

Definition 2.9 (Power set). The power set
oM = {A:ACQ)

of a set (2 is the set of all its subsets. Note that many older texts also use the notation B(2) for the
power set. [

Remark 2.6. Note that () € 2 for any set 2, even if Q = (: 2 = {}. It follows that the power set of
the empty set is not empty. [J

Definition 2.10 (Size of a set).
a. Let X be a finite set, i.e., a set which only contains finitely many elements. We write | X |
for the number of its elements, and we call }X ’ the size of the set X.
b. For infinite, i.e., not finite sets Y, we define |Y| := co. O

A lot more will be said about sets once families are defined.
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2.2 Numbers

We start with an informal classification of numbers. It is not meant to be mathematically exact. We
will give exact definitions of the integers, rational numbers and real numbers in chapter ?? (The
Real Numbers).

Definition 2.11 (Integers and decimal numerals). A digit or decimal digit Is one of the numbers
0,1,2,3,4,5,6,7,8,9.

We call numbers that can be expressed as a finite string of digits, possibly preceded by a minus
sign, integers. In particular we demand that an integer can be written without a decimal point.
Examples of integers are

(2.14) 3, —29, 0, 3-10% —1, 2.9, 12345678901234567890, —2018.

Note that 3 - 105 = 3000000 is a finite string of digits and that 2.9 equals 3 (see below about the
period of a decimal numeral). We write Z for the set of all integers.

Numbers in the set N = {1, 2,3, ... } of all strictly positive integers are called natural numbers.

An integer n is an even integer if it is a multiple of 2, i.e., there exists j € Z such that n = 2j, and it
is an odd integer otherwise. One can give a strict proof that n is odd if and only if there exists j € Z
such thatn = 25 + 1.

A decimal or decimal numeral is a finite or infinite list of digits, possibly preceded by a minus sign,
which is separated into two parts by a point, the decimal point. The list to the left of the decimal
point must be finite or empty, but there may be an infinite number of digits to its right. Examples
are

(2.15) 3.0, —29.0, 0.0, —0.75, .3, 2.749, 7 = 3.141592....., —34.56.

The bar on top of the rightmost part of a decimal such as “.3” means that this part should be
repeated over and over again, i.e., .3 = 0.33333333333... and 1.234567 = 1.234567567567 . . ..

Any integer can be transformed into a decimal numeral of same value by appending the pattern
“.0” to its right. For example, the integer 27 can be written as the decimal 27.0. [

Definition 2.12 (Real numbers). We call any kind of number which can be represented as a decimal
numeral, a real number. We write R for the set of all real numbers. It follows from what was
remarked at the end of def.2.11 that integers, in particular natural numbers, are real numbers. Thus
we have the following set relations:

(2.16) NCZzCcR O

We next define rational numbers.

Definition 2.13 (Rational numbers). A number that is an integer or can be written as a fraction of
integers, i.e., as 7> where m,n € Zand n # 0, is called a rational number. We write Q for the set of
all rational numbers. [
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We next define rational numbers.

Examples of rational numbers are

3 1 9 7 13 a 2
3075, —1, .3, 7,16, 13, -5, 2.999, —372.

Note that a mathematician does not care whether a rational number is written as a fraction

numerator
denominator

or as a decimal numeral. The following all are representations of one third:

(2.17) 0.3 = .3 = 0.33333333333... = £ = =% =

(=] ]

)

and here are several equivalent ways of expressing the number minus four:

— — 0 — 12 _ 4 _ -4 _ 12 __ _ 400
(2.18) —4 = 4000 = -39 = 12 = 4 — =t - 12 _ 400

There are real numbers which cannot be expressed as integers or fractions of integers.

Definition 2.14 (Irrational numbers). We call real numbers that are not rational irrational numbers.
They hence fill the gaps that exist between the rational numbers. In fact, there is a simple way
(but not easy to prove) of characterizing irrational numbers: Rational numbers are those that can
be expressed with at most finitely many digits to the right of the decimal point, including repeating
decimals. You can find the underlying theory and exact proofs in ch.?? (Decimal Expansions of Real
and Rational Numbers). Irrational numbers must then be those with infinitely many decimal digits
without a continually repeating pattern. [

Example 2.4. To illustrate that repeating decimals are in fact rational numbers we convert z = 0.145
into a fraction:

99z =100x —z = 14.545 —0.145 = 14.4
It follows that = = 144/990, and that is certainly a fraction. [

Remark 2.7. Examples of irrational numbers are v/2 and 7. A proof that v/2 is irrational (actually
that /2 is irrational for any integer n = 2) is given in prop.?? on p.?2. O

Definition 2.15 (Types of numbers). We summarize what was said sofar about the classification of
numbers:

N:={1,2,3,...} denotes the set of natural numbers.

Z:={0,+1,£2,4£3,... } denotes the set of all integers.

Q:={n/d:n € Z,d € N} denotes the set of all rational numbers.

R := {all integers or decimal numbers with finitely or infinitely many decimal digits} de-
notes the set of all real numbers.

R\ Q = {all real numbers which cannot be written as fractions of integers} denotes the set
of all irrational numbers. There is no special symbol for irrational numbers. Example: V2
and 7 are irrational. O
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Here are some customary abbreviations of some often referenced sets of numbers:

No := Zy :=Z>¢ :={0,1,2,3,...} denotes the set of nonnegative integers,
Ri := R>p := {z € R:z 2 0} denotes the set of all nonnegative real numbers,
Rt := Ryo := {z € R: 2 > 0} denotes the set of all positive real numbers,

Ry = {r€R:z#0}. O

Definition 2.16 (Intervals of Numbers 8 ). We use the following notation for intervals of real num-
bers a and b:

[a,b] := {z € R:a < z < b} is called the closed interval with endpoints a and b.

la,b[ ;= {x € R:a < x < b} is called the open interval with endpoints a and b.

[a,b] ;= {r € R:a < x < b}and ]a,b] := {x € R: a < z < b} are called half-open intervals with
endpoints a and b.

The symbol “o0” stands for an object which itself is not a number but is larger than any (real)
number, and the symbol “—o00” stands for an object which itself is not a number but is smaller than
any number. We thus have —oo < 2 < oo for any number z. This allows us to define the following
intervals of “infinite length”:

|—o0,al :={z €eR:x=<a}, | —o0,a[:={zr €R:x<a}l,

2.19
@19) Ja,o0[:=={zx € R:x >a}, [a,00[:={x €R:x=a}, |—o0,00[:=R
Finally we define [a, b] := |a,b[ :=]a,b] := @ fora = band [a,b] := O fora >b. O

Notations 2.1 (Notation Alert for intervals of integers or rational numbers).

It is at times convenient to also use the notation [...], |...[, [...[, |...], for intervals of
integers or rational numbers. We will subscript them with Z or Q. For example,

[3,n]NZ = {keZ:3<k<n),
|—00,7]NZ = {k€Z:k<T} = Z<y,

Ja,b[NQ = {¢€Q:a < q<b}.

An interval which is not subscripted always means an interval of real numbers, but we
will occasionally write, e.g., [a,b]r rather than [a, b], if the focus is on integers or rational
numbers and an explicit subscript helps to avoid confusion. [

Definition 2.17 (Absolute value, positive and negative part). For a real number x we define its

ifx >0,
absolute value: |z| = v 1 T=
—x ifz <0.
z ifz =0
ositive part: "7 = max(z,0) = =7
P P (,0) {O ifz < 0.
ti ¢ _ (—2,0) —z ifx 20,
negative part: 1~ = max(—z,0) = '
8 P 0 ifz > 0.

8The following will be generalized in def.?? on p.?? to so called ordered integral domains.
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If f is a real-valued function then we define the functions | f|, /T, f~ argument by argument:
fl@) = 1f @] ) = (f@)7 @)= (f@). O

For completeness we also give the definitions of min and max.

Definition 2.18 (Minimum and maximum). For two real number z, y we define

. v ifx 2y,
maximum: zVy = max(z,y) =

y ifx <.

. . y ifx =y,
minimum: 2z Ay = min(z,y) = .

x ifzx <.

If f and g is are real-valued function then we define the functions f V ¢ = max(f,g)and f A g =
min(f, g) argument by argument:

fvg(@) = fz)Vg(x) = max (f(z),9(x)), fAglx) = f(z)Ag(z) = min(f(z),g(z)). O

Remark 2.8. You are advised to compute |z|,z", 2~ for z = —5,2 = 5,2 = 0 and convince yourself
that the following is true:

JI:1U+

lz| =21 + 27,

Thus any real-valued function f satisfies
f=r-1r,
fl=r"+1,

Get a feeling for the above by drawing the graphs of |f|, fT, f~ for the functon f(z) = 2z. O

Remark 2.9. For any real number x we have
(2.20) Va2 = |z|. O
Assumption 2.1 (Square roots are always assumed nonnegative). Remember that for any number

a it is true that
a-a = (—a)(—a) = a? eg., 22=(-2?%=4,

or that, expressed in form of square roots, for any number b = 0

(+VO)(+Vb) = (=Vb)(~Vb) =b.

We will always assume that “v/b” is the positive value unless the opposite is explicitly
stated.

Example: V9 =+43,not—3. O
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Proposition 2.5 (The Triangle Inequality for real numbers). The following inequality is used all
the time in mathematical analysis to show that the size of a certain expression is limited from above:

(2.21) Triangle Inequality : |a + b| < |a| + |b]

This inequality is true for any two real numbers a and b.

PROOF:

It is easy to prove this: just look separately at the three cases where both numbers are nonnegative,
both are negative or where one of each is positive and negative. W

2.3 A First Look at Functions and Sequences

The material on functions presented in this section will be discussed again and in greater detail in
chapter ?? (Functions and Relations) on p.?2.

Introduction 2.3. You are familiar with functions from calculus. Examples are fi(z) = /z and
fo(z,y) = In(zx — y). Sometimes f;(x) means the entire graph, i.e., the entire collection of pairs
(z,/z) and sometimes it just refers to the function value /z for a “fixed but arbitrary” number z.
In case of the function f>(x): Sometimes f>(x, y) means the entire graph, i.e., the entire collection of
pairs ((z,y),In(z — y)) in the plane. At other times this expression just refers to the function value
In(x — y) for a pair of “fixed but arbitrary” numbers (z,y).

To obtain a usable definition of a function there are several things to consider. In the following
fi(z) and fa(x,y) again denote the functions fi(z) = /x and fa(z,y) = In(z — y).

a. The source of all allowable arguments (z—values in case of f(z) and (z, y)-values in case
of fa(x,y)) will be called the domain of the function. The domain is explicitly specified
as part of a function definition and it may be chosen for whatever reason to be only
a subset of all arguments for which the function value is a valid expression. In case
of the function f;(z) this means that the domain must be restricted to a subset of the
interval [0, oo because the square root of a negative number cannot be taken. In case of
the function f>(z,y) this means that the domain must be restricted to a subset of { (z,y) :
x,y € Rand z —y > 0} because logarithms are only defined for strictly positive numbers.

b. The set to which all possible function values belong will be called the codomain of the

function. As is the case for the domain, the codomain also is explicitly specified as part
of a function definition. It may be chosen as any superset of the set of all function values
for which the argument belongs to the domain of the function.
For the function fi(x) this means that we are OK if the codomain is a superset of the
interval [0, oo[. Such a set is big enough because square roots are never negative. It is OK
to specify the interval | — 3.5, 00| or even the set R of all real numbers as the codomain. In
case of the function fa(x,y) this means that we are OK if the codomain contains R. Not
that it would make a lot of sense, but the set R U { all inhabitants of Chicago } also is an
acceptable choice for the codomain.
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c. A function y = f(z) is not necessarily something that maps (assigns) numbers or pairs
of numbers to numbers. Rather domain and codomain can be a very different kind of
animal. In chapter ?? on logic you will learn about statement functions A(x) which assign
arguments = from some set %, called the universe of discourse, to statements A(z), i.e.,
sentences that are either true or false.

d. Considering all that was said so far one can think of the graph of a function f(z) with
domain D and codomain C (see earlier in this note) as the set

Iy :={(z, f(z)) : 2 € D}.

Alternatively one can characterize this function by the assignment rule which specifies
how f(x) depends on any given argument z € D. We write “x — f(z)” to indicate this.
You can also write instead f(x) = whatever the actual function value will be.

This is possible if one does not write about functions in general but about specific func-
tions such as fi(z) = v/z and fa(z,y) = In(x — y). We further write

f:C—D

as a short way of saying that the function f(z) has domain C' and codomain D.

In case of the function fi(x) = /= for which we might choose the interval X :=[2.5,7]
as the domain (small enough because X C [0,00[) and Y := |1, 3] as the codomain (big
enough because 1 < \/z < 3 for any « € X) we specify this function as

either f1:[25,7] =]1,3; z—+x or f1:[257]—=]L3 f(z)=+ =

Let us choose U := {(z,y) : z,y € Rand 1 = z < 10 and y < —2} as the domain
and V' := [0, oo[ as the codomain for fa(x,y) = In(z — y). These choices are OK because
x —y 2 1forany (x,y) € U and hence in(x —y) = 0, i.e., fa(z,y) € V forall (z,y € U.
We specify this function as

either fo: U =V, (z,y)— In(z—y) or fo:U—=V, f(z,y)=Ih(z—-y). O

We incorporate what we noted above into this definition of a function.

Definition 2.19 (Function).
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A function f consists of two nonempty sets X and Y and an assignment rule = — f(x)
which assigns any 2 € X uniquely to some y € Y. We write f(x) for this assigned value
and call it the function value of the argument z. X is called the domain and Y is called
the codomain of f. We write

(2.22) f:X-=Y, x — f(x).

We read “a — b” as “a is assigned to b” or “a maps to b” and refer to — as the maps to
operator or assignment operator. The graph of such a function is the collection of pairs

(2.23) Iy = {(z,f(z)):x € X}. O

Remark 2.10. The name given to the argument variable is irrelevant. Let f1, fo, X,Y,U,V be as
defined in d of the introduction to ch.2.3 (A First Look at Functions and Sequences). The function

g :X =Y, p—p
is identical to the function f;. The function
g2:U =V, (t,8) — In(t —s)
is identical to the function f5 and so is the function
g3:U—=V, (s, t)—In(s—t).

The last example illustrates the fact that you can swap function names as long as you do it consis-
tently in all places. [J

We all know what it means that f(z) = v/ has the function g(z) = z? as its inverse function: f and
f~! cancel each other, i.e.,

Definition 2.20 (Inverse function).

Given are two nonempty sets X and Y and a function f : X — Y with domain X and
codomain Y. We say that f has an inverse function if it satisfies all of the following condi-
tions which uniquely determine this inverse function, so that we are justified to give it the
symbol f~1:

a. f7':Y — X,ie, f~! has domain Y and codomain X.

b. f7'(f(z)) = zforallz € X,and f(f *(y)) = yforallycY. O

Remark 2.11. You may recall that a function f has an inverse f~! if and only if f is “onto” or
surjective: for each y € Y there is at least one € X such that f(z) = y, and if f is “one-one” or
injective: for each y € Y there is at most one = € X such that f(z) =y. O
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Example 2.5. Be sure you understand the following;:
a. f:R—R; z — ¢® doesnot have an inverse f~!(y) = In(y) since its domain would have
to be the codomain R of f and In(y) is not defined for y < 0.
b. ¢g:R—]0,00[; * — €” has the inverse 7! :]0,00[ = R; ¢~ !(y) = In(y) since

Domg-1 = Cod, =10, 00, Cody— = Domy =R,

W) =y for 0 < y < oo, In(e”) =xforallz e R. O

Definition 2.21 (Restriction/Extension of a function). Given are three nonempty sets A, X and Y
such that A C X, and a function f : X — Y with domain X. We define the restriction of f to A as
the function

(2.24) f‘A :A—Y defined as f’A(:r) = f(x) forallz € A.

Conversely let f : A — Y and ¢ : X — Y be functions such that f = ¢ |4. We then call ¢ an
extension of fto X. O

2.4 Cartesian Products

We next define cartesian products of sets. ° Those mathematical objects generalize rectangles
[a1, b1] x [a2,b0] = {(z,y) 12,y ER,a1 Sz S byand ap Sy < by}
and quads
[a1,b1] X [a2,b2] X [a3,b3] = {(z,9,2) 1 2,y,2 €R,a1 Sw S bi,a2 Sy = brand ag < 2 = b}
Definition 2.22 (Cartesian Product). Let X and Y be two sets The set
(2.25) XxY ={(z,y):x e X,y Y}
is called the cartesian product of X and Y.
Note that the order is important: (z,y) and (y, x) are different unless z = y.

We write X? as an abbreviation forX x X.

This definition generalizes to more than two sets as follows: Let X, X», ..., X,, be sets. The set
(226) X1 xXg--- X Xn = {(.Tl,xg,... ,xn) 1T € Xj foreachj = 1,2,. . n}
is called the cartesian product of X1, X», ..., X,,.

We write X™ as an abbreviation forX x X x --- x X. O

Example 2.6. The graph I'y of a function with domain X and codomain Y (see def.2.23) is a subset
of the cartesian product X x Y. 0O

Example 2.7. The domains given in a and d of the introduction to ch.2.3 (A First Look at Functions
and Sequences) are subsets of the cartesian product

R? = RxR = {(z,9): 2,y €R} O

9See ch.?? (Cartesian Products and Relations) on p.?? for the real thing and examples.
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2.5 Sequences and Families

We now briefly discuss (infinite) sequences, subsequences, finite sequences and families.

Definition 2.23. Let n, be an integer and let let there be an item «; for each integer j = n, Such an
item can be a number or a set (the only items we are looking at for now). In other words, we have
an item z; assigned to each j € [n,,00[z. We write (2p)n>p, OF (25)52,,, OF Zn,, Tn,\ys Tn, s - - - fOI
such a collection of items and we call it a sequence with start index n,.

For example if uy, = k? for k € Z then then (ur)>_2 is the sequence of integers 4, 1,0, 1,4,9, 16, . . ..

The second example is a sequence of sets. If A; = [-1 — %, 1+ %] ={reR:-1- % Sz<1+ %}
then (A;),>3 is the sequence of intervals (of real numbers) [—3, 3], [-2,2], [-5,5],....

One can think of a sequence (z;);>,, in terms of the assignment i — z; and this sequence can then
be interpreted as the function

x : [y, 00[z —> suitable codomain; i+ (i) := x;,

where that “suitable codomain” depends on the nature of the items x;. In example 1 (uy = k2 for
k € Z) we could chose Z as that codomain, in example 2 (4; = [-1 — %, 1+ %]) we could choose 2R,

the power set of R.

We will occasionally also admit an “ending index” n* instead of oo, i.e., there will be an indexed

item z; for each j € [n,,n*]z. We then talk of a finite sequence, and we write (), <,<p+ OF

(azj);-‘;n* Of Ty, ,Tn, ,,---,%n for such a finite collection of items. If we refer to a sequence (z,,),
o

without qualifying it as finite then we imply that we deal with an infinite sequence, (x,);>,, .

If one pares down the full set of indices {n., n, + 1, n, +2,...} to a subset {n;, n2, ns,...} such
that n, < n; < ng < ng < ... then we call the corresponding thinned out sequence (z, j)jeN a
subsequence of the sequence (z,,),>,.-

If this subset of indices is finite, i.e., we have n, < n; < ne < --- < ng for some suitable K € N

then we call (2, )]K:1 a finite subsequence of the original sequence. [J

We will later define a stochastic process as a “family” (Z;).cr where I is an interval of real numbers
and each indexed item Z; is a random variable. Typical choices for I would be

I = [0,T](whereT >0), I = [0,00[, I = [to,T](Where0=t=T), ...

Here is the formal definition of a family.

Definition 2.24 (Indexed families). Let J and X be nonempty set and assume that

for each j € J there exists exactly one indexed item z; € X.

a. (xj)jeyis called an indexed family or simply a family in X.
b. Jis called the index set of the family.
c. Foreach e J, z,is called a member of the family (z;);c;. O

Some remarks:
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e A family is completely defined by the assignment j +— z;. In that sense a family behaves
like a function
F:J—X, g F(j) :==x;.

e jisadummy variable: (z;);cs and (zj)kres describe the same family as long as j — x; and
k — x}, describe the same assignment.
e Sequences (z,) : n € N are families with index set N.

2.6 Proofs by Induction and Definitions by Recursion

Introduction 2.4. The integers have a property which makes them fundamentally different from
the rational numbers (fractions) and the real numbers: Given any two integers m < n, there are
only finitely many integers between m and n. To be precise, there are exactly n —m — 1 of them. For
example, there are only 4 integers between 12 and 17: the numbers 13, 14, 15, 16. 'V

Therefore, given an integer n, we have the concept of its predecessor, n — 1, and its successor,
n + 1. This has some profound consequences. If we know what to do for a certain starting number
ko € Z (we call this number the base case), and if we can figure out for each integer k = ko what to
do for k + 1 if only we know what to do for &, then we know what to do for any k£ = ky! O

We make use of the above when defining a sequence by recursion. Here is a simple example.

Example 2.8. Let kg = —2, x, = 5 (base case), and z;+1 = z + 3 (i.e., we know how to obtain x4
just from the knowledge of ), then we know how to build the entire sequence

T o=br 1= 9+4+3=8 zg=x1+3=11, 21 =29+3 =14, ...,

The equation zj4; = x; + 3 which tells us how to obtain the next item from the given one is the
recurrence relation for that recursive definition. [J

n n
Example 2.9. Given is a sequence of sets A;, Ay, .... Forn € N we define |J A; and () A; recur-
j=1 j=1

sively as follows. 1!

1 n+1 n

(2.27) U4 = A, U4 = (UA4)Udnn,
j=1 j=1 j=1
1 n+1 n

(2.28) N4 = A, N 45 = (N 45) N 4w
j=1 j=1 j=1

n n 4
this tells us the meaning of |J A; and () A; for any natural number n. For example, () A4; is
j=1 j=1 i=1

10All of this will be made mathematically precise in ch.?? on p.??.
"' An “official” definition for unions and intersections of arbitrarily many sets (not just for finitely many) will be given
in def.3.2 on p.35.
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computed as follows.

A:Ah
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Remark 2.12. The discrete structure of the integers can also be used as a means to prove a collection
of mathematical statements P(ko), P(ko+1), P(ko+2), ... whichis defined for all integers k, starting
at ko € Z. Each P(k) might be an equation or an inequality for two numeric expressions that depend
on k. It could also be a relation between sets or it could be something entirely different. For example,

—_

e
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>ﬂA4 = ((AlﬁAQ)ﬁAg)ﬂA4. [l

n
n

<
Il
-

k k
P(k) could be the statement ( U Aj) N B = | (4;NB). An extremely important tool for proofs
j=1 j=1

of this kind is the following principle. Its mathematical justification will be given later in thm.?? on
p-?2.

Principle of Mathematical Induction
Assume that for each integer k = ko there is an associated statement P(k) such that the
following is valid:

A. Base case. The statement P(ky) is true.

B. Induction Step. For each k = k( we have the following: Assuming that P(k) is
true (“Induction Assumption”), it can be shown that P(k + 1)
also is true.

It then follows that P(k) is true for each k = k.

Here is an example which generalizes prop.2.2 on p.12.

Proposition 2.6 (Distributivity of unions and intersections for finitely many sets). Let Ay, Ao, ... and
B be sets. If n € N then

(2.29) (CJAj)ﬂB:OAﬂB
j=1 =1

(2.30) (ﬁAj)UB_ﬁAUB
j=1 j=1

PROQF: We only prove (2.29), and this will be done by induction on n, i.e., the number of sets A;.
The proof of (2.30) is left as exercise 2.11
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1 1

A. Base case: kg = 1. The statement P(1) is (2.29) for n = 1: ( U Aj> NB = |J(4;NB). We must
j=1 j=1

prove that P(1) is true. According to our recursive definition of finite unions which was given in

example 2.8 this is the same as (4;) N B = (4; N B), and this is a true statement. We have proven

the base case.
B. Induction step:

(2.31) Induction assumption: P (k) : ( Aj> NB = U (A; N B) is true for some k = 1.

k k
‘7:

1 j=1
Under this assumption

k+1 k+1
(2.32) we must prove the truth of P(k + 1) : ( U Aj) NB = U (A; N B).

The trick is to manipulate P(k + 1) in a way that allows us to “plug in” the induction assumption.
For (2.32) one way to do this is to take the left-hand side and transform it repeatedly until we end
up with the right-hand side, and doing so in such a manner that (2.31) will be used at some point.

k+1 k
( U Aj> NB = (( U Aj> UAnH) NnB we used (2.27)
j=1 g=1
k
= (( U A]’) N B) U (An+1 N B) we used (2.11) on p. 12
j=1
k
= UA;NnB)U (4,41 NB) we used the induction assumption!
=1
k+1
= U(4;nB) we used (2.27)
j=1

We have managed to establish the truth of P(k + 1), and this concludes the proof.

Epilogue: It is crucial that you understand in what way the induction assumption was used to get
from the left-hand side of (2.32) to the right-hand side, and that you first had to find a base from
which to proceed by proving the base case. W

Proposition 2.7 (The Triangle Inequality for n real numbers). Let n € N such that n = 2. Let
ai,as,...,a, € N. Then

(2.33) lar + a2+ ...+ an| = |a1] + |az] + ...+ |an]

PROOF: Note that this proposition generalizes prop.2.5 on p.19 from 2 terms to n terms. The proof
will be done by induction on 7, the number of terms in the sum.

A. Base case: For kg = 2, inequality 2.33 was already shown (see (2.21) on p.19).

B. Induction step: Let us assume that 2.33 is true for some k£ = 2. This is our induction assumption.
We now must prove the inequality for k£ + 1 terms a1, as, ..., ax, ax+1 € N. We abbreviate

A= a+a+... +ag B = |a1| + |az| + ... + |ak]

then our induction assumption for k numbers is that |A| £ B. We know from (2.21) that the triangle
inequality is valid for the two terms A and aj.1. It follows that |A+ay11| < |A|+|ag+1|- We combine
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those two inequalities and obtain

(2.34) [A+ara| = A+ |aga| S B+ |agq]

In other words,

(2.35) (a1 4+ az + ...+ ap) + ap1| £ B+ lapa| = (Jar| + lag| + ... + |ag|) + |ag+1],

and this is (2.33) for k + 1 rather than £ numbers: We have shown the validity of the triangle
inequality for k£ + 1 items under the assumption that it is valid for £ items. It follows from the
induction principle that the inequality is valid forany k = ko =2. W

To summarize what we did in all of part B: We were able to show the validity of the triangle in-
equality for £ 4+ 1 numbers under the assumption that it was valid for £ numbers.

Remark 2.13 (Why induction works). But how can we from all of the above conclude that the
distributivity formulas of prop.2.6 and the triangle inequality of prop.2.7 work for all n € N such
that n 2 ko? We illustrate this for the triangle inequality.

Step 1: We know that the statement is true for ky = 2 because that was proven in the base
case.

Step 2: But according to the induction step, if it is true for ko = 2, it is also true
for the successor kg + 1 = 3 of 2.

Step 3: But according to the induction step, if it is true for ko + 1, it is also true
for the successor (ko + 1) +1 = 4 of ko + 1.

Step 4: But according to the induction step, if it is true for kg + 2, it is also true

for the successor (ko +2)+1 =5 of kg + 2.
Step 53,920: But according to the induction step, if it is true for ky + 53, 918, it is also true
for the successor (ko + 53,918) + 1 = 53,921 of ko + 53, 918.

And now we see why the statement is true for any natural number n = ky. O

2.7 Some Preliminaries From Calculus

Remark 2.14. To understand this remark you need to be familiar with the concepts of continuity,
differentiability and antiderivatives (integrals) of functions of a single variable. Just skip the parts
where you lack the background.

The following is known from calculus (see [12] Stewart, J: Single Variable Calculus): Let a € R U
{—o0}and b € RU {00} and let X :=]a, b] be the open (end points a, b are excluded) interval of all
real numbers between a and b. Let z¢ €]a, b be “fixed but arbitrary”.

Let f : ]a, b[— R be a function which is continuous on |a, b|. Then

B
a. fisintegrable for any «, 8 € Rsuch thata < a < 8 < b, i.e., the definite integral [ f(u)du

exists. For a definition of integrability see, e.g., [12] Stewart, J: Single Variable Cglculus.
B B
(Fw) + g = [ fadu + [ gy,

B g
and you also can “pull out” constant A € R: / Af(u)du = X / f(u)du.

«

b. Integrationis “linear”,i.e., itis additive: /

«
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c. Integration is “monotonic”:

B B
If f(x) S g(z)foralla <z = 8 then/ (f(u))du < / g(u)du.
d. fhasan antiderivative: There exists a function F : ]a, b[— R whose derivative F'(-) exists

on all of ]a, b[ and coincides with f, i.e., F'(z) = f(x) for all 2 €]a, b|.

B
e. This antiderivative satisfies F'(5) — F'(a) = / f(u)du foralla < o < f < band itis

not uniquely defined: If C' € R then F'(-) + C is also an antiderivative of f.

On the other hand, if both F} and F; are antiderivatives for f then their difference G(-) :=
F5(-)—Fi(-) has the derivative G'(-) = f(-)— f(-) which is constant zero on a, b[. It follows
that any two antiderivatives only differ by a constant.

To summarize the above: If we have one antiderivative F of f then any other antideriva-
tive F is of the form F(-) = F(-) 4+ C for some real number C.

This fact is commonly expressed by writing / f(x)dx = F(x)+ C for the indefinite

integral (an integral without integration bounds).

f. It follows from e that if some ¢y € R is given then there is only one antiderivative F' such
that F(l’o) = Cp.
Here is a quick proof: Let G be another antiderivative of f such that G(zg) = ¢y. Because
G — F is constant we have for all z €]a, b] that

G(z) — F(z) = const = G(z9) — F(z9) = 0,

ie,G=F. O

2.8 Convexity |[*

Note that this chapter is starred, hence optional.
Definition 2.25 (Concave-up and convex functions). Let —oo = o < 8 < oo and let I := |a, 5] be
the open interval of real numbers with endpoints o and 5. Let f : I — R.
a. The epigraph of f is the set epi(f) := {(z1,22) € I X R: z2 = f(z1)} of all points in the
plane that lie above the graph of f.
b. fis convex if for any two vectors d, be epi(f) the entire line segment
S :={A@+ (1 — A)b} : 0 < X < 1is contained in epi(f). See Figure 2.4. 12
c. Let f be differentiable at all points € I. Then f is concave-up, if the function
e fl(x) = %(az) is increasing. [

Proposition 2.8 (Convexity criterion). f is convex if and only if the following is true: For any
a<aZlx<b<p

let S(xq) be the unique number such that the point (xq, S(xo)) is on the line segment that connects the points
(a, f(a)) and (b, £(b)). Then

(2.36) f(xo) = S(wo).

250urce: Wikipedia, https:/ /upload.wikimedia.org/wikipedia/commons/c/c7/ConvexFunction.svg.

28 Version: 2023-04-21


https://upload.wikimedia.org/wikipedia/commons/c/c7/ConvexFunction.svg

Math 454 — Additional Material Student edition with proofs

flz)

0 (@) + (- 0 (a)

[ty + (1= t)aa)

&I ter + (1 — thas Ty

Figure 2.4: Convex function

Note that any xo between a and b can be written as o = Aa + (1 — A\)b for some 0 = X\ < 1 and that
the corresponding y-coordinate S(xo) = S(Aa + (1 — \)b) on the line segment that connects (a, f(a)) and
(b, (b)) then is S(Aa + (1 — X\)b) = Af(a) + (1 — X) f(b). Hence we can rephrase the above as follows:

[f is convex if and only if for any a < b such that a,b € I and 0 = X\ < 1 it is true that
(2.37) fAa+ (1 =X)b) = Af(a)+ (1= N)f(b).

PROOF of “=": Any line segment S that connects the points (a, f(a)) and (b, f(b)) in such a way
that S is entirely contained in the epigraph of f will satisfy (zo, S(z0)) € epi(f) and hence f(zg) <
S(zo) forall a < zg < b. It follows that convexity of f implies (2.36).

PROOF of “<": Let (2.36) be valid for all a,b € I. Let @ = (a1, a2),b = (b1,bs) € epi(f). Then
(2.38) az 2 f(a1) and by = f(b1).

We must show that the entire line segment S := {\a + (1 — A)b} : 0 < X < 1is contained in epi(f).
Let @ := (a1, f(a1)). Let 8’ := {A\@ + (1 — \)b : 0 < X\ < 1} be the line segment obtained by leaving
the right endpoint b unchanged and pushing the left one downward until ay matches f(a;). Clearly,
S’ nowhere exceeds S.

Let 0 := (by, f(b1)). Let §” := {\@ + (1 — A0’ : 0 < X\ < 1} be the line segment obtained by leaving
the left endpoint @’ unchanged and pushing the right one downward until the b, matches f(b;).
Clearly, S” nowhere exceeds 5’

We view any line segment 7" between two points with abscissas a; and b; as a function 7'(-) :
[a1,b1] — R which assigns to @ € [a1, b1] that unique value T'(z) for which the point (z,T(z)) lies
onT.

The segment S” connects the points (a, f(a)) and (b, f(b)) and it follows from assumption b that for
any a < z9 < bwe have f(zg) < 5”(x). We conclude from S(-) = S’(-) = S”() that S(z¢) = f(x0),
ie., (zo,S(z0)) € epi(f). As this is true for any a < zp < b it follows that the line segment S is
entirely contained in the epigraph of f. W
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Proposition 2.9 (Convex vs concave-up). Let f : R — R be concave-up. Then f is convex.

PROOF: Assume to the contrary that f is (differentiable and) concave-up and that there are
a,b,xg € I suchthat a < zg <b and f(xo) > S(xp). Here S(z¢) denotes the unique number such
that the point (z¢, S(x)) is on the line segment that connects the points (a, f(a)) and (b, f(b)).

Let m be the slope of the linear function S(-) : z — S(x), i.e.,

_ S(b) = S(a)
N b—a
It follows that
239 SO =860 SO = Sm) _ SO =S

b—xo b—xo - b—afo

for some zp < £ < b (according to the mean value theorem for derivatives). Further

.40 m = M) S 250 TEO 2T g

for some a < n < xg (according to the mean value theorem for derivatives).

Because f is concave up we have
flla) = f'n) = f(wo) = /(&) = f(b).

From (2.39) and (2.40) we obtain
m < f'(n) = f(z0) =

and we have reached a contradiction. W

A
i
o™
A
3

If a convex function f is differentiable at some argument z, i.e., f possesses a tangent at z, then the
graph of this tangent will stay below the graph of f. (Draw a picture!) The following proposition
generalizes this convex functions in general, without any differentiability requirements.

Proposition 2.10. Let —oo0 < « < 8 < o0, I an interval with endpoints « and § where « and/or 3 may or
may not belong to I, and let f : I — R be convex. Let

(2.41) & = {I %R : L(z) = ma + b for suitable m,b € RandL < f } ,
i.e., the graph of L is a straight line and it is dominated by the graph of f. Then

(2.42) f(z) = sup{L(x) : Le L} forallzel.

PROOF: Can be found, e.g., in [3] Bauer, Heinz: Measure and Integration Theory. W

Proposition 2.11 (Sublinear functions are convex). Let f : R — R be sublinear. Then f is convex.
PROOF:Let0 £ A< landz,y € R. Then
(2.43) p(Az+ (1= Ny) =p(Az) + p((1=XNy) = Ap(z) + (1= A)p(y).

It follows from prop.2.8 that f is concave-up. W
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2.9 Miscellaneous

Proposition 2.12.

Let A= ((aij)); (i=1,...,m; j =1...,n), bean m x n matrix. We can think of A as a function
A:R"—>R™;, ¥— AZ,

which assigns to the column vector & € R", viewed as a n x 1 matrix, the matrix product j = Az, an m x 1
matrix which we view as an element of R™.

Let AT = ((a},)) denote the transpose of A , i.e., the n x m matrix one obtains by switching rows and
columns. In other words, ay, = ag,. Matrix multiplication with m x 1 vectors ij makes A" a function

AT R™ = R";, e ATq.

The following is true. '3
A'is surjective < A" is injective.

PROOF: Consult a book on linear algebra. W

Corollary 2.1. Let A = ((aij)) be a matrix with m rows and n columns. Then (a) < (b), where

(a) The set of m linear equations in n unknowns ¥ = (x1, ..., T,
ATz =y,
has a solution & for any choice of right hand side 7 = (y1,...,Ym) ' -
(b) the set of n linear equations in m unknowns E: (E1,....&m) ",
ATE =17,
has at most one solution gfor any 7= (n1,...,nn)".

PROOF: This is a direct translation of Proposition 2.12 from the language of matrix multiplication
to that of systems of linear equations. W

2.10 Exercises for Ch.2

2.10.1 Exercises for Sets
Exercise 2.1. Prove (2.12) of prop.2.2 on p.12.
Exercise 2.2. Prove the set identities of prop.2.1.

Exercise 2.3. Prove that for any three sets A, B, C'itis true that (A\ B) \C = A\ (BUC(C).
Hint: use De Morgan’s formula (2.13.a). W

Exercise 2.4. Let X = {z,y,{z},{z,y} }. True or false?

a{zr}eX c{{zr}}eX eyeX g {yteX
b.{z}CX d.{{z}}CX fyCX h{yCcXx O

3See Remark 2.11 on p.21 about injectivity and surjectivity.
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For the subsequent exercises refer to example ?? for the definition of the size |A| of a set A and to
def.?? (Cartesian Product of Two Sets) for the definition of Cartesian product. You find both in ch.??
(Cartesian Products and Relations) on p.??

Exercise 2.5. Find the size of each of the following sets:

a. A= {x,y, {z}, {z,y} } ¢ C= {u,v,v,v,u} e. E= {sin(kn/2): k € Z}

b. B = {1, {0}, {1} } d.D={32-10:z€ 2} {.F= {rx:z€R} O
Exercise 2.6. Let X = {z,y,{z},{z,y} } and Y = {z, {y} }. True or false?

a.zeXnNY creXUY exzeX\Y garxeXAY

b.{y}eXNY d.{yteXUY £ {yteX\Y h{y}eXAY O

Exercise 2.7. Let X = {1,2,3,4} and letY = {z,y}.

a. Whatis X x Y? ¢ Whatis |[X xYV[? eIs(z,3) € X xY? gIs3-z€ X xY?
b. Whatis Y x X? d.Whatis | X xY|? fIs(2,3) €Y x X? h.Is2-yeY xX? O

Exercise 2.8. Let X = {8}. Whatis 2(2")?

Exercise 2.9. Let A = {1,{1,2},2,3,4} and B = {{2,3}, 3, {4},5}. Compute the following.
a.ANB b.AUB ¢ A\B d.B\A e AAB O

Exercise 2.10. Let A, X be sets such that A C X and let z € X. Prove the following:

a. IfxeAthen A = (A\ {a}) W {a}.
b. Ifx ¢ Athen A = (AW {a})\ {a}.
U

2.10.2 Exercises for Proofs by Induction

Exercise 2.11. Use induction on n to prove (2.30) of prop.2.6 on p.25 of this document: Let Ay, Ay, ...

and B be sets. If n € N then ( N Aj) UB = (4 UB). O
j=1 j=1

Exercise 2.12. 14
Let K € Nsuch that K 2 2and n € Z>. Prove that K" > n. O

Exercise 2.13. Let n € N. Then n? + n is even, i.e., this expression is an integer multiple of 2. [J

PROOF: ’The proof is given in this instructor’s edition.

The proof is done by induction on n.
The base case (ng = 1) holds because 12 + 1 = 2, and this is an even number.
Induction step: Let £ € N.

(2.44) Induction assumption: k% + kis even, i.e., k2 + k = 2j for some suitable j € Z.

“Note that this exercise generalizes B/G prop.7.1: If n € N then n < 10™. Also note that if you allow K to be a real
number rather than an integer then it will not be true for all X > 1and n € Z>(. For example K™ > n s false for K = 1.4
and n = 2 (but it is true for K = 1.5 and n = 2).
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We must show that there exists j' € Z such that (k + 1)? + k + 1 = 2;'. We have

k+12+k+1 =k2+2k+1+k+1 = (B2+k) +20k+1) 2 25420k +1).

Letj’ := j+ k + 1. Then (k + 1)® + k + 1 = 25 and this finishes the proof. B

Exercise 2.14. Use the result from exercise 2.13 above to prove by induction that n®+5n is an integer
multiple of 6 foralln € N. O

PROOF: ‘The proof is given in this instructor’s edition.

The proof is done by induction on n.
The base case (ng = 1) holds because 1> +5 =6 =1 - 6.
Induction step: Let k € N.

(2.45)
Induction assumption: k* + 5k is an integer multiple of 6, i.e., k* + 5k = 65 for some j € Z.

We must show that there exists j' € Z such that (k + 1)% + 5(k + 1) = 6;5'. We know frome exercise
2.13 that 3(k* + k) = 3 - 2 - i for a suitable i € Z, hence

(k+12+5(k+1) =k +3k* +3k+1+5k+5 = (k> +5k) +3(k* + k) +6
= (k3 +5k) +6i+6 %2 6(j+i+1).
Let j' := j +i+ 1. Then (k + 1)3 + 5(k + 1) = 65’ and this finishes the proof. B

Exercise 2.15. Let x; = 1 and =41 = 2, + 2n + 1. Prove by induction that z,, = n?foralln e N. O
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2.11 Blank Page after Ch.2

This page is intentionally left blank!
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3 More on Sets and Functions

3.1 More on Set Operations

We will not deal with limits of sequences of sets except for the following since it is so suggestive.

Definition 3.1 (Notation for limits of monotone sequences of sets).

Let (A,,) be a increasing sequence of sets,i.e., A1 C A2 C ... andlet A := ], 4.
Further let B,, be a decreasing sequence of sets, i.e., B O By DO ... and let B := (), By,.
We write suggestively

AptA(n — o0), A = lim A,, B,|B(n—o), B = lim B, O
n—oo

n—o0

We adopt the following convention.

Let € be a set of sets, e.g., € is a subset of the powerset 2 of a set (2. Then a phrase such as
e “LetU, 1in ¢” is shorthand notation for
“Let U, C € (n € N)” be a increasing sequence.”

e “LetU, | in ¢” is shorthand notation for
“Let U, C € (n € N)” be a decreasing sequence.”

Definition 3.2 (Arbitrary unions and intersections). Let J be a nonempty set and let (A;);c; be a
family of sets. We define

(3.1) UAi = U[Ai:ief] = {z:2 € A, for some ig € I},
i€l

(32) (A == )[4i:i€I] := {x:a € A foreachip € I}.
i€l

We call U A; the union and m A; the intersection of the family (4;)ics

i€l i€l
It is convenient to allow unions and intersections for the empty index set J = (). For intersections
this requires the existence of a universal set 2. We define

(3.3) U4 =0, (4 =29 0O

i€l 1€0

Note that any statement concerning arbitrary families of sets such as the definition above

covers finite lists Aq, Ag,..., A, of sets (J = {1,2,...,n} ) and also sequences A;, As, ...,
of sets (J = N).

We give some examples of non-finite unions and intersections.

Example 3.1. For any set A we have A = U {a}. According to (3.3) this also is true if A = (. O
acA
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The following trivial lemma is useful if you need to prove statements of the form A C Bor A = B
for sets A and B. Be sure to understand what it means if you choose J = {1,2} (draw one or two
Venn diagrams).

Lemma 3.1 (Inclusion lemma). Let .J be an arbitrary, nonempty index set. Let U, X;,Y, Z;, W (j € J) be
setssuchthat U C X; CY C Z; CW forall j € J. Then

(34) vcx;cyclUz cw
JjeJ jeJ

PROOF: Draw pictures! W

Definition 3.3 (Disjoint families). Let ./ be a nonempty set. We call a family of sets (A4;);c; a mutu-
ally disjoint family if for any two different indices i, j € J it is true that A, N A; = 0), i.e., if any two
sets in that family with different indices are mutually disjoint. [

Definition 3.4 (Partition). Let 2 C 2. We call 2l a partition or a partitioning of (2 if
a. ANB=0forany two A, B € Asuchthat A% B, b.Q = |4 [A Ae m}
We reformulate the above for arbitrary families and hence finite collections and sequences of subsets
of : Let J be an arbitrary nonempty set, let (A;) jc; be a family of subsets of (2.
We call (A;), e a partition of € if it is a mutually disjoint family which satisfies

Q:@[Aj:jeJ},

in other words, if A := {A; : j € J} is a partition of Q.
Note that duplicate nonempty sets cannot occur in a disjoint family of sets because otherwise the
condition of mutual disjointness does not hold. [

Example 3.2. Here are some examples of partitions.
a. For any set Q2 the collection { {w} : w € Q} is a partition of (2.

b. The empty set is a partition of the empty set and it is its only partition. Do you see that this is a
special case of a?
c. This example is important for stochastic processes. 1°
Let
to<t1 < - <th1 <ty

be a list of real numbers. It lets us create a variety of partitions. Here are four possibilities.

[ [to,tl[, [tl,tz[ s [tn 1,tn [ partitions [to,tn[,

o Jto,t1], ]t1, ], O Jtn— 1,tn] partitions |to, t,,),

o [to,t1], [tl,t [, ..., [tn—2,tn—1]; [tn—1,tn] partitions [to,t,],
o [to,t1], [t1,t2], ..., [tn—1,t [[tn,oo[ partitions [tg, co[. O

Stochastic processes will be central to stochastic finance. See Definition 4.15 on p.61.
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Theorem 3.1 (De Morgan’s Law). Let there be a universal set §2 (see (2.6) on p.11). Then the following
“duality principle” holds for any indexed family (An)acr Of sets:

(3.5) a. (LaJAa)E = QAE b. ((4a)" = QAE

«

To put this in words, the complement of an arbitrary union is the intersection of the complements, and the
complement of an arbitrary intersection is the union of the complements.

PROQOF: |[[% | Left as an exercise. W

The following generalizes prop.2.6 (Distributivity of unions and intersections for finitely many sets)

Proposition 3.1 (Distributivity of unions and intersections). Let (A;)icr be an arbitrary family of sets
and let B be a set. Then

(3.6) U®Bna) =Bnl A4,
i€l el
3.7) ((Bu4) =BU() A4
i€l el
PROOF: W

Proposition 3.2 (Rewrite unions as disjoint unions). Let (A;);en be a sequence of sets which all are
contained within the universal set §). Let

By = |JA; = A1 UAU---UA, (neN),
j=1
Cl = A1 = Bl, Cn+1 = An+1\Bn (nE N)

Then
a. The sequence (By); is increasing: m < n = By, C By,
Foreachn eN, |J A; = B;.
j=1 j=1
c. The sets C; are mutually disjoint and |J A; = 1 Cj.
j=1 j=1
d. Thesets C;(j € N) form a partitioning of the set |J A;.
j=1
PROOF: H

3.2 Direct Images and Preimages of a Function
Introduction 3.1. We continue with yet another example. It leads to the very important definition

of the direct images of subsets of the domain, and of the preimages of subsets of the codomain of a
function. O
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Example 3.3. Let X and Y be nonempty sets and f : X — Y. We define two functions f, and
f* which are associated with f and for which both arguments and function values are sets(!) as
follows.

a. f.:2%¥ 2%, A f(A) = {f(a) :a € A},

b. fr:2YV = 2%, B f*(B):= {zr e X: f(zx) € B}.
You should convince yourself that indeed f, maps any subset of X to a subset of Y, and that f*
maps any subset of Y to a subset of X. [

The sets f.(A) and f*(B) are used pervasively in abstract mathematics, but it is much more com-
mon nowadays to write f(A) rather than f,(A) and f~!(B) rather than f*(B). We will follow this
convention.

Definition 3.5.

Let X, Y be two nonempty sets and f : X — Y. We associate with f the functions

(3.8) f:2% = oY, A f(A) :={f(a):a € A},
(3.9) fl:2¥ 59X, Be fY(B):={zreX: f(z)e B}

We call f : 2X¥ — 2V the direct image function and f~! : 2¥ — 2% the indirect image
function or preimage function associated with f : X — Y.

For each A C X we call f(A) the direct image of A under f, and for each B C Y we call
f~1(B) the indirect image or preimage of B under f. [

Note that the range f(X) of f is a special case of a direct image.

Notational conveniences I:

If we have a set that is written as {...} then we may write f{...} instead of f({...}) and
f~Y{...} instead of f~1({...}). Specifically for singletons {z} C X and {y} C Y we obtain
f{z}and f~H{y}.

Many mathematicians will write f~!(y) instead of f~!{y} but this author sees no advan-

tages doing so whatsover. There seemingly are no savings with respect to time or space for
writing that alternate form but we are confounding two entirely separate items: a subset
f~Hy} of X vs. the function value f~'(y) of y € Y which is an element of X. We are
allowed to talk about the latter only in case that the inverse function f~! of f exists.

The same symbol f is used for the original function f : X — Y and the direct

image function f : 2%X — 2Y, and the symbol f~! which is used here for the
A indirect image function f~! : 2 — 2% will also be used to define the inverse
function f~! : Y — X of f in case this can be done. Be careful not to let this
confuse you! [

Example 3.4 (Direct images). Let f : R — R; f(z) = 22

a. f(1—-42) = {22:2€]-42[} = {2?:—4d<z <2} =]4,16]

b. f([1,3)) = {2?:2€[,3]} = {22:1Z2<3} = [1,9].

c¢ f(Q—-42[n[,3]) ={22:z€]-4,2andze[1,3]} = {2?2:1Zx<2} = (1,4 O
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And here are the results for the preimages of the same sets with respect to the same function z +— 2.

Example 3.5 (Preimages). Let f :R = R; f(z) = 22

a. f1(]-4,-2) = {:L'GR 22l —4,-2(} ={-4<f<-2} =0

b. fN([L2) ={zeR:a?e[l,2]} = {15f=s2} = [-v2-1] U [L V2]

¢ I, 0 = {zcR: 12 e[5,6)} = {5 <6} = [-v6,—v5| U [V5, V6],

d. f1(—-4,-2/uU1,2 U [56]):{:UGR:IQG]—ZL,—Q[or:UQG[1,2]orz2€[5,6]}
z[\f 1] U [1,v2] U [-V6,—V5] U [V5,v6]. O

Example 3.6 (Preimages). Let f : R - R; f(z) = 22

a f*(]—4,2[):{xeR:gﬁe]—zl,z[}:{xeR:—4<m2<2}:]—2,2[.

b. (1, ])_{xeR:x2€[1,3]}={xeR:1§x2§3}:[—\/3,1]u[1,\/§].

c. f1J-42[n[3) ={zecR:2?2€c]—4,2[and 2% €[1,3]}

N
{x eR 1<22<2} =]-V2,—-1] U [1,V2].

Example 3.7 (Direct images) Let f:R—R; f(z) =22

a. f(l—-4,-2) ={a*:ve]—-4,-2[} = {27 —4d<z<-2} =]4,16[

b f([1,2])={f02 [ 2]} = {21522} = [1,4].

c. f(5,6) = {22:2€[56]} = {22:5Z2x<6} = [25,36].

d. f(]—4,-2[U[1,2] U [5,6]) = {2?2:2€]—4,-2[orxz € [l,2]orx € [56]}
—14,16[ U [1,4] U [25,36] = [1,16[U [25,36]. O

Proposition 3.3. Some simple properties:

(3.10) f@) =570 =0

(3.11) Ay C Ay C X = f(A1) C f(A2) (monotonicity of f{...})

(3.12) By C By C Y:>f_1(Bl) C f_l(BQ) (monotonicity off_l{...})
(3.13) z € X= f({z}) = {f(2)}

(3.14) f(X) =Y <& fis“surjective” (see Remark 2.11 on p.21

(3.15) fAY) = X always!

PROQF: Left as exercise 2? on p.??2. W

Notational conveniences II:

In measure theory and probability theory the following notation is also very common:

{f€B}=f1(B), {f=y}:=fHy}

Let R be an ordered integral domain with associated order relation “<”. Let a,b € R such
that a < b. We write {a < f < b} := f~([a,b]r), {a < f < b} := f~1(a,b[Rr),
{a = f<b}t:=f"a,blr), {a<f=b}:=F"(a,br), {f <b}:=f'(] - 0,b]r), etc.
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Proposition 3.4 (f ! is compatible with all basic set ops). Assume that X,Y be nonempty, f : X —Y,
J is an arbitrary index set, B CY, B; CY forall j. Then

(3.16) OB = (N F7B)
jeJ jeJ
(3.17) By = Urs)
jeJ jeJ
(3.18) iBY = (7B
(3.19) FUBLI\B2) = f71(B)\ fH(B2)
(3.20) fTHBIABy) = fTH(B1)Af N (By)
PROOF: |[% | MF330notes,ch.8 N

Proposition 3.5 (Properties of the direct image). Assume that X,Y be nonempty, f : X — Y, Jisan
arbitrary index set, B CY, B; CY forall j. Then

(3.21) F()4) € () F4)
JjeJ JjeJ
(3.22) fJ4y) = | r4y)
jeJ JjeJ
PROOF: |[% 1| MF330 notes,ch.8 W

Remark 3.1. In general you will not have equality in (3.21). Counterexample: f(z) = z? with
domain R: Let A; := ] — 00,0] and Ay;= [0,00[. Then 41 N Ay = {0}, hence f(A; N Ag) =
f({0}) = {0}. On the other hand, f(A4:) = f(A2) = [0, 0], hence f(A1) N f(A2) = [0, 00]. Clearly,
{0} & [0,00). O

Proposition 3.6 (Direct images and preimages of function composition). Let X,Y, Z be arbitrary,
nonempty sets. Let f: X —Y and g:Y — Z ,andlet U C X and W C Z. Then

(323) (90 f)U) =g(f(U)) forallU C X.
(3.24) (gof)™t =fltogliie, (gof)'(W) = f (g7 (W)) forall W C Z.
PROOQOF: |[%7| MF330 notes,ch.8 W
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3.3 Indicator Functions

Indicator functions often are convenient when working with integrals and expected values. They
will allow us, e.g., to write “E[14X] = ...” rather than having to state all of this: “Let Y (w) := X (w
on Aand O else. Then E[Y] =...”

Definition 3.6 (indicator function for a set). {2 be a nonempty setand A C 2. Let 14 : Q@ — {0,1} be
the function defined as

(3.25) Iaw) = 41 Hwed
0 ifwé¢A.

14 is called the indicator function of the set 4. 1 O

Let m,n € Z. We recall that m + n mod 2 (the sum mod 2 of m and n) is given by

(3.26) m+n mod?2 =

0 < (m+n)/2hasremainder 0, i.e.,m + n is even,
1 & (m+n)/2hasremainder 1,i.e.,m + n is odd.

Proposition 3.7. Let A, B, C be subsets of Q). Then

(3.27) laup = max(la,lp),
(328) 1AﬂB = min(lA,lg),
(3.29) 1o =1—14,

(3.30) laap =14+ 15 mod 2.

PROOF: The proof of the first three equations is left as an exercise.
PROOF of (3.30): This follows easily from the the fact that

(AAB)E = {weQ: [eitherw € AN B]or [neitherw € Anorw e B|} W

Prop.?? above helps us to prove associativity of symmetric set differences.

Proposition 3.8 (Symmetric set differences AA B are associative). Let A, B,C C Q). Then
(3.31) (AAB)AC = AA(BAC).

PROOQOF: We will write for convenience m & n as shorthand notation for m +n mod 2.
Formula (3.31) follows easily from (3.30) and and the associativity of a®b := a+b mod 2 as follows.
Letw € Q. Then
€ (AAB)AC < lanpyac(w) =
& (1w >@1B<w>)@1c< )=1
& 14(@) @ (15(w) ® 1o(w)) = 1
= 1AA(BAC)( ) =1 we AA(BAC)

We obtained the equivalence in the middle from the fact that modular arithmetic is associative. W

®Some authors call this characteristic function of A and some choose to write x4 or 14 instead of 1.
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4 Basic Measure and Probability Theory

Introduction:
The following are the best known examples of measures (a;,b; € R):

Length :  A([a1,b1]) := b1 — ay,
Area : )\2([(11, bl] X [ag, bg]) = (bl — al)(bg — ag),
Volume : )\3([a1, bl] X [GQ, bg] X [a3, bg]) = (bl — al)(bQ — az)(bg — a3).

Then there also are probability measures: P{ a die showsalora6} =1/3.
We will explore in this chapter some of the basic properties of measures.

4.1 Measure Spaces and Probability Spaces

Notations 4.1. By augmenting certain sets of real numbers with oo we obtain the sets

R :=[-00,00] := R U {—00,00} (extended real numbers) ,

R, :=[0,00] := Ry U {+oc0}
= [a,o00[ U {400} (here —c0o=a<o00) O

Definition 4.1 (Extended real-valued functions). Let X be an arbitrary, nonempty setand Y C R. A
function F' : X — Y whose codomain is a subset of the extended real numbers is called an extended
real-valued function. O

Remark 4.1 (Extended real numbers arithmetic). To work with extended real-valued functions we
must be clear about the rules of arithmetic where +oo is involved. In the following assume that
ceRand 0 < p < .

Rules for Addition:
(4.2) ctoo =00 %c= o0,
(4.3) ct (—0) = —00 ¢ = —o0,
(4.4) 00 + 00 = 00,
(4.5) —00 — 00 = — 00,
(4.6) (+00) F o0 = UNDEFINED.

Rules for Multiplication:
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(4.7) p-(Fo0) =(+00) -p = Fo0,

(4.8) (=p) - (£00) = (£00) - (—=p) = Foo,

49) 0- (400) = (£00)-0 = 0 and é o,
(4.10) (£00) - (£o0) = o0,

(4.11) (£0) - (Foo) = — o0,

Be clear about the ramifications of those rules. Rule (4.6) implies that if we have two extended
real-valued functions f, g defined on a domain A then f + g is only defined on

A\ {z € A: either[f(z) = ccand g(z) = —o0] or [f(z) = —ococand g(x) = oo},
and f — g is only defined on
A\ {x € A: either [f(x) = g(x) = o] or [f(z) = g(z) = —o0]}.

That is easy to understand and remember, but the real danger comes from rule (4.9) which you
might not have expected:

0-+oco = £c0-0 = 0.

This convention is very convenient, but it comes at a price: it is no longer true that all sequences

(an)n and (by,),, of real numbers that have limits a = ILm an, b = le by, satisty le anb, = ab.

Such a counterexample would be: a,, = n, b, = % O

For the following see SCF2 Definition 1.1.1.

Definition 4.2 (0—-algebras). Let (2 be a nonempty set and let § be a set that contains some, but not
necessarily all, subsets of (2.

§ is called a o—algebra or o—field for (2 if it satisfies the following:

(4.12a) heg,
(4.12b) Aeg =  Alegp
(4-12C) (An)neN S S = U An S S

neN

e The pair (2,F) is called a measurable space.
e The elements of § (these elements are sets!) are called §—-measurable sets. or also just
measurable sets if it is clear what o—algebra is referred to. [

We do not consider 2 = () with o—algebra {(} a measurable space since it cannot carry a probability
P which would have to satisfy P() = 0 and P(f2) = 1. See Chapter 4.2 (Measurable Functions and
Random Variables).
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Remark 4.2. If § is a o—algebra then

(4.13a) QeF

(4.13b) Aeg =  Aleg

(413C) (An)nEN € 8 = ﬂ An c 8
neN

The last assertion is a consequence of De Morgan’s laws (Theorem 3.1 on p.37).

If countably many (i.e., a finite or infinite sequence of) operations are performed involving

e unions, e intersections, e complements, e set differences, e symmetric differences
of elements of a o—algebra § then the resulting set also belongs to §. [

Example 4.1. Here are two trivial o—algebras of a nonempty set 2.

(1) {0,Q} is the smallest possible o—algebra.
(2) The power set 2 of (2 is the largest possible o—algebra. [

Proposition 4.1 (Minimal sigma-algebras). Let €2 be a nonempty set.

A: The intersection of arbitrarily many o—algebras is a c—algebra.

B: Let € C 29, i.e., &isa set which contains subsets of ). It is not assumed that € is a o—algebra. Then there
exists a o—algebra which contains & and is minimal in the sense that it is contained in any other o—algebra

that also contains €. We name this o—algebra o(€) because it clearly is uniquely determined by €. It is
constructed as follows:

o(€) = ﬂ{% 1§ 2 €and § is a o—algebra for Q}.

PROOF: | % ]

That last proposition allows us to make the next definition.

Definition 4.3. Let Q2 be a nonempty set and let € C 2*. We call the o-algebra
(4.14) o(€) = ﬂ{@ : ® D € and & is a o—algebra for Q2}.

of Proposition 4.1 the c—-Algebra generated by ¢ [

Remark 4.3.
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(1) You are familiar with this construct from linear algebra:
Given a subset A of a vector space V, its linear span

k
span(A) = {Zaj:cj:keN,aj ER,.CUj EA(lgjék) }
j=1

of all linear combinations of vectors in A is obtained as follow:

LetU :={W CV :W D Aand W is a subspace of V'}.
Then span(A) = m (W :W el
In other words, span(A) is the (linear) subspace generated by A.

(2) Note that if € C § then (&) C §F, since § is one of the o—algebras & which occur on the
right-hand side of (4.14). O

You should visualize the next proposition for the case of one, two, three, and four events A;.

Proposition 4.2. || %

Let (€2, §) be a measurable space in which a finite or infinite sequence of events Ay, Aa, ... is a partition of §2
and generates §. Let J := {1,2,...,n} in case of a finite sequence A; : 1 < j < n, and let J := N in case of
a sequence A; : j € N. Then our assumptions can be stated as follows.

(4.15) AnA; =0 foritj, [HA =90 §=o{4:jeT}
Jj€J

Under those assumptions it is true that § consists of all countable unions A,, |8 Ap, . . ..

PROOF: Left as an exercise.
Hint: What is the complement of the union A4, [{ A,, 4...? B

Proposition 4.3 (Monotonicity of generated o—algebras). Let {2 be a nonempty set and let €, and &, be
two collections of subsets of 2.

(4.16) If Qfl C @2 then U(Qfl) C O'(QEQ).

PROOF: Any o—algebra & that contains &, also contains &; Thus more sets are intersected in
o(¢) = ﬂ{@ : ® D €¢; and & is a o—algebra for Q}.

than in
(&) = ﬂ{@ : ® D ¢ and & is a o—algebra for Q}.

It follows that o(&;) C o(¢2). W
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Proposition 4.4. Let Q) be a nonempty set. Assume &1, €5 are subsets of 2 such that
O'(Qfl) D) QEQ and U(QEQ) D) @1.

Then U(@l) = U(@Q).

PROOF: |[[% | Leftas an exercise. W

Example 4.2. Consider the following sets of intervals of real numbers.
J1 = {]a,b] :a < b}, Ty := {[a,b] : a < b},
J3 == {Ja,b[:a < b}, T4 := {[a,b[: a < b}.
Then o(J1) = 0(J2) = 0(J3) = o(Ty).
For example, to prove that J, = J3, it suffices according to Proposition 4.4 to show that

any closed interval [a, b] belongs to J3, any open interval ]a, b] belongs to Js.

This follows from

[0, 8] :ﬂ]a—;,mi[ and ]a,b[zg[wi,b—ﬂ.

n

The above generalizes to n—dimensional space: Let

Js5 = {Ja1,bi]x]az, ba] x -+ X]an,by] : a1 < bi,a2 < ba,...,an <bp},
36 = {[al,bl] X [ag,bg] X o X [an,bn] ra < bl,ag < bg,...,an < bn},
J7 = {]al,bl[X]az,bg[X s X]an,bn[I a1 < br,ag < bo,...,an, < bn} ,
Jg = {[al,bl[ [ag,bg[x R [an,bn[: a1 < br,ag <bo,...,an < bn} ,

For the following see SCF2 Definition 1.1.2.

Definition 4.4 (Borel sets).

e The o-algebra generated by either all open or all closed or all half-open intervals in R™ is
called the Borel o—-algebra of subsets of R” and is denoted B(R"™).
The sets in this o-algebra are called Borel sets.
We will not worry about what corresponds to the Borel sets when we deal with the ex-
tended real numbers R, i.e., we add +oo. There is such a thing and those extended Borel
sets are properly denoted B(R). Again, I will try not to even mention extended Borel
sets.

e Abbreviations: We will also write B" for B(R™). In the case of the real numbers (n = 1)
we also write B! or B(R) for B(R!). O

Remark 4.4. We can express Example 4.2 as follows. Each one of the interval sets Js, Jg, J7, Jg
generates the Borel o-algebra. [J

For the following see SCF2 Definition 1.1.2.
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Definition 4.5 (Abstract measures). Let (€,§) be a measurable space.

A measure on § is an extended real-valued function

p:g =Ry A u(A) such that
(4.17) u(@) =0, (positivity)
(4.18) A BeFand ACB = pu(A) £ u(B), (monotony)
(419)  (Ap)nen € Sdisioint = u( H An) = Y wA).  (o-additivity)
neN neN

e The triplet (Q2,F, ) is called a measure space

e We call i1 a finite measure on § if u(Q2) < occ.

e We call any subset IV of a set with measure zero a y—null set. Note that NV need not
be measurable.

o If u(Q2) =1 then p is called a probability measure or simply a probability
and (9, §, i) is then called a probability space. [

Disjointness in (4.19) means that 4; N A; =0 forany ¢,j € N such that i # j (see def.2.4 on p.9).
Do not confuse measurable spaces (£, §) and measure spaces (2, §, 11!

Remark 4.5 (0-algebras are appropriate domains for measures). The o-additivity of measures is
what makes working with them such a pleasure in many ways. It can be stated as follows:

For a disjoint sequence of measurable sets the measure of its disjoint union is the sum of the mea-
sures. Property (4.12c) in the definition of o—algebras is required for exactly that reason.

you cannot take advantage of the s—additivity of a measure p if its domain does not contain

countable unions and intersections of all its constituents.

Here are two not very useful measures which are easy to understand.

Example 4.3. You can easily verify that the following set functions 11 and p» define measures on an
arbitrary nonempty set {2 with an arbitrary o-field §.

pi(A) :=0 forall A € F, zero measure or null measure
p2(0) = 0; u(A) = oo if A # 0.

Keep the second example in mind when you work with non—finite measures. [

Remark 4.6.
(1) We emphasize that the only difference between (general) measures and probability mea-
sures is that the latter must assign a measure of one to the entire space €.
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(2) Many things that apply to probabilities can be extended to general measures, and this
will matter to us even if we are only interested in probability spaces, since will see in the
context of the expectation F[X]| of a random variable X that assignments of the form

1 ifwe A,

A+ E[X -14] where A € Fand 14(w) := {0 ifwée A.

define a measure on (€2, §).

(3) Traditionally, mathematicians write P(A) and (€2, §, P) rather than x(A) and (9, §, ) for
probability measures and probability spaces. The elements of § (the measurable subsets)
are then thought of as events for which P(A) is interpreted as the probability with which
the event A might happen.

(4) A measure space can support many different measures: If 1 is a measure on § and o = 0
then ap : A — au(A) also is a measure on §. [
Fact 4.1. Assume that the real-valued function
po : J5 — R, B+ po(B),
is defined on the set of half-open n—dimensional intervals
J5 = {Ja1, bi]x]ag, ba] X -+ X]an, bp] : a1 < by, az < ba,...,a, < by}

of Example 4.2 on p.46 and satisfies the measure defining properties of positivity, monotony, and o—additivity.
Then g can be uniquely extended to a measure yu on the measurable space (R™, B (R™))

In other words, there exists a uniquely defined measure . on the Borel sets B(R™) (see Definition 4.4 (Borel
sets) on p.46) such that

p(lar, bi]x]ag, ba] X -+ Xlan, bp]) = po(lax, br]xJaz, bo] x - -+ x]an, b))

for any half-open interval |ai, bi]x]ag, ba] X -+ X]an, by], a1 < b1,a2 < ba,...,an < by. O

For the following see SCF2 Example 1.1.3 - Uniform (Lebesgue) measure on [0, 1]

The most important measures we encounter in real life are those that measure the length of sets in
one dimension, the area of sets in two dimensions and the volume of sets in three dimensions.

Definition 4.6 (Lebesgue measure). Given

intervals [a,b] € R

rectangles [ay,b1] X [az, ba] € R?,

boxes or quads [a1, b1] X [az, ba] X [as,bs] € R,

e ingeneral, n-dimensional parallelepipeds [a1, b1] % [a2, b2] X - - X[an, by] € R,

we define
A(lab)) == b—a,

(4‘20) )\é(]al, bl]X]ag, bQ]) = (bl — al)(bg — CLQ),
/\0(]a1,b1]><]a2, bQ]X]ag,bg]) = (bl — al)(bg — ag)(bg — ag),
/\8(]@1, bl] Xoewe x]an, bn]) = (b1 — al)(bg — ag) Ce (bn — an).
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It can be shown that each of those real-valued functions satisfies the conditions stated in Fact 4.1.
7 Thus A? uniquely extends from the parallelepipeds to a measure A" on the Borel sets of R". This
measure is called (n-dimensional) Lebesgue measure.

Note that Lebesgue measure is not finite: A\"(R"™) = oco! O

Fact 4.2. It is not possible to extend the set functions g which define Lebesgue measure to a measure on the
entire power set 2R" of R™.

This (very hard to prove) fact makes it a mathematical necessity to introduce o—algebras as small enough
subsets of the powerset 2 which are suitable as domains for a measure.

We will see later that o—algebras also have a practical importance: they reflect the information that is associ-
ated with certain random phenomena, for example, the evolution of the price of a financial asset. [

Remark 4.7 (Finite disjoint unions). If we have only finitely many sets then “o-additivity” which
stands for “additivity of countably many” becomes simple additivity. We obtain the following by
setting Ayi11 = Anj2=...=0:

A1, Ag, ..., An € § mutually disjoint

4.21
( ) = pAiw AW, .. WAN) = pu(Ar) + p(A2) + ...+ p(An) (additivity).

In the case of only two disjoint measurable sets A and B the above simply becomes

AW B) = p(A)+p(B). O

Proposition 4.5 (Simple properties of measures). Let A, B, € § and let 1 be a measure on §. Then

(4.22a) w(A) =20 forall A€ 5,

(4.22b) ACB = wB) = u(4)+uB\A),

(4.22¢) uw(AUB) + u(ANB) = u(A)+ u(B).
If u is finite then also
(4.232) ACB = uB\A) = u(B) - p(A),
(4.23b) p(AUB) = p(A)+ pu(B) — u(AN B).

PROOF: The first property follows from the fact that p(0) =0, § C A forall A € § and (4.18.
To prove the second property, observe that B = AW (B \ A).

Proving (4.22c) is more complicated because neither A nor B may be a subset of the other. We have

(4.24a) AUB = (ANB)W(B\ AW (A\ B)
(4.24b) AUB =AW (B\A) = Bw(A\ B)

7Positivity and monotony are easy, but o—additivity is hard.
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It follows from (4.24a) that
(4.25) w(AUB) = p(ANB)+u(B\A)+pu(A\ B)

Since ANBC A, B\ ACB, A\ B C A, formula (4.25) shows that y(A U B) = oo can only be
true if u(A) = oo or u(B) = oco. In this case (4.22¢) is obviously true. Hence we may assume that
u(AU B) < 0.

It follows from (4.24b) that
(4.26) 2-n(AUB) = p(A) +u(B\A)+pu(B) +p(A\ B)
We subtract the left and right sides of (4.25) from those of (4.26) and obtain
AU B) = u(A)+ pu(B\ A) + u(B) + u(A\ B) = u(AN B) — u(B\ 4) — u(A\ B)
— ji(A) + u(B) — u(A N B)
and the third property is proved. W

We stated as a fact without proof (Fact 4.1 on 48), that one can extend any set function which acts
like a measure on the half-open parallelepipeds of R" to a measure on B(R"), the Borel oc—-algebra
of R™. The situation is much simpler for countable measurable spaces.

Proposition 4.6. Let €2 be a countable, nonempty set, i.e., the elements of () can be written as a finite or
infinite sequence ) = wy, wa, w3, ... Let

¢ = {{w} : weQ} = {allsingleton sets of Q2 }.

Then any nonnegative and extended real-valued function po which is defined on € extends uniquely to a
measure (1 on the entire power set of (2 by means of the formula

(4.27) p(A) = > pof{w} (ACQ).

w€EA

PROOEF: || This is immediate from the factthat A = 4 {a}. W
weA

Example 4.4 (Binomial distribution). You are very familiar with the last proposition in the context
of discrete probability measures. It is then customarily written p, = P{w,} and called a proba-
bility mass function (or just a probability function in [13] Wackerly, Mendenhall and Scheaffer:
Mathematical Statistics with Applications).

For example, if we define Q := {1,2,...,n} and § := 2% then the Bin(n, p) distribution is the (prob-
ability) measure P on the measurable space (£, §) defined on the singleton events {1}, {2},...,{n}
by its probability mass function

p; = P{j} = Bin(n,p){j} = (’;)w A-p". O

We next examine the analogue of Lebesgue measure (see Definition 4.6, p.48) on the space Z of the
integers.
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Definition 4.7. Let
¢ := {{k} : k€ Z} = {allsingleton sets of the integers }.

Then the function
Yo:€ —[0,00); Xofk} =1

has according to Proposition 4.6 a unique extension

(4.28) ¥ :2% —[0,00], givenby X(A) = Z 1 = |A| forall AC Z.
keA

In other words, X(A) is the size of A, i.e., the number of elements of A. We will call this measure the
summation measure or the counting measure.
In this document a symbol with an arrow on top denotes a vector. So we write, e.g.,
T = (r1,22,...,2p)
for elements of R™. Recall that Z" = Z x --- x Z (n factors), i.e.,
72" = {k=(ki,....kn) : k1,... . kn € Z}.
We define the counting measure in multiple dimensions as follows. Let n € N and

¢ = {{E} kezZn } = {all singleton sets of n—-dim. vectors with integer coordinates }.

Then the function
X0 : € —[0,00[; Xp{k} =1
has according to Proposition 4.6 a unique extension
(4.29) 52— [0,00], givenby X"(A) = Y 1 = |A| forall AC Z".
keA

As in the one dimensional case, X(A) is the size of A, i.e., the number of elements of A. We will call
this measure the n—-dimensional summation measure or the n-dimensional counting measure. [J

NOTATION ALERT: The name “summation measure” is not at all common in the
mathematical literature!

Proposition 4.7 (Continuity properties of measures). Let (2, §, p) be a measure space.

(4.30a) IfB, 1t B then limu(B,) = u(B) = u( Bn) ,
1

(430b)  IfA, | AinFand p(Ar) < oo then limpu(An) = u(A) = u <ﬂ An> :
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PROOF: To prove formula (4.30a), we replace the sequence B,, with a disjoint sequence C), such that
A = |HC, '8 and use the o—additivity of p.

To prove (4.30b), apply the already proven formula (4.30a) to
B, ::A%, B= A
(thus B, 1T B), and note that

w(Bn) = w(Q) — u(An), p(B) = p() — u(A).

This last step requires the assumption that p(A;) < oo (and thus 0 < pu(A4,,) = p(A1) < occ). W

Remark 4.8. The finiteness condition of formula (4.30b) is never an issue with probability measures
P since P(A) < 1 for all A € §. But the unexpected can happen for nonfinite measures such as the
one dimensional summation measure ¥ of Definition 4.7, which is characterized by

%(4) =14], (Ac2).

Here is an example of a sequence of sets A; € Z which does not satisfy the condition ¥(A4;) < oo
(matter of fact, ¥(Ay) = oo for all k), and for which formula (4.30b) is not valid.

Let Ay :={j € N:j = k}. Then A;, | () as you can see as follows.

Let A :=[);cy4; and assume to the contrary that A is not empty, i.e., it contains some n € N. This
is impossible since

n¢ Apyr, thus n¢ [ A, = A,

neN

contrary to our assumptionn € A.
Hence A = (), hence X (ﬂ An> = X(0) = 0.

On the other hand, ¥(A,) = oo for each n, thus li_>m ¥ (A,) = oo since A,, contains infinitely

many elements. We have found a case in which formula(4.30b) does not hold. [

Proposition 4.8. || %

Let (2,5, i) be a measure space and A € §. Then the set function
pa:§ — [0, 00], A pg(A) = pn(An A')
defines a measure on (€2, ).

PROOF:

Only o—-additivity needs a little effort, and it follows easily from Proposition 3.1 (Distributivity of
unions and intersections) on p.37. W

'8see Proposition 3.2 (Rewrite unions as disjoint unions) on p.37
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Proposition 4.9. || x

Let (9, F, i) be a measure space with a sequence of measures y,, that satisfy

po Ty oor () < oo and i | op

Then lim p, : A~ lim p,(A) is a measure.
n—oo n—oo

PROOF: Not given here. We only mention that Proposition 4.7 (Continuity properties of measures)

on p.51 is essential to show that y is o—additive once it has been shown to be (finitely) additive. W

4.2 Measurable Functions and Random Variables

Introduction 4.1. We all know what a random variable X is: X has a real number as an outcome,
and that outcome is random. We also know that such a random variable comes with a probability
distribution.
e For example, if X is a standard normal random variable, then the probability that X
attains a value a < X =< b can be computed as

x2/2

b
Pla< X £b} = / fx(x)dz, where fx(z) = \/127 e is the probability density.
a s

This is an example of a continuous random variable.

e Or X might be a discrete random variable which only attains countably many distinct
outcomes 1, zg,...,i.e, P{X = z1} + P{X = 22} + ... = 1. Such random variables
are defined by their probability mass function

pj = P{X:x]}, (]:1,2,)
An example would be a Bin(n, p)-distributed random variable (see Example 4.4 (Bino-
mial distribution) on p.50) for which p; = (?) P (1 —p)n i,
These settings are not general enough for our needs, and we must make some amendments.

e “.. that outcome is random”: Let us rephrase that as follows. The outcome of X depends
on randomness. Might as well say that X is a function of randomness:

X = f(randomness).

That is a great improvement but “randomness” is to wordy.

o We agree that w means randomness: X = f(w).

e Mathematical symbols are in short supply and it is common practice to use the same
symbol for outcome (X) and assignment symbol (f). We write

X = X(w).

e A function needs domain and codomain. Since arguments are called w it is natural to
call the domain 2. Since we say that random variables are real-valued functions the
codomain must be R or a subset thereof.
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e So arandom variable X is a function
X:Q—R; w X(w).

e Itis important to have a probability measure P defined on the domain €2 of the random
variable X rather than the real numbers (the codomain of X). We have seen in Fact 4.2
on p.49 that not all measures can assign values to all subsets of .

e So the domain of P might just be a o—algebra of subsets of Q2! So {2 must be a probability
space (£, §, P), and a random variable is a function

X: (2,8, P)—R, w i X(w).
e What good is it if there are some important events like, e.g.,
{(-12X21} ={weQ:-12X(w) 21} = X ([-1,1]),

for which P{—1 < X < 1} is not available, because {—1 < X < 1} ¢ §?

e What events are important, i.e., what are the sets B € R such that the preimage X ~!(B)
(also written {X € B}) ! must belong to §?

e The answer to that question will generally be that the preimages {X € B} of Borel sets B
need probabilities:

If Be B(R) thenweneedthat X !(B) e 3.

We have collected enough material to define random variables, but we must proceed in reverse and
start with the concept of measurability which requires that the preimages of certains sets belong to
the o—-algebra § defined on the domain of the given random variable. O

Definition 4.8 (Measurable function). Let

fe@8) — (@3

be a function which has the measurable space (£2, §) as its domain and the measurable space (€', §')
as its codomain.

We say that f is (§,§')-measurable, if
(4.31) 1A € 3, forall A’ € §.

If ' = R" or ¥ = R and §’ is the Borel o—-algebra we also say that f is §-measurable
If both Q' = R"™ or ' = R and also 2 = R" or Q2 = R with the Borel o—algebras then we also
say that f is Borel measurable.

We write m(F, §’) for the set of all (F, §')-measurable functions, and we write m(§) for the set of all

Ysee the Notational conveniences II box that follows Proposition 3.3 on p.39)
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(8, B)-measurable functions (i.e., the codomain is the measure space (R, B)). Thus,

fis (§,3 )-measurable < f e m(g,3),
f is §—measurable < f € m(g). O

See SCF2 Definition 1.2.1 for the next definition.
Definition 4.9 (Random Variable). Let

X :(Q5,P)— (R,B)

be a function which has a probability space (€2, §, P) as its domain and the real numbers
with the Borel o-algebra as its codomain.
If X is §—measurable, i.e.,

(4.32) {X € B} belongs to § for all Borel sets B,

then we call X a random variable. on (22, §, P).
If there is a countable subset A of R such that the random variable X “lives” on A4, i.e.,

XQ) = {X(w) :weQ} C A

then we call X a discrete random variable. [

Remark 4.9. |[ %

(1) If X is a discrete random variable and A = {x1, z9, ... } is countable set which contains the range
X(Q) of X then we can shrink the codomain of X to the measurable space (4,2%) and talk about
the random variable

X : (Q,5 P) — (4,24,

Here is the reason that we can and often will take the entire powerset 24 as the o—algebra of the
codomain of X:
e All singletons {a} C A are Borel sets, thus each B C A is Borel since it is the countable
union B = | J,.p{a} of Borel sets.

(2) Occasionally we allow X to assume the values oo, and —oo, i.e.,, X can be an extended real-
valued, §—measurable, function. [

It seems awkward not to call a measurable function 2 — €’ from a probability space (2, §, P) to a
measurable space (', §') a random variable only because its function values are not numbers. We
give a name to such measurable functions of randomness.

Definition 4.10 (Random item). | %

e Let (0,3, P) be a probability space, (£,F’) a measurable space. A random item is an
(§,§')—measurable function X : Q@ — Q. O

Note that all random variables are random items.

For the following see also SCF2 Definition 1.3.9 and SCF2 Definition 1.1.5.
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Definition 4.11 (Almost everywhere and almost surely). Let (€2, §) be a measurable space and let A
be the set of all w € 2 such that a certain property is true. For example,

e A={weQ: fw) < gw),

e A={weQ: thefunction t — Y;(w) is continuous },

o A={we: |X(w)| <1}

(1) In the context of a measure space (€2, §, 1) we say that the property is satisfied, or
holds, or is true y—almost everywhere if (ALY = 0. We also write ji-a.e.

(2) In the context of a probability space (£, §, P) we say that the property is satisfied, or
holds, or is true P-almost surely if P(AY) = 0 or, equivalently, if P(4) = 1. We also
write P-a.s.

(3) Ineither case we will drop the p—and P-prefixes if there is no confusion about which
measure or probability this refers to. [

Remark 4.10. || %

The set A might not be measurable. To be precise we would have had to formulate the above as follows. The property

holds p—a.e. if there is a measurable set B such that p(B) = 0 and B contains the set A® on which this property is not

satisfied. We will not worry about such fine points concerning measurability. O

Remark 4.11. We follow the lead of SCF2 and often will not explicitly mention that a certain prop-
erty is assumed to be true or can be proven to be true only almost everywhere /almost surely. [

Remark 4.12.

Since random variables are special cases of measurable functions, it follows that

All statements that are true for measurable functions are true for random variables! [

Theorem 4.1. Let (2, F) and (', F') be measurable spaces and f : Q — . Let € C §' be a generator of

3, ie.,
o(¢) = §.
to prove that f is (§,§' )-measurable it suffices to show that
(4.33) fHA) CF forallA € €.
PROOF: |[*%

Step1. We show that
H ={H CQ:fY(H)cF} isaoc-algebra.

Clearly, ) € s#’. We will show that countable unions of sets in #’ also belong to 5#”’. The proof
that H' € s’ implies H' € S’ is similar.
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Let H), € # forn € N. Then f~!(H!) € § by definition of J#’. Since ¥ is a o-algebra,
U, f~'(H}) € §. Since U,, f~*(H,) = (U, H;,) by Theorem 3.4 (f~! is compatible with all
basic set ops) on p.40, it follows that f~!(U, H},) € §,ie., U, H, € H#".

Step 2. By assumption, f~}(E’) € F forall E’ € ¢'. Thus, ¢ C H#, thus,
(%) o(€) C o(H#)

Since o(¢') = § by assumption, and S’ = o(H#"') by Step 1, it follows from (%) that § C H#, i.e,,
fH(A) egforall A € §'. Thus, f € m(F, ). W

Corollary 4.1. Let (2, ) be a measurable space and f : (9, F) — (R, B1). to prove that f is F—measurable
it suffices to show that one of the following four conditions is met:

D {f<c} e forallceR,
(2 {f<c} eg§forallceR,
3 {f>c} egFforallceR,
4 {fz=c} egforallcerR. O

Note that this implies the following. If the domain of f actually is a probability space (2, §, P) then f is a
random variable if one of the above four conditions is satisfied.

PROOF: || Essentially follows from Theorem 4.1 above and Remark 4.4 on p.46. W

Proposition 4.10.

o Any continuous function f : R"™ — R" is Borel-measurable, i.e., (8", B")-
measurable.

o In particular, any continuous, real-valued function f(x) of real values x is Borel—
measurable. [

PROOF: | % | A triviality if you recall that the open n-dimensional parallelepipeds generate 8"

and if you know the following;:

f is continuous (at each © € R"™) <« the preimages of all open sets in R" are open in R™. W

Proposition 4.11. || %

Let (2, F) be a measurable space and f, g extended real valued Borel measurable functions. Then each one of
the sets

{f<gt, {f=gh {f>9g} {fz29}

is §—measurable.

PROOF:

For the set {f < g} we proceed as follows. For ¢ € Qlet A, := {f < ¢ < g}. Then 4, = {f <
q} N{q < g} is measurable as the intersection of two measurable sets. Note that

f(w) < g(w) < thereis (atleast one) ¢ € Q such that f(w) < ¢ < g(w),
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and thus

{f<g} :UAq'

q€Q
It follows that { f < g} is measurable as the countable union of the measurable sets A,,.

From this we obtain measurabilty of the set { f < g} since

{f<g} = ﬂ{f<g+7ll}-

neN

Lastly, {f > g} and {f 2 g} are measurable as complements of the measurable sets {f < ¢} and

{f<g; ®
For the following see Definitions 2.17 and 2.18 on p.17.

Theorem 4.2. Let (2, §) be a measurable space and f,g: Q@ — R. Let ¢ € R.
If f, g in m(§) then each of the following also is (§, B )—measurable:

¢ cof, fxg, fgi flglon{g#O0N,Ifl, f5. f~. fVvg, [fAg.

Here ¢ denotes the constant function w — c and cf denotes the function w — cf(w).

e Moreover, all statements above which involve two functions f and g generalize to finitely many
measurable functions fi, fa, ..., fn.

e Moreover, the statements about f v g and f A g generalize to sequences ( fy), of functions as
follows: If each f,, is measurable then so are the functions

sup fp, : w = sup{ fp(w) : n € N}, inf f, : w— inf{f,(w) : n € N}.

PROOF: Omitted except for this one:

We prove that f(w) := sup,, fn(w) is measurable as follows. Observe that for any ¢ € R it is true that
flw)se & folw) S cforalln,

thus

{f<ey = N{fmsch

neN

and this set is §-measurable as the intersection of the F—measurable sets {f,, < ¢} . The assertion
now follows from Corollary 4.1. W

Example 4.5 (Binomial random variable v.s. binomial distribution). This example continues Exam-

ple 4.4 (Binomial distribution) on p.50 which was about the binomial distribution Bin(n, p) defined
by its probability mass function

(4.3 b= P = (0) 7 a-p,
Let (2,5, P) be a probability space and let X € m(5), i.e., X is a random variable on (2, §, P). We
all are familiar with what it means that X is a Bin(n, p)—distributed random variable. It satisfies

formula (4.34), right?
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Not exactly! There is a problem with the probability P. In formula (4.34) it occurs as a measure on
the measurable space
({0.1,...,n},2100n})

and NOT on our abstract measurable space ({2, §) which may not have numbers 0,1,2,... as ele-
ments w.

Here is the explanation. These numbers j are not the argument w of the random variable w — X (w);
they are the function values j = X (w). If, by chance, randomness occurs as wj, then the associated
outcome for X might be, e.g., X(w1) = 7. On the other hand, if wy happens instead, then we
observe X (w2), and that outcome might be X (wz) = 4. And if w3 happens instead, then we observe
the outcome X (w3), which might again be 7, and so on.

So the answer is that Bin(n,p){j} = (7) p’ (1 — )"~ refers to events on the codomain (R, B') of X,
and this leads to the following question.

e There must be a relationship between the measure P on ({2, §), the random variable X,
and the measure Bin(n,p) on (R, B'). What is it?
The answer to the first question was given in Introduction 4.1 to this chapter 4.2 (Measurable Func-
tions and Random Variables). See p.53. We will use X and P to build a measure Px on (R,B!) as
follows:

Px(B) := P{Xe€B} = PlweQ: X(w) € B}, (Be®B).

That will work for any random variable. Matter of fact, that will work for any measurable function
[:(Q,8, 1) — (,F), since we can define a measure p; on § from the measure ;. on § via

np(A) = p{f e A} = weQ: flw) e A}, (A ef). O

Proposition 4.12. Let (2, §, i) be a measure space and (', §') a measurable space.

Let f: Q2 — Q' be (§,5') measurable. Then the set function
(4.35) pr:§ = 0,00 A" = p{fed} = pfweQ: flw)e A}

defines a measure on (S, §'). Moreover, if u is a probability measure on §, i.e., (2 = 1), then iy
is a probability measure on §'.

PROOF: || ps(0) =0,since f~1(0) =0, and x is a measure.

We show here in detail that ¢ is monotone: A C B = pus(A) < us(B), forall A, B € §'. According
to Proposition 3.3 on p.39, A C B implies f~1(A) C f~1(B). Since u is a measure, this implies
pw(f~HA4)) < pn(f~(B), ie., by definition of yif, 1f(A) < puy(B)

The proof that yi¢ (), Bn) = >, f(By) for any disjoint sequence B, € §, is just as simple, since
the order of taking preimages and unions can be switched. See Proposition 3.4 (f~! is compatible
with all basic set ops) on p.40. W

For the following see SCF2 Definition 1.2.3.

Definition 4.12 (Image measure).
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(1) We call the measure 1y of Proposition 4.12 the image measure of ;s under f or the mea-
sure induced by p and f.

(2)  We now switch notation from f and p to the more customary X and P for the sake of
clarity. In the case of a random variable X on a probability space (2, §, P) we call the
image measure Px of P under X which is, according to (4.35), given by

(4.36) Px(B) := P{X e B} = P{lweQ: X(w) e B}, (BeB)

the probability distribution or simply the distribution of X. SCF2 also calls Px the
distribution measure of X. [

Proposition 4.13. Let Q2 be a nonempty set, (', §') a measurable space, and f : Q — ' an arbitrary
function. Then
(1) thecollection o(f) = {f1(A") : A’ € §'} of all preimages of §'—measurable sets is a o—algebra.
(2) The function f is (o(f), S )—measurable.
(3) o([f) is the smallest c—algebra § on 2 which makes f (§, ' )—measurable in the following sense:
If § is a o—algebra on Q and there are sets A € o(f) which do not belong to §, then f is not
(§, &' )—measurable.

PROOF: || %

(1) follows from Proposition3.4 (f~! is compatible with all basic set ops) on p.40.

(2) is easy to see from the definition of measurability of a function. W

Definition 4.13. Let 2, 2’ be nonempty, § a o—algebraon €, and f : Q — .

We call the o—algebra from Proposition 4.13

(4.37) a(f) = {f71(4): A eF}

the o—algebra generated by f. [

Remark 4.13. Assume that f : (2,F) — (€',§F) with measurable spaces for both domain and
codomain.
(1) The minimality of o( f) stated in Proposition 4.13.(3) implies that
fis (§, ¥ )-measurable < o(f) C F.
(2) Inparticular, if X is a random variable defined on a probability space (2, §, P), theno(X) C §,
since X is § measurable by the very definition of a random variable.

(3) Ina sense we can think of o(X) as the information one associates with a random item
X. This is discussed at length in Chapter 5 (Conditional Expectations) and in SCF2,

ch.2. O

4.3 Stochastic Processes and Filtrations

In finance and other disciplines we are interested in undertanding random evolutions in time, i.e.,
trajectories t — X (t,w) which are thought of be random and thus are a function of randomness
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w. Time may be discrete if we we observe X (¢,w) only at countably many discrete times ¢ = ¢y <
t1 < ty < --- or it may be continuous if we observe X (t,w) forto =t < T orty < t < T, where
0 £ty < T < oo. For example, X (t,w) can the price of a stock at some future time ¢ which is
unknown to us, and w captures that uncertainty.

Definition 4.14 (Stochastic Process). A stochastic process X on a probability space (2, §, P), often
just called a process, is a collection of random items X; which take values X;(w) in a measurable
space (€, §), the state space, of the process. Being a random item, each X; is §—§ measurable.

The argument ¢ takes values in an interval of the form [#9,T'| or [to, T or [tp, oo[ or in a discrete
collection {tg < t; <ty < ...}, finite or infinite, of real numbers. We interpret ¢ as time. Usually the
start time ¢y will be zero and the end time 7, if it is given, will be the time of expiration of one or
several financial instruments.

Unless something different is specified, the symbol I will denote the index set of the
stochastic process X.

Depending on what is convenient we will include or omit the randomness argument w, and the
same applies to the index ¢t. Here is an incomplete list of the notation you will encounter for a
stochastic process.

X =X, = X(t) = (Xo)e = (X(1)) = Xi(w) = X(t,w) = ...

to<t<T
Unless stated otherwise, we assume that X is numeric, i.e., X;(w) is an extended real number for
each randomness argument w and time ¢. Thus each random item X; actually is a (extended real-
valued) random variable. However we will also deal with vector valued stochastic processes

X =X =x" x@ . x™.

We sometimes use the notation X (-, w) if we want to emphasize that we consider the randomness w
as fixed and only ¢ varies. We call this function X (-,w) : ¢ — X (¢, w) the w—trajectory or w—path or,
in short, the trajectory or path of X. At other times we write X (¢, -) or X;(-) if we want to emphasize
X as the random variable which results when we look at the potential outcomes at a fixed time ¢.
O

We will introduce some more terminology for random items indexed by time which do not qualify
as stochastic processes in the sense of Definition 4.14 (Stochastic Process) on p.61 because the time
index does not live in a contiguous interval.

Definition 4.15. Given are a probability space (2, §, P), a measurable space (€', §’), an index set
I C [0,00[, and a family X = (X;,¢ € I), of '—valued random items with index set I. We further
assume that the indices ¢ € I are to be interpreted as points in time.

(@) If I is a contiguous interval of the form [¢g,T"| or [to,T| or [tg, 0] (to = 0), then we refer
to X as a continuous time stochastic process with start time ¢y and, in the first case, with
end time or expiration time 7.

(b) If I is an infinite sequence of real numbers 0 < ¢y < t; < t3 < --- or a finite sequence of
real numbers 0 < ¢y < t1 < ta < t,, = T then we call X a discrete time stochastic process
with start time ¢y and, in the second case, with end time or expiration time 7'.

61 Version: 2023-04-21



Math 454 — Additional Material Student edition with proofs

(¢) If I is an infinite, contiguous sequence of integers 0 < ko, ko+1,ko+2,... thenwecall X a
stochastic sequence. with start time k¢. This is a special case of a discrete time stochastic
process.

(d) If the index set of the form I = 1,2,...n and we interpret X;,... X, as the coordinate
values of an n—tuple rather than the values of a real-valued process observed at the times
1,2,...n, then we prefer to write

— —

X=xW . .x" or Xw)= (XY (w),...x"(w))
and call this expression a random vector. [

Remark 4.14. Any nonnegative finite or infinite sequence of real numbers ¢y < t; < --- is a suitable
index set for a discrete time stochastic process. Thus stochastic sequences and random vectors are
special cases of such processes.

We will almost exclusively deal with stochastic processes which are either of
e continuous time stochastic processes,

e discrete time stochastic processes. [J

Before we can proceed we must discuss the information associated with a stochastic process. We
briefly touched upon a o—algebra as the information belonging to a random variable in Remark
4.13(3) on p.60. We recall Proposition 4.13 in which we defined o(f) := {f~1(4") : A’ € §'}, the
o-algebra generated by f, for any function f : @ — Q' from an arbitrary, nonempty set 2 to a
measurable space (€, F).

We can generalize this notion to more than one function as long as they all have the same domain
Q. Solet g : @ — Q" also have a codomain which is a measurable space (£2”,F”). we then define

o(f,g) == c{ACQ: A= f1(A)forsome A’ € F or A= g '(A”)forsome A" € §"},

i.e., o(f,g) is the smallest o—algebra that contains all preimages of measurable events for both f and
g. This definition easily scales for any finite or infinite, even uncountable, collection of functions
fi : @ — (€4, §;) which have measurable spaces as codomains.

Definition 4.16. Let (2 be an arbitrary, nonempty set and let f; : @ — Q;, i € I be a family of
functions which have measurable spaces (£2;,§;) as codomains and are indexed by an arbitrary,
nonempty, index set . No assumptions are made about I so do not think of those functions f; as
being indexed by “time”! We call the o—algebra

(4.38) o(fiziel) :=c{ACQ: A= f7(A;) forsomei € Tand 4; € §; }
the o—Algebra generated by the family of functions f; [
Remark 4.15. This last definition can be applied to the special case of a collection of random items

X, € I on a probability space (£, §, P), indexed again by an arbitrary index set /. Thus each X;(w)
is an element of a measurable spaces (£2;, §;). We then have

(4.39) o(Xi:iel) =c{ACQ: A={X; € A;} forsomei € [ and A; € §; }.
Note that since each X is a random item, each preimage {X; € A;} belongs to §, thus

o(X;:iel)Cg. O
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We are now back to stochastic processes and index sets I which can be interpreted as time intervals.

As we just have seen in Remark 4.15 we can associate with each random item X; of a stochastic
process X = (XU)u ¢, the o-algebra o(X;), which we interpret as the stochastically relevant infor-
mation of X;. See Remark 4.13 on p.60. However, we are not only interested in the stochastically
relevant information of X;, but in that of the entire past of the process X up to time ¢. Since this
information is stored in 0{ X : s < t}, we are lead to the definition of a filtration.

Definition 4.17 (Filtration for a process X;). For a continuous time or discrete time stochastic pro-
cess X with index set I we define, fort € I,

(4.40) X =o{X,:sel,s<t)

We call the family (F;¥);c; of all those sub-c—algebras of § the filtration generated by X. [

Remark 4.16. For the following see also Remark 4.13 on p.60.

The o-algebra §;* associated with a stochastic process (X;)scs is, in a sense to be made

more precise in Chapter 5.1 (Functional Dependency of Random Variables), the container
of all stochastically relevant information of this process up to time ¢. [

The next example shows you how to interpret the previous remark. It is very important that you
understand it intuitively, without trying to apply any mathematical reasoning.

Example 4.6 (Filtrations as seat of the information of the past). In the following we assume that X
is real valued and I = [0, co|.

(1) LetA={2.78 < X, =<3.14, for5 < s < 7}. Then 4 € F¥, but not A € Fqq, since observing
the process X up to time ¢ = 6.999 and seing that 2.78 < X < 3.14 for 5 < s < 6.999 does
not determine whether or not 2.78 < X; < 3.14.

(2) For some arbitrary t,h > 0. Let B = {X;15 < 0}. Then B € Sfj_h. but not B € Sf(, since one
cannot decide whether or not B has occurred just from knowing how X behaved up to and
including time ¢.

T
(3) Assume that X has continuous trajectories s — X (w) Then Z(w) = [ X,(w)du (Riemann
0

integral) is defined for any given T' > 0 and w € 2. Z is §5 —measurable since knowing the
behavior of the trajectory X (-,w) between times 0 and 7 suffices to understand the behavior

T
of [ X, (w)du. But note that Z ¢ m(33_;) for any § > 0, no matter how small.
0

(4) Assume that X has continuous trajectories s — X (w). Let
7(w) = inf{s 2 0: X (w) = 20},

i.e., the random time 7 denotes the first time that the trajectory enters the interval [20, col.
Then the event {7 < 8.5} is in §g 5, since

T(w) £ 85 < Xs(w) =20 forsome s < 8.5,

and this clearly is determined by the behavior of X (w) for 0 < s < 8.5.
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(4a) More generally assume again that X has continuous trajectories. Let v be an arbitrary real
number. Let
T(w) = inf{s 2 0: X, (w) 2~}

be the time of first entry into [y, oo[. Then {7 < t} is in §; for any ¢ > 0, since

T(w) £t & Xs(w) = v forsome s < t.

(5) Assume that X has continuous trajectories s — X (w) and let
p(w) = sup{s 2 0: X,(w) = 20},

i.e., the random time p denotes the last time that the trajectory is inside the interval [20, col.
Then the event {p < t} is not in §; for any ¢ > 0 since we cannot predict at time ¢ the future
behavior of the trajectory. [

Remark 4.17. It is obvious that, for a time ¢ after time s, more info (more measurable preimages)
has accrued until time ¢ than just until the time s of the past. In other words,

ifs<t thengy C §*. O

The property just mentioned by itself is so useful that we encapsulate it in its own definition, with-
out referring to stochastic processes.

Definition 4.18 (Filtration-general). Let (Q,§, P) be a probability space and I C R. Assume that
for each t € I there is a sub—o—-algebra §; of § and that this family (J;),.; satisfies monotony with
respect to ¢:

Ifs<t then§s C &

for all s,t € I. We call such a family a filtration on (Q2,J,P), and we call the quadruple
(0,3, (8t)ier > P), usually denoted by (2,5, (J¢), P) or (2,3, 3¢, P) if there is no confusion about
I or its particulars are irrelevant for the discussion at hand, a filtered probability space. [J

We have a special definition for a processes X = (X;):c if its trajectories X, s € I, s < t are deter-
mined by the member §; of a filtration (§¢),.;-

Definition 4.19 (Adapted Process). Let X be a discrete time or continuous time process with in-
dex set I on a filtered probability space (2,3, (8t).c;, P). If the trajectory X (s) (s € I,s = t), is
determined by the information in §; for each time ¢, i.e., if

X, is Fr—measurable for each s € I such that s < ¢,

then we say that X is adapted to the filtration §;, [

Proposition 4.14. Every process X is adapted to its own filtration FX = o0{Xs:s € I,s < t}.
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PROOQOF:

Let t € I. To prove that X, is &;X —% measurable, we claim that it suffices to show that

(A) {X;€B} € ¥ forallBegF.

This is why. Let s < ¢t and B € §'. Then, by (A), {X; € B} € §X. Buts <t = FX C FY, thus
{Xs € B} € ¥, thus X is (Sf()t—adapted.

Let
¢ ={X;YB): BegF}
and

¢ ={ACQ: A= X, (B)forsome B € § and some u < t}.

Then &; C &, 0(€;) = o(X;), and & = Fi. It follows from Proposition 4.3 (Monotonicity of
generated o—algebras) on p.45 that o(€;) C (&), ie., o(Xy) C §X. Thus, (A) holds. W

If a random variable w — 7(w) is nonnegative then one can interpret 7 as a random time It can be
used, e.g., as the time argument of a stochastic process (Xt) 0" The resulting random variable

w = XT(w) (w)

then denotes the value of the w-trajectory X (-, w) at time 7(w).
We will now use special random times, called stopping times, to create adapted processes.

Definition 4.20 (Stopping time). || %

We call a random time tau on a filtered probability space (2, §, (§:),) a stopping time if
(4.41) {rst} ={weQ:r(w)=t} € §  forallt € [0,00].

Proposition 4.15. || %

If T is a random time on a filtered probability space (2, §, (3¢),) then
T is a stopping time & the process (t,w) — X (t,w) 1= Ljg r(u)((t) is Fr—adapted.

PROQOF: We note that

if 7(w
() Xelw) == {(1) ifTEw;Z

Let ¢ € R. Then the value of the set {X; < ¢} only depends on whether eitherc £ 0or0 <c < 1or
¢ > 1. We obtain from (A) the following.
Case c = 0: {Xy<c} =0,
Casec > 1: {Xi<c} =9,
Case0<c=<1l: {Xi<c} ={X;=0} = {7t}
Since the empty set and (2 belong to any o—algebra of €2 the §;—adaptedness of X; is entirely deter-
mined by the last case 0 < ¢ < 1 as follows:

X is §—adapted < {X; =0} €eF,forallt & {r=t} €Fiforallt < 7isastopping time.

This concludes the proof. W
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Remark 4.18. In a financial market filtrations appear, e.g., as follows. Given are one or more “un-
derlying assets”, e.g., stocks, whose prices S(); ..., S(™ depend on time ¢ and randomness w, i.e.,

each stock price SU) is a stochastic process St(j ) (w). They will be “driven”, i.e., stochastically deter-

mined, by one or more processes Wt(l), ce Wt(m). 20 By this we mean that each stock price SV is
adapted to the filtration defined by

S = O'(Ws(j) :1<j<m,s<tsel) foreacht € I,

i.e., to the filtration generated by those Wt(j ), Optimal estimates of future financial data with re-
spect to this fitration will play a key role in determining the price of a financial derivative which
is based on the underlying assets. Those optimal estimates are obtained by means of conditional
expectations, a tool that will be discussed in Chapter 5. [

4.4 Integration and Expectations

The following should be read in conjunction with SCF2 ch.1.3: Expectations.

Remark 4.19. We recall that (1) if f : R — {0,1} and g : R” — {0, 1} are Riemann-integrable and (2)
if also the sets A C Rand B C R" are Riemann-integrable, i.e., the Riemann integrals

/ 1A(37) dx and / / 1B(m1,:1:2,...,xn) dridxs - - - dxy,

—00

of the indicator functions 14 : R — {0,1} and 15 : R® — {0, 1} exist, then we write
(4.42) [ t@de = [ j@a@
A —00

(4.43) /g(xl,...,xn)dxl"-d:cn :/ / g(z1, ..., xx)lp(x1, ... xp)dzy - - - dxy. O
B —00 —00

Introduction 4.2. We start out with a few things we know about integration from calculus.
A.If f : R = Ris a function of the form

k
F@) =1, p,(@),
j=1

then
o k o b,
/_ f(x)dz = ch/_ 1]aj,bj}($) = ch/. dx
(4.44) w T
= ci(by —a;) = Y _c; N (lay, b)) .
j=1 j=1

Here \; denotes Lebesgue measure which was introduced in Definition 4.6 on p.48.

Ys0-called Brownian motions or Wiener processes
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B. Things are similar in the multidimensional case. If g : R™ — R has the form

r) = Z cj 1}U1j,v1j]><---><]unj,vnj](f)’ (uij <wvjjfori=1,...,n),
j=1

where 7 = (z1, 22, ...,2,), then

0 [e¢) k V15 Unj
/ / g(xl,...,xn)dxl---dxn:ch/ / dry---dx
T e j=1 Uy Unj

k
> (v = wig) - (vnj — unj)

=1

(4.45)

<
Il

I

cj A" (Juig, vig] X - X]ung, vngl) -
1

<
Il

C.If X is a random variable on the probability space (€, §, P) and if f : R — R s of the form

chl]ajb] /{EN)

then the expected value E[f o X] of the composite function f o X : w +— f(X(w)) is

k k
(4.46) E[foX] =) ¢jE[ljg, (X ZCJP{X €laj, b1} = > ¢;Px(laj, bs)).
j=1

j=1 j=1

Here Py is the distribution of X, i.e., the image of P under X.

k
In each of those three cases we have a function of the form f = 3}~ c;14, which takes finitely
j=1
many values c¢j, and we have computed in each case an integral or an expected value of the form

> ¢jiu(A;) for a suitable measure ;. We will now establish a common thread. [

Definition 4.21 (Integral of a simple function). Let (£2,§, ) be a measure space, n € N, and

Ay, As, ..., A, € § afinite collection of measurable sets. Let f : 2 — R be defined as
(4.47) f = chlAj, 0Sc¢j<ooforj=1,...,n
j=1

We call such a function which only assumes finitely many function values a simple function. Note
that f = 0 and f is measurable as the sum of the measurable functions w + ¢; - 14, (w). We call

n

(@.48) [tan = [1@du) = [ f@)uta) = Y4

j=1

the integral, also the abstract integral, of f with respect to 1, also the py—integral of f O
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Remark 4.20. |[ %

A. We made no assumption about finiteness of 11, so some or all of the A; may have infinite measure.
We confined ourselves to non-negative c; in order to avoid expressions of the form co — oc.

B. Note that the choice of k, A;, and ¢; is not unique for a given function f. For example, the constant

function
frRBUAY) —R; 3,

can be written as
f =3-1r = 3- 1}_0070[ + 3- 1[0700[
=1 hoo1f 2 Do + L ljmgio0) + 2 Tpyoo-
Thus the following is important since it ensures that the definition of [ fdu is consistent:
C. Let the simple, nonnegative, function f have representations

k

k/
f = chlAj = ZC;&A;»
j=1

j=1

k K’
Then Y~ c;ju(Aj) = 3 ¢ju(A}), thus [ fdu does not depend on the choice of the sets A; and the
j=1 j=1
coefficients c¢;. [

We extend the definition of [ fdu to more general measurable functions, in particular all f € m(J)
which are nonnegative or nonpositive.

For the following review the decomposition f = f* — f~ given in Definition 2.17 (Absolute value,
positive and negative part) on p.17.

Definition 4.22 (Integral of a measurable function). Let (€, §, 1) be a measure space and f an ex-
tended real-valued, §—measurable, function.

1) If f =0, we define
(4.49) /fdu = sup{/hdu : hissimpleand0§h§f}.
If notboth [ ffdu =ooand [ f~dp = oo, we define

(450) [ran= [srau- [ 1 an

Again we call [ fdu the integral or abstract integral of f with respect to p.
2 If / |f|dn < oo we call f integrable with respect to i or just p—integrable.

As in (4.48) on p.67, we have the following alternate notation.
[tan = [ 1@ aute) = [ s@ntao). 0
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Remark 4.21. |[ % | Note that there are measurable functions f which are not pi—integrable even

though [ fdu exists. For example, let
f : (R’%17)‘1) . (Ra%1)7 f(l‘) = LE+ = 'xl[O,oo['

Here is a formal proof that [ z*d\!(x) = oc. For eachn € N, let hy, := n - 1}, 5. Then h,, < f and
this simple function has integral [ h,d\ = n - A!([n,2n]) = n%. Thus

/a:+d)\1 = sup{/hal)\1 : hissimpleand0§h§x+} > sup {/hnd)\l} = 0.

neN
In particular the integral [zTd\! exists but is infinite. Since |f(z)| = f(z) for all z we see that
[ |f|dA\! = oo, thus f is not Al-integrable. O
We next define expected values of random variables as abstract integrals [ - - - dP.

Definition 4.23 (Expected value of a random variable). Let (€2, §, P) be a probability space and X a
random variable on that space, possibly extended real-valued.

If [ XdP exists, we define the expectation or expected value E[X] of X, with respect to P,
also simply written as X, as

(4.51) E[X] = /XdP = /X(w) dP(w) = /X(w) P(dw). O

Definition 4.24. (p-integrable functions and random variables)

(1) Let (2,3, ) be a measure space and f an extended real-valued, §—measurable,
function. Let p = 1. If / |f|Pdu < oo we call f p—integrable with respect to .

(2) Let(Q,F, P)be a probability space and X a random variable on that space, possibly
extended real-valued. Letp 2 1. If E[|X|P] < oo we call X a p-integrable random
variable

(3) If p = 2 we also refer to square—integrable functions and random variables

Note that X is a p-integrable random variable if and only if X is a p-integrable function with respect
to the (probability) measure P.

Proposition 4.16. || %

Let (Q,F, i) be a measure space and A € §. Let pa be the measure defined in Proposition 4.8 on p.52:
na(A') = u(An A))

If f € m(F) is p—integrable then f1 4 is integrable with respect to both p and 14, and then

/flAdM = /flAduA = /fdMA-
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PROOF: Not entirely trivial. You first prove this for simple functions h and then use
0=h=f&0=hla= fla
to prove the general case. W

The last proposition shows that if f is y—integrable and A € § then [ f14du exists. We are in a
position to define the following.

Definition 4.25. Let (€2, §, 1) be a measure space, A € §.

If f is a measurable function and [ f14dp exists (is not of the form oo — 0o) then we call

(452) /A fp = [ £+ 1adu

the integral or abstract integral, of f over A with respect to u. We also write
[ tan = [ s@dut) = [ ) uta).
A A A
Observe that [, fdu = [ fdu. O

For the following see SCF2 Theorem 1.3.4. We formulate it twice, once for general measures and
then again for probability spaces.

Theorem 4.3 (Fundamental properties of the abstract integral). Let f be a measurable function on a
emasure space (2, §, ().

a. If f takes only finitely many function values xq, 1, ..., Ty, then
[an =Y on (o).
k=0

In particular, if ) is finite and § = 2%, then

[tan =3 s@nte).

we

b. (Integrability) The measurable function f is integrable if and only if

/f+du<oo and /fdu<oo.

Let g be another measurable function on (0, §, ).
c. (Comparison)If f = ga.e. and f and g are integrable or nonnegative a.e., then

/fdu = /gdu-
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d. (Linearity) If o and (3 are real constants and f and g are integrable or if o and (3 are nonnegative
constants and f and g are nonnegative, then

[tar+podn = a [fau+s [gan

PROOF: See SCF2, proof of Theorems 1.3.1 and 1.3.4. W

And this is the version for probability spaces which you will find as SCF2 Theorem 1.3.4.

Theorem 4.4. Let X be a random variable on a probability space (2, §, P).
a. If X takes only finitely many values xo, x1, ..., %y, then

k=0

In particular, if 2 is finite and Q = 2%, then

E(X) = ) X(w)P{w}.

we

b. (Integrability) The random variable X is integrable if and only if

E[XT] < c0 and E[X7] < o

Now let Y be another random variable on (Q, §, P).
c. (Comparison)If X =Y a.s. and X and Y are integrable or a.s. nonnegative, then

EX = FEY.

d. (Linearity) If o and ( are real constants and X and Y are integrable or if o and (3 are nonnegative
constants and X and Y are nonnegative, then

E(aX + 8Y) = aB(X)+ BE(Y).

e. (Jensen’s inequality:) The following need NOT be true for measures which are not probability
measures. If ¢ is a convex, real-valued function defined on R and if E(X) < oo, then

p(BE(X)) £ E(p(X)).

PROOF: See SCF2.

Theorem 4.5. Let (2, §, p) be a measure space and assume that the extended real-valued functions f, g €
m(§, B) both are p—integrable. We have the following.
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(4.53) If/fdu < /gd,u foralll' € § then [ < g p-ae.
r r
(4.54) If/fdu = /gdu foralll' € § then f = g p-ae.
r r
PROOQOF: |/ %

Proof of (4.53): We assume that [ fdu < [ gdp forallT € §,and f < g p—a.e.. Let A := {f > g}.

Let A := {f > g} and assume that p(A) > 0. It suffices to show that

(A) there exists I' € § such that / fdu > / gdu,
r r

since this contradicts the assumptions made in (4.53). This allows us to conclude that the assump-
tion 11(A) > 0 is wrong, since it lead to that contradiction. Thus, p({f > g}) = 0. This proves that
f £ g, u—a.e., and we are done.

It remains to prove (A) by finding I' € § such that [, fdu > . gdp.

Forn € Nlet A, := {f > g+ 1}. Then A, 1 A4, hence ;(A4,) 1 u(A). See Proposition 4.7 (Continuity
properties of measures) on p.51.

Assume to the contrary that ;4(A) > 0. Then there exists v > 0 such that ;1(A) = 2y and hence some
n € N such that p(A4,,) = . Since f > g+ % onall of 4,,,

1 1
/fdui/ <g+)du=/9du+M(An)z/gdu+7>/gd/t-
An An n An n An n An

In other words, I' := A,, satisfies (A). This concludes the proof of (4.53).
Proof of (4.54): Note that, according to the already proven validity of (4.53), the assumption

/fd,u = /gdu forall A€ § implies f < gp-ae, and g = f p-ae.
A A

This proves f = g p—a.e. W

The following theorem, [SCF2 Theorem 1.3.8, is specific to Lebesque measure. It is true in multiple
dimensions, but we only state it for the one dimensional case.

Theorem 4.6. Connection between Riemann and Lebesgue integrals] Let f : R — R be a bounded function
and let a < b.
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b
(1) The Riemann integral [ f(xz)dx exists (i.e., the lower and upper Riemann sums converge

a
to the same limit) < the set of points x in [a, b] where f(z) is not continuous has Lebesgue
measure zero.

b
(2) If the Riemann integral [ f(x)dx exists, then f is Borel-measurable (so the Lebesgue inte-

gral [ f(z)d\'(x) also exists), and both integrals agree.
[a,0]

PROQOF: |[% | Beyond the scope of this course. W

Remark 4.22.

(1) Theorem 4.6(1) can be expressed as follows: The Riemann integral f; f(z)dz exists & f(z)
is almost everywhere continuous on [a, b].

(2) All singleton sets {z} in R have Lebesgue measure zero, hence any finite set of points has
Lebesgue measure zero. Thus (1) above guarantees that if we have a real-valued function
f on R that is continuous except at finitely many points, then there will be no difference
between Riemann and Lebesgue integrals of this function.

(3) Lebesgue integrals are the appropriate vehicle to develop and prove mathematical theory.
But to actually evaluate integrals we use the formulas for computing Riemann integrals.

(4) Because the Riemann and Lebesgue integrals agree whenever the Riemann integral is de-
fined, we often use the familiar notation fab f(z) dz instead of f[a’b] f(x) d\(z), even if we
do Lebesgue integration.

(5) If the set B over which we integrate is Borel but not necessarily an interval, we also write
[ f(z) dz instead of [, f(z) d\'(z). O

4.5 Convergence of Measurable Functions and Integrals

The following corresponds to SCF2 Chapter 1.4, but note that what is formulated in these lec-
ture notes for arbitrary measure spaces (2, §, i) is developed there only for the measurable space
(R, B(R), A).

We start by applying the definition of a.e. and a.s (almost everywhere and almost surely, see Defi-
nition 4.11 on p.56), to the convergence of functions. In this case the property of interest for a given
w € Q is whether the sequence of numbers or extended real numbers f;(w), f2(w), ... has a limit.

For the next two definitions see SCF2 Definitions 1.4.1 and 1.4.3.

Definition 4.26 (Convergence almost everywhere).
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Let (2, §, 1) be a measure space, and f,,, f : © — R Borel-measurable functions (n € N). Let
A= {we: 1i_>rn fa(lw) = f(w)}.

If u(AC) = 0, we say that the sequence f,, has limit f ;—almost everywhere , and we write

lim f, = f p—ae., or fn— fu—ae.asn —oo. O
n—oo

Definition 4.27 (Convergence almost surely).

Let (2, §, P) be a probability space and X,,, X a sequence o random variables with domain
2 such that ILm X, = X P-a.e. as defined above. In the context of a probability space we

prefer to say that the sequence X, has limit X P-almost surely , and we write

ILm X, = X P-as. or X, > X P-as.asn —o0.

Definition 4.28 (i.i.d. random variables). A sequence of random variables X, X, ... is called ind-
edependent and identically distributed or i.i.d., if it is independent and if all X,, have the same
distribution, i.e., if B is a Borel set, then

P{X,€B} = P{X,€B} = P{X3€B} = --- O

The next theorem gives one of the most important examples of almost sure convergence.

Theorem 4.7 (Strong Law of Large Numbers). Let X, be an i.i.d. sequence of integrable random variables,
ie., E[|X,|] < oo forall n. Then

X1+ X+ + X,
lim

n—00 n

= F[Xi] as.

PROOF: See, e.g., [7] Dudley, Real Analysis and Probability. W

There also is a less powerful version of the Law of Large Numbers which only asserts convergence
in distribution

Theorem 4.8 (Weak Law of Large Numbers). Let X,, be an i.i.d. sequence of integrable random variables,
ie., BE[|X,|] < oo forall n. Then

T A e S R

n—o0 n

X1 indistribution.

By convergence in distribution we mean that, for any Borel set B, li_>m P{X, € B} = P{X € B}
n—0o0
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PROQF: Can be found in most undergraduate texts on Probability. W

In the laws of large numbers the limit is deterministic because division by zero causes the standard
deviations of the arithmetic averages (X; + --- + X,,)/n to go to zero. To see this, note that the
variance of a sum of independent random variables is the sum of the variances.

Thus, if Var[X;] = 02, and if S, = }_ X, then
=1

Sn Il , o2
Var |22 = = =
[n] n"‘jzl" .

Thus, the standard deviations +/Var [S,/n] = o/+/n converge to zero. We have reason to assume
that if we keep the standard deviations constant by dividing S,,/n by ¢//n, then there might be
a non—deterministic limit. In addition, we center the expectations of S, /n at zero by replacing X
with X; — E[X;], we obtain the well-known Central Limit Theorem.

Theorem 4.9 (Central Limit Theorem). Let X, be an i.i.d. sequence of square—integrable random variables,

ie., E[X2] < oo forall n. Let & (a, 0*) denote the normal distribution with mean o and variance o*. Then
1 n

lim N Z (X; — E[X;]) exists in distribution and has a A (0, 1) distribution.

n—00 -
J=1

PROOF: Can be found in most undergraduate texts on Probability. W
The following is SCF2 Example 1.4.4.

Example 4.7. Let (2,5, 1) == (R, B!, A1) the real numbers with Lebesgue measure. Let f,, : R — R
be the continuous and hence (B!, B!)-measurable functions

(4.55) fu(x) = N =% (the density function of the N (0, n)—distribution),
V2T
0 ifz#0,
(4.56) f@) = { o7
oo ifz =0.

Then f,(w) — f(w) as n — oo for all w, thus f, — 0 Al-a.e.,, since A}{0} = 0. But observe
Jg fa(z)dA(z) = 1 for all x whereas [, f(x)dA\'(z) = 0. What conditions are needed so this does
not happen, in other words, what guarantees that we can switch [ and lim,,? [

Here is another example that shows that switching the order of integration and taking a limit may
yield different results.

2Gince the X ; have identical distribution for each j, it is true that

E[Xi] = E[X3] =..., and Var[Xi] = Var[X2] =... = 0.
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Example 4.8. Let (2,5, ) = (R, B!, A1) the real numbers with Lebesgue measure. Let f,, : R — R
be defined as

(4.57) fo =1 n=1,2,3,..., ie, fn(r) =1forz = nand zero else.

Then each f, is Borel measurable (why?) and f,(w) — 0 as n — oco. But the integrals [; f» d\!' do
not converge to [ 0dA! = 0 since each [ f,, d\! equals infinity. [

We have had two examples where a sequence of functions converges a.e., but the integrals do not
converge to the integral of that limit function. We are now formulating conditions under which this
cannot happen.

The following corresponds to SCF2 Theorem 1.4.5.

Theorem 4.10 (Monotone Convergence Theorem).

(1) Let (2, §, 1) be a measure space and let f, f1, fa,--- : @ — R be m(§,B).

IfOS fisfos... aeand 1i_>m fn= fae., then 1i_>m /fndu = /fdu.
(2) Let X and X1, Xo, X3, ... be random variables on a probability space (2, §, P).

IFOSX)SXo=...as and lim X, = Xas., then lim E[X,] = E[X].

n—oo n—oo

PROOF |[% | : Will not be given. Observe though that (2) matches (1) in the special case that
w@)=1. N

Remark 4.23. |[ %

Observe that neither Example 4.7 nor Example 4.8 satisfy the condition of the theorem. (The func-
tions in example 4.8 are nonnegative and monotone, but there they are decreasing rather than in-
creasing.) [

Just as useful as the Monotone Convergence Theorem is the following one (SCF2 Theorem 1.4.9.)

Theorem 4.11 (Dominated convergence Theorem).

(1) Let (2,3, p) be a measure space and let f, g, f1, f2,--- : @ — R be m(§,*B). Further assume
that g = 0 and g is integrable, i.e., [ gdp < oo.

If | f;| £ g a.s. for each j and ILm fn = fas., then ILm /fn dp = /fd,u.
(2) Let X,Y and X1, Xs, X3, ... be random variables.

If|X;| £Y as. foreach j and lim X, = X as., then lim E[X,] = E[X].
n—oo

n—oo
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PROOF |[% | : Will not be given. Observe again that (2) matches (1) in the special case that
w@)=1. N

You should appreciate how useful the above two theorems are for your other Math classes where
integration or summation or probability plays a role. Here is an example which you can find, e.g.,
in [3] Bauer, Heinz: Measure and Integration Theory.

Proposition 4.17. | [k | Let (2, §, p) be a probability space and a < b two real numbers. Assume that the
function f :]a,b[xQ — R satifies the following.

(1) Forany fixed a < t < b, the function w — f(t,w) is p—integrable (and thus F-measurable).
(2) Forany fixed w € §, the function t — f(t,w) has a partial derivative

fris— fi(s,w) = %{(s,w).

Note that t is not a variable in this context since its only purpose is to indicate differentiation with
respect to the first argument of f(-,-).
(3)  There exists a non-negative and p—integrable function g : Q@ — R which dominates | f:|:

|ft(s,w)| = g(w) foralla < s <b, we .

Then we can differentiate under the integral. More specifically,
s — / f(s,w)du(w) is differentiable for each w,
Q

Further,
w — fi(s,w) is p—integrable for each a < s < b, and

| o) du@) = 5 [ floo.w)duto).

PROOF: Fix a < sg < band an arbitrary sequence a < s, < b of real numbers such that s,, # so for
all n and lim,, s,, = sg. Define h,, : @ — R as

f(sn,W) - f(So,w) )

Sn — S0

hn(w) =

Then h,, is p—integrable for each n by assumption (1) and, by assumption (2),

(4.58) lim h,(w) = fi(so,w) forallw € Q.

n—oo

In particular, the function w — f;(so, w is measurable as limit of the measurable h,,.

We next show that |h,| < g so we will be able to apply dominated convergence. According to the
mean-value theorem of differential calculus we can find for each s,, a value o, in the open interval
with endpoints s,, and s such that

_ f(sn,w) = f(50,w)

Spn — S0

= filan,w).
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From assumption (3), we thus obtain |h,(w)| < g(w). It follows that the function w — fi(so,w) is
p—integrable. We apply dominated convergence to formula (4.58) and obtain

(4.59) lim [ hyp(w)dp(w) = / fi(so,w) dp(w).
From the definition of h,, and linearity of the integral we obtain
/ b (w) dp(w) = Jo f (s, ~ Jo f(s0,w) dp(w) forall n,
Q Sn — S0
and this sequence of difference quotients has limit
lim [ hp(w)dp(w) = = /fs(), ) dp(w
n—o0 O

We apply formula (4.59) and obtain
/ft S0, W dlu’ dt/f 50, W diu( )

Here is a simple consequence of monotone convergence.

Theorem 4.12.

(1). Let (Q,F, 1) be a measure space and let f = 0 be an extended real-valued, Borel-measurable
function on Q). Then the set function

(4.60) v:§ —[0,00], v(A) = /Afd,u

defines a measure on §.

PROOF:
A. To show that v(()) = 0 we observe that 15 = 0, thus f - 1 = 0, thus

y(@):/()du = u(Q)-0 = 0.

(We have had to use the rule co - 0 = 0 once or twice!)

B. v is monotone since A C A’ for measurable A and A" implies f-14 < f - 14/, thus

o) = [ fotadn = [ 1o taedn = va),

C. v is o—additive: Let A,, € § be disjointand A := 4/ A,. Fork € Nlet B, := | A;. Then
neN 1<k

0= f-la, = f-l, T f-1a.
=1

Thus, by monotone convergence,

k

k 00
= /f-lAdu:nli_{go/f-IBn. = nlixgozg/f-1Aj = nlggozy(Aj) = Z;u(AJ)
Jj= Jj=

Jj=1
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4.6 The Standard Machine - Proving Theorems About Integration

Introduction 4.3. The easiest way to prove facts about integration in general and expectations in
particular is often to proceed as follows.

Step 1: prove the statement for indicator functions 1 4.

Step 2: Use the linearity of f — [ fdu to prove the statement for simple functions.

Step 3: Approximate measurable f = 0 by simple functions f,, 1 f and use the Mono-
tone Convergence Theorem to extend the result to such f.

Step 4: Prove the case for general f = f* — f~ by applying step 3to f™ and f~.

Shreve calls this procedure the standard machine. [J

We proceed according to the standard machine to prove the following generalized version of SCF2
Theorem 1.5.1.

Theorem 4.13. (92, §, i) be a measure space and let (', §') be a measurable space. Assume that f : Q —
is m(3, ). and g : ' — Ris m(F', B). We denote again by s the image measure of i under f on §',
defined in Definition 4.12 on p.59 and given by

pp(A) = p{f € A} = plweQ: fw) € A).

If g 2 0or go fis integrable then

ae)  [gordn = [gany, ie, [9(5@)du@) = [ o) duse).

PROOF:
Step 1. Assume that g = 14 for some A’ € §F'. Note that

Le(f@) = 1 & fwed & we (),

thus,

/1A'(f(w)) dp(w) = / Ly (W) dp(w) = p(f1(A)) = pp(d) = / Lar(w') dpp ().
0 Q oY

We have shown the validity of formula (4.61) for g = 14/.

Step 2. Let g = 0 be a simple function g = ) ¢; 1A;. (n € N,¢; 20,A4; € F). It then follows from the
j=1

linearity of the integral and what we already haven proven in step 1 that
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Step 3. Assume that ¢ is a nonnegative, §’' — —B! measurable function. For each nonnegative
integer n let

) -
Bjn = {j <g< ﬁ} (Gj=0,1,...,4" — 1),

AL AL
1
gn(W') = Z 2—n~13j7n(w’).
=0

Then g, is a simple function which is constant on the preimages ¢~ (| 2%, 32%1 [) of the partition

0 < 2% < 2%< 3—::2”.
We have g,, < gn+1 for all n since each partition is a refinement of the previous one.
Moreover g, (w') T g(w’) for each w since, if j is the index such that 237 < gW) < jginl, then
j+1

n

J
W oe Bjp, thus g,(z) = on < gW) <

j+1 7 1
thus [g, (w') — g(w')| < on " 9n  on’

It now follows from Step 2 and the monotone convergence theorem that

/gofdu = lim/gnofdu = lim/gnd,uf = / gdpy.
Q n—oo Q n—oo Q/ Q/

If f =2 0 then we are done.

Step 4. From now on we may assume that g o f is y—integrable, i.e., both [(go f)"du < co and
[(go f) du < co. We have shown in step 3 that the nonnegative functions g™ o f and g~ o f satisfy

(4.62) /g+0fdu = / 9" duy, /g_Ofdu = / g~ duy,
Q Q/ Q Q/

We also have

(4.63)

It follows that

Loeftan = [@onyan+ [ (gor du
[ ondu+ [ (o D

(4.62) _
= /,g+d,uf+/g/g dpig.

All quantities here are finite since [(g o f)Tdu < oo and [(g o f)"du < co. We thus may subtract

and obtain
/gOfdu =/ g+duf—/ g dpy. H
Q Q Q

Here is another application of the standard machine.
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Proposition 4.18. Let (9,3, 1) be a measure space and let f = 0 be an extended real-valued, Borel—
measurable function on €.

Let v be the measure defined by v(A) := [, fdu (see Theorem 4.12 on p.78), and let ¢ be an
extended real-valued, Borel-measurable function on S such that ¢ 2 0 or ¢ is v—integrable. Then

(4.64) /<pd1/ = /<p‘fd,u7 forall Ae§.
A A

PROOQOF:
Step 1. We prove formula (4.64) for indicator functions. Assume that ¢ = 15 for some B € §. Then

/gpdu = /1A13d1/ = /lAdey = v(ANB)
A
= fdp = /1A13fdu = /1de,u = /gofd,u.
ANB A A

We have shown the validity of formula (4.64) for ¢ = 15.

We only give an outline of the remainder of the proof. It closely follows the corresponding steps in
the proof of Theorem 4.13 on p.79.

Step 2. linearity of the integral allows to extend the formula from indicator functions to simple

n
functions ¢ = > cjla; (n € N,c; 2 0,A4; € F).
=1
Step 3. Assume that ¢ is a nonnegative, § — —B! measurable function. We construct a nonde-
creasing sequence ¢, of simple functions such that ¢, 1 ¢ in a fashion similar to the proof of
Theorem4.13. It easily follows from the monotone convergence theorem that (4.64) is true for ¢.

Step 4. To prove the proposition for v—integrable ¢ we decompose ¢ = p* — . Then

/Awdv Z/Asfdv—/AsD‘dv = /4¢+-fdu—/4¢‘-fdu
Z/A(w*—sOWfdu = /Aso-fdu-

Here we repeatedly used linearity of the integral and we applied what we proved in Step 3 to obtain
the second equation. W

4.7 Equivalent Measures and the Radon-Nikodym Theorem

It is not necessary for you to remember the next definition. It is of a technical nature to ensure that
certain important theorems are valid.

Definition 4.29 (c—finite measure). |[%
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o Let (Q,F, 1) be a measure space. We call i a o—finite measure if there exists a sequence
A, € § such that

u(Ayp) < oo foralln, and U A, = Q. O
neN

Example 4.9. || %

All finite measures are o—finite. In particular, all probability measures are o—finite
Lebesgue measure \" is o—finite: For k € N let A, := [k, k]".
Then \"(Ax) = (2k)" < 0o, and Ay T Q.
e Counting measure X (Definition 4.7 on p.51) is o—finite:
ForkeNlet Ay :={j e Z:|j| £ k}. Then X(Ax) =2k+1<oo,and A; 1 Z. O

The next definition is an important one to remember.

Definition 4.30 (Radon-Nikodym derivative).

Let ;2 and v be measures on a given measurable space ({2, §), assume that y is o—finite (see Definition
4.29 (o—finite measure) on p.81), and let f = 0 be in m(F, BL). If 4, v, and f satisfy formula (4.60) of
Theorem 4.12 on p.78, i.e.,

(4.65) v(A) = /Af(w)d,u(w), forall A € §,

then we call f the density of v with respect to ;1 on § or also the Radon-Nikodym derivative of v
with respect to i on §. We write

4.66) f :fl:, or dv = fdu, or dv(w) = f(w)du(w), or v(dw) = f(w)u(dw). O

Remark 4.24. We assume again that p is a o—finite measure on (€2, §). If f is a second function that
satisfies v(A) = [, fdu forall A € Fandif f and f are p—integrable, then f = f p-a.e. This follows
from Theorem 4.5 on p.71. A straightforward application of monotone convergence shows that this
almost everywhere uniqueness of the Radon-Nikodym derivative also holds if y—integrability of f
and f is replaced with nonnegativity of f and f.

These uniqueness results allow us to refer to “the” Radon-Nikodym derivative. O

Proposition 4.19. Let (2,3, 1) be a o—finite measure space. Let f, g = 0 be in m(g, B'). Assume that the
measures v and p, defined by

o) = [ faus o) = [ gdv. (Aeg)
A A
are o—finite so that uniqueness of the Radon—Nikodym derivative allows us to write

d d
=Y and g:—p

fﬁ@ dv’
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Then j—z = fg. In other words there is a

Chain rule for Radon—Nikodym derivatives:

dp dp dv
4.67 o= 2
(467) du dv du

PROOF: Let A € §. We must prove that p(A) = [, (gf)dpu. It follows from Proposition 4.18 on p.81
that [, dv = [,(¢f)dp for all measurable and nonnegative ¢. Thus, for ¢ = g,

p(A) = /Agdv = /A(gf)du,

and this is what had to be shown. R

Remark 4.25. |[ % | There are reasons besides the chain rule (4.67) to call the function f in formula
2

(4.65) a derivative. Consider the normal distribution with mean ;. and variance ¢, i.e., the measure

v on B! defined by

b
(4.68) v(la,b]) = / flx)de = fd\', abeR,a<b,
a |a,b]
where f is the normal density
f) = oy T
r) = ——€ 20 .
V2ro?

Observe that formula (4.68) extends to arbitrary Borel sets (see Fact 4.1 on p.48). In other words, if
we write p for \!, then A\!, v, and f satisfy formula (4.65), thus

v
A
Actually v is completely determined by its values on intervals of the form | — oo, z] since

v(la,b]) = v(] —o00,b]) — v(] - o0,al).

(4.69) ;=

This should not come as a surprise, since we only stated that the N(p, 0?) distribution is defined by
its cumulative distribution function

Plz) = /_ Oo Fu) du = /]_m} F(u) d\ ().

By the Fundamental Theorem of Calculus, f(z) = dl;g”). Since (4.69) holds true, we have both

_ dF(x) _dv(x)
(the second equation follows from (4.69)). This is the reason why a function f that satisfies formula
(4.65) is called a (Radon-Nikodym) derivative.

A last comment: This example has nothing to do with normal distributions. All we needed was
that the function f in formula (4.68) is nonnegative, in m (B!, B'), and such that the function x —
F(z) = v(] — o0, z]) is differentiable so that we can apply the Fundamental Theorem of Calculus.
Continuity of f at all points suffices for that. [
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Definition 4.31 (p—continuous measure). || %

Let 1 and v be measures on a measurable space (€2, §).

e We call v a continuous measure with respect to 1, on § or a y—continuous measure on
§, and we write v < p, if

wA) = 0 = v(A) =0, forallAe€ 3.

e We call 4 and v equivalent measures, and we write 1 ~ v, if both

p < v and v < p. O

Remark 4.26.
(1) Two measures ;o and v on (€2, §) are equivalent if and only if

wA) =0 < v(A) =0, forallAde€g.

Thus the relation ;¢ ~ v above is an equivalence relation on the set of all
measures for (2, §).

(2) Two probabilities P and P on (Q,3) are equivalent if and only if the P-
almost sure events coincide with the P-almost sure events. [J

Proposition 4.20. Let p and v be measures on a given measurable space (2, §) and assume moreover that
the measure v has a Radon—Nikodym derivative with respect to jyon §. Then v < p.

PROOEF: |[% | For convenience we write f rather than fl—’lf for the Radon-Nikodym derivative.
Thus f satisfies v(A) = [, fdu forall A € §.
We must show that

WA) = 0 = /flAdu ~ 0.

It suffices to show that [ hdp = 0 for all simple functions & that satisfy 0 < h < fly, since [ fladp
is the supremum of all such integrals.

Since f14 =0 on AL and thus 0 Sh<flp=0o0n Ac,weobtainh: hl4.

Also, h has the form h = ) ¢;jla, for suitablen € N, ¢; € R, and A4; € §. Thus,
j=1

/hd,u = /hlAdu = ch/AlAjd,u = ch,u(AﬂAj) §chu(A) = 0.
J J J

The last equation follows from the assumption p(A) =0. W

Theorem 4.14 (Radon-Nikodym Theorem). Let p and v be measures on a measurable space (2, §).
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If the measure p is o—finite then

. _oodv
v possesses a Radon—Nikodym derivative d—y with respecttopon§ & v < L.
i

PROQF: |[% | The “=" direction was proven in Proposition 4.20. The proof of the reverse direc-

tion is beyond the scope of these lecture notes. W

Corollary 4.2. Let pand [i be equivalent and o — — finite measures on a given measurable space (2, §).
Then both Radon—Nikodym derivatives % and j—% exist, and they satisfy the relation
i dp

(4.70) ap : ﬁ =1 ae.

PROOF: |[% | The Radon-Nikodym Theorem guarantees the existence of both % and 3—%, and
(4.70) follows from

di _ di dp
di — dp dp’
The second equation is immediate from Proposition 4.19 (the chain rule for Radon-Nikodym

derivatives), and the first one follows from ji(A) = [, 1di and the a.e. uniqueness of the Radon-
Nikodym derivative. W

1 =

Remark 4.27. Assume as in Corollary 4.2 that ; and [ are equivalent measures. We write Z := %

dp
for convenience. Let By := {Z = 0}. Then pi(Bp) = 0 because

(Bo) :/ Zdup :/ 0du = 0.
Bo Bo

Since u ~ t we also have p(By) = 0.

Let X be an arbitrary, nonnegative, random variable. Then
/Xde = XZdu—!—/ XZdy = 0—|—/ XZdu. :/ X1iz100Z dp.
Bo BS BE Bt

The above holds in particular for indicator functions X = 14 of any A € § and tells us that we may
replace Z with Z1;7_4,. This should have been expected since a Radon-Nikodym derivative is a
conditional expectation and thus determined only almost everywhere.

We thus may assume that

dp du
— =1/ —=.
du / du =
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4.8 Digression: Product Measures |[%

We know from calculus that under certain conditions the order of integration in an integral of the
form [[f(z,y)dzdy can be switched. For example, if f(x,y) is a continuous function of = and y in
a bounded rectangle [a, b] X [c, d], then

/ab </Cdf(a:,y)dy> do = /Cd </abf(x,y)dx> dy .

This skeletal chapter gives an outline of how the above generalizes to integration in abstract mea-
sure spaces.

Definition 4.32 (Product spaces and product measures of two factors).

Let (1, §1, 1) and (2, §2, ) be two measure spaces with o—finite measures ; and v.

We call the o—algebra
(4.71) F§19F2 = c{A1 xAy: A €F1,42€52},

which is generated by all “rectangles” of measurable factors A; and A, the product o—
algebra of §; and §2. One can show that the set function

(4.72) Ay x Ay = pu(Ar) v(Az)

can be uniquely extended to a measure p x v on all of §1 ® F2. We call u x v the product
measure, also just the product, of 1z and v, and we call

(2 x Q2,F1 ® Fa, b X V)

the product space of (21, §1, 1) and (Q2,F2,v). O

Example 4.10. We examine the case of two Euclidean spaces (R™,8™,\™) and (R", 8", \") with
their Borel sets and Lebesgue measures. It can be shown that

BT @B = B,
and it is obvious from the formula
N x A\ (By x By) = N"(B1) \"(Ba) = A\""(B; x Bg)
and the uniqueness of the product measure, that \™ x A" = X", In particular, \> = A x \. O
Theorem 4.15 (Fubini-Tonelli). Let (Q1,§1, 1) and (Qa, §2, v) be two measure spaces with o—finite mea-
sures p and v. Assume that the extended real valued function
S x Q2,81 ©F2. 0 x v) — (R, B

is (§1 ® F2—B'-measurable. Then wy + f(wy,ws) is F1—measurable for each fixed wy (and thus can be
integrated with respect to p1), and we — f (w1, ws) is Fo—measurable for each fixed w.
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(4.73)

If f 2 0or fis pu x v—integrable then

/Ale2 fapxv = /A1 < o f(‘*Jl’W?)dV(wz)) dp(wy)
= [ ([, ftr0n) duten)) vt

In particular, switching the order of integration yields the same result.

Remark 4.28. |[ %

We have omitted some technical details concerning 1;—a.e. and pp—a.e. properties in the
case of integrable f.

The case for integrable f was proved first by Guido Fubini in 1907, the case for nonnega-
tive f two years later by Leonida Tonelli, both Italian mathematicians. Since Fubini was
first, Theorem 4.15 is often just referred to as Fubini’s theorem.

For general A € §; ® F2 one defines “w;-slices” A, = {wy € Q2 : (w1,w2) € A} and
“wo—slices” A, = {w1 € Q1 : (w1,w2) € A} and evaluates integrals over A as iterated
integrals involving those slices. We omit the arguments:

/Afduxuz/ﬂl(/Aw fdl/>du=/92</Aw fdu>du.D

Of particular interest will be the case of an extended real valued continuous time stochas-
tic process X = X (t,w),t € I which we assume to be (B(/) ® §)-measurable. Recall that
expectations are integrals dP. Thus Fubini-Tonelli asserts that for [a, b[C I,

b b
/ XdAle:/E[Xt]dt:E[/ Xtdt]
[a,b[xQ a a

4.9 Independence

All material in this chapter is standard and no effort is made to present the material different from

SCF2. Consult SCF2 ch.2.2 (Independence) for examples and more background information.

Introduction 4.4. We proceed in stages. Let (2, §, P) be a probability space.
Stage 1.
We say that two sets A and B in § are independent if

P(A N B) = P(A)- P(B).

Stage 2.
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The following is SCF2 Definition 2.2.1. Let (€2, §, P) be a probability space, let & and $) be sub-o—
algebras of §, and let X and Y be random variables on (12, §, P).

(@) We say that the o—algebras & and §) are independent if
P(ANB) = P(A)-P(B) forallAe &, B € $.

(b) We say that the random variables X and Y are independent if the o—algebras they
generate, 0(X) and o(Y), are independent.
() We say that the random variable X is independent of the o-algebra & if the o—
algebras 0(X) and &, are independent.
Note that independence of the (Borel-measurable) random variables X and Y implies that

P{XeUandY eV} = P{XeU} -P{Y eV}

X and Y are independent <«
for all Borel subsets U and V' of R.

Stage 3.

SCF2 Definition 2.2.3 generalizes independence from two sub-o—algebras or random variables to
countably many.

Let (2, §, P) be a probability space, let &1, 3, &,, ... be sub—o-algebras of §, and let X, X, X3, ...
be a sequence of random variables on (2, §, P).

(@) We say that the o—algebras &, &,,..., 6, are independent if

P(A1 ﬂA2~--ﬂAn) = P(Al)P(AQ)P(An) fOI‘EiHAjE@j, j=1...n.

(b) We say that the random variables X, X», ... X,, are independent if the o—algebras
they generate, 0(X1),0(X1),...,0(Xy), are independent.

(c) We say that the sequence of o—algebras &;, j € N is independent if, for eachn € N,
the o—-algebras &;, j = 1,...,n are independent.

(d) We say that the sequence of random variables X, j € N is independent if, for each
n € N, the random variables X, j = 1,...,n are independent.

It is not hard to see that items (c) and (d) of that definition are equivalent to

(') We say that the sequence of o-algebras &;, j € N is independent if, for each finite
subsequence n1,ng, . .., ny of distinct integers n;, the o-algebras &,,,, j = 1,... .,k
are independent.
(d’) We say that the sequence of random variables X;, j € N is independent if, for
each finite subsequence n1,no,...,n; of distinct integers n;, the random variables
Xn;, j=1,...,k are independent.
We will use this observation to define independence of arbitrary (possibly uncountable) families of
sub—o-algebras and random variables. [

Definition 4.33 (Independence). Let (€2, §, P) be a probability space, let &;,i € I, be an arbitrary,
indexed family of sub—o—-algebras of §, and let X;,i € I, be an arbitrary, indexed family of random
variables on (2, §, P).
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(@) We say that the o—algebras &;,i € I, are independent if, for each finite subsequence
i1,12, ..., of distinct indices i; € I,

P(A“ ﬂAl’Q"-ﬂ Alk) = P(A“)P(A,LQ)P(A%) forallAij G@ij, j=1,...k.

(b) We say that the random variables X;,: € I, are independent if the o—algebras they
generate, 0(X;),i € I, are independent.

Theorem 4.16 (SCF2 Theorem 2.2.5). Let X and Y be independent mndom variables, and let f and g be
Borel-measurable functions on R.

Then f o X and g o Y are independent random variables.

PROOQOF: A simple consequence of the fact that the measurability of f and g yields o(f o X) C o(X)
ando(goY) C o(Y), so fewer equations of the form P(AN B) = P(A)P(B) need to be verified. W

You will have to consult SCF2, ch.2.2 if you need a refresher on joint distributions to understand the
next theorem.

Theorem 4.17 (SCF2 Theorem 2.2.7). Let X and Y be random variables. We have equivalence
1N 2«06 @< 06

of the following conditions.

(1) X andY are independent.
(2) The joint distribution measure, i.e., the image measure of P under the measurable function
w (X (w), X (w)), factors:

(4.74) Pxy(A x B) = Px(A)- Py(B) forall Borel sets A, B C R.
(3)  The joint cumulative distribution function factors:

(4.75) Fxy(a,b) = Fx(a)- Fy(b) foralla,b € R.
(4) The joint moment—generating function factors:

(4.76) E [ XY ] =B [e"X] - E [e"Y] forallu,v € R

for which the expectations are finite.
(5) If there is a joint density then it factors:

(4.77) fxy(z,y) = fx(@)- fy(y) forallz,y €R.

The conditions above imply but are not equivalent to the following.
(6) The expectation factors:

(4.78) E[X Y] =E[X]-E[Y], provided E[|X-Y]|] < oo.

89 Version: 2023-04-21



Math 454 — Additional Material Student edition with proofs

PROOF (outline): See the SCF2 text. W

410 Exercises for Ch.4

Exercise 4.1. Prove Thm.4.1 on p.56 of this document: Let (2, §) and (€2, §’) be measurable spaces
and f: Q — Q. Let & C § such that 0(¢’) = §'. Then the following is true:

If f71(4) C § forall A’ € & then fis(§,§ )-measurable. O]

Exercise 4.2. Let (2, §, P) be a probability space, and let (€', §’) be a countable, measurable space
in which {w'} € § forallw’ € . Let f : Q@ — Q' be a random item, i.e., f is (§,§ )-measurable.

Prove the following. If P(A) = 1 or P(A) = 0 for all A € §, then f = const P-a.s. In other words,
there exists w, € ' such that P{f = wo} = 1.

Hint: There are counterexamples if €’ is not countable, so use it! [

4

Exercise 4.3. Prove (1) and (2) of prop.4.13 on p.60 of this document. [

Exercise 4.4. Prove prop.4.12 on p.59 of this document: If f € m(F,§’) then
W(A") == p{f € A} definesa measureon (Q,F).

If 11 is a probability measure then sois py. [0

Exercise 4.5. Prove closed book prop.4.14 on p.64 of this document: Every process X; is § =
o{Xs:s€l,s < t}—adapted. O

Exercise 4.6. Let (2, §, 1) be a measure space with a sub-o—-algebra & and let y/ := ,u} » be the
restriction ¢/ (G) := u(G)(G € 8) of u to &.
Prove that if f is a nonnegative and $-measurable function then

/fd,u = /fdu’. O

411 Addendato Ch4

Definition 4.34. We give some convenient definitions and notations for monotone sequences of
numbers, functions and sets.
(@) Letx, be a sequence of extended real-valued numbers.
e We call z,, a nondecreasing or increasing sequence, if j < n = z;
e We call z, a strictly increasing sequence,if j < n = z; < z,.
e We call z,, a nonincreasing or decreasing sequence, if j < n = z; = z,.
o We call z,, a strictly decreasing sequence,if j < n = z; > z,.

A
8
3
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o We write z,, T for nondecreasing z,, and xz,, T = to indicate that sup, z,, = =,
e We write z,, | for nonincreasing z,, z, | x to indicate that inf, =, = x.

(b) LetX #0and f,: X - R a sequence of extended real-valued functions. We call f, a
nondecreasing or increasing function sequence

and we write f, 1, if j < n = fj(z) £ fu(z) forallz € X.
We call f,, a nonincreasing or decreasing function sequence
and we write f, |, if j < n = fj(x) 2 fuo(x) forallz € X.

Strictly increasing and strictly decreasing function sequences are defined by replacing
< with < and = with > in those last definitions.

(0 LetX # (and A, C X asequence of subsets of X We call A,, a nondecreasing (resp.
strictly increasing resp. ....) sequence of sets, if the corresponding sequence 1,4, of indi-
cator functions is a nondecreasing (resp. strictly increasing resp. ....) function sequence.
We write A,, 1 if A, is nondecreasing and A4,, | if A4, is nonincreasing. [

Remark 4.29. (A) In Definition 4.34, we made no assumptions about the domain X of the functions
f besides not being empty. In particular, X can be the power set 2 of some arbitrary set . Then

a sequence of functions )
Hn 32Q_>R§ A= pn(A)

would take subsets of €2 as arguments and map them to real numbers. You are familiar with the
following example: Probabilities are functions which assign numbers to events, i.e., sets.

(B) You should convince yourself of the following. If X is a nonempty set and 4,, € X, then

(4.79) AT A1 CAC L. Ay, is strictly increasing < A; € A € ... ;
(4.80) A, le A1 DAy D ... Ay, is strictly decreasing & A1 2 A2 D ... .

(C) Also note in Definition 4.34(a) that

(4.82) T, T = supx, = lim z,, ie,z,T lim z;;
neN n—o00 Jj—o00

(4.83) T, = infz, = limax,, ie,z,| limx;.
neN n—00 j—o0

Thus, if for f,, f : X — N we define f to be the (pointwise) limit of the functions f,, i.e.,
f=lim f, & f(z) = lim f,(z) forallz € X,
n—00 n—00

then we obtain from (4.82) and (4.83) the following.

(4.84) fnT = supfu(z) = lim fu(x)forallz € X, ie, f, T lim f;;
neN n—oo J—00

(4.85) fnd = inf fu(z) = lim fu(x)forallz € X, ie, f, | lim f;.
neN n—r00 Jj—o0
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Finally, note the following for X # () and 4,, C X.

4.81 4.84
(4.86) A, + La, 11y, 4, L Iy, 4, = ]13110 La,,
s (4.85)

It thus makes sense to speak of limits of sequences of sets in those two cases: 22

A, T = UA] = lim 4;, and A, }= [)4; = lim 4;. O

J—00 J—00
J

Example 4.11. Is it possible to find Borel measurable functions f, f,, : R — R as follows?
(1) f, is a bounded sequence, i.e., there is a constant « such that | f,,(z)| < a for all x
2 fnd f, but nh_)rgo [ fadX # [ fdA.
The answer: Yes, this is possible.
Let o, € R such that a, | 0. Let f,,(z) := a,. Clearly, this sequence of constant functions satisfies
[ fadX = an A(R) = cc for all n, thus lim,, [ f,d\ = oco.
On the other hand, [ (lim, f,)d\ = [0d\ =

Any sequence f, | 0 such that f Jnd\ = oo for all n will do the trick. Thus, f, = 1j, o, i€,
fn(z) = 1if z 2 n, and 0 otherwise, is another example that satisfies (1) and (2).

Note that the Monotone Convergence theorem does not apply since f, T f is not satisfied. The
Dominated convergence theorem does not apply either, since f; is not integrable, thus no integrable
g such that |f,,| < g for all n can be found. O

Example 4.12. (a) Consider the set Q1 = {¢q € Q : ¢ = 0} with o—algebras § := {0,Q+}, § =
20+ = {all subsets of Q, }.
Let f: (Q+,8) — (Q+,F’) be defined as f(¢) = 4¢. Then f is not (§, §’')-measurable.

For example {4} € §, but its preimage {f = 4} = {1} ¢ §. Matter of fact, only constant functions
with domain 2 are guaranteed to be measurable if the domain o—algebra is {0, Q2}. (Here, @ = Q...)

(b) Consider the set Q; = {q € Q : ¢ = 0} with the o-algebra § := 29+, the set [0, oo[ with the o—
algebra § := B([0, cc[) (the Borel sets of [0, oo[), and the function ¢ : (Q+,F) — ([0, o[, "), defined
as f(q) = sin(y/4q). Then g is (§, §’)-measurable, since any preimage of any function belongs to the
power set of the domain.

(c) Consider the set N with o-algebras § := 2N, ' := {#,N}. Leth : (N,¥) — (N,§’) be an arbitrary
function. Then b is (§, §’)-measurable for the reason given in (b). [

Zand to make the following general definition: If B, B,, C X, we say that

B = lim B, <~ 1 = lim 1Bn‘

n—oo n—o00
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Example 4.13. Let p,q : N —]0, 1] be strictly positive. Assume that > p(j) = > ¢(j) = 1. Thus
J J

P({k}) := p(k) and Q({k}) := q(k) defines two probability measures P and @) on the measurable

space (N, 2N).

Since the empty set is the only set A C N such that P(A) = 0 and Q(A) = 0, those two measures are

equivalent. Thus both Radon-Nikodym derivatives dQ and dP exist. We claim that

4Q 0 ok AP a0
ap ) ~ k)’ d dQ(k) q(k)’

For the proof, let A € N. Since A = |Y[{k}; k € 4],

(k€ N).

q(k)

q(k) / (
—=P(dk) = = —<P{k
/Ap(k') ‘) ,;4 try (k) %p(k) hH
Q {k}
= 2 P TN = 2 (4).
rea PURD o
This proves that %(k‘) Ekg for all & € N To show that dP o(k) = %, you can either repeat the

proof above with the roles of p, ¢ switched and those of of P, Q switched, or you can use the relation

dQ 4P _
a ag =1 U
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5 Conditional Expectations

We will explore in Section 5.1 (Functional Dependency of Random Variables) in what sense a o—
algebra can be interpreted as holding some or all stochastically relevant information about a random
variable before devoting the remainder of this chapter to the subject of conditional expectations.

For a random variable X on a probability space (£, §, P), we will define its conditional expectation
E[X | ®] with respect to a sub—o—algebra & of § not as a number but, as a &-measurable random
variable (a function of w!), which satisfies the

partial averaging property / EX | &]ldP = / XdP forallGe®.
G G
This property has its name from the fact that X and E[X | &] possess matching “averages”
al al
—— [ E[X|&]dP = —— | XdP forall G € & such that P(G) >0,
P(@) Jo PO =BG

i.e., for that part of the stochastically relevant information about X that is accessible in &.

In Section 5.2 (c—-Algebras Generated by Countable Partitions and Partial Averages), we examine
this first in the special case where & is generated by a countable partition

0=l ol ol

of events (G; before treating the general case in Section 5.3 (Conditional Expectations in the General
Setting).

5.1 Functional Dependency of Random Variables

All propositions and theorems of this subchapter are marked as optional since they are quite ab-
stract in nature and not easy to understand. Thus it is OK if you skip them if you cannot make
sense of what they tell you. Note though that it is very important that you study Remark 5.1 on
p-98 (at the end of this subchapter) very carefully since it gives you a feeling for oc—algebras and fil-
trations as the stores of information of random variables and stochastic processes, and that is very
important knowledge if you want to understand the mathematical models of financial markets to
be presented in later chapters.

Proposition 5.1 (Doob Factorization Lemma). |[ %

Assume that Q) is a nonempty set, not necessarily a measurable space, that (€Y', §') is a measurable space, and
that f : Q — Q' is a function about which we assume nothing. Recall that f transforms ) into a measurable
space (0, o(f)) by means of the o—algebra

o(f) = (/71 (A) : A e g}

Further, assume that ¢ : Q) — R is an extended real valued function with domain 2. Then

PSee Definition 4.13 on p.60 and the proposition preceding it.
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(1) ¢ is (o(f),B')-measurable < there is (§',B')- F
measurable g such that (Q,0(f)) — (¥, F")
p=go f,ie,pw)=g(f(w)) forallwe Q. :

(2) If f 2 0 then g can be chosen such that g = 0. x ig

(3) If|f| < oo then g can be chosen such that |g| < oc. (R, B

PROCQOF (outline):

We will only prove the nontrivial direction “=-" of (1). The other direction is trivial since if there is
(3',B')-measurable g such that ¢ = g o f then ¢ is (o(f), B')-measurable as the composition of
the (o(f),3’)—measurable f with the (§F', B')-measurable g.
The proof of “=" is done according to the standard machine.
Step 1: ¢ is a o(f) measurable indicator function, i.e., p = 14 for some A € o(f). Any such set A
must be the preimage f~!(A’) of some A’ € §'. Note that if f is not bijective, then A will generally
not uniquely determine A’. We define

g = lA’7

and it is easily verified that 14/ 0 f = 14,i.e,, go f = ¢.

k
Step 2: For a nonnegative step function ¢ := }_ c;la; (¢; 2 0, A; € o(f)), we define
j=1

k
g = Z cilars
j=1

where each A’ € §' is chosen such that 4; = ffl(A;-). Then go f = .

Step 3: For general measurable ¢ = 0 there exiss a sequence of simple functions ¢, such that ¢,, 1 ¢.
See the proof of step 3 of Theorem 4.13 on p.79. According to Step 2 there exist §'—measurable
(simple) functions g, such that ¢,, = g, o f for each n. Clearly the sequence g,, is nondecreasing and
thus has a §-measurable limit g. This limit function satisfies ¢ = g o f.

The proof of (1) for general g and that of (3) will not be given since it is somewhat tedious to consider
the case co — co. But note that we have given a proof of (2). W

The following corollary to the Doob Factorization Lemma is so important that we give it the status
of a theorem.

Theorem 5.1 (Functional dependency theorem I). |%" | Given are a probability space (Q2,§, P), a

measurable space (Y, F'), a random item X by which we simply mean a (§,§')—measurable function X, **
and an extended real-valued random variable Y on (2, §, P). Note that our assumptions imply

o(X) CgF and oY) C F.

Thus, all probablities P{X € A’} and P{Y € B} exist forall A’ € §' and B € ‘B.

*See Definition 4.10 on p.55.
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(Q,3,P) 2 (@, 3)

Then o(Y) C o(X) < thereis (§',B')—measurable g such that :
Y =goX,ie, Y(w)=g(Xw))forallwe Q. v 9

R.B1)

PROOF: This is an immediate consequence of the Doob Factorization Lemma, Proposition 5.1, since
oY) Co(X) & Yis (o(X),B')-measurable B

We now apply Doob factorization to stochastic processes.

Theorem 5.2 (Functional dependency theorem II). | [

Let X = (Xu)o<u<r and Y = (Y, )o<u<t be stochastic processes on (2, §, P) such that X is
adapted to'Y , i.e., Yy is X —measurable foreach0 <t < T.

Then there is for each t € [0,T] a (', B')—measurable function g = g(t,-) (which carries t as an
additional argument since it depends on t) such that

(5.1) Yilw) = g (t, (Xu(w))ogugt) :

PROQOF (outline): We can interpret the process X = (X,,)o<u<7 as a random item
(Xuwo<u<r : (0,37, P) = (,F);  wr (Xu)o<usr(W)

which assigns to w € 2 its X—trajectory between times 0 and 7. So €' is the space of all trajectories
between times 0 and 7" and §’ a suitable o—algebra on that space.

We can do the above with any 0 < ¢ < T instead of 7" and view (X, )o<u<t as a random item
(5.2) (Xu)ocust : (087, P) = (0, F); wer (Xu)o<ust(w)
which assigns to w € Q its X—trajectory u — X, (w) between times 0 and ¢.

The Doob factorization lemma remains valid in that setting but now the diagram is

Xu)o<u<t
(2,55, P) Huosus (@, 3)
i g(tv )
Yi :
R.51)

This way we obtain for each ¢ € [0, 7] the existence of a (§,B!)-measurable function g = g(t, ")
(which carries ¢ as an additional argument since it depends on t) such that

(5.3) Yiw) = g (t (Xu@)pepe,) -
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Remark 5.1. Given are a probability space (2, §, P), and a measurable space (€, §).

The results of this chapter are not needed to see the following;:

(1) For a random item X in m(§F,§’), we can interpret the o—algebra o(X) as the con-
tainer of all stochastically relevant information of X in the following sense. Knowl-
edge of all events that belong to o(X) means knowledge of the probabilities of all
those events A C () that can be described in terms involving X.

Likewise, the filtration element §;X = o{X, : s < t} of Definition 4.17 (Filtration

for a process X;) on p.63 belonging to a stochastic process (X;); of such random
items X; in m(§,§’) is the container of all stochastically relevant information of this
process up to time ¢ (for each time ¢).

More generally, a process (X;); is adapted to a filtration (3;); < § contains all
stochastically relevant information of (X;); up to time s (for each s). O

The functional dependency theorems of this subchapter tell us that certain measurabilty conditions
for two random items or two stochastic processes imply an w-by—w connection between them.

(4) If arandom variable Y is stochastically known to a random item X in the sense that
its stochastically relevant information o(Y') is part of that of X, in other words, if
o(Y) C o(X), then that by itself implies that Y is known to X on an w-by-w basis,
since the functional dependency Y = g o X established via w + g(w), determines

Y (w), from X (w) as g(X (w)).

Given are two processes X; and Y;. Then (Y;); is (X )i—adapted <& for each t,
the random item (Y;(w) is a (measurable) function of the X (-,w) trajectory between
times O and ¢t. O

5.2 o-Algebras Generated by Countable Partitions and Partial Averages

Introduction 5.1. We consider o—algebras as stores of information from a different perspective. In
Section 5.1 (Functional Dependency of Random Variables) we were comparing the o—algebras o(X)
and o(Y") of two random variables X and Y and saw that a functional dependency Y = go X exists
ifo(Y) Co(X).

Now we relate a random variable X on a probability space (2, §, P) to a o—algebra & C § which
only contains some but not all of the stochastically relevant information about X, i.e., we examine
the relationship of X and & in case that

o(X) is not contained in &.

The following questions arise in this context.

(A) Is there a random variable Xg € m(®,B!) which is, in some sense, the best possible
approximation of X?

(B) Issuchan X uniquely determined?

(O  What happens in the extreme case & = {(),Q}? %

BThe other extreme case, & = F, is not up for discussion since we assumed that o(X) ¢ &.
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Since we expect ® and X to be about stochastically relevant information of X, and since all such
information is about probabilities, we immediately have the following partial answer to (B):

X is, at best, only determined almost surely, i.e., up to a set of probability zero.

In other words, if a best approximation X exists, then any random variable X;; € m(®,B') which
satisfies X3 = X P-a.s. will serve as well.

Consider the special case in which a finite or infinite sequence of events G'1, G>, . .. is a partition of
2 and generates &, i.e., if J denotes the finite or infinite index set for this sequence,

(5.4) GinG; =0 fori#j, [HG =9, & =0{G;:jeJ}

jE€J
The partitioning events G; are the “atoms” of & since each G € & is a union of some or all of the
G. See Proposition 4.2 on p.45. Let n be the finite or infinite number of sets G;.

1 If|J| = 1, then Q = Gy, ie, & = {0,Q}. Only constant functions @ — R are &-
measurable, and the best estimate w — Xg(w) of a random variable X by a number
is its expectation X¢(w) = E[X]. We have found answers to questions (A) and (C).

(2 If |J| = 2, then Q = G1H Gy, thus Gy = G[f, and 6 = {0,G1,G2,Q}. We now can
separately consider the cases w € G, w € G2 and take the weighted averages on GG; and
Gy, 1.e, we define

Xo(w) = {P(él)E[chl] ifwe Gy,
piey ElX1a,] ifw e Ga.
! 1
= E Xl 1 1 1 w + 7E Xl X 1 , w
P(Gy) (X1 1 (w) (Cy) (X1a,] - 1o, ()

1
) jzl;2 P(Gj) E[Xlg,] - 16,().

(3) For general J we take the weighted averages on each G; and splice them into a function
of w:

Xg(w) = P(Gj)E[Xlgj]ifweGj, e, Xg(w) = ;P(lGj)EpﬂGj} g, (w).

The equations given in (2) and (3) only work if P(G;) # 0 for all indices j. Otherwise we amend
those formulas as follows. We partition our index set J into two index sets

J=J L—I_-JJO, defined as J; :={j € N: P(G;) >0}, Jo:={jeN:P(G;)=0}.

We have learned that X¢ can be determined at best up to a P-null set. The set A := |, G, has
probability zero as the countable union of P-null sets. Thus we do not change any stochastically
relevant properties if we set X on A to some arbitrary number, most conveniently zero. In other
words, we replace the definition given in (3) with

(5.5) Xow) = 3 P(g)E[mGj] e, (w).
jeJ1 J
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Now let us reason why Xg might be a solution to question (A). For this we briefly explore the
connection between X and conditional expectations E[X | G| with respect to events G € &. You
have encountered such conditional expectations in your probability course for the special case that
X is a discrete random variable. For an event G, they were defined as

EX|G] =) aP{X =z |G}.
If X is not discrete but possesses a conditional Zensity fx|c(x) instead, then we defined
EX |G| = /_Z rfxq(z)dr, ie, PA|G) = /AfX|G(:c) dx for all events A.
We obtain for indicator functions X = 14(A € §) the following.
Xeo(w) = ZJ:P(IG])E [16,14] - 1, (w) = ijlw g, (W)

= ZP(A\G]-) g, (w) = ZE(lA | Gj) g, (w) = ZE(X | Gj) - 1g; ().

This relationship,

(5.6) Xo(w) = ZE(X |G)) g, (W),

between Xg and conditional expectations of the form E[X | G;] can be extended by use of the
standard machine to arbitrary nonnegative or integrable random variables X.

Note that the right hand side of (5.6) is constant in w on each partitioning event G; of &:

(5.7) Xe(w) = E(X | Gj) foreachw € Gj.

This formula will give us the justification to call X (a random variable!) the conditional expectation
of X with respect to X, the o—-algebra which is generated by those events G;.

The proposition which follows this introduction will show that the integral equation

(5.8) /G XgdP = /G X dP

holds for all events G € &, and that this property, together with its &-measurability, characterizes
the random variable X. It will be the key to generalizing the definition of X from o-algebras
which are generated by a finite or countable partition, Q2 = G, G2l - - - of §—measurable sets G;
to arbitrary sub—o—-algebras of §.

We will find for any o—-algebra & C § and nonnegative or integrable X a &—measurable X which
satisfies formula (5.8). Since this formula yields matching “averages”

1 1
(5.9) P(G>/GX®dP :P(G)/GXCZP

for all events G € & which have positive probability, there is hope that this random variable X is
the answer to question (A) that was raised above. In fact, Theorem 5.6 on p.107 will show that X
is the best least-aquares estimate of X among all &-measurable functions. [J
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Proposition 5.2. We work under the assumptions of the introduction.

(1) Given are a probability space (2, §, P) and a finite or infinite sequence G1, G2, . .. of elements of
§ which constitute a partition of Q. We write J for the finite or infinite index set for this sequence
and Jy for the set of those indices j such that P(G;) > 0.

(2) Let® :=0{G; :j € J}. Foran integrable or nonnegative random variable X on (Q,§, P), we
define again the —measurable random variable X via (5.5):

Xe(w) = Z; P(lGj)E[mGj] 1, ().

Then formula (5.8) holds for all G € &.

PROOF: |[* We employ the standard machine.
Step 1. If X = 14 for some A € § then foreach k € J,

1
XgdP = Zm /GkE[lAlG"] -1g,dP

G je1

1
=> P(G)] /Gk P(ANG)) - 1g, dP

Jje€N

1
= ——_P(ANG,)- P(G,NG;)dP.

But the G are disjoint, thus P(G, N G;) = 0 for k # j, and P(G, N G;) = P(G},) for k = j. Thus all

terms in the sum except the one for j = k vanish and we are left with

1
XedP = —— P(ANGy) - P(Gy)dP = P(ANGY)
fen P(Gy)

:/ 14dP = | XdP.
Gy, ay,

Since all elements of ® are a finite or infinite union G, { Gj, |- - - of the sets G}, this last result
extends for arbitrary events G' € & to

/XesdP :/XdP.
G G

m
Step 2. If X = > ayly, forsomem € N, A;,..., A, € §, and nonnegative aj, . .. oy, we obtain by
i=1
tirst using the definition of X, then linearity of expectations, then using the result obtained in Step
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1 for each random variable 1 4,, then linearity of the integral,

(5.5) 1 /
/GXdeP /G;eJl P(G)) E[X1g,| -1g,dP = § P
p 65
—EO‘/ }:7E1A1G] Ea/ 1a;)

JjeJL
Step 1
s Zai 14,dP = ZailAidP: X dP.
i=1 G G =1 G

This proves the proposition for all simple functions.

g, dP

ZO&JA 1G

Step 3: Monotone convergence allows us to extend the result from simple functions to any nonneg-
ative random variable.

Step 4: If X is integrable then we apply the result obtain step 3 to X and X~ and thus obtain it
alsofor X =Xt -X". N

5.3 Conditional Expectations in the General Setting

What we have seen in the previous section was just of a motivational nature. We are ready now to
attack the general case of an arbitrary sub—o—algebra & of 3.

Theorem 5.3 (Existence Theorem for Conditional Expectations). Let (€2, §, P) be a probability space,
& a sub—o—algebra of 3.

(I) Let X be a nonnegative random variable on (2, §, P), let v be the measure A — [, XdP on §. Let
Py = P| ® be the restriction of P to &, and let vg = V‘ o De the restriction of v to 8, i.e., Py and vg are the
set functions defined as

Pe(G) = P(G), w(G) = v(G), (Geo).

See Definition 2.21 (Restriction/Extension of a function) on p.22. Then Pg is a probability measure and v
is a measure on the measurable space (2, &) such that vg < Pg. The Radon—Nikodym derivative

d Ve

E[X|®] = iPe

is &—measurable and plays the role of X in formula (5.8) on p.100 in the following sense. E[X | &] satisfies

(5.10) /E[Xycs] dP = / X dP forall G € &.
G G

(I) Let X be an integrable random variable on (Q, §, P). The random variables E[ Xt | &] and E[ X~ | 8]
exist according to (I). Define

E[X |&] := E[XT|®] - E[X™ | 8]
Then E[X | ] satisfies formula (5.10).
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PROOF: |[%
PROQF of I: It is trivial that v and Py are measures on the shrunken domain & since they assign
the same function values v(G) and P(G) to their arguments G as v and P.

We now show that vy < Pg, i.e., if G € & such that Ps(G) = 0, then vs(G) = 0. We obtain this
from v < P (see prop.4.20 on p.84) as follows.

Ps(G) =0 = P(G) = Ps(G) = 0 = v(G) = 0 = vs(G) = v(G) = 0.

The Radon-Nikodym theorem then guarantees the existence of the Radon-Nikodym derivative

fll%, determined uniquely P-a.s. % We decide to name it E[X | &| rather than j%‘;.

The next point is subtle and very important. Since the measures v and Pg live on the measurable
space (2, ) the Radon-Nikodym theorem applies to this space, thus E[X | &] is &-measurable
and not just §—measurable!

Now we prove formula (5.10). Let G € &. Since the function w — E[X | &](w)lg(w) is &-
measurable, it follows from Pg = P‘ ® that

(5.11) /E[Xcs] P = /E[X®]1de = /E[X]@]lgdP® = /E[X|Qs] dPs.

(See Exercise 4.6 on p.90 for the second equation.) Further,

d d
(5.12) E[X|®] = ﬁ, ie, E[X|®]dPs = ﬁdPg — dvs.

We obtain from equations (5.11) and (5.12) that

/GE[X\Qs] dP = /Gdu@ = vs(G) = v(G) = /GXdP

The equation next to the last holds since the set functions vg = v/| » and v are identical for arguments
Ged

PROOF of II (Outline): Formula (5.10) holds for X and X . It is a straightforward exercise to
show the validity of (5.10) from the linearity of the integral. W

Remark 5.2. We state once more that the partial averaging property (5.10) determines the &-
measurable random variable E[X | &] P-a.e. in the following sense. If X* is another &-measurable
random variable such that

/XdP = /X*dP forallG € &,
G G
then P{X* # E[X | 6]} = 0. O

This last remark allows us to make the following definition (see SCF2 Definition 2.3.1).

Definition 5.1 (Conditional Expectation w.r.t a sub—o—algebra).

Let (2, §, P) be a probability space and X a nonnegative or integrable random variable.

*For the a.s. uniqueness of the Radon-Nikodym derivative see Remark 4.24 on p.82.
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For a sub—o—-algebra & of § we call any(!) random variable X* that satisfies
(@) (Measurability): X* is &—measurable,
(b) ®&-Partial averaging or Partial averaging:

(5.13) /X* dP = / X dP forall G € &,
G G

a conditional expectation of X with respect to &.

In most cases it does not matter which version X* that satisfies (a) and (b) is chosen. It is
customary to let the symbol E[X | &] denote any such X* and refer to it as the conditional
expectation of X with respect to &.

If Z is another random variable on (2, §, P) then 0(Z) C §, thus E[X | 0(Z)] is defined. In
this case we will generally use the notation

E[X | Z] := E[X |0(2)].

We call E[X | Z] the conditional expectation of X with respectto Z. [

Remark 5.3. We can think of E[X | &] as an estimate of X based on only the information that is
available in &. The collecton of averages

il
—— | XdP, where G € ®and P(G) >0,
P@) Jo “

is sufficient to represent all stochastically relevant information for the &-measurable E[X | &]. The
word “partial” in “partial averaging” indicates that those averages only are a part of

i)
—— | XdP, where A€ Fand P(A) > 0.
P(A) /. (4)

This larger collection constitutes the stochastically relevant information for X itself.

Partial averaging makes it plausible that E[X |®] is a well chosen estimate of X since all its averages
over sets in  match those of X. The larger &, the better an estimate for X we obtain.

Consider in particular the case of the introduction 5.1 to this chapter on p.98 where & was generated
by a partitioning sequence 2 = G1 [ G2 | - - - . In that case,

(5.14) EIX | 6)w) = Y

JEJ1

1
P(Gj) E [XlGJ : 1Gj(w)’

where J; is the set of indices for which P(G; > 0). See formula (5.5) on p.99. So the estimate
E[X | ] of X is constant on each atom G; of . Moving to a partition with more sets with smaller
probabilities will improve this estimate. [J
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Remark 5.4 (Factorization of conditional expectations). |[% || According to Proposition 5.1 (Doob

Factorization Lemma) on p.95 the ¢(Z)—8; measurable function on (2,
E[X|Z]:Q—R, w— E[X | Z](w),

can be written as a composite function

(5.15) E[X|Z] = goZ,

where Z : z — g(2) is B1-B! measurable. Very confusingly it is common to write

(5.16) EX | Z=']:2— EX | Z=2¢

for this function g(z). With this notation the functional relationship E[X | Z](w) = ¢(Z(w)) which
is obtained by replacing the dummy variable z with the function value Z(w), reads

(5.17) E[X|Z|(w) =E[X | Z="](Zw)) = E[X|Z=Zw)]. O

Theorem 5.4 (Monotony of Conditional Expectations). Let X and Y be two random variables on a
probability space (2, §, P) which both are integrable or nonnegative. and let & be a sub—o—algebra of §.

(5.18) If X =Y as. then E[X |8] < E]Y | ] as

PROOF: |[% || The proof is a repetition of that of Theorem 4.5 on p.71.

Let A := {E[X | 6] > E[Y |®]} and An::{E[X\®]>E[Y\®]+:L}; (neN).

We will prove (5.18) by showing that the assumption P(A) > 0 implies | A, XdP > i) 4, Y dP for
large n. This contradicts X <Y a.s., since that assumption implies [, XdP < [, YdP forall B € §.

The sets A,, are &—measurable, thus partial averaging implies that

(5.19) /XdP:/ E[X|®]dP  and /YdP /EY|Q5
Anp An

Assume to the contrary that P(A) > 0. Since A,, T A, P(A,) T P(A). See Proposition 4.7 (Continuity
properties of measures) on p.51. Thus there exists 7 >0 such that P(A) = 2y and hence some n € N
such that P(A4,,) = v. Since E[X | ] > E[Y | 8] + 1 onall of 4,,

/ xap 2 / E[X | ®]dP g/ (E[Y|QS] +1) dP
Ay Ay A n

_/ E[Y\@]dp+1p(An) g/ ElY | ®]dy + 2
A, An n

> [ E[Y|®]|d / Y dP.
An rL
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As mentioned earlier this contradicts X < Y a.s., and we conclude that P(A4) = 0. Thus

EIX|®] < EY|6] as.. ®

The following is SCF2 Theorem 2.3.2 which I reproduce here essentially unaltered. In particular I
use his phrase “Taking out what is known”. It sounds awkward to me, but I would not know a
better formulation: It expresses the fact that a &—measurable random variable (i.e., one for which &
contains all its stochastically relevant information,) can be pulled out of a conditional expectation
E[---| 6] the same way a constant number can be pulled out of an ordinary expectation E|...].
Note that all equations and inequalities are uderstood to only hold P-a.s., since conditional
expectations are defined only P-a.s.!

Theorem 5.5. Let (2, §, P) be a probability space. let & be a sub—o—algebra of §.

(a) (Linearity of conditional expectations) If X and Y are integrable random variables and ¢,
and cg are constants, then

(5.20) E[e1X 4 ¢,Y|8] = E[X|®] +  E[Y|®).

This equation also holds if we assume that X and Y are nonnegative (rather than integrable) and
c1 and ¢ are positive, although both sides may be +oc.

(b) (Taking out what is known) If X and Y are integrable random variables, if XY is integrable,
and if X is ®—measurable, then

(5.21) E[X -Y|6] = X - E[Y|®).

This equation also holds if we assume that X is positive and Y is nonnegative (rather than
integrable), although both sides may be +oo.
(c) (Iterated conditioning) If § is a sub—o—algebra of & ($) contains less information than &), and
if X is an integrable random variable, then

(5.22) E[E[X|6]| 5] = E[X|9].

This equation also holds if we assume that X is nonnegative (rather than integrable), although
both sides may be +oc.
(d) (Independence) If X is integrable and independent of &, then

(5.23) E[X|®] = E[X].

This equation also holds if we assume that X is nonnegative (rather than integrable), although
both sides may be +oc.
(e) (Conditional Jensen’s inequality) Let ¢ : R — R be a convex function, (see Definition 2.25
(Concave-up and convex functions) on p.28) and that X is integrable. Then

(5.24) p(E[X | ®]) < Elpo(X)] ]

PROOQOF: See the SCF2 text. W
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Proposition 5.3. Let (2, §, P) be a probability space, & a sub—o—algebra of §, and X a nonnegative or
integrable random variable. Then

(5.25) E[E[X|8]] = E[X].

PROQF: The proof is left as exercise 5.1. See p.108. W

Note the significance of formula (5.25). It states that E[X |®] is an unbiased estimator of X.

Theorem 5.6. Let X be a square—integrable random variable on a probability space (2, §, P), i.e.,
E[X?] < 0.

Let & be a sub—o—algebra of §. Then

E[X | &] is the best possible estimate of X, since it minimizes the distance to X in the following
sense. If & = {X : Xis —measurable and E[X? < o]} then

(5.26) E [(X — E[X| @])2} = min (E[(X X)) Xe sz/) .

In other words, E[X | ®] is the optimal least squares estimate of X among all &—measurable and
square—integrable random variables.

PROOF: |[% || We first prove that

(5.27) B[(X - BX|6])’ |6] SE(X - 2) 6], forallZed.
Let
% e 5[0 - Eprie) 1o].
X =E|(BIX | 8] - 2)° |®] .
X3 :=E[(X - E[X | &) (E[X|8] - 2) |8].
Then
(-28) E[(X — 2)* |8] =B (X - BIX | &) + (B[X| 6] - 2))" | o]

=X+ X5 +2X3 2 X1 + 2X3,

(The inequality results from X, = 0 and the monotony of conditional expectations.)
We will show that X3 = 0.

Xs = E[(X - E[X|8)]) |¢] - E[(E[X|¢] E[X|8]) | 8]

(5.29) ~E[X-Z |6+ E[(EX|0]-2) |8].

We apply the “pull out what is known” rule to terms #1 and #3 of (5.29) and obtain

E[(X-E[X|6]) |8] =E[X|6] E[X|8&],
E[X-Z|®6] =Z-E[X|®].
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For terms #2 and #4 of (5.29) we observe that E[X | &|-E[X | ] and E[X | 8]-Z are &-measurable
random variables, thus E[... | ] has no effect, thus

E[(E[X |6]-E[X|@6]) | &]
E[(EX |¢]-2) | 8]

E[X|¢&]-E[X|¢],
E[X|®]-Z.

We substitute those four indentities into formula (5.29) and obtain
X3 = E[X|®6]-E[X|6] - E[X|6]-E[X |6 - Z-E[X|®] + E[X|6]-Z
This proves X3 = 0. It follows from (5.28) that E [(X — Z)? | 6] 2 X4, ie,,
E[(X - 2)? | ®] gE[(X - B[X | ®])? |e5} .
We have shown that (5.27) is true.
Formula (5.26) now is obtained easily. Let Z € &/. Since
E[E[Y |6]] = E[Y] and Y £ Ysas. = EYi] £ E[Y)]
for any integrable or non-negative random variables Y, Y1, Y», it follows from (5.27) that
B((X - 207 = E[E(X - 2 |®]] 2 E[E[(X - E[X |&)? |6]].
But this is the assertion of formula (5.26). B

The next theorem, which Shreve calls the Independence Lemma, can be very useful to actually
compute conditional expectations. This is SCF2 Lemma 2.3.4.

Theorem 5.7 (Independence Lemma). Let (€2, §, P) be a probability space, and let & be a sub—c—algebra
of §. Suppose the random variables X1, ..., Xk are B—measurable and the random variables Y1,...,YT,
are independent of . Let f(x1,...,2K,v1,-..,yr) be a function of the dummy variables x1, ..., zx and
Y1, .- .,YyL, and define

(530) g(xlu" . ,IEK) :Ef(xlw . '7xK7Y17"' 7YL)'
(531) Then E[f(Xl,...,XK,Yl,...,YL)‘Qj] :g(Xl,...,XK).

PROQF: See the outline given in the text. W

5.4 Exercises for Ch.5

Exercise 5.1. Prove prop.5.3 on p.107 of this document: Let (€2, §, P) be a probability space, & a
sub—o-algebra of §, and X a nonnegative or integrable random variable. Then

E|E[X |®¢]] = E[X]. O
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5.5 Addenda to Ch.5

Example 5.1. Here is an example for the Jensen inequality for conditional expectations. Let W; be a
Brownian motion on a filtered probability space (2, §, 3+, P), let g(z) := 22%—8, and let V; := g(W4).
Then g is convex (concave-up). Thus, for any ¢, h = 0,

Y, =g(Wy) @ Q(E[Wt+h \ St]) % E[Q(Wt+h) \St] = E[Yt+h | St]-

—_
~

In the above, (a) holds because W; is a martingale, and (b) follows from the conditional form of
Jensen’s inequality. [

Example 5.2. Let Q2 :=]0,6],§ := B(]0,6]) := all Borel sets of ]0, 6], P := uniform probability on
10,6],i.e

P(]a,b]) := b—Ta forall0 < a = b £ 6.

Let & := 0(]0, 2], ]2, 6]), and let X be the random variable defined by X (w) := 5w.

We compute the conditional expectation w — E[X | &](w) as follows. According to Proposition 5.2
on p.101,

A~ E[X1 ifwe Gy,
(5.32) E[X | &]( Z E[X1g,)(w) = {P(fl) [(X1g,] ‘ w 1
b 2 2
We have P(Gl):g, P(Gg):%, XdP:5/a:dx:5 LS forall0 < a < b < 6.
6 6" Sy 6/, 6 2

Thus the solution is

6 5 /22 (2 5
0<w<2 :>E[X|05](w):2-6<2—2):2(2—0):5,
6 5 /62 22 5

E[X ‘ @] - 5 . 1}072] + 20 . 1]2,6] .
We are done, but here is a sanity check. It should be true that E[E[X | &]] = E[X]. We have
2-5 4-20 90

E[EX | ®]] =5-P(0,2]) + 20- P(]2,6]) = ot =% = 15,
6 dx 5 /62 02 5
E|X]| = X dP = Z D ) = 2.18 = 15. [0
X] 0 d 5/0m6 6(2 2) 6 8 J
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6 Brownian Motion

Key properties of Brownian Motion will be that this process is both a martingale and a Markov
process. We start out this chapter by discussing those two concepts. We follow closely the SCF2
text.

6.1 Martingales and Markov Processes

Introduction 6.1. We will see that the pricing of stock options and other financial derivatives with
the help of tools from stochastic calculus fundamentally depends on the following.

(1) Consider the filtered probability space (€2, §, §:, P), in which the filtration element §; repre-
sents the financial market information that accrued until the time ¢. Then the “real world”
probability P can be replaced by a “risk-neutral” probability P which is characterized as
follows: Let S; be the price of a stock at time t. How much would we be willing to pay at
t = 0 for the asset if the bank pays interest at a rate R(s) at time s? Certainly not the full
amount Sy, since, if we invest S; dollars in the bank instead, then compound interest would
grow that money to elo R(s)ds g, Rather, the fair price of the stock at ¢ = 0 would be the
discounted stock price, M; := e~ Jo R(s)ds g,

The risk—neutral world, the one governed by ﬁ, is characterized as follows: the future de-
velopment of the discounted price process M;(w) of the stock shows no trend that can be
inferred from the information §; that is available at time ¢.

In other words, the best possible prediction of this process at a future time ¢ 4 h in risk—
neutral terms is its present state, M;:

(6.1) Best estimate of M., given §; = M; (h>0).

We have seen in Theorem 5.6 on p.107 that the best estimate based on the information con-
tained in §; is the conditional expectation w.r.t. §;. Thus (6.1) is made mathematically
precise by the formula

(6.2) E[Myn | §t) = My, (h>0).

Here EI...] is the expectation | ... dP with respect to risk—neutral probability P.
Stochastic processes M, that satisfy (6.2) are called martingales. We will discuss some of
their properties.

(2) The future development of any function (M) of that discounted price process M;, but also
of other processes such as stock price S; itself, does not depend on the entire past informa-
tion, i.e., not on all of §;. Rather the knowledge of the present information concerning those
processes will be sufficient. The formal mathematical definition is that of a Markov process,
a process X; which satisfies

(6.3) Elp(Xewn)I8d) = Ble(Xewn)IXd], (R >0)

for all reasonable, i.e., nonnegative and measurable, functions p(z) O

We now give the formal definition of a martingale.

Definition 6.1 (Martingale). Let (€2, §, (8t),c; , P) be a filtered probability space.
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We assume that I is the index set of an extended real valued, adapted, continuous time or
discrete time process X that satisfies E[|X;|] < oo for all ¢. We call X

(a) amartingale if E[X; | §s] = X, as., forall s < tsuchthats,t, €I,
(b) asubmartingale if E[X; | §s] = X, as., forall s < tsuchthats,t, €1,
(c) asupermartingale if E[X; | §s] < X as., foralls <tst s t,el. O

Remark 6.1. A simple proof by induction shows that, if I = N then
(@) X isamartingale & E[X,41 | §,] = X, as., foralln eN,

(b) X isasubmartingale < E[X,.1 | §,] = X, as., foralln €N,

(0 X isasupermartingale < E[X,;1 | §n] £ X,, as., forallneN. O

Remark 6.2.

Comparisons on an w-by—w basis involving conditional expectations can generally only be
asserted to hold almost surely since such conditional expectations only are determined up

to a set of probability zero. We will follow the example of Shreve and often drop the “a.e
in such statements. []

Proposition 6.1. A martingale X satisfies E[Xs| = E[X| for any s,t € 1.
PROOF:

Let s < t. We apply the partial averaging property for conditional expectations. Integration over
the set €2 (which belongs to §) results in

/Xth_/EXt|SS /XdP X,]. =

The following connection between sums of independent variables and submartingales is worth-
while remembering.

Lemma 6.1. If X,, are §,, adapted and independent, and if S,, = > X, then
j=1

E[S,] nondecreasing = S, is a submartingale
E[S,] = const = S, isa martingale.

PROOQOF:

[ n+k
E[Sn+k ‘ Sn] =S, + FE Z Xj ‘ Sn
_j:n+1
[ n+k
(independence of X; and §,,) =S, + FE Z X;
_j:n+1

= Sp + (E[Snsk] — E[Sn]) -
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Since E[S,1x] — E[S,] = 0 for submartingales and E|[S,+4] — E[Sn] = 0 for martingales, the
assertion follows. W

Definition 6.2 (SCF2 Definition 2.3.6 - Markov Process). Let (€2, §, P) be a probability space, let T'be
a fixed positive number, let (:).c(0,r), be a filtration of sub-a-algebras of §, and let X = (X¢);c(0,1],
be an adapted stochastic process for which the codomain €’ of the random variables w — X;(w) is
the real numbers or R™. It is thus more appropriate to write z = X, (w) instead of v’ = X;(w).

Assume that for all 0 < s < ¢ £ T and for every nonnegative, Borel-measurable function
ft : x— fi(x), one can find another Borel-measurable function f; : = — fs(x) such that

(6.4) E[ft (Xt) ‘ Ss] = Js (Xs)

Then we call X a Markov process (with respect to the filtration (F¢)icpo, 7). U

There is yet another alternate definition of the Markov property which has the advantage of being
very well suited to determine in practical terms whether a process is Markov:

Proposition 6.2. A process X is a Markov process if and only if the following is satisfied.
Let 0 £ s =t < T, and let  be an arbitrary, nonnegative, Borel-measurable function x — ¢(z). Then

(65) E[¢(Xt)|gs] = E[@(Xt)‘Xs]‘

The interpretation is as follows: %

The future development of a Markov process does not depend on the past, only on the present.

PROOF: The equivalence of (6.4) and (6.5) is not hard to see.

First, assume that (6.4) holds true. Let ¢ be nonnegative and Borel-measurable. Setting f:(x) :=
©(z) in (6.4), we see that there is a Borel measurable function x — f,(x) that satisfies

E[@(Xt) | Bs] = fs(Xs)~

Since the right-hand side is a function of X, the same must be true for the left-hand side, i.e.,
Elp(X¢) | §s] is o(Xs)-measurable. This yields the first equation in

E[(p(Xt) ’ gs] = E[E[W(Xt) | 35] ’ Xs] = E[@(Xt) | XS].
The second equation follows from the Iterated Conditioning property. See Theorem 5.5 on p.106.
Now assume that (6.5) is satisfied. Let f; be nonnegative and Borel-measurable and s < ¢. Then
Elfe(X:)I8s] = Elfe(Xe)|Xs].

We argue as before and see that E[f;(X;)|X,] is o(X,)-measurable, since it equals, by definition,
E[f;(Xt)|o(Xs)]. We use Doob factorization and conclude that we can write this as a function
fs o X for a suitable Borel measurable function fs. In other words,

E[ft(Xt)|Ss] = fs o Xs.
This is formula (6.4). W

7https:/ /en.wikipedia.org/wiki/Markov_property
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Remark 6.3. If X; is a real valued or n—dimensional Markov process, then we apply the previ-
ous proposition to the function ¢(z) = x in the onedimensional case, or the coordinate functions
o(zW, ..., z() = 2. We obtain

EXiin |8t =FEXn | Xe]; (£, 20) one dimensional case,

ExY, |3 = EXY,

(6.6)

| X¢]; (t,h20) n—dimensional case :

Conditioning of the position at a future time ¢ + h with respect to the position at time ¢ is

equivalent to conditioning with respect to the entire past §; up to time ¢t. O

Proposition 6.3 (Processes with independent increments are Markov). 2 Let X; be an —adapted
exended real valued process with independent increments. Then X, is Markov.

PROQF: |[% | The proof can be found in many graduate level books on probability theory, e.g.,
[2] Bauer, Heinz: Probability Theory. W

Remark 6.4. The concept of a Markov process also exists for discrete time stochastic processes. Just
replace the index set [0, 7] with the set I of the countable set of times and adjust the conditions for
such indices.

For example, the condition “for all 0 < s < t” becomes “for all s,¢ € I such that s = ¢”.

The above applies in particular to random sequences X1, X, X3,.... If such a random sequence
satisfies one of the equivalent conditions (6.4) or (6.5), then it is customary to speak of a Markov
chain rather than a time discrete Markov process. [

Example 6.1. Here are two informal examples of Markov chains.

(1) The random sequence X = X,,,n = 0,1,2,3,..., is defined as follows. We assume that
Xo(w) = ng for some fixed ny € Z and all w, and

X, () Xn-1(w) + 1 with probability 0 < p < 1,
nlW) =
Xn-1(w) — 1 with probability 1 — p.

Clearly, this sequence satisfies (6.5), since the value of X, (w) does not depend on any
X;(w) for j < n — 1. This Markov chain is called a random walk on the integers. In the
special case p = ¢ = 3 we speak of a symmetric random walk. The beginning sections
of SCF2 Chapter 3 are about the symmetric random walk.

% Adapted from [6] Calin, O., An Introduction to Stochastic Calculus with Applications to Finance
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(2) The price S = S, of a stock at timesn =0, 1,2, 3, ... develops according to the following
rules: Sy(w) = so for some fixed real number sy and all (w), and
S, () u-Sp—1(w) with probability 0 < p < 1,
nlW) =
d-Sp—1(w) with probability 1 — p,
for two fixed real numbers 0 < d < u. Typically we will have d < 1 < u so that u
signifies an upward movement in stock price and d signifies a downward movement.
This sequence also satisfies (6.5), since the value of S, (w) does not depend on the stock
price at times prior ton — 1.

We will examine this process as part of the binomial asset model in Chapter 7 (Financial
Models - Part 1). O

6.2 Basic Properties of Brownian Motion

Definition 6.3 (Brownian motion). Given are the index set I := [0, oo|, a filtered probability space
(Q,5,8:, P)with t € I, and a stochastic process W = (W} )ser.

We call W a Brownian motion with respect to the filtration §;, if it satisfies the following.

(1) W is adapted to §;.

@ P{W,=0} = 1.

(3) P{t— W;is continuous for ALL ¢} = 1.

(4) Let0 = s <t < oco. Then the increment W; — W; is independent of the o—algebra 3.
(5) Let0=s<t<oo Then W, — Wy~ A(0,t — s),ie., Wy — Wy is normal with

E[W, — W] =0,

(6.7)
Var [Wy — W] =t — s. O

Remark 6.5. If W, is a Brownian motion with respect to a filtration §; then it also is one with respect

to its own filtration §" = (3}") 1 defined as

S};V = o(Ws:0=s=t).

In this case we simply speak of Brownian motion without mentioning the filtration }" .
One can prove that the increments are independent w.r.t.5,", if

(4") For any finite selection of times 0 <ty < t; < --- < t,, < 00 the increments
Wiy, — Wiy, Wy = Wy, oo, Wy, — Wy, areindependent. [

A proof acceptable to mathematicians that definition 6.3 is free of contradictions and Brownian
motion actually exists (the tough part is proven continuity at all times ¢ for the trajectories ¢ — W;(w)
belonging to a set of probability 1) was first given by Norbert Wiener. For this reason you will find
books which refer to Brownian motion as Wiener process.
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The consequences of the next theorem, which we include without proof, are profound. We cannot
define integrals

[ aemwiea,

to

since there is no derivative W} (w).
Theorem 6.1. Let (W;):>0 be Brownian motion on a filtered probability space (2, §), §t, P). Then

The paths t — Wy(w) are nowhere differentiable with probability 1.

In other words, P {w : dﬂgt(w) exists for at least one t = 0} = 0.

PROOF: Out of scope. A proof can be found, e.g., in [2] Bauer, Heinz: Probability Theory. W

Definition 6.4 (Moment-generating function). Let X be a random variable on a probability space
(9,3, P). If u is a real number then the random variable w — ¢*X“) is nonnegative as an exponen-
tial, thus its expected value E [e“X] is always defined (though it may be infinite).

Here is the multidimensional analogue. If X = (X1,...,X,) is a random vector on (2,3, P) and
4= (u1,...,un) € R", then the expected value of the random variable

w s e Xw) = exp Zuj Xj(w)
j=1
is always defined (though it may be infinite). In the above, as usual,
if @=(a1,...,an) ER™, b= (by,....by) €ER", then Geb = Y a;b;
j=1

denotes the standard inner product of R"

We can thus associate with any random variable X and any random vector X, the functions

(6.8) ®x : R — [0, 00, definedas ®x(u) = E[e"Y].
(6.9) g : R" — [0,00], definedas ®3(u) = E [eux]

X
We call @ x (resp., ® )?)' the moment-generating function of X (resp., of X ). In the multi-
dimensional case we also call ® ; the joint moment-generating function ofX. O

Proposition 6.4.

Let Z be a normal random variable with mean o and variance o>

Then its moment—generating function is

on a probability space (22, F, P).

12,2

(6.10) By(u) = eutao’v?,

116 Version: 2023-04-21



Math 454 — Additional Material Student edition with proofs

PROOF: I was not able to locate the proof in [13] Wackerly, Mendenhall and Scheaffer: Mathematical
Statistics with Applications). but it can be found in most text books on probability theory You can
find it for the case ;1 = 0 in the proof of SCF2, Theorem 3.2.1. W

Proposition 6.5. Let W;,0 < t < oo be a Brownian motion on a filtered probability space (2, §, §¢, P). If
s,t € [0, 00] then

(6.11) E[Wi] =0,
(6.12) Cov[W,, W] = E[WsWy] = min(s,1).

PROOF: See SCF2,ch.3.3.2 W

Proposition 6.6. || %

Let W;,0 < t < oo be a Brownian motion on a filtered probability space (2, §, ¢, P). Let 0 < tg < t1 <

-+ < ty,. Then the covariance matrix for the m—dimensional random vector (th Wiy ooy th) is
E[Wy, We,] EWy, Wiy . E[Wiy, W, ot . b
E[Wt2Wt1] E[WQWQ] E[WtQth} t1 to I Y
(6.13) : : . : N )
EWi Wiyl EWe Winls o E[Wep Wey,, | itz tm

Moreover the moment—generating function for (Wy,, W, ..., Ws,,) is

@(Ul, cee 7um) =F [exp {uthm + um—Ith,l + -+ UIth}]

1 1
(6.14) —oxp {5 (w1 + o+ )1+ 5z + s o+ w22~ 0) o
1 1
R (e o e 1 tm_l)}_

PROOF: See SCF2,ch.3.3.2 N

It is well known that moment—generating functions uniquely determine the distribution of random
variables and random vectors. Thus we have the following.

Theorem 6.2 (SCF2 Theorem 3.3.2 — Characterizations of Brownian motion). | % | Let (2,3, P) be

a probability space with a process W;,0 < t < oo such that Wy(w) = 0 and the assignment t — Wy(w)
defines a continuous function of t P—a.s.

Then we have equivalence
1) < 2 < 3)

of the following:
(1) Forall0 =ty <ty < --- < ty, the increments
th - Wtoy th - th ceey th - thfla
are independent, and each of these increments is normally distributed with mean zero and variance

VarlWs,, — Wi, ] = tm — tm1.
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(2) Forall0 =ty <ty < -+ < ty, the random variables Wy, Wy, ..., Wy, are jointly normal with
means E[Wy.] = 0 and covariance matrix (6.13).

(3) Forall0 =ty <ty < --- < ty, the random variables Wy, , Wy, ..., W, have the joint moment—
generating function (6.14).

If any of (1), (2), (3), holds (so they all hold), then (W), is a Brownian motion with respect to §}" .
PROOF: W
The following is SCF2 Theorem 3.3.4.

Theorem 6.3 (Brownian motion is a martingale). Let W = (W;)
probability space (2, §, §t, P). Then W is an F—martingale.

1>0 be a Brownian motion on a filtered

PROOF: For 0 < s < t, we have

E[Wt‘ss] :E[(Wt_Ws) + Ws|gs] = E[(Wt_Ws) |gs] + E[Ws‘gs]
= BE[W, — W,] + W, = W,.

The third equation results a) from the independence of W; — W, and Fs, and b) from the §,—
measurability of W,. W

6.3 Digression: L' and L? Convergence ||

In this section we use the same symbol || - || for very different ways to define the size of an item, and
the same symbol d(-, -) for very different ways to define the distance of two items.

Example 6.2. Here we give six examples of measuring sizes and distances. The first is well known
from linear algebra.

(@) Forvectors ¥ = (z1,...,2,) € R"and ¥ = (y1,...,yn) € R", we easily accept that

(6.15) |Z||2 = and  dy(Z,7) = |7 — 7|2

are a good way to measure the size of Z and the distance between # and y. If n = 2 then
Z and ¥ are e—close, i.e., have distance less than ¢, < ¢ lies within a circle of radius ¢
around 7.

(b) The following is not quite as plausible, but we might also be willing to accept

n

(6.16) IZl =) |zl and  di(@9) = |7 — gk
j=1

as a way to measure the size of ¥ and the distance between & and 3. Now, if n = 2, the
vectors Z and i are e—close < ¢ lies within the tilted rectangle with edges (z1 + €, y2)
and (z1,y2 £ ¢).
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(c) For real valued functions f,g : [a,b] — R, defined on an interval [a,b] C R, we could
measure the size || f||;: of f by the area enclosed by the graph of f, the z—axis, and the
vertical lines, y = a and y = b, and we could measure the distance d(f, g) between f and
g by the area which is enclosed by the graphs of f and g, and the vertical lines, y = a and
y = b. In other words,

b
(6.17) [fller = / [f@)]dt  and  dpa(f,g) = f — gl

(d) This time working with squares is not quite as plausible as what we did in (c), but we
might also be willing to accept for f, g : [a,b] — R to measure the size || f|| of f and the
distance d( f, g) between f and g as follows.

b
(6.18) 1]l = / f02dt and  dga(f.g) = |If — gllze

In the remaining examples we extend (d) to integrals of a more general type. The reader can easily
do the corresponding generalizations of (c).

(e) Wereplace [ ...dt with [...¢(t)dt for some fixed, measurable, nonnegative, ¢ : R — R.
This includes the case of an interval —oo < a < b < 00, since we can chose the “density”
¢ to be zero outside [a, b]. We now define for f, g : R — R, size and difference as follows.

(6.19) Ifllp2 = \// f@Pet)dt  and  dr2(f,9) = lf — gllz2.

This last example shows how to make the transition from functions defined for real arguments
to functions defined on an abstract domain by replacing [ ... (t) dt with the abstract integral
Jo - - - dp(w).

(f) Let (€2, 3, 1) be a measurable space with a o—finite measure x, and assume that f and g
are real valued and Borel measurable functions on 2. We define size and difference as

follows.
620 Wfle =y [ F@Pdnte)  and dia(hig) = If = gl O
It can be shown that the functions || - || which occur in all the examples above satisfy the properties

of the following definition if we exclude elements = for which ||z|| = ooc.

Definition 6.5 (Seminorm). Let V' be a vector space (in the abstract sense). A function

-1 :V—R x|

is called a seminorm on V if it satisfies the following.
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(6.21a) |z]| 20 forallz €V and 0] =0 positive semidefiniteness
(6.21b) |lax| = |af - ||z]] forallz € V, o € R absolute homogeneity
(6.21¢) lz+yl < |lz| + |ly]| forallz,y eV triangle inequality

It can also be shown that the functions d(-, -) in all examples satisfy the properties of the following
definition if we exclude elements x,y for which d(z,y) = co. Matter of fact, they are satisfied
whenever we set

d(z,y) = |ly — |

for a seminorm || - || as defined above.

Definition 6.6 (Pseudometric spaces). Let X be an arbitrary, nonempty set.
A pseudometric on X is a real-valued function of two arguments

d(-,-): X x X =- R, (z,y) — d(z,y)

with the following three properties:

(6.22a) d(z,y) 20 and d(z,z)=0 forallz,y e X positive semidefiniteness
(6.22b) d(z,y) =d(y,x) forallz,y e X symmetry
(6.22¢) d(z,z) S d(x,y) +d(y,z) forall z,y,z € X triangle inequality

Letz,y € X and € > 0. We say that x and y are e—close, if d(z,y) <e. O

There is a fundamental difference between the cases (a), (b) and the cases (c)—(f). In the first two
cases it is easy to see that positive semidefiniteness can be strengthened to “positive definiteness”

(6.23) IZ] =0 & =0 and d@§) =0 & & =g

On the other hand, regardless whether we interpret [ ...dt as Riemann integral or Lebesgue inte-
gral, if f(t) = 1 for t = 2+ and zero else, and if g(t) = 0 for all ¢ € [a, b], then

I/l =0 —and  d(f,9) =0,

even though f # 0and f # g.
One can actually show the following for o—finite measures .

(6.24) /f|du:0 VN /deuzo & f =0 p-ae,
and thus
(6.25) Jlr=sldu=0 = [(G-9fdn =0 & f=gpae
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There is another difference but it is of more of a technical nature. It will never happen in exampless
(@), (b) that ||Z]| = oo or d(&, ) = co. In contrast to this note that, for example, fol In(z)dx = oo and
fol (1n(a:))2dm = 00.

Before we continue, note that there is no substantial difference between examples ¢ and d. Moreover
d and e are specific cases of example f. We thus focus our attention on a, b, f.

The “positive definiteness” property of formula 6.23 is so important that it leads to the following
definitions which are a lot more important than those of seminorms and pseudometrics.

Definition 6.7 (Norm). Let V' be a vector space (in the abstract sense). A function

-V —R, x|

is called a norm on V if it satisfies the following.

(6.26a) ||z|| 20forallz €V and ||z]| =0 < z=0 positive definiteness

(6.26b)  ||az| = || - ||z|| forallz € V, a« €R absolute homogeneity

(6.26c) |z +vy|| = |z|| + |lyl] forallz,y eV triangle inequality
The pair (V, || - ||) is called a normed vector space [J

Definition 6.8 (Metric spaces). Let X be an arbitrary, nonempty set.
A metric on X is a real-valued function of two arguments

d(-,-): X x X =R, (z,y) — d(z,y)

with the following three properties:

(6.27a)  d(z,y)=0forallz,y € X and d(z,y) =0 < z=y positive definiteness
(6.27b)  d(x,y) =d(y,x) forallz,y € X symmetry
(6.27¢) d(z,z) S d(x,y) +d(y,z) forall z,y,z € X triangle inequality

The pair (X, d(-,-)), usually just written as (X, d), is called a metric space. We’ll write X for short
if it is clear which metric we are talking about. [

Remark 6.6. || *

From the perspective of advanced mathematics there are tremendous advantages to having norms
and metrics rather than seminorms and semimetrics. The mechanism to enforce positive definite-
ness is to call two measurable functions f and g equivalent if f = gp—a.e. and work with those
equivalence classes [f] rather than with the original functions f. We do not worry about such so-
phistication. We usually write f for those equivalence classes [f]. O

6.4 Quadratic Variation of Brownian Motion

Notations 6.1. In the following the letter II will not denote the pricing function of a contingent
claim as will be the case when we discuss financial markets, e.g., in Chapter 7 (Financial Models -
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Part 1). Rather, it will denote a partition
IT .= II; := {to, t1,...,tn}, where 0 =tg, < t1,< -+ <t,=1t; (0St=T).

Such a partition is interpreted as a set of times for a stochastic process with index set I = [0, 7] for
some fixed T > 0 and 0 < ¢t £ T. We will often write IT for IT; if this does not lead to confusion.

The step sizes t; — t;_; are not assumed to be of equal size. We denote by
||| == max{tjy1 —t; : 7=0,...,n—1}.

the maximum step size (difference of neighboring times) of the partition. We will refer to ||IL;|| as
the mesh of IT;. O

SCEF2 defines the first-order variation of a function [0, 7] — R, but we have no use for it Instead we
directly introduce the quadratic variation of such functions. The following is SCF2 Definition 3.4.1

Definition 6.9 (Quadratic Variation). Let f : [0,7] — R be a (Borel measurable) function of time ¢,
andlet0 < ¢t < T. We call

n—1

(6.28) £, A1) = lim > [ftja) — £(t)]%

II;||—0
e ]=0 <=

the quadratic variation of f up to time ¢. Here the limit i h”m is to be understood in the same way
_)

as
n—1

Nt — i), tiog St <t
[ rwan = i X A6 — o), e S5t

in the definiton of the Riemann integral. In other words, the limit is taken along partitions II; =
{0 =ty <t; <--- <t, =t} insuch a way that the mesh becomes smaller and smaller. [

Remark 6.7 (Notation for quadratic variation of stochastic processes). Quadratic variation makes
sense for any function that depends on “time” ¢, including the paths ¢t — X;(w) of a stochastic
process X;, 0=t < T.

We will often write [X, X]; and [X, X];(w) rather than [X, X]|(¢) and [X, X](t,w). O

Remark 6.8. Let f : [0,7] — R be a (Borel measurable) function with a continuous derivative. Let
0= t¢t=T. Then[f, f](t) =
You will find a proof of this in SCF2 Remark 3.4.2. O

SCF2 Theorem 3.4.3 states the following. Let W be a Brownian motion. Then, for almost surely all
w e,
W, W]i(w) =t foral0=t<T.

He actually proves a lot less:
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Theorem 6.4. Let W be a Brownian motion. For 0 < t < T and a partition II = {to, t1, ..., t, } of [0,1],
let
n—1
Qu(t) = Z(Wtj+1 - Wtj)Z'
j=0
Then

HrllilngE[(Qn@) -] =0

PROOF: See the proof of SCF2 Theorem 3.4.3. W

Remark 6.9. SCF2 Remark 3.4.4 and 3.4.5 are to a large degree about making plausible the extremely
important relations

Even though I can follow those remarks line by line I fail to see understand how they make it easier
to understand this so called multiplication table for Brownian motion differentials. I will explain
them differently later in the course.

Here is one thing he says that should be clear to all.

Brownian motion accumulates quadratic variation at rate one per unit time. O

6.5 Brownian Motion as a Markov Process

Theorem 6.5 (SCF2 Thm.3.5.1). Let W be a Brownian motion on a filtered probability space (2, §, S+, P).
Then W is a Markov process.

PROOF (outline): Let 0 £ s < ¢ < Tand f; : R — [0,00, = +— fi(z) Borel-measurable. According
to Definition 6.2 which corresponds to SCF2 Definition 2.3.6 of a Markov process one must find
another Borel-measurable function fs : = — fs(x) such that

(6.29) Elfy(W) | 8] = fo(Ws).
It can be shown that
(6.30) fs:R—R, = Efi(x+ W — W)

is the sought after function. For the proof see SCF2 ch.3.5. Note that that proof does not require the
normality of W;. It entirely relies on the fact that the increments W, — W; are independent of §;.
|

We will show that Brownian motion has a transition density according to the next definition.
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Definition 6.10. || %

Let X = X, be areal valued and adapted Markov process on a filtered probability space (2, §, 5, P).
Assume there exists a Borel measurable function

(6.31) p:]0,00[xR xR — R; (7,2,y) — p(T,2,Y)

such that z — p(7,z,y) is Borel measurable for each fixed 7 and y, and which satisfies, for every
nonnegative Borel measurable function f : R =+ Rand s = 0 and 7 > 0 the relation,

(6.32) Elf (Xs4r) | 35 = / f)p(r, Xs,y) dy

We call p(7, z, y) the transition density for X. O

Remark 6.10. | [ x| Formula (6.32) is an equation of two random variables which holds true almost

surely. We supply the argument w to emphasize this aspect and obtain for s 2 0 and 7 > 0.

(6.33) B (Xeir) | 50) = [ f@plr X)) dy, as

In particular, let B C R be a Borel subset and f(x) := 1g(x). Then (6.33) becomes

630 PXr €5 | 5.)) = Bls(Xerr) | 8J6) = [ pr X)) dy. as

We recall from Proposition 6.2 on p.113 that the expressions above are o(X,)-measurable. This can
also be seen directly since the random variable

w /Rf(y)p(T’Xs(W),y)dy

is, for frozen 7, a function of X (w) only and hence o(X,) measurable. Thus conditioning with
respect to §s is the same as conditioning with respect to X;. Thus, from (6.34),

(6.35) P{Xs1r € B | X.}(w) = /B p(r, Xa(w)y) dy . as..

As in Remark 5.4 on p.105, Doob factorization applied to P{--- | X} yields a Borel measurable
function z — g(x) such that P{X,y, € B | X} = g o X,. Again, it is customary to write

P{X,, €B| X, =2z}

instead of g(z) for this function, and this turns out to be the ordinary conditional probability when
discrete random variables or random variables with joint density functions are involved. Under
this convention we obtain the following for fixed z: If X (w) = z, then (6.34) and (6.35) yield

(636) P{Xs+~r €eB | Xs :.CU} = / p(T,:U,y) dy
B

Thus y — p(7, x,y) is exactly that “ordinary” conditional density for the probability of X ending up
at time s + 7 in a set B, under the condition that its trajectory was at time s in z.
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The time s of conditioning does not appear in the expression on the right hand. Thus this condi-
tional probability is equal to that of starting at time zero in  and ending up at time 7 in B. This is
informally stated as follows. If I know the postion of X at time s then I can consider s as my new
start time. The trajectories 7 — X, will behave in terms of all probabilistic aspects just the same
as the trajectories X, that had originally started at time zero in . [

Proposition 6.7. The transition density for a Brownian motion is

1 _(y—=)?

= 2T
pTay) = o=
PROOF: The proof is given as part of SCF2 Theorem 3.5.1. W

6.6 Additional Properties of Brownian Motion

We are skipping all of SCF2 Chapter 3.4.3 (Volatility of Geometric Brownian Motion) except for the
following definition.

Definition 6.11 (Geometric Brownian Motion). Let W be a Brownian motion on a filtered probabil-
ity space (2, §, 5+, P). Let Sp, a, 0 be real numbers such that Sy, o > 0 We call the process

1
(6.37) Sy = Sy exp |:O'Wt + (a — 20'2> t] .
geometric Brownian motion or also GBM. We will see in Example 8.1 on p.171 how GBM is ob-

tained as the solution of a SDE (stochastic differential equation) which models the price of the risky
asset (stock) in the Black-Scholes option pricing framework. [

Definition 6.12 (Exponential martingale).

Let W = W,,t =2 0, be a Brownian motion on a filtered probability space (2, §, §¢, P, and
o € R. We call the process Z = Z;,t 2 0, defined as

1
(6.38) Zy = exp [th — 20%} ,

the level o exponential martingale of W. [

Z; derives its name from the following theorem (SCF2 Theorem 3.6.1).

Theorem 6.6. Let W = Wy, ¢t = 0, be a Brownian motion on a filtered probability space 2, §, §t, P and
o € R. Then the level o exponential martingale of W is an §,—martingale.

PROQOF: See SCF2 Theorem 3.6.1 for the proof. W

The SCF2 text contains an entire chapter 3.2 on discrete time versions Xt(”), defined only for times
t; = 27"j and called symmetric random walks. In a sense, one can represent (continuous time)
Brownian motion as a limit of properly scaled and linearly interpolated symmetric random walks.
We now briefly discuss a small part of this material.
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Definition 6.13 (Scaled symmetric random walk). Let B; be an i.i.d. sequence of random variables
with two possible outcomes, 1 and —1. Assume that

1 1
p::P{szl}zi; g =1-p= - = P{Bj=-1}.

Let

k
(6.39) X, = 0, X, = ZXj, k=1,2,...
j=1

Then the process M}, lives on the grid of the integers, and, at each time £, it is equally likely that the
process moves one unit to the left or to the right. For this reason we call this process a symmetric
random walk. [

To approximate a Brownian motion, we speed up time and scale down the step size of a symmetric
random walk. More precisely, we proceed as follows.

Definition 6.14 (Scaled symmetric random walk). Let n € N. For ¢t 2 0 let the integer k be deter-
minedby £ < nt < k+ 1. Let

L X, if nt is an integer,
(6.40) Wi = { v &

the linear interpolation of ﬁ X and ﬁ X1 otherwise.

We call the continuous time process Wt(") the n—th scaled symmetric random walk. [

Theorem 6.7 (SCF2 Theorem 3.2.1 - Central Limit Theorem for scaled random walk). || %

Let t > 0. Asn — oo, the distribution of the scaled random walk W™ (t) evaluated at time t converges to
the normal distribution with mean zero and variance t.

PROOF: See SCF2. W
6.7 Exercises for Ch.6
Exercise 6.1. Prove the assertions of Remark 6.1 on p.112 of this document.

Hint: Use induction to prove the remark for a submartingale X,,. Apply this result to —Y, to obtain
a proof for the case of a supermartingale Y;,. The result for a martingale is then immediate. [J

Exercise 6.2. Prove prop.6.1 on p.112 of this document:

A martingale X satisfies E[X | = E[X;] foranys,tel. O
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7 Financial Models - Part 1

This entire chapter closely follows the book [5] Bjork, Thomas: Arbitrage Theory in Continuous
Time and we use to a large degree the notation found there.

Everything happens in the context of a once and for all given probability space (2, §,§¢, P). We
interpret the filtration (J;): as the information available up to time ¢ for a given financial market.
We call this filtration the information filtration or also simply the filtration of the financial market.

You may want to review chapters 4.3 (Stochastic Processes and Filtrations) and 6.1 (Martingales and
Markov Processes) about the following:

For the exact definition of a stochastic Process see Definition 4.14 on p.61.

For the exact definition of a filtration see Definition 4.18 on p.64.

For the exact definition of an adapted Process see Definition 4.19 on p.64.

The definition of a Markov process is precise. See Proposition 6.2 on p.113. O

7.1 Basic Definitions for Financial Markets

Introduction 7.1. The finance part of this course is about pricing financial derivatives which are
financial instruments defined in terms of (derived from) one or more underlying assets like stocks
and bonds. Such financial derivatives are also called contingent claims. A prime example is a
European call option for which the underlying asset is a stock. This option is a contract written at
some time ty. It specifies that at the time of expiration 7' > ¢y the holder of this option has the right,
but not the obligation, to buy a share of this stock for the price of K (dollars), the so called strike
price, regardless of the market price St of that stock at time 7.
We see several features in this example.
e The stock price S is a stochastic process S;(w) since it depends on time ¢ and is non-
deterministic, i.e., it depends on randomness w.
e The value of this contract at time of expiration is a function of the stock price S (w) at
that time: The contract allows us to make a profit X¢(w) — K if the price of the stock at
time 7" exceeds the strike price, and it is worthless (but does not lead to a loss) otherwise.
e We call this contract value at time 7" the contract function X' (w) of this option. What we
just saw is that

X(w) = ®(Sr(w)), where ®(z) = (z— K)* = max(z — K,0).

We will write IT; (X)) or II;(X’) for the price process of a contingent claim X. In other
words, II;(X)(w) is the price of the financial derivative at time ¢. It is obvious that

since paying more for the claim at expiration time would be an unwise decision by the
buyer, whereas offering the option for less would lead to a loss by the seller.

e Not so obvious: What is the appropriate price II;(X) at a time ¢ prior to 7°? In particular,
what should be the price of this contract at the time ¢y when it is written? [J

Definition 7.1 (Financial Market). A financial market model, usually just called a financial market,
consists of the following.
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(1) A collection of financial assets & = (0, a5,..., ™), eg., stocks, bonds, op-
tions written on stocks, ... We distinguish between riskless assets such as bank
accounts or zero coupon bonds where the money will grow according to an under-
lying interest rate and risky assets such as stocks which will fluctuate in value for a
variety of reasons. Of course the real world is more complex and this distinction has
been made for conceptual simplicity.

(2) Unit prices Sj(w) = (S,fo)(w),St(l) (W), - - .,S,fn)(w)) of the assets &7 (7).

We use the term “stock” as a synonym for “risky asset”.
We use the terms “bond”, “bank account”, “money market account” as synonyms for
“riskless asset”. We do this even though there are differences. For example, bonds

have risks if one intends to sell them before maturity, since their price will fall if

interest rates rise.
There usually will be a bank account. We reserve slot zero for that asset and often
write B; rather than St(o) for the price of this asset to improve readability.

(3) Trading times ¢t > 0 at which the assets &) may be bought or sold. We speak of a
continuous time financial market if those trading times form an interval [to, 7| or
[to, 0o[. We speak of a discrete time financial market if those trading times form a
finite or infinite sequence ty < t; < to < ... In either case we usually have t; = 0.

We consider the trading times ¢; of a discrete time market as special times, i.e., as real
numbers. We follow this convention even if the trading times happen to be integers
no,no +1,n9+2,....

Thus, [tj,tn[ = {t €ER: t; é t < tn}, NOT [t]‘,tn[ = {tj,tj_H, 500 ,tn_l}.
In particular, [t;_1, ;[ denotes the times from the time of trade ¢;_; until “just before”
the time of trade ¢;. This is not the empty set! [

Remark 7.1. Interest is earned by holdings in a bank account and increases their value as time
progresses. We will consider different ways in which interest is earned.

This can be as simple as the case of discrete trading times ¢t = 0,1, 2, 3, ... with a fixed interest rate
R per unit time. In this case the value of the holdings increases by the factor 1 + R, so it increases
between times t and ¢ + k by a factor of (1 + R)*.

On the other end of the scale, if trading happens continuously and if the interest rate is stochastic
and varies in time, i.e., it is a stochastic process R;(w), then the value of the holdings increases

between trading times ¢ and ¢’ by the factor eli Rudu [

We list here a few more financial derivatives in addition to the European call.

Definition 7.2.
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e A European put option is a contract written at some time ¢. It specifies that at the time of
expiration T" > ty the holder of this option has the right, but not the obligation, to sell a share
of an underlying security for the price of K (strike price). Note that the contract function
which specifies the value of this derivative at time 7" to the contract holder is

U(Sr(w)), where ¥(z) = (K — 2)7 = max(K — z,0).

e An American call option is a contract written at some time ¢,. It specifies that at any time up
to the time of expiration 7" > t, the holder of this option has the right, but not the obligation,
to buy a share of an underlying security stock for the price of K (strike price).

e An American put option is a contract written at some time ¢y. It specifies that at any time up
to the time of expiration T' > ¢, the holder of this option has the right, but not the obligation,
to sell a share of an underlying security for the price of K (strike price).

e A forward contract is a contract between two parties A (the seller of the contract) and B (the
buyer), written at some time (. It specifies that at the time of expiration 7' > ¢; A has the
obligation to sell a share of an underlying security for the price of K (strike price), and B has
the obligation to buy at this price. Clearly the value of the option to the buyer at time 7" is

U(Sr(w)), where ¥(z) =z — K. O

Trade happens in this market, so people will have portfolios which list for each asset how many

units are being held. We have access to the market information 85 up to the time ¢ of the trade, i.e.,
we can base our trades on the development of the asset prices up to that time, but we cannot peek
into the future.

Definition 7.3 (Portfolio strategy).

A portfolio or portfolio strategy is a stochastic process

—

(7.1) B = Hw) = (H”w), B W),..., H” (W)

which denotes the holdings (quantity) Ht(j ) someone has in asset &), N egative values
indicate that this quantity is not owned but owed. We speak of a Markovian portfolio if H
is a Markov process. In other words, a Markovian portfolio depends on current stock price

5’,5 only and not on Stg , the stock price of the past.

We say that H denotes a long position in the asset /7 at time ¢ if Ht(j )'> 0. We say that
H denotes a short position in this asset if Ht(] ) <o.

We have to make some distinctions between continuous time and discrete time models:

In the continuous case we assume that ﬁt is 3’5 —adapted.

In the discrete case with trading times ¢y < t; <tz <...,
(1) we assume that H,; (w) is constant on each interval [t;_1, tx],
(2) we assume that H, is Si_l—adapted (k> 0),
(3 We define Hy, := Hy,. O
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Definition 7.4 (Portfolio value). Assume that we have a portfolio H, in a continuous time or discrete
time financial market.

The portfolio value associated with H is the stochastic process

—

n
72)  VH =He5 =Y ISP = HOSO + B + -+ HMsM. O
§=0

Remark 7.2. Recall that H;, = H;, by the definition of a discrete market portfolio. Thus

n
(7.3) VA =f, 68, =Y HYsY, O
=0

Remark 7.3. Portfolio value is interpreted differently in discrete and continuous trading models.
A. The continuous case.

Each time ¢ is a trading time. We interpret H; as the holdings (number of shares) in asset /) at
that time ¢. The value of those &/(/)-holdings is

quantity x price = Ht(j ). St(j ),

Thus the sum of those holdings, i H t(j )St(j ), is the value of the entire portfolio at time ¢.
j=0
B. The discrete case.
B1. The case ¢, > tg,i.e., k > 0.
We interpret, for each trading time ¢ > to, Hy, as the holdings in asset /() during the interval
[tk—1,tx[. In other words, the quantities H;, are bought and sold at time ¢;,_; and held constant until
the next time of trade ¢. The times ¢, t2, ... are genuine times of trade.
The following happens at t = t;:

(@) The entire “old” portfolio H;,, which was purchased at time t;_; at prices S, ,, is sold at
current prices S e o
The money received from that saleis V;, = H;, o S, .

(b) This amount V;, now is used to purchase the new portfolio Hy, +1- This purchase also hap-
pens at current prices gtk.
Since money spent = money received = V;,, we have V;, = fltk a® S‘tk.

Important: The “obvious” portfolio value equation

Vi, = ﬁtk .gtk

applies to the sale of the old portfolio H;, , but NOT to the purchase of the new portfolio Hy, w8 O

The equation

Vi, = Hy, 0S5y, = Htk+1 ® 5,
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expresses that no money is added or removed when the old portfolio Hy, is traded for the new
portfolio Hy, , Thus
Money spent = money received.

We will later refer to this balance as the budget equation for the portfolio.

B2. The case k£ = 0.
The time ¢, is the setup time for the initial portfolio f[to. There is no old portfolio which can be
traded for this initial portfolio. Rather, the first time of trade is ¢;.
Recall that H, to = fItl by definition. The following happens at ¢¢:
e The amount V;, isqavailable to setup (buy) the initial portfolio Hy,. This purchase takes place
at current prices St,- Since the money spent at setup is V;,, this is the value of the portfolio
Hy,. In other words,

Vi, = Portfolio setup value = H,, S, = Hy,eS,. O

Example 7.1. If &/(3) denotes IBM stock which is traded at time ¢ at a price of St(3) = $120.15 per

share and Ht(?’) = —27.78 shares, (a short position!) then IBM stock contributes —3337.767 dollars to
the value V;# of that portfolio. [

We stated earlier the following for a continuous time financial market: Money that is tied up in a
riskless asset (zero coupon bond or bank account) will appreciate between start time ¢y and time ¢

s

t
by the amount elio B=% Here the process R:(w) denotes the interest rate at time ¢. We can turn this
around and think of how much we are willing to pay at time ¢, for such a riskless asset if it pays the
amount Z;(w) at time ¢. The answer is that we discount that price Z; to the amount

t
— fto Rsds

Zto = € Zt,

since Z, is the amount which grows, when invested at ¢( in a riskless asset, to the amount Z;.

In the following definition of a discount process we restrict ourselves to the special case ty = 0.

Definition 7.5 (Discount process).

¥See Definition 7.7 (Budget Equation) on p.133 and Definition 7.6 (Self-financing Portfolio) on p.132. of a self—
financing portfolio.

131 Version: 2023-04-21



Math 454 — Additional Material Student edition with proofs

Assume that R; is an interest rate process, for the riskless asset &/ 0 ie., Ry (w) is the
interest rate given at time ¢. Then the process

(7.4) B; := exp [/Ot R ds}

represents the interest accrued between times 0 and ¢, i.e., an investment By in a bank ac-
count at time zero will have accrued to BgB; = By exp [ fg Ry ds} at time t. We call B, the

money market account price (process) of &/(*), and we call

(7.5) D; := exp [—/Ot R ds}

the discount process of &7 (?). [

Remark 7.4.

(A) Note that )

B:’
The term money market account price process for B, has been adopted from SCF2 Chap-
ter 6.5. It represents the value at time ¢ of one currency unit which was invested in the
riskless asset at time zero and continuously rolled over at the interest rate R,,, 0 = u < t.
(B) How do we discount the price of an asset at time 7" of expiration to an earlier time ¢? The
discount factor with which to multiply S is not Dy, but

D, =

T
discount factor betweentand ' = / Rs(w) ds.
t

If the interest rate R,(w) is stochastic, this process is not adapted to the financial market
filtration §, since it depends on the future up to time 7". But even if R were determin-
istic, the discounted value (t,w) j;T Rgds St(w) of stock price St at expiration still
would not be adapted. Non-adapted processes are very difficult to handle mathemati-
cally. Accordingly,
e we will only consider deterministic interest rate processes R,
, e we will only discount backward to time zero.

Then the discounted asset price, (t,w) — ( [i Rsds)Si(w) = DySy(w), is §i-adapted. O

Definition 7.6 (Self-financing portfolio). A portfolio is a self-financing portfolio strategy (simply,
self-financing portfolio), if money can be shifted around at times of trade by selling some assets
and reinvesting the proceeds into other assets, subject to the following;:

e Itisnotallowed to move any proceeds out of the portfolio to finance, e.g., the purchase
of consumer goods or the next vacation.
e There is no infusion of external money to purchase additional shares.
In other words, the acquisition of additional shares in such portfolios must be financed through the
sale of shares in some other asset or assets. [
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Remark 7.5. The above definition of a self-financing portfolio is not very mathematical. We make
it precise by formulating what is called a Budget equation. 3° Discrete time trading models such as
the multiperiod binomial asset model (Chapter 7.3.2) and continuous time trading models such as
the Black-Scholes market (Chapter 9) will have different budget equations. [

Definition 7.7 (Discrete time budget equation and self-financing portfolios).

The budget equation for a portfolio H; in a discrete time financial market is

(7.6) ZH(J SO = v

tei1

Z Ht”)S () for t;, > tp.

k

We amend Definition 7.6 (Self-financing portfolio) on p.132 as follows. H;a self-financing portfo-
lio strategy (simply, self-financing portfolio), if it satisfies this budget equation. [J

Remark 7.6. The continuous time budget equation turns out to be
N . .
(7.7) avl =HyedS, = S HY s

where dSt(i) = dSt(i) (w) is a “stochastic differential”. We need knowledge of stochastic calculus to
understand the meaning of (7.7), so we will defer dealing with continuous time budget equations
until Chapter 9.1 (Prologue: The Budget Equation in Continuous Time Markets). 3! [

Definition 7.8 (Arbitrage Portfolio).

A portfolio H is an arbitrage portfolio if it allows with zero probability of risk to create
money out of nothing with positive probability and does so without the infusion or with-
drawal of money at any trading time ¢ > 0.

In other words, H; must be self—financing, and its value process V; satisfies

(7.8) vy =0,
(7.9) P{V# 20} =
(7.10) P{V{ >0} > 0. O

Note that the above is equivalent to replacing 7" with some 0 < ¢ < 7T since we can invest the
positive amount V! entirely into the bond and have at least that much profit at time 7.

Remember that we are designing a model and it is natural to make some simplifying assumptions
even though they may be unrealistic in the real world.

**We had briefly mentioned the budget equation of a discrete time portfolio in Remark 7.3 on p.130.
*!See Definition 9.1 on p.181.
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Assumption 7.1. Unless stated differently the market adheres to the following;:

e Shares Ht(j ) can equal any real number, and asset price per share St(j ) can equal any
strictly positive number. In particular we allow fractions of shares and asset prices.

e There is no bid—-ask spread: The trading institution will not charge you more when it
sells you an asset than the price at which it would buy it from you.
There are no costs for executing a trade.

e The market is completely liquid: one can buy and/or sell unlimited quantities of any
asset. In particular one can borrow unlimited amounts from the bank (by acquiring a
short position in the bond).

The last condition is so central to the market model that we list it separately for emphasis.

e The market is efficient and thus free of arbitrage, i.e., it does not allow the existence

of arbitrage portfolios. [

Definition 7.9 (Contingent Claim). A contingent claim, also called a financial derivative, is a §7—
measurable random variable X' (w). We call X" a simple claim if there is a function s — ®(s) of asset
price s or a function §+— ®(5) of an asset price vector s such that

X =do St.

We occasionally refer to ® as the contract function of that claim. [

Definition 7.10 (Hedging/Replicating Portfolio). Given are a contingent claim X and a portfolio H.

(@) We say that A is a hedging portfolio or a hedge or a replicating portfolio for X,
and we say that X is reachable by H, if H is selffinancing and

V# = X almost surely.

(b) If all claims can be replicated then we say that the market is complete. [J

Remark 7.7. We stress that part of the definition of a replicating portfolio is the condition that it be
self-financing. [

Part of Assumption 7.1 about a market is that there be no arbitrage. The next theorem states that in
such a market all hedgeable contingent claims can be priced correctly (without admitting arbitrage)
by means of their replicating portfolios. Bjork refers to the next theorem as a pricing principle.

Theorem 7.1 (Pricing principle).

Given is a contingent claim X with a replicating portfolio strategy H.
For H to be free of arbitrage it it necessary that the option price process II(X) for that claim satisfies

X)) = V2 e, T,(X) = Vi, for all trading timest.
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PROOQOF:

The case t = T' is immediate: We mentioned already in the introduction 7.1 to Chapter 7.1 on Basic
Definitions for Financial Markets (see p.127) that we must have II7(X) = X since otherwise we
could borrow money to purchase the lesser valued item and immediately sell it at the higher price.

It follows from the definition of a replicating portfolio that X = V. This proves in conjunction
with TIp(X) = X that IIp(X) = VH.
Let us now assume that there is some 0 < ¢y < T'such that IT;, (X) # V;//. We examine separately the
cases II;, (X) < V¥ and ITy, (X) > V;f' and show that each one allows for arbitrage opportunities.
Case I: IT;, (X) > VI

1. t=tp: Wesell short a claim X" at a price of II;,(X).

2. t =ty : We use the proceeds to purchase a replicating portfolio Hy, at its value, Vi

3. We create a separate portfolio by investing the difference A := Il (X) — V;" in the riskless asset.

4. Compounded interest will make that investment grow to A’ = A at time ¢t = T'. The specific value
of A’ will depend on the interest rate process.

5. The original portfolio will grow in value from V;/ at time t = ¢ to V! at time ¢t = T.. We then sell

the portfolio and use that money to buy one unit of the claim. We use that security to cover the

short sale that happened at ¢ = ty.
6. We have made a profit of A’ without investing any of our own money.

Case II: IT;, (X) < V;H

1. t=to: We sell short a hedge H, for X at a price of Vi,
t = to : We use the proceeds to purchase a claim X at a price of II;, (X).

That investment will grow to A’ at time ¢t = T..

G WD

the proceeds, and use H to cover the short sale that happened at time ¢ = .
6. We have made a profit of A’ without investing any of our own money. W

7.2 The Holdings Process of a Riskless Asset

In this subchapter we assume the following for simplicity. Given is a continuous time financial
market which consists of a riskless asset (e.g., bank account) &/ and a risky asset (e.g., stock) &/

We assume that &7 is governed by the interest rate process R;. Thus we have
e the money market account price B; = exp [ fot R, ds],
e the discount process D; = 1/B; = exp [ — fg R ds } .

Associated with the assets vector & = (2, a/5) is the portfolio H; = (HF, Hf) and the portfolio
value
Vi = HP P+ 1 S,

where we we write, only temporarily, P; for the price of a bank account “share” at time ¢.

For convenience, we define
VP = HPP, VS .= HSS.

Thus VP is the money value of the bank account holdings, and V,° is the money value of the stock
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holdings of the portfolio H,.

It is clear how to interpret the equation V;° = H}S,. If today’s stock price is S; dollars and I
hold H; shares of that stock then those shares contribute V,° to my overall portfolio value V;. For
example, if I hold 20 shares of stock and each share’s current value is 30, then my holdings in that
stock are worth 600.

But I approach my bank account holdings completely differently. Consider a balance of 1,000 dol-
lars in that account. Then V,? should certainly be $1, 000. But what about H and P;?

The obvious approach is to say that a dollar is a dollar, so that should be one share in the bank and
HP, the number of shares, should be 1, 000. Let us assume the account was established about a year
ago with a balance of $980, no money was deposited or withdrawn ever since, and the $20 increase
is due to interest earned on the deposit. Then our approach would imply that the unit value per
share remained the same (one dollar), and the holdings increased from 980 shares to 1, 000 shares.
It turns out that it is more advantageous for finance modeling to take the following, much less
obvious, approach.

(1) bank account unit = 1 dollar 2 | invested AT TIME ¢ = 0. |

(2) Due to interest earned, today’s value of one unitis P, = exp [ fg R, ds} = By,

1

E'

(3) If I invest today, at time ¢, V,” dollars in the bank account then this only gets me D;V,”
“bank shares”. Equivalently, if I liquidate my account today, at time ¢, then I “only”

obtain D, V}B “bank shares”, since each one of those has value B;. Thus

Recall for the following that D; is the discount process for the bank account, i.e., D; =

(A) V;2 = bank shares x unit price = (D;V,?) - B

since we have established in (2) that P, = B;
(4) The portfolio value HP of the bank account should satisfy V,” = HP B;. It follows from
(A) that HP = D,V,P is the right definition for HP.

Thus stock price S; and stock holdings H;’ have the following analogies for bank accounts:

(1) asset price per unit at a given time ¢ = B; = money market account price at ¢,

(2) Holdings HP? = D;V,? = today’s value discounted to time zero.

Remark 7.8. We said that we would limit our discussion to continuous time models. Discrete time
models are harder for the following reason: At each time of trade ¢, # to two portfolios exist since
the trade can be thought of as the sale of the entire old portfolio (HZ, H;) which was purchased at
time t;,_1, followed by the purchase of the new portfolio (Hf |, H, ;)

There is no ambiguity concerning the meaning of the portfolio value V;, since this number repre-
sents both the sales value of the old portfolio and the purchase price of the new portfolio, and both
must coincide for a self-financing portfolio. [J

7.3 The Binomial Asset Model

A very simple financial market model is the binomial model. It is characterized as follows.

*2if you prefer, Euro or Chinese Yuan or Rubel or ...
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Assumption 7.2 (Binomial Asset Model). Trading only happens at times ¢ = 0,1,2,... in this
model. Thus it is a discrete time financial market in the sense of Definition 7.1 (Financial Market)
on p.127. There are only two assets.

(1) /P is a bond/bank account. We denote its money market account price at time ¢ by B;.

Interest is compounded only at the trading times ¢ = 1,1, 2, ... (no interest is due yet at start
time zero), and the interest rate R is fixed and deterministic. Thus

(7.11) By = (14 R)By, ..., By = (1 4+ R)Bn1 = (1 + R)"By.

(2) &% is a stock. We denote its price process by S;.

(3) S; remains unchanged between trading times. At the next such time it will either go up by
a factor u with a probability p,, or it will do down by a factor d with a probability pg. Thus
the dynamics for S; are

(7.12) S, =S, 17, = u-Sp-1, w‘1th probab.ﬂ.lty Py >0,
d - Sp—1, with probability p; > 0,
(7.13) Here P L with probability p, > 0,
' " d, with probability pg > 0.

is a sequence of independent, identically distributed binomial random variables with suc-
cess probability p,,. 3

(4) We assume that By = 1 and Sj has the deterministic value Sy = s.

(5) We assume that trading ends at time 7" (an integer). The meaning of 7" will often be the time
of expiry of a contingent claim. [J

Remark 7.9 (Portfolio Strategy for the binomial model).
According to Definition 7.3 (Portfolio Strategy) on p.129
a portfolio strategy for the binomial asset model is a process

(7.14) Hy(w) = (HP (W), H (W), t=1,2,...,T

which denotes the holdings HP in &7 and H} in & of an investor during the interval [t — 1,1].
Negative values indicate that this quantity is not owned but owed.

Its portfolio value is

.15 Vil = HPBy + HfS),
' Vtﬁ = HPB, + HtSSt if t > 0, at time of sale. [J

Note that, according to Definition 7.3(3), ﬁo is defined by ﬁo —H 1.

We next specify the budget equation that must be satisfied by a self-financing portfolio. See Defini-
tion 7.7 (Budget Equation) on p.133.

»You may assume that the Z, are an i.i.d. sequence. [5] Bjérk, Thomas: Arbitrage Theory in Continuous Time works
under that restrictive assumption.
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Proposition 7.1 (Budget equation in the binomial asset model). A portfolio strategy
Hyw) = (HP(w),H (w)), t=1,2,...,T

for the binomial asset model is selffinancing if and only if the following condition holds.

Budget equation:

(7.16) HEQ+R)! + H’S, =HE ,(1+R)! + HS, S, (t=1,...,T—1).

PROOF: HP “bank shares” is the amount of money one would have had to deposit at time 0 to
obtain, due to compound interest, the bank account balance H?B; 1 = H(1 + R)!~! that belongs
to the new portfolio H; purchased at time ¢ — 1.

This money in the bank increases during the interval [t — 1,¢] by a factor 1 + R to H?(1 + R)!. In
other words, the bank account portion of H; has become HP(1 + R) at time ¢.

Clearly, the value of the stock shares was Hf S¢—1 at time ¢ — 1 and has changed to H, tS S; at time t.
Thus the sales value of H; is Vtﬁ = HP(1+R)* + HSS,.

We use that money to purchase (still at time t) the new portfolio Hy, ;. Its bank account portion is
worth HE | B, = HE | (1+ R)!, the Hy,, shares of stock are worth H?, ; S, thus the value of the new
portfoliois HZ | (1 + R)! + H 1 S:.

The budget equation states that this amount must equal the sales value of the old portfolio. Hence,

Vtﬁ = HP(1+R)' + H’S, = HL,(1+R)' + H,S; |

One of the key properties of the binomial asset model will be that, if it does not admit arbitrage, one
can replace the probabilities p,, and p; which were introduced in Assumption 7.2(3) made about the
binomial asset model (p.137), with different probabilities ¢, and gg. Those two numbers then define
a probability Q on §° = 0{Sp, S1, ...} which is equivalent to P and makes discounted stock price
(14+ R)™"S,, a Q—martingale. We collect here some material which will help establish that fact.

Proposition 7.2. If (2, §, P) is a probability space and Ay, ..., A, € §(n € N) then

P(AnN Ay 1N--NA) =P(Ay | Apr N NA) P(Ap_y | Ap_g-- N Ap) -

(7.17) .- P(A3 | Ay A1) P(As | A1) P(AY).

PROOF:
Repeated use of P(UNV) =P(U |V)P(V)withU = Ajand V = A;_; N---N A, yields

P(Ap M A M-+ Ay)
:P(An\An_lﬂ---ﬁAl)P(An_lﬁ---ﬂAl)
:P(An|An_1ﬁ---ﬂA1)P(An_1 |An_g"'ﬁAl)P(An_Q"'ﬂAl)

:P(An|An,1ﬂ---ﬁA1>P(An,1 |An,2ﬂAl)P(A3|A20A1)P(A2|A1)P(A1).
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Proposition 7.3. Let the process X = (Xj),_,, follow a binomial tree model, iec., there exist

=0,1,
o, U, d, Ty, Tq € R such that u < d and
(7.18) Xo = x¢9 = const,
(7.19) Ty >0, mg >0, m, + mq = 1,

(7.20) either X,,11 = Xy,u with probability 7, (“upward move”),
' or Xpy1 = Xpd with probability g (“downward move”) .

Then m,, and 4 determine a probability P on the measurable space (?,0{Xo, X1,...}). This probability is
characterized as follows. Assume that the path

11 = X1 (w), 22 = Xo(w), ..., 2p = Xp(w)

consists of k upward moves x;1 = xju and of n — k upward moves x4 = x;d. Then

(7.21) P{Xo=a0, X1 =21,...,Xpn =2} =777,
(7.22) P{X, = moufd" ¥} = (Z) nkank.

In particular, the number of upward moves of X,, has a binom(n; m,,) distribution.

PROOF: | %

The process X has been constructed in such a fashion that X, will be one of z uw/ d"7 where j =
0,1,...,n. X, 41 only depends on X,, and not on the prior values Xy, ..., X,_1, thus

(7.23) PXpt1=a | o(Xy,...,X,)) = PXps1=0a | X1,....Xp) = P(Xps1=0a | X,)
for any number a. It follows from (7.20) that

m, ifr, = zn_1u,

(7.24) P{X,=z, | Xp-1=2p-1} =7y ifx, =x,_1d,
0 else.

Let zg, ..., z, such that

(725) T; = uxrj—1 Or x; = dﬂ?j_l (]: 1,2,...,n).

Then (7.23) and (7.24) yield

P{Xn = Tn ‘ Xpo1 = Tn—1,-- .,X1 = xl} = P{Xn = Tn | Xp_1= :L‘nfl}
(7.26) {wu if 2, = Tp_1u,

g ifx, = x,_1d.

The condition (7.25) is necessary for the following reason: If it is not satisfied then
P{X,_1=xp_1,..., X1 =21} =0, and the leftmost conditional probability is not defined.
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Case 1: Assume that the numbers xy, . . ., z,, satisfy the condition (7.25). We apply (7.26) to formula
(7.17) of Proposition 7.2 on p.138 with A; = {X; = z;} ( = 0,1,...,n). We obtain

P{X():l'o,Xl :xl,...,Xn :.’L‘n}

(7.27)
:P{XOZZL‘()}P{Xl = | XOZZC()} P{Xn:$n | Xn,1 :xnfl}.

If the event A describes k upward moves and thus n — k£ downward moves of the process, i.e., there
are k indices j such that v; = wx;_; and n — k indices j such that z; = wx;_1, then the above
equals, since P{Xy = x0} =1,

k_n—k
P{Xo =m0, X1 =21,..., Xp =2} = mm; .

We have derived formula (7.21) of this proposition.
Case 2: If zy, ..., z, do not satisfy (7.25) then P{Xy = 29, X1 = 21,...,X;, = 2,} = 0. Let

B = {(,;UO’,,,’:L‘n)2P{X0:$0,---7Xn:xn}:0}'

By construction, each X} can only take one of the k + 1 values zou’ d*=J where j =0,1,...,k. Thus
the size of B is finite, thus

P{(Xo,...,Xn) € B} = Y [P{Xo=20,...,Xn=2n} : (z0,...,2n) EB] = > 0 =0

Both cases together show that the finite distributions of the process X are determined by formula
(7.21) and thus by 7, and 7.

The proof of (7.22) is obtained as follows. Observe that, for any 0 < j < n,
X,(w) = mou! d*7 <  there were j upward moves and n — j downward moves,

and that there as many combinations of k£ upward moves and n — k downward moves as there are
ways to select k items from n items. According to (7.21) each one of those combinations occurs with
the same probability 7%7~*. Tt follows that

P{X, = o/ d"7} = <Z>7T57Tg_k. [

Corollary 7.1. In the settings of Proposition 7.3 we assume that ®(x) is a function which is defined for all

values x which can be assumed by X,,, i.e., for x € {zouFd"* .k =0,1,...,n}. Then
(7.28) E@(X,)] = (Z) TRk (zoubdnF).

k=0
PROOF:

We have seen in Proposition 7.3 that the number of upward moves of X,, follows a binom(n; )
distribution, i.e.,

(7.29) P{X, = zou*d" %} = <Z> Tk (k=0,1,...,n).
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For X,,(w) = zou*d"~* we obtain
(Xp(w)) = @(voutd"*) = (k).

It follows for the expected value of X that

E@(X,)] = 3 () P{X, = o}

=Y B(zoufd”*) P{X,, = wou"d"*}

k=0
n B n -
(see (7.29)) = kz:oé(a:oukd" k) <k>w57r ko

It will be almost immediate from the next proposition that if M; = D.S; (S; = stock price) then M,
is a §¥—martingale under risk-neutral probability.

Proposition 7.4. Let the process X and the probability measure P constructed on (Q, o0{Xo, X1,...}) beas
defined in Proposition 7.3 (see p.139). We write Ep for the expectation with respect to that probability and,
as usual, FX = o{Xo, X1,...,Xn}. Then

(7.30) Ep[Xnt1 | 3] = (umy + d7a) X, .

PROOF:
According to formula (5.6) on p.100:

Xe(w) = ZE(X | Gj) - 1g;(w),

applied to & := o{ X, : j < n}. & is generated by the sets {X;| = z1, Xo = x2,...,X,, = 2,}. Such a
set has probability zero unless x; = z;_juor x; = zj_i1dforeach j = 1,2,...,n.

Since conditional expectations are determined only up to a set of probability zero, (7.30) is valid if
we can prove the following. Let

A = {Xl =x1,Xo=292,..., X, = ﬂjn} such that P(A) >0, i.e.,

Tj; =xj—1u Or r; = .Tj_ld forallj:1,2,...,n.
Then
(A) Ep[Xni1 | 4] = (umy + dmg) Xp(w) forall we A.

To prove (A) we observe that
Ep[Xup1 | Al = Y o P{Xpa1 =2 | A}

= (zpu) P{Xp1 = zpu | A} + (2pd)P{Xp41 = zpd | A}
= (zpu)P{Xnt1 = zpu | Xp =xp,..., X1 =21}
+ (2pd)P{Xpt1 = zpd | Xpy = 2py ..., X1 =21}
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It follows from the definition of 7, and 7 that

P{XnJrl :xnu|Xn:$n,...,X1:gj1}:7ru’

thus Ep[X,i1 | A] = (zpu)my + (2pd)mg = xp(umy + dmg) .
Since A C {X,, = z,,}, we have X,,(w) = z,, and thus Ep[X,,1+1 | 4] = (um, + d7mg)Xn(w) for all
w € A. This proves (A) and, hence, (7.30). R

Remark 7.10. Except for item (1), this remark will be about stock price S; and discounted stock
price D;S; rather than about a general binomial tree X;.

(1) If zp > 0 and d > 0 (hence, u > 0), then X,,(w) > 0 for all n and all w.

(2) Stock price S, follows a binomial tree model for which the above proposition applies if we
restrict the events of Q to §° = o{Sp, S1, ... }. This is true for the real world probabilities p,, pg of
upward and downward moves which thus define a probability P on (£, §°) via

P{Spt1 =aul| S, =a} = p,, P{Sp+1=ad| S, =a} :=pq.

Note though that (7.19) explicitly requires that both p,, > 0 and p; > 0.

(3) Discounted stock price M,, := D,,S,,, where D,, = (1 + R)™", also follows a binomial tree model
under the real world probabilities p,, and p,. To see this we write

u ifSpp1(w) = Sp(w)u,
d ifSpyi1(w) = Sp(w)d.

Then

M,u" with probability p, ,

M =Dp11S = D1D,SZ, = M,(D1Z,) =
(s e Hmendn n(D1Z) {Mnd’ with probability p, .

Thus we have the following: If we replace S,, with M,, v with «/, d with d’ and keep By, py,pa
unchanged, then the new system satisfies formula (7.12) on p.137. Thus we have again a binomial
asset model.

(4) We claim that " = F°. The proof is as follows. § is generated by the events
{So =50, S1=51,...,5, =sn} where sp = usy_1 or s = dsx_1 (k=1,2,...,n).

See the proof of Proposition 7.3 above. Since there is some 0 < j < k such that s, = spu/d*~7 (the
case where s, represents j upward moves and k£ — j downward moves) foreach k£ =1,2,...,n,and
that is the case if and only if

My(w) = so(w)!(d)F7 = Dysou!d*™ = Dysy,
it follows that
{So =50, S1 =51, ..., S0 = s} ={My =59, My = D151, ..., M, = Dypsy},

and thus that §¥ = §°.
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(5) All that was discussed in (2) and (3) remains in force if we replace the real world probabilities p,,
and p, with the risk neutral probabilities ¢, and g4. as long as both ¢, > 0 and g4 > 0, i.e.,

d <1+ R < u.
Note that the resulting probability @ on (2, §°) is equivalent to P since
P{Sy =50, S1=51,...,5, =58} >0
< P{Syo=s0, 51 =51,...,5, =sp} = pﬁpgfk forsome k=1,2,...,n

< Q{So=s50,51=51,...,5, = 8sn} = quqg_k forsome k=1,2,...,n. O

We now return to examining the properties of a general binomial tree.

Theorem 7.2. With the same definitions as before we have the following.

Let the process M be defined as

1
M, = ——X,,.
" (umy + dmg) ="

Then M is both an §;* —martingale and an FM-martingale)

PROOF: Let « := um, + dmyg. Then M,, = Q%Xn and X,, = a"M,. Deterministic expressions can
be moved in and out of conditional expectations. Further, according to Proposition 7.4 on p.141,
Ep[Xni1 | §2X] = aX,. Thus

Ep[Mpi1 | 32(] = a_(nH)EP[Xn—irl | 35] = a_("+1)(aXn) = o "X, = M,.

It follows that M is an §X-martingale. We have seen in Remark 7.10 that ¥ = §X. Thus M also is
an FM-martingale.

|
Considering that the stock price joint probabilities are given by
P{Sy =ag, 51 =51,...,8, = s$p} = pﬁpg_k in the real world,
Q{So = ap, 51 =81,...,5, = spn} = quqg_k in the risk-neutral world,

and the number of upward moves of stock price at time 7" follow a binomial distribution in both
worlds (see (7.21) and (7.22) on p.139 and Remark 7.10(2) on p.142), it should not come as a surprise
that the options price process Il (&X) for a simple claim X', and thus also the identical portfolio value
process V; for a replicating portfolio H;, have a close connection with the binomial distribution.

Corollary 7.2 (Expectation of a simple claim in the binomial tree model). Let 7, and m 4 be the risk—
neutral probabilities for up and down moves of stock price. Then the expected value of a simple claim X =
@(ST) is

(T

PROOQOF:
This follows from Corollary 7.1 on p.140. W
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7.3.1 The One Period Model

In the one period model there are only two times ¢ = 0 and t = 1. A portfolio H, = (HP, HY) is
purchased at ¢t = 0. 3*

We follow the notation of [5] Bjork, Thomas: Arbitrage Theory in Continuous Time and write
x = HP, y = H f .

According to assumption 7.2, parts (4) and (3), the value process is
e Vo=2-By+y-So=x+y-s
o Vi =2x(R+1)+ ysZ.

Proposition 7.5. The model above is free of arbitrage if and only if the following conditions hold:

(7.32) d <(1+R) < u

Informal PROOF that if (7.32) does not hold then there will be arbitrage portfolios:

First case — We assume u > d = 1 + R: We borrow money from the bank and invest it in the stock,
with a return at least as high as the interest we must pay on our loan. There is positive probability
pu that Z = u, and in this case we will not just break even but make a profit.

Second case — We assume d < u < 1+ R: We sell short the stock and invest the proceeds in the bank
with a return guaranteed to be high enough to buy that stock on the market and deliver it to the
buyer. There is positive probability pg that Z = d, and in this case we will not just break even but
make a profit.

The proof of the reverse direction is left as exercise 7.1. See p.161. W

We focus on the stock price process S = (Sp, S1) and the discounted stock price D; S;. Since Sy = s
= const, o(Sp) = {0, Q}. Let A := {S; = su}. Since either S; = su or S; = sd, we obtain

AV = {Si=sd}, o(S) = {0,Q,4,4%, (S, S1) = (1) = {0,2,4, A%}
We thus have completely determined the filtration (§7);—0 1 generated by S as
5= {0.9, F = {0044

Let § := 0(50,51) = 3*19 , i.e., we restrict the probability space (2, §, P) to the events known by S.
Then P is completely specified by p,, as follows.

P(0) = 0, P(Q) = 1, P(4) = pu, P(A") = ps =1~ pu.
The relation d < (1 + R) < u yields a unique number ¢, such that 1 + R is the convex combination
(7.33) 1+ R =(1-qud+ quu = quu + qqd (define ¢z :== 1 — qy).
This pair of numbers, ¢, and ¢4, defines a probability measure @ on (€2, §) via

(7.34) QW) =0, Q) =1, Q(A) == qu, QA") == gz =1 — qu.

¥Recall that Hy = H; = portfolio holdings established at time ¢ = 0!
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To summarize, absence of arbitrage allows us to define a probability measure () on the information
o—-algebra o(Sy, S1) = §° = § of stock price S such that

Quu + qed = 1 + R.

It can easily be seen that () is equivalent to P. See Exercise 7.2 on p.161.

Now a reminder about the discount process. We have seen in formula (7.11) on p.137 that the
interest factor by which a hank account holding increases between times zero and n is

B, = (1+R)".

We can turn this around and see that an asset worth V,, at time n has to be discounted to ﬁ‘/’n

if one wants to determine how many units of the riskless asset &/ ” are needed at ¢ = 0 to generate
the amount V;, at time n. It follows that the discount process in the binomial model is given by

1 1
— ..., Dy = ——
1+R 77 (1+ R)"

(7.35) Dy =1, D =

This is, of course, just as it must be, since discount process D; and price of money market account
By are always reciprocal to each other.

Proposition 7.6. The measure Q defined by q, (and qq = 1 — q,,) of formula (7.33) on Y satisfies

(a) The present stock price is obtained from its price in the future by discounting that one
and taking its expectation with respect to the measure Q:

1
(7.36) So=17g F [S1],

(b)  The discounted stock price M,, = Dy, Sp,,n = 0,1, isan SS—martingale.

PROOQF: Since . )
D, = = )
1+ R)"  (ugu + dga)"

we obtain (b) from Theorem 7.2 on p.143 by setting

For the proof of (7.36) we proceed as follows. For n = 0,1, let M,, := S,,/(1 + R)".
Since Sy = s = const, E¥[Sy] = Sp. Since M, is a Q-martingale, E®[M;] = E?[M;]. Thus

1 1
— Q _ Q _ Q — Q _ Q

We give some definitions in the sequel which will be restated later in a more general context.
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Definition 7.11 (Martingale Measure). We call a probability measure () for which discounted stock
price D;S; is a martingale, a martingale measure. We also call ) a risk-neutral measure, since,
the equation

EQ [Dt+hSt+h ’ 375] = DS for h > 0,

has the following interpretation: On average, when we account for the riskless (“risk-neutral”)
growth by discounting S;;, to t = 0, this discounted value must equal the (known) present value
S; of the asset if we also discount that one to¢t = 0. O

We now compute the probabilities ¢, and g which determine the martingale measure Q.

Proposition 7.7. The martingale probabilities g, and qq of formula (7.33) on p.144 can be explicitly com-
puted as

14R)—d w—(1+R
(7.37) o = AtR—d o u-(+R)
u—d u—d

PROOQOF: Trivial. R

Remark 7.11 (Contingent Claim). Since the expiration time is 7" = 1, a contingent claim (Definition
7.9 on p.134) in the one period model is a §;-measurable random variable X (w). Note that

3 = 0(S0,51) = o(S1), since Sy = s = const.
Thus, by Doob’s factorization lemma, there is a function z — ®(z) of stock price = such that
X =00S5.

In other words, any contingent claim in the one period binomial model possesses a contract function
® and thus is a simple claim. In a more general setting it will not always be true that all contingent
claims are simple. [J

To find an answer to the question how, in the one period model, a derivative X" expiring at time
t = 1 should be priced today, we work with replicating portfolios. In the general case a portfolio
was the entire collection (process) H = H; since assets can be traded at any time ¢. In the discrete
caset =tg <t <ty < --- < T trades only happen at times t;_;, and those holdings

H, = (H),H.,.. . H)

remain constant until ¢;. In the discrete case ¢t =ty <t < t2 <--- <t,, =T, there is no more trade
at expiration time ¢,,, = 7. Thus things are very simple in the one period model.

e Since T = 1, the only trade that influences V! takes place at ¢t = 0.
e There are only two assets, the bond (risk free asset) with prices B; = By, B; (where By = 1),
and the stock (risky asset) Sy = Sp, 5.

Our entire portfolio strategy can be described by two numbers Hy = (z, y) which are deterministic
since this portfolio is established at ¢ = 0, and we know today what our holdings are today.

We recall our assumption that the market is efficient and that there is no arbitrage.

The next proposition shows us how to build a hedging portfolio for an arbitrary contract function.
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Proposition 7.8. Let the one period binomial model be free of arbitrage, i.e., d < 1+ R < u. Let X be an
arbitrary claim with contract function 9, i.e.,

X = do 51
Then this contract is hedged by the following portfolio Hy = (HE, HY):

0B — 1 u®(sd) — dP(su)
(738) ' 1+R u—d ’
' s — 1 ®(su) — P(sd)
S
s u—d

Note for the above that ®(x) is a function of stock price at t = 1, i.e., ® is given by its two function values
O (sd) and (su).

PROQOF: For convenience, let
T = HF? Yy = Hig

be the portfolio which was established at ¢ = 0. Thus we claim that that the portfolio Hy = (z,y),
given by

1 u®(sd) — dP(su)

x = .
1+R u—d ’
7.
(739) 1 ®(su) — B(sd)
y = - ¥—
s u—d

is a hedge for X. Rather than doing this the mathematically elegant way and showing that this
choice of z and y will lead to the equation V/’ (w) = X (w), we proceed the opposite way.

We recall from formulas (7.11) and (7.12) on p.137 that, since Sy = const = s, and since money
market investments will increase by a factor 1 = R, the portfolio H; = (z,y) yields at timet =1 a
value

z(1+ R) + ysu, if Z; = u,

V' =214+ R) + y(sZ;) =
v o=ell+R) +ylsh) {x(l Y R) + ysd, if Z, = d.
On the other hand

O (su), if Z1 = u,

Vlh =X = ®(5)) = B(sZ)) = {@(sd) if Z, =d.

We equate the right-hand sides separately for Z; = u and Z; = d and obtain

(1+ R)x + suy = ®(su),
(14+ R)x + sdy = ®(sd).

This is a linear system of equations with determinant z(1 + R)sy - (d — u) which is not zero since
d < u. Thus there is a unique solution (x, y). It is easy to see that

1 u®(sd) — d®(su)

xr =
1+R u—d ’
(749 1 ®(su) — P(sd)
y=—————_1N
s u—d
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We have computed a replicating portfolio for an arbitrary simple contract function in a one period
binomial market which satisfies d < 1+ R < u. In other words, such a financial market is complete.
3 Thus we have the following corollary.

Corollary 7.3.

If the one period binomial model is free of arbitrage then it is complete.

PROOF: Immediate from the preceding proposition. W

Complete markets have the following benefit: We know how to correctly price an arbitrary claims
at any point in time if we know how to construct a corresponding hedge, since this price equals the
value of that hedge at the given time.

We have seen in Proposition 7.6 on p.145 that discounted stock price is a martingale with respect to
risk-neutral measure (). The next proposition states that the same is true for (arbitrage free) pricing
of contingent claims.

Proposition 7.9. In the one period binomial model, the discounted, arbitrage free, price process Dy - 11;(X)
of a contigent claim X is a Q—martingale. In particular, we have risk-neutral valuation

(7.41) IH(X) = —— - EQX].
PROOF: Let H be a hedging portfolio for X. Since trading only takes place at t = 0, H is determined
by (z,y) := Hy, ie., z = HP and y = HY. Moreover,

Mo(X) = Vi’ =21 4y-s

We use the expressions (7.40) for = and y and afterwards the expressions (7.37) for the martingale
probabilities ¢, and g4. We obtain

) = (L )+ 2= D
:H%‘(¢<8“>'qu + ®(sd) - qa) = H%EQ[@osl] = H%EQ[X]. m

7.3.2 The Multiperiod Model

After having given special attention to the one period model, we now continue with the general
binomial asset moded where expiration time 7' may be greater than one. We recall from Assumption
7.2 for the binomial model that the dynamics that govern the development of the price B; of the
riskless asset (the bond) and the price of the risky asset (the stock) S; for t = 0,1,...,T) are, for
T = 3, described by the following diagrams.

*See Definition 7.10 (Hedging/Replicating Portfolio) on p.134.
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’ Bond Price Dynamics ‘

7.1 (Figure). Stock price dynamics

Notations 7.1.

A. We look at a vertical slice of the diagram in Figure 7.1 by fixing a time ¢y and name its o + 1
nodes, starting at the bottom, 9, 0, Nig.1,- .., Ny ¢ This way, the node 9 1, is reached at t = tg
& exactly k of the ty stock price movements were upward and ¢y — k of them were downward.

Thus 9, « is the node in the to-slice of the diagram with stock price Sy, = su*d"=*.

Clearly, stock price uniquely identifies the tp—node since d < w.

Assuming that the arbitrage free prices for a given simple claim exist, we further write IT(9, ;) for
this arbitrage free price belonging to that node, i.e., associated with Sy, = su*d"~*. We will see in

Theorem 7.3 on p.152, that in an arbitrage free market every simple claim has such prices for every
node in the tree.

B. Remember for the following that H; = (HP, HY) is the portfolio resulting from the trade that
took place at time ¢ — 1, and that the bank shares H must be multiplied with the money market
account price B;_1 = (1 + R)!™! to obtain the bank account balance at that time. Throughout this
chapter on the multiperiod binomial model we write fort = 1,2,...,T

B . (1+ R)!"! = bank money at time ¢ — 1 after the trade,

:= H} = stock shares at time ¢ — 1 after the trade.

Actually, this formulation is correct only for ¢ > 1. For ¢t = 0, we should replace the phrase “at time
0 after the trade” with “after the initial setup”, since trade of an old portfolio for a new one did not
take placeatt —1=0. O

We recall from Definition 7.8 on p.133 that an arbitrage portfolio is a self-financing portfolio H with
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the properties

VHE =0, P{ViI>0} =1, P{ViI>0} >0 0O

We will see that the condition d < 1 + R < u is both necessary and sufficient for the multiperiod
binomial asset model. The proof that this condition is sufficient will be given in Theorem 7.4, but
the proof of sufficiency will be done now.

Proposition 7.10. If the multiperiod model is free of arbitrage, then it satisfies the condition

(7.42) d <(1+R) < u.

PROOF: Similar to the one period case (Proposition 7.5 on p.144).

We prove the contrapositive. We assume that 1 + R < d < word < u < 1 + R and construct an
arbitrage portfolio. We only handle the case 1 + R < d < u. The proof for d < u < 1+ R is similar.

e Att = 0we borrow z dollars from the bank and use it to buy stock. The portfolio value
is zero since what we own in stock is what we owe the bank.

e Ateach trading timet = 1,2, 3, ... we do nothing,.

e Since 1 + R = d < u, the following is true for each period: The increase in stock value is
at least as high as the interest penalty that is added to the bank loan.

e There is positive probability p, that Z; = u for one or more ¢. In such a case we will not
just break even but make a profit since v > 1 + R.

e Thus the probability is at least p,, thus strictly positive, for the following event: When
we sell the stock at time 7' the proceeds will exceed (1 + R)?'z, the amount we owe to the
bank. We have constructed an arbitrage portfolio. W

We remind the reader of Assumption 7.1 on p.134 about efficient market behavior.

e The binomial model is free of arbitrage. We thus assume that

d < (1+R) <wu O

We next adapt Definition 7.11 (Martingale Measure) on p.146 to the multiperiod model, remember-
ing from Proposition 7.6 which precedes it, that a martingale measure was characterized by making
the discounted stock price a martingale.

Definition 7.12 (Martingale Measure). We call a probability measure () that satisfies for all trading

timest =0,1,2,...,7 — 1 and for all possible values s’ of S; the relation
d = 1 BRIS,S, = 5]
1+R ’
(7.43) 1
ie., Sy = TR EQ[S,41]S,

a martingale measure or also a risk-neutral measure. [J
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Proposition 7.11. The multiperiod model (which does not admit arbitrage by assumption) possesses a unique
martingale measure (). As in the one period model it is defined by the two “martingale probabilities”

(4R —d
W
_u—(1+R)
dd = w—d

PROOF:
It follows from the definition of ¢, and ¢4 that ug, + dgq = 1 + R. Thus the discount process is

1 1
Dy = = .
YT+ R (umy +dmg)t

We conclude from Theorem 7.2 on p.143 that the process D;S; is a martingale. W

Proposition 7.12. Let Q) be a probability measure in the multiperiod model. We have the following.

(a) Q isamartingale measure < Discounted stock price DS, is a Q—martingale.
(b) In particular, D,S; is a martingale with respect to the risk—neutral probability measure Q,
defined by quu + qqd = 1+ R.

PROOF: of (a): S, is clearly Markov, since
either S;41 = uSy, or Siy1 = dS;. Thus Si41 does not depend on stock price before ¢.

It follows from the alternate characterization of the Markov property in Proposition 6.2 on p.113
that if Y is a random variable that only depends on stock price information S, S¢+1, St+2, - - ., then

EClY | §3] = E9[Y | Sy], forallt’ <t.

In particular, since Y := S; only depends on such information, it follows that

(%) ER[S; | §5] = E9[S; | Sy], forallt' <t.
. 1 D

(3%) Further, (1+ R)Dyy1 = Dy, ie., TR = 5:1 )

1 * 1

Thus, o ESu | S © o EYlSen | 8
D 1

(k% ) ‘@ %1 B9[S | 8] = - E9[Di1 S | 81l

t t

1 () 1 (7.43)
PROOF: of (a), =): m-EQ[St+1 |3 = m-EQ[St+1 EARECS
PROOF: of (a), <=): Since D; is an §—martingale for Q, EQ[DtHStH | §¢] = D¢Sy.
Thus, —— - E9S1 | S =) % . BQDi1Sin |81 = — - DiSi = S
- t+1 | Ot D, t+19t+1 | St D, P t -

PROOF: of (b): This follows from (a) and Proposition 7.11. W
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Proposition 7.13.

In the multiperiod model, assume that
(a) Q is a martingale measure,
(b) H, = (HP, HY) is a self~financing portfolio.
Then discounted portfolio value DV, is a F7—martingale with respect to Q.

PROOF: H, is self—financing, thus we have the budget equation

(A) Vi=x(14+ R) + ytSt = Tes1 + Y415t -

We also know that discounted stock price is a martingale, thus
(1+R)™ - E°Siy1 | &) = St

We recall that 2,1 and y,;1 were established during the trade at time ¢ and thus are §;—measurable.
We write as usual D; = (1 + R)~! and obtain

E?[D1Vig1 | §i] = E? D11 (1 + R) + Digry1See1 | il
= F9 (@1 | Be) + E@ [Yi+1D1S141 | i
(B) =201 + Y1 - B9 [D1Si1 | S
©) =x¢41 + Y1 - St = Vi
Here we obtained (B) by moving the §;—measurable variables z;;1 and z:11 out of the conditional

expectation. The first equation of (C) follows from the fact that D;S; is a Q—martingale, and the
second equation of (C) follows from the budget equation (A). Thus

E? Dy Vigr | §i) = DiE9[DiViet | &) = DV B

In the one period model absence of arbitrage was sufficient to yield completeness of the market, i.e.,
every claim can be hedged. In the multiperiod model we can still show that every simple claim, i.e.,
a claim for which the payoff X is a function ®(S7) of stock price at time 7', can be hedged.

Theorem 7.3. Let X be a simple claim with expiration date T and contract function ®(z),
ie., X = ®(Sr). Let I1;(X) denote the arbitrage free price of that option at timet < T.

(1) The discounted option price #Ht X) is a Q-F°—martingale.
p p (1 + R)t t 8!

(2) The option price is computed at time 0 < ¢t < T for a stock price of Si(w) = su
attained by k upward moves and t — k downward moves, as

kdt—k,

1

(7.44) I, (X) = TR

EC[®(Sr) | S = suFd~F].
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(3) X can be hedged. The portfolio quantities HE , and Hp, | are HE | = (1+ R) 'z41
and H£g+1 = Y41, where x441, Y41 for the node Ny i, (remember: H; = purchases at time
t — 1!) in the tree excerpt shown below are as follows.

St U
II(M
Zep1 = 7 1 = UH(mt+1,k) - d;l(mtJrl,kJrl) ’ N / (Meg1,k11)
o O s) (1) )
1 O(Mga 1) — (Mg ke (N,
Y1 =3 - : \d* —
IT(Mes1,k)
PROQF: (outline): * For the following all indices, including ¢,7,7", ..., are assumed to

be trading times in the binomial model, hence non—negative integers. Also recall the notation we
introduced for the nodes of the binomial tree displayed in Figure 7.1 (Stock price dynamics) on
p-149. Fix a time 0 < ¢t < T and assume that the arbitrage free claim price are known for all nodes
at time ¢ + 1. We can consider those prices as the contract function ®*+1) of a new contingent claim

X)) = CI)(Hl)(s'), where § = sd'!, sud, su®dY, ..., sutd, sultt

runs through the stock prices that can be attained at time ¢ + 1.

Fix 0 £ k < t and consider the node 91, ;, in the tree. That node was reached by a combination of k
upward movements and ¢ — k downward movements in stock price. The two nodes at time ¢ + 1
that can be reached from 91; ;, by either an upward move or a downward move in stock price are
Nit1 k+1 and MNyyq . In particular, if t = T — 1, we obtain Xt = x and <I>(t+1)(s’) = ®(s) for

each s’ = sd’, sud’=1,... su”.

. _ . k+1 yt—k
We now condition on S; = sufd*—*. Since such

conditioning makes stock price constant at ¢,
we can apply our findings from the one period
model to the tree which consists of the nodes
mt,kv snt+1,k+1 and mt—l—l,k-

With the symbols introduced in Notations 7.1 on p.149 we have
H(mtJrl,k‘Jrl) _ (I)(tJrl) (SukJrldtfk)’ and H(mt+1,k) — (I)(tJrl) (sukdtf]ﬁ%l).

We apply the risk—neutral valuation formula (7.41) of Proposition 7.9 on p.148 to this one—period
tree with the new contract function ®(+1), We must adjust the notation as follows:

Times 0 and 1 in Prop.7.9 correspond to times ¢ and ¢ + 1 here.
Stockprice Sy = s in Prop.7.9 corresponds to S; = su*d'~*.
Stockprices S1 = su and 51 = sd in Prop.7.9 correspond to Si11 = suktlqt—Fk
and S = suPdt=F-1,
e Option values IIy(X) at time 0 and X at time 1 in Prop.7.9 correspond to IT(9M; ;) at time ¢,
and to II1(Myy1 p1) = TV (sufH1d =) and IT(Myyq 1) = EHD (subd~F~1) at time ¢ + 1.
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Thus we obtain the arbitrage free price of A" for the node M, ;, which we denote by H(mt7k), as

H(‘ﬁt’k) = 1_’%}% . EQ[X(’H—l)]
(7.46) = 1iR(q“ @D (R gtky g (I)(t+1)(5ukdt—k+1)>
1
= m(qu (Mg 1) + qa - TT(Mran)).

Since EQ[X (V)] is just a real number, IT; (') (w) is constant for all w such that S;(w) belongs to M, 1,
i.e., for all w such that S;(w) = su*d*~*. In other words, H(‘J‘(M) is a function of stock price at time
t. Thus there is a function ®*)(z) of z > 0 such that

(M) = U(Sy).

We have managed to express the arbitrage free option price at ¢ as a simple contract at time ¢.

The above procedure tells us how to recursively compute today’s (t = 0) arbitrage free option price
Iy (X) from the contract values ®(x) at time 7"

We compute &7~ (z) from &) (z) = &(x), then 72 (z) from &1 (z), ...., then &) (z) from
®®?)(z), then ®©)(z) from ®(1)(z). We now obtain from those contract functions ®(t)(z) the corre-
sponding options prices IT;(X) = ®()(S,), in particular, ITy(X).

Working our way backward in time also is how we find the arbitrage free option price at time zero
from its contract values at expiration time in practice. See Example 7.2 which follows this proof.
But a correct proof is done best by using strong induction in the forward direction.

This proof is very complicated and omitted. Be sure to carefully study instead Example 7.2 on
p-154 which follows the “proof” given above. It shows you how to apply this theorem in practical
computations! W

In the following we will draw trees which look like

the one to the right. (We did so already in the proof

of Theorem 7.3.) The nodes have an upper half

which denotes stock price and a lower half which x3 = —80,ys /
denotes the arbitrage free price of a claim. If there 180

is a label above such a node then it denotes the 100

quantities x; and y; of the corresponding replicat- \‘
ing portfolio that correspond to that node. Note

that v = 1.5 and d = 0.5 since the stock price of

180 increases to 270 and decreases to 90.

270
190

90
10

The following example is taken from chapter 2 of [5] Bjork, Thomas: Arbitrage Theory in Continu-
ous Time.
Example 7.2. Weset T =3, s := Sy = 80,u = 1.5,d = 0.5,p, = 0.6, pg = 0.4 and R = 0.

These numbers have been chosen to make computations as simple as possible. Since there is no
interest, 1 = 1 + R is the midpoint between v = 1.5 and d = 0.5, thus ¢, = g4 = 0.5.

Figure 7.1 shows the binomial tree for this example. There are no values in the lower halfs of the
nodes for the claims prices since we did not yet decide on a claim).
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d=05u=15

270
u
180
/ \
120 d 90
u u
80 d 60
u
d 40 d 30
\ /
d 20
d 10

Figure 7.1: Stock prices.

The claim we want to price is a European call with a strike price of K = $80.00, with an expiration
date of T' = 3.

This is a simple clain X = ®(S7) with contract function ®(s) = (s — 80)" = max(s — 80,0). We
immediately compute II3(X) for the stock prices S as follows.
®(270) = (270 — 80)T = 190; ®(90) = (90 —80)" = 10,
®(30) =(30—80)" = 0, ®(10) = (10— 80)" = 0,

Figure 7.2 shows the updated tree.

d=05,u= 1.5\ 270

190
/
120

80 d 60

180

90
10

30

oe

10
0

Figure 7.2: Stock prices and contract function values.

We know from formula (7.46) on p.154 how to compute a claims price from those of the two child
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nodes to the right. With the notations introduced in Notations 7.1 on p.149,

1

N =175

(qu - T(Mig1p41) + qa - T(Oyg1p)).
For example, for node M3 2 we obtain Sy = 180, II(N33) = 190, II(N3 2) = 10. Thus

II(Ng2) = 1Jlro(o.5-190) + 0.5-10) = 100.

Likewise, for node My ; we obtain S = 60, II(N3 ) = 10, II(N3 ;1) = 0. Thus

II(MN2,1) = 1i0(0‘5 +10) + 0.5-0) = 5.

We just computed the two options prices for the descendants of node 91; ;, the one with stock
price S; = 120. Its associated price for the European call is

II(M,) = L(o.5 -100) + 0.5-0.5) = 52.5.

1+0
270
d=05u=15 / 190
180
120 d 90
80 d 60
/ 5 \
d 0 d 30
/ L
d 20
\ o
0

Figure 7.3: Stock prices and contract function values.

Figure 7.3 shows the tree with those additional values.
We compute the arbitrage free option prices for the remaining three nodes in this order:

II(N2,0), IL(M10), I(Noyp).

The completed tree is shown in Figure 7.4.

The result of all the above: We have managed to compute the arbitrage free prices of the simple
claim with contract function X = ®(S3) = (S3 — K)™ for all possible stock prices S;, t = 0,1,2,3. In
particular we found that the correct price for the option at time zero is 27.5.
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d=05u=1.5

180
100

120

/ A
80
d 40

2.5

60

Kk
Y

20

270
190

90
10

30

10
0

Figure 7.4: Completed tree with all option prices.

We are not finished yet. Next we compute the quantities x; and y; of the replication portfolio for

this claim.

We start at t = 0, and since we want to reproduce the claim
(52.5,2.5) at t = 1, we can use formulas (7.45) of Theorem 7.3 on
p-152 and obtain zy = —22.5,y; = 2 since

_ 1 1525-05525 _ 35-1105 _ 90 _

T1 = 150 1.5-0.5 = 4 = —7 = —225,
_ 1 ®w)-®d) _ 1 525-25 _ 50 _ 5

Y1 =5 u—d = 8 1505 _ 8 _ 8

You are encouraged to verify that the cost of this portfolio is indeed 27.5.

If an upward move takes place and S; = 120 then the value of
our hedging portfolio at time 1 is computed from
zy=-225andy; = 3as—225-(1+0)+ 3120 = 52.5.

To reproduce the claim claim (100, 5) at t = 2 we again use the
formulas (7.45) and obtain zo = —42.5,y9 = %.

Again you should check that the cost of those holdings, valued

at a stock price of S; = 120,
equals the value 52.5 of the previous holdings x; and y;.

If instead of an upward move a downward move had taken
place and S; = 40 then the value of our hedging portfolio at
time 1 is computed from the same holdings

z1=-225andy; = 3 as —225- (1+0)+ 3-40 = 2.5.

To reproduce the claim claim (100, 5) at t = 2 we again use the
formulas (7.45) and obtain zo = —2.5,y2 = 1.8.

Again you should check that the cost of those holdings, valued

at a stock price of S; = 120,
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x1 = —22.5,y; =5/8 E25
80
27.5
\ 40
2.5
180
xg = —42.5,y2 = 95/120 100
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52.5
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5
[60]
xg2 = —2.5,y2 =1/8 5 |
40 o
2.5
\AE
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equals the value 52.5 of the holdings z; and y; established at time zero.

We can continue in this manner with the nodes at time ¢t = 2 and afterwards at expiration time 7' = 3
and in this way compute the hedging portfolio holdings at each node of the tree. The resulting tree
is shown in figure 7.5.

270
Hedging Portfolio 190
x3 = —80,y3 =1
180
xg = —42.5,y2 =95/120 U 100
120 90

x1 = 22.5,“%Y 52.5 x3 =—5,y3 =1/6 b =
0 60
27.5 \:z-syyg =1/8 u >
d 40

A
Ak

30

2.5 \ 0.y5 = 0 0
d 20
0

10

0

Figure 7.5: Hedging portfolio holdings.

This concludes the example. [

Remark 7.12. The following is a cookbook recipe for computing the prices of a simple claim using
the risk-neutral validation method.

Step 1: Compute the martingale probabilities!
Note that the martingale probabilities g,, g; are constant for the entire tree since they only
depend on u, d, and R. In this example they are

_ (I+R)—-d 5 -
- u — d N =

)

1
2

1
1 @ =1—-q =
2

Step 2: Use the risk—neutral valuation formula from the one—period model to compute for
each of the three ¢ = 2 nodes in the tree its option price II(2; X') from the option prices
I1(3; X) of the two ¢ = 3 nodes that can be reached from this ¢ = 2 node. We then compute

II(2;x) = 1—1—;1% qu - 11(3; X') of upward node + g4 - I1(3; X) of downwardnode].
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This method can be employed for any binomial tree, for arbitrarily many periods.

Step t-1: Let N be a ¢t — 1 node in the binomial tree. We denote the reachable node to the
upper left by N, and the reachable node to the lower left by N ;. We write IT;_; (N) for the
option price of node N and we write II;(N,) and II;(N4) for the option prices of N,, and
N,.

If I1;(N,,) and II;(N4) have already been computed then we use the risk-neutral valuation
formula from the one—period model to compute IT;_; (IN):

1

Ht—l(N) = 1+—R Qu -

,(N,) + qq- (N )]. O

We mention again that this entire chapter 7 (Financial Models - Part 1) closely follows the book [5]
Bjork, Thomas: Arbitrage Theory in Continuous Time.

Notations 7.2. We will write
V(Our) (0StST),

for the value process of the replicating portfolio strategy, determined in Theorem 7.3 on p.152 by
the formulas (7.45), when computed for the node 1, ;, of the binomial tree. [

Proposition 7.14. Given are a simple claim X = ®(Sr), its associated pricing process I1,(X), and its
hedging portfolio H, with value process V. If we replace the symbols I1,(X) and V,; with their tree node
equivalents, IL(MNy ) and V (N 1,), we have the following.

The replicating portfolio is determined by the recursive formulas

1
V(M) = ﬁ(quv(mt+l’k+l) + qaV (Mis1.k)),

V(Nry) = o(sufdF).

(7.47)

Here q,, and qq are the martingale probabilities from Proposition 7.11 on p.151, given by

(1+R)—d u—(l—i—R)‘

7.48 Y = ’ _
(7.48) q T d qd —

Further, the hedging portfolio quantities x4 1, Y1 for the node M ;. are

oy 1 uV (MNeg1k) — AV (Mis1,641)
LTI YR u—d ’
_ 1 V(Mgahr1) = V(Mg )

t+1 — —
Yt+ A u—d )

and the arbitrage free option prices are given by T1(Nyx) = V (My i), for all trading times 0 < ¢ < T and
number of upward moves 0 < k < t. In particular, the arbitrage free price of the claim at t = 0 is given
by V(Mo,o) = z1 + y15.
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PROOF: This is just a rehash of Proposition 7.11 and Theorem 7.3 together with the pricing princi-
ple, Theorem 7.1 on p.134, which states that

V(M) = (M) forall nodes My in the binomial tree. M

Considering that stock price S; develops according to an i.i.d. sequence of Bernoulli variables Z;
(with success probability p,, under the “real world” measure P and success probability ¢, under the
risk-neutral measure (martingale measure) ) it should not come as a surprise that the options price
process II7(X) for a simple claim X, and thus also the identical portfolio value process V,! for a
replicating portfolio Hy, have a close connection with the binomial distribution.

Proposition 7.15 (Arbitrage free price at time zero). The arbitrage free price at t = 0 of a simple claim X

at time T is
1
7.4 T (X) = .EQlx
( 9) 0( ) (1 + R)T [ ]7
where () denotes the martingale measure. Further,
1 " /r
(7.50) Io(X) = A+ R Z (k>q5q§"“¢(sude’“)~
k=0

PROOF:  According to Theorem 7.3 on p.152, discounted option price (1 + R) I (X) is a Q-
martingale and thus has constant expectations in ¢. Hence, since II7(X) = X,

1

1
WEQ[X] - E@ [( THT(X)} = EC9[y(X)].

1+ R)

This proves (7.49). Formula (7.50) is immediate from Corollary 7.2 (Expectation of a simple claim in
the binomial tree model) on p.143 W

We end this section by proving absence of arbitrage.

Theorem 7.4.

The binomial asset model is free of arbitrage < d <1+ R < u.

PROOF: We already proved the “=-" direction in Proposition 7.10 (see p.150).

For the other direction, we assume thatd < 1+ R < uand that H; isa self-financing portfolio such
that P{V{! = 0} = 1 and P{V} > 0} > 0. We now show that P{V# > 0} > 0.

It follows from Proposition 7.13 on p.152, that D;V,! is a Q-martingale for the martingale measure
Q determined by ¢, and ¢4 such that ug, +dgs =1 + R and ¢, + ¢4 = 1. We recall that P and () are
equivalent measures, i.e., the P-Null sets coincide with the -Null sets, thus P(A4) > 0 < Q(A) >0
for any event A.

It follows from P{VIH > 0} > 0 that Q{Vjﬁ > 0} > 0, hence, E¥ [Vjﬁ } > 0. Since the @—-martingale

Dy, Vtﬁ has constant expectations in ¢,
EQ il = B9 [Drvfl] > 0.
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It follows from Voﬁ = 0 Q-a.s. that Q{Voﬁ > 0} > 0. Thus P{Voﬁ > 0} > 0, hence, H is not an
arbitrage portfolio. Since H is an arbitrary self—financing portfolio such that P{V;¥ > 0} = 1 and
P{V > 0} > 0, we have shown that arbitrage portfolio do not exist. B

7.4 Exercises for Ch.7

Exercise 7.1. Prove the following part of Proposition 7.5 on p.144 of this document: If
d <(1+R) <wu O

then the one period binomial asset model is free of arbitrage.
Hint: Show that

Vi = ys(u— (1+R)),if Z=u, ys(d— (1+R)),ifZ=d,

and examine this separately for y > 0and y < 0. O

Exercise 7.2. We asserted that the probability measure () defined by (7.34) on p.144 is equivalent to
Pono(Sy,S1). Proveit. O

7.5 Addenda to Ch.7

The following belongs between Proposition 7.13 on p.152 and Theorem 7.3.

The fact that the discounted portfolio value of a self-financing portfolio is a Q—-martingale (thus, by
the pricing principle, the discounted price II;(X’) of a reachable claim X)) also is a Q—martingale),
will be employed in the next example.

Example 7.3. Consider a market which follows the multiperiod binomial model with the following
parameters.
Time of expiry is T' = 4.
The interest rate is R = 0.5 (per unit of time). That’s not very realistic, but it makes this
example computationally simple.
e We denote the “true” probability with P, and the martingale probability with (). The corre-
sponding expectations are E? and E¥. Note that nothing is said about py,, pd, qu, ¢4
e Assume that a hedge portfolio must be created for a simple claim with contract value ®(S4)

(@) If it is known today that EX[®(S,)] = $240, is Vy = $50 possible as the setup value of this
hedge?

(b) If it is known today that EQ[®(S,)] = $180, is Vi = $50 possible as the setup value of this
hedge?

We answer the questions above as follows.

(a) Given the real world probabilities, everything is possible. That’s about all that can be said with
the information at hand.
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(b) The situation is different under risk-neutral probability measure (), even if we do not know the
values of ¢, and ¢q.

Since D;V; is a Q—-martingale, the expected value is constant for all ¢, thus,

ER[D4Vy] = EQ[DoVp] = E@[Vo).

Since D; = (1 + R)~! and V} are deterministic and B; = (1 + R)™!, and V; = ®(S,) by the pricing
principle, we obtain Vy = EQ[Vy] = (1 4+ R)“*E®[V4](1 + R)*EQ[®(S,)] = 180 - 1.574,

Since 1.5% = 2.25% and 2 < 2.25 < 3, we obtain 180/9 <V, < 180/4, i.e., 20 < Vp < 45.

Thus, $50 is too big a value for the value 1}, of the hedge at time 0. [

Example 7.4. We have a financial market with one bond and one stock which follows the one period
model. We assume the interest rate is R = 0, so the bond price is By = B; = 1. We also assume that

-So =125 with probability 0.8,

50282100; 51: . .
-8y =75  with probability 0.2.

N [SVTNTE

(1) How do you price a European call at a strike price of 115 at ¢t = 0?
(2) If x = the money in the bank and y = number of shares in the stock in the hedge you establish
for this contract, what are x and y at t = 0?
This problem is solved as follows. The risk-neutral probabilities are ¢, = g4 = 3, since

3

1
2 4

1+R=1= +

5
4
Contract values are ®(su) = 125 —115 = 10 and ®(sd) = 0.

Thus, the options price at time zero is
1
o(X) = EQ[X] = qq-®(sd) + qu - P(su) = 5 10=75 =5

The quantities involved for setting up the hedge are (see Proposition 7.8 on p.147)

1 u®(sd) — d®(su) 1.25-0 — 0.75- 10

" TI1YR u—d 0.5 >
_ 1 ®(su)—P(sd) 1 10-0 _&_02
Y75 wu—d 100 05 100

Thus the hedging portfolio consists of 0.2 shares of the stock and a short position (loan) of 15 bond
units (worth $15.00 at the time of setup ¢ = 0).

For a sanity check, we validate that in fact V{1 = 5 = TIy(X), as must be true according to the
definition of a hedge for the claim.

Vi =2 +ys = —15+02-100 = 5. O
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8 One dimensional Stochastic Calculus

8.1 Riemann-Stieltjes Integrals

In stochastic finance one would like to work with “stochastic integrals” where one integrates a
process Z = Z; not simply with respect to time ¢, but rather with respect to the “density” W/ = de
of Brownian motion, i.e., we sould like to form integrals

[ i a

t1

Unfortunately, this is not possible, since the paths of IW; are nowhere differentiable almost surely.
See Theorem 6.1 on p.116. Riemann-Stieltjes integrals provide a way out of this dilemma. We will
discuss this topics briefly in this subchapter.

Remark 8.1. Let a,b € R such thata < b, let f,g : [a,b] — R be such that the derivative ¢'(t) exists
for all a < t < b. By definition of the Riemann integral as the limit of Riemann sums,

n—1

b
/ FOFOdt = Tim S Fu)g () (b — £5) (4 S uy £ty forall j),

Tl —0 <=3
where the limit is taken over partitions II = {0 = ¢y, < t; < --- < t,, = T} in such a way that
mesh ||II|| = max;(t;41 — t;) converges to zero. See Definition 6.9 (Quadratic Variation) on p.122.

Of course we must assume that this limit exists.
g(tjr1) —g(t;)

For small differences t;11 — ¢; we obtain approximately ¢'(u;) ~ T hence
J+1 7t
n—1
[ o Flus)g' (1) (11 = 1)
7=0
n—1
g(tjt1) —g(t
O BT LA LULY A
=0 J+1 J
n—1
= D J(uy) (g(tjr1) — g(t;)) -
j=0
Thus, if the right-hand limit for ||II|| = max;(t;+1 —t;) — 0 exists, it will be a generalization of
f f(t)d'(t)dt, in case that g is not differentiable. [

This leads to the next definition.

Definition 8.1 (Riemann-Stieljes Integral). Let a,b € Rsuch thata < band f, ¢ : [a,b] — R. If

b
| st = m qug (t51) ~ 9(ty))

b
exists as limit over all partitions II of the interval [a,b], then we call [ f(t)dg(t) the Riemann—

Stieltjes integral of f with respect to g over [a, b] with integrand f and integrator g. [
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b

The above definition will become the starting points for stochastic integrals f ZdW; with respect to
a

Brownian motion.

8.2 The It6 Integral for Simple Processes

This chapter is very sketchy as far as proofs are concerned since the material follows extremely closely that of
SCF2 Chapter 4.

Unless explicitly stated otherwise (92, §, §:, P) is a filtered probability space and W = W, is

a Brownian motion on 2 with respect to §;.

Often we assume a fixed expiration time 7' > 0 and W and all other stochastic processes
have index set [0, T'], but occasionally we also consider other index sets. Usually this would
be the interval [0, co[ of all times, or it would be the interval [to, 7] in which 0 < ¢ty < T
asumes the role of a start time.

The following definitions are from SCF2 ch.4.2.1.

Definition 8.2 (Simple Process). Let T' > 0 be fixed, and let II := {to, 1, ..., t, } be a partition of
[0, T]. In other words,

0=ty, < t1,< - <ty =T1T.
An adapted process Z = Z; is called a simple process if ¢ — Z;(w) is constant on each interval
[tj,tj41] almost surely. [J

Definition 8.3 (It6 Integral of a Simple Process). LetII := {to, t1, ..., t, }, where 0 = tg, < t1, <
- < t, = T be a partition of [0,7], and let Z; be a simple process on 2 which has constant

trajectories on each partitioning interval [t;,¢;41[. Let

k-1
t 3 Z(45) W (1) = Wity)) + 2V - W(e)] if0<e<T.
(8.1) / ZudW, = J‘l O
0 = .

ZO Z(t;)[W (tj+1) — W(t;)] ift =T,
J:

t
where the index k is chosen such that ¢, < t < tx1. We call [ Z,dW, the Itd integral of Z with
0
respect to W. [J
¢
Theorem 8.1 (SCF2 Theorem 4.2.1). The It6 integral [ Z,dW,, is an F—martingale.
0

PROOF: See SCF2. R

t
Because I, = [ Z,dW,, is a martingale and I(0) = 0, it follows that
0

E[;]=0forallt 20. Thus Var[l;] = E[IE]

The next theorem shows how to evaluate E[I?].
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Theorem 8.2 (SCF2 Theorem 4.2.2 - 1t6 isometry). The It0 integral defined by (8.1) on p.164 satisfies
t
(8.2) E[I}]] =E [ / ngu] :
0

PROOF: See SCF2. 1

Theorem 8.3 (SCF2 Theorem 4.2.3).

t
The quadratic variation [I,I]; up to time t of the It6 integral I, = [ Z,dW,, is
0

(8.3) 1, 1], = /O t Z2du.

PROOF: See SCF2. W

Remark 8.2. If we think of integration and differentiation as operations that cancel each other when
we look at f(f Z,dW,, as a function of the upper limit of integration then we obtain

t
(A) d / ZudW, = Z,dW,
0

t
Strictly speaking the above is the definition of the differential d [ Z,dW, in terms of the right hand
0

side. The above makes a lot of sense for Z; = 1: If we take the partition IT = {0, ¢} then Definition
8.3 (Itd Integral of a Simple Process) yields

t t
/ 1dw, = 1(W, — Wy) = W, thus applying d on both sides should give d / 1dW,, = dW;.
0 0

Formula (A) results in exactly that last equation when Z; = 1. O

t
Remark 8.3. We write the It0 integral I, = f Z,dW,, as a differential
0

t
dl; = d/ ZydWy = Zy dWs.
0

We square both sides of this equation and obtain
dl;dly = Z? dWydW;, = Z?dt.

See Remark 6.9 on p.123 for the last equation. [J
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8.3 The It6 Integral for General Processes

Definition 8.4 (L? convergence of random variables). | %

We apply Example 6.2(f) on 118 and formula (6.20) of that example to the following.

Given is a probability space (2,§, P), T > 0. Let Z and Z’ be random variables which are square
integrable, i.e., E[Z?] < oo and E[Z"?] < co. Then

(8.4) 122 = /Z?dp = VE[Z?] < ,

(8.5) d12(2,2") =|Z =212 = \JE[Z - Z') < .

Let Z(™ and Z, where n € N, be square integrable random variables. We say that the sequence Z (™
converges in L2 to Z, and we write

(86) L~ 1lim 2™ =7, if lim dp(2",2) = 0, ie, lim E[(X(”) —X)Z} — 0. 0

n—oo n—oo

Definition 8.5 (L2 convergence of stochastic processes). | %

Given is a filtered probability space (€2,§, (8¢):, P), T > 0. Let X = (Xy)p<,<r be an adapted

process. We say that X, is square integrable, if £

T
[ X2du| < <.
0

Let X, X&l),Xf,(f), 753), --- be adapted, square integrable, stochastic processes. We say that the
sequence X (n) converges in L2 to X, and we write

n—oo n—oo

T
(8.7) L’- lim X =X, if lim E [ / (Xt(”)—Xt)th] = 0. 0
0

Fact8.1. Let T > 0. Let Z,,,0 <t < T, be an adapted and square—integrable process. Then

(@) Omne can find a sequence Z(n) of simple processes, also square—integrable, such that
L?~ lim 2™ = Z (see formula (8.7)).

n—o0
(b)  There exists an adapted process ® = @, with continuous paths such that the Ito integrals

t
It(") = foL")dWiu converge in L? to @, i.e.,
0

T
(8.8) lim E [ / (I, — ®,)° du} = 0.
n—o0 0
(c) If Z'(n) is another sequence of simple and square—integrable processes such that
L2- lim 7™ = 7, and if ®, is another square—integrable process with continuous paths

¢

such that L*- lim 1™ = [ Z™aW, = &, then there exists a set of probability zero which
n—oo 0

contains the set {w € Q: (-, w) # ¥'(-,w)}.
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Remark 8.4. | % | We would not be able to ascertain in Fact 8.1(c) that the trajectories ¢ — ®(¢,w)

and ¢t — ®'(t,w) are identical, except on a set of probability zero, without assuming that those
trajectories are continuous. [J

Definition 8.6 (It0 integral for general integrands). We write

¢
(8.9) / Zy dW,,
0

for the process ®, = L~ lim f(f z™ aw,

n—oo

described in (b) of Fact 8.1, and call it the It integral of Z; with respect to W;. [

Remark 8.5. Chances are that you have overlooked the following dissimilarity between the sums

n—1
> f(u;) (9(tj+1) — g(tj)) which approximate the Riemann Stieltjes integral [ f(s)dg(s) and the
j=0

n—1
sums Y. Z(t;)[W(tj+1) — W(t;)] which approximate the It integral [ Z,dW,. In the first case we
7=0
only require for the arguments u; of the integrand that ¢; < uyj < t;41, in the second case we
specifically demand that u; = t;, i.e., the arguments of the integrand must be the left endpoints of

the partitioning intervals.

Why do we not allow the argument u; to vary In the definition of the It integral? Because doing
so would rule out even a nice, continuous process such as W; as an integrand: Let

H:{to,th...,tn}, where 0 = tg, < t1, < - < t, = T,

be a partition of [0, 7] and let

n—1 n—1
XP =Y Wy(Wey, = W), Y=Y W (W, — W)
j=0 =0

According to Definition 8.3 (Itd Integral of a Simple Process) on p.164,

T
(A) / WedW, = L*~ lim XX,
0 |[TT]| =0

If the choice of u; did not matter as long as t; < uyj < t;;1, then it should also be true that

T
(B) / WedW, = L*~ lim Y.
0 1] —0

However, these limits are fundamentally different since E[X}] = 0, and E[Y}!] = T for all partitions
11, 3¢ hence the expectation of (A) is zero and that of (B) is 7.

*You are asked to prove that E[X{'] = 0, and FE[Y;"] = t in Exercise 8.1 on p.174.
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So why then did we choose in formula (8.1) of Definition 8.2 above to pick the values Z;; which
correspond to the left bounds of the intervals [t;,#;1] rather than, say. the values Z;,,, )/ taken
at the midpoints or the values Z;, , taken at the right bounds?

There are some important technical reasons. For example Theorem 8.1 which follows this remark

asserts that the It0 integral is a martingale when viewed as a process ¢ — fg ZudWy. If uj > t; then
this theorem will generally no longer be valid.

But at least as important is the way we use It integrals when modeling financial markets.
The Brownian motion increments Wy, , — W; represent uncertainty that happens in the

future, whereas the history of the integrand Z; up to the “present” ¢; is known to us (since
it is §¢,~measurable for all times ¢ < ¢; of the past.) [

t
Theorem 8.4 (SCF2 Theorem 4.3.1 - It6 isometry). The process I := [ ZMaw, from Definition 8.6
0

satisfies the following.

a. (Continuity) As a function of the upper limit of integmtion t, the paths of I; are continuous.
b. (Adaptivity) For each t, I, is §;—measurable.
t

¢
(Linearity) If I, = [ Y, dW, and J; = [ Z,dW,,,
0 0

c.
t t
then I = J; = Oququ + g Zy AWy,
furthermore, for every constant c, cI; = ¢ ft ZydW,,.
d. (Martingale) I, is a martingale. ’
e. (Itdisometry) E[I?] = EofthLdu.

¢
f. (Quadratic variation) [1,1], = [ Z2du.
0

PROOQOF: Not given. W

8.4 The It6 Formula for Functions of Brownian Motion

Theorem 8.5 (SCF2 Theorem 4.4.1 - [t6—Doeblin formula for Brownian motion). Let f(t,z) be a func-
tion for which the partial derivatives fi(t,x), fo(t, z), and fy.(t, x) are defined and continuous, and let W,
be a Brownian motion. Then, for every T 2 0,

T T 1 T
810)  F(T,Wr) — £(0,W(0)) — /O f(t Wh)dt + /0 o W) AW, + /0 Foa (£, W,)dt.

PROQF: See SCF2 for a sketch. W
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8.5 The It6 Formula for Functions of an It6 Process

Definition 8.7 (SCF2 Definition 4.4.3 - Itd process). Let W;,t = 0, be a Brownian motion, and let
i, t = 0, be an associated filtration.

An Itd process on (€2, §, §¢, P) is a stochastic process

t t

(8.11) Xy =2 + / AydW,, + / O, du,
0 0

which we also equivalently express as

(A) dXy = AidWy + Oqdt,

Here A; and ©, are §;—adapted processes, and = € R. We call (A) the stochastic differential,
also just the dynamics, and (B) the initial condition of (8.11). Furthermore we say that (A)

and (B) express (8.11) in differential notation, and that (8.11) expresses (A) and (B) as an
integral equation. [

Remark 8.6.

(1). The phrase “.... which we also equivalently express as ....” is to be taken literally: We do
not mathematically distinguish between the integral equation (B) and the associated set
of stochastic differential (A) plus initial condition (B). They mean exactly the same thing.

(2). We bury into this footnote %" a technical remark taken literally from SCF2. [

Lemma 8.1 (SCF2 Lemma 4.4.4). The quadratic variation of the It0 process (8.11) is
t
(8.12) X, X]; = / A2 du.
0

L

PROOQOF: See SCF2 for a sketch. W

Definition 8.8 (SCF2 Definition 4.4.5). Given are an Itd process
t t
Xy = Xo + / AydW,, + / O,du,
0 0
on (Q,§, 3¢, P) and an adapted process I';,t = 0. We define 38

t t t
(8.13) / T.dX, = / LA dW, + / I,0.du. O
0 0 0

t t
¥This note literally from SCF2: We assume that [ A,dW, and [ ©,du are finite for every ¢ > 0 so that the integrals

0 0
on the right-hand side of formula (8.11) are defined and the It6 integral is a martingale. We shall always make such
integrability assumptions, but we do not always explicitly state them.

t t
*¥We assume that F [ J FiAﬁdu] and [ |I',©.|du are finite for each ¢ > 0 so that the integrals on the right-hand side
0 0
of (8.13) are defined.
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Theorem 8.5 (Itd—Doeblin formula for Brownian motion) on p.168. which was stated for functions
f(t, W) can be generalized to functions f (¢, X;) where the second argument is an It6 process. This
will be done here.

Theorem 8.6 (SCF2 Theorem 4.4.6 - Itd—Doeblin formula for an Itd process). Let X;,t = 0 be an Ito
process as described in Definition 8.7 on p.169, and let (t,xz) — f(t, x) be a function with continuous partial
derivatives fi(t,x), fx(t,x), and fy,(t, z). Then, for every T' 2 0,

T

T
f(T, X7) = f(0,Xo) +/0 fe(t, Xy)dt +/0 fo (£, X¢)d Xy

1 T
+ 2/0 foa (8, X2)d[X, X

(8.14) .

T
= (0, Xo) +/0 ft(t,Xt)dt—i—/O fa (b, X¢) ApdWy

T 1 (T
+/ fo(t, X¢)Opdt + 2/ foa (t, X0) Afdt.
0 0
PROOEF: See SCF2. 1

Remark 8.7. The reader may wonder about the meaning of the term “d[X, X];”. We claim that
dX, X]; = dX;dX;.

This is seen as follows. According to Lemma 8.1 on p.169, [X, X]; = fg A2du. This means that
[X, X]; is an It6 process. (Set A, = 0 in Definition 8.7 of an Itd process which precedes that lemma.)
The differential form of this Ito process is, according to (A) of that definition, d[X, X|, = AZdt.

We will see in (x), which occurs further down in this remark, that dX;dX; = A?dt. A comparison
of those two equation yields d[.X, X|; = dX;dX;.

Itd formula for an Itd process in differential notation:

(8.15) df (t, Xe) = fi(t, Xe) dt + fo(t, Xe) dXe + %fm (t, X¢) dX(d Xy

The differential form of X; = Xy + f[f A dW, + fot O,du is
dX; = AvdW, + O4dt
from this we compute dX;dX; using the multiplication table as follows.
dXidXy = (AydWy + Oydt) (ArdW; + Oydt)
(*) = AZdW, dW; + 2A,0,dW;dt + ©Fdtdt = Aldt
We make these substitutions in (8.15) and group the dt terms:

df (t, Xs) = fo(t, X3) A¢ dWy

8.16
(8.16) + <ft(t,Xt) + fot, X:)O + ;fm(t,Xt)Af> dt. O
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Example 8.1 (Generalized Geometric Brownian Motion). Definition 6.11 on p.125 gave the defini-
tion of geometric Brownian Motion as the process

1
Sy = Sy exp [JWt + <a— 202> t] ,

defined on a filtered probability space (€2, §, §+, P) with a Brownian motion W = W;.

We will obtain this process in a more general setting as the solution of a stochastic differential
equation. Let

t t 1
(8.17) X, = / oudWy + / <au—ag) du,
0 0 2

where «; and o, are adapted processes. Then X is an Itd process with differential
1
(818) ClXt = O'tth + <at — 2O't2> dt, Xo =0.

From the multiplication table we obtain its squared differential
(8.19) dXdX, = oldWdW; = o2dt.

Let Sy €]0, 00| (i.e., Sp is deterministic), and f(z) := Spe”. Since f does not have ¢ as an argument it
is constant in ¢, thus f; = 0. There also is no need for using partial derivatives notation and we can
write f/(x) for f,(z) and f”(x) for fy»(x). Note that

(@) = f"(z) = f(z) = Spe”.

We define generalized geometric Brownian motion as the process

t t 1
(8.20) Sy = SpeXt = Sy exp [/ osdWs + / (ozs — 20?) ds] ,
0 0

Since Sy = f(X;) an application of the It6 formula yields

1
dSy =df (X;) = f'(X¢) dX: + 3 f7(Xy) dXpd Xy
(8.21) ) .
= SpeXt dX; + 5SoeXt dX;dX; = S;dX; + 5Sththt.

This last formula describes a stochastic differential equation. It defines the random process S; via
a formula for its differential dS;, and this formula involves, besides the random process S; itself,
also the differential d.X; of an Ito process X;. [

Remark 8.8. It follows from formulas (8.18) and (8.19) that

8.18) 1

SidX; 2 6,8, W, + auSdt — SOt dt

. 1
GL) 5, S, dW, + Sy dt — 5StdXudX:,

171 Version: 2023-04-21



Math 454 — Additional Material Student edition with proofs

We plug this expression for S;dX; into the last equation of (8.21) and obtain

1 1
dSt = <Ut5t th + OltSt dt — 5575 dXtht> + 5 Sththt
= UtSt th + atS’t dt.

This last formula is another example of a stochastic differential equation. It improves on the one
given at the end of Example 8.1, since the differential dWW; of a Brownian motion replaces that of the
more general Itd process X.

Here is a Financial market interpretation of this formula

(822) dS; = oSy dt + oSy dW;

which describes the dynamics of S;. If this process denotes the price of a stock, then (8.22)
expresses that this asset has an instantaneous mean rate of return o; and volatility o;.
“Instantaneous” indicates that ¢ — o;(w) depends on the paricular time (and the sample
path w) where the price is observed.

Generalized GBM is a good model for the price evolution of a stock for the following reasons.

e Itisalways positive.
e The fluctuations introduced by the random term o;dW; express the risk inherent in in-
vesting in such an asset.
The drawback: The trajectories of S; are continuous at all points in time. To consider asset prices
with jumps a different model is needed.

In the Black-Scholes market we specialize to constant o and o. Then (8.20) becomes ordinary GBM
1
(8.23) St = Sg exp {aWt + (a — 202> t } :

If we further assume that the instantaneous mean rate of return « is zero then the asset price and its
dynamics are

1
Sy =5y exp {aWt — 20275}, dS; = oSy dW;.

We recognize S; as the level o exponential martingale of Definition 6.12 on p.125. We obtain a new
proof that S; is a martingale from the fact that dS; = ¢S, dW; reveals this process as a stochastic
integral with respect to Brownian motion,

t
Sy =50 + / ouwSy dW,. O
0

Theorem 8.7 (SCF2 Theorem 4.4.9 - 1t6 integral of a deterministic integrand). Let W, s = 0, be a
¢

Brownian motion and let A be a nonrandom function of time. Define I = [ A;dW,. For each t = 0, the
0

t
random variable I, is normally distributed with expected value zero and variance [ AZds.
0
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PROOF: See SCF2. R

Proposition 8.1 (SCF2 Example 4.4.10 - Vasicek interest rate model). |[ %

Given is a filtered probability space (2, §, §+, P) with a Brownian motion W = W,. The Vasicek model is
a financial market in which the interest rate R = Ry(w) has dynamics

(8.24) dR; = (o — BRy) dt + o dW,.
Here we assume that o, B3, 0 €]0, 00|, i.e., they are positive and deterministic constants.

The solution to this SDE is

t
(8.25) R =e P'Ry + %(1 —e P 4 ge Pt / P AW,
0

For a proof see SCF2. [

Remark 8.9. || %

The following results from that last proposition. Since the normal density is strictly positive for all
arguments, there is positive probability that R; is negative, no matter how one choses a > 0, 3 > 0,
and o > 0. This is not desirable for an interest rate model.

On the other hand, the Vasicek model has the desirable property that the interest rate is mean-
reverting:

e When R; = %, the drift term (the dt term) in (8.24) is zero.
e When R; > %, this term is negative, which pushes R; back toward %

e When R; < %, this term is positive, which pushes R; back toward %
Moreover, we have the following:
o if Ry= %, then F[R;| = % forallt =0,

o if Ry # 5, then tliglo ER]=% 0O

Proposition 8.2 (SCF2 Example 4.4.11 - Cox-Ingersoll-Ross (CIR) interest rate model). || *

Given is a filtered probability space (2, §, S+, P) with a Brownian motion W = W;. Assume that the interest
rate R = Ry(w) in a market economy is modeled by the SDE

(8.26) dR; = (a — BR;)dt + o+/RydW,

a, 8,0 €]0, 00[ are positive and deterministic constants. We call this the Cox—Ingersoll-Ross model, We
also abbreviate this as the CIR model.

It has the following properties:
(8.27) B[R] =e PRy + %(1 — ey,

Note that this is the same expectation as in the Vasicek model.

o? _Bt —283t ao? —pt —2pt
(8.28) VarlRy = FRO(e —e P 4+ 257 (1 —=2e " e 27",
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In particular,

g
For a proof see SCF2. [

8.6 Exercises for Ch.8

Exercise 8.1. Prove the following assertion which was made in Remark 8.5 on p.167 of this docu-
ment: Let IT = {tg,t1,...,tp} (0=tg <t1 <---<t,=T)and

n—1 n—1
XP =Y Wy(Weyy, = W), Y=Y Wi (W, — W)
j=0 =0

Here W} is a Brownian motion on (2, §, &, P), W; := Wy, and [ := [t;,t;41[. Then

EX1=0, and EYM=17. 0O

Exercise 8.2. Let IW; be a Brownian motion, Y; an adapted process on a filtered probability space
(Q,F, 38, P). Assume that the process X has dynamics

dX; = Y2 dWy; Xy = 16.

Compute E[X1g].

Hint: Stochastic integrals with respect to Brownian motion are martingales. [J

Exercise 8.3 (Bjork exc-4.2). Let

1
Z(t) = X, where X, is an It6 process with differential dX(t) = aX(t)dt + o X (t)dW ().

Prove that Z; also is an It6 process by showing that this process has a differential of the form dZ; =
®dt + V,;dW, for suitable processes ®; and ¥;.

Hint: Apply the Itd formula with the function f(z) =271, O

Exercise 8.4. Let o € R. Compute E[e®""*] by doing the following.
(1. LetY; := "t Use Itd’s formula with f(x) := e®® to obtain

t t
(A) Y; :1+;a2/ Yudu+a/ Yy dW,.
0 0
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(2). Define m(t) := E[Y;]. Apply Fubini to (A) and then differentiate % to show that ¢ — m(t)
satisfies the ODE (ordinary differential equation)

[N

(B) m'(t) =% m(t), m(0) = 1.

(3). (B) shows that m(t) satisfy a relation of the kind y’ = cy, y(0) = 1. Convince yourself that
this means that y(z) = ¢ and show that m/(t) = e*t/2
(4). Now itis easy to compute m(t) = E[e®"] and thus finish the problem. [

8.7 Addenda to Ch.8

The next theorem will be proven later, when we have the multidimensional It6 formula at our
disposal. We state it here since we use it in Chapter 9 (Black-Scholes Model Part I: The PDE)

Theorem 8.8. If X, and Y; are two It6 processes then

(8.29) d(X:Y:) = X dY; + YidX, + dX, dY,.

PROOQF: Will be given later, in Chapter 10 (Multidimensional Stochastic Calculus). See Corollary
10.1 (It6 product rule) on p.200. W

Example 8.2. Source: [5] Bjork, Thomas: Arbitrage Theory in Continuous Time.
Assume that Z is a normal variable with expectation zero. Compute Compute E[Z4].

We will solve this problem with stochastic calculus by transforming it into one concerning Brownian
motion ;. We accomplish this by writing ¢ := Var[Z]. Then Z and W; have the same distribution.
Hence, E[Z%] = E[W}!]. Let X, = W}*. Then X; = f(t,W;), where f is given by f(t,z) = z*. The
partial derivatives are

O*f

ox?

of of 3
E—O, am—4.’17,

The It6 formula plus the equation W = 0 yield

= 1222.

1
dXy =df(t,Wy) = fedt + [odWi + 5 faadt = 0 + AWEAW, + 6W2dt; Xo=0.

t t
The equivalent integral formis X; = 046 / Wids + 4 / W3dW. We take expected values of
0 0

all members of this equation. Since Itd integrals [ ...dW are martingales,

t 0
E[/ WSdWS} = E[/ Wdes} = 0.
0 0

Since E[...] is an abstract integral [ ...dP, Fubini allows us to move the expectation inside the
ds—integral. We obtain

t t
E[X{] :6/ E[W?Zds = 6/ sds = 3t2. O
0 0

175 Version: 2023-04-21



Math 454 — Additional Material Student edition with proofs

Example 8.3. Let W be a Brownian motion on a filtered probability space (£, §, §:, P).

Let the processes A; and B; be defined as follows.

dA; =5A,dt — A dW,, Ag=0,
Bt = 6_5tAt .

Apply 1td’s formula to the function f(¢,z) = e *'z to

(@) compute dB; so it has the form dB; = Udt + V;dW; where U; and
V; are adapted stochastic processes.

(b) Prove that V; is a martingale. This is easy once you have com-
puted part (a)

We solve this problem as follows.

The partial derivatives of f are
fit,x) = =bex,  folt,x) = e,  feo(t,z) =0.
Further, it follows from dtdt = dtdW; = dW;dt = 0 and dW,dW; = dt, that
dAdA; = (—Ay)?%dt = Aldt.
Observe that we won’t need this, since f,, = 0. Since B; = f(t, A;), Itd’s formula yields

1
dBy, =df(t,Ay) = fidt + frdA; + §fmdAt dA;

= (=5)e " Aydt + e ' (5A,dt — AydW,) +0
= (=5)e Dt Audt + 5e A dt — e PP A AW, = —e STA AW, .

We have solved (a) (with U; = 0 and V; = —e ™' 4;) and also (b), since the integrated form of the
above is

t t
By = By — / e A dW, = — / e U AdW,,,
0 0

and integrals with respect to Brownian motion are martingales.

As an aside, we also note that B, is a generalized geometric Brownian motion: Since B; = e > A;,
dB; = —e %" A,dW, can be rewritten as

dBy = —BidW;.

Thus the differential B; is if the form (8.22) when we set oz = 0 and o; = —1. Since « and o are
constant in ¢t and w, B; actually is a (non—generalzied) geometric Brownian motion. [J

Example 8.4. Let (2, §, 5+, P) be a filtered probability space with a Brownian motion W;. Let
t t
X, = 5+/ Wudu+2/ W2dW, .
0 0
What is d(t* X?)? We will apply the It formula to compute this differential as follows.

176 Version: 2023-04-21



Math 454 — Additional Material Student edition with proofs

Since dX; = Widt + 2W2dW;, and dtdt = dtdW; = dWydt = 0, and dW,dW; = dt,

dX;dX; = (Widt + 2WEAW,)(Widt + 2W2AW;)
=W¢dtdt + 2(2W2 dt dWy) + 2° W2 dW,dW, .

We aim to compute df (¢, X;) for the function f(t,x) = t222. Since
fr = 2ta% fo =200, fup = 267,
Itd’s formula yields

2
d(f(t, Xy)) =2tX7dt + 2°X,d X, + ithXtht

= 2XPdt + 22X, d[Widt + 2W2EAW,] + t2(4W ) dt
=2t X2dt 4+ 282X, Widt + 22X 2W2dW; + t2(4Wh)dt
= [2tX7 + 22X, W, + 4°W}dt + 42X, W2dW,. O
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9 Black-Scholes Model Part I: The PDE

Introduction 9.1. This chapter is based on the finance application oriented aspects of GBM (geo-
metric Brownian motion) that were briefly mentioned in Remark 8.8 about generalized GBM (p.171)
and replicating portfolios for a contingent claim given in Chapter 7.3 (The Binomial Asset Model).
There the dynamics of price of the risky asset developed as a binomial tree: price either was multi-
plied by an upward factor u with probability p,, or it was multiplied by a downward factor d with
probability pg.

The Black-Scholes market model has in common with the Binomial Asset Model that there is a
single risky asset (a stock) in addition to a single risk free asset (bond). We will study the dynamics
of the discounted asset price and build a hedging portfolio based on the idea that its value must
match, at each point in time, the price of the contingent claim it replicates. From this condition we
will derive a (deterministic) partial differential equation for the pricing function of the claim. [J

9.1 Prologue: The Budget Equation in Continuous Time Markets

This subchapter closely follows [5] Bjork, Thomas: Arbitrage Theory in Continuous Time.

To derive the continuous time budget equation of a self-financing portfolio at a fixed time ¢, we
discretize the trading times and assume, for some small & > 0, that trading takes place only at

o t—2h, t—h, t t+h, t+2h, ...

Then we examine what happens in the limit as ~ — 0.

Since we will deal quite extensively with differences X, — X;, it will be convenient to introduce
some special notation for such differences.

Notations 9.1. We assume for the remainder of this subchapter 9.1 that & > 0 is fixed.

Given is an arbitrary real-valued stochastic process X = X; = X;(w). We define
AXy = AX(t) = AX(t,w) = Xpypp — X¢-

For a vector—valued process Y; = (Y;(l), ey Y;(”)), we write

AY; = Yon — Vi
The A operation binds stronger than arithmetic operations. Thus,

AXy + Y, = (AXy) + Y, AX Y, = (AX)Y;, AX; oY, = (Aﬁt)°ﬁ-

Here are some examples.
o AX; ) = Xy — Xip.
o (AY) @ = A(Yt(j )) = Yt(j% — Y, In other words, we take the A differences separately
for each coordinate. [J

Let us review portfolios in discrete time financial markets. We recall from Definition 7.4 on p.130
and the subsequent Remark 7.3 that the holdings H; were created at time ¢ — h. They will be traded
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at time ¢ for new holdings ﬁt+h, which will be traded at time ¢ + h for new holdings ﬁt+2h, which
will be traded at time t + 2h ...

A self-financing portfolio is one which satisfies the budget equation
9.1) SaPsY =vH =N 5, 59
j=0 Jj=0

In other words, the previously established holdings H +, valued at time ¢, are worth the same amount
V! as the newly established holdings Hy,, also valued at time ¢. We apply e and A notation to
(9.1) and obtain H oS = ﬁt+h o3, ie.,

(92) §t L] Aﬁt = 0.
We remember the following from our calculus classes. The derivative
f(z) = 3—f : written in differential form as df (z) = f'(z)dz,
€T

was obtained from the difference quotient as a limit

§ _ o SEEh @) ASE)

de ~ h=0  (z4+h—a h—0 Az

Thus, letting h — 0 in (9.2) should give us the budget equation S; e dH; = 0. But this approach
has a fatal flaw and gives an incorrect result. To understand the nature of the problem, we examine

the j-th term SV dHY) of S, e dH, = 3. SV dHY .
=0

A , ¢ . t
1. SY dHY represents [ SY) dHY, just as Z, AW, represents [ Z, dW,.
0 0

¢
2. TheIto integral [ Z, dW, is a limit of >°, Z, (W, ,, — W, ), as maxy(tg1 — ) — 0.
0

3. It is crucial that a forward difference Wy, , — Wy, of the integrator process W was taken:
Neither 4,1 nor t; is in the past of the integrands time, t;.. * Intuitively, this means that the
value of the integrand must be known by the times ¢;, and ¢, when the integrator values
Wiy, — Wi, are used.

t . , , 4
4. Likewise, [ S dHY is a limit of Dok St(;z) (H(]) - Ht(]z)), as maxy(tg+1 — tx) — 0.
0

tkt1
)
+1 A
6. The problem: The integrator value Ht(] ) is the portfolio holding for the period [t — h,t]. Itis
established at time ¢ — h, before the integrand, the asset price S; is known.

5. Again, forward differences Ht(g — Ht(g ) of the integrator process H/) must be taken.

Note that the problem goes away if we can work in (4) with >, St(i)_l (Ht(]i)r1 - Ht(i )) instead of
>k ngz) (Ht(ZJ)rl - Ht(g)), since St(izl is known at t;,_1, the time where Ht(i) is established.

We achieve this by subtracting and re-adding S;_, ¢ AH; to (9.2) as follows.
(93) 0= (gt L Aﬁt - S_;t,h [ ] Aﬁt) + gtfh, ° Aﬁt = Ag’tfh ° Aﬁt + gtfh ® Aﬁt

¥For example, taking forward differences is necessary so that stochastic integrals with respect to Brownian motion are
martingales.
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Now we may take limits h — 0 for gt_h eAH,,since AH, = ﬁt+h — H,, and both portfolio holdings
are known at t — h. It follows from (9.3) that

(94) dgt L] dﬁt + §t ® dﬁt = 0.
We fix a coordinate 0 < j < n. By It6’s product rule,

9.5) d(HS?) =17 as? + (s an? + as? any).

Since, by (9.1), V;/ = Ht(j)St(j) = S,e 1,
§=0

vt =Y amPs?) LS aP as? + ( s am? + 3" asy dHt(j))
§=0 §=0 §=0 §=0

(9:4) ﬁt [ ] dgt .

= ﬁt [ ] dgt + (5’; (] dﬁt -+ dgt [ dﬁt)
Those observations are of a heuristic nature because taking the limit ~ — 0 was involved to bridge
the gap from discrete trading times to continuous trading times. Nevertheless, it suggests how to
define the continuous time budget equation and give mathematical precision to Definition 7.6 of a
self-financing portfolio (see p.132). for a continuous market portfolio Hy.

The following definition also provides a solid mathematical foundation for Definition 7.8 on p.133
of an arbitrage portfolio, and for Definition 7.10 on p.134 of a hedging portfolio.

Definition 9.1 (Continuous time budget equation and self-financing portfolios).

The budget equation for a portfolio H; in a continuous time financial market is
n

(9.6) avll =N HP dsy) = HyedS;, for0<t<T.
j=0

We amend Definition 7.6 (Self-financing portfolio) on p.132 as follows. H; a self—financing portfo-
lio strategy (simply, self-financing portfolio), if it satisfies this budget equation. [

9.2 Formulation of the Black-Scholes Model

Notations 9.2. I will stay in this chapter close to SCF2 Chapter 4.5 (Black-Scholes-Merton Equa-
tion). I often will just copy the theorems and propositions presented there and refer to the text as
far as the proofs are concerned.

I also will mostly use that book’s notation and doing so make it easier for you to relate the material
presented here to the SCF2 text even though I much prefer the notation of [5] Bjork, Thomas: Ar-
bitrage Theory in Continuous Time which I used in Chapter 7 (Financial Models - Part 1) of these
lecture notes. The following table summarizes the most important differences.
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Bjork Shreve

price of the risky asset (stock, the underlying).

unit price of the riskless asset (money market account price).
portfolio (# of shares) vector for all assets.

dollar value of the riskless asset.

# of shares of the stock.

value process of the portfolio.

price process of a contingent claim X'.

pricing function of a European call. ¢(¢, S;) equals IT;(X).
pricing function of a European put. p(t, S;) equals II;(X).

The most likely exception to me trying to stick with SCF2 notation will occur with respect to port-
folio holdings and values, but since only two assets are involved, including the bank account, I will
use a modified Bjork notation and write

HP for the number of bank account shares (with a money value of B; dollars per share),
V,B rather than HP B; for the value (dollars) invested in the bank account,
H? (S = Stock) rather than H; for the number of shares in the stock.

either V; or Vtﬁ for value of the portfolio ﬁt.
X and Y; for rather than x; and y;, since those are stochastic processes.

The portfolio value process thus will be written in any of the following ways.

—

9.7) VH =V, = HPB, + HJS, = VP + H’S; = X; + V4S;.

Also note that X; = V,Z, the money value of the bank account holdings, satisfies

(98) Xt =V — Y%St, and

Definition 9.2 (Black—Scholes Market Model).

The Black-Scholes market model consists of a time 7" > 0, a risk free asset (bond) with price process
B = B;,0 =t < T, arisky asset (stock) with price process S = S;,0 = t < T, a simple contingent
claim X = ®(Sr) with expiration date T', contract function ®(z), and price process II;(X'), such that
the following conditions hold.

(9.10) dS; = aSydt + 0SydWy; Sp € [0, 00[; a, 0 €]0, 00],
(9.11) X =®(Sr) (simple contingent claim),

e ¢:[0,7T] x[0,00[ (t,x)+— c(t,x) twice continuously differentiable such that
(9.12) II,(X) =c(t,St) (price process of X)

e The market is efficient: No arbitrage portfolios. [
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Remark 9.1.

(1) dB; = rBydt; By = 1 is equivalent to B, = €', i.e., an account which pays continuously
compounded interest at the constant and deterministic rate » per unit time.

(2) Formula (9.10) states that S; is GBM with constant, instantaneous mean rate of return «
and constant volatility 0. See Remark 8.8 on p.171. There are more general models (Defi-
nition 12.1 on p.214) in which the constants a and o are replaced by measurable functions
a(t,x),o(t, z) of time. The price of the stock then is given by

ds; = (X(t, St)St dt + J(t,St)St dWy; Sp € [0,00[

(3) The symbol c was chosen for the function ¢(¢, z) to remain in sync with the SCF2 text where
only the example of a (European) call is used when deriving the PDE for that function is
derived. Note that this function must satisfy the terminal condition

(9.13) o(T,Sr) = I(T; X) = ®(S7).

(4) Smoothness (the existence of partial derivatives of any order) is not really necessary for
c(t, x). It suffices that this be a C? function, , i.e., all partial derivatives of order 2 exist and
are continuous.

(4) You should recall from Assumption 7.1 on p.134 that we have always assumed that the
market is free of arbitrage, in addition to some other assumptions such as complete liquidity,
no transaction costs and no bid-ask spread. [J

9.3 Discounted Values of Option Price and Hedging Portfolio

Proposition 9.1. The budget equation for a self-financing portfolio in a Black—Scholes market evolves ac-
cording to the following dynamics.

(9.14) dVy =YidS; + rX;dt
(9.15) =rVidt + (o — 7)Y Sidt + Yi0Sp dWy.

PROOF: See SCF2, Chapter 4.5.1 (Evolution of Portfolio Value). W

Remark 9.2. Formula (9.15) signifies that a portfolio value change dV; is composed of

a. An average underlying rate of return r on the bond value V; — Y;.5;,

b. An average underlying rate of return r + (o — r) = « on the stock investment in height of
Y;S:. Since people will not take a greater risk investing in a stock than putting money in the
bank we should expect that o = r, thus (o — r) is a risk premium for investing in the stock.

c¢. Avolatility term Y;05:dW;. It is proportional to the size Y;05; of the stock investment. [

Remark 9.3. We already mentioned that Formula (9.14) which asserts that dV; = Y;dS; + rX,dt, is
the budget equation of a self-financing portfolio in the Black—-Scholes market.

You obtain from it the discrete time analogue by replacing dV; with V41 — V;,, replacing dS; with
Sn+1 — Sp, and replacing dt with (n + 1) —n = 1. Then
Vogr — Vo = YnSn+1 - Y5, +rX, -1
=Y, Sn41 — YuSn + (Vi — Y0.5,)
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Thus

= (1 + T)Vn - (1 + T)Ynsn + Y541
= (1 + T)(Vn - YnSn) + YnSnJrl = (1 + T)Xn + YnSn+1 R

just as the budget equation demands it: The portfolio value at the new trading time must be the old
bank account value X,,, increased by interest r.X,,, plus the value of the stock holdings Y;,, valued
at the new price S, 11 per unit, i.e., valued at Y,,S,, ;. O

Proposition 9.2. Discounted stock price e="*Sy and discounted portfolio value e~ "'V, satisfy

(9.16) d(e_rtSt) =(a—7r)e S dt + oe S dWy,
d(e_rtVt) =(a—1)Y; e S, dt + oYe "t S, dW,

9.17) vid(es,).

PROOQF: See SCF2, Chapter 4.5.1 (Evolution of Portfolio Value). W

(@) It follows from (??), that discounting stock price has the following effect: Whereas S; has
a mean rate of return of «, it has dropped to o — r for e™"%.S;.
Remark9.4. (b) Formula (9.17) shows that change in the discounted portfolio value has nothing to do
with a change in the bank account. It entirely depends on the change in the discounted
stock price. O

We now investigate the ramifications of the existence of a deterministic function c¢(¢, ) in the defi-
nition 9.2 of the Black—Scholes Market Model such that IT;(X') = ¢(¢, S).

Proposition 9.3. The price dynamics of the contingent claim are

(918) dc(t,St) = |:Ct(t,St) + OlSt Cx(t7 St) + %U2S§ Crx (t,St) dt + O'St Cp (t,St> th

Those of the discounted option price e~"c(t, S;) are

d(e "e(Sy)) = e_rt[— re(t, Se) + ci(t,St) + aSica(t,Sr) + %Uzsf Caa (1, St)} dt
+ eirtO'St Cy (t, St) th

(9.19)

PROQOF: See SCF2, Chapter 4.5.2 (Evolution of Option Value). W

9.4 The Pricing Principle in the Black-Scholes Market

According to the pricing principle (Theorem 7.1 on p.134) an arbitrage free price II;(X') = c(¢, S¢) of
the contingent claim X requires that a replicating portfolio with value process V; satisfies

c(t,St) = V4, for all trading times ¢.
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This is equivalent to e "'V; = e "¢c(t,S;) for allt. In terms of differentials:

9.20) d(e”"V;) =d(e "c(t,S)) forall t,
Vb = C(O, S())

We apply (9.16) and (9.19) to the first part of (9.20). We cancel the factor e~"* everywhere and omit
the argument (¢, S;) of the function c¢(¢, z) and its derivatives ¢, (t, z), ¢ (¢, ), 22 (t, ), and obtain

Y;O’St th + Y;:(Oé — T)St dt

(9.21) 1 5
= o0Sic, dWy + | —re + ¢ + aSie, + 50 S; czg | dt.

Since evolution with respect to dt is fundamentally different of that with respect to dWt it is allowed
to separately equate first the d\W; terms and then the dt terms of formula (9.21). We first equate the
dW; terms and obtain after canceling oe~ "5, the

delta—hedging rule:

(9.22) Y; =cu(t,S) forallt € [0,T7.

At each time ¢ prior to expiration, the number of shares A; held by the hedging portfolio of the
short option position is the delta of the option price c(¢, S;) at that time.

Definition 9.3 (Delta (Greek)). Let X be a simple contingent claim in the Black-Scholes market, and
let (t,z) — c(t, ) be the twice continuously differentiable function which yields the price process
(X)) = c(t, S;) *° and thus, in particular, the contract function ®(S7) = ¢(T, S). We call the partial
derivative of c(t, x) with respect to stock price z,

(9.23) delta := % ,
ox

the delta of the claim. Delta is one of the so called greeks of the claim. [
We just proved that Y; = c,(t, S;). Equating the dt terms of formula (9.21) thus yields
cx(a—1)Sy = —rec + ¢ + aSicy + % 025,52 Co-
We cancel the term «.S;c,, on both sides:
—regSy = —re + ¢ + 1 UQSt2 Co-

2

We reorder those terms and obtain

1
(9.24) re = ¢ + rcgS; + 5025}2 Co-

“See Definition 9.2 of the Black-Scholes Market Model on p.182
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We bring back the arguments (¢, S;) and recall that the pricing principle asks that all equations we
have encountered must hold for all ¢:

re(t,Sy) = (t,Se) + rSeca(t,Se) + %JQS,? Czz(t,S¢) forallt e [0,T7,

together with the expiration time condition ¢(7', St) = ®(St) of formula (9.13).

We summarize our findings. The pricing principle lets us demand that the pricing function of a
simple claim X = ®(S7) be function ¢(t, z) of time ¢ and stock price x that solves the

Black-Scholes partial differential equation

1
(9.25) c(t, @) + rz ey (8, z) + o o*2?euy(t,z) =reft,z), 220,

subject to the terminal condition

(9.26) o(T,z) = ®(St).

The equations  V; = c(t, ;) = VB + V), VP =HPet=X,, V=HIS =YS = c.(t,5)S,
allow us to express the hedging portfolio for the claim X purely in terms of the pricing function

c(t, z) for the claim and the discount factor e~"* as follows.
(9.27) Hy = (HP HY) = (e rt[e(t,S) — cu(t,S0)S], calt, St) ) -

In other words, at time ¢ this portfolio invests ¢(¢,S;) — cx(t, S¢) in the bank and holds ¢,(¢, St)
shares of the stock.

Remark 9.5. Observe that we only are concerned with stock price parameter x > 0 since S; > 0 is
a GBM. Thus, if we can prove that the solution ¢(¢, z) is continuous for all 0 < ¢ < T satisfies the
PDE just for 0 < ¢t < T and = = 0 then we are fine, since continuity of ¢ — ¢(¢, S;) and ¢t — V; for
0 = t £ T implies that the hedge equation V; = ¢(¢, S;) extends from 0 < ¢t < T tot = T, and the
boundary condition ¢(7, z) = ®(x) yields Vp = ®(X7).

To summarize, it is enough to show that the Black—Scholes PDE holds forallz = 0and ¢t € [0,7] O

9.5 The Black-Scholes PDE for a European Call

The Black-Scholes PDE (9.25) on p.186 is a purely deterministic PDE, and it can be solved by exclu-
sively using tools from the theory of partial differential equations which do not rely on probability
theory.

We need more knowledge of Itd calculus, in particular, the construction of martingale measures,
before we will solve this PDE. Obviously probability theory plays a heavy role there. Here we
simply present the solution for the special case of a European call, i.e., a simple contingent claim X’
with contract function

d(x) =c(T,x) = (x — K)".

Remark 9.6. Here are two conditions specific to the European call.
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a. In the case of a European call the solution of the Black-Scholes PDE must satisfy the following
boundary condition for stock price x = 0.

(9.28) c(t,0) = 0 forallt e [0,T].

This is true for the following reason. Formula (9.25) states that y(t) := ¢(t, 0) satisfies the ODE
y = ry; thus y(t) = const-e"™.

We obtain const by setting ¢ = 0: y(0) = const - 1, i.e., const = y(0) = ¢(0,0). Thus

(A) c(t,0) = ¢(0,0)e™ forall0<t<T.

K 20, thus ¢(T,0) = ®(0) = (0 — K)* = 0. From (A): 0 = ¢(T,0) = ¢(0,0)e"”
But expiration 7" > 0, thus e’ > 0, thus ¢(0,0) = 0.

We use (A) once more: ¢(0,0) =0 = ¢(t,0=0-¢e" =0 forall ¢.

In summary: ¢(¢,0 =0 for all ¢.

B. This solution not only satisfies the initial condition c(¢,0) = 0 for all ¢t which we had deduced in
Remark 9.6 above but also the growth condition

(9.29) Jim (c(t,2) — (2~ e"TDEK)) =0 forallt € [0,7].
Since ¢"(T~Y K is constant in z this condition implies that the value c(t, z) of the call option grows
at the same rate as = as * — oo. It will thus exceed the strike price K by a significant amount for
large x and it is very likely that this will remain true as ¢ approaches 7. Since it is very unlikely for
large = that St — K <0, i.e.,

(St — K)t # S — K,

(the holder of the option will almost certainly be in the money, i.e., make a profit), it should not
come as a surprise that the price for a European call approaches that of a claim with contract func-
tion ®(x) = z — K. You may recall from Definition 7.2 on p.128 that this was the contract function
for a forward contract with strike price K. [

Without proof for now:

Theorem 9.1. The solution to the Black—Scholes partial differential equation (9.25) with terminal condition
(9.26), zero stock price condition (9.28), and growth condition (9.29) is

(9.30)  c(t,x) =aN(d(T —t,2)) — Ke "TIN(d_(T - t,2)), 0St<T, z>0,

where

(9.31) dy(r,x) = a\f [log — + ( E= U;) 7':| ,

and N is the cumulative standard normal distribution

1 o g2
9.32 N( Tz d = — T2 dz.
( ) y \V 27 / - \Y 2 /y ‘ :
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PROQF: Will be given later: The entire subchapter 12.4 (Risk-Neutral Pricing of a European Call) is
devoted to that proof. W

Remark 9.7. We will sometimes write BSM(7, z; K, r, o) for ¢(t,z) (Where T =T —t,ie.,t =T — 7).

We call BSM(, z; K, r, o) the Black-Scholes—Merton function. Then (9.30) becomes
(9.33) BSM(7,z; K,r,0) =N (d+(7', x)) - Ke_”N(d, (1, :c)),

In this formula, 7 and z denote the time to expiration and the current stock price, respec-
tively. The parameters K, 7, and o are the strike price, the interest rate, and the stock volatil-
ity, respectively. [

Remark 9.8. There is various software to calculate the parameters for Black-Scholes contract func-
tions Here are some links that were active as of April 16, 2021.

a. Magnimetrics Excel implementation:
https:/ /magnimetrics.com/black-scholes-model-first-steps/
b. Drexel U Finance calculator:
https:/ /www.math.drexel.edu/~pg/fin/VanillaCalculator.html
b. EasyCalculation.com:
https:/ /www.easycalculation.com/statistics /black-scholes-mode.php [

Remark 9.9. Formula (9.30) does not define ¢(¢, z) when t = T' (because then 7 = T'—t = 0 and this
appears in the denominator in (9.31)), nor does it define ¢(¢, ) when 2 = 0 (because log x appears
in (9.31)), and log 0 is not a real number). However, (9.30) defines ¢(t, z) in such a way that

lim c(t,z) = (r— K)* and limc(t,z) = 0.

t—T x]0

You will be asked to prove those claims in Exercise 4.9 of SCF2. [

9.6 The Greeks and Put-Call Parity

This chapter is largely a summary of SCF2 ch.4.5.5 and 4.5.6.

We assume for all of this chapter that we have a Black-Scholes market with interest rate r, instan-
taneous mean rate of return «, and volatility o. All those are asumed to be constant. We further
assume thatr 2 0 and o > 0.

We denote by F(t, z) the pricing function for a simple claim X" with contract function ®(x):
F(t,5) = IIL(X).

For people working in finance it often matters greatly how stable or volatile the function this pricing
function is with respect to

1. changes in the price S; of the underlying asset, i.e., changes in z,
2. changes in the interest rate  and the volatility o.

188 Version: 2023-04-21


https://magnimetrics.com/black-scholes-model-first-steps/
https://www.math.drexel.edu/~pg/fin/VanillaCalculator.html
https://www.easycalculation.com/statistics/black-scholes-mode.php

Math 454 — Additional Material Student edition with proofs

Those changes are given by the derivatives of F. As far as derivatives with respect to r and o are
concerned we can examine F' with respect to a variety of values of r and o, i.e., we can think of
as a function

F: (tyz,r,0) — ﬁ(t,x,r,a).

oF o OF
So we really mean, e.g., - when we write 5.

Definition 9.4 (Bjork Def.9.4: Greeks).

The following derivatives are part of what is known as the Greeks of the function F.

(9.34) A = or delta
ox
2
(9.35) = ?)T}; gamma
(9.36) p = %—I: rho
(9.37) 0 = 88—]; theta
(9.38) v = g—f vega [J

Remark 9.10. When reading SCF2 you might get the impression that those Greeks only exist for the
pricing function ¢(¢, z) of a European call but that is not so.

One can replace c(t, z) with the pricing function F(¢,z) of any simple contingent
claim in the Black-Scholes market where the underlying asset has a geometric

Brownian motion as price process.
In particular the Greeks exist for puts and forward contracts. [

Having stated that the Greeks are defined for all simple claims, we emphasize that the following
formulas are specific for the pricing function c(t, z) of a European call.

Proposition 9.4.

The following is true for the Greeks of a European call.

(9.39)  delta =c,(t,x) = N(d+(T —t,z)),
1
oxyT —t
(941)  theta = c,(t,2) = —rKe "TON(d_(T —t,2)) —

(9.40) gamma = c,.(t,z) = N'(d(T —t,z)),

ox

Because both the cumulative distribution function N (x) of a standard normal random variable and its density
N'(zx) are always strictly positive, Delta and Gamma are strictly positive, and Theta is strictly negative.
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PROOF: Not given here. Those proofs are just an exercise in differentiation. W

The delta hedging rule allows us to compute the replicating portfolio for a simple contract in the
Black-Scholes market.

Proposition 9.5. Let H;, = (HP, HY) be the hedging portfolio for a simple claim with pricing function
F(t,x). Thus HP denotes the number of shares, i.e., dollars, in the bond, and H; denotes the number of
shares held in the stock. Take note that this one incident where we do not use SCF2 notation (he writes X for
HY)!

The following is true if it is known (or hypothesized) that S; = x.

(9.42) Vi = F(t,x),
(9.43) e""HP = F(t,x) — x- Fu(t,2),
(9.44) HY = F,(t,z).

PROQOF: Formula (9.42) is just the pricing principle which says that the value of a replicating port-
folio must always match the price of the option it replicates.

Formula (9.44) is the delta hedging rule which states the number of shares in the underlying stock
is the derivative of the pricing function F' with respect to stock price, evaluated at z = 5.

Formula (9.43) just reflects the simple fact that, since the hedge His self-financing, whatever is not
invested in the underlying is in the bank.

e"HE = vE =VvH — S.-HY e, ¢"HP = F(t,z) — z-F.(t,z)). A

Remark 9.11. The hedging portfolio tells us what amounts must be invested in bank account and
the underying by someone who holds a short position in the claim, i.e., someone who sold the
claim at ¢ = 0 and wants to be able to have the funds available at ¢ = T to deliver the derivative to
the buyer.

In the specific case of a European call option, H = c,(t,S;) is positive. See Proposition 9.4. We
thus have the following.

e To hedge a short position in a European call, one needs to hold shares in the under-
lying and must borrow money from the bank to buy those shares.
e To hedge a long position in a Eoropean call, one must do the opposite, hold a posi-

tion of minus ¢, (t, S; shares of stock (i.e., have a short position in stock) and invest,
assuming S; = z, V;® = c(t,z) — zc,(t,x) = Ke "T~YN(d_) in the money market
account. See formula (9.39). O

Proposition 9.6. Let f(t,x) be the pricing function of a forward contract, i.e., simple claim with contract
function ®(x) = x — K. *! Then

(9.45) ft,z) =o—e"TVEK.

PROOF: Assume that this forward contract is sold at time zero for a price of f(0, Sy) = So—e 7K.
Then a bank loan of e~"T K will allow the seller to buy a share of the underlying. We look at the

#1See Definition 7.2 on p.128.
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portfolio strategy H = (H”, HS which thus has been established at ¢ = 0 by the short sale of the
foward contract, i.e.,
HP = —eTK,  Hy =1.

We make this a static hedge, i.e., there will be no further trades until time of expiration 7". Note
though that the amount owed to the bank will increase due to compounded interest owed on the
loan. At time ¢ the interest factor will be €. Thus portfolio and portfolio value are

HtB = _HOB = —eirTK, and Hts = H[‘)g =1 forOétéT,
V, = —e"HP + HYS, = —« T UK 1.8, = S —e"TUK.
In particular, at expiration time 7', the portfolio value is
V%{ =S —e "IN — 8§ - K = B(Sy).

This static hedge thus is a replicating portfolio for the forward contract. It follows from the pricing
principle that
f(t,8) =V =8 —e T IK forall0<t<T. B

We associate with such a forward contract its fair strike price, if it had been set at time 0 < ¢t < T
and not at time zero. We call this the forward price For; of the forward contract at time ¢:

Definition 9.5 (Forward price). The forward price For; of the underlying asset at time ¢ is that value
of K for which the forward contract has value zero at time ¢.

Remark 9.12. By definition, For; is that value K, for which IT;(X’) =0, i.e,,

0= f(t5S) =8 —e T DFor,.

This is the basis for the following.

A. The forward price satisfies the equation
(9.46) Sy — e For, = 0.

B. Note that Fory = K. This should not come as a surprise. Both parties in the contract will agree at
t = 0 to a strike price which does not give one of them an advantage over the other.

C. We solve formula (9.46) for For; and obtain
(9.47) For, =" (T1g,.

D. Note that, for a given time ¢,

the forward price For; is NOT the price (or value) f(¢, S;) of the forward contract. O

We recall from Definition 7.2 on p.128 that a European put with strike price K is a simple claim with
contract function ®(z) = (K — z)*. It is an option to sell, rather than buy, a share of the underlying
at price K. Thus such an option generates a profit K — Sr) if share price at expiration is below K,
and it is worthless otherwise.

In the following we will write p(¢, x) rather than F (¢, z) for the price of a European put option.

We relate puts and calls by mean of the following simple identity.
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Lemma 9.1. For any real number c,

(9.48) a=a" — (—a)t.
PROOF:
Casel: >0 = at=a, (—a)"=0 = o™ = (—a)t =a -0 = a.
Case2: a<0 = o' =0, (~a)f =-a = a" — (~a)T =0 - (—a) = a. B
Corollary 9.1.

f(T,ST) :ST—K = (ST—K)+ - (I(—ST)Jr = C(T,ST) - p(T,ST).

the contract function of a forward contract with strike price K coincides with that of a portfolio that
is long one European call and short one European put.

PROQF: This is an immediate consequence of Lemma 9.1. W

Proposition 9.7 (Put—call parity). We write, for one and the same strike price K,

o c¢(t,x) for the pricing function of a European call,

e p(t, x) for the pricing function of a European put,

o f(t,x) for the pricing function of a forward contract.
Then the following formula is satisfied:

Put—call parity:

(9.49) ft,z) =c(t,z) — p(t,z), forallz 20,0=t=T.

PROOF: We apply the pricing principle to the formula p(T,S7) = ¢(T,Sr) — f(T,Sr). This is
valid according to Corollary 9.1. We obtain

p(t,x) = c(t,x) — f(t,x), forallz 20,0=¢t<T7. A

Proposition 9.8. The pricing function p(t, z) of a European put with strike price K satisfies

p(t,x) =x(N(d (T —t,2)) —1) — Ke "T"D(N(d_(T —t,z)) — 1)

(950) _ Ke—'r(T—t)N( _ d,(T — t’ m)) — ;U(N( — d+(T - t, 33))’

PROOF: We abbreviate 7 =T —t, N(d;) = N(d(T —t,z), N(d—) = N(d_(T —t,z)).
Put—call parity yields f(t,z) = c(t,x) — p(t, z), thus p(t, z) = c(t,z) — f(t,x).
The BSM formula yields f(t,z) = «N(d+) — Ke ""N(d-). Thus,

p(t,x) =aN(dy) — Ke""N(d_) — (z — ¢ ""K)
=x(N(dy)—1) + Ke " (1= N(d-))
=z(N(dy)—1) — Ke”""(N(d-) — 1)
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This proves the first equation of (9.50).
Symmetry of the normal density yields N(—«a) = 1 — N(«) for any a € R. Thus,

N(dy) =1 = — (1= N(dy)) = —N(=dy),
N@d_)—1 = —(1-N(d_)) = —N(~d_).

We substitute those expressions into the already proven first equation of (9.50) and obtain the sec-
ond equation. W

9.7 American Call Options

Recall the following from Definition 7.2 on p.128.

e An American call option is a contract written at some time ¢,. It specifies that at any time up
to the time of expiration 7' > ¢, the holder of this option has the right, but not the obligation,
to buy a share of an underlying security stock for the price of K (strike price).

e An American put option is a contract written at some time ty. It specifies that at any time up
to the time of expiration 7" > t, the holder of this option has the right, but not the obligation,
to sell a share of an underlying security for the price of K (strike price).

Let & denote an American call or an American put. The freedom of the holder of such an American
option to exercise it at any time 7 between the present time ¢ and the time of expiration 7" obviously
implies the following. Its value II;(X') is at least as big as that of the corresponding European option.
How big? This is a complicated question since 7 need not be deterministic. Rather, we assume that
7 can be any random time

T = 7(w),

which satisfies the following. Each o—algebra §; contains enough information to determine whether
7 has already happened at time ¢. This is expressed by the condition

{r=<t} € §, whenever0<t<T.

Such a random time is called a stopping time (for the filtration (3:),).

You will find more information in SCF2 Chapter 8 (American Derivative Securities). For us this
material is outside the scope of our course. However, an answer can be obtained with elementary
reasoning in the case of an American call option.

We assume the following.

(a) Arisk free asset with a constant interest rate r > 0.

(b) A stock which pays no dividends and has price dynamics dS; = aS;dt + oS; dW;, where
a, 0 > (0 are constant.

(¢) No arbitrage.

Compare the above market assumptions to those of Definition 9.2 (Black-Scholes Market Model)
on p.182.

Lemma 9.2. Under the assumptions (a)—(c) we have the following for the price function c(t, x) of a European
call with expiration date T and strike price K.

(9.51) clt,z) = v — Ke T,
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PROOQOF:

Let C; be the value at time ¢ of a portfolio which consists of one European call option. Then
(A) Cy = C(t, St) , thus, Cr = C(T, ST) = (ST - K)+.

Let B, be the value at time ¢ of a portfolio which consists of one share of the stock and a bank loan
in height of K, due at time T. Today we only need the discounted value e ("~ K to pay back that
loan at time K. it follows that

(B) B =8 —e"T YK, thus, Br = Sy — K.

Since at = a for all @ € R, we obtain Cp = By. We employ risk—neutral validation to reason as
follows.

CT 2 Br = e_T(T_t)CT 2 e_r(T_t)BT

=C, = Ele"TYCr 3] = Ele T 9By | 5] = B.

We use (A) and (B) to conclude that ¢(¢,S;) > Sy — e "T-K. R

Proposition 9.9. Under the assumptions (a)—(c) we have the following.

The optimal (stopping) time T to exercise an American call option on that stock in (b) with expiration time T
and strike price K > 0, is 7 = T'. Accordingly, the price 11,(X') of that option equals the price c(t, S¢) of the
corresponding European call option.

PROOF: Let0 <t <T. Then

(A) IL(X) = c(t, St), since exercising the American call at 7" guarantees a profit of ¢(T, St).
(B) ¢(t,S;) = Sy — e """V K, according to Lemma 9.2.
© S —e"T VK > — K, for 0¢t<T, since 0<e T8 <1.

It follows from (A), (B), (C), that
Ht(X)>St—K fOfO§t<T.

S, — K is the profit we stand to make if we exercise the option now #* The larger amount of II;(X) is
what we make if we sell the option to another party, or what we expect to make under risk-neutral
validation, if we hold on to the option until expiration. Either way, selling the call before expiration
is not an optimal strategy. W

9.8 Miscellaneous Notes About Some Definitions in Finance

In this chapter we list some financial terms that are mentioned in SCF2 without ever having been
formally defined. It will be continually in flow and its references thus are subject to change in newer
editions of these lecture notes.

Remark 9.13.

The following is based on the Investopedia link http://www.math.fsu.edu/~pkirby/mad2104/
SlideShow /s2_1.pdf (Long Position vs. Short Position: What's the Difference?).

2 Actually we stand to lose K — S; if S; < K and we are crazy enough to exercise the call anyway.
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SCF2 will deal a ot with hedges of short and long positions. Here is my understanding:

(@) A “(short option) hedging portfolio” is a portfolio h = (hB,hS) meant to hedge a
short position in the (call) option. Note that I am short an option and NOT a share
of the underlying: I have sold such an option and now use that portfolio to hedge
that sale, i.e., V' (w) = ¢(t, S(w)).

(b) A “long position in a call option” is one where I have bought such an option, and

I now want to create a portfolio i = (hZ, h5) to hedge this long position. Note that
I am hedging the purchase of an option and NOT of a share of the underlying, i.e.,

Vi) = —c(t, Si(w)). O

9.9 Exercises for Ch.9

None at this time!

195 Version: 2023-04-21



Math 454 — Additional Material Student edition with proofs

10 Multidimensional Stochastic Calculus

We generalize in this chapter the results of Chapter 8 (One dimensional Stochastic Calculus)

This chapter is very sketchy as far as proofs are concerned since the material follows extremely closely that of
SCF2 Chapter 4.6.

10.1 Multidimensional Brownian Motion

Definition 10.1 (Multidimensional Brownian Motion). Given are a filtered probability space
(2,8, 8, P)and d € N.

A d-dimensional Brownian motion is a vector—valued stochastic process

—.

W, = WO, w@ . W)
with the following properties.
(1) Each Wt(j ) is a one dimensional Brownian motion.
(2) If i # j, then the processes Wt(i) and Wt(j ) are independent, i.e., the o—algebras
U(Wt(i) :t20)and O‘(Wt(j )it > 0) are independent.

5.

(3) The process W; is §;—adapted, i.e., the random vector Wt is §;—measurable for
eacht = 0.

(4) Future increments are independent of the past: If ¢ 2 0 and 2 > 0, then the
vector WHh — Wt is independent of §;. [

Remark 10.1. Since W) is a Brownian motion for each j = 1, ..., d, all results derived for Brownian
motion apply to each one of those coordinate processes. In particular,

@ WO, wo, =t
@ awPdt = atw =0 and aw aw? =, O

Definition 10.2 (Cross variation). || %

Given are two adapted processes X; and Y; on a filtered probability space (2, §, §¢, P). Let T" > 0
and II:=0=1ty <t; <--- <ty =T apartition of [0, T]. We call the random variable

n—1

CH[Xa Y]T = Z(thJrl - th)()/thrl - Y;‘/k)
k=0

the sampled cross variation of X and Y on [0, 7] with respect to II.

If there is a stochastic process Z = Z; such that

Hrlli”n_lmE [(CnlX, Y] —Zr)?] = 0

for all T > 0 then we write [X, Y], for Z;, and we refer to the process [X, Y]; the cross variation of
XandY. O
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Remark 10.2. Note that if X =Y then the process [ X, X|; is the quadratic variation of X. O

Theorem 10.1. Let W; = (Wt(l), Wt@) ce Wt(d)) be a d—dimensional Brownian motion on a filtered proba-
bility space (2, §,§¢, P) (d € N). Let i and j be two integers such that 1 < i < j < d. Then

[W(i) W(j)} - 0.
’ t
PROQOF: See SCF2 ch.4.6.1. &

Theorem 10.2. Let W; = (Wt(l), Wt(Q) c Wt(d)) be a d—dimensional Brownian motion on a filtered proba-
bility space (2, §, §¢, P) (d € N). Let i and j be two integers such that 1 < i,j < dand i # j. Then

dW® aw@) = 0.

PROOF: This can be shown with help of Theorem 10.1 on p.197. See SCF2 ch.4.6. for details. W

10.2 The Multidimensional Ité6 Formula

One can generalize The It6 formula which computes the differential f(¢, X;), to processes X; which
are driven by a d—dimensional Brownian motion in the sense of the next definition.

Definition 10.3. || %

Let W, = (Wt(l), Wt(Q) NN Wt(d)) be a d-dimensional Brownian motion on a filtered probability space
(2,5,8t P) (d € N). We call a process X; an Itd process driven by W if its dynamics are

dX, = O,dt + Zaj ) daw? = e,dt + oy (t)dW Y + - + oa(t) dW P,

(10.1) =

Xo ==z,

for suitable adapted and sufficiently integrable processes ©; and G(t) = (o1(t)...,04(t)). In inte-
grated form (10.1) is equivalent to

(10.2) X, =z + / Oy du + Z / w) AW,

All this can be written more compactly if we extend the “bullet notation” 7 e § from vectors to
differentials and integrals as follows.

Notations 10.1. Let n € N. IfT; = (Fgl), .. .,Fﬁ”)) and A; = (Agl), . ,Agn)) are vector valued

t . A
stochastic processes for which the expressions [ I‘gf )qu(f ) exist, then we define
0

ﬁt ® dxzft = Z ng) dAIE]),
(10.3) '

t n t
/fu.dgu - Z/ r0) dA%), O
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With this notation we can rewrite (10.1) and (10.2) as follows.
dX, =O,dt + 3(t) e dW;; Xy = z,

¢ ¢
X, =2 +/ O,du + / d(u) e dW,. O
0 0

Remark 10.3. It should be mentioned that Itd’s Lemma not only generalizes to d—-dimensional Brow-
nian motions for d > 2 but also to functions

f(t7f) = f(t,l'l,CUQ,...,ﬂZn)
in which each dummy argument z;, can be replaced by an It6 process
d .
dx" =of dt + 3 oy(t) aw?;

=0

X® 0

We will not strive for such generality. Instead, we follow SCF2 and limit ourselves to d = n = 2.
Thus there will be two It6 processes, each one driven by a two dimensional Brownian motion. [J

Notations 10.2. From now on we assume that W, = (Wt(l), Wt@)) is a two dimensional Brownian
motion and that X, and Y; are the following Ité processes, driven by W;.

dX; = @1(t) dt + O'11(t) th(l) + Ulg(t) th(2),

dY; = Oy(t) dt + o1 (t) AW + oaa(t) AW,

The integrands ©;(u) and o;;(u) are adapted processes. We integrate and get

t t t
Xy =x9 + / @1(u) du + / 011(u) dWél) + / Ulz(u) dWéQ),
(10.5) 0 0 0

t t t
Y, = Yo + / @Q(U) du + / 0921 (U) dWQEl) + / 099 (u) dWéQ) O
0 0 0

Theorem 10.3. The multiplication rules for the multidimensional It0 calculus are

o dtdt = 0, o dtdW) = aw®at = o,
@) o _ (@) @) _ —
o AW, dW,W = t, o AW, dW,”" = 0 fori#j.

PROQF: This follows from the one dimensional case (see Remark 6.9 on p.123), together with The-
orem 10.1 on p.197. A
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Remark 10.4. The multiplication tables make computation of the differential d.X;dY; of two Ito
processes X; and Y; a trivial affair. For example, if those processes are given by (10.4), then

dX¢dXy = [d(01(t) dt + o1 (t) W) + oua(t) dW)]?
— @1(t>2dt dt + @1(t>dt0'11(t) th(l) + @1(t)dt0’12(t> th(Q)
+ ot o) AW aw

Only two of those nine terms survice, those with differentials
aw M awt) = dt and aw? aw? = dt. Thus

dXedX; = on(t)?dt + o1a(t)’dt = (o11(t)? + o12(t)?) dt,
and similarly,
dY;dY; = o01(t)*dt + o(t)?dt = (021(t)* + 02(t)?) dt.
Further,
dX,dY; = ©1(t)Os(t)dt dt + O1(t)dt oo (t) AW + ©1(t)dt oaa(t) AW
+ ot o) (t) AW aw )
Again only the two terms with differentials th(l) th(l) and th(Q) th(Q) are not zero. Thus,

dXt dYt = U11(t)0’21(t> dt + 012092 dt. O

Here is the Itd formula for a sufficiently smooth function f(¢,z,y) of time ¢t and two more param-
eters which will accept two Itd6 processes driven by a two dimensional Brownian motion. This is
SCF2 Theorem 4.6.2

Theorem 10.4 (Two dimensional It6 formula). Let f(t,x,y) be a function whose partial derivatives
Ity for fys faoxs foys fyz, and fy, exist and are continuous. Let Xy and Y; be Itd processes driven by a two
dimensional Brownian motion. The process (t,w) — f(t, X¢(w), Y;(w)) then has the dynamics

df(taXtam) = ft(taXb}/;f) dt + fw(t7Xt7)/t) dXt + fy(t7Xt>Y;f) dY;&
1
(10.6) + §fm (t, X1, ;) dXid Xy + foy(t, X, Y2) dXydYs

1
+ 5 foy (£ X0, Y3) dYid Yy,

PROQF: Omitted, but we mention that the continuity of f,, fy. gives us f,, = fyz, That fact to-
gether with dX;dY; = dY;dX, is the reason that 3 f., (t, X;, Y;)dX,dY; + 1 fy.(t, Xs,Y;)dX,dY; can
be replaced by fo, (¢, X¢,Y;)dXdY; instead of W

Remark 10.5. We use for the differentials d.X;, dY;, dX;dX;, dY;dY; and dX,;dY;, the expressions

found in Notations 10.2 and Remark 10.4. If we express the Itd formula with integrals rather than
differentials, we obtain
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F(t.X:,Ye) — £(0, X0, Yo)

_ /0 (011 (w) fo (1, Xy Y) + 021(0) £y (1, Xo, Ya)] AW ()
+ /O [o12(w) fo (1, Xy Y) + 022(u) £y (1, Xo, Ya)] dWar(u)
(10.7) + /0 t [ft(u,Xu,Yu) + O1(u) fo(u, Xu, Yu) + O2(u) fy(u, Xu, Ya)

( 1(u) + U%Q(U)) frz (uaX’u,Yu)
)021 (U) + 012(u)0'22<’u,)) fmy (qum Yu)

+
+ (o (u
+ ( % ( )"'022( )) fyy(%Xu,Yu)} du

M\HAM\H

You probably agree that this version of the Itd formula is much harder to remember and more cum-
bersome to use than (10.6). Here is the other extreme, with all arguments of the tunction f(t, z,y)
and its partial derivatives omitted.

df (t,X,Y) = frdt + frdX + fydY

+ ifxdetht + fxdetdY;g = Efyyd}/td}/t O

The following is an extremely useful consequence of the multidimensional It6 formula.

Corollary 10.1 (Itd product rule). If X; and Y; are two It processes then

(10.9) d(X:Y;) = X dY; + YidX; + dX; dY;.

PROOEF: We apply formula (10.8) with f(¢,z,y) = zy. Then f; =0, fo =y, fy =, fax =0, fay = 1,
and fy, = 0. The corollary follows easily. W

Proposition 10.1. Let Wt(l), ce Wt(m) be a collection of n onedimensional Brownian motions. No as-
sumption is made that they are the coordinate processes of a multidimensional Brownian motion or that
W@ £ WU fori # j. Let X and Y be Ito processes with differentials

dx, = Y (AVaw + e dat);  dv = Y v at
=1 j

where A(i), 0D and ) are suitable adapted processes. Then dXy)(dYy) = 0.
¢ ¢ t piea p

The proof is left as exercise 10.1 (see p.204). W
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Corollary 10.2. Let X; and Y; be Ito processes such that dY; is free of Brownian motion differentials, i.e.,

ay, = >, \119) dt for suitable adapted processes \115”. Then d(Xth) = X;dY; + Y:dX;.
j=1

PROOF:
It follows from Proposition 10.1 that (dX;)(dY;) = 0. By Itd’s product rule,

d(X:Y:) = X dY; + Vi dX; + (dXy) (dY;) = X dY; + VidX,. W

10.3 Lévy’s Characterization of Brownian Motion

Brownian motion W; is characterized by the following.

W; is an §;—martingale,

W() =0a.s. ’

t — Wi(w) is continuous a.s.,

W has quadratic variation [WW, W], =t a.s.

A theorem by the french mathematician Paul Pierre Lévy (1886-1971) shows that a stochastic pro-
cess M, with those properties is in fact a Brownian motion, i.e., those properties guarantee that
future increments W, — W; are independent of §; and they have a normal distribution with mean
zero and variance h.

d-dimensional Brownian motion W} is characterized by the following.

e each coordinate Wt(j Jisa (one dimensional) Brownian motion,
e Different coordinate processes W) and W) are independent, and they have
cross variation zero.

The multidimensional version of Lévy’s theorem proves that the reverse is true. Any process M,
with those two properties is a d-dimensional Brownian motion.

First we state the one dimensional version. This is SCF2 Theorem 4.6.4

Theorem 10.5 (Lévy’s characterization of one dimensional Brownian Motion). let (2, §, &+, P) be a
filtered probability space. Assume that the process My,t 2 0, satisfies

o My =0, M, has continuous paths, e M; is an F—martingale, e [M, M|, =t forall t = 0.

Then M; is an §—Brownian motion.

PROOF: | % || An outline of the proof can be found in SCF2. We summarize the major steps.

(1) The following can be defined and proven with a continuous martingale M; such that My = 0
in place of a Brownian motion W;. One can define
o [t integrals fot ZydM,, which adhere to the multiplication rules

dtdt = dtdMy = dMydt = 0, dM;dM; = t.

The last rule is obtained from the assumption [M, M]; = t.
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o Itd processes X; = Xy + fot Ay dM, + fot ©,du driven by a continuous martingale M;, and
one can prove the following Ito formula for X;:

df (t, X¢) = fu(t,Xs) A dMy + (ft(t, Xt) + fo(t, X:)Or + ;fm(t,Xt)Af) dt.

(2) Fix u € R. We apply this It6 formula to the function

f(t,x) := exp [ux - ;th} .

This yields the following:

(3) Thus M; has the same MGF as a Brownian motion W}, i.e., it is Brownian motion.
(4) It remains to prove the independence of My, — M; and §; forallt,h =2 0. W

There also is a multidimensional version of Lévy’s theorem (SCF2 Theorem 4.6.5).

Theorem 10.6 (Lévy’s characterization of multidimensional Brownian Motion). Assume that the pro-
cess M; = (Mt(l), . ,Mt(d)) satisfies the following.

Each coordinate process Mt(] ) is a continuous §—martingale,

[ ]
e its initial value is Mg =0,
e its quadratic variations are given by [MW) MU, = ¢ (j=1,...,d),
e its cross variations are given by (MW MW], = 0 (i,j =1,...,d; i # 7).
then M, is a d—dimensional Brownian motion. In particular, the coordinate processes Mt(l), Cee Mt(d) are

independent Brownian motions.

PROOF: |[* | An outline of the proof can be found in SCF2 for d = 2. The idea is similar to that
of the one dimensional case. Make again use of the fact that the It6 formula extends to Itd processes

driven by continuous martingales. Apply it, for fixed @ = (u1, ..., uq), to the function
d T
flt,xy,...,zq) = exp Zujxj — §tZu§
j=1 g=1

Use this equation to prove that the joint moment-generating functions of M; and W are identical.
This not only implies that each coordinate process Mt(] ) is a Brownian motion (it better be since that
is part of our assumptions). This MGF factors , and thus those processes are independent. We again

refer to SCF2 for further detail. W

The next proposition is a reformulation of SCF2 Example 4.6.6 (Correlated stock prices).

Proposition 10.2. || %

B Compare this to (8.16) on p.170.
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Assume that W, = (Wt(l), Wt(Q)) is a two dimensional Brownian motion and that St(l) and St(z) are two
stocks with dynamics
ds™t = a8 at + o180 aw Y,
dS? = ay8P dt + 038P [paw ) + V1 - p2dw?],
where 01,09 > 0and —1 < p < 1 are constant.
(1) Then the process
wWr o= th(l) + 1—p? Wt@).

is a Brownian motion.

2)
ds? = a,8P at + 0,8 dwy,

i.e., not only St(l), but also St(z) is a GBM (with constants oo and o9).
(3) Wt(l) and W have correlation p for all t. Since this implies that Wt(l) and W are not
independent, (Wt(l), W) is not a two dimensional Brownian motion.

PROOF:

W is a continuous martingale as the sum of continuous martingales, and W = 0. Further,

awy dwy = p2dw P aw Y + 201 = pZaw M aw? + (1 — p%) aw P aw
=pdt + 0 + (1 —pdt = dt.

Thus [W*, W*]; = t and assertion (1) follows from Theorem 10.5 (Lévy’s characterization of one
dimensional Brownian Motion).

The equation of assertion (2) is true by definition of W;*. Since we just proved assertion (3), W;* is
a Brownian motion, thus dSt@) = agSt(2) dt + oo 5,5(2)th* is the equation of a GBM with parameters
ag and os.

To prove assertion (3), we compute Cov[W;}!, W/]. Since th(l)th@) =0and th(l)th(l) =t,

awV awy = aw! (de + V1= p2dw?)
= pawMaw® + 1= p2awP aw? = pat.

By It6’s product rule, d(Wt(l)th*) = Wt(l)th* + Wy th(l) + th(l)th*. We integrate and obtain
(A) ww, / W qwr 4+ / W aw M + pt.

Since the It6 integrals on the right-hand side are martingales,

t 0 t 0
E[/ W dWJ] =E[/ wib dW;j] = 0, and E[/ W;dW51>] - E[/ WMWM — 0.
0 0 0 0

Thus, taking expectations in (A) yields E[W, wit )Wt} = pt.
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Since E[W}!] = E[W}] = 0, we conclude that
Cov[wi. i) = EWW;] — EW EW;] = EWW;] = pt.
Since Var[Wt(l)] = Var|[W}*] = ¢, the correlation of Wt(l)] and W is

(D) =
COI'[Wt(l),Wt*] _ COV[Wt 7Wt] — pt = p.

- \/Var[Wt(l)] - Var[W/] viz

This proves assertion (3). W

10.4 Exercises for Ch.10

Exercise 10.1. Prove prop.10.1 on p.200 of this document: If

dx, = Y (AVaw? + elat);  av; = Y v,
=1 j=1

then (dX;)(dY;) =0. O
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10.5 Blank Page after Ch.??

This page is intentionally left blank!
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11 Girsanov’s Theorem and the Martingale Representation Theorem

11.1 Conditional Expectations on a Filtered Probability Space

For all of this chapter let (12, §, §¢, P) be a filtered probability space.
The following combines both SCF2 Lemma 5.2.1 and SCF2 Lemma 5.2.2.

Proposition 11.1. Let Z be a nonnegative random variable on a filtered probability space (2, §, T+, P) such
that E|Z] = 1 and P{Z = 0} = 0. Let P be the measure with density Z w.r.t. P, i.e.,

P(A) = /A Z(w) dP(w).

In other words, Z is the Radon—-Nikodym derivative g. See Chapter 4.7 (Equivalent Measures and the

Radon-Nikodym Theorem). Then P is a probability measure which is equivalent to P, i.e.,
P(A) =0 < P(A) = 0.
We write E for the expectation of a random variable Y w.r.t. P, ie.,
E(Y) = /Q Y dP.

For the following we assume that t,h € [0, 00 [ and that Y is an F—measurable random variable.
Let Zy := E[Z | §] Then the following relations hold.

(11.1) ElY] = E[Y Z)],
(11.2) E[Y|%] = thE[YZt-I-h | §t]
PROOF: |/

A. We show that Pis a probability measure which is equivalent to P.
P(Q) = / ZdP = E[Z] = 1.
Q

This proves that P is a probability measure. Let A € § such that P(A) = 0. To show P ~ P we only
must prove that P(A) = 0 since P < P on account of Proposition 4.20 on p.84.

Let 7/ := (1/Z)12>0. Then
0 =P(4) = /ldP = /ZZ’dP+/1-1Z:0dP = /ZZ’dP+O
A A A A
= /(1AZ’)ZdP = /1Az’dﬁ = /Z’dﬁ = 0.
A

The last equality follows from Proposition 4.20, applied to s := P and f := Z’. We have shown that
all P-null sets are P-null sets, thus P ~ P.
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B. Proof of (11.1). We use in sequence

the definition of P: dP = ZdP,
iterated conditioning

the “taking out what is known” rule
the definition of Z;:

ElY] =E[YZ] = E[EYZ|5]|] = E[YE[Z|%]] = E[YZ]. ®

C. Proof of (11.2). To prove that Z%E [Y Z+n | 8¢ is the conditional expectation of Y w.r.t. §; and P
(not P!) we must show that

(¥} Z%E Y Ziin | 5t is Fi—measurable,
(2) %tE[YZt+h | 4] satisfies the partial averaging property

(A) / iE[YZHh\gt] dP = / Y dP forall A € §,.
A2t A

(1) is trivially satisfied, since E[- - - | §¢] enforces §;—measurability.
To prove (2) we first note that formula (11.1) with 14 Z%E[YZH;L | §¢] in place of Y yields

~ 1 1
(B) E [IAZtE[YZt+h St]} =F [1,4 Z ElYZiih |54 - Zt} = E[ 1AEY Zyih, | 54 ],

Since (11.1) holds true for all nonnegative time indices, we can replace ¢ with ¢ + h. Moreover, since
14Y is §;—measurable, it follows from §; C §;4, that 14Y Fiip—measurable. Thus we are allowed
to also replace Y with 14Y in (11.1). We obtain

(C) E[1,4Y] = E[14Y Zy11).
Proving (2) means proving (A). We will accomplish this as follows.

1 ~ ~ 1 B
/AZtE[YZHhSt] AP = E 14 5 Y Zor |51 ® B1AEY Zyin | 5]

= B[EIAY Zuun | 5] = E[14YZn] € B4y = /AYdﬁ.

Here we have used the “taking out what is known” rule tobtain the equation after (B) and the
iterated conditioning rule for the equation that follows it. We have shown that (A) is satisfied. W

11.2 One dimensional Girsanov and Martingale Representation Theorems

The following is SCF2 Theorem 5.2.3.

Theorem 11.1 (Girsanov’s Theorem in one dimension). Let T' > 0 and let (2, §, 3+, P) be a filtered
probability space where the filtration members §; and all stochastic processes that are used in this theorem
only need to exist for 0 < t < T'. Let W; be a Brownian motion on this filtered space, and let ©; be an adapted
process which satisfies the integrability condition

T
(11.3) * E[/ @323du] < 0.
0
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where the process Z is defined in terms of ©; by formula (11.4) below.

Let
t 1 t
(11.4) i exp{—/ Oy dW, — = / eidu},
0 2 Jo
= . dP
(11.5) P(A) = / ZrdP forall A€ §r ie, Zr = —,
A ar
— t —
(11.6) Wi =W + / O, du, ie, dW; = dW; + O:dt.
0
Then (a) P is a probability equivalent to P. (b) Wy, 0 <t < T, is a Brownian motion w.r.t. P.

PROOF | % | : See the proof of SCF2 Theorem 5.2.3. W

Remark 11.1. |[ %

Strictly speaking, it is not correct to write Zr = % in (11.5), because the domain of the probability
measure P is all of § and P only has domain §7. Rather, we have

Zr = ——,
dP\ST

where P’ - is the restriction of the function P : § — [0, 1] to §7. See the formulation of Theorem
5.3 (Existence Theorem for Conditional Expectations) on p.102. [

Remark 11.2. The importance of the Girsanov theorem with respect to mathematical finance lies in
the following. We will see later that if stock price is a generalized GBM

(117) dS; = oySpdt + 0¢Sy dWy, 0 é t é T,

and we have a discount process with an interest rate R, which can be stochastic (adapted):

t
(11.8) D; = exp [—/ R ds] ,

0
(see Definition 7.5 on p.132), Let us define ©; to be the so called market price of risk process,
(11.9) o, = d—fit

0t

Then the discounted stock price has the dynamics
(1110) d (DtSt) = O'tDtSt [@tdt + th] .

We apply formula (11.6) of Girsanov’s theorem and replace ©.dt + dW; with the differential of the
P-Brownian motion W;. We obtain

(11.11) d(DySy) = 01Dy dWy] .
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Itd calculus is defined for any Brownian motion, and all its theorems are in force. Thus the process
D,S; is a martingale with respect to the probability P, hence,

(11.12) D;S; = E[DrSr | 3]
Now let us switch to self-financing portfolios
H, = (HE,HY) = (Do(Xy — DS, Ar)

Here we have given both the notion of MF454 Chapter 7 (Financial Models - Part 1) and SCF2:
Recall that SCF2 writes A, for the shares H;” held in the stock and X for the portfolio value V,/.

From (11.12) it will follow that the discounted portfolio value process has dynamics
(11.13) d(DXy) = Aoy DyS; dW.

Thus D; X; is a f’—martingale. We obtain

(11.14) DXy = E[DrXr|§].

Now we get to the really important part. Assume that we have a contingent claim X with pricing
process 11;(X), and that Hisa replicating (thus self-financing) portfolio, i.e., it is a hedge for that
claim, i.e., X7 = X. Then, of course, D7 X1 = DrX, and the pricing principle which results from
the no arbitrage condition implies that

(1115) Xt == Ht(.)(), hence DtXt = Dth(X) for 0 é t é T.

We have found the long sought after pricing formula for a contingent claim based on a stock with
generalized GBM as its price process S;. It follows from (11.14) and (11.15) that

1 ~

(11.16) I (X) = EE[DTXT | Sl

This formula will be used, e.g., to prove formula (9.30) of Theorem 9.1 on p.187 which gives the
explicit solution for the price process c(t, ) of a European call.

Before we get to develop the program outlined here we need some more theory to close the follow-
ing gap. Formulas (11.15) and (11.16) hold for hedging portfolios of a contingent claim. But what
claims are reachable? The martingale representation theorem, which we will discuss next, can be
used to prove that all claims can be hedged if the information for the stock price S; is contained in
that of the driving Brownian motion W;. O

We have seen that being a martingale represents a very strong condition concerning what such a
process can look like. Lévy’s characterization of one dimensional Brownian Motion (Theorem 10.5
on p.201) tells us that if a martingale has continuous paths, starts at zero and has the quadratic
variation of Brownian motion, then it is in fact a Brownian motion. What we will see next is that
any martingale M; with initial condition M, = 0 which is adapted to the filtration F}" of a Brownian
motion W; is an Itd integral M; = fg I',dW,, for some suitable adapted process I';.

The following is SCF2 Theorem 5.3.1.
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Theorem 11.2 (Martingale representation, one dimension).

Let T > 0. Assume that
o W;,0 =t = T isa Brownian motion on a probability space (2,5, P),

o TV, 0=t < T is the filtration generated by this Brownian motion,
o M, 0 =t <T,isamartingale with respect to this filtration:

o foreveryt, M;is SXV —measurable,

o E[M|F¥]=M,, foral0<s<t<T.

Then there exists an adapted process I',,,0 < uw < T, such that

t
(11.17) M, =My + / TudW,, 0St<T.
0

PROQF: Beyond the scope of thix course. To find it, you must consult mathematically more ad-
vanced literature, e.g., [10] Qksendal, Bernt: Stochastic Differential Equations: An Introduction
With Applications.

Remark 11.3.

If the assumptions of the martingale representation hold then all martingales are continu-
ous since they are It6 integrals. This has some undesirable consequences.
If we want to model stock prices S; which can jump at certain times without losing the very

important property that the disounted stock price DT'S; is a martingale and sufficiently
many claims can be hedged, then we need to include stochastic information, i.e., uncer-
tainty, different from or besides that of Brownian motion.

We will not get to that point in this course but note that this is done in SCF2 Chapter 11 (Introduction
to Jump Processes) in which stock price is driven by (generalized) Poisson processes in addition to
Brownian motion. [J

We add the assumption §; = SXV to Girsanov’s Theorem 11.1. This results in the following corollary
(SCF2 Corollary 5.3.2).

Corollary 11.1. Let T' > 0 and let W, be a Brownian motion on a probability space (2, §, P) Let Oy, be an
adapted process w.r.t. the filtration )V ,0 < t < T, i.e., the filtration generated by W, (!) which satisfies the
integrability condition

T
(11.18) * E[/ eﬁzgdu] < 0.
0
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t 1 t
o let Z; = exp{—/ 0,dW, — / @3du},
0 2 Jo

- dP
e P(A) := / ZrdP forall A e §r, ie, Zr = —,
A, dP
e W, =W, + / Oudu, ie, dW, = dW, + ©dt.
— 0 ~
o Let My (0 <t <T)bean §}¥—martingale under P (not P!)

Then there exists an ¥ —adapted process T, (0 < u < T), such that

—~— —~ t~ —~—
(11.19) M, =M, + / TudW,, 0<t<T.
0

PROOF: Will not be given here. Just one comment. More needs to be done than just combining
Girsanov’s Theorem with the Martingale Representation Theorem, since the process M; is a P-
martingale with respect to a filtration SXV , and this filtration is not generated by a P—-Brownian
motion, but by the P-Brownian motion W;! R

Remark 11.2 on p.208 showed the significance of Girsanov’s Theorem and alluded to that of the
martingale representation theorem (Theorem 11.1) when modeling contingent claims with one un-
derlying stock. We need multidimensional versions of those theorems to model claims with several
underlying stocks.

11.3 Multidimensional Girsanov and Martingale Representation Theorems

We will use in this chapter the bullet notation for stochastic integrals f(f fu ° dffu and differentials
ft ° d/ft which was introduced in Notations 10.1 on p.197.

The following is SCF2 Theorem 5.4.1.

Theorem 11.3 (Girsanov’s Theorem in multiple dimensions). Let T > 0 and let (Q2,§, S, P) be a
filtered probability space where the filtration members §; and all stochastic processes that are used in this
theorem only need to be defined for 0 < t < T. Let W; be a multidimensional Brownian motion

W, = (W, W)
(thus the coordinate processes W;(t) are independent). w.r.t. the filtration §¢,0 <t < T. Let

6, = (6",...,0\")

be a d—dimensional adapted process which satisfies the integrability condition

T
(11.20) X E [/ 16113 Z: du} < .
0
d
Here, ||Z||2 = ac? is the standard Euclidean norm in RY. See Example 6.2 on p.118. Let
j=1
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t . . 1 t .
(11.21) Zy = exp{—/ Ou e dWy — 5 / ||@u||2du},
0 0
~ P
(1122) P :A— / Z7 dP, ie., Jp = d7,
A ar
= R t = N o
(11.23) Wy =W + / Oy du, ie, dW; = dW; + O.dt.
0
Then (a) P is a probability equivalent to P, (b) Wy, 0 < t < T, is a Brownian motion w.r.t. P.

Note that the vector equations in 11.23 are to be understood componentwise:

w9 —w9 4 / 0 du, ie, dW = dwl +eYVat forj=1,...d.
0

PROOF |[% | : Will not be given here. W

Remark 11.4. The following aspect of the multidimensional Girsanov Theorem deserves special

mention. W, being a d-dimensional Brownian motion implies that its component processes Wt(j )
are independent w.r.t. the new probability P. This is not at all obvious from the fact that the
components of the original Brownian motion W are independent under the probability P. [

Next comes the multidimensional version of Theorem 11.2 (Martingale representation, one dimen-
sion) on p.210. This is SCF2 Theorem 5.4.2.

Theorem 11.4 (Martingale representation theorem, multiple dimensions). Let T be a fixed positive
time, and assume that

° Wt, 0 <t £ T is a d—dimensional Brownian motion on a probability space (2,5, P),
o 3F/V,0 <t < T is the filtration generated by this Brownian motion,
o M;,0=1t=T,isa (onedimensional) P-martingale with respect to this filtration.

Then there is an adapted d—dimensional process T, = (T1(w),...,Ta(w)),0 < u < T, such that

t
(11.24) M, =My + / F,edW, 0<t<T.
0

We now assume in addition to the assumptions stated so far the notation and assumptions of Girsanov’s
Theorem in multiple dimensions (Theorem 11.3). Then the following also is true.
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Let My,0 < t < T, be a (one dimensional) P—martmgale with respect to St 0=t ST, the
filtration generated by the original Brownian motion Wt Here P is the probability from Girsanov’s

Theorem, equivalent to P, which makes the process W defined by
dVIN/t(j) = th(j) 4 ng) dt and Wt(j) =0forj=1,...,d,

an S}f/f/ —Brownian motion.
Then there is an adapted d—dimensional process I, = (ﬁ(}), e ,fgd)) ,0 < u < T, such that

N ey t -
(11.25) M, =M, + / v dW, 0<t<T.
0

PROOF: Will not be given here. W

11.4 Exercises for Ch.11

None yet
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12 Black-Scholes Model Part II: Risk—neutral Valuation

In this chapter we elaborate on Remark 11.2 which gave an outline of how Girsanov’s Theorem
(Theorem 11.1 would be crucial in pricing a contingent claim.

12.1 The One dimensional Generalized Black—Scholes Model

In Chapter 9 (Black-Scholes Model Part I: The PDE), Definition 9.2 on p.182 stated the classical
assumptions of a Black-Scholes market economy. They are rather restrictive. For example, the
instantanous mean rate of return and volatility that are part of the dynamics of the stock price S;
are assumed to be constant. We weaken those assumptions for most of this entire chapter 12.

Definition 12.1 (Generalized Black-Scholes market model). Let ' > 0 and let (2, F, 3§, P) be a
tiltered probability space We only assume that the filtration §; and all stochastic processes that will
be defined later exist for times 0 < ¢ < T Let W;,0 < t < T, be a Brownian motion w.r.t §.

We no more require that the instantaneous mean rate of return «, the volatility o of the stock S,
and the interest rate r that governs investments in the bond are constant. Instead, we assume the
following.

o Let D, S, Ry, o, 04 be §; adapted processes.

e Assume that o; # 0 a.s. for any given t.

ar — R t
o Let 6;:= L = Assume that

(oF7

(12.1)

We speak of a generalized Black-Scholes market model if

(12.2) dD; = — RyDydt; Dy = 1;
(12.3) dS; = aySydt + 0¢Sy dWy; Sy G]0,00[;Q’t,O't E]0,00[;
(12.4) The market is efficient: No arbitrage portfolios exist.

o We interpret D; as the discount process associated with a riskless asset (bank account): As-
sume that an investment will pay the amount 1 (dollar) at the future time ¢. Then it’s worth
today, at t = 0, only is the amount D;, since this amount could be invested in the bank in-
stead, where it would increase to 1 due to interest compounded at the rate R;.

o We interpret S; as the price process associated with a risky asset (e.g., stock). O

Remark 12.1. First some remarks about the process D;.
(1) From (12.2) we obtain

t
(12.5) D; = exp [— / Rudu] .

0
This follows easily from differentiating the right hand side with respect to ¢.
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(2)  We could have worked instead with the interest rate process

t
1
dB; = RyBidt; Bp =1, 1ie.,B; = exp [/ Rudu] = o
0 t

but using D; instead will make it easier to relate the contents of this chapter to the SCF2 text.

Also, be aware of the following.

(3) Formula (12.3) states that S; is a generalized GBM with instantaneous mean rate of return
oy and volatility oy, for which we have the explicit representation

t t
(12.6) Sy = 5y exp [/ o dWy + / (au — ;O’Z) du} .
0 0

See Example 8.1 on p.171, the subsequent Remark 8.8, and (8.17) on p.171. .

(4) It was not necessary to explicitly require the adaptedness of the processes S; and D;. For-
mula (12.2) (equivalently, formula (12.5)) implies that, as far as measurability is concerned,
D, only depends on the adapted process R, for s < t, and thus only on information in §;, i.e.,
D, is adapted. We conclude similarly that formula (12.3) (equivalently, formula (12.6)) im-
plies that measurability of S; only depends on the adapted process W;. Thus S, is adapted.

(5) Recall from Assumption 7.1 on p.134 that we always assume that, besides being free of
arbitrage, the market has complete liquidity, no transaction costs and no bid—ask spread. O

Remark 12.2. The degree of uncertainty, i.e., the risk of investing in the bank account, is significantly
smaller than that of investing in the stock. These are the reasons.

Only the randomness of the process R; within a small interval [¢,¢ + h| affects that of the change
Dy p, — Dy. Since dtdt = 0, this results in quadratic variation [D, D], = 0. Thus

dDydD; = (—RyDydt) (—RyDydt) = RID?dtdt = 0

In contrast the randomness of o, within [¢,¢ + h] is multiplied by that of the increments of the
Brownian motion W;. Those increments are so unpredictable that they result in a quadratic variation
[W,W]¢ # 0. As a consequence the nonzero volatility o; results in fluctuations of S; which too are
so unpredictable that [S, S]; # 0. We see this from the dynamics of S;:

dS;dS; = a?S?dtdt + 2040:S? dt AWy + 0252 AWy dW; = o2S?dt.

From It6 isometry we obtain the strictly positive expression
t+h
(S, Slen — [, 8] = / oo Sa du.
t

In the words of SCF2,

Unlike the price of the money market account, the stock price is susceptible to instantaneous
unpredictable changes and is, in this sense, “more random” than D;. Our mathematical

model captures this effect because S; has nonzero quadratic variation, while D; has zero
quadratic variation. [
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Formula (11.9) of Remark 11.2 on p.208 already introduced the market price of risk. Here is the
formal definition.

Definition 12.2. For the generalized Black-Scholes market economy of Definition 12.1 on p.214,

the market price of risk is the process

ap — Ry

ot

(12.7) 0, =

Note that ©, is adapted as the difference and quotient of adapted processes. [J
Remark 12.3. The assumption (12.1) on p.214,
T
(12.8) E [/ S du] < o0,
0
will allow us to apply Girsanov’s Theorem to the market price of risk process. []

12.2 Risk—Neutral Measure in a Generalized Black—Scholes Market

Assumption 12.1.

We assume for the entire remainder of this Chapter 12 (Black-Scholes Model Part II: Risk—
neutral Valuation) that we have a generalized Black-Scholes market as defined in Definition

121 onp.214. O

Introduction 12.1. We recall definitions (7.11) on p.146 and (7.12) on p.150 of the binomial asset
model in which we defined a risk-neutral measure, also called there a martingale measure, as a
probability measure  equivalent to the “true” probability which made discouned stock price D;S;
a -martingale. To see that, observe that the (not continuously) compounded interest earned be-

tween times 0 and ¢ (¢ € N) in the bank is (1 + R)!, thus the discount factor is
1
t = ——

(1+ R’

We are now in a position to prove with the help of Girsanov’s Theorem the existence of a risk—
neutral measure for a generalized Black-Scholes market. [J

Definition 12.3 (Risk—-neutral measure).

A risk-neutral measure P for our generalized Black-Scholes economy, also called a mar-
tingale measure, is the following.
(1) Pisa probability measure on g7, i.e., ]B(A) need only be defined for events A C ()
which belong to 37
2) e P,ie., Pand P are equivalent on §r:
IfAecFr then P(A) =0 < P(A) = 0.
(3) Discounted stock price D;S; is a ﬁ—martingale w.r.t. the filtration §;. O
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Proposition 12.1. The discounted stock price has the following dynamics and explicit representation.

(129) d(DtSt) = (Oét — Rt)DtSt dt + o1 DSy dWy

t t 1
(12.10) DSy =5 exp{/ oy dWy + / (au - R, — 503) du} .
0 0

Let th = dW; + ©,dt , where Oy is the market price process given by (12.7). Then

(12.11) dS; = RiS;dt + 0¢Sy dW;,
(12.12) d(DySy) = 01Dy Sy AW .
PROOF:

PROOF of (12.9): By (12.2), dD; = —R;Ddt. By (12.3), dS; = a;Sidt + 04S;dW;.
Since dD; has no Brownian motion differentials, It follows from Corollary 10.2 on p.201 that

d (DtSt) = Dt dSt + Stht = Dt (OétSt dt + O'tSt th) - SthDt dt
= DtSt<Ozt — Rt)dt + O'tDtStth)

This proves (12.9).

PROOF of (12.10): It follows from (12.9) that D,S; is a generalized GBM with instantaneous mean
rate of return o} := oy — R; and volatility o, Since DSy = Sy, formula (8.20) on p.171 yields

DSy = Sp exp{/otauqu + /Ot (af, = Ry — %ag) du} :
This proves (12.10).
PROOQOF of (12.11): We substitute th = dW; + ©4dt in formula (12.3) for dS; and obtain
dS; = uSpdt + 0 dWy = Sydt + 0,S;dW — 0154, dt
Since 0:0; = oy — Ry,
dS; = aSidt + 1S, dW — Sy(ay — Ry) dt = 04y dW; + SiRydt .

This proves (12.11).
PROQOF of (12.12): We substitute dV[N/t = dW; + ©,dt in the already proven formula (12.9)

d(DySt) = (ar — Re)DySydt + 01Dy Sy (dW; — Oydt)
= (au — R)DySydt — (000,)Dy Sy dt + 01DySy W, .
Since 0:0; = oy — Ry,
d(DyS;) = (o — Ry)DySydt — (o — Ry)DySydt + 00D Sy dW, = 0,DySydW,. B
This proves (12.12).

As a consequence of Girsanov’s Theorem we can prove the existence of a risk-neutral measure.
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Theorem 12.1. Let the process Z;(0 < t be defined as follows

<T
1 2
= @udW -3 @ du

Here © is the market price of risk process, ©; = &= Rt, of Definition 12.2 on p.216. Then
Ot

o the measure P : A / Zr(w)dP(w) (A € §r) is a probability on §r, and P~ P.
A

— t — —
o Theprocess Wy = Wy + / O, du, (equivalently, dW; = dW; + ©.dt and Wy =0),
0

is an F—Brownian motion w.r.t the new probability measure P.
o Discounted stock price DSy is a P-martingale.

PROOQF: We can apply Theorem 11.1 (one dimensional Girsanov) on p.207 to ©, since the assump-
tion (12.1) (p.214) implies that the integrability condition (11.3) of that theorem is satisfied. To show
that D,S; is a P-martingale, we apply (12.12) and obtain

d (DtSt) = O'tDtSt (th)v

(12.13) ¢ N
ie., DSy =8y + / 0uDySy dWy,.
0

0 —_—~—
We are allowed above to write Sy for DySp because Dy = e~ Jo Budu — 0 — 1, Since W4 is an §i—
Brownian motion under P, D;S; is the sum of the §y—measurable constant Sy and a P-It6 integral
of an §;—Brownian motion, hence it is a P-martingale w.r.t to §;. W

Corollary 12.1 (Existence of a risk-neutral measure).

o The probability measure P of Theorem 12.1 is a risk—neutral measure for the generalized
Black—Scholes market in he sense of Definition 12.3 on p.216.

o The dynamics of discounted stock price when using Wy instead of Wy are

(1214) d(DtSt) = O'tDtSt(th).

PROOF: Formula (12.14) was established in the proof of Theorem 12.1. The remainder is an obvious
consequence of that theorem. W

Remark 12.4. Note the following.

e (12.14) holds true both under the “real” probability P and the risk-neutral probability P!
It just so happens that the ©.dt part of AW, = dW; + Oydt prevents D.S; from being a
martingale with respect to P unless ©; =0, ie., a; = R, for 0 St < T.

e Think of the above as follows. We may assume that the risk premium o; — R; in the real
market, i.e., under the real world probability P, is positive on average. (See Remark 9.2
on p.183.) The redistribution of probability mass under risk-neutral probability P has the
following effect. The upward trend of discounted stock price which happens under P as
a cause of the ©,dt term is neutralized by P since this probability gives additional mass to
those w for which o < Ry, at the expense of those w for which a; > R;. 0O
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Here are some additional remarks.

Remark 12.5. This is the significance of (12.9) and (12.10) of Proposition 12.1 on p.217:

Discounting transforms the generalized GBM S; with an instantaneous mean rate of return

oy and volatility o, into another generalized GBM, D, S;, with reduced instantaneous mean
rate of return oy — R.

And this is the significance of (12.11) and (12.12):

Risk—neutral validation transforms the generalized GBM S; with an instantaneous mean
rate of return a; and volatility o; into another generalized GBM, D;S;, with the same in-

stantaneous mean rate of return R; as the risk free asset and unchanged volatility o;.

Neither transformation affects the volatility. It remains o in all cases.

Let us also revisit formulas (12.9)—-(12.12) from the point of view that Pisa martingale measure,
and W is a P-Brownian motion.
e (12.9) and its equivalent form, (12.10), both state that discounting at the riskless rate R,
decreases oy, the instantaneous rate of return, by R; to oy — R;.
e (12.11) expresses that risk—neutral validation amounts to not considering the risk that comes
with investing in the risky asset. It seems natural that the risk premium in height of o; — R;
that we add to R;, the rate of return for the riskless asset, should go away.

e Since S; has R; as its rate of return under P and discounting with D; reduces the rate of
return by R;, discounted stock price D;S; should have no trend to move up or down, given

its current value. This is the meaning of (12.11) which shows that D,S; is a P-martingale.
O

12.3 Dynamics of Discounted Stock Price and Portfolio Value

We saw in Chapter 9.3 (Discounted Values of Option Price and Hedging Portfolio) that in a (clas-
sical) Black-Scholes market the budget equation for a self-financing portfolio is given by formula
(9.14) on p.183,

dVy = YidS; + rX;dt.

Here, Y; = Hts = stock shares, XtVtB =V, — Y;S;. # In the generalized Black-Scholes market we
obtain dV; by replacing the constant interest rate r with the varying interest rate R;(w).

Proposition 12.2. The budget equation for a self-financing portfolio is

(12.15) dV; =Y;dS, + RyX,dt

Further we have the following equation for the portfolio value dynamics.

(1216) d‘/;f = Rt‘/t dt + }/thtSt [@t dt + th]

*See Notations 9.2 on p.181.
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PROOF: Equation (12.15) is obvious. It just states that the number Y; of shares held in the stock
increases by the change dS; inasset price, and the value X; of the bond holdings changes during dt
according to the interest rate, R;.

We repeat here the proof of (12.16) as it is given in SCF2, Chapter 5.2.3 (Value of Portfolio Process
Under the Risk—Neutral Measure).

dVy =Y dS, + Ry X dt
= th (OétSt dt + UtSt th) + Rt (‘/t — Kg St) dt
= oYy Spdt + Yiou Sy dWy + RV — RiY;Sdt .

We re—order, then group the Y;S;dt terms, then use oy — R; = ©;0; (market price of risk equation).
d‘/t = Rt‘/tdt + OétY;fSt dt — RtY;gSt dt + Y;:O'tSt th

= RtV} dt + Y;&(Oét — Rt)St dt + tho—tSt th
:Rttht + Y;f()'tst [@tdt + th] . i

Proposition 12.3. The discounted portfolio value D;V; has dynamics
(12.17) d(DVy) = Y01 DySy dW.
PROOF: Again we follow SCF2. It follows from Corollary 10.2 on p.201 and dD; = —R;Ddt, that
d(DiVy) = DidVy + VidDy = DydVy — Vi(RiDydt) .
Next we apply (12.16) to dV; and obtain
d(D¢V;) = Dy (RiVidt + Yi04S; [©dt + dWy|) — Vi(RyDydt)

= DiR;Vydt + D;Y;045; [O¢dt + dW;| — ViRyDydt

= D,Y;04S; O dt + dWy].
This proves (12.17). W

It follows from Proposition 12.3 that D;V; is a martingale under ﬁ, thus

(12.18) DV = E[DyVy |3 forall0<t < T.

Now assume that V; is the value of the hedging portfolio for a contingent claim X. We denote the
arbitrage free price process of X’ by II;(X’), and we recall that IIr(X) = X, since X denotes the
payoff at time T of the derivative on which this claim is based.

According to the pricing principle, V; = II;(X) holds for all ¢ < T to avoid arbitrage. Of course, this
implies that D;V; = D,I1;(X) for all t < T'. We obtain from Proposition 12.3 the following

Corollary 12.2. Assume that V; is the value process of a hedging portfolio for a contingent claim with price
process I1;(X) for 0 < t < T. Then

DL (X) = E[Dr X |3, 0S¢ <T.
B —fTR du
,(X) = E e ' Bu X‘gt},0§t§:ﬂ
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PROOQF: The equation for D;II;(X) results from this process being a ﬁ—martingale. The formula for
I1;(X) is then obtained by noting that

T t T
Dy = exp (—/ R, du> = exp (—/ R, du> exp (—/ R, du)
0 0 t

and observing that the exponential e~ Jo R du

tional expectation. W

is §+ measurable and can be pulled out of the condi-

Definition 12.4 (Risk—neutral valuation formula). We call either one of the Corollary 12.2 formulas,

(12.19) DiTI(X) = E[Dr X |3, 0St<T.
(12.20) ,(X) =E [e— S Rudu ‘ gt] , 0St<T.

the risk—neutral pricing formula, also the risk-neutral valuation formula for a contingent
claim with contract function X. O

12.4 Risk-Neutral Pricing of a European Call

Assumption 12.2. For this entire subchapter we assume the following.

The instantaneous mean rate of return is constant: a;(w)
The volatility is constant: o(w) = o.

The interest rate is constant: R:(w) = 7.
the derivative is a European call, i.e., the payoffis X = ®(Sy) = (Sr— K)". O

We now derive the Black-Scholes formula for the price of this European call. > Since the contract
function for a European call is
X = &(Sr) = (5S¢ — K)T,

the risk-neutral valuation formula (12.20) on p.221 for V; reads
(12.21) (X)) = E [e’T(T’t)(ST ~K)* \gt} .

We are looking for a way to evaluate this expression only using data known at time ¢. This could be
accomplished if there was a function (¢, z) — c¢(t, z) of time ¢ and stock price x such that

(12.22) c(t,8) =E [e‘T(T_t)(ST ~ Kt |gt} .

45SCF2 does not ask that o, be constant, presumably because this variable does not directly show in the formula
c(t,S) = E [e_T(T_t)(ST -K)* !St] .

But without that assumption S; would not be a GBM, only a generalized GBM which is not necessarily Markov, since
part or all of the past could enter the dynamics dS; = oS dt + 0S;dt.
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There is hope to find such a function because the geometric Brownian motion S; is a Markov pro-
cess, thus the right-hand side of (12.22) only depends on stock price S; and time ¢, but not on the
stock price prior to time t.

To achieve that goal, we fix a time 0 < ¢ < T and define

Wr — W,
12.2 =T — t; Y = - L 2F
(1223 ! ’ N
0.2 +
(12.24) h(tyz,y) =e " (wexp{—aﬁy + <r - >T} - K> .

Note that Y is standard normal w.r.t. P since Wt,t >0,isa P-Brownian motion.
We next provide three lemmas which have the following purpose.

e Lemma 12.1 shows that we can work with h(t; S;,Y) instead of e "™ (Sp — K) ™.

e Lemma 12.2 gives the definition of ¢(¢, z) in terms of h(t;z,y).

e Lemma 12.3 allows us to actually compute c(¢, z). The result will be formula (9.30) of Theo-
rem 9.1 on p.187 which was stated there without proof.

Lemma 12.1. With the above definitions we can rewrite the risk—neutral valuation formula (12.21) for a
European call as follows.

(12.25) Ele (87— K)T|§] = E[ht;8,Y) | 5]

PROOF: According to (12.10) on p.217,

t __ t 1 __ 1
S =50 exp{/ os dWy + / (des — 503) ds} =Sy exp{aWt + (7’ — 202> t}.
0 0

For t = T we obtain similarly that ST = Sy exp {a WT + (r — %02) T}. Thus
St . -~ 1 9 —~ 1 9
S, —exp{{UWT+ <1"— 2O’>T:| — |:O‘Wt+ (7“— 20)15]}
— 1
= exp{a(WT - Wy + <r - 202> (T—t)},
thus

Sy :St-exp{a(V[N/T _ W) + <'r _ ;gz) (T—t)}

:St-exp{—aTm + <r - ;H) (T—t)}

1
(12.23) St.exp{aTY + <7“ - 202> (Tt)}.

It follows from that equation for St that

2 +
h5503) = (0o {-over + (= 2) 7} < )
= efr‘r(ST _ K)+'
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We apply conditional expectations E|- - - | §] to both sides and assertion (12.25) follows. M
We remember our goal: find a function (¢, z) — c¢(t, z) such that (12.22) holds:

(12.26) o(t,5) = [T 05— K)* [ 5]

Lemma 12.1 allows us to reformulate this problem as follows: Let h(t; z,y) be the function given in
formula (12.24). We want to find a function (¢, z) — c(t, z) such that

(12.27) c(t,S:) =E [h(t; S, Y) | §:] -
The next lemma shows how to define this function c(t, ).
Lemma 12.2. Let

(12.28) c(t,z) == Eh(t;z,Y)],

where h(t;x,y) is the function defined in (12.24). Then c(t,S;) satisfies (12.27) and hence also the risk—
neutral pricing formula (12.22), i.e.,

(12.29) c(t,S) = E e (St — K)T |5 ].

PROOF: We fix 0 £ t £ T. Since S; is §;—measurable and ¥ = WT\ﬁWt is, as a function of the

Brownian increment WT - Wt, independent of §,, it follows for each tixed 0 < ¢ < T from the
Independence Lemma (Lemma 5.7 on p.108) 4 that

c(t,S1) =E [h(t:S.Y) | 8]
This proves the validity of (12.27). We apply Lemma 12.1 and (12.29) follows. W

We have shown that the function ¢(t,z) = E[h(t;,Y)] allows us to price a European call option,
at time ¢, conditioned on the stock price S; at that time, via the risk-neutral pricing formula

(12.30) (X)) = ¢(t,5;) =E [e—r(T—t)(ST _ K &} _

It follows from the definition of h(¢; z,y) given in (12.24) that

oo (oo (- )} 1) ]

This is an ordinary expected value of a function which depends on w only by means of the P-
standard normal random variable Z. This we have learned to work with and we are able to obtain
a concrete representation of c(¢, ) by computing this expected value. We use again the symbols
d_(r,z) and d (7, z) introduced in Theorem 9.1 on p.187:

x o?
(12.31) di(r,z) = J\lﬁ [log 174 + (r + 2) T:| ,

There we wrote h(z,y) instead of h(t; z,y),

c(t,z) = E[h(t;z,Y)] = E

and g(z) = E[h(z,Y)] instead of c(t,z) = E[h(t;z,Y)].
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Lemma 12.3. The pricing function c(t, x) for a European call option is given by the formula
(12.32) c(t,z) =z N(dp(r,2)) — e ""K N(d—(7,)).

PROOF: 1t is true for any random variable U with a ﬁ—density fu(u), and for any deterministic

(measurable) function u — ¢(u), that E[p(U)] = | e(u) fu(u) du.
We apply this to the random variable Y which has density fy(y) = \/%e_yQ/ Y since it is standard
normal, and to the function h(¢;z,Y) of Y. We obtain

(12.28) ~ ©© 1 2
c(t;x) =" FElh(t;2,Y)| = h(t; z, e 2d
(ts2) "2 Elbsav)) = [ hitioy) = ey

2 1 [ ’ g
(12.24) 27r/ e T (:p-exp{—oﬁy + <T - 02) 7‘} - K) e Tdy.
V —0oQ

Since the function u — log(u) is strictly increasing: u < v/ < logu < logw/, and since always
e~ "™ > 0, the integrand is positive (i.e., not zero) if and only if

2
logz + {—aﬁy + <r — 02> 7'} > log K

2
& logr — log K + <7’ — 02>7 > o\/Ty
(12.33) )
x o
@Uﬁy<log<?>+ re 5T
1 T o?
— |log (= - = = d-(r,z).
®y<aﬁ[og(K +(r 2)7’} d_(r,x)
Therefore,

1 d—(1,x) 1
c(t,z) :\/T? / e’ (xexp{—aﬁy + <7" - 202> 7‘} — K) e 2V dy.
We simplify

T xe—aﬁy—i—(r— %02)7 — g7 e—aﬁyem— e—éT _ xe—oﬁy €_§T

and obtain

1 d_(1,z) y2 o2r 1 d_(1,z) 19

c(t,r) = — e - — - —dy — — e "TKe 2Y d
(t,7) %/_OO Xp{2 o1y 2}9 \/ﬁ/_m y
x d—(7x) 1 )
:E / exp{—Q(y—i—oﬁ) } dy — e ""K N(d_(t,z)) .
—00
d_(7,x) L
The last equation was obtained by replacing the integral [ e~ 2¥ dy over the standard normal
—00

density with the CDE, N (d_(,z)). Thus

z d_(1,x)+o\/T 22 -
c(t,x) = Nt / exp{—Q} dz — e "TKN(d—(7,))

=z N(dy(r,z)) — e ""KN(d_(r,z)) .
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We have proven formula (12.32). The last equation holds because, according to (12.31),
di(r,2) =d_(1,2) + ov/T

U\F[log+<r+302>7}.l

This was indeed the proof of Theorem 9.1 on p.187, since the classical Black-Scholes market con-
didions under which it was stated satisfy the assumptions 12.2 on p.221. The difference is that the
function ¢(t, ) was given there as the solution to the (deterministic) Black-Scholes PDE (9.25)

(12.34)

1
c(t,z) +rrey (t,x) + 3 o?2%cpp(t,x) = rc(t,:c), x =0,
with terminal condition
C(T,.%) = ($ - K)+>

whereas we derived the same function in this chapter as an application of the risk-neutral valuation
formula.

The next theorem just reformulates the results of the preceding lemmas.
Theorem 12.2. We defined in Remark 9.7 on p. 188, forr =T —t, ie, t =T —,
(12.35) BSM(r,z; K,r,0) = c(t,x), where c(t,z) = v N(d4(r,2)) — e ""K N(d_(1,z)).

If we redefine BSM (1, x; K, r, o) to be

o (posn{over + (- 1)} - )]

whereY is a standard normal random variable under P, then the following holds true:

(12.36)  BSM(r,z;K,r,0) = E

(12.37) BSM(7,z; K,r,0) =z N(di(r,2)) — e ""K N(d_(r,x)).

PROQF: Follows from the preceding Lemmas and the fact that the right-hand side of (12.37)
matches the definition of ¢(¢, z) given in (12.35). W

12.5 Completeness of the One dimensional Generalized Black-Scholes Model

We have seen in Corollary 12.2 on p.220 that any contingent claim X" that can be replicated can be
priced by means of the risk-neutral valuation formula.

(12.38) ,(X) = E [e I Ruduy ]&} L 0St<T.

The question that has not been aswered is the following. What claims can be hedged? We will
explore that in this chapter.

We assume that we operate in a generalized Black-Scholes market as was defined in Definition 12.1
on p.214, in particular, that the market price of risk process ©; is such that the integrability condition
(12.1) given in that definition is satisfied and thus Girsanov’s Theorem can be applied.
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Assumption 12.3. We need to apply the martingale representation theorem and must make the
following additional assumptions.

The filtration §; is generated by the Brownian motion W; and § only contains information
generated that Brownian motion up to time 7'. In other words,

F =%V = o{W,:u<t} foral0 <t < T,

5 =357.

We have the following result. See SCF2, ch.5.3.2 (Hedging with One Stock).

Theorem 12.3 (Completeness of the one dimensional Generalized Black-Scholes market). Given the
additional assumptions 12.3, we have the following.

The one dimensional Generalized Black—Scholes market is complete, i.e., every contingent claim can
be hedged. Further, if 0 < t < T, the quantity Y; of the replicating portfolio is given by either of

(12.39) Yio0 DSy =Ty,

Ty
12.40 Y; = .
(12.40) L= D.5

Here the process Ty is implicitly defined by the equation

(12.41) DI (X) =II(X) + /0 t T,dW, (0t <T),

(12.42) ie., d(DJI(X)) =TydW, (0St<T).

PROOF: We create the hedge H; by first looking at the pricing function II,(X) of the claim X that
the value process V; of ﬁt must replicate for each ¢. This will allow us to determine the quantity Y;
of the underlying stock (and thus the bond holdings X, = V; — S,Y;) for H,.

Since H replicates X, the pricing principle mandates V; = II;(X) for all t. From risk-neutral valida-
tion (12.38) we obtain

(12.43) (X)) = E [e— P Rudu ‘ st} L 0<t<T.

Since II;(X) = Vi, DI (X) = D.V;. This plus the other risk-neutral validation formula which
expresses the fact that the discounted portfolio value D,V; is a P-martingale, yields

(12.44) DIL(X) = E [DTX ‘ gt} L 0<t<T.

It now follows from Corollary 11.1 (p.210) to the martingale representation theorem in one dimen-
sion that there exists an §}" —adapted process I',, 0 < u < T, such that (12.41) holds. Here we made
use of the fact that

Dy = 67f00R“du = = 1, hence, D()H()(X) = Ho(X).
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We compare (12.42) to formula (12.17) on p.220 for the differential of D,I1;(X),
d(DtV;g) = Y}/O'tDtSt dﬁ_/:t .

Since 04 D;S; > 0 as the product of three strictly positive quantities, we obtain the desired quantity
Y; for the number of shares of a hedge H for our claim according to either of (12.39) or (12.40). W

Remark 12.6. Note that the formulas for Y; given in the preceding theorem are of no practical value

to compute this process, since the process I'; cannot be constructed: The martingale representation
theorem is an existence only theorem. [J

12.6 Multidimensional Financial Market Models

Necessary changes for Ch.12.6 (Multidimensional Financial Market Models):
e MPoR (Market price of risk equations are defined too late
e Review entire chapter for typos/errors

o Write a§**), ay*), afkj ) Introduce general matrix notation intro ch.2 or 3
e Check the proof of Prop.12.6 (SCF2 Lemma 5.4.5) on p.230.

Assumption 12.4. For this entire subchapter we assume the following.

Given are a filtered probability space (2, §, §¢, P), a d-dimensional Brownian motion
Wy = W w® L wl)

w.r.t. the filtration §; (d € N), and m risky assets (stocks)
g = (O gV o)

with stock prices S; = (St(l), e St(m)).

We assume that each stock price St(i) is driven by W, with dynamics

d
(12.45) sy = a{lsat + SN oy aw?, i=1,...,m,
j=1

and that we have the usual discount process which is based on an adapted interest rate
process R;.

¢
(1246) d_Dt = —RtDt dt, -DO = 1, i.e., Dt = exp (—/ Ru du) 0
0

In the above we assume that the vector valued process &; = (agl), ce agm)) which we call the mean

rate of return vector, and the matrix valued adapted process (oy;(t)) , Which we call the
volatility matrix both are §;—adapted processes.

i=l,....m;j=l,...,
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We further define the processes

d
(12.47) O‘El) = ZU%(I&), i=1,...,m.
j=1
0 _ = [Ty g
(12.48) B, = Z/ D awld), i=1,...,m.
= Jo o)
1 d
(12.49) pii() = (j)Za,;k(t)ajk(t), ik=1,...,m.
Ot 0¢ " k=1

We also assume that at(i) > 0forallt. O

We have the following result.

Proposition 12.4. | [ | Each process By (i) is a Brownian motion. The multiplication table is

(12.50) dBDaBY =at, i=1,...,m,

(12.51) dB{dBY = pi(t)ydt,  i.j=1,...,m, i# ],

and the covariances are

(12.52) Cov[BY'BY)] = E /0 t pij(u) du.

Further, each S is a Bgi)—driven generalized GBM with volatility at(i) and unchanged drift agi):
(12.53) ast? = o8 dat 4+ oV sWaB.

PROOF: See Chapter 5.4.2 (Multidimensional Market Model) in SCF2. W

Corollary 12.3. | % | Assume that ((oi;(t,w)(( is constant in t and w. We define

(12.54) oij = 045(t,w), o® .= U,gi)(w), pik = pir(t)(w).

The latter is possible since the right hand side of (12.49) also is constant in t and w. Then

d
1 .
(1255) Pik = m E 0ij0kj f01’ Z,k = 1, e, Mm,
=1

(12.56) Cov[BY, BP] = pit,

and the correlation between Bt(i) and ng ) is Pik-

PROOF: || The proof of (12.55) and (12.56) is trivial. The last assertion follows from

Var[Bt(i)] =1t foralli=1,...,m. A
Now some terminology.
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Definition 12.5. || % | If the volatility matrix has entries which are not constant in ¢ and w,

we call p;;(t) = pi;(t, w) the instantaneous correlation between Bf@ and ng ), and we call o(i) the
instantaneous standard deviation of the relative change in S;. 0O

Remark 12.7. The reason for the term “relative change” is that o4(4) is tied to the “relative differen-
tial” 45\ /5" as follows. From

s\ = s dt + o5 aBy
dtdB"Y =dB" dt = dtdt = 0, dB"” dBY = p;dt,
we obtain
459 a5 = (o sB0) (619 59 a)
— 065089 (aBMaBY) = oMo 55D dt .

(4) (4) N
Thus, dsﬁ ds;t.) = Ut(l)agj ) pij dt .

We can express this last formula as follows. The product of the relative instantaneous changes of S

and SU) is the product of the instantaneous standard deviations and the instantaneous correlation.
(]

Proposition 12.5. |[%1 | Given the dynamics (12.45) for Sy and (12.46) for Dy, the discounted stock price

vector Dtgt has dynamics

(12.57) d(D,5") = DS
j=1

d
(o — Re)dt + Y 035(t) th(”] .

PROQF: See Chapter 5.4.2 (Multidimensional Market Model) in SCF2. W

We must generalize the definition of risk-neutral measure given in Definition 12.3 on p.216 for a
financial market with a single risky asset price driven by a single Brownian motion to the multidi-
mensional model.

Definition 12.6 (Risk-neutral measure for multiple risky assets).

A risk-neutral measure or martingale measure P in the multitimensional market model
given in the assumptions 12.4 on p.227 is the following.

(1) Pisa probability measure on 7, i.e., ]B(A) need only be defined for events A C ()
which belong to 37

2 P~Pie, Pand P are equivalent on §r:
IfAedr then P(A) =0 < P(A) =0.

(3) Discounted stock price DtS,FZ) is a ]B—martingale w.r.t. the filtration §; for ALL
1=1,...,m. U
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Proposition 12.6 (SCF2 Lemma 5.4.5). Let P be a risk-neutral measure, and let V; be the value of a self-
financing portfolio. Then discounted portfolio value DV, is a P—martingale, and its differential is

(12.58) d(DVi) =Dy (dV; — RiVidt) = S v,V a(D,s{).
i=1

PROOF: See the proof of SCF2, Lemma 5.4.5. W

Remark 12.8. We restate here for the reader’s convenience the definition 7.8 of an arbitrage portfolio
on p.133.

A portfolio H, is an arbitrage portfolio if its value process V; satisfies

(12.59) Vo =0,
(12.60) P{Vy 20} = 1,
(12.61) P{T >0} > 0. O

Here is how we define the vector valued version of a market price of risk process.

Definition 12.7.

If it exists, then the market price of risk process is an adapted process
6, = (6",...,e\)
which (a) solves the system of equations, called the market price of risk equations,

d
(12.62) ai(t) — R = Y oi;(007), i=1,...,m,
j=1

and (b) satisfies the Girsanov integrability condition (formula (11.20) on p.211). O

Remark 12.9. The existence of a market price of risk process is of central importance for an efficient
market.
(1) If there is no solution to the market price of risk equations, then we have a financial market
model which is not free of arbitrage. It is not suitable for pricing contingent claims. For
a simple example of a model which does not have a solution to the market price of risk
equations and an arbitrage portfolio that this allows to be created, see SCF2 Example 5.4.4.
(2) SCF2 does not state Girsanov integrability as a condition for © but we do it here because,
if Girsanov’s Theorem cannot be applied, then there is no guarantee that a risk-neutral
measure P exists. We then would not able to rule out the existence of arbitrage portfolios.
See the first fundamental theorem of asset pricing below (Theorem 12.5 on p.232). [J

Theorem 12.4.
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If a solution to the market price of risk equations

d
= Zdz‘j(t)@y), izl,...,m,
7=1

exists then the market model possesses a risk—neutral probability measure.

PROOF: %1| Let P be the probability equivalent to P which is created in Theorem 11.3 (Gir-
sanov’s Theorem in multiple dimensions) on p.211. We recall that the process

Wy = (Wh,...,W#) with dynamics
(12.63) av? = aw? + ePat, WP = o,

is a d-dimensional §;—Brownian motion under the probability P. We plug the market price of risk
equations into formula (12.57) on p.229 and obtain

d d
d(DS") = DS | oy dt + Y aij(t) aw?
~ =

— D, Zaw oW dat + aw?].
We apply formula (12.63) and obtain
(12.64) d(DS) = Z o (t)dw ) |

Since each WN/t(j Jisa P-martingale, this also is true for each discounted stock price D; Sgi). It follows

that P is a risk-neutral probability measure. W

Remark 12.10. Let X be a contingent claim with price process I1;(X'),  We would like to be able to
create a hedge for that claim.

We can define D,II;(X') and 1I;(X') by the risk—neutral pricing formulas (12.19) and (12.20) on p.221,
DyII(X) = E[Drllp(X) |5, 0St < T
m(x) = B e Rutemy () |5)) o<

Since DrlIlp(X) is constant in ¢, and D.I1;(X) is the P-conditional expectation of DrlIlp(X), this
process is a martingale under P. According to the Martingale Representation Theorem for multiple
dimensions (Theorem 11.4 on p.212), there are processes I'; (u), . .., I'g(u) such that

d t o
(12.65) DI (X) =TIp(X) + ) / Tj(u)dW, 0<t<T.

“Mathematically speaking, any nonnegative, §r—measurable and integrable random variable will do.
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Consider a self-financing portfolio H, with value process V;. By (12.58) on p.230 and (12.64) on
p-231,

d(D:V;) = SV d(DeSi(0))
(12.66) 4

(The first equation holds because H; is self-financing.) Equivalently,

d t m ) A o
(12.67) DV =Vo + > /0 S Y DuSD oy (u) aW .
j=1 i=1

We compare the integrands of (12.65) and (12.67) and obtain

i) = DY Y 8Dai(t), j=1....4
=1

To hedge the short position, we should take 1 = IIp(X') and choose the portfolio process
Y, =YY, ..., ¥, so that the hedging equations

(12.68) j ) i=1....d,

are satisfied. Note that these are d equations in m unknown processes Yt(l), .

]

Next comes SCF2 Theorem 5.4.7.

Theorem 12.5.

First fundamental theorem of asset pricing:
If the market model given in Assumption 12.4 on p.227 has a risk-neutral probability measure, then
it does not admit arbitrage.

PROOF: * Let P be a risk-neutral measure and assume that H is a self-financing portfolio

with initial value Vj = 0. Since D,V is a P-martingale and thus has constant expectation across all
times0 <t <Tand Dy =e~ Jo Rudu — 0 — 1 we have

(12.69) E[DrVr] =E[DoVo] = Vo = 0.
Assume further that A satisfies condition (12.60), P{Vy = 0} = 1.

(12.70) Then P{Vy <0} = 0, thus P{Vy <0} = 0.
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If we can show that it is impossible for Hto satisfy (12.61): P{Vr > 0} > 0, then we are done since
this means that no self-financing portfolio can satisfy all three conditions (12.59) (12.60), (12.61) of
an arbitrage portfolio. So,

(A) let us assume to the contrary that P{Vy > 0} > 0.

Since P ~ P and thus both probabilities assign zero to the same events, we obtain ?{VT >0} > 0.
Moreover, {Vr > 0} = {DrVr > 0}, because Dr(w) is strictly positive for all w as an exponential.

Let Aj .= {DrVp 2 %} and A := {DpVy > 0}. If we write 2a for P(A) then a > 0. Since

A = U A; and thus, by (4.30a) on p.51, ]5(Aj) 1 2a,
JEN

there is some index jj such that ]B(Ajo) = a. We have

DV dP + / DrVirdP.

0 "2 ElDrva] = / DyVpdP = / DyVpdP + /
Q A { {DTVT<0}

Dy Vp=0}

The second integral of the right hand expression is zero because the integrand vanishes on { DV =
0}. The third integral of the right hand expression is zero by (12.70), since any integral over a set of
measure zero is zero. This follows from Proposition 4.20 on p.84. Hence,

/ DV dP = 0.
A

Since Aj, C Aand D7Vr > 0on A,

~ ~ 1 ~ 1 ~
0 = / DrVrdP 2 / DpVpdP = / —dP = — P(4j,)
A Ajy Ajy Jo Jo

1\

— > 0.

Thus assumption (A) has lead us to the contradiction 0 > 0. This proves that P{V; > 0} > 0; thus
H is not an arbitrage portfolio. Since H was an arbitrary, self—financing portfolio, we have shown
that the model is free of arbitrage. W

Remark 12.11. Take a moment to reflect on how the proof of that last theorem was able to switch

between the equivalent probabilities P and P by making use of

Theorem 12.3 (Completeness of the one dimensional Generalized Black-Scholes market) in Sub-
chapter 12.5 (Completeness of the One dimensional Generalized Black-Scholes Model) gave con-
ditions under which the one dimensional market is complete, i.e., every contingent claim that is
reasonably integrable can be hedged. See Definition 7.10 (Hedging /Replicating Portfolio) on p.134.
We now want to examine under which conditions the multidimensional market is complete.
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Assumption 12.5. We add to Assumption 12.4 the following conditions.

(1) The market price of risk equations of Definition 12.7 on p.230,

d
- Rt = Zgij(t)@?)’ 2'=1,...,m,

have a solution process 6; = (@,El), e @gd) ).
2 5 = &YV ,i.e., §; is generated by the d-dimensional Brownian motion Wt. O

Remark 12.12. The first of the above conditions implies that the conditions of Theorem 12.4 on
p-230 are satisfied, hence there exists a risk-neutral probability P.

Both conditions together ensure that the multidimensional martingale representation theorem is
satisfied: Every §;—martingale M; under risk-neutral probability P is of the form

M, = My + Z / w) AW,

Here the process Wt is the P—d—dimensional Brownian motion
= . t
Wt - Wt +/ @udu O
0

The next theorem is SCF2 Theorem 5.4.9.
Theorem 12.6.

Second fundamental theorem of asset pricing:
Assume that a risk-neutral probability measure exists. Then

The market is complete < The risk-neutral probability measure is unique.

The proof is not given here. See SCF2! W

12.7 Exercises for Ch.12

Exercise 12.1. Prove the formula (12.9) of Proposition 12.1 on p.217:
d (DtSt) = (Ott — Rt)DtSt dt + O'tDtSt th
directly from the dynamics given in Definition 12.1 on p.214,

dD; = — RyD; dt,
dSt = OétSt dt + O'tSt th,

by applying the It6 product rule or one of its corollaries to d(D.S;). O
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Exercise 12.2. Prove the “=-" direction of Theorem 12.6 (Second fundamental theorem of asset pric-
ing) on p.234 of this document: If the multidimensional market is complete then the risk-neutral
probability measure is unique. [
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13 Dividends

Many if not most stocks pay a dividend per share at discrete times, say, anually or semi-annually
or quarterly. We also consider stocks that pay dividends continually. Such stocks do not exist in
reality but they can be used to model the kind of mutual fund which holds many different kinds of
stocks which pay their dividends at different times.

Note that whatever money is paid out as a dividend to shareholders diminishes the company assets
and thus reduces the share value accordingly.

e If a quarterly dividend of 2 dollars per share is paid at time ¢ then stock price per share
Sy will go down by 2 dollars.
e If dividends are paid continuously at a rate A;(w) per unit time then a dividend of (ap-
proximately) A;S;dt is paid per share during [¢, ¢ + dt|. We must subtract A;S;dt from dS;.
Both cases will yield more powerful results if we specialize to constant dividend rates which vary
neither with time ¢ nor with randomness w. Accordingly, we subdivide this chapter into
e continuously paying dividends
e dividends paid at discrete times,
e constant dividend rates.
We will limit ourselves to the one dimensional case: A single (one dimensional) Brownian motion
which drives a single underlying risky asset (stock).

We try to use SCF2 notation whenever feasible.

Proposition 13.2 on p.238 will show that the probability measure P which is constructed in Gir-
sanov’s Theorem by means of the market price of risk process ©; no longer transforms the dis-
counted stock price D;S; into a martingale. Accordingly, P no longer is a risk-neutral measure. 4
However, discounted portfolio value D, X; for a self-financing portfolio remains a P-martingale.

We thus decide to use in this chapter on dividends the term Girsanov measure or Girsanov

probability rather than risk-neutral measure for that probability P.

13.1 Continuously Paying Dividends

Assumption 13.1. Unless stated otherwise we assume that we have a generalized Black-Scholes
market as defined in Definition 12.1 (Generalized Black-Scholes market model) on p.214, with the
following modification.

We assume that the stock pays a continuous dividend at a rate of A;(w) per unit time and
that this continuous time dividend rate process A; is §;—adapted and nonnegative. We
noted in the introduction to this chapter that this will result in the subtraction of A;S:dt
from dS;. Thus we replace formula (12.3) for the stock price dynamics with the following.

(131) dS; = aySpdt + oSy dWy — ArS; dt; Sp E]0,00[; O, O E]0,00[;

All other processes remain unchanged. In particular we have the same discount process Dy,
market price of risk process ©;, Girsanov measure P and the process Wt Wi + fo O,du

which becomes a Brownian motion under P. O

*See Definition 12.3 on p.216.
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We thus have
(132) th == *RtDt dt, DO == 1,
— R
(13.3) Q =~
o
(13.4) AW, =dW, + ©,dt; Wy = 0. O

Proposition 13.1. The value and discounted value of a self-financing portfolio have the following dynamics.

(135) dVi = RV dt + Y S0y (@t dt + th) = RV, dt + Y;Sioy th,
(13.6) d(DyV;) = YyDySiop AW,

In particular, the discounted portfolio process DV, is a P-martingale.

For the proof see SCF2 ch.5.5.1. W

Remark 13.1. A. Discounted portfolio value being a P-martingale is all it takes to use risk-neutral
valuation for contingent claims. Let H; with portfolio value V; be a hedge for a contingent claim
X with pricing process II;(X). Then Vp = X, thus DrX = D7 Vr and, according to the pricing
principle, II;(X) = V; for all 0 < ¢t < T'. Moreover, since D;V; is an §;—martingale under ]3,

DII(X) =DV, = E[DrVr | & = E[DrX | ] for0St < T,
thus TL(X) = E[D;'DrX | &) = Ele ' Buduy | 5] for0<t < T

B. Note that formula (13.5) for dV; matches formula 12.16 on p,219, and note that formula (13.6) for
d(D;V;) matches formula 12.17 on p,220. Neither formula references the dividend rate process A;!

C. A closer inspection of the proof of Theorem 12.3 (Completeness of the one dimensional General-
ized Black-Scholes market) on p.226 shows that it only depends on risk-neutral valuation and what
was shown in parts A and B of this remark. We will use this observation in the proof of the next
theorem. [

Theorem 13.1. Given the assumptions 12.3 on p.226 in addition to the assumptions 13.1 made at the begin-
ning of this chapter we have the following.

The one dimensional Generalized Black—Scholes market with continuous dividend payments is com-
plete, i.e., every contingent claim can be hedged. Further, the quantity Y; of the replicating portfolio
satisfies, forany 0 <t < T,

(13.7) Y,04D:8; =Ty,

(13.8) Y; =

Here the process Ty is implicitly defined by the equation
t ~ —
(13.9) DL (X) =Tg(X) + / LydW, for 0StsT,
0

(13.10) ie., d(DJII (X)) =TydW, for 0<t<T.
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PROOF: * We can copy the proof of Theorem 12.3 word for word This follows from the

previous remark and the fact that the definitions of ©; and thus P and Wt have not changed. W

We have seen in Proposition 13.1 on p.237 that discounted portfolio value of a self-financing port-
folio behaves the same under continuous dividends and no dividend payments. In particular, dis-
counted portfolio value is a martingale under risk-neutral measure. The next proposition shows
that this is no more true for discounted stock price.

Proposition 13.2. |[ % If Ay # 0, then

(a) The process D;S; is not a ﬁ—martingale.

(b) However, the process eo AuduD, S, is g ﬁ—martingale, and this process satisfies

t _ 1 t
(13.11) eft;5 Awdupy G = G exp {/ 0y dW, — 2/ 05 du} .
0 0

PROOF (Outline): We rewrite (13.1) on p.236 as follows
dSt = (Oét - At)St dt + O'tSt th .

Clearly, S; behaves like stock price in the ordinary generalized Black-Scholes market model, except
that the mean rate of return drops from o, to ; = a; — A;. In particular, S; is a generalized GBM
with unchanged volatility o; and can be explicitly written as

t t
S, = SpeXt = Sy exp [/ oudWy + / (O‘; - ;‘73> du} :
0 0

t
See (8.20) on p.171. From there one obtains that the process M; := exp [ D.S; equals
=0

u

t . t 1
M; = Sy exp [/ oudW, + / (au - 205) du] . 1
0 0

13.2 Dividends Paid at Discrete Times

We now examine the case when the stock pays its dividend not at all times ¢, but only at times
O<ti<to<--- <t <T.

At each time t; the stock loses value in height of the dividend that is paid. If we assume that the
dividend paid at time ¢; is a;S;;, i.e., the dividend rate is a;, then stock price will go down by that
amount.

To work with these assumptions, we need to know how to work with continuous time processes
that possess a jump at some time ¢*.

Definition 13.1. Let ¢t — f(¢) be a function of time ¢, let t* be a fixed time, and asume that lltlTlg f(t)

exists. We write

f{#" =) = lim f(2)

1>

and call this expression the left sided limit of f at t*. We often use subscripts X; rather than
parenthesized time arguments for stochastic processes X;(w) and write X;«_ for X (¢*—). O
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We must modify the assumptions 13.1 of Chapter 13.1 (Continuously Paying Dividends) accord-
ingly.
Assumption 13.2.

(1) Unless stated otherwise, we assume that we have a generalized Black-Scholes market as
defined in Definition 12.1 (Generalized Black-Scholes market model) on p.214, with the fol-
lowing modifications.

(2) We assume that the stock pays its dividend only at the discrete points in time 0 < #; <
ty < --- < t, < T. The dividend rate at time ¢; is denoted by a; = a;(w) We assume that
those rates are §;—adapted in the sense that each a; is §; ; —adapted. We further assume that
0 = a; = 1 since the dividend cannot exceed the value of the stock. We write ¢y := 0 and
tnt1 :=1T,and ag := ap4+1 := 0 in case that no dividend is paid at those dates.

(3) We assume that S; is a generalized geometric Brownian motion for each interval
[tj,tjt1]. The initial condition absorbs the drop in stock price:

(13.12) dS; = oSy dt + 045y dWy, where oy, 0 E]O, OO[;

(1313) Stj = Stj— - ajStj_

(@) All other processes remain unchanged. In particular we have the same discount process Dy,
market price of risk process ©;, Girsanov measure P and the process Wt =W, + fo 0,du
which becomes a Brownian motion under P. Thus,

(13.14) dD, = — R,Dydt; Dy = 1,
R
(13.15) o, =11
gt
(13.16) AW, =dW, + ©,dt; Wy = 0. O
Remark 13.2.

(1)  Since the dividend rate at ¢; is a;, the dividend paid on a share of stock is a;S;, . Thus stock
price S;; after the dividend payment is the difference

(13.17) S(tj) = S(tj—) — a;S(t;—) = (1—a;)S(t;—).

(2) Ifa; =0, thenno dividend is paid, and S, = S, .
(3) Ifaj =1, then the full value of the asset is paid, and S; = 0 forall ¢t = ¢;. O

Proposition 13.3. The value of a self-financing portfolio has the same dynamics as in the case of no dividends
or a continuously paid dividend. See Proposition 13.1 on p.237

(13.18) dV, = RVidt + Y,8,04(0,dt + dW;) = RV, dt + Y;Siop Wy,
(1319) d(Dt‘/;f) = YVtDtStO't th .
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In particular, discounted portfolio value D,V is a P-martingale, and risk-neutral validation still applies:

DIL(X) =DV, = E[DrX | §] for 0St<T,
~ ~ T
thus 1L, (X) = E[D;'DrX | §] = Ele™ )i Bdux | ] for 0St<T.

PROQOF: | % | For the proof see SCF2ch.5.52. W

13.3 Constant Dividend Rates

First the continuous time case.

Assumption 13.3. We not only assume that a := A;(w) is constant in ¢ and w, but that the same is
true for r := R;, o := o4, 0 := 0. In other words, we have a classical Black-Scholes market as in
Chapter 9 (Black-Scholes Model Part I: The PDE). [

In the case of no divdidends we had seen in Subchapter 9.5 (The Black-Scholes PDE for a European
Call) that the pricing function of a European call is

(13.20) c(t,z) =aN(d (T —t,x)) — Ke " T IN(d_(T —t,z)), 0St<T,a>0,
where

0_2
(13.21) dy(1,2) = U\f {log — + (r + 2) T:| ,

Here is the main result in the case of continuous and constant dividend payments with rate a.

Proposition 13.4. Under the assumptions 13.3, the pricing process V; for European call can be written as a
function c(t, Sy) of time t and stock price S, where c(t, ) is the following function:

(13.22) c(t,z) =ze " N(dy(1,2)) — Ke ""N(d_(7,2)).
Here 0 St < T, x>0, 7 =T — tand, differently from 13.21,
1 0 o?
=— |log — —at 7| .
Uﬁ[ogK—i—(r a 2)7}

As usual N is the cumulative standard normal distribution

(13.23) ds (7, )

(13.24) N =75 /_ L \/ﬂ/

PROOF: See SCF2 ch.5.5.1., or Chapter 13.6 (Addenda to Ch.13). W

Now we switch to discrete time dividend payments.
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Assumption 13.4. We replace the assumptions 13.3 with the following.

We assume that the processes r := R;, o := oy, 0 := 0y, are constant in ¢ and w. Thus we have a
classical Black—Scholes market as in Chapter 9 (Black-Scholes Model Part I: The PDE).

In addition, we now also have finite list of discrete time dividend rates a;, as we had defined in the
assumptions 13.2 of Subchapter 13.2 (Dividends Paid at Discrete Times). However, now

we assume that those rates a; are deterministic.

Under these assumption we will derive, for a European call, the price IIy(X') at time zero.

Proposition 13.5. Under the assumptions 13.4, the price at time zero for a European call is

(13.25) (1 — aj 1)N(d") — Ke "N ),
J +
1 S el o?
(13.26) where df = ——= |log 20 Zlog(l — aj41) + <rj: ) T
oT K = & 2

As usual N is the cumulative standard normal distribution

1 4 22 1 o 22
13.27 N = — T2 dr = — T2 dz.
( ) (y) V2T /_oo ° : V2T /_y ‘ ®
For the proof see SCF2 ch.5.5.1. W

Remark 13.3. A similar formula holds for the call price at times ¢ between 0 and 7. In those cases,
one includes only the terms (1 — a;;1) corresponding to the dividend dates between times ¢ and
T. O

Remark 13.4. The software suggested earlier to calculate the parameters for Black-Scholes contract
functions also handles the case of a constant, continuous dividend:
a. Magnimetrics Excel implementation:
https:/ /magnimetrics.com/black-scholes-model-first-steps/
b. Drexel U Finance calculator:
https:/ /www.math.drexel.edu/~pg/fin/VanillaCalculator.html
b. EasyCalculation.com:
https:/ /www.easycalculation.com/statistics /black-scholes-mode.php [

13.4 Forward Contracts and Zero Coupon Bonds

We now assume that a dividend is NOT paid for the stock, thus discounted stock price D;5;
is a martingale under the Girsanov measure P and P is a genuine risk-neutral measure. We

also assume that 7" is a time so large, that all securities we consider in this chapter will have
an expiration date before 7T'.
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When we speak of having bought a $100 zero—-coupon bond with a maturity date 7', then we mean
that we bought a bond which will pay us $100 at time 7" without paying any interest beforehand.
We will follow SCF2 and think of this as owning 100 zero coupon bonds which pay one dollar each
at time 7.

Definition 13.2.
e A zero—-coupon bond is a contingent claim with contract value X = 1 at time 7. We call T’
the maturity date of the zero—coupon bond.
e We denote the price of such a zero—coupon bond at time 0 <t < T < T by B(t,T). O

Proposition 13.6. If P is a risk-neutral probability, then D,B(t, T) is a P-martingale, and

1 ~ _
(13.28) B(t,T) := 5 EDr | &), for 0St<T<T.
t

PROOF: Formula (13.28) is risk—neutral validation for a contingent claim with constant value 1 at
T. Thus,

DB(t,T) = E[Dr | 3]

is a martingale, since conditioning with respect to §; is done on an ordinary random variable which
isconstantint. W

We modify Definition 13.3 (Forward price For;) on p.242 by including the expiration date and price
process of the underlying risky asset into the symbol of the forward price.

Definition 13.3 (Forward price). Given is a forward contract with a strike price K (set at time 0)
at expiration date 7. The T—forward price Forg(t,T') of the underlying asset with price S = S; at
time ¢, is that strike price, re-evaluated at ¢, for which the forward contract would have value zero
at time ¢.

The following is SCF2, Theorem 5.6.2.

Theorem 13.2. || %

Assume that there is unlimited liquidity in the market for zero—coupon bonds with maturity dates before T.
Let X be a forward contract with expiration date T < T for an underlying asset with price S;. Then the
following holds, regardless of the strike price of that contract.

The T—forward price For, at time t is

St
B(t.T)

(13.29) Fors(t,T) = for0<t<T<T.

PROOF: The proof given here is the one to be found in SCF2 Remark 5.6.3.

We apply risk-neutral validation to the forward contract. Since it has strike price K, its value at
time T'is X = St — K. Thus,

I(¥) = ; E[Dr (St - K) |3
(A) = 5 EDrsr |l - fiE[DT\St]-
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Note that D;S; is a martingale under risk—neutral probability P, and so is D I1,(X), if TI;(X7) is the
pricing function of a claim with contract value X’ = 1, i.e., of a zero—coupon bond with maturity
T. Note that Dy = Dy -1 = DpX’, and that IT,(X’) = B(¢,T) by the very definition of B(¢,T') (and
Proposition 13.6). It follows from (A) that

1 K
M(X) = 35 DiSi = - DiBT) = S = K B(L.T).

The forward price Forg(t, T') was defined as that strike price K that would make the foward contract
a fair deal for both parties at time ¢, i.e., that would result in a zero value for the price IT;(X') of that
contract at time ¢. Thus,

0 =5S; — Forg(¢,T) B(t,T),
and we have obtained (13.29). R

13.5 Exercises for Ch.13

Exercise 13.1. Theorem 13.2 on p.242 was done by means of a risk-neutral measure argument. In
SCF2 a proof of this theorem (Theorem 5.6.2 on p.241 in the book) is given by means of a no arbitrage
allowed argument, but only case 1 where the “seller” of the forward contract is not allowed to make
a profit is covered in detail.

The last four lines of the proof indicate what must be done for the proof of case 2: The seller cannot
have a loss: »..... If it is negative, the agent could instead have taken the opposite position .....«

Give a detailed proof of that case 2 by modifying the proof of casel. [

13.6 Addenda to Ch.13

The following belongs to Subchapter 13.3 (Constant Dividend Rates).

We derived in Chapter 12.4 (Risk—-Neutral Pricing of a European Call) the formula
m(t,z) = z N(dy(r,2)) — e ""K N(d_(1,2)).

for the pricing function of a European call. See Theorem 12.2 on p.225. This was for a stock that
does not pay a dividend. We now derive the corresponding formula for the the case of a constant
dividend rate a. The proof is very similar to that of the no dividend case. Accordingly, there will be
quite a few references to Chapter 12.4.

To achieve our goal, let 0 = ¢t < T be a fixed time, and

(13.30) T:=T — t, r' = r—a, Y =

i
(13.31) h(t;z,y) =e"" <:v-eXP{—aﬁy + <r’ - U;) r} - K> .

Note that Y is standard normal w.r.t. P since Wt, t>0,isa P-Brownian motion.

We next adapt Lemma 12.1, Lemma 12.2, Lemma 12.3 to the presence of a nonzero dividend rate.
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Lemma 13.1. With the above definitions we can express the risk—neutral valuation formula for a European
call as follows.

(13.32) Ele (87— K)T|§] = E[ht;8,Y) | 5]

PROOF: According to (12.10) on p.217,

t N t —
Sy —Soexp{/ ades—i—/ ((RS—A —fa } Soexp{aWt—i— <r'_;02> t}.
0 0

o?) T}. Thus

j W ) )

For t = T, we obtain similarly that S;7 = Sy exp {

ST:exp{[oWT+< )

St

—_

~ 27
= exp{a(WT — Wt ) + <
thus
Sr :st.exp{a(% — W) + (r’ — 502) (T—t)}

:St.exp{_M%WT—Wt) (1) (T_t)}
T 2
1
(1230 Sy - exp{—aTY + <r' — 202> (T—t)}.

It follows from that equation for St that

2 +
h(t,St,Y) (1231) 6—7’7' (St -eXp{—a'\/»?-Y + <7"/ _ 2) 7_} _ K)
= G_TT<ST — K)+.

We apply conditional expectations E[--- | &) to both sides and assertion (13.32) follows. W
Our goal is to find a function (¢, z) — n(t, ) such that IT;(X') = 7 (t, Sy), i.e.,
(13.33) w(t,5) = E e T 05 - K) | & .-

Lemma 13.1 allows us to reformulate this problem as follows: Let h(t; z,y) be the function given in
formula (13.31). We want to find a function (¢, x) — 7 (¢, z) such that

(13.34) m(t,St) = [h 65,Y) |8 ]
The next lemma shows how to define this function c(t, ).

Lemma 13.2. Let

(13.35) (t,z) = E[h(t;z,Y)],
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where h(t;x,y) is the function defined in (13.31). Then =(t,S;) satisfies (13.34) and hence, also the risk—
neutral pricing formula

(13.36) w(t,Sy) = E[e7 (St — K)* 5] -

PROOF: We fix 0 £ t £ T. Since S; is §;—measurable and ¥ = WT\ﬁWt is, as a function of the

Brownian increment WT - Wt, independent of §,, it follows for each tixed 0 < ¢ < T from the
Independence Lemma (Lemma 5.7 on p.108) *° that

m(t, S) = [ (t; 5, Y ‘&5]
This proves the validity of (13.34). We apply Lemma 13.1, and (13.36) follows. W

We have shown the following. If X" is a European call which is based on a stock which pays a
continuous dividend at the rate a, then the function 7(¢,2) = E[h(t;x,Y)] allows us to price that
option, at time ¢, by means of the risk-neutral pricing formula

(13.37) m,(X) = 7(t,S) =E [e‘“T‘”(ST - K)* ‘St} :

It follows from the definition of h(¢; z,y) given in (13.31) that

(oo (- 7) - x) ]

This is an ordinary expected value of a function which depends on w only by means of the P-
standard normal random variable Z. This we have learned to work with and we are able to obtain
a concrete representation of 7(t,x) by computing this expected value. We redefine the symbols
d_(r,z) and d4 (7, z), defined in Theorem 9.1 on p.187:

m(t,z) = Eh(t;z,Y)] = E

1 T o?
di(T,.’IJ) :Ui\/']i |:10g E + <7qi2) T:| s

to take into account the dividend rate a, as follows:

(13.38) teir) = flog 2+ (-2 2],

Lemma 13.3. The pricing function n(t,x) for a European call option on a stock which pays a constant,
continuous dividend rate a, is

(13.39) m(t,x) =xe " N(dy(r,2)) — ¢ ""K N(d—(7,x)).

There we wrote h(z,y) instead of h(t; z,y),

and g(z) = E[h(z,Y)] instead of 7(t,z) = E[h(t;z,Y)).
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PROOF: 1t is true for any random variable U with a ﬁ—density fu(u), and for any deterministic
(measurable) function u — o(u), that E[y f o(u) fu(u) du.

We apply this to the random variable Y which has density fy(y) = \/%e_lﬁ/ Y since it is standard

normal, and to the function h(¢;z,Y") of Y. We obtain

~ oo ]_ 2
w(tx) " Bt e, V) —/ h(t; azy)\/?e*y?dy
oo s

a3y 1 [ _ , o e
= 7= e T-expl —o\Ty + (1 -5 )T — K| e 7dy.
\% —0o0

Since the function u — log(u) is strictly increasing: u < v’ < logu < logv/, and since always
e~ "™ > 0, the integrand is positive (i.e., not zero) if and only if

2
logz + {—Uﬁy + (r' — 02> 7'} > log K

2
& logz — log K + (r’ - 02> T > o1y
(13.40) ,
<:>Ufy<log(K)+< 2)7‘
1 o2 (13.38)
Sy < M[log( ) < —2>T:| =" d_(r,x).
Therefore,

1 d7(7'7$) o ’ 1 2 _ly2
7(t, ) :\/777? e rexpl —ovTy + (7 — 50T — K|e 2¥ dy.

Since ' = r — a, and thus,

e_TTxe_U\ﬁy"'(rl_%oQ)Te_% = e 7 _Ufy—i_( a—;) e_é
=gz e T e IV e_éTe_% = xe 97 e_%Te_"ﬁy e_g , = xe e %(“‘7‘[)
it follows that
d_(1,z) d—(7,z)
n(t,x) = - / xe T 6_%(y+oﬁ)2dy - = / e TTRe 2 dy
= Vo o
1
e —3(+ovD) gy — oK N(d—(1,z)).
s ’

[0
The last equation holds, because N(a) = \/% il e v’ dy is true for all @ € R.
—00

In the last integral, we substitute u := y + o/7. Then du = dy, and the integration bounds change
from —oco and d_(7,x) to —oc and d_(7,z) + o+/7. A moment’s reflection shows that the formula
di(r,2) =d_(1,2) + 0+/T (see (2?) on p.??) remains valid, and it follows that

—ar d_(T,x)+o\/T 2
m(t,x) = x\e/g / exp{—é} dz — e ""KN(d—(7,x))

=ze " N(dy(r,z)) — e ""KN(d_(1,2)) .
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We have proven formula (13.39). B
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14 Stochastic Methods for Partial Differential Equations

14.1 Stochastic Differential Equations

Definition 14.1 (Stochastic differential equation). Let W;,¢ = 0, be a Brownian motion on a filtered
probability space (€2, §, §¢, P) and let

B :[0,T] xR =R, (t,z) — B(t,x),
~v:[0,T] — R, (t,z) — y(t,x),

be two (measurable) deterministic functions. Given are a stochastic differential and initial condition

(14.1) dX; = B(t, X¢) dt + (¢, X;) dWr,
(14.2) Xty =x0, where0 =ty <T and zy €R.
We call (14.1) a stochastic differential equation (short: SDE) with drift coefficient 5 and

diffusion coefficient v. We call a process X = (X;),<;<r that satisfies both (14.1) and (14.2)
a solution of the SDE (14.1) for the initial condition (14.2). O

A word on notation. We will often write X,, = a for the initial condition. This does not look

as intuitive as Xy, = z, but we often will write X,;" for the SDE solution with initial condition

X, = a, and that is more readable than Xfo"”o.

Remark 14.1. Note that the differential dY; = ©.dt + A;dW; of an It6 process Y; is more general

than that given by (14.1), since (t,w) — O(w) and (¢,w) — A¢(w) are merely adapted F;—processes,
whereas 3(t, X¢(w)) and (¢, X¢(w)) are functions of ¢t and X;(w), notjust of w. O

Fact 14.1. The SDE (14.1), with an intial condition X,, = a, possesses a unique solution
(14.3) X = (X" yuer

under very general conditions on drift B(t, x) and diffusion v(t,z). O

It is absolutely OK if you skip the following technical note.

Note 14.1 (Technical note on the Markov property of SDE solutions). | %
For0 £ w < T and a € R, let X" be the unique SDE solution of Fact 14.1. Let

(14.4) P(u,a,t,B) := P{X** € B} (u<t<T,Bc%B.

Then (u,a) — P(u,a,t, B) is measurable in v and a, and B — P(u, a,t, B) is a probability measure
on the Borel o-algebra. In addition, it satisfies the so—called Chapman-Kolmogorov equations.
" Such a function is customarily called a Markov transition function, a transition probability
function, or a transition probability (on R).

See Definition 14.5 on p.260 of the optional subchapter 14.4 (Markov Processes With Transition Probability Functions).
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Let us ignore the role of the SDE solutions X;"* in the definition of P(-,-,,-) and just think of it
as a function of three real numbers and a Borel set as arguments. If Z = Z(w) is any (real valued)
random variable, then it is perfectly fine to plug in Z(w) for the second argument and examine the
properties of the random variable w — P(to, Z(w),t1,B’), justas long as tp < t; < T and B’ is a
Borel set. Let X = X% be the SDE solution for X, = z.

Assume in all that follows that 0 < v < t < T'and B € B!. Then it can be proven that

(14.5) P{X)* € B|3.} = P{X™ e B| X%} = P(u, X% t,B).

Since one and the same process X% occurs in all four places of (14.5), it is customary to drop the
superscripts and write X, for X{**. We obtain

(14.6) P{X; e B|3.} = P{X; € B| Xy} = P(u,Xy,t,B).

We often follow SCF2 notation and write

(14.7) P“{X, € B} := P(u,a,t, B) "= P{X"* e B}.

Recall from Definition 4.23 (Expected value of a random variable) on p.69 the connection between a
probability P and the expectation E. If Z is a non-negative or P-integrable random variable, then

E[Z] = /ZdP = /Z(w)P(dw).

Also recall from Definition 4.12 (Image measure) on p.59 the connection between P and the image
probability (distribution) Pz of the random variable Z, P;(B) = P{Z € B}. Also recall Theorem
4.13 on p.79 which states for Borel measurable functions g(z)(z € R) of a random variable Z,

/ 0(Z(w)) P(dw) = / 9(2) P2 (dz).
Q R

In our setting, P(u, a,t, B) = P“*{X; € B} states that P(u, a,t,-) = Py (the distribution of X;").
Since P*“(t,-) is a probability measure, it comes with a corresponding expectation £** which also
is parametrized by t. We limit ourselves to random variables i (.X;) for Borel measurable functions
h(zx). That allows us to further abuse notation and write E*“[h(X;)] to indicate that the probability
measure associated with that expectation is P*“(¢, -). Thus,

E*h(X)) = [ hoXy(w)P"*(dw) = [ h(z)PL(dx)
" h Jorers

(147)

= /h(m)PXtu,a(dx) = /h(m)P(u,a,t,daz).
R R

The second equation is the definition of the image of P under the random variable X;, the third
equation is the relation P“*{X, € B} = P{X,"" € B}, which follows from (14.7). In terms of
expectations, (14.31) becomes

(149) B |5} = B | X} = [ ha)Plu. Xot,do).

R
We obtain a formula without reference to the transition probability by combining (14.8) and (14.35)
and replacing the real number a with the real number X, (w) and then dropping as usual, the refer-
ence to w:

(14.10) E“YNn(Xy) = B{M(Xy) | Fu} = B{(X;) | X,}. O
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Remark 14.2. This remark is meant to provide more intuition of a Markov process as one, for which
its future development does not depend on the past, only on the present. See Proposition 6.2 on
p-113.

(@) In the special case where h(z) = 15(z) for some Borel set B, (14.10) reads

PuXu{X, € B} = P{X, € B|3u} = P(u,Xu,t,B). = P{X, € B| X,,}.

(b) We recall that X, was just a convenience symbol which actually denotes X;"*, the PDE solution
which starts at time 0 in an arbitrary state x. If we happen to know that X, (w) = a, i.e., we
condition on X,, = a, then we obtain

PYX)" € B} = P{X{" € B|§u} = P{X)* e B|X%® =a} = P(u,a,t,B).

(c) Since the expression P(u, a,t, B) does not depend on z, the following must be true. No matter
where the process was at ¢ = 0, the probability of ending up in the set B (and thus, the entire
distribution of X;, since B € B! was arbitrary), only depends on knowing that X, = a, i.e.,
knowing the state of the process at time u. [

The following is SCF2 Theorem 6.3.1.

Theorem 14.1. The original expectation E[...] of (Q, 5,8, P) is intimately related to the expectations
E™a[...] belonging to the initial conditions (u, a) by means of conditioning:

(14.11) E4*u (X)) = B{h(X:) | Xu} = E{h(Xy) | Fu}-

PROOF: This is formula (14.10) of the preceding technical notes. W
The following is SCF2 Theorem 6.4.1.

Theorem 14.2 (Feynman—-Kac Theorem).

Let T > 0. We examine again the SDE with differential (14.1) and initial conditions (14.2),
(14.12) dXy =Bt Xe) dt + y(t, Xe) dWy; Xy =z0 for 0=t < T, z9 € R.

Let z +— ®(x) be Borel-measurable such that E4*[®(X1)] < oo, forall 0 < ¢ < T and z € R.
Let (t,x) — f(t,x) be the function

(14.13) ft,z) = E“[®(Xr)]

Then f(t,x) is a solution to the PDE plus terminal condition

(1419 Flt,2) + B folt,2) + 37%(00) fae(t,7) = O,
(14.15) f(T,z) = ®(x) forallz.
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You can find an outline of the proof in the SCF2 text. W

The following is SCF2 Theorem 6.4.3.

Theorem 14.3 (Discounted Feynman-Kac).

Let T > 0. We examine again the SDE with differential (14.1) and initial conditions (14.2),
(14.16) dXy =Bt X)) dt + y(t, Xe) dWy; Xy =0 for 0<tg < T, z9 €R).

Let z +— ®(x) be Borel-measurable such that E4*[®(Xr)] < oo, forall 0 < ¢ < T and z € R.
Let (t,x) — f(t,x) be the function

(14.17) ft,z) == EX[eT00(Xr)]

Then f(t,x) is a solution to the following PDE plus terminal condition

(14.18) fults )+ B2t 7) + 572(,2) fae(t,2) = 7f(1,) = O,
(14.19) f(T,z) = ®(x) forall x.

You can find an outline of the proof in the SCF2 text. W

Remark 14.3. The two Feynman—Kac theorems are general theorems which relate the solution of an
SDE to that of an associated PDE + terminal condition. In stochastic finance we do option pricing
by means of risk-neutral validation, and we need a suitable setup in the model. Here is a very
important case.
e The SDE describes the dynamics dS; = ... of stock price.
e The PDE solution f(¢, z) will be the arbitrage free price II;(X'), at time ¢, of a simple claim
X = ®(Sr)), given that stock price at ¢ is S; = z,
e The terminal condition f(7T', x) = ®(z) will be the contract function of X'
o f(t,x) = E¥[e"TD®(X7)] is guaranteed to be the solution of the PDE
Je+Bfe+ %72f «2z — 7 f =0, but what is that good for if £[...] is not risk neutral measure,
and E%5t[e7"(T-Y®(X7)] is NOT the arbitrage free price II;(X) of the option?
So the following must be done: Find the market price of risk process ©; to find P and W; and
rewrite the dynamics
dS; = B(t,Se)dt + ~(t,Sy) dWy,

with new coefficients 3’ and +/, and with the P- Brownian motion Wt:
ds; = B'(t, ;) dt + ~'(t,S;) dW;.

Now (discounted) Feyman Kac gives you the correct PDE

fet, )+ B (t, ) fo(t, 2) + %7’2(t,:1:)fm(t,x) —rf(t,x) = 0 for 0=ty <T, xzg €R.
f(T,x) = ®(z) forallz,
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for which the solution, f(t,z) = E“*[e~"(T=9®(X7)], does the desired: IT;(X) = f(t, S).

Examples for this are SCF2 Example 6.4.4 - Options on a geometric Brownian motion, and the inter-
est rate models of SCF2 Chapter 6.5. [

14.2 Interest Rates Driven by Stochastic Differential Equations

Given is a filtered probability space (€2,F,§:, P) with a risk-neutral probability P and an Si—
adapted Brownian motion W under P.

We assume we have a market model in which the interest rate R;(w) is a stochastic process, but
not of the most general kind, i.e., just §;—adapted and nothing more. We rather assume that R; is
modeled by a stochastic Differential Equation

(14.20) dRy = B(t,Ry) dt + ~(t, R;) dW,.

Since interest rates for short-term borrowing are modeled by such an SDE we speak of a short-rate
model for R;. Very simple models for fixed income markets fall into this category.

We recall from Definition 7.5 (Discount process) on p.131, that

t
B, = exp{/ des}
0

is the money market account price process and

1 t
Dy =— = — sd
¢ ) exp{ /OR s}

is the discount process of the bank account.

Clearly, the dynamics of those processes are
dDy = — R.D, dt, dB; = By R, dt.

We saw in Chapter 13.4 (Forward Contracts and Zero Coupon Bonds) that a zero—coupon bond with
maturity date 7" is a contingent claim with constant contract value Vr = 1 and that the (arbitrage

free) price B(t, T) at time 0 < ¢ < T is, under risk-neutral probability P,

1 ~ ~ T
(14.21) B(L,T) = 5 ElDr | &1 = Ble™ )i el | 5]

Definition 14.2 (Yield). We define the yield of zero-coupon bond between times ¢ and 7" as

(14.22) Y(,T) = — log B(t,T) O

T—1

Remark 14.4. Formula (14.22) is equivalent to
(14.23) B(t,T) = e Y (&T)(T=t)

In other words, Y (¢, T') is that constant rate of continuously compounding interest between times ¢
and T" which corresponds to the price B(t,T') of a zero—coupon bond maturing at 7. [
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Proposition 14.1. Given the dynamics of (14.20) for the interest rate Ry, one can write B(t,T) = f(t, R:).
Here f(t,x) is a function of time t and x = 0 which satisfies the PDE plus terminal condition

(14.24) filt ) + B(t,2) folt,2) + 5 4(07) Faulty2) = wf(t,),

(14.25) f(T,z) =1 forall x.

For the proof see SCF2 Chapter 6.5. W

14.3 Stochastic Differential Equations and their PDEs in Multiple Dimensions

As in Chapter 12.6 (Multidimensional Financial Market Models), the material discussed here can

be generalized to SDEs, in which an m~dimensional processes X; = (Xt(l), e Xt(m)) is driven by
a d-dimensional Brownian motion W; = (Wt(l), e Wt(d)). However, the notation is complicated
enough when we restrict ourselves to a two dimensional process Xt = (Xt, R Yt) which is driven

by a 2-dimensional Brownian motion W, = (Wt(l), t(2)). Doing so will drastically reduce the

amount of superscripts you will encounter.

Definition 14.3. Let W, = (Wt(l), t(2)), t 2 0, be a two dimensional Brownian motion on a filtered
probability space (€2, §, §¢, P), and let

Bi, B2, 111, Y125 Y21, Y22, ¢ [0,T] x R* =R,

be six (measurable) deterministic functions 3;(¢, z,v), vi;(t, z,y), where 4, j = 1, 2.
Given are the stochastic differentials and initial conditions

dX; = Bi(t, X1, Ya) dt + yu1 (t, X2, V) dWS) + yia(t, Xo, Vi) dW
dY; = Bo(t, X0, Y1) dt + yar (t, X0, YV2) dW) + o (t, Xy, Y3) dW?
(14.27) Xy = 0, Yy = yo, where0=ty<t<T and zo,y €R.

(14.26)

We call (14.26) a stochastic differential equation (short: SDE) with drift vector 5 =
(51, 52), and diffusion matrix v** = (%J')ij' wherei =1,2,5 =1,2.

We call a process X = (Xt, Y:)y, <1< that satisfies both (14.26) and (14.27) a solution of the
SDE (14.26) for the initial condition (14.27). [

Similar to the onedimensional case we often define X; = (X4, Y:), @ = (a,b), and write

—

X, =a, ie, X, =a, Y,=0
for the initial condition. Again, this is done to improve readability of superscripts.

Fact 14.2. The SDE (14.26), with an intial condition X, =a, possesses a unique solution

(14.28) Xud — (Xt ! >u§t§T
under very general conditions on drift vector 3 = (B1, o) and diffusion matrix ~** = (vij),. O

iy’
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Note 14.1 on p.248 generalizes to the multidimensional case. It follows next. Feel free to skip this
note. If you study it, be sure to remember the concepts discussed in Notel4.1.

Note 14.2 (Technical note on the Markov property of SDE solutions). || %

ForO0Su<Tanda €R,let X be the unique SDE solution of Fact 14.2. Let
(14.29) P(u,i,t,B) = P{X""c B} (u<t<T,BecB?.

Then (u,d) — P(u,d,t,B) is measurable in v and @, B — P(u,d,t,B) is a probability measure
on B2, and P(-,-,-,-) satisfies the Chapman-Kolmogorov equations. °>! We call such a function a
Markov transition function, a transition probability function, or a transition probability (on R?).

As in the onedimensional case, we ignore the role of the SDE solutions X" @ and we simply con-
sider P(-,-,,-) as a function of two time parameters, a two dimensional vector, and a Borel set as
arguments. If 7 = Z(w) is a twodimensional random vector, then it is perfectly fine to plug in Z(w)
for the second argument and examine the properties of the random variable w — P(to, Z(w),t1, B,
justaslong as ¢ty < ¢ = T and B’ is a Borel set. Let X = )fto  be the SDE solution for Xo =Z.

Assume in all that follows that 0 <« < t < T and B € 82. Then it can be proven that

(14.30) P{X* ¢ B| 3.} = P{X* ¢ B| X%%} = P(u,X%" t,B).

(14.31) P{X, € B| 3.} = P{X; € B| X,} = P(u,Xu,t,B).

Since one and the same process X? % occurs in all four places of (14.30), it is customary to drop the
superscripts and write X, for X"*. We obtain

(14.32) P{X, € B|3%. = P{X, e B| X,} = P(u,X,,t,B).

We often follow SCF2 notation and write

(14.33) Pui(X, e BY == P(u,a,t,B) £ p{X*7 e BY}.

Recall from Definition 4.12 (Image measure) on p.59 the connection between P and the image prob-
ability (distribution) P; of a twodimensional random vector 7 = (24, Zs). Pz(B) = P{Z e B}.
Also recall Theorem 4.13 on p.79 which states for Borel measurable functions f(2)(Z = (21, 22) € R?)

of a twodimensional random vector Z = (Z1,7Z2),

[ aZe)Ps) = [ a@1Paa). = [ o) Pzl ).

In our setting, P(ua 67 ta B) - Pu’a{)zt € B} states that P(“’v a:a t: ) = P§ﬁ (the distribution of tha).
t

Since P"(t,-) is a probability measure, it comes with a corresponding expectation E% which also
is parametrized by t. We limit ourselves to random variables i (.X;) for Borel measurable functions

> As in the onedimensional case, we refer you to Definition 14.5 on p.260 of the optional subchapter 14.4.

254 Version: 2023-04-21



Math 454 — Additional Material Student edition with proofs

h(Z). That allows us to further abuse notation and write E*@ [h()? +)] to indicate that the probability
associated with that expectation is P*%(t, -). Thus,

EUR(R,) = / ho Xy(w) P (dw) = / h(a) P (d7)
(14.34) Q s R
- / h(2)Pgua(dz) 7 / h(Z)P(u,d,t,dT).

R t R2

The second equation is the definition of the image of P%@ ynder the random variable Xt, the third

equation is the relation pwi{X, € B} = P{X}" e B}, which follows from (14.33). In terms of
expectations, (14.32) becomes

(14.35) B | 8.} = B | X} = [ )Pl Xotdo).

We obtain a formula without reference to the transition probability by combining (14.34) and (??)
and replacing the vector @ wih the real number X, (w) and then dropping as usual, the reference to
w:

(14.36) EYXen(Xy) = B{W(X) | Fu} = B{W(X) | X,}. O

We generalize now the Feynman—-Kac to two dimensions.
Theorem 14.4 (Two dimensional Feynman—Kac). Let X; := (X;,Y;) be the solution of the SDE of
Definition 14.3 on p.253.

Let a Borel-measurable function h(x,y) be given. Corresponding to the initial condition Xy =7 =(,y),
where 0 < t' < Tand o',y € R, we define

(14.37) g(t', 2, y) = BT h(Xrp, Y7),
(14.38) 2 y) = BN e T h (X, ¥y) |
Then

9t + 519z + Bagy
(14.39)

1 1
+ 3 (V1 + 7v2)gzx + (Y11721 + Y12722) Gy + 3 (v3, + szz)gacy =0,

fe+Bife + Bafy
1 1
T35 (Vi1 + Y2 fae + (11721 + Y12722) fay + B (Va1 + V32 fey = 7S
Further, these PDE solutions f(t,z,y) and g(t, z,y) also satisfy the terminal conditions

(14.40)

9(T,z,y) = f(T,z,y) = h(z,y) forallzandy.

PROOQF: See SCF2 Chapter 6.6 R

We demonstrate the use of the multidimensional Feynman—Kac Theorem in the context of deter-
mining the price of an Asian option. This is SCF2 Example 6.6.1.
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Definition 14.4. An Asian option with a strike price of K is a contract written at time 0, which
specifies that, at the time of expiration 7" > 0, the holder of this option will receive an amount in
height of

1 (T *
(14.41) X = ( / S, du — K) ,
T Jo

where S; is a geometric Brownian motion and K > 0.

Remark 14.5 (The Asian option is not Markov). Because the contract value depends on the entire

history from 0 to ¢ of the stock price trajectory, IT;(X) is not a Markov process, and thus cannot be

written as a function F'(t, S;) of time and stock price. It should be clear that the entire history S, (w)
t

for 0 < u £ ¢t < T has a bearing on II;(X'), since a history of high stock prices drivesup [ S,du
u=0

+
T
and thus makes it more likely to obtain a big payoff X = (}F [ Sydu — K ) . Of course, this will
0

result in a higher option price II;(X).
Surprisingly, if we define A; := fOT Sydu, the twodimensional process (S¢, A;) is Markov. This is
so because we can model this process by the SDE

dSt = TSt dt + O'St th s

(14.42)
dA, =S, dt,

with deterministic initial conditions Ag = 0 and . Be sure to understand the following:

Even though A; by itself is not a Markov process, the vector process (St, At) is Markov
because the drift and diffusion coefficients of the SDE system (14.42) only possess S; and A;
(and, of course, time t) as arguments. [

Proposition 14.2. Assume that we operate in a classical Black—Scholes market, i.e., we have constant interest
rate r 2 0 and constant volatility o > 0.

We specify the dynamics of S; terms of the Brownian motion W, under risk-neutral measure P. In other
words, W, is the process dW;y = dW; + O,dt, where O, = © = (a — 1) /0 is the market price of risk. Then

the stochastic differential equation for S; specifies the interest rate r rather than the stock’s instantaneous rate
of return, oy, as its drift coefficient. Since the interest rate is constant, the dynamics for S, and Dy are

(14.43) dS, =rSydt + oSy dW,.
(14.44) dDy = —rDydt, Dy = 1, ie, D, = e ™.
Let
t
(14.45) A = / S,du, ie, dA, =S,dt, Ay = 0.
u=0

Then the option price is
(X)) = (8, S, Ar), (0=t =T),
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where the function (t, z,y) — m(t,x,y) solves the partial differential equation

1
(14.46) m(t,x,y) + ramy(t,z,y) + xmy(t,z,y) + 502x27rm(t,:c,y) — ra(t,z,y) = 0,

and satisfies at time of expiry T the boundary condition

1 (T +
(14.47) (T, Sy, Ar) = X = <T/ S, du — K) .
0

First PROOF: (Outline. For details, see SCF2 Example 6.6.1.)

One can prove this proposition without using Theorem 14.4 (Two dimensional Feynman-Kac]) on
p-255 by applying the It6 formula to compute the differential d (e‘” 7 (t, St, At) ) , where the Itd pro-
cesses Sy, A; are defined by the SDE system, (14.42), and the function 7 (¢, z, y) is implicitly defined
as follows:

_ +
m(t, Sp, Ar) = I(X) = E [e 7T (;AT — K) |

Such a function must exist due to the Markovian nature of the process (St, At). One obtains from
Corollary 10.2 on p.201, followed by the use of Itd’s formula to evaluate dr (¢, S, A),

1
) d(e_”w(t,St,At)) —e "t [ — rw(:, ) + m + merSe + mySe + 5025’377”] dt
+ e—rt O'Stﬂ'm th .

We wrote 7(-, -, -) to avoid confusion with the number 7, and we omitted the arguments everywhere
else. One shows that e*’"tw(t, S, At) is a martingale. As a consequence, the dt term of (E) vanishes.
Replacing S; with x one obtains (14.46). Since the expressioni under the conditional expectation is
§r—measurable, and (T — T) = 0,
o /1 + 1 +

—Ar — K .= | =Ar — K = X.
*(r = K) Joa | = (4 - %)

m(T,Sr, Ar) = E

This proves (14.47). W

Alternate proof:

This second proof is based on the multidimensional Feynman-Kac Theorem 14.4 on p.255. Let
1 * -

) b = (o= K) o alha) = B [T OR) 5]

We translate the SDE system (14.42)

dS; =rS;dt + oS, dW;,
dA; =S, dt,

to match Definition 14.3 on p.253, since we want to apply Feynman—-Kac:

/Bl(twrvy) =Tz, 52(757%9) = Z,
Vll(tyxvy) =ox, ’)’12(t,$,y) = 721(t7x7y) = 722<t7$7y) = 0.
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Then (14.40) becomes

L 9o
T +1rrme + Ty + 20 T Tyy = 7"77('7'7')'

This is formula (14.46) of this proposition. According to the multidimensional Feynman—-Kac Theo-
rem, the function 7(+, -, ) is a solution to this PDE, and it satisfies

(T, z,y) =h(y) © (;y - K>+-

+
ThUS, 7T(T, ST,AT) = h(AT) = <;AT — K> = X.

This proves formula (14.47) of this proposition. W

The following remark refers back to the proof of Proposition 14.2. It is intended to deepen your
understanding about hedging portfolios.

Remark 14.6. Since the dt term of (E) is zero, we obtain
A(e (X)) =d(e 7 r(6,5, A)) = e oS (L Si, Ar) AW
By the pricing principle, by e~ = Dy, and by (12.17) on p.220,
d(e (X)) =d(e7V;) = e aSY; dW.
We equate the right hand sides and obtain
e " oS T, (t, St, At) th =e " 5S,Y, th .
Not surprisingly, we have again obtained the Delta hedging formula,
Y, =7 (t, St, At) .
If we sell the Asian option at time zero for v(0, Sy, 0) and use this as the initial capital for a hedging
portfolio ( i.e., take Xy := v(0, Sp,0)), and at each time ¢ adhere to the portfolio strategy in which

we set
# of stock shares = V; = 7, (¢, S, Ay),

then we will have

d(e Vi) =d(e " o(t, 5, Ar))

for all times ¢, and hence
1 +
Vi = (T, 57, Ar)) = (TAT - K) .

We will be able to purchase an Asian option at time 7" to cover our short position in the.option with
the proceeds from the sale of the portfolio. In other words, this portfolio is a hedge for an Asian
option.

The delta-hedging rule, Y; = 0/(0z)( option price),
is the same for Asian options as for the European calls and puts (see (9.22) on p.185). But be aware
that the PDE we obtained for (-, -, -) is structurally different from the one for ¢(¢, z). For example,
it contains a term zm, (¢, z, y) which has no counterpart in the PDE for ¢(¢,z). O
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14.4 Markov Processes With Transition Probability Functions |[%

The presentation of this material follows [8] Friedman, Avner: Stochastic Differential Equations and
Applications.

Introduction 14.1. We have seen in Chapter 6.5 (Brownian Motion as a Markov Process) that one
can associate with a Brownian motion I, a transition density, i.e., a function p(7, z, y), such that the
formula (6.32),

(14.48) E[f(Ws+‘r) | Ss] = E[f(Ws+T) | Ws] = /_OO f(y) p(T, WSay) dy,

holds true for s 2 0,7 > 0, and nonnegative, Borel measurable f : R — R. Now let X; be some
Markov process, not necessarily Brownian motion, which possesses a transition density p(7, z,y).
For the function f(y) = 1 we obtain, when conditioning on X, = z,

1:EDL&:ﬂ:/ L-p(r,z,y)dy.

—00

Thus, for each fixed 7 and z, the assignment

BHPh%B%Z/ph%w@,
B

defines a probability measure P (7, z, -) on the Borelsets of R. According to (6.36),

P(raB) = [ proy)dy = PXesr € B | X, =a).
B

This gives P(7,x, B) an interpretation as the probability that X, will land in B, given that its
trajectory has value z at time s.

Brownian motion is a special kind of Markov process, since it possesses stationary increments, i.e.,
the distribution of Wi, — W; does not change with ¢. We also call such a Markov process time-
homogeneous. Time-homogeneity usually is not satisfied for the Markov processes we obtain
as solutions of stochastic differential equations. If X; is such a solution, and if the drift and/or
diffusion coefficient of the SDE has time as an argument, then the distribution of X, — X; will
change with ¢. Rather than just considering 7 = ¢t — s, we must keep track separately of the time s
at which we condition X, = z, and the later time ¢t = s + 7 at which we examine the event X; = B.
A transition density for X; should then be a function p(s, z,t,y) such that the analoque of (14.48)
holds:

E[f(Xt) ’ Ss] = E[f(Xt) | Xs] = /OO f(y)p(37X57t7y) dy,

for 0 < s £t = T, and nonnegative, Borel measurable f : R — R. Now,

B — P(s,z,t,B) = / p(s,x,t,y)dy
B

is a probability measure, and P(s, z,t, B) can be interpreted as the probability that X; will land in
B, given that its trajectory has value z at time s. One could also say that it gives the probability that
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X, = x transitions into the set B at time ¢. This function P(s,x,t, B) is the transition probability
function we discussed in the technical notes 14.1 on p.248 and, for the mulitidimensional case, 2 in
142 on p.254. [

The observations of this introduction lead us to the definition of a Markov transition function even
if no stochastic differential equations and their solution processes are involved.

Definition 14.5. Let P(s, #,t, B) = 0 be a function of 0 < s < t < 00, Z € R?, B € B¢, such that

(1) 2+ P(s,Z,t, B) is B%measurable for fixed s, ¢, B,

(2) B~ P(s,,t,B) is a probability measure for fixed Z, s, t,

(3) Forany0<s<t<u<oo,@€R?and B € B, P(s,z,t, B) satisfies the Chapman-
Kolmogorov equation

(14.49) / P(s,Z,t,dy) P(t,y,u,B) = P(s,&,u,B).
R4

Then we call p a Markov transition function, a transition probability function, or a tran-
sition probability (on RY). O

Example 14.1. The purpose of this example is to understand the connection between Markov tran-
sition functions and Definition 6.2 on p.113 of a Markov process.

Let X = ( ) 120 be a stochastic process on a filtered probability space (€2, §, 5+, P) as follows.

The state space of the process is the set of n numbers S = {b1,...,b,}. Thus,
> P{X;=b;} =1 forallt=0.
j=1

We assume that X; is Markov. We will work with the alternate definition of such a process given
in Proposition 6.2 on p.113. If 0 < s = ¢t < T, and ¢ is an arbitrary, nonnegative or bounded,
Borel-measurable function z — ¢(z), then

(14.50) Elp(X:) | 8] = Elp(Xy) | X
ForO<s<tandi,j=1,2,...,n,let

p(s,z,ty) =P{Xy =y | Xs=a}.
We combine this with (14.50) and obtain that, for X(w) = a,

(14.51) Elp(X1) | 8s] = Elp(Xe) | Xs] = > oW)p(s,a.t,y).
yes

52¥es, there are multidimensional analogues for transition densities and corresponding transition probability functions.
g % g P y
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We will show that

(14.52) P(s,z,t,B) = Zps:cty
yeB

is a Markov transition probability, i.e., it satisfies the Chapman-Kolmogorov equation.

Since B is finite, integration simplifies to summation with respect to the finitely many elements
bi,...,b, of S. The right hand side of (14.51) exemplifies this. Thus the Chapman-Kolmogorov
equation we want to prove is

P(u,z,t,B) = ZP(u,x,s,{y})P(s,y,t,B) for0Su<s<t,ueS BCS.
yeS

Since measures are additive, is suffices to show the above for singletons B = {z}, where z € S.
Since P(u,x,t,{z}) = p(u, z,t, z), the last formula is equivalent to

(14.53) p(u,z,t, 2) Zpuxsy (s,y,t,z) for0Su=<s=<t uz€eSs.
yes

We will show more generally that, for a nonnegative function ¢ : § — R,

(1454) > o(p(uztz) =Y @(2) Y plu.z,sy)p(s,y.t.2), for 0Suss<taes.
z€S z€S yes

We obtain (14.53) from this formula by setting ¢ := 1y, for arbitrary z € S.
Let0 = u = s <tand ¢:S — R. Iterated conditioning yields

(14.55) Elp(X1)[8u] = E[Blp(Xe) | 8] [Tl -
Use of the Markov property shows that, if a € S and X, (w) = q, the left hand side of (14.55) equals

(LS) Elp(X)|X)w) = > () P{Xy=z2|Xy=a} = Y _¢(2)p(u,a,t,z).
z€S z€S

Even though the conditional expectation E[p(X;) | X,] is a function of w, it is constant on the atoms
{Xs =b} ={w: X5(w) = b}, i.e., it can be written as a function

P(b) = Elp(X;) | Xs=1b].
Note that

(14.56) W) =Y w2 P{Xe =2 Xo=b} = ) o(2)p(s,bt,2).

z€eS z€S

If X, (w) = a, the right hand side of (14.55) thus equals

(RS) E[Elp(X)) 1X.][ Xu] = E[(X)| Xu] = D w(B)P{X, =b]| X}
besS
:Zw(b)puasb ZZQO p(s,b,t,2) p(u,a,s,b).
besS besS zeS

261 Version: 2023-04-21



Math 454 — Additional Material Student edition with proofs

Since (LS) = (RS), we obtain for X, (w) = a,

Z o(z) p(u,a,t,z). = Z Z o(2) p(u,a,s,b)p(s,b,t,z).

z€eS beS zeS

This proves that (14.53) holds true, thus P(s, z,t, B) satisfies the Chapman-Kolmogorov equation
and is indeed a Markov transition function. [J

We thus have shown the following in the previous example.

Proposition 14.3. Any Markov process with a finite state space possesses a Markov transition function.

PROOF: See Example 14.1. W

One could say that any reasonable process that is a Markov process is associated with a Markov
transition function. We confine the next definition to real-valued processes, even though it has
counterparts for multidimensional state spaces.

Definition 14.6. Let (€2, §, §;) be a filtered measurable space. Foreach0 =< ¢ < T, let X; : 2 — Rbe
adapted to the filtration, i.e., X; is §—B-measurable. We are reluctant to call X = (X;); a stochastic
process, since there is no probability measure (yet). That comes next. Let (Ps’m)po’x cg be a family
of probability measures on (€2, F). Thus X = X; is an adapted process on the filtered probability
space (2, §, 5, P**) for each s > 0 and = € R. Let P(s, z,t, B) be a Markov transition function on
R. Assume that the following is true.

1) P9*"{Xs;=z2} =1, foralls=20andz €R.

@ P**{X,e€B|F} = P(s,Xs,t,B) P" —as., for0<s<tandzeR.
Then we call X; a Markov process with transition function P(s,z,t,B). O

In the following, £%7]...] denotes the expectation with respect to P**. In other words,

ES*[Z] = / ZdP* = /Q Z(w) P (dw) |

for any P**—integrable random variable Z.

Fact 14.3. If X, is a Markov process with transition function P(s,x,t, B), then
(1) P**{X,eB|3F,} = P*{X,e B|X,} = P(s,X,,t,B) P —a.s.,
for 0 < s < tand x € R. That is the Markov property

(2) Eow{f()zt) |8"S} = E07m{f()?t) |Xs} = fR f(y)P(‘S?Xsat,dy) P07$a's'a
for 0 < s < t, x € R, and nonnegative or bounded, Borel measurable f. See (6.5) on p.113.
B) IfxreRs<ti<ty<---<tpand By,...,B, €5, then

P¥*{X;, € By,..., Xy, € By} = / P(s,x,tl,d:rl)---/ P(tn—1,%n—1,tn,dxy) .
Bl n
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Remark 14.7. Note the following significant structural differnence between the solutions of an SDE
as Markov processes and Markov processes with transition function.

In Note 14.1 (Technical note on the Markov property of SDE solutions) on p.248 we have:

(1) afixed probability P on (€2, §, §¢)

(2) aseparate stochastic process X, for each initial condition X, = x

(3) a resulting Markov transition function P(s,z,t,B) = P{X;" € B}.
When defining a Markov process with transition function, we have

(1) afamily of probabilities P** on (2, §, §¢)

(2) one and the same stochastic process X; for each (2, §, §¢), P*7)

(3) aMarkov transition function P(s,x,t,B) = P**{X; € B}.
It feels much more natural to work with the second scenario, since dealing with one and the same
process X;(w) makes it seem natural to think of P**{...} as a conditional probability Q{--- | Xs =
x},ie.,

} P9*{X; € By,..., Xy, € By} = Q{Xy, € By,...,X;, € B, | Xs =z}

(Careful here! No claim is made that such a probability @ actually exists as a mathematical object!)
O

Wouldn't it be nice if we could have the SDE solutions X, given by a single Markov process with
transition function? This can in fact be done, but it comes at a significant cost. We must abandon
the original filtered measurable space (€2, §, §;) (and also, of course the probability P and Brownian
motion W;) and create that single process which incorporates all solutions X;"* on a new filtered
measurable space (ﬁ, § , %t)

An important reason why that is possible is the following. A Markov transition function P(s, z,t, B)
is defined without reference to 2. Rather, the probabilities P(s, z,, -) are defined on the Borel sets
of R.

The following can be shown.

Theorem 14.5.

Let (s,x,t,B) — P(s,z,t, B) be a Markov transition function for (R, B'). Then there exist a
measurable space (€2, §), a filtration (St) >0 @ real-valued function
X :0,00[xQ; (@) = Xi(@),

and a family (153’””)8>0 +cr Of probability measures on 3 as follows.
X is a Markoo process with transition function P(-,-,-,-). In other words,

(1) X is an adapted process on the filtered probability space (Q, §, §¢, P*%),

foreach s > 0and x € R.
2) P"{Xs;=uz} =1, foralls 2 0andz € R.
(3) P {X,€B|3s} = P(s,Xs,t,B) P** —as., for0<s<tandzr €R,

PROOF: See the proof of Theorem 2.1.1 of [8] Friedman, Avner: Stochastic Differential Equations
and Applications. W

Remark 14.8.
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)
()

(3)

@)

(5

(6)

(7)

There is a multidimensional version of Theorem 14.5.

one can choose for  the set C([0, oo, R) of all real-valued, continuous functions
W:[0,00[,R; t—o(t).

If the Markov transition function is associated with an SDE

dXt = B(t,Xt) dt + ’}/(t,Xt) th,

then we not only have to consider the measurable space (€2, §) and the filtration (St) y but
also the Brownian motion W; and the specific probability P that makes W; a Brownian
motion, i.e., Wi 144, — Wy has normal distribution with mean zero and variance 7 under P,
and the trajectories of W are continuous P-a.s. This can be dealt with:

One can construct a generic filtered probability space ((AZ, 3.5, ﬁ) with a Brownian motion

W,, a real-valued function (t,®) — X;(&), and a family (ﬁs’x)s>0 +er Of (additional) prob-

ability measures on § as follows. X is a Markov process with transition function P(-,-, -, ),
and X, is a solution of the SDE with initial condition = with respect to the specific proba-
bility Ps*_ For a proof, see Theorem IV.1.1 of [9] Ikeda & Watanabe: Stochastic Differential
Equations and Diffusion Processes.

The construction done in (4) lets us keep the essence of what it means that a stochastic
process X is a solution of the SDE given in (4) with initial condition X, =

o~ t A~ o~ —~
X, =z + / B(s, Xs) ds + v(t, Xs) dWs.

At the same time, we managed to gain the advantage we had hoped for before stating
Theorem 14.5: There now is a single process X, with enough trajectories to represent the
multitude of solutions X;"” for the various initial conditions X, = z.

There is no magic. Different probability measures give nonzero probability to very different
parts of (), and thus to very different trajectories of X. Consider the sets

Alu,zj) = {w: X, = xzj}, forj=1,2, w20, and different z1,z, € R.
Then P71 (A(u, 1)) = pus (A(u,z2)) =1,
but P (A(u,z2)) = P“"2(A(u,z1)) = 0.
There is special terminology for specifying solutions of an SDE without referring to a spe-

cific carrier space (€2,F, S, P) and Brownian motion W;. They are referred to as weak
solutions. > [

14.5 Exercises for Ch.14

Exercise 14.1. Let T, X;, ®(z), f(¢,x) be as defined in Theorem 14.2 (Feynman—Kac Theorem) on
p-250. Prove that the process

My = f(t,X;) = E"[®(Xr)]

is a martingale. Hint: Use formula (14.11) on p.250. O

B There is an entire litany of classifications of the solutions of an SDE Even worse, different authors sometimes choose

the same definition to describe solutions with different properties.
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14.6 Blank Page after Ch.14

This page is intentionally left blank!
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15 Other Appendices

15.1 Greek Letters

The following section lists all greek letters that are commonly used in mathematical texts. You do
not see the entire alphabet here because there are some letters (especially upper case) which look
just like our latin alphabet letters. For example: A = Alpha B = Beta. On the other hand there
are some lower case letters, namely epsilon, theta, sigma and phi which come in two separate forms.
This is not a mistake in the following tables!

a alpha 6 theta & xi ¢ phi
B beta v theta T pi ¢ phi
v gamma L iota p tho x chi
0 delta k kappa o tho Y psi
e epsilon »x kappa o sigma w omega
e epsilon A lambda ¢ sigma
¢ zeta ©4 mu T tau
n eta v nu v upsilon
I' Gamma A Lambda ¥ Sigma U Psi
A Delta = Xi YT Upsilon Q2  Omega
© Theta II Pi ¢ Phi

15.2 Notation

This appendix on notation has been provided because future additions to this document may use
notation which has not been covered in class. It only covers a small portion but provides brief
explanations for what is covered.

For a complete list check the list of symbols and the index at the end of this document.
Notations 15.1. a) If two subsets A and B of a space (2 are disjoint, i.e., AN B = (), then we often

write A |4 B rather than AU B or A + B. Both A® and, occasionally, (A denote the complement 2\ A
of A.

b) R- or RT denotes the interval ]0, +-c0[, R>( or Ry denotes the interval [0, +o0],

c) The set N = {1,2,3,- -} of all natural numbers excludes the number zero. We write Ny or Z. or
Z> for N|g{0}. Z>( is the B/G notation. It is very unusual but also very intuitive. [

Definition 15.1. Let (x,)nen be a sequence of real numbers. We call that sequence increasing or
nondecreasing if z,, < x4 forall n € N.

We call it strictly increasing if z,, < x,,41 foralln € N.
We call it decreasing or nonincreasing if z,, = x4 for all n.
We call it strictly decreasing if x,, > x,,4; foralln e N. O
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(X,d(-,-)) —metricspace, 121 dr2(f,g) — L?~distance , 119

A; —dividend rate process, 236 p(t,z) - European put, 191

B(t,T) zero—coupon bond price , 242 r € X —element of a set, 7

C? —twice continuously diffble, 183 x ¢ X —notan element of a set, 7
Wt(”) — scaled symm. random walk , 126 Ty | T —nonincreasing seq. , 91

[a,b], ]a,b] —half-open intervals, 17 z, T x — nondecreasing seq. , 91

[a,b] — closed interval , 17 (2,3, (3:), P) — filtered prob. space, 64
N(z) -std normal cumul. distrib. , 187, 240 (2,3, (8t)er » P) — filtered prob. space, 64
Forg(t,T) - T-forward price at t, 242 Ab - complement of 4, 11

For; - forward price at¢, 191 B; — interest accrued, 132

dy(1,z) , 187,240 D, — discount process, 132

m(§) —measurable fn. , 54 E[X | Z =~z] cond. exp. w.r.t Z, 105
m(F,§) — measurable fn. , 54 P-a.s. —almost surely , 56
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I fllL: = L*-=norm , 119 X, — X P-a.s.—convergence P-a.s. , 74
I fllL2 = L?>~norm , 119 A - delta (the greek), 189

||z|| — (semi) norm, 119, 121 I' - gamma (the greek), 189

llz|lx , 118 ®(-) - contract function, 134

|z|l2 - Buclidean norm , 118 IT(M, ) — arbitrage free claims price, 149
B(R) — extended Borel o—-algebra , 46 © — theta (the greek), 189

B(R) — Borel o—algebra of R, 46 N, —node k at time ¢, 149

B(R") — Borel o—algebra of R" , 46 X — random vector ,62

P(0),29 —power set , 14 [ fdu, [ f(w)du(w), [ f(w)p(dw), 68
NIA4;i:iel } , 35 No —nonnegative integers, 17

Micr Ai 35 Rt - positive real numbers, 17
Ul[di:ieI],35 R-o - positive real numbers, 17

Uier 4i , 35 R>o —nonnegative real numbers, 17
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v < i — continuous measure , 84 Q -rational numbers, 15
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c(t,x) — Eoropean call pricing, 182 v —vega (the greek), 189

d(z,y) — (pseudo) metric, 120, 121 p —rho (the greek), 189

dri(f,g) — L'~distance , 119 fn — f p—a.e. — convergence p—a.e. , 74
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(xj)jes —family, 23

14 —indicator function of A , 41
2 P(Q) - power set, 14

[0,00] —nonnegative extended , 42
[a,00] ,42

[—00, 0] —extended real #s , 42
[X,Y]: —cross variation, 196

x4 —indicator function of A , 41
CA - complement, 266

AL A2 A", — Lebesgue measure , 49
N, No , 266

R*,R-¢, 266

Ry, R>p, 266

R-o,R", 266

R>o, R4, 266

Z.,Z>y,266

epi(f) —epigraph , 28

¢ x (u) — moment-generating function , 116
| X| —size of aset, 14

AT —transpose of A, 31

{} —empty set, 8

Alf B - disjoint union , 266

AN B - Aintersection B, 10

A\ B — Aminus B, 11

A C B — Aisstrict subset of B, 9
AC B —Aissubsetof B,9

A C B — Aisstrict subset of B, 9

AAB - symmetric difference of Aand B, 11

AW B — Adisjoint union B, 10

AL complement , 266

B D> A - Bis strict superset of A4, 9

B D A - Bis strict superset of 4,9
Cn[X,Y]r —sampled cross variation, 196
f: X —Y —function, 21

f(A) —direct image , 38

f(t—) —value immediately before ¢, 238
f~Y(B) -indirect image, preimage , 38
X;— —value immediately before ¢, 238
(©2,F) —measurable space, 43

(Q,F, ) — measure space , 47

[X, X, [X, X](t) —quadratic variation , 122

CA - complement of 4, 11

[ f(t)dg(t) — Riemann-Stieltjes integral , 163

— —maps to, 20
§ —o-algebra, 43
() —measure , 47

1 — finite measure , 47
1 —measure , 47

R —extended real #s , 42

R, - nonnegative extended , 42

IT — partition of time interval , 122

ITI;(X) — price of claim X', 127

II;, IT — partition of time interval , 122

&) — financial asset , 128

0(€&) —o-alg. genned by €, 44

o(fi:iel) —o-alg. genned by functions f;, 62
18

AUB —Aunion B, 10

AD B - Aissupersetof B, 9

B; —money market account unit price , 128
f | 4 —Testriction of f, 22

f \/gvf Ng —max(f,g),min(f,g) , 18

Sy —stock price , 128

V;H - portfolio value, 137

V. — portfolio value, 130

xVy —max(z,y), 18

x Ay —min(z,y), 18

zt,z~ —positive, negative parts , 17

a.e. —almost everywhere , 56
a.s. —almost surely , 56
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C? function, 183
T—-forward price, 242
p—null set, 47
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product o—algebra, 86
o—algebra generated by a function, 60
o—field, 43
o—finite measure, 82
e—closeness, 120
p—integrable function, 69
p—integrable random variable, 69

absolute value, 17
abstract integral, 67, 68
adapted to a filtration, 64
almost everywhere, 56
almost surely, 56
American call, 129, 193
American put, 129, 193
antiderivative, 28
arbitrage portfolio, 133
argument, 21

Asian option, 256
assignment operator, 21

binomial tree model, 139
Black-Scholes
market model, 182
Black—Scholes Black-Scholes market model
generalized, 214
Black-Scholes PDE, 186
Black-Scholes—Merton function, 188
bond
zero—coupon, 242
Borel o-algebra, 46
Borel sets, 46
Brownian motion, 115
exponential martingale, 125
geometric, 125
geometric, generalized, 171
multidimensional, 196
budget equation, 133, 138
continuous time, 181
discrete time, 133

call

Americall, 129, 193
cartesian product, 22
Chapman-Kolmogorov equation, 260
characteristic function, 41
claim

simple, 134
closed interval, 17
codomain, 21
complement, 11
complete market, 134
concave-up, 28
conditional expectation

partial averaging, 104

conditional expectation w.r.t a random variable,

104

conditional expectation w.r.t a sub-o-algebra,

104

contingent claim, 127, 134

reachable, 134
continuous measure, 84
continuous time

budget equation, 181
continuous time financial market, 128
continuous time stochastic process, 61
contract function, 134
convergence in distribution, 74
convergence of random variables in L?, 166
convergence of stochastic processes in L?, 166
convex, 28
correlation

instantaneous, 229
counting measure, 51
counting measure, multidimensional, 51
Cox-Ingersoll-Ross interest rate model, 173
cross variation, 196

De Morgan’s Law, 13, 37
decimal, 15

decimal digit, 15

decimal numeral, 15

decimal point, 15

decreasing, 90

decreasing sequence, 266
decreasing sequence of sets, 35
delta, 185
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delta—hedging rule, 185
density of a measure, 82
differential, 165
stochastic, 169
differential equation
stochastic, 171
diffusion coefficient, 248
diffusion matrix, 253
digit, 15
direct image, 38
direct image function, 38
discount process, 132
discrete random variable, 55
discrete time
budget equation, 133
discrete time financial market, 128
discrete time stochastic process, 61
disjoint, 10
distribution, 60
distribution measure, 60
dividend rate, 239
discrete time, 239
dividend rate process
continuous time, 236
domain, 21
drift coefficient, 248
drift vector, 253
dummy variable (setbuilder), 8
dynamics, 169

element of a set, 7

empty set, 8

epigraph, 28

equivalent measures, 84

European call, 127

European put, 129

even, 15

event, 48

expectation
conditional, w.r.t a random variable, 104
conditional, w.r.t a sub—o—algebra, 104

exponential martingale, 125

extended real-valued function, 42

extension of a function, 22

family, 23
mutually disjoint, 36
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filtration, 64, 127
generated by a process, 63
financial asset
riskless, 128
risky, 128
financial derivative, 127, 134
financial market
continuous time, 128
discrete time, 128
financial market model, 127
finite measure, 47
finite sequence, 23
forward contract, 129
forward price, 191
T-forward price, 242
function, 21
p-integrable, 69
argument, 21
assignment operator, 21
codomain, 21
direct image, 38
direct image function, 38
domain, 21
extension, 22
function value, 21
indirect image function, 38
integrable, 68
inverse, 21
maps to operator, 21
measurable, 54
preimage function, 38
restriction, 22
simple, 67
square—integrable—integrable, 69
function sequence
decreasing, 91
increasing, 91
limit almost everywhere, 74
nondecreasing, 91
nonincreasing, 91
function value, 21

GBM (geometric Brownian motion), 125
generalized Black-Scholes market model, 214
generalized geometric Brownian motion, 171
generated o—Algebra

by collection of sets, 44
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by family of functions, 62
geometric Brownian motion, 125
generalized, 171
Girsanov measure, 236
Girsanov probability, 236
graph, 21
greek letters, 266
Greeks, 189
greeks, 185
delta, 185

half-open interval, 17
hedge, 134

static, 191
hedging equations, 232

iid., 74
iff, 9
image measure, 60
in the money, 187
increasing, 90
increasing sequence, 266
increasing sequence of sets, 35
independence

o—algebras, 89

random variables, 89
Independence Lemma, 108
index set, 23
indexed family, 23
indicator function, 41
indirect image, 38
indirect image function, 38
induced measure, 60
induction

proof by, 25
induction principle, 25
infinite sequence, 23
information filtration, 127
initial condition, 169, 187
initial condition (SDE), 248, 253
injective, 21
instantaneous correlation, 229

instantaneous standard deviation, 229

integer, 16
even, 15
odd, 15
integrable function, 68

integral, 67, 68

abstract, 67, 68

definite, 27

indefinite, 28
integral equation, 169
integral over a subset, 70
integrand, 163
integrator, 163
interest rate process, 132
intersection

family of sets, 35
interval

closed, 17

half-open, 17

open, 17
inverse function, 21
irrational number, 16
Itd integral w.r.t. Brownian motion, 164, 167
It6 process, 169
Itd process driven by a multidimensional Brow-

nian motion, 197

Lévy, Paul Pierre, 201
least squares estimate, 107
Lebesgue measure, n-dimensional, 49
left sided limit, 238
limit
left sided, 238
pointwise limit, 91
limit almost everywhere of a function sequence,
74
limit almost surely of a sequence of random vari-
ables, 74
long position, 129

maps to operator, 21
market
complete, 134
free of arbitrage, 134
market price of risk, 216, 230
market price of risk equations, 230
Markov chain, 114
Markov process, 113
stationary increments, 259
time-homogeneous, 259
transition density, 124
Markov process with transition function, 262
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Markov transition function, 248, 254, 260
Markovian portfolio, 129
martingale, 112
martingale measure, 146, 150, 216, 229
mathematical induction principle, 25
maturity date, 242
maximum, 18
mean rate of return, 227
instantaneous, 172
measurable function, 54
measurable set, 43
measurable space, 43
measure, 47
o—finite, 82
continuous, 84
density, 82
equivalence, 84
induced, 60
martingale measure, 146, 150, 216, 229
product, 86
product measure, 86
Radon-Nikodym derivative, 82
risk-neutral, 146, 150
risk—neutral measure, 216, 229
measure space, 47
product space, 86
member of a set, 7
member of the family, 23
mesh, 122
metric, 121
metric space, 121
e—closeness, 120
moment-generating function, 116
joint, 116
money market account price, 132
multidimensional Brownian motion, 196
multiplication table for Brownian motion differ-
entials, 123
mutually disjoint, 10

natural number, 16

negative part, 17

nondecreasing, 90, 91
nondecreasing function sequence, 91
nondecreasing sequence, 266
nonincreasing, 90, 91

nonincreasing function sequence, 91
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nonincreasing sequence, 266

norm, 121

null measure, 47

null set, 47

numbers
integer, 15
irrational number, 16
natural numbers, 15
rational numbers, 15
real numbers, 15

odd, 15
open interval, 17
option

Asian, 256

parallelepiped, n-dimensional, 48
partial averaging (conditional expectation), 104
partition, 14, 36, 122
mesh, 122
partitioning, 14, 36
path, 61
pointwise limit, 91
portfolio, 129
arbitrage portfolio, 133
hedging portfolio, 134
Markovian, 129
replicating portfolio, 134
self-financing, 132, 133, 181
portfolio strategy, 129
portfolio value, 130
position
long position, 129
short position, 129
positive part, 17
power set, 14
preimage, 38
preimage function, 38
pricing principle, 134
principle of mathematical induction, 25
probability, 47
probability distribution, 60
probability mass function, 50
probability measure, 47
probability space, 47
filtered, 64
process
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stochastic process, 61
product o-algebra, 86
product measure, 86
product of measures, 86
product space, 86
proof by cases, 13
pseudometric, 120
put

American, 129, 193

European, 129
put—call parity, 192

quadratic variation, 122

Radon-Nikodym derivative, 82
random item, 55
random time, 65
random variable, 55
p—-integrable, 69
convergence in L?, 166
discrete, 55
moment-generating function, 116
square integrable, 166
square—integrable—integrable, 69
random variables
limit almost surely, 74
random vector, 62
moment-generating function, 116
random walk, 114
scaled, symmetric, 126
random walk, symmetric, 114
rational number, 16
reachable
contingent claim, 134
real number, 16
recurrence relation, 24
recursion, 24
restriction of a function, 22
Riemann-Stieltjes integral, 163
risk—neutral measure, 146, 150, 216, 229
risk-neutral pricing formula, 221
risk-neutral valuation formula, 221
riskless asset, 128
risky asset, 128

sampled cross variation, 196
scaled symmetric random walk, 126

SDE (stochastic differential equation), 248, 253
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self-financing portfolio, 132, 133, 181
seminorm, 119
sequence, 23
decreasing, 266
finite, 23
finite subsequence, 23
increasing, 266
infinite, 23
nondecreasing, 266
nonincreasing, 266
start index, 23
stochastic, 62
strictly decreasing, 266
strictly increasing, 266
subsequence, 23
set, 7
difference, 11
difference set, 11
disjoint, 10
intersection, 10
mutually disjoint, 10
proper subset, 9
proper superset, 9
setbuilder notation, 7
size, 14
strict subset, 9
strict superset, 9
subset, 9
superset, 9
symmetric difference, 11
union, 10
short position, 129
short-rate model, 252
simple claim, 134
simple function, 67
simple process, 164
size, 14
square integrable random variable, 166
square integrable stochastic process, 166
square—integrable function, 69
square—integrable random variable, 69
standard deviation
instantaneous, 229
standard machine (for proofs), 79
start index, 23
static hedge, 191
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stationary increments, 259 weak solution of an SDE, 264
stochastic differential, 169 Wiener process, 115
stochastic differential equation, 171

solution, 248, 253 yield, 252

stochastic differential equation (SDE), 248, 253
stochastic process, 61
adapted to a filtration, 64
continuous time, 61
convergence in L?, 166
discrete time, 61
simple, 164
square integrable, 166
state space, 61
stochastic sequence, 62
stopping time, 65, 193
strictly decreasing, 90
strictly decreasing sequence, 266
strictly increasing, 90
strictly increasing sequence, 266
submartingale, 112
subsequence, 23
finite, 23
summation measure, 51
summation measure, multidimensional, 51
supermartingale, 112
surjective, 21
symmetric random walk, 114, 125, 126

zero measure, 47
zero—coupon bond, 242

time-homogeneous, 259

trajectory, 61

transition density, 124

transition probability, 248, 254, 260
transition probability function, 248, 254, 260
triangle inequality, 19, 26

unbiased estimator, 107
union

family of sets, 35
universal set, 11

Vasicek interest rate model, 173
vector space
normed, 121
volatility, 172
volatility matrix, 227

weak solution
stochastic differential equation, 264
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