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1 Before You Start

“All models are wrong, but
some are useful”.

Attributed to the statistician George E. P. Box (1919–
2013)

This quote certainly applies to stochastic models in mathematical finance. The price of financial
instruments such as stocks, bonds and stock options is usually assumed to be a Markov process,
i.e., the future development of those prices does not depend on their past development, but only on
their current value. As debatable as it is to completely ignore the history of a stock when predicting
its future, those stochastic models are in wide use by institutions and individuals that trade financial
securities.
Consider how far we have come in the last 120 years. In 1900 the French mathematician Louis
Bachelier published his thesis, [2], Théorie de la spéculation, in which he modeled stock price as
a Brownian motion. As a consequence, stock prices would be negative with positive probability.
Today even the most basic models involving the pricing of stock options such as puts and calls are
much improved in that they prevent stock prices from ever becoming negative.
This course attempts to convey the basics of continuous time stochastic models in mathematical
finance. Unfortunately this is not possible in any reasonable manner without the concept of con-
tinous time martingales, and those again need a very sophisticated understanding of conditional
probabilities and conditional expectations. Accordingly, a substantial part of these lecture notes is
dedicated to conveying the necessary material. Much of which usually is taught in a probability the-
ory for beginning graduate students. Thus proofs, even where they are given, are often considered
optional.

1.1 About This Document

Remark 1.1 (The purpose of this document). The intent is to put some core definitions and theorems
into these lecture notes, in particular, if there is a substantial difference in notation and/or presen-
tation to that used in the text for this class, [14] Shreve, Steven: Stochastic Calculus for Finance II:
Continuous-Time Models. �
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Remark 1.2 (Acknowledgements). I am indepted to Prof. Dikran Karagueuzian from the Depart-
ment of Mathematical Sciences at Binghamton University for sharing his notes from teaching this
class at an earlier time. �
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2 Preliminaries about Sets, Numbers and Functions

Introduction 2.1. You find here a range of mathematical definitions and facts that you should be
familiar with. �

The student should read this chapter carefully, with the expectation that it contains material
that they are not familiar with, as much of it will be used in lecture without comment. Very
likely candidates are power sets, a function f : X → Y where domain X and codomain Y
are part of the definition.

2.1 Sets and Basic Set Operations

Introduction 2.2. This first subchapter of ch.2 is different from the following ones in that the treat-
ment of sets given here is sufficiently exact for a PhD in math unless s/he works in the areas of
logic or axiomatic set theory. The only exception is the end of the chapter where the preliminary
definition of the size of a set (def.2.10 on p.16) needs to refer to finiteness.
Ask a mathematician how her or his Math is different from the kind of Math you learn in high
school, in fact, from any kind of Math you find outside textbooks for mathematicians and theoretical
physicists. One of the answers you are likely to get is that Math is not so much about numbers but
also about other objects, among them sets and functions. Once you know about those, you can
tackle sets of functions, set functions, sets of set functions, . . . �

An entire book can be filled with a mathematically precise theory of sets. 1 For our purposes the
following “naive” definition suffices:

Definition 2.1 (Sets).
1See remark 2.2 (“Russell’s Antinomy”) below.

7 Math 454 - Version 2025-02-11
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A set is a collection of stuff called members or elements which satisfies the following rules:
The order in which you write the elements does not matter and if you list an element two
or more times then it only counts once.
We write a set by enclosing within curly braces the elements of the set. This can be done by
listing all those elements or giving instructions that describe those elements. For example,
to denote by X the set of all integer numbers between 18 and 24 we can write either of the
following:

X := {18, 19, 20, 21, 22, 23, 24} or X := {n : n is an integer and 18 ≤ n ≤ 24}

Both formulas clearly define the same collection of all integers between 18 and 24. On the
left the elements of X are given by a complete list, on the right setbuilder notation, i.e.,
instructions that specify what belongs to the set, is used instead.
It is customary to denote sets by capital letters and their elements by small letters but this
is not a hard and fast rule. You will see many exceptions to this rule in this document.
We write x1 ∈ X to denote that an item x1 is an element of the set X and x2 /∈ X to denote
that an item x2 is not an element of the setX . Occasionally we follow Shreve’s example and
write x1 in X and x2 not in X . 2

For the above example we have 20 ∈ X , 27− 6 ∈ X , 38 /∈ X , ’Jimmy’ /∈ X . �

Example 2.1 (No duplicates in sets). The following collection of alphabetic letters is a set:

S1 = {a, e, i, o, u}

and so is this one:
S2 = {a, e, e, i, i, i, o, o, o, o, u, u, u, u, u}

Did you notice that those two sets are equal? �

Remark 2.1. The symbol n in the definition of X = {n : n is an integer and 18 ≤ n ≤ 24} is a
dummy variable in the sense that it does not matter what symbol you use. The following sets all
are equal to X :

{x : x is an integer and 18 ≤ x ≤ 24},
{α : α is an integer and 18 ≤ α ≤ 24},
{Z : Z is an integer and 18 ≤ Z ≤ 24} �

Remark 2.2 (Russell’s Antinomy). Care must be taken so that, if you define a set with the use of
setbuilder notation, no inconsistencies occur. Here is an example of a definition of a set that leads
to contradictions.

A := {B : B is a set and B /∈ B}(2.1)

What is wrong with this definition? To answer this question let us find out whether or not
this set A is a member of A. Assume that A belongs to A. The condition to the right of the colon
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states that A /∈ A is required for membership in A, so our assumption A ∈ A must be wrong. In
other words, we have established “by contradiction” that A /∈ A is true. But this is not the end of it:
Now that we know that A /∈ A it follows that A ∈ A because A contains all sets that do not contain
themselves.
In other words, we have proved the impossible: both A ∈ A and A /∈ A are true! There is no
way out of this logical impossibility other than excluding definitions for sets such as the one given
above. It is very important for mathematicians that their theories do not lead to such inconsistencies.
Therefore, examples as the one above have spawned very complicated theories about “good sets”.
It is possible for a mathematician to specialize in the field of axiomatic set theory (actually, there
are several set theories) which endeavors to show that the sets are of any relevance in mathematical
theories do not lead to any logical contradictions.

The great majority of mathematicians take the “naive” approach to sets which is not to worry
about accidentally defining sets that lead to contradictions and we will take that point of view in
this document. �

Definition 2.2 (empty set).

∅ or {} denotes the empty set. It is the one set that does not contain any elements. �

Remark 2.3 (Elements of the empty set and their properties). You can state anything you like about
the elements of the empty sets as there are none. The following statements all are true:

a: If x ∈ ∅ then x is a positive number.
b: If x ∈ ∅ then x is a negative number.
c: Define a ∼ b if and only if both are integers and a − b is an even number.

For any x, y, z ∈ ∅ it is true that
c1: x ∼ x,
c2: if x ∼ y then y ∼ x,
c3: if x ∼ y and y ∼ z then x ∼ z.

d: Let A be any set. If x ∈ ∅ then x ∈ A.

As you will learn later, c1+c2+c3 means that “∼” is an equivalence relation (see def.?? on p.??) and
d: means that the empty set is a subset (see the next definition) of any other set. �

Definition 2.3 (subsets and supersets).

We say that a set A is a subset of the set B and we write A ⊆ B if any element of A also
belongs to B. Equivalently we say that B is a superset of the set A and we write B ⊇ A .
We also say that B includes A or A is included by B. Note that A ⊆ A and ∅ ⊆ A is true for
any set A.

If A ⊆ B but A 6= B, i.e., there is at least one x ∈ B such that x /∈ A, then we say that A is a
strict subset or a proper subset of B. We write “A ( B” or “A ⊂ B”. Alternatively we say
that B is a strict superset or a proper superset of A and we write “B ) A”) or “B ⊃ A”. �
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BBB

AAA

Figure 2.1: Set inclusion: A ⊆ B, B ⊇ A

Two setsA andB are equal means that they both contain the same elements. In other words, A = B
iff A ⊆ B and B ⊆ A.
“iff” is a short for “if and only if”: P iff Q for two statements P and Q means that if P is valid then
Q is valid and vice versa. 3

To show that two sets A and B are equal you show that
a. if x ∈ A then x ∈ B,
b. if x ∈ B then x ∈ A.

Definition 2.4 (unions, intersections and disjoint unions).

Given are two arbitrary sets A and B. No assumption is made that either one is contained
in the other or that either one contains any elements!
The unionA∪B (pronounced "A union B") is defined as the set of all elements which belong
to A or B or both.
The intersection A ∩B (pronounced "A intersection B") is defined as the set of all elements
which belong to both A and B.
We call A and B disjoint , also mutually disjoint , if A ∩B = ∅. We then usually write
A ]B (pronounced “A disjoint union B”) rather than A ∪B. �

We could have shortened in the last definition the phrase “all elements which belong to A or B
or both” to “all elements which belong to A or B”. We will almost always do so because it is
understood among mathematicians that “or” always means at least one of the choices. If they mean
instead exactly one of the choices #1,#2, . . .#n then they will use the phrase “either #1 or #2 or
. . . or #n. See rem?? on p.??. We will also see in a moment that there is a special symbolA4B which
denotes the items which belong to either A or B (but not both).

Remark 2.4. It is obvious from the definition of unions and intersections and the meaning of the
phrases “ all elements which belong to A or B or both”, “all elements which belong to both A and
B” and “A ⊆ B if any element of A also belongs to B” that the following is true for any sets A,B

3A formal definition of “if and only if” will be given in def.?? on p.?? where we will also introduce the symbolic
notation P ⇔ Q. Informally speaking, a statement is something that is either true or false.
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A ∪B: A ∪B ∪ C: A ∩B: A ∩B ∩ C:

A B A B

C

A B A B

C

Figure 2.2: Union and intersection of sets

and C.

A ∩B ⊆ A ⊆ A ∪B,(2.2)
A ⊆ B ⇒ A ∩B = A and A ∪B = B,(2.3)
A ⊆ B ⇒ A ∩ C ⊆ B ∩ C and A ∪ C ⊆ B ∪ C.(2.4)

The symbol ⇒ stands for “allows us to conclude that”. So A ⊆ B ⇒ A ∩ B = A means
“From the truth of A ⊆ B we can conclude that A ∩ B = A is true”. Shorter: “From A ⊆ B
we can conclude that A ∩ B = A”. Shorter: “If A ⊆ B then it follows that A ∩ B = A”.
Shorter: “If A ⊆ B then A ∩B = A”. More technical: A ⊆ B implies A ∩B = A.

You will learn more about implication in ch.?? of this document and in ch.3 (Some Points of Logic)
of [5] Beck/Geoghegan: The Art of Proof. �

Definition 2.5 (set differences and symmetric differences).

Given are two arbitrary sets A and B. No assumption is made that either one is contained
in the other or that either one contains any elements!
The difference set or set difference A \B (pronounced "A minus B") is defined as the set of
all elements which belong to A but not to B:

(2.5) A \B := {x ∈ A : x /∈ B}

The symmetric difference A4B (pronounced "A delta B") is defined as the set of all ele-
ments which belong to either A or B but not to both A and B:

(2.6) A4B := (A ∪B) \ (A ∩B) �

Definition 2.6 (Universal set).

Usually there always is a big set Ω that contains everything we are interested in and we
then deal with all kinds of subsets A ⊆ Ω. Such a set is called a “universal” set. �
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For example, in this document, we often deal with real numbers and our universal set will then be
R. 4 If there is a universal set, it makes perfect sense to talk about the complement of a set:

Definition 2.7 (Complement of a set).

Let Ω be a universal set. The complement of a set A ⊆ Ω consists of all elements of Ω which
do not belong to A. We write A{. or {A In other words:

(2.7) A{ := {A := Ω \A = {ω ∈ Ω : x /∈ A} �

A \B: A4B: Universal set: A{:

A B A B
ΩΩΩ AAA

A{A{A{

Figure 2.3: Difference, symmetric difference, universal set, complement

Remark 2.5. Note that for any kind of universal set Ω it is true that

Ω{ = ∅, ∅{ = Ω. �(2.8)

Example 2.2 (Complement of a set relative to the unit interval). Assume we are exclusively dealing
with the unit interval, i.e., Ω = [0, 1] = {x ∈ R : 0 ≤ x ≤ 1}. Let a ∈ [0, 1] and δ > 0 and

(2.9) A = {x ∈ [0, 1] : a− δ < x < a+ δ}

the δ–neighborhood 5 of a (with respect to [0, 1] because numbers outside the unit interval are not
considered part of our universe). Then the complement of A is

A{ = {x ∈ [0, 1] : x ≤ a− δ or x ≥ a+ δ}. �

Draw some Venn diagrams to visualize the following formulas.

Proposition 2.1. Let A, B, X be subsets of a universal set Ω and assume A ⊆ X . Then,

4R is the set of all real numbers, i.e., the kind of numbers that make up the x-axis and y-axis in a beginner’s calculus
course (see ch.2.3 (“Classification of numbers”) on p.17).

5Neighborhoods of a point will be discussed in the chapter on the topology of Rn (see (??) on p.??). In short, the
δ–neighborhood of a is the set of all points with distance less than δ from a.
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A ∪ ∅ = A; A ∩ ∅ = ∅(2.10a)
A ∪ Ω = Ω; A ∩ Ω = A(2.10b)

A ∪A{ = Ω; A ∩A{ = ∅(2.10c)
A4B = (A \B) ] (B \A)(2.10d)
A \A = ∅(2.10e)
A4∅ = A; A4A = ∅(2.10f)
X4A = X \A(2.10g)
A ∪B = (A4B) ] (A ∩B)(2.10h)
A ∩B = (A ∪B) \ (A4B)(2.10i)
A4B = ∅ if and only if B = A(2.10j)

PROOF: The proof is left as exercise 2.2. See p.36. �

Next we give a very detailed and rigorous proof of a simple formula for sets. The reader should
make an effort to understand it line by line.

Proposition 2.2 (Distributivity of unions and intersections for two sets).

Let A,B,C be sets. Then

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C),(2.11)
(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C).(2.12)

PROOF: ? We only prove (2.11). The proof of (2.12) is left as exercise 2.1.

PROOF of “⊆”: Let x ∈ (A ∪ B) ∩ C. It follows from (2.2) on p.11 that x ∈ (A ∪ B), i.e., x ∈ A or
x ∈ B (or both). It also follows from (2.2) that x ∈ C. We must show that x ∈ (A ∩ C) ∪ (B ∩ C)
regardless of whether x ∈ A or x ∈ B.
Case 1: x ∈ A. Since also x ∈ C, we obtain x ∈ A∩C, hence, again by (2.2), x ∈ (A ∩ C) ∪ (B ∩ C),
which is what we wanted to prove.
Case 2: x ∈ B. We switch the roles of A and B. This allows us to apply the result of case 1, and we
again obtain x ∈ (A ∩ C) ∪ (B ∩ C).
PROOF of “⊇”: Let x ∈ (A ∩ C) ∪ (B ∩ C), i.e., x ∈ A ∩ C or x ∈ B ∩ C (or both). We must
show that x ∈ (A ∪ B) ∩ C regardless of whether x ∈ A ∩ C or x ∈ B ∩ C.
Case 1: x ∈ A ∩ C. It follows from A ⊆ A ∪ B and (2.4) on p.11 that x ∈ (A ∪ B) ∩ C, and we
are done in this case.
Case 2: x ∈ B ∩ C. This time it follows from A ⊆ A ∪ B that x ∈ (A ∪ B) ∩ C. This finishes the
proof of (2.11).
Epilogue: The proofs both of “⊆” and of “⊇” were proofs by cases, i.e., we divided the proof into
several cases (to be exact, two for each of “⊆” and “⊇”), and we proved each case separately. For
example we proved that x ∈ (A ∪ B) ∩ C implies x ∈ (A ∩ C) ∪ (B ∩ C) separately for the cases
x ∈ A and x ∈ B. Since those two cases cover all possibilities for x the assertion “if x ∈ (A∪B)∩C
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then x ∈ (A ∩ C) ∪ (B ∩ C)” is proven. �

Proposition 2.3 (De Morgan’s Law for two sets).

Let A,B ⊆ Ω. Then the complement of the union is the intersection of the complements, and the
complement of the intersection is the union of the complements:

(2.13) a. (A ∪B){ = A{ ∩B{ b. (A ∩B){ = A{ ∪B{

PROOF of a:
1) First we prove that (A ∪B){ ⊆ A{ ∩B{:
Assume that x ∈ (A ∪ B){. Then x /∈ A ∪B, which is the same as saying that x does not belong
to either of A and B. That in turn means that x belongs to both A{ and B{ and hence also to the
intersection A{ ∩B{.
2) Now we prove that (A ∪B){ ⊇ A{ ∩B{:
Let x ∈ A{ ∩B{. Then x belongs to both A{, B{, hence neither to A nor to B, hence x /∈ A ∪ B.
Therefore x belong to the complement of A ∪B. This completes the proof of formula a.
PROOF of b:
The proof is very similar to that of formula a and left as an exercise. �

Formulas a through g of the next proposition are very useful. You are advised to learn them by
heart and draw pictures to visualize them. You also should examine closely the proof of the next
proposition. It shows how a proof which involves 3 or 4 sets can be split into easily dealt with cases.

Proposition 2.4.

Let A,B,C,Ω be sets such that A,B,C ⊆ Ω. Then
a. (A4B)4C = A4(B4C)
b. A4∅ = ∅4A = A
c. A4A = ∅
d. A4B = B4A

Further we have the following for the intersection operation:
e. (A ∩B) ∩ C = A ∩ (B ∩ C)
f. A ∩ Ω = Ω ∩A = A
g. A ∩B = B ∩A

And we have the following interrelationship between4 and ∩:
h. A ∩ (B4C) = (A ∩B)4(A ∩ C)

PROOF: ?

Only the proof of a is given here. It is very tedious and there is a much more elegant proof, but that
one requires knowledge of indicator functions 6 and of base 2 modular arithmetic (see, e.g., [5] B/G
(Beck/Geoghegan) ch.6.2).

6Indicator functions will be discussed in ch.3.3 on p.46 and in ch.?? on p.??.
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By definition x ∈ U4V if and only if either x ∈ U or x ∈ V , i.e.,
(either)

[
x ∈ U and x /∈ V

]
or
[
x ∈ V and x /∈ U

]
Hence x ∈ (A4B)4C means either x ∈ (A4B) or x ∈ C, i.e.,
either

[
x ∈ A, x /∈ B or x ∈ B, x /∈ A

]
or x ∈ C, i.e., we have one of the following four combinations:

a. x ∈ A x /∈ B x /∈ C
b. x /∈ A x ∈ B x /∈ C
c. x ∈ A x ∈ B x ∈ C
d. x /∈ A x /∈ B x ∈ C

and x ∈ A4(B4C) means either x ∈ A or x ∈ (B4C), i.e.,
either x ∈ A or

[
x ∈ B, x /∈ C or x ∈ C, x /∈ B

]
, i.e., we have one of the following four combinations:

1. x ∈ A x ∈ B x ∈ C
2. x ∈ A x /∈ B x /∈ C
3. x /∈ A x ∈ B x /∈ C
4. x /∈ A x /∈ B x ∈ C

We have a perfect match a↔ 2, b↔ 3, c↔ 1, d↔ 4. and this completes the proof of a.
�

Definition 2.8 (Partition).

Let Ω be a set and A ⊆ 2Ω. We call A a partition or a partitioning of Ω if
a. A∩B = ∅ for any two A,B ∈ A such that A 6= B, i.e., A consists of mutually disjoint

subsets of Ω (see def.2.4),
b. Ω =

⊎[
A : A ∈ A

]
. �

Example 2.3.
a. For n ∈ Z let An := {n}. Then A := {An : n ∈ Z} is a partition of Z. A is not a partition

of N because not all its members are subsets of N and it is not a partition of Q or R. The
reason: 1

2 ∈ Q and hence 1
2 ∈ R, but 1

2 /∈ An for any n ∈ Z, hence condition b of def.2.8 is
not satisfied.

b. For n ∈ N let Bn := [ n2, (n+1)2[ = {x ∈ R : n2 ≤ x < (n+1)2}. Then B := {Bn : n ∈ N}
is a partition of [1,∞[. �

Definition 2.9 (Power set).

The power set
2Ω := {A : A ⊆ Ω}

of a set Ω is the set of all its subsets. Note that many older texts also use the notation P(Ω)
for the power set. �

Remark 2.6. Note that ∅ ∈ 2Ω for any set Ω, even if Ω = ∅: 2∅ = {∅}. It follows that the power set of
the empty set is not empty. �
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Definition 2.10 (Size of a set).

a. Let X be a finite set, i.e., a set which only contains finitely many elements. We write∣∣X∣∣ for the number of its elements, and we call
∣∣X∣∣ the size of the set X .

b. For infinite, i.e., not finite sets Y , we define |Y | :=∞. �

A lot more will be said about sets once families are defined.

2.2 The Proper Use of Language in Mathematics: Any vs All, etc

Mathematics must be very precise in its formulations. Such precision is achieved not only by means
of symbols and formulas, but also by its use of the English language. We will list some important
points to consider early on in this document.

2.2.0.1 All vs. ANY
Assume for the following that X is a set of numbers. Do the following two statements mean the
same?

(1) It is true for ALL x ∈ X that x is an integer.
(2) It is true for ANY x ∈ X that x is an integer.

You will hopefully agree that there is no difference and that one could rewrite them as follows:
(3) ALL x ∈ X are integers.
(4) ANY x ∈ X is an integer.
(5) EVERY x ∈ X is an integer.
(6) EACH x ∈ X is an integer.
(7) IF x ∈ X THEN x is an integer.

Is it then always true that ALL and ANY means the same? Consider
(8a) It is NOT true for ALL x ∈ X that x is an integer.
(8b) It is NOT true for ANY x ∈ X that x is an integer.

Completely different things have been said: Statement (8) asserts that as few as one item and as
many as all items in X are not integers, whereas (9) states that no items, i.e., exactly zero items in
X , are integers.
My suggestion: Express formulations like (8b) differently. You could have written instead

(8c) There is no x ∈ X such that x is an integer.

2.2.0.2 AND vs. IF ... THEN
Some people abuse the connective AND to also mean IF ... THEN. However, mathematicians use
the phrase “p AND q” exclusively to mean that something applies to both p and q. Contrast the use
of AND in the following statements:

(9) “Jane is a student AND Joe likes baseball”. This phrase means that both are true: Jane is
indeed a student and Joe indeed likes baseball.

(10) “You hit me again AND you’ll be sorry”. Never, ever use the word AND in this con-
text! A mathematician would express the above as “IF you hit me again THEN you’ll be
sorry”.
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2.2.0.3 OR vs. EITHER ... OR
The last topic we address is the proper use of “OR”. In mathematics the phrase

(11) “p is true OR q is true”
is always to be understood as

(12) “p is true OR q is true OR BOTH are true”, i.e., at least one of p, q is true.
This is in contrast to everyday language where “p is true OR q is true” often means that exactly one
of p and q is true, but not not both.
When referring to a collection of items then the use of “OR” also is inclusive If the items a, b, c, . . .
belong to a collection C , e.g., if those items are elements of a set, then

(13) “a OR b OR c OR ...” means that we refer to at least one of a, b, c, . . . .

Note that “OR” in mathematics always is an inclusive or, i.e., “A OR B” means “A OR B
OR BOTH”. More generally, “A OR B OR ...” means “at least one of A, B, ...”.
To rule out that more than one of the choices is true you must use a phrase like “EXACTLY
ONE OF A, B, C, ...” or “EITHER A OR B OR C OR ...”. We refer to this as an exclusive or.

2.3 Numbers

We start with an informal classification of numbers. It is not meant to be mathematically exact. We
will give exact definitions of the integers, rational numbers and real numbers in chapter ?? (The
Real Numbers).

Definition 2.11 (Integers and decimal numerals). A digit or decimal digit Is one of the numbers
0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
We call numbers that can be expressed as a finite string of digits, possibly preceded by a minus
sign, integers. In particular we demand that an integer can be written without a decimal point.
Examples of integers are

3, − 29, 0, 3 · 106, −1, 2.9̄, 12345678901234567890, −2018.(2.14)

Note that 3 · 106 = 3000000 is a finite string of digits and that 2.9̄ equals 3 (see below about the
period of a decimal numeral). We write Z for the set of all integers.
Numbers in the set N = {1, 2, 3, . . . } of all strictly positive integers are called natural numbers.
An integer n is an even integer if it is a multiple of 2, i.e., there exists j ∈ Z such that n = 2j, and it
is an odd integer otherwise. One can give a strict proof that n is odd if and only if there exists j ∈ Z
such that n = 2j + 1.

A decimal or decimal numeral is a finite or infinite list of digits, possibly preceded by a minus sign,
which is separated into two parts by a point, the decimal point. The list to the left of the decimal
point must be finite or empty, but there may be an infinite number of digits to its right. Examples
are

3.0, − 29.0, 0.0, −0.75, .3̄, 2.749̄, π = 3.141592....., −34.56.(2.15)
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The bar on top of the rightmost part of a decimal such as “.3̄” means that this part should be
repeated over and over again, i.e., .3̄ = 0.33333333333 . . . and 1.234567 = 1.234567567567 . . . .
Any integer can be transformed into a decimal numeral of same value by appending the pattern
“.0” to its right. For example, the integer 27 can be written as the decimal 27.0. �

Definition 2.12 (Real numbers). We call any kind of number which can be represented as a decimal
numeral, a real number. We write R for the set of all real numbers. It follows from what was
remarked at the end of def.2.11 that integers, in particular natural numbers, are real numbers. Thus
we have the following set relations:

N ⊆ Z ⊆ R. �(2.16)

We next define rational numbers.

Definition 2.13 (Rational numbers). A number that is an integer or can be written as a fraction of
integers, i.e., as m

n where m,n ∈ Z and n 6= 0, is called a rational number. We write Q for the set of
all rational numbers. �

Examples of rational numbers are

3
4 , −0.75, −1

3 , .3̄,
7
1 , 16, 13

4 , −5, 2.999̄, −372
7 .

Note that a mathematician does not care whether a rational number is written as a fraction
numerator

denominator

or as a decimal numeral. The following all are representations of one third:

(2.17) 0.3̄ = .3̄ = 0.33333333333 . . . = 1
3 = −1

−3 = 2
6 ,

and here are several equivalent ways of expressing the number minus four:

(2.18) − 4 = −4.000 = −3.9̄ = −12
3 = 4

−1 = −4
1 = 12

−3 = −400
100 .

There are real numbers which cannot be expressed as integers or fractions of integers.

Definition 2.14 (Irrational numbers). We call real numbers that are not rational irrational numbers.
They hence fill the gaps that exist between the rational numbers. In fact, there is a simple way
(but not easy to prove) of characterizing irrational numbers: Rational numbers are those that can
be expressed with at most finitely many digits to the right of the decimal point, including repeating
decimals. You can find the underlying theory and exact proofs in ch.?? (Decimal Expansions of Real
and Rational Numbers). Irrational numbers must then be those with infinitely many decimal digits
without a continually repeating pattern. �

Example 2.4. To illustrate that repeating decimals are in fact rational numbers we convert x = 0.145
into a fraction:

99x = 100x− x = 14.545− 0.145 = 14.4

It follows that x = 144/990, and that is certainly a fraction. �
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Remark 2.7. Examples of irrational numbers are
√

2 and π. A proof that
√

2 is irrational (actually
that n

√
2 is irrational for any integer n ≥ 2) is given in prop.?? on p.??. �

Definition 2.15 (Types of numbers). We summarize what was said sofar about the classification of
numbers:

N := {1, 2, 3, . . . } denotes the set of natural numbers.
Z := {0,±1,±2,±3, . . . } denotes the set of all integers.
Q := {n/d : n ∈ Z, d ∈ N} denotes the set of all rational numbers.
R := {all integers or decimal numbers with finitely or infinitely many decimal digits} de-
notes the set of all real numbers.
R \Q = {all real numbers which cannot be written as fractions of integers} denotes the set
of all irrational numbers. There is no special symbol for irrational numbers. Example:

√
2

and π are irrational. �

Here are some customary abbreviations of some often referenced sets of numbers:

N0 := Z+ := Z≥0 := {0, 1, 2, 3, . . . } denotes the set of nonnegative integers,
R+ := R≥0 := {x ∈ R : x ≥ 0} denotes the set of all nonnegative real numbers,
R+ := R>0 := {x ∈ R : x > 0} denotes the set of all positive real numbers,
R 6=0 := {x ∈ R : x 6= 0}. �

Definition 2.16 (Intervals of Numbers). For a, b ∈ R we have the following intervals.

• [a, b] := {x ∈ R : a ≤ x ≤ b} is the closed interval with endpoints a and b.
• ]a, b[ := {x ∈ R : a < x < b} is the open interval with endpoints a and b.
• [a, b[ := {x ∈ R : a ≤ x < b} and ]a, b] := {x ∈ R : a < x ≤ b} are half-open intervals

with endpoints a and b.

The symbol “∞” stands for an object which itself is not a number but is larger than any (real)
number, and the symbol “−∞” stands for an object which itself is not a number but is smaller than
any number. We thus have −∞ < x < ∞ for any number x. This allows us to define the following
intervals of “infinite length”:

]−∞, a] :={x ∈ R : x ≤ a}, ]−∞, a[ := {x ∈ R : x < a},
]a,∞[ :={x ∈ R : x > a}, [a,∞[ := {x ∈ R : x ≥ a}, ]−∞,∞[ := R

(2.19)

You should always work with a < b. In case you don’t, you get

• [a, a] = {a}; [a, a[ = ]a, a[ = ]a, a] = ∅
• [a, b] = [a, b[ = ]a, b[ = ]a, b] = ∅ for a ≥ b �
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Notation 2.1 (Notation Alert for intervals of integers or rational numbers).

It is at times convenient to also use the notation [. . . ], ] . . . [, [. . . [, ] . . . ], for intervals of
integers or rational numbers. We will subscript them with Z or Q. For example,

[ 3, n ]Z = [ 3, n] ∩ Z = {k ∈ Z : 3 ≤ k ≤ n},
]−∞, 7 ]Z = ]−∞, 7 ] ∩ Z = {k ∈ Z : k ≤ 7} = Z≤7,

]a, b[Q = ]a, b[∩Q = {q ∈ Q : a < q < b}.

An interval which is not subscripted always means an interval of real numbers, but we
will occasionally write, e.g., [a, b]R rather than [a, b], if the focus is on integers or rational
numbers and an explicit subscript helps to avoid confusion. �

Definition 2.17 (Absolute value, positive and negative part). For a real number x we define its

absolute value: |x| =

{
x ifx ≥ 0,

−x ifx < 0.

positive part: x+ = max(x, 0) =

{
x ifx ≥ 0,

0 ifx < 0.

negative part: x− = max(−x, 0) =

{
−x ifx ≤ 0,

0 ifx > 0.

If f is a real–valued function then we define the functions |f |, f+, f− argument by argument:

|f |(x) := |f(x)|, f+(x) :=
(
f(x)

)+
, f−(x) :=

(
f(x)

)−
. �

For completeness we also give the definitions of min and max.

Definition 2.18 (Minimum and maximum). For two real number x, y we define

maximum: x ∨ y = max(x, y) =

{
x ifx ≥ y,
y ifx ≤ y.

minimum: x ∧ y = min(x, y) =

{
y ifx ≥ y,
x ifx ≤ y.

If f and g is are real–valued function then we define the functions f ∨ g = max(f, g)

and f ∧ g = min(f, g) argument by argument:

f∨g(x) := f(x)∨g(x) = max
(
f(x), g(x)

)
, f∧g(x) := f(x)∧g(x) = min

(
f(x), g(x)

)
. �
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Remark 2.8. You are advised to compute |x|, x+, x− for x = −5, x = 5, x = 0 and convince yourself
that the following is true:

x = x+ − x−,

|x| = x+ + x−,

Thus any real–valued function f satisfies

f = f+ − f−,

|f | = f+ + f−,

Get a feeling for the above by drawing the graphs of |f |, f+, f− for the functon f(x) = 2x. �

Remark 2.9. For any real number x we have
√
x2 = |x|. �(2.20)

Assumption 2.1 (Square roots are always assumed nonnegative). Remember that for any number
a it is true that

a · a = (−a)(−a) = a2, e.g., 22 = (−2)2 = 4,

or that, expressed in form of square roots, for any number b ≥ 0

(+
√
b)(+
√
b) = (−

√
b)(−
√
b) = b.

We will always assume that “
√
b” is the positive value unless the opposite is explicitly

stated.

Example:
√

9 = +3, not −3. �

Proposition 2.5 (The Triangle Inequality for real numbers). The following inequality is used all
the time in mathematical analysis to show that the size of a certain expression is limited from above:

Triangle Inequality : |a+ b| ≤ |a|+ |b|(2.21)

This inequality is true for any two real numbers a and b.

PROOF:
It is easy to prove this: just look separately at the three cases where both numbers are nonnegative,
both are negative or where one of each is positive and negative. �
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2.4 A First Look at Functions and Sequences

The material on functions presented in this section will be discussed again and in greater detail in
chapter ?? (Functions and Relations) on p.??.

Introduction 2.3. You are familiar with functions from calculus. Examples are f1(x) =
√
x and

f2(x, y) = ln(x − y). Sometimes f1(x) means the entire graph, i.e., the entire collection of pairs(
x,
√
x
)

and sometimes it just refers to the function value
√
x for a “fixed but arbitrary” number x.

In case of the function f2(x): Sometimes f2(x, y) means the entire graph, i.e., the entire collection of
pairs

(
(x, y), ln(x − y)

)
in the plane. At other times this expression just refers to the function value

ln(x− y) for a pair of “fixed but arbitrary” numbers (x, y).
To obtain a usable definition of a function there are several things to consider. In the following

f1(x) and f2(x, y) again denote the functions f1(x) =
√
x and f2(x, y) = ln(x− y).

a. The source of all allowable arguments (x–values in case of f1(x) and (x, y)–values in case
of f2(x, y)) will be called the domain of the function. The domain is explicitly specified
as part of a function definition and it may be chosen for whatever reason to be only
a subset of all arguments for which the function value is a valid expression. In case
of the function f1(x) this means that the domain must be restricted to a subset of the
interval [0,∞[ because the square root of a negative number cannot be taken. In case of
the function f2(x, y) this means that the domain must be restricted to a subset of { (x, y) :
x, y ∈ R and x−y > 0} because logarithms are only defined for strictly positive numbers.

b. The set to which all possible function values belong will be called the codomain of the
function. As is the case for the domain, the codomain also is explicitly specified as part
of a function definition. It may be chosen as any superset of the set of all function values
for which the argument belongs to the domain of the function.
For the function f1(x) this means that we are OK if the codomain is a superset of the
interval [0,∞[. Such a set is big enough because square roots are never negative. It is OK
to specify the interval ]−3.5,∞[ or even the set R of all real numbers as the codomain. In
case of the function f2(x, y) this means that we are OK if the codomain contains R. Not
that it would make a lot of sense, but the set R ∪ { all inhabitants of Chicago } also is an
acceptable choice for the codomain.

c. A function y = f(x) is not necessarily something that maps (assigns) numbers or pairs
of numbers to numbers. Rather domain and codomain can be a very different kind of
animal. In chapter ?? on logic you will learn about statement functionsA(x) which assign
arguments x from some set U , called the universe of discourse, to statements A(x), i.e.,
sentences that are either true or false.

d. Considering all that was said so far one can think of the graph of a function f(x) with
domain D and codomain C (see earlier in this note) as the set

Γf := {
(
x, f(x)

)
: x ∈ D}.

Alternatively one can characterize this function by the assignment rule which specifies
how f(x) depends on any given argument x ∈ D. We write “x 7→ f(x)” to indicate this.
You can also write instead f(x) = whatever the actual function value will be.
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This is possible if one does not write about functions in general but about specific func-
tions such as f1(x) =

√
x and f2(x, y) = ln(x− y). We further write

f : D −→ C

as a short way of saying that the function f(x) has domain D and codomain C.
In case of the function f1(x) =

√
x for which we might choose the interval X := [ 2.5, 7 ]

as the domain (small enough because X ⊆ [0,∞[) and Y := ]1, 3[ as the codomain (big
enough because 1 <

√
x < 3 for any x ∈ X) we specify this function as

either f1 : [ 2.5, 7 ]→ ]1, 3[; x 7→
√
x or f1 : [ 2.5, 7 ]→ ]1, 3[; f(x) =

√
x.

Let us choose U := {(x, y) : x, y ∈ R and 1 ≤ x ≤ 10 and y < −2} as the domain
and V := [0,∞[ as the codomain for f2(x, y) = ln(x − y). These choices are OK because
x − y ≥ 1 for any (x, y) ∈ U and hence ln(x − y) ≥ 0, i.e., f2(x, y) ∈ V for all (x, y ∈ U .
We specify this function as

either f2 : U → V, (x, y) 7→ ln(x− y) or f2 : U → V, f(x, y) = ln(x− y). �

We incorporate what we noted above into this definition of a function.

Definition 2.19 (Function).

A function f consists of two nonempty sets X and Y and an assignment rule x 7→ f(x)
which assigns any x ∈ X uniquely to some y ∈ Y . We write f(x) for this assigned value
and call it the function value of the argument x. X is called the domain and Y is called
the codomain of f . We write

f :X → Y, x 7→ f(x).(2.22)

We read “a 7→ b” as “a is assigned to b” or “a maps to b” and refer to 7→ as the maps to
operator or assignment operator. The graph of such a function is the collection of pairs

Γf := {
(
x, f(x)

)
: x ∈ X}. �(2.23)

Remark 2.10. The name given to the argument variable is irrelevant. Let f1, f2, X, Y, U, V be as
defined in d of the introduction to ch.2.4 (A First Look at Functions and Sequences). The function

g1 : X → Y, p 7→ √p

is identical to the function f1. The function

g2 : U → V, (t, s) 7→ ln(t− s)

is identical to the function f2 and so is the function

g3 : U → V, (s, t) 7→ ln(s− t).
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The last example illustrates the fact that you can swap function names as long as you do it consis-
tently in all places. �

We all know what it means that f(x) =
√
x has the function g(x) = x2 as its inverse function: f and

f−1 cancel each other, i.e.,

g
(
f(x)

)
= f

(
g(x)

)
= x.

Definition 2.20 (Inverse function).

Given are two nonempty sets X and Y and a function f : X → Y with domain X and
codomain Y . We say that f has an inverse function if it satisfies all of the following condi-
tions which uniquely determine this inverse function, so that we are justified to give it the
symbol f−1:

a. f−1 : Y → X , i.e., f−1 has domain Y and codomain X .
b. f−1

(
f(x)

)
= x for all x ∈ X , and f

(
f−1(y)

)
= y for all y ∈ Y . �

Remark 2.11. You may recall that a function f has an inverse f−1 if and only if f is “onto” or
surjective: for each y ∈ Y there is at least one x ∈ X such that f(x) = y, and if f is “one–one” or
injective: for each y ∈ Y there is at most one x ∈ X such that f(x) = y. �

Example 2.5. Be sure you understand the following:
a. f : R→ R; x→ ex does not have an inverse f−1(y) = ln(y) since its domain would have

to be the codomain R of f and ln(y) is not defined for y ≤ 0.
b. g : R→ ]0,∞[; x→ ex has the inverse g−1 : ]0,∞[→ R; g−1(y) = ln(y) since

Domg−1 = Codg = ]0,∞[, Codg−1 = Domg = R,

eln(y) = y for 0 < y <∞, ln(ex) = x for all x ∈ R. �

Definition 2.21 (Restriction/Extension of a function).

Given are three nonempty sets A,X and Y such that A ⊆ X , and a function f : X → Y
with domain X . We define the restriction of f to A as the function

f
∣∣
A

: A→ Y defined as f
∣∣
A

(x) := f(x) for all x ∈ A.(2.24)

Conversely let f : A → Y and ϕ : X → Y be functions such that f = ϕ |A. We then call ϕ
an extension of f to X . �

2.5 Cartesian Products

We next define cartesian products of sets. 7 Those mathematical objects generalize rectangles

[a1, b1]× [a2, b2] = {(x, y) : x, y ∈ R, a1 ≤ x ≤ b1 and a2 ≤ y ≤ b2}
7See ch.?? (Cartesian Products and Relations) on p.?? for the real thing and examples.
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and quads

[a1, b1]× [a2, b2]× [a3, b3] = {(x, y, z) : x, y, z ∈ R, a1 ≤ x ≤ b1, a2 ≤ y ≤ b2 and a3 ≤ z ≤ b3}.

Definition 2.22 (Cartesian Product).

Let X and Y be two sets The set

X × Y := {(x, y) : x ∈ X, y ∈ Y }(2.25)

is called the cartesian product of X and Y .
Note that the order is important: (x, y) and (y, x) are different unless x = y.
We write X2 as an abbreviation forX ×X .
This definition generalizes to more than two sets: Let X1, X2, . . . , Xn be sets. The set

X1 ×X2 · · · ×Xn := {(x1, x2, . . . , xn) : xj ∈ Xj for each j = 1, 2, . . . n}(2.26)

is called the cartesian product of X1, X2, . . . , Xn.
We write Xn as an abbreviation forX ×X × · · · ×X . �

Example 2.6. The graph Γf of a function with domain X and codomain Y (see def.2.23) is a subset
of the cartesian product X × Y . �

Example 2.7. The domains given in a and d of the introduction to ch.2.4 (A First Look at Functions
and Sequences) are subsets of the cartesian product

R2 = R× R = {(x, y) : x, y ∈ R} �

.

2.6 Sequences and Families

We now briefly discuss (infinite) sequences, subsequences, finite sequences and families.

Definition 2.23.

Let n? be an integer and let let there be an item xj for each integer j ≥ n? Such an item can
be a number or a set (the only items we are looking at for now). In other words, we have an
item xj assigned to each j ∈ [n?,∞[Z. We write (xn)n≥n? or (xj)

∞
j=n?

or xn? , xn?+1 , xn?+2 , . . .
for such a collection of items and we call it a sequence with start index n?.

For example if uk = k2 for k ∈ Z then then (uk)k≥−2 is the sequence of integers 4, 1, 0, 1, 4, 9, 16, . . . .
The second example is a sequence of sets. If Aj = [−1 − 1

j , 1 + 1
j ] = {x ∈ R : −1 − 1

j ≤ x ≤ 1 + 1
j }

then (Aj)j≥3 is the sequence of intervals (of real numbers) [−4
3 ,

4
3 ], [−5

4 ,
5
4 ], [−6

5 ,
6
5 ], . . . .

One can think of a sequence (xi)i≥n? in terms of the assignment i 7→ xi and this sequence can then
be interpreted as the function

x : [n?,∞[Z −→ suitable codomain; i 7→ x(i) := xi,
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where that “suitable codomain” depends on the nature of the items xi. In example 1 (uk = k2 for
k ∈ Z) we could chose Z as that codomain, in example 2 (Aj = [−1− 1

j , 1 + 1
j ]) we could choose 2R,

the power set of R.

We will occasionally also admit an “ending index” n? instead of ∞, i.e., there will be an
indexed item xj for each j ∈ [n?, n

?]Z. We then talk of a finite sequence, and we write
(xn)n?≤n≤n? or (xj)

n?
j=n?

or xn? , xn?+1 , . . . , xn? for such a finite collection of items. If we
refer to a sequence (xn)n without qualifying it as finite then we imply that we deal with an
infinite sequence, (xn)∞n=n? .

If one pares down the full set of indices {n?, n?+1, n?+2, . . . } to a subset {n1, n2, n3, . . . }
such that n? ≤ n1 < n2 < n3 < . . . then we call the corresponding thinned out sequence
(xnj )j∈N a subsequence of the sequence (xn)n≥m.
If this subset of indices is finite, i.e., we have n? ≤ n1 < n2 < · · · < nK for some suitable
K ∈ N then we call (xnj )

K
j=1 a finite subsequence of the original sequence. �

We will later define a stochastic process as a “family” (Zt)t∈I where I is an interval of real numbers
and each indexed item Zt is a random variable. Typical choices for I would be

I = [0, T ] (where T > 0), I = [0,∞[, I = [t0, T ] (where 0 ≤ t ≤ T ), . . .

Here is the formal definition of a family.

Definition 2.24 (Indexed families).

Let J and X be nonempty sets and assume that

for each j ∈ J there exists exactly one indexed item xj ∈ X .

a. (xj)j∈J is called an indexed family aka family in X .
b. J is called the index set of the family.
c. For each  ∈ J , x is called a member of the family (xj)j∈J . �

Some remarks:
• A family is completely defined by the assignment j 7→ xj . In that sense a family behaves

like a function
F : J → X, j 7→ F (j) := xj .

• j is a dummy variable: (xj)j∈J and (xk)k∈J describe the same family as long as j 7→ xj and
k 7→ xk describe the same assignment.

• Sequences (xn) : n ∈ N are families with index set N.

2.7 Proofs by Induction and Definitions by Recursion

Introduction 2.4. The integers have a property which makes them fundamentally different from
the rational numbers (fractions) and the real numbers: Given any two integers m < n, there are
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only finitely many integers between m and n. To be precise, there are exactly n−m−1 of them. For
example, there are only 4 integers between 12 and 17: the numbers 13, 14, 15, 16. 8

Therefore, given an integer n, we have the concept of its predecessor, n − 1, and its successor,
n+ 1. This has some profound consequences. If we know what to do for a certain starting number
k0 ∈ Z (we call this number the base case), and if we can figure out for each integer k ≥ k0 what to
do for k + 1 if only we know what to do for k, then we know what to do for any k ≥ k0! �

We make use of the above when defining a sequence by recursion. Here is a simple example.

Example 2.8. Let k0 = −2, xk0 = 5 (base case), and xk+1 = xk + 3 (i.e., we know how to obtain xk+1

just from the knowledge of xk), then we know how to build the entire sequence

x−2 = 5, x−1 = x−2 + 3 = 8, x0 = x−1 + 3 = 11, x1 = x0 + 3 = 14, . . . ,

The equation xk+1 = xk + 3 which tells us how to obtain the next item from the given one is the
recurrence relation for that recursive definition. �

Example 2.9. Given is a sequence of sets A1, A2, . . . . For n ∈ N we define
n⋃
j=1

Aj and
n⋂
j=1

Aj recur-

sively as follows. 9

1⋃
j=1

Aj := A1,
n+1⋃
j=1

Aj :=
( n⋃
j=1

Aj

)
∪An+1,(2.27)

1⋂
j=1

Aj := A1,

n+1⋂
j=1

Aj :=
( n⋂
j=1

Aj

)
∩An+1.(2.28)

this tells us the meaning of
n⋃
j=1

Aj and
n⋂
j=1

Aj for any natural number n. For example,
4⋂
j=1

Aj is

computed as follows.

1⋂
j=1

Aj = A1,

2⋂
j=1

Aj =
( 1⋂
j=1

Aj

)
∩A2 = A1 ∩A2,

3⋂
j=1

Aj =
( 2⋂
j=1

Aj

)
∩A3 = (A1 ∩A2) ∩A3,

4⋂
j=1

Aj =
( 3⋂
j=1

Aj

)
∩A4 =

(
(A1 ∩A2) ∩A3

)
∩A4. �

8All of this will be made mathematically precise in ch.?? on p.??.
9An “official” definition for unions and intersections of arbitrarily many sets (not just for finitely many) will be given

in def.3.2 on p.40.
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Remark 2.12. The discrete structure of the integers can also be used as a means to prove a collection
of mathematical statements P (k0), P (k0+1), P (k0+2), . . . which is defined for all integers k, starting
at k0 ∈ Z. Each P (k) might be an equation or an inequality for two numeric expressions that depend
on k. It could also be a relation between sets or it could be something entirely different. For example,

P (k) could be the statement
( k⋃
j=1

Aj

)
∩ B =

k⋃
j=1

(Aj ∩B). An extremely important tool for proofs

of this kind is the following principle. Its mathematical justification will be given later in thm.?? on
p.??.

Principle of Mathematical Induction
Assume that for each integer k ≥ k0 there is an associated statement P (k) such that the
following is valid:

A. Base case. The statement P (k0) is true.
B. Induction Step. For each k ≥ k0 we have the following: Assuming that P (k) is

true (“Induction Assumption”), it can be shown that P (k+ 1)
also is true.

It then follows that P (k) is true for each k ≥ k0.

Here is an example which generalizes prop.2.2 on p.13.

Proposition 2.6 (Distributivity of unions and intersections for finitely many sets).

Let A1, A2, . . . and B be sets. If n ∈ N, then( n⋃
j=1

Aj

)
∩ B =

n⋃
j=1

(Aj ∩B),(2.29)

( n⋂
j=1

Aj

)
∪ B =

n⋂
j=1

(Aj ∪B).(2.30)

PROOF: We only prove (2.29), and this will be done by induction on n, i.e., the number of sets Aj .
The proof of (2.30) is left as exercise 2.11

A. Base case: k0 = 1. The statement P (1) is (2.29) for n = 1:
( 1⋃
j=1

Aj

)
∩B =

1⋃
j=1

(Aj ∩B). We must

prove that P (1) is true. According to our recursive definition of finite unions which was given in
example 2.8 this is the same as (A1) ∩ B = (A1 ∩ B), and this is a true statement. We have proven
the base case.
B. Induction step:

Induction assumption: P (k) :
( k⋃
j=1

Aj

)
∩B =

k⋃
j=1

(Aj ∩B) is true for some k ≥ 1.(2.31)
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Under this assumption

we must prove the truth of P (k + 1) :
( k+1⋃
j=1

Aj

)
∩B =

k+1⋃
j=1

(Aj ∩B).(2.32)

The trick is to manipulate P (k + 1) in a way that allows us to “plug in” the induction assumption.
For (2.32) one way to do this is to take the left–hand side and transform it repeatedly until we end
up with the right–hand side, and doing so in such a manner that (2.31) will be used at some point.( k+1⋃

j=1
Aj

)
∩B =

(( k⋃
j=1

Aj

)
∪An+1

)
∩B we used (2.27)

=
(( k⋃

j=1
Aj

)
∩B

)
∪ (An+1 ∩B) we used (2.11) on p. 13

=
k⋃
j=1

(Aj ∩B) ∪ (An+1 ∩B) we used the induction assumption!

=
k+1⋃
j=1

(Aj ∩B) we used (2.27)

We have managed to establish the truth of P (k + 1), and this concludes the proof.
Epilogue: It is crucial that you understand in what way the induction assumption was used to get
from the left–hand side of (2.32) to the right–hand side, and that you first had to find a base from
which to proceed by proving the base case. �

Proposition 2.7 (The Triangle Inequality for n real numbers).

Let n ∈ N such that n ≥ 2. Let a1, a2, . . . , an ∈ N. Then,

(2.33) |a1 + a2 + . . .+ an| ≤ |a1|+ |a2|+ . . .+ |an|

PROOF: Note that this proposition generalizes prop.2.5 on p.21 from 2 terms to n terms. The proof
will be done by induction on n, the number of terms in the sum.
A. Base case: For k0 = 2, inequality 2.33 was already shown (see (2.21) on p.21).
B. Induction step: Let us assume that 2.33 is true for some k ≥ 2. This is our induction assumption.
We now must prove the inequality for k + 1 terms a1, a2, . . . , ak, ak+1 ∈ N. We abbreviate

A := a1 + a2 + . . .+ ak; B := |a1|+ |a2|+ . . .+ |ak|

then our induction assumption for k numbers is that |A| ≤ B. We know from (2.21) that the triangle
inequality is valid for the two termsA and ak+1. It follows that |A+ak+1| ≤ |A|+|ak+1|. We combine
those two inequalities and obtain

(2.34) |A+ ak+1| ≤ |A|+ |ak+1| ≤ B + |ak+1|

In other words,

(2.35) |
(
a1 + a2 + . . .+ ak

)
+ ak+1| ≤ B + |ak+1| =

(
|a1|+ |a2|+ . . .+ |ak|

)
+ |ak+1|,

and this is (2.33) for k + 1 rather than k numbers: We have shown the validity of the triangle
inequality for k + 1 items under the assumption that it is valid for k items. It follows from the
induction principle that the inequality is valid for any k ≥ k0 = 2. �
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To summarize what we did in all of part B: We were able to show the validity of the triangle in-
equality for k + 1 numbers under the assumption that it was valid for k numbers.

Remark 2.13 (Why induction works). But how can we from all of the above conclude that the
distributivity formulas of prop.2.6 and the triangle inequality of prop.2.7 work for all n ∈ N such
that n ≥ k0? We illustrate this for the triangle inequality.

Step 1: We know that the statement is true for k0 = 2 because that was proven in the base
case.

Step 2: But according to the induction step, if it is true for k0 = 2, it is also true
for the successor k0 + 1 = 3 of 2.

Step 3: But according to the induction step, if it is true for k0 + 1, it is also true
for the successor (k0 + 1) + 1 = 4 of k0 + 1.

Step 4: But according to the induction step, if it is true for k0 + 2, it is also true
for the successor (k0 + 2) + 1 = 5 of k0 + 2.

. . . . . . . . . . . . . . . . . . . . . . . .
Step 53, 920: But according to the induction step, if it is true for k0 + 53, 918, it is also true

for the successor (k0 + 53, 918) + 1 = 53, 921 of k0 + 53, 918.
. . . . . . . . . . . . . . . . . . . . . . . .

And now we see why the statement is true for any natural number n ≥ k0. �

2.8 Some Preliminaries From Calculus

Remark 2.14. To understand this remark you need to be familiar with the concepts of continuity,
differentiability and antiderivatives (integrals) of functions of a single variable. Just skip the parts
where you lack the background.
The following is known from calculus (see [15] Stewart, J: Single Variable Calculus): Let a ∈ R ∪
{−∞} and b ∈ R ∪ {∞} and let X :=]a, b[ be the open (end points a, b are excluded) interval of all
real numbers between a and b. Let x0 ∈]a, b[ be “fixed but arbitrary”.
Let f : ]a, b[→ R be a function which is continuous on ]a, b[. Then

a. f is integrable for any α, β ∈ R such that a < α < β < b, i.e., the definite integral
β∫
α
f(u)du

exists. For a definition of integrability see, e.g., [15] Stewart, J: Single Variable Calculus.

b. Integration is “linear”, i.e., it is additive:
∫ β

α

(
f(u) + g(u)

)
du =

∫ β

α
f(u)du +

∫ β

α
g(u)du,

and you also can “pull out” constant λ ∈ R:
∫ β

α
λf(u)du = λ

∫ β

α
f(u)du.

c. Integration is “monotonic”:

If f(x) ≤ g(x) for all α ≤ x ≤ β then
∫ β

α

(
f(u)

)
du ≤

∫ β

α
g(u)du.

d. f has an antiderivative: There exists a function F : ]a, b[→ R whose derivative F ′(·) exists
on all of ]a, b[ and coincides with f , i.e., F ′(x) = f(x) for all x ∈]a, b[.
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e. This antiderivative satisfies F (β)− F (α) =

∫ β

α
f(u)du for all a < α < β < b and it is

not uniquely defined: If C ∈ R then F (·) + C is also an antiderivative of f .
On the other hand, if both F1 and F2 are antiderivatives for f then their differenceG(·) :=
F2(·)−F1(·) has the derivativeG′(·) = f(·)−f(·) which is constant zero on ]a, b[. It follows
that any two antiderivatives only differ by a constant.
To summarize the above: If we have one antiderivative F of f then any other antideriva-
tive F̃ is of the form F̃ (·) = F (·) + C for some real number C.

This fact is commonly expressed by writing
∫
f(x)dx = F (x) + C for the indefinite

integral (an integral without integration bounds).
f. It follows from e that if some c0 ∈ R is given then there is only one antiderivative F such

that F (x0) = c0.
Here is a quick proof: Let G be another antiderivative of f such that G(x0) = c0. Because
G− F is constant we have for all x ∈]a, b[ that

G(x)− F (x) = const = G(x0)− F (x0) = 0,

i.e., G = F . �

2.9 Convexity ?

Note that this chapter is starred, hence optional.

Definition 2.25 (Concave-up and convex functions). ?

Let −∞ ≤ α < β ≤ ∞ and let I := ]α, β[ be the open interval of real numbers with
endpoints α and β. Let f : I → R.

a. The epigraph of f is the set epi(f) := {(x1, x2) ∈ I × R : x2 ≥ f(x1)} of all points in
the plane that lie above the graph of f .

b. f is convex if for any two vectors ~a,~b ∈ epi(f) the entire line segment
S := {λ~a+ (1− λ)~b} : 0 ≤ λ ≤ 1 is contained in epi(f). See Figure 2.4.

c. Let f be differentiable at all points x ∈ I . Then f is concave-up, if the function
f ′ : x 7→ f ′(x) = df

dx(x) is increasing. �

Convexity is illustrated in the figure below. 10

Proposition 2.8 (Convexity criterion).

10Source: Wikipedia, https://upload.wikimedia.org/wikipedia/commons/c/c7/ConvexFunction.svg.
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Figure 2.4: Convex function

f is convex if and only if the following is true: For any

α < a ≤ x0 ≤ b < β

let S(x0) be the unique number such that the point (x0, S(x0)) is on the line segment that connects
the points (a, f(a)) and (b, f(b)). Then,

(2.36) f(x0) ≤ S(x0).

Note that any x0 between a and b can be written as x0 = λa + (1 − λ)b for some 0 ≤ λ ≤ 1 and
that the corresponding y-coordinate S(x0) = S(λa + (1 − λ)b) on the line segment that connects
(a, f(a)) and (b, f(b)) then is S(λa + (1 − λ)b) = λf(a) + (1 − λ)f(b). Hence we can rephrase
the above as follows:
f is convex if and only if for any a < b such that a, b ∈ I and 0 ≤ λ ≤ 1 it is true that

(2.37) f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b).

PROOF of “⇒”: Any line segment S that connects the points (a, f(a)) and (b, f(b)) in such a way
that S is entirely contained in the epigraph of f will satisfy (x0, S(x0)) ∈ epi(f) and hence f(x0) ≤
S(x0) for all a ≤ x0 ≤ b. It follows that convexity of f implies (2.36).

PROOF of “⇐”: Let (2.36) be valid for all a, b ∈ I . Let ~a = (a1, a2),~b = (b1, b2) ∈ epi(f). Then

a2 ≥ f(a1) and b2 ≥ f(b1).(2.38)

We must show that the entire line segment S := {λ~a+ (1− λ)~b} : 0 ≤ λ ≤ 1 is contained in epi(f).

Let ~a′ := (a1, f(a1)). Let S′ := {λ~a′ + (1− λ)~b : 0 ≤ λ ≤ 1} be the line segment obtained by leaving
the right endpoint~b unchanged and pushing the left one downward until a2 matches f(a1). Clearly,
S′ nowhere exceeds S.
Let~b′′ := (b1, f(b1)). Let S′′ := {λ~a′ + (1− λ)~b′ : 0 ≤ λ ≤ 1} be the line segment obtained by leaving
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the left endpoint ~a′ unchanged and pushing the right one downward until the b2 matches f(b1).
Clearly, S′′ nowhere exceeds S′.
We view any line segment T between two points with abscissas a1 and b1 as a function T (·) :
[a1, b1] → R which assigns to x ∈ [a1, b1] that unique value T (x) for which the point

(
x, T (x)

)
lies

on T .
The segment S′′ connects the points (a, f(a)) and (b, f(b)) and it follows from assumption b that for
any a ≤ x0 ≤ b we have f(x0) ≤ S′′(x0). We conclude from S(·) ≥ S′(·) ≥ S′′(·) that S(x0) ≥ f(x0),
i.e., (x0, S(x0)) ∈ epi(f). As this is true for any a ≤ x0 ≤ b it follows that the line segment S is
entirely contained in the epigraph of f . �

Proposition 2.9 (Convex vs concave-up).

Let f : R→ R be concave-up. Then f is convex.

PROOF: Assume to the contrary that f is (differentiable and) concave-up and that there are
a, b, x0 ∈ I such that a < x0 < b and f(x0) > S(x0). Here S(x0) denotes the unique number such
that the point (x0, S(x0)) is on the line segment that connects the points (a, f(a)) and (b, f(b)).
Let m be the slope of the linear function S(·) : x 7→ S(x), i.e.,

m =
S(b)− S(a)

b− a
.

It follows that

m =
S(b)− S(x0)

b− x0
>

S(b)− f(x0)

b− x0
=

f(b)− f(x0)

b− x0
= f ′(ξ)(2.39)

for some x0 < ξ < b (according to the mean value theorem for derivatives). Further

m =
S(x0)− S(a)

x0 − a
<

f(x0)− S(a)

x0 − a
=

f(x0)− f(a)

x0 − a
= f ′(η)(2.40)

for some a < η < x0 (according to the mean value theorem for derivatives).
Because f is concave up we have

f ′(a) ≤ f ′(η) ≤ f ′(x0) ≤ f ′(ξ) ≤ f ′(b).

From (2.39) and (2.40) we obtain

m < f ′(η) ≤ f ′(x0) ≤ f ′(ξ) < m,

and we have reached a contradiction. �

If a convex function f is differentiable at some argument x, i.e., f possesses a tangent at x, then the
graph of this tangent will stay below the graph of f . (Draw a picture!) The following proposition
generalizes this convex functions in general, without any differentiability requirements.
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Proposition 2.10.

Let −∞ ≤ α < β ≤ ∞, I an interval with endpoints α and β where α and/or β may or may not
belong to I , and let f : I → R be convex. Let

(2.41) L := { I L−→ R : L(x) = mx+ b for suitable m, b ∈ R andL ≤ f } ,
i.e., the graph of L is a straight line and it is dominated by the graph of f . Then

(2.42) f(x) = sup{L(x) : L ∈ L } for all x ∈ I .

PROOF: Can be found, e.g., in [4] Bauer, Heinz: Measure and Integration Theory. �

Proposition 2.11 (Sublinear functions are convex).

Let f : R→ R be sublinear. Then f is convex.

PROOF: Let 0 ≤ λ ≤ 1 and x, y ∈ R. Then

p(λx+ (1− λ)y) ≤ p(λx) + p((1− λ)y) = λp(x) + (1− λ)p(y).(2.43)

It follows from prop.2.8 that f is concave-up. �

2.10 Miscellaneous

If a set A of real numbers has a maximum, max(A), then this number is characterized by
(1) max(A) ≥ a for all a ∈ A,
(2) max(A) ∈ A.

Similarly, if A has a minimum, min(A), then it is characterized by
(3) min(A) ≤ a for all a ∈ A,
(4) min(A) ∈ A.

For example, let A :=]− 3, 2]. Then max(A) = 2, since

a ∈ A ⇒ −3 < a ≤ 2 ⇒ a ≤ 2, and 2 ∈ A.

But there is no minimum: It could not be bigger than −3 (draw a picture!), and no number x ≤ −3
belongs to A. Note though, that a∗ := −3 satisfies each one of the following, equivalent, properties:

(5) a∗ ≤ a for all a ∈ A, and a∗ dominates all lower bounds of A, i.e., a∗ is the greatest
lower bound of A.

(6) a∗ ≤ a for all a ∈ A, and a∗ can be approached from within A in the sense that there
is a sequence an ∈ A such that a∗ = lim

n→∞
an. For example, an := −3 + 1

n .

Let B := −3, 2[ Now, max(B) does not exist since 2, the only reasonable choice, does not belong to
B. However, b∗ := 2 satisfies the following, equivalent, counterparts of (5) and (6):

(5’) b∗ ≥ b for all b ∈ B, and b∗ is dominated by all upper bounds of B, i.e., b∗ is the least
(= smallest) upper bound of B.

(6’) b∗ ≥ b for all b ∈ B, and b∗ can be approached from within B in the sense that there
is a sequence bn ∈ B such that b∗ = lim

n→∞
bn. For example, bn := 2− e−n.

Based on the above, we define the following.
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Definition 2.26 (Infimum and supremum). Let A ⊆ R.

• If there exists a number a∗ such that a∗ ≥ a for all a ∈ A, and a∗ is dominated by all
other upper bounds of A, i.e., a∗ is the least upper bound of A, then we write sup(A)
for a∗ , and we call it the supremum aka least upper bound ofA.

• If there exists a number a∗ such that a∗ ≥ a for all a ∈ A, and a∗ dominates all other
lower bounds of A, i.e., a∗ is the greatest lower bound of A, then we write sup(A) for
a∗ and we call it the supremum aka greatest lower bound, ofA.

• If A has no upper bounds (no numbers u such that u ≥ a for each a ∈ A), we define
sup(A) :=∞.
If A has no lower bounds (no numbers l such that l ≤ a for each a ∈ A), we define
inf(A) := −∞. �

Proposition 2.12.

• sup(A) is the largest x ∈]−∞,∞] and inf(A) is the smallest x ∈ [−∞,∞[,
such that x = lim

n→∞
an, for some suitable sequence an ∈ A.

PROOF: �

Proposition 2.13. ?

LetA =
((
aij
))

; (i = 1, . . . ,m; j = 1 . . . , n), be anm×nmatrix. We can think ofA as a function

A : Rn → Rm ; ~x 7→ A~x ,

which assigns to the column vector ~x ∈ Rn, viewed as a n × 1 matrix, the matrix product ~y = A~x,
an m× 1 matrix which we view as an element of Rm.
Let A> =

((
a∗k`
))

denote the transpose of A , i.e., the n ×m matrix one obtains by switching rows
and columns. In other words, a∗k` = a`k. Matrix multiplication with m × 1 vectors ~η makes A> a
function

A> : Rm → Rn ; ~η 7→ A> ~η .

The following is true. 11
A is surjective ⇔ A> is injective.

PROOF: Consult a book on linear algebra. �

Corollary 2.1.
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Let A =
((
aij
))

be a matrix with m rows and n columns. Then (a) ⇔ (b), where
(a) The set of m linear equations in n unknowns ~x = (x1, . . . , xn)>,

A ~x = ~y ,

has a solution ~x for any choice of right hand side ~y = (y1, . . . , ym)>.
(b) the set of n linear equations in m unknowns ~ξ = (ξ1, . . . , ξm)>,

A> ~ξ = ~η ,

has at most one solution ~ξ for any ~η = (η1, . . . , ηn)>.

PROOF: This is a direct translation of Proposition 2.13 from the language of matrix multiplication
to that of systems of linear equations. �

2.11 Exercises for Ch.2

2.11.1 Exercises for Sets

Exercise 2.1. Prove (2.12) of prop.2.2 on p.13.

Exercise 2.2. Prove the set identities of prop.2.1.

Exercise 2.3. Prove that for any three sets A,B,C it is true that (A \B) \ C = A \ (B ∪ C).
Hint: use De Morgan’s formula (2.13.a). �

Exercise 2.4. Let X = {x, y, {x}, {x, y} }. True or false?
a. {x} ∈ X c. { {x} } ∈ X e. y ∈ X g. {y} ∈ X
b. {x} ⊆ X d. { {x} } ⊆ X f. y ⊆ X h. {y} ⊆ X �

For the subsequent exercises refer to example ?? for the definition of the size
∣∣A∣∣ of a set A and to

def.?? (Cartesian Product of Two Sets) for the definition of Cartesian product. You find both in ch.??
(Cartesian Products and Relations) on p.??

Exercise 2.5. Find the size of each of the following sets:
a. A = {x, y, {x}, {x, y} } c. C = {u, v, v, v, u} e. E = {sin(kπ/2) : k ∈ Z}
b. B = {1, {0}, {1} } d. D = {3z − 10 : z ∈ Z} f. F = {πx : x ∈ R} �

Exercise 2.6. Let X = {x, y, {x}, {x, y} } and Y = {x, {y} }. True or false?
a. x ∈ X ∩ Y c. x ∈ X ∪ Y e. x ∈ X \ Y g. x ∈ X∆Y
b. {y} ∈ X ∩ Y d. {y} ∈ X ∪ Y f. {y} ∈ X \ Y h. {y} ∈ X∆Y �

Exercise 2.7. Let X = {1, 2, 3, 4} and let Y = {x, y}.
a. What is X × Y ? c. What is

∣∣X × Y ∣∣? e. Is (x, 3) ∈ X × Y ? g. Is 3 · x ∈ X × Y ?
b. What is Y ×X? d. What is

∣∣X × Y ∣∣? f. Is (x, 3) ∈ Y ×X? h. Is 2 · y ∈ Y ×X? �

Exercise 2.8. Let X = {8}. What is 2(2X)?

Exercise 2.9. Let A = {1, {1, 2}, 2, 3, 4} and B = {{2, 3}, 3, {4}, 5}. Compute the following.
a. A ∩B b. A ∪B c. A \B d. B \A e. A4B �
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Exercise 2.10. Let A,X be sets such that A ⊆ X and let x ∈ X . Prove the following:
a. If a ∈ A then A = (A \ {a}) ] {a}.
b. If a /∈ A then A = (A ] {a}) \ {a}.
�

2.11.2 Exercises for Proofs by Induction

Exercise 2.11. Use induction on n to prove (2.30) of prop.2.6 on p.28 of this document: LetA1, A2, . . .

and B be sets. If n ∈ N then
( n⋂
j=1

Aj

)
∪B =

n⋂
j=1

(Aj ∪B). �

Exercise 2.12. 12

Let K ∈ N such that K ≥ 2 and n ∈ Z≥0. Prove that Kn > n. �

Exercise 2.13. Let n ∈ N. Then n2 + n is even, i.e., this expression is an integer multiple of 2. �

PROOF: The proof is given in this instructor’s edition.

The proof is done by induction on n.
The base case (n0 = 1) holds because 12 + 1 = 2, and this is an even number.
Induction step: Let k ∈ N.

Induction assumption: k2 + k is even, i.e., k2 + k = 2j for some suitable j ∈ Z.(2.44)

We must show that there exists j′ ∈ Z such that (k + 1)2 + k + 1 = 2j′. We have

(k + 1)2 + k + 1 = k2 + 2k + 1 + k + 1 = (k2 + k) + 2(k + 1)
(2.44)
= 2j + 2(k + 1).

Let j′ := j + k + 1. Then (k + 1)2 + k + 1 = 2j′ and this finishes the proof. �

Exercise 2.14. Use the result from exercise 2.13 above to prove by induction that n3+5n is an integer
multiple of 6 for all n ∈ N. �

PROOF: The proof is given in this instructor’s edition.

The proof is done by induction on n.
The base case (n0 = 1) holds because 13 + 5 = 6 = 1 · 6.
Induction step: Let k ∈ N.

Induction assumption: k3 + 5k is an integer multiple of 6, i.e., k3 + 5k = 6j for some j ∈ Z.
(2.45)

We must show that there exists j′ ∈ Z such that (k + 1)3 + 5(k + 1) = 6j′. We know frome exercise
2.13 that 3(k2 + k) = 3 · 2 · i for a suitable i ∈ Z, hence

(k + 1)3 + 5(k + 1) = k3 + 3k2 + 3k + 1 + 5k + 5 = (k3 + 5k) + 3(k2 + k) + 6

= (k3 + 5k) + 6i+ 6
(2.45)
= 6(j + i+ 1).

Let j′ := j + i+ 1. Then (k + 1)3 + 5(k + 1) = 6j′ and this finishes the proof. �
12Note that this exercise generalizes B/G prop.7.1: If n ∈ N then n < 10n. Also note that if you allow K to be a real

number rather than an integer then it will not be true for allK > 1 and n ∈ Z≥0. For exampleKn > n is false forK = 1.4
and n = 2 (but it is true for K = 1.5 and n = 2).
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Exercise 2.15. Let x1 = 1 and xn+1 = xn + 2n+ 1. Prove by induction that xn = n2 for all n ∈ N. �
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2.12 Blank Page after Ch.2

This page is intentionally left blank!
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3 More on Sets and Functions

3.1 More on Set Operations

We will not deal with limits of sequences of sets except for the following since it is so suggestive.

Definition 3.1 (Notation for limits of monotone sequences of sets).

Let (An) be a increasing sequence of sets, i.e., A1 ⊆ A2 ⊆ . . . and let A :=
⋃
nAn.

Further let Bn be a decreasing sequence of sets, i.e., B1 ⊇ B2 ⊇ . . . and let B :=
⋂
nBn.

We write suggestively

An ↑A (n→∞), A = lim
n→∞

An, Bn ↓ B (n→∞), B = lim
n→∞

Bn. �

We adopt the following convention.

Let E be a set of sets, e.g., E is a subset of the power set 2Ω of a set Ω. Then a phrase such as
• “Let Un ↑ in E” is shorthand notation for

“Let Un ⊆ E (n ∈ N)” be a increasing sequence.”
• “Let Un ↓ in E” is shorthand notation for

“Let Un ⊆ E (n ∈ N)” be a decreasing sequence.”

Definition 3.2 (Arbitrary unions and intersections).

Let J be a nonempty set and let (Ai)i∈J be a family of sets.
We define its union,

⋃
i∈I

Ai, and its intersection
⋂
i∈I

Ai, as follows:

⋃
i∈I

Ai :=
⋃[

Ai : i ∈ I
]

:= {x : x ∈ Ai0 for some i0 ∈ I},(3.1) ⋂
i∈I

Ai :=
⋂[

Ai : i ∈ I
]

:= {x : x ∈ Ai0 for each i0 ∈ I}.(3.2)

It is convenient to allow unions and intersections for the empty index set J =
∅. For intersections this requires the existence of a universal set Ω. We define

⋃
i∈∅

Ai := ∅,
⋂
i∈∅

Ai := Ω. �(3.3)

Note that any statement concerning arbitrary families of sets such as the definition above
covers finite lists A1, A2, . . . , An of sets ( J = {1, 2, . . . , n} ) and also sequences A1, A2, . . . ,
of sets ( J = N ).

We give some examples of non-finite unions and intersections.
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Example 3.1. For any set A we have A =
⋃
a∈A
{a}. According to (3.3) this also is true if A = ∅. �

The following trivial lemma is useful if you need to prove statements of the form A ⊆ B or A = B
for sets A and B. Be sure to understand what it means if you choose J = {1, 2} (draw one or two
Venn diagrams).

Lemma 3.1 (Inclusion lemma). Let J be an arbitrary, nonempty index set. Let U,Xj , Y, Zj ,W (j ∈ J) be
sets such that U ⊆ Xj ⊆ Y ⊆ Zj ⊆W for all j ∈ J . Then

(3.4) U ⊆
⋂
j∈J

Xj ⊆ Y ⊆
⋃
j∈J

Zj ⊆W.

PROOF: Draw pictures! �

Definition 3.3 (Disjoint families).

Let J be a nonempty set. We call a family of sets (Ai)i∈J a mutually disjoint family if for
any two different indices i, j ∈ J it is true that Ai∩Aj = ∅, i.e., if any two sets in that family
with different indices are mutually disjoint. �

Definition 3.4 (Partition).

Let A ⊆ 2Ω. We call A a partition or a partitioning of Ω if
a. A ∩B = ∅ for any two A,B ∈ A such that A 6= B, b. Ω =

⊎[
A : A ∈ A

]
.

We reformulate the above for arbitrary families and hence finite collections and sequences
of subsets of Ω: Let J be an arbitrary nonempty set, let (Aj)j∈J be a family of subsets of Ω.
We call (Aj)j∈J a partition of Ω if it is a mutually disjoint family which satisfies

Ω =
⊎[

Aj : j ∈ J
]
,

in other words, if A := {Aj : j ∈ J} is a partition of Ω.
Note that duplicate nonempty sets cannot occur in a disjoint family of sets because other-
wise the condition of mutual disjointness does not hold. �

Example 3.2. Here are some examples of partitions.
a. For any set Ω the collection { {ω} : ω ∈ Ω} is a partition of Ω.
b. The empty set is a partition of the empty set and it is its only partition. Do you see that this is a
special case of a?
c. This example is important for stochastic processes. 13

Let
t0 < t1 < · · · < tn−1 < tn

be a list of real numbers. It lets us create a variety of partitions. Here are four possibilities.

13Stochastic processes will be central to stochastic finance. See Definition 4.17 on p.76.
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• [t0, t1[, [t1, t2[, . . . , [tn−1, tn[ partitions [t0, tn[,
• ]t0, t1], ]t1, t2], . . . , ]tn−1, tn] partitions ]t0, tn],
• [t0, t1[, [t1, t2[, . . . , [tn−2, tn−1[, [tn−1, tn] partitions [t0, tn],
• [t0, t1[, [t1, t2[, . . . , [tn−1, tn[ [tn,∞[ partitions [t0,∞[. �

Theorem 3.1 (De Morgan’s Law). Let there be a universal set Ω (see (2.6) on p.11). Then the following
“duality principle” holds for any indexed family (Aα)α∈I of sets:

(3.5) a.
(⋃
α

Aα
){

=
⋂
α

A{α b.
(⋂
α

Aα
){

=
⋃
α

A{α

To put this in words, the complement of an arbitrary union is the intersection of the complements, and the
complement of an arbitrary intersection is the union of the complements.

PROOF: ? Left as an exercise. �

The following generalizes prop.2.6 (Distributivity of unions and intersections for finitely many sets)

Proposition 3.1 (Distributivity of unions and intersections). Let (Ai)i∈I be an arbitrary family of sets
and let B be a set. Then

⋃
i∈I

(B ∩Ai) = B ∩
⋃
i∈I

Ai,(3.6) ⋂
i∈I

(B ∪Ai) = B ∪
⋂
i∈I

Ai.(3.7)

PROOF: �

Proposition 3.2 (Rewrite unions as disjoint unions).

Let (Aj)j∈N be a sequence of sets which all are contained within the universal set Ω. Let

Bn :=

n⋃
j=1

Aj = A1 ∪A2 ∪ · · · ∪An (n ∈ N),

C1 := A1 = B1, Cn+1 := An+1 \Bn (n ∈ N).

Then
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a. The sequence (Bj)j is increasing: m < n⇒ Bm ⊆ Bn.

b. For each n ∈ N,
n⋃
j=1

Aj =
n⋃
j=1

Bj .

c. The sets Cj are mutually disjoint and
n⋃
j=1

Aj =
n⊎
j=1

Cj .

d. The sets Cj (j ∈ N) form a partitioning of the set
∞⋃
j=1

Aj .

PROOF: �

3.2 Direct Images and Preimages of a Function

Introduction 3.1. We continue with yet another example. It leads to the very important definition
of the direct images of subsets of the domain, and of the preimages of subsets of the codomain of a
function. �

Example 3.3. Let X and Y be nonempty sets and f : X → Y . We define two functions f? and
f? which are associated with f and for which both arguments and function values are sets(!) as
follows.

a. f? : 2X → 2Y ; A 7→ f?(A) := {f(a) : a ∈ A} ,
b. f? : 2Y → 2X ; B 7→ f?(B) := {x ∈ X : f(x) ∈ B} .

You should convince yourself that indeed f? maps any subset of X to a subset of Y , and that f?

maps any subset of Y to a subset of X . �

The sets f?(A) and f?(B) are used pervasively in abstract mathematics, but it is much more com-
mon nowadays to write f(A) rather than f?(A) and f−1(B) rather than f?(B). We will follow this
convention.

Definition 3.5.

Let X,Y be two nonempty sets and f : X → Y . We associate with f the functions

f : 2X → 2Y ; A 7→ f(A) := {f(a) : a ∈ A},(3.8)

f−1 : 2Y → 2X ; B 7→ f−1(B) := {x ∈ X : f(x) ∈ B}.(3.9)

We call f : 2X → 2Y the direct image function and f−1 : 2Y → 2X the indirect image
function or preimage function associated with f : X → Y .
For each A ⊆ X we call f(A) the direct image of A under f , and for each B ⊆ Y we call
f−1(B) the indirect image or preimage of B under f . �

Note that the range f(X) of f is a special case of a direct image.

Notational conveniences I:
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If we have a set that is written as {. . . } then we may write f{. . . } instead of f({. . . }) and
f−1{. . . } instead of f−1({. . . }). Specifically for singletons {x} ⊆ X and {y} ⊆ Y we obtain
f{x} and f−1{y}.
Many mathematicians will write f−1(y) instead of f−1{y} but this author sees no advan-
tages doing so whatsover. There seemingly are no savings with respect to time or space for
writing that alternate form but we are confounding two entirely separate items: a subset
f−1{y} of X v.s. the function value f−1(y) of y ∈ Y which is an element of X . We are
allowed to talk about the latter only in case that the inverse function f−1 of f exists.

4!4!4!
The same symbol f is used for the original function f : X → Y and the direct
image function f : 2X → 2Y , and the symbol f−1 which is used here for the
indirect image function f−1 : 2Y → 2X will also be used to define the inverse
function f−1 : Y → X of f in case this can be done. Be careful not to let this
confuse you! �

Example 3.4 (Direct images). Let f : R→ R; f(x) = x2.
a. f(]− 4, 2[) = { x2 : x ∈]− 4, 2[ } = { x2 : −4 < x < 2 } = ]4, 16[.
b. f([1, 3]) = { x2 : x ∈ [1, 3] } = { x2 : 1 ≤ x ≤ 3 } = [1, 9].
c. f(]− 4, 2[ ∩ [1, 3]) = { x2 : x ∈ ]− 4, 2[ and x ∈ [1, 3] } = { x2 : 1 ≤ x < 2 } = [1, 4[. �

And here are the results for the preimages of the same sets with respect to the same function x 7→ x2.

Example 3.5 (Preimages). Let f : R→ R; f(x) = x2. Determine
a. f−1(]− 4,−2[), b. f−1([1, 2]), c. f−1([5, 6]), d. {−4 < f < −2 or 1 ≤ f ≤ 2 or 5 ≤ f < 6]}.

Solution:
a. f−1(]− 4,−2[) = { x ∈ R : x2 ∈]− 4,−2[ } = { −4 < f < −2 } = ∅.
b. f−1([1, 2]) = { x ∈ R : x2 ∈ [1, 2] } = { 1 ≤ f ≤ 2 } = [−

√
2,−1] ∪ [1,

√
2].

c. f−1([5, 6]) = { x ∈ R : x2 ∈ [5, 6] } = { 5 ≤ f ≤ 6 } = [−
√

6,−
√

5] ∪ [
√

5,
√

6].
d. {−4 < f < −2 or 1 ≤ f ≤ 2 or 5 ≤ f < 6]} = f−1(]− 4,−2[ ∪ [1, 2] ∪ [5, 6])

= { x ∈ R : x2 ∈ ]− 4,−2[ or x2 ∈ [1, 2] or x2 ∈ [5, 6] }
= [−

√
2,−1] ∪ [1,

√
2] ∪ [−

√
6,−
√

5] ∪ [
√

5,
√

6]. �

Example 3.6 (Preimages). Let f : R→ R; f(x) = x2. Determine
a. f−1(]− 4, 2[), b. f−1([1, 3]), c. {−4 < f < 2 and 1 ≤ f ≤ 3}.

Solution:
a. f−1(]− 4, 2[) = { x ∈ R : x2 ∈ ]− 4, 2[ } = { x ∈ R : −4 < x2 < 2 } = ]−

√
2,
√

2[.
b. f−1([1, 3]) = { x ∈ R : x2 ∈ [1, 3] } = { x ∈ R : 1 ≤ x2 ≤ 3 } = [−

√
3,−1] ∪ [1,

√
3].

c. {−4 < f < 2 and 1 ≤ f ≤ 3} = f−1(]− 4, 2[ ∩ [1, 3])
= { x ∈ R : x2 ∈ ]− 4, 2[ and x2 ∈ [1, 3] }
= { x ∈ R : 1 ≤ x2 < 2 } = ]−

√
2,−1] ∪ [1,

√
2[ . �

Example 3.7 (Direct images). Let f : R→ R; f(x) = x2.
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a. f(]− 4,−2[) = { x2 : x ∈ ]− 4,−2[ } = { x2 : −4 < x < −2 } = ]4, 16[.
b. f([1, 2]) = { x2 : x ∈ [1, 2] } = { x2 : 1 ≤ x ≤ 2 } = [1, 4].
c. f([5, 6]) = { x2 : x ∈ [5, 6] } = { x2 : 5 ≤ x ≤ 6 } = [25, 36].
d. f(]− 4,−2[ ∪ [1, 2] ∪ [5, 6]) = { x2 : x ∈ ]− 4,−2[ or x ∈ [1, 2] or x ∈ [5, 6] }

= ]4, 16[ ∪ [1, 4] ∪ [25, 36] = [1, 16[ ∪ [25, 36]. �

Proposition 3.3. Some simple properties:

f(∅) = f−1(∅) = ∅(3.10)
A1 ⊆ A2 ⊆ X ⇒ f(A1) ⊆ f(A2) (monotonicity of f{. . . } )(3.11)

B1 ⊆ B2 ⊆ Y ⇒ f−1(B1) ⊆ f−1(B2) (monotonicity of f−1{. . . } )(3.12)
x ∈ X ⇒ f({x}) = {f(x)}(3.13)

f(X) = Y ⇔ f is “surjective” (see Remark 2.11 on p.24(3.14)

f−1(Y ) = X always!(3.15)

PROOF: Left as exercise ?? on p.??. �

Notational conveniences II:

In measure theory and probability theory the following notation is also very common:
{f ∈ B} := f−1(B), {f = y} := f−1{y}.
Let R be an ordered integral domain with associated order relation “<”. Let a, b ∈ R such
that a < b. We write {a ≤ f ≤ b} := f−1([a, b]R), {a < f < b} := f−1(]a, b[R),
{a ≤ f < b} := f−1([a, b[R), {a < f ≤ b} := f−1(]a, b]R), {f ≤ b} := f−1(]−∞, b]R), etc.

Proposition 3.4 (f−1 is compatible with all basic set ops). Assume that X,Y be nonempty, f : X → Y ,
J is an arbitrary index set, B ⊆ Y , Bj ⊆ Y for all j. Then

f−1(
⋂
j∈J

Bj) =
⋂
j∈J

f−1(Bj)(3.16)

f−1(
⋃
j∈J

Bj) =
⋃
j∈J

f−1(Bj)(3.17)

f−1(B{) =
(
f−1(B)

){(3.18)

f−1(B1 \B2) = f−1(B1) \ f−1(B2)(3.19)

f−1(B1∆B2) = f−1(B1)∆f−1(B2)(3.20)

PROOF: ? MF330 notes, ch.8 �
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Proposition 3.5 (Properties of the direct image). Assume that X,Y be nonempty, f : X → Y , J is an
arbitrary index set, B ⊆ Y , Bj ⊆ Y for all j. Then

f(
⋂
j∈J

Aj) ⊆
⋂
j∈J

f(Aj)(3.21)

f(
⋃
j∈J

Aj) =
⋃
j∈J

f(Aj)(3.22)

PROOF: ? MF330 notes, ch.8 �

Remark 3.1. In general you will not have equality in (3.21). Counterexample: f(x) = x2 with
domain R: Let A1 := ] − ∞, 0] and A2; = [0,∞[. Then A1 ∩ A2 = {0}, hence f(A1 ∩ A2) =
f({0}) = {0}. On the other hand, f(A1) = f(A2) = [0,∞], hence f(A1) ∩ f(A2) = [0,∞]. Clearly,
{0} ( [0,∞]. �

Proposition 3.6 (Direct images and preimages of function composition). Let X,Y, Z be arbitrary,
nonempty sets. Let f : X → Y and g : Y → Z , and let U ⊆ X and W ⊆ Z. Then

(g ◦ f)(U) = g
(
f(U)

)
for all U ⊆ X.(3.23)

(g ◦ f)−1 = f−1 ◦ g−1, i.e., (g ◦ f)−1(W ) = f−1
(
g−1(W )

)
for all W ⊆ Z.(3.24)

PROOF: ? MF330 notes, ch.8 �

3.3 Indicator Functions

Indicator functions often are convenient when working with integrals and expected values. They
will allow us, e.g., to write “E[111AX] = . . . ” rather than having to state all of this: “Let Y (ω) := X(ω
on A and 0 else. Then E[Y ] = . . . ”

Definition 3.6 (indicator function for a set).

Let Ω be a nonempty set and A ⊆ Ω. Let 111A : Ω→ {0, 1} be the function defined as

(3.25) 111A(ω) :=

{
1 if ω ∈ A,
0 if ω /∈ A.

111A is called the indicator function of the set A.

Some authors call 111A the characteristic function of A and some choose to write χA or 1A instead of 111A. �
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Let m,n ∈ Z. We recall that m+ n mod 2 (the sum mod 2 of m and n) is given by

(3.26) m+ n mod 2 =

{
0 ⇔ (m+ n)/2 has remainder 0, i.e.,m+ n is even,
1 ⇔ (m+ n)/2 has remainder 1, i.e.,m+ n is odd.

Proposition 3.7.

Let A,B,C be subsets of Ω. Then

111A∪B = max(111A,111B),(3.27)
111A∩B = min(111A,111B),(3.28)

111A{ = 1− 111A,(3.29)
111A4B = 111A + 111B mod 2.(3.30)

PROOF: The proof of the first three equations is left as an exercise.
PROOF of (3.30): This follows easily from the the fact that

(A4B){ = {ω ∈ Ω : [ either ω ∈ A ∩B] or [ neitherω ∈ A nor ω ∈ B ]} �

Prop.?? above helps us to prove associativity of symmetric set differences.

Proposition 3.8 (Symmetric set differences A4B are associative).

Let A,B,C ⊆ Ω. Then

(3.31) (A4B)4C = A4(B4C).

PROOF: We will write for convenience m⊕ n as shorthand notation for m+ n mod 2.
Formula (3.31) follows easily from (3.30) and and the associativity of a⊕b := a+b mod 2 as follows.
Let ω ∈ Ω. Then

ω ∈ (A4B)4C ⇔ 111(A4B)4C(ω) = 1

⇔
(
111A(ω)⊕ 111B(ω)

)
⊕ 111C(ω) = 1

⇔ 111A(ω)⊕
(
111B(ω)⊕ 111C(ω)

)
= 1

⇔ 111A4(B4C)(ω) = 1 ⇔ ω ∈ A4(B4C).

We obtained the equivalence in the middle from the fact that modular arithmetic is associative. �
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4 Basic Measure and Probability Theory

Introduction:
The following are the best known examples of measures (aj , bj ∈ R):

Length : λ1([a1, b1]) := b1 − a1,

Area : λ2([a1, b1]× [a2, b2]) := (b1 − a1)(b2 − a2),

Volume : λ3([a1, b1]× [a2, b2]× [a3, b3]) := (b1 − a1)(b2 − a2)(b3 − a3).

Then there also are probability measures: P{ a die shows a 1 or a 6} = 1/3.
We will explore in this chapter some of the basic properties of measures.

4.1 Measure Spaces and Probability Spaces

Notation 4.1. By augmenting certain sets of real numbers with ±∞we obtain the sets

R := [−∞,∞] := R ∪ {−∞,∞} (extended real numbers) ,

R+ := [ 0,∞ ] := R+ ∪ {+∞}
[ a,∞ ] := [ a,∞[ ∪ {+∞} ( here −∞ ≤ a <∞) �

(4.1)

Definition 4.1 (Extended real–valued functions).

Let X be an arbitrary, nonempty set and Y ⊆ R. A function F : X → Y whose codomain is
a subset of the extended real numbers is called an extended real–valued function. �

Remark 4.1 (Extended real numbers arithmetic). To work with extended real–valued functions we
must be clear about the rules of arithmetic where ±∞ is involved. In the following assume that
c ∈ R and 0 < p <∞.
Rules for Addition:

c ± ∞ =∞ ± c = ∞,(4.2)
c ± (−∞) = −∞ ± c = −∞,(4.3)
∞ + ∞ =∞,(4.4)
−∞ − ∞ = −∞,(4.5)

(±∞)∓∞ = UNDEFINED.(4.6)

Rules for Multiplication:
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p · (±∞) = (±∞) · p = ±∞,(4.7)
(−p) · (±∞) = (±∞) · (−p) = ∓∞,(4.8)

0 · (±∞) = (±∞) · 0 = 0 and
1

∞
= 0,(4.9)

(±∞) · (±∞) =∞,(4.10)
(±∞) · (∓∞) = −∞,(4.11)

Be clear about the ramifications of those rules. Rule (4.6) implies that if we have two extended
real–valued functions f, g defined on a domain A then f + g is only defined on

A \ {x ∈ A : either [f(x) =∞ and g(x) = −∞] or [f(x) = −∞ and g(x) =∞]},

and f − g is only defined on

A \ {x ∈ A : either [f(x) = g(x) =∞] or [f(x) = g(x) = −∞]}.

That is easy to understand and remember, but the real danger comes from rule (4.9) which you
might not have expected:

0 · ±∞ = ±∞ · 0 = 0.

This convention is very convenient, but it comes at a price: it is no longer true that all sequences
(an)n and (bn)n of real numbers that have limits a = lim

n→∞
an, b = lim

n→∞
bn, satisfy lim

n→∞
anbn = ab.

Such a counterexample would be: an = n, bn = 1
n . �

We give some convenient definitions and notations for monotone sequences of numbers, functions
and sets.

Definition 4.2.

(a) Let xn be a sequence of extended real–valued numbers.
• We call xn a nondecreasing or increasing sequence, if j < n ⇒ xj ≤ xn .
• We call xn a strictly increasing sequence, if j < n ⇒ xj < xn .
• We call xn a nonincreasing or decreasing sequence, if j < n ⇒ xj ≥ xn .
• We call xn a strictly decreasing sequence, if j < n ⇒ xj > xn .

• We write xn ↑ for nondecreasing xn, and xn ↑ x to indicate that supn xn = x,
• We write xn ↓ for nonincreasing xn, xn ↓ x to indicate that infn xn = x.

49 Math 454 - Version 2025-02-11



Math 454 – Additional Material Student edition with proofs

(b) Let X 6= ∅ and fn : X → R̄ a sequence of extended real–valued functions. We call
fn a nondecreasing or increasing function sequence

and we write fn ↑, if j < n ⇒ fj(x) ≤ fn(x) for all x ∈ X .

We call fn a nonincreasing or decreasing function sequence

and we write fn ↓, if j < n ⇒ fj(x) ≥ fn(x) for all x ∈ X .

Strictly increasing and strictly decreasing function sequences are defined by re-
placing ≤with < and ≥with > in those last definitions.

(c) LetX 6= ∅ and An ⊆ X a sequence of subsets ofX We callAn a nondecreasing (resp.
strictly increasing resp. ....) sequence of sets, if the corresponding sequence 111An of
indicator functions is a nondecreasing (resp. strictly increasing resp. ....) function
sequence. We write An ↑ if An is nondecreasing and An ↓ if An is nonincreasing. �

Remark 4.2. (A) In Definition 4.2, we made no assumptions about the domain X of the functions
fn besides not being empty. In particular, X can be the power set 2Ω of some arbitrary set Ω. Then
a sequence of functions

µn : 2Ω → R̄; A 7→ µn(A)

would take subsets of Ω as arguments and map them to real numbers. You are familiar with the
following example: Probabilities are functions which assign numbers to events, i.e., sets.
(B) You should convince yourself of the following. If X is a nonempty set and An ∈ X , then

An ↑ ⇔ A1 ⊆ A2 ⊆ . . . ; An is strictly increasing ⇔ A1 ( A2 ( . . . ;(4.12)
An ↓ ⇔ A1 ⊇ A2 ⊇ . . . ; An is strictly decreasing ⇔ A1 ) A2 ) . . . .(4.13)
An ↑ ⇒ 111An ↑ 111⋃

j Aj
, An ↓ ⇒ 111An ↓ 111⋂

j Aj
,(4.14)

(C) Also note in Definition 4.2(a) that

xn ↑ ⇒ sup
n∈N

xn = lim
n→∞

xn , i.e., xn ↑ lim
j→∞

xj ;(4.15)

xn ↓ ⇒ inf
n∈N

xn = lim
n→∞

xn , i.e., xn ↓ lim
j→∞

xj .(4.16)

Thus, if for fn, f : X → N̄ we define f to be the (pointwise) limit of the functions fn, i.e.,

f := lim
n→∞

fn ⇔ f(x) = lim
n→∞

fn(x) for all x ∈ X,

then we obtain from (4.15) and (4.16) the following.

fn ↑ ⇒ sup
n∈N

fn(x) = lim
n→∞

fn(x) for all x ∈ X , i.e., fn ↑ lim
j→∞

fj ;(4.17)

fn ↓ ⇒ inf
n∈N

fn(x) = lim
n→∞

fn(x) for all x ∈ X , i.e., fn ↓ lim
j→∞

fj .(4.18)
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Finally, note the following for X 6= ∅ and An ⊆ X .

An ↑
(4.14)⇒ 111An ↑ 111⋃

j Aj
,

(4.17)⇒ 111⋃
j Aj

= lim
j→∞

111Aj ,(4.19)

An ↓
(4.14)⇒ 111An ↑ 111⋂

j Aj
,

(4.18)⇒ 111⋃
j Aj

= lim
j→∞

111Aj .(4.20)

It thus makes sense to speak of limits of sequences of sets in those two cases: 14

An ↑ ⇒
⋃
j

Aj = lim
j→∞

Aj , and An ↓ ⇒
⋂
j

Aj = lim
j→∞

Aj . �

For the following see SCF2 Definition 1.1.1.

Definition 4.3 (σ–algebras).

Let Ω 6= ∅. let F be a set that contains some, but not necessarily all, subsets of Ω.
F is called a σ–algebra or σ–field for or on Ω if it satisfies the following:

∅ ∈ F,(4.21a)

A ∈ F ⇒ A{ ∈ F(4.21b)

(An)n∈N ∈ F ⇒
⋃
n∈N

An ∈ F(4.21c)

• The pair (Ω,F) is called a measurable space.
• The elements of F (these elements are sets!) are called F–measurable sets. or also just

measurable sets if it is clear what σ–algebra is referred to. �

We do not consider Ω = ∅with σ–algebra {∅} a measurable space since it cannot carry a probability
P which would have to satisfy P (∅) = 0 and P (Ω) = 1. See Chapter 4.2 (Measurable Functions and
Random Elements).

Remark 4.3. If F is a σ–algebra then

Ω ∈ F(4.22a)

A ∈ F ⇒ A{ ∈ F(4.22b)

(An)n∈N ∈ F ⇒
⋂
n∈N

An ∈ F(4.22c)

The last assertion is a consequence of De Morgan’s laws (Theorem 3.1 on p.42).

14and to make the following general definition: If B,Bn ⊆ X , we say that

B = lim
n→∞

Bn ⇔ 111B = lim
n→∞

111Bn .
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If countably many (i.e., a finite or infinite sequence of) operations are performed involving
• unions, • intersections, • complements, • set differences, • symmetric differences

of elements of a σ–algebra F then the resulting set also belongs to F. �

Example 4.1. Here are two trivial σ–algebras of a nonempty set Ω.
(1) {∅,Ω} is the smallest possible σ–algebra.
(2) The power set 2Ω of Ω is the largest possible σ–algebra. �

Proposition 4.1 (Minimal sigma–algebras). Let Ω be a nonempty set.

AAA: The intersection of arbitrarily many σ–algebras is a σ–algebra.

BBB: Let E ⊆ 2Ω, i.e., E is a set which contains subsets of Ω. It is not assumed that E is a σ–algebra.
Then there exists a σ–algebra which contains E and is minimal in the sense that it is contained in any
other σ–algebra that also contains E. We name this σ–algebra σ(E) because it clearly is uniquely
determined by E. It is constructed as follows:

σ(E) =
⋂
{F : F ⊇ E and F is a σ–algebra for Ω}.

PROOF: ? �

That last proposition allows us to make the next definition.

Definition 4.4.

Let Ω be a nonempty set and let E ⊆ 2Ω. We call the σ–algebra

σ(E) =
⋂
{G : G ⊇ E and G is a σ–algebra for Ω}.(4.23)

of Proposition 4.1 the σ–Algebra generated by E �

Remark 4.4.
(1) You are familiar with this construct from linear algebra:

Given a subset A of a vector space V , its linear span

span(A) = {
k∑
j=1

αjxj : k ∈ N, αj ∈ R, xj ∈ A (1 ≤ j ≤ k) }.

of all linear combinations of vectors in A is obtained as follow:

Let V := {W ⊆ V : W ⊇ A and W is a subspace of V }.

Then span(A) =
⋂[

W : W ∈ V
]
.

In other words, span(A) is the (linear) subspace generated by A.
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(2) Note that if E ⊆ F then σ(E) ⊆ F, since F is one of the σ–algebras G which occur on the
right–hand side of (4.23). �

You should visualize the next proposition for the case of one, two, three, and four events Aj .

Proposition 4.2. ?

Let (Ω,F) be a measurable space in which a finite or infinite sequence of events A1, A2, . . . is a
partition of Ω and generates F. Let J := {1, 2, . . . , n} in case of a finite sequence Aj : 1 ≤ j ≤ n,
and let J := N in case of a sequence Aj : j ∈ N. Then our assumptions can be stated as follows.

(4.24) Ai ∩Aj = ∅ for i 6= j,
⊎
j∈J

Aj = Ω, F = σ{Aj : j ∈ J}.

Under those assumptions it is true that F consists of all countable unions An1

⊎
An2

⊎
. . . .

PROOF: Left as an exercise.
Hint: What is the complement of the union An1

⊎
An2

⊎
. . . ? �

Proposition 4.3 (Monotonicity of generated σ–algebras). Let Ω be a nonempty set and let E1 and E2 be
two collections of subsets of Ω.

If E1 ⊆ E2 then σ(E1) ⊆ σ(E2) .(4.25)

PROOF: Any σ–algebra G that contains E2 also contains E1 Thus more sets are intersected in

σ(E1) =
⋂
{G : G ⊇ E1 and G is a σ–algebra for Ω}.

than in
σ(E2) =

⋂
{G : G ⊇ E2 and G is a σ–algebra for Ω}.

It follows that σ(E1) ⊆ σ(E2). �

Proposition 4.4.

Let Ω be a nonempty set. Assume E1,E2 are subsets of 2Ω such that

σ(E1) ⊇ E2 and σ(E2) ⊇ E1.

Then σ(E1) = σ(E2).

PROOF: ? Left as an exercise. �

Example 4.2. Consider the following sets of intervals of real numbers.
I1 := {]a, b] : a < b}, I2 := {[a, b] : a < b},
I3 := {]a, b[ : a < b}, I4 := {[a, b[ : a < b}.
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Then σ(I1) = σ(I2) = σ(I3) = σ(I4).
For example, to prove that σ(I2) = σ(I3), it suffices according to Proposition 4.4 to show that

any closed interval [a, b] belongs to I3, any open interval ]a, b[ belongs to I2.

This follows from

[a, b] =
⋂
n

]
a− 1

n
, b+

1

n

[
and ]a, b[ =

⋃
n

[
a+

1

n
, b− 1

n

]
.

The above generalizes to n–dimensional space: Let
I5 := {]a1, b1]×]a2, b2]× · · ·×]an, bn] : a1 < b1, a2 < b2, . . . , an < bn} ,
I6 := {[a1, b1]× [a2, b2]× · · · × [an, bn] : a1 < b1, a2 < b2, . . . , an < bn} ,
I7 := {]a1, b1[×]a2, b2[× · · ·×]an, bn[: a1 < b1, a2 < b2, . . . , an < bn} ,
I8 := {[a1, b1[×[a2, b2[× · · · × [an, bn[: a1 < b1, a2 < b2, . . . , an < bn} ,

Then σ(I5) = σ(I6) = σ(I7) = σ(I8). �

For the following see SCF2 Definition 1.1.2.

Definition 4.5 (Borel sets).

• The σ–algebra generated by either all open or all closed or all half–open intervals in
Rn is called the Borel σ–algebra of subsets of Rn and is denoted B(Rn).

• The sets in this σ–algebra are called Borel sets.
• Abbreviations: We also write Bn for B(Rn). In the case of the real numbers (n = 1)

we also write B1 or B(R) for B(R1). �

• We do not consider what corresponds to the Borel sets when we deal with the extended
real numbers R̄, i.e., we add ±∞. Such “extended Borel sets”, denoted by B(R̄), can be
defined. Again, extended Borel sets will not be dealt with in this course. �

Remark 4.5. We can express Example 4.2 as follows. Each one of the interval sets I5, I6, I7, I8

generates the Borel σ–algebra. �

For the following see SCF2 Definition 1.1.2.

Definition 4.6 (Abstract measures). Let (Ω,F) be a measurable space.
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A measure on F is an extended real–valued function

µ : F→ R+; A 7→ µ(A) such that

µ(∅) = 0 , (positivity)(4.26)
A,B ∈ F and A ⊆ B ⇒ µ(A) ≤ µ(B) , (monotony)(4.27)

(An)n∈N ∈ Fdisjoint ⇒ µ
(⊎
n∈N

An

)
=
∑
n∈N

µ(An) . (σ–additivity)(4.28)

• The triplet (Ω,F, µ) is called a measure space
• We call µ a finite measure on F if µ(Ω) <∞.
• We call any subset N of a set with measure zero a µ–null set. Note that N need not

be measurable.
• If µ(Ω) = 1 then µ is called a probability measure or simply a probability

and (Ω,F, µ) is then called a probability space. �

Disjointness in (4.28) means that Ai ∩Aj = 0 for any i, j ∈ N such that i 6= j (see def.2.4 on p.10).

Do not confuse measurable spaces (Ω,F) and measure spaces (Ω,F, µ)!

Remark 4.6 (σ–algebras are appropriate domains for measures). The σ–additivity of measures is
what makes working with them such a pleasure in many ways. It can be stated as follows:
For a disjoint sequence of measurable sets the measure of its disjoint union is the sum of the mea-
sures. Property (4.21c) in the definition of σ–algebras is required for exactly that reason.

you cannot take advantage of the σ–additivity of a measure µ if its domain does not contain
countable unions and intersections of all its constituents.

Here are two not very useful measures which are easy to understand.

Example 4.3. You can easily verify that the following set functions µ1 and µ2 define measures on an
arbitrary nonempty set Ω with an arbitrary σ-field F.

µ1(A) := 0 for all A ∈ F, zero measure or null measure
µ2(∅) := 0; µ(A) := ∞ if A 6= ∅.

Keep the second example in mind when you work with non–finite measures. �

Remark 4.7.
(1) We emphasize that the only difference between (general) measures and probability mea-

sures is that the latter must assign a measure of one to the entire space Ω.
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(2) Many things that apply to probabilities can be extended to general measures, and this
will matter to us even if we are only interested in probability spaces, since will see in the
context of the expectation E[X] of a non–negative random variable X that assignments
of the form

A 7→ E[X · 111A] where A ∈ F and 111A(ω) :=

{
1 if ω ∈ A,
0 if ω /∈ A.

define a measure on (Ω,F).
(3) Traditionally, mathematicians write P (A) and (Ω,F, P ) rather than µ(A) and (Ω,F, µ) for

probability measures and probability spaces. The elements of F (the measurable subsets)
are then thought of as events for which P (A) is interpreted as the probability with which
the event A might happen.

(4) A measure space can support many different measures: If µ is a measure on F and α ≥ 0
then αµ : A 7→ αµ(A) also is a measure on F. �

Fact 4.1. Assume that the real–valued function

µ0 : I5 −→ R, B 7→ µ0(B),

is defined on the set of half–open n–dimensional intervals

I5 = {]a1, b1]×]a2, b2]× · · ·×]an, bn] : a1 < b1, a2 < b2, . . . , an < bn}

of Example 4.2 on p.53 and satisfies the measure defining properties of positivity, monotony, and σ–additivity.
Then µ0 can be uniquely extended to a measure µ on the measurable space

(
Rn,B(Rn)

)
In other words, there exists a uniquely defined measure µ on the Borel sets B(Rn) (see Definition 4.5 (Borel
sets) on p.54) such that

µ(]a1, b1]×]a2, b2]× · · ·×]an, bn]) = µ0(]a1, b1]×]a2, b2]× · · ·×]an, bn])

for any half–open interval ]a1, b1]×]a2, b2]× · · ·×]an, bn], a1 < b1, a2 < b2, . . . , an < bn. �

For the following see SCF2 Example 1.1.3 - Uniform (Lebesgue) measure on [0, 1]
The most important measures we encounter in real life are those that measure the length of sets in
one dimension, the area of sets in two dimensions and the volume of sets in three dimensions.

Definition 4.7 (Lebesgue measure). For
• intervals [a, b] ∈ R,
• rectangles [a1, b1]× [a2, b2] ∈ R2,
• boxes or quads [a1, b1]× [a2, b2]× [a3, b3] ∈ R3,
• in general, n-dimensional parallelepipeds [a1, b1]×[a2, b2]×· · ·×[an, bn] ∈ Rn,

we define

λ1
0(]a, b]) := b− a,
λ2

0(]a1, b1]×]a2, b2]) := (b1 − a1)(b2 − a2),

λ3
0(]a1, b1]×]a2, b2]×]a3, b3]) := (b1 − a1)(b2 − a2)(b3 − a3),

λn0 (]a1, b1]× · · ·×]an, bn]) := (b1 − a1)(b2 − a2) . . . (bn − an).

(4.29)
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One can show that those set functions satisfies the conditions stated in Fact 4.1. 15 Thus λn0 uniquely
extends from the parallelepipeds to a measure λn on the Borel sets of Rn.

The measure λn0 is called (n-dimensional) Lebesgue measure.

Note that Lebesgue measure is not finite: λn(Rn) =∞!
Since “n-dimensional parallelepiped” sounds so ugly, we also refer to those sets as n-dimensional
intervals and n-dimensional rectangles. �

Fact 4.2.

It is not possible to extend the set functions µn0 which define Lebesgue measure to a measure on the
entire power set 2Rn of Rn.

This (very hard to prove) fact makes it a mathematical necessity to introduce σ–algebras as small enough
subsets of the power set 2Ω which are suitable as domains for a measure.
We will see later that σ–algebras also have a practical importance: they reflect the information that is associ-
ated with certain random phenomena, for example, the evolution of the price of a financial asset. �

Remark 4.8 (Finite disjoint unions). If we have only finitely many sets then “σ–additivity” which
stands for “additivity of countably many” becomes simple additivity. We obtain the following by
setting AN+1 = AN+2 = . . . = 0:

A1, A2, . . . , AN ∈ F mutually disjoint
⇒ µ(A1 ]A2 ] . . . ]AN ) = µ(A1) + µ(A2) + . . .+ µ(AN ) (additivity).

(4.30)

In the case of only two disjoint measurable sets A and B the above simply becomes

µ(A ]B) = µ(A) + µ(B). �

Proposition 4.5 (Simple properties of measures). Let A,B,∈ F and let µ be a measure on F. Then

µ(A) ≥ 0 for all A ∈ F,(4.31a)
A ⊆ B ⇒ µ(B) = µ(A) + µ(B \A),(4.31b)
µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B).(4.31c)

If µ is finite then also

A ⊆ B ⇒ µ(B \A) = µ(B)− µ(A),(4.32a)
µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B).(4.32b)

PROOF: The first property follows from the fact that µ(∅) = 0, ∅ ⊆ A for all A ∈ F and (4.27.

15Positivity and monotony are easy, but σ–additivity is hard.
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To prove the second property, observe that B = A ] (B \A).
Proving (4.31c) is more complicated because neither A nor B may be a subset of the other. We have

A ∪B = (A ∩B) ] (B \A) ] (A \B)(4.33a)
A ∪B = A ] (B \A) = B ] (A \B)(4.33b)

It follows from (4.33a) that

(4.34) µ(A ∪B) = µ(A ∩B) + µ(B \A) + µ(A \B)

Since A ∩ B ⊆ A, B \ A ⊆ B, A \ B ⊆ A, formula (4.34) shows that µ(A ∪ B) = ∞ can only be
true if µ(A) = ∞ or µ(B) = ∞. In this case (4.31c) is obviously true. Hence we may assume that
µ(A ∪B) <∞.
It follows from (4.33b) that

(4.35) 2 · µ(A ∪B) = µ(A) + µ(B \A) + µ(B) + µ(A \B)

We subtract the left and right sides of (4.34) from those of (4.35) and obtain

µ(A ∪B) = µ(A) + µ(B \A) + µ(B) + µ(A \B)− µ(A ∩B)− µ(B \A)− µ(A \B)

= µ(A) + µ(B)− µ(A ∩B)

and the third property is proved. �

We stated as a fact without proof (Fact 4.1 on 56), that one can extend any set function which acts
like a measure on the half–open parallelepipeds of Rn to a measure on B(Rn), the Borel σ–algebra
of Rn. The situation is much simpler for countable measurable spaces.

Proposition 4.6.

Let Ω be a countable, nonempty set, i.e., the elements of Ω can be written as a finite or infinite
sequence Ω = ω1, ω2, ω3, . . . Let

E := { {ω} : ω ∈ Ω } = { all singleton sets of Ω }.
Then any nonnegative and extended real–valued function µ0 which is defined on E extends uniquely
to a measure µ on the entire power set of Ω by means of the formula

(4.36) µ(A) =
∑
ω∈A

µ0{ω}, (A ⊆ Ω).

PROOF: ? This is immediate from the fact that A =
⊎
ω∈A
{a}. �

Example 4.4 (Binomial distribution). You are very familiar with the last proposition in the context
of discrete probability measures. It is then customarily written pn = P{ωn} and called a proba-
bility mass function (or just a probability function in [16] Wackerly, Mendenhall and Scheaffer:
Mathematical Statistics with Applications).
For example, if we define Ω := {0, 1, 2, . . . , n} and F := 2Ω then the Bin(n, p) distribution
is the (probability) measure P on the measurable space (Ω,F) defined on the singleton events
{0}, {1}, . . . , {n} by its probability mass function

pj := P{j} := Bin(n, p){j} :=

(
n

j

)
pj (1− p)n−j . �
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We next examine the analogue of Lebesgue measure (see Definition 4.7, p.56) on the space Z of the
integers.
Let

E :=
{
{k} : k ∈ Z

}
= { all singleton sets of the integers }.

According to Proposition 4.6, the function

Σ0 : E −→ [0,∞[; Σ0{k} := 1

has a unique extension

Σ : 2Z −→ [0,∞], given by Σ(A) =
∑
k∈A

1 = |A| for all A ⊆ Z.

In other words, Σ(A) is the size of A, i.e., the number of elements ofA.
We generalize this to the d–dimensional case as follows. Recall that a symbol with an arrow on top
denotes a vector. So we write, e.g.,

~x = (x1, x2, . . . , xd)

for elements of Rd. Recall that Zd = Z× · · · × Z (d factors), i.e.,

Zd = {~k = (k1, . . . , kd) : k1, . . . , kd ∈ Z} .

We define the counting measure in multiple dimensions as follows. Let d ∈ N and

E :=
{
{~k} : ~k ∈ Zd

}
= { all singleton sets of d–dim. vectors with integer coordinates }.

Then the function
Σd

0 : E −→ [0,∞[; Σ0{~k} := 1

has according to Proposition 4.6 a unique extension

Σd : 2(Zd) −→ [0,∞], given by Σd(A) =
∑
k∈A

1 = |A| for all A ⊆ Zd.

Here is the formal definition of counting measure.

Definition 4.8.

A. We call the measure defined by

Σ : 2Z −→ [0,∞] ; A 7→ Σ(A) := |A| for all A ⊆ Z,(4.37)

the summation measure or the counting measure on the integers.

B. We call the measure defined by

Σd : 2(Zd) −→ [0,∞] ; A 7→ |A| for all A ⊆ Zd.(4.38)

the d–dimensional summation measure or the d–dimensional counting measure. �
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NOTATION ALERT: The name “summation measure” is not at all common in the
mathematical literature!

Proposition 4.7 (Continuity properties of measures). Let (Ω,F, µ) be a measure space.

If Bn ↑ B then lim
n∞

µ(Bn) = µ(B) = µ

( ∞⋃
n=1

Bn

)
,(4.39a)

If An ↓ A inF and µ(A1) <∞ then lim
n∞

µ(An) = µ(A) = µ

( ∞⋂
n=1

An

)
.(4.39b)

PROOF: To prove formula (4.39a), we replace the sequenceBn with a disjoint sequence Cn such that
A =

⊎
n
Cn

16 and use the σ–additivity of µ.

To prove (4.39b), apply the already proven formula (4.39a) to

Bn := A{n , B := A{

(thus Bn ↑ B), and note that

µ(Bn) = µ(Ω) − µ(An) , µ(B) = µ(Ω) − µ(A) .

This last step requires the assumption that µ(A1) <∞ (and thus 0 ≤ µ(An) ≤ µ(A1) <∞). �

Remark 4.9. The finiteness condition of formula (4.39b) is never an issue with probability measures
P since P (A) ≤ 1 for all A ∈ F. But the unexpected can happen for nonfinite measures such as the
one dimensional summation measure Σ of Definition 4.8, which is characterized by

Σ(A) = |A|, (A ⊆ Z).

Here is an example of a sequence of sets Ak ∈ Z which does not satisfy the condition Σ(A1) < ∞
(matter of fact, Σ(Ak) =∞ for all k), and for which formula (4.39b) is not valid.
Let Ak := {j ∈ N : j ≥ k}. Then Ak ↓ ∅ as you can see as follows.
Let A :=

⋂
j∈NAj and assume to the contrary that A is not empty, i.e., it contains some n ∈ N. This

is impossible since
n /∈ An+1, thus n /∈

⋂
n∈N

An = A,

contrary to our assumption n ∈ A.

Hence A = ∅, hence Σ

(⋂
n

An

)
= Σ(∅) = 0.

On the other hand, Σ(An) = ∞ for each n, thus lim
n→∞

Σ(An) = ∞ since An contains infinitely
many elements. We have found a case in which formula(4.39b) does not hold. �

16see Proposition 3.2 (Rewrite unions as disjoint unions) on p.42
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Proposition 4.8. ?

Let (Ω,F, µ) be a measure space and A ∈ F. Then the set function

µA : F −→ [0,∞], A′ 7→ µA(A′) := µ(A ∩A′)
defines a measure on (Ω,F).

PROOF:
Only σ–additivity needs a little effort, and it follows easily from Proposition 3.1 (Distributivity of
unions and intersections) on p.42. �

Proposition 4.9. ?

Let (Ω,F, µ) be a measure space with a sequence of measures µn that satisfy

µn ↑ µ, or µ1(Ω) < ∞ and µn ↓ µ.
Then lim

n→∞
µn : A 7→ lim

n→∞
µn(A) is a measure.

PROOF: Not given here. We only mention that Proposition 4.7 (Continuity properties of measures)
on p.60 is essential to show that µ is σ–additive once it has been shown to be (finitely) additive. �

4.2 Measurable Functions and Random Elements

Introduction 4.1. We all know what a random variable X is: X has a real number as an outcome,
and that outcome is random. We also know that such a random variable comes with a probability
distribution.
• For example, if X is a standard normal random variable, then the probability that X

attains a value a ≤ X ≤ b can be computed as

P{a ≤ X ≤ b} =

∫ b

a
fX(x) dx, where fX(x) =

1√
2π

ex
2/2 is the probability density.

This is an example of a continuous random variable.
• Or X might be a discrete random variable which only attains countably many distinct

outcomes x1, x2, . . . , i.e., P{X = x1} + P{X = x2} + . . . = 1. Such random variables
are defined by their probability mass function

pj = P{X = xj}, (j = 1, 2, . . . ).

An example would be a Bin(n, p)–distributed random variable (see Example 4.4 (Bino-
mial distribution) on p.58) for which pj =

(
n
j

)
pj (1− p)n−j .

These settings are not general enough for our needs, and we must make some amendments.
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• “... that outcome is random”: Let us rephrase that as follows. The outcome of X depends
on randomness. Might as well say that X is a function of randomness:

X = f(randomness).

That is a great improvement but “randomness” is to wordy.
• We agree that ω means randomness: X = f(ω).
• Mathematical symbols are in short supply and it is common practice to use the same

symbol for outcome (X) and assignment symbol (f ). We write

X = X(ω).

• A function needs domain and codomain. Since arguments are called ω it is natural to
call the domain Ω. Since we say that random variables are real-valued functions the
codomain must be R or a subset thereof.

• So a random variable X is a function

X : Ω −→ R; ω 7→ X(ω).

• It is important to have a probability measure P defined on the domain Ω of the random
variable X rather than the real numbers (the codomain of X). We have seen in Fact 4.2
on p.57 that not all measures can assign values to all subsets of Ω.

• So the domain of P might just be a σ–algebra of subsets of Ω! So Ω must be a probability
space (Ω,F, P ), and a random variable is a function

X : (Ω,F, P ) −→ R; ω 7→ X(ω).

• What good is it if there are some important events like, e.g.,

{−1 ≤ X ≤ 1} = {ω ∈ Ω : −1 ≤ X(ω) ≤ 1} = X−1
(
[−1, 1]

)
,

for which P{−1 ≤ X ≤ 1} is not available, because {−1 ≤ X ≤ 1} /∈ F?
• What events are important, i.e., what are the sets B ∈ R such that the preimage X−1(B)

(also written {X ∈ B}) 17 must belong to F?
• The answer to that question will generally be that the preimages {X ∈ B} of Borel sets B

need probabilities:

If B ∈ B(R) then we need that X−1(B) ∈ F.

We have collected enough material to define random variables, but we must proceed in reverse and
start with the concept of measurability which requires that the preimages of certains sets belong to
the σ–algebra F defined on the domain of the given random variable. �

Definition 4.9 (Measurable function). Let
17see the Notational conveniences II box that follows Proposition 3.3 on p.45)
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f : (Ω,F) −→ (Ω′,F′)

be a function which has the measurable space (Ω,F) as its domain and the measurable space (Ω′,F′)
as its codomain.

We say that f is (F,F′)–measurable, if

f−1(A′) ∈ F, for all A′ ∈ F′.(4.40)

If Ω′ = Rn or Ω′ = R and F′ is the Borel σ–algebra we also say that f is F–measurable
If both Ω′ = Rn or Ω′ = R and also Ω = Rn or Ω = R with the Borel σ–algebras then we also
say that f is Borel measurable.

We write m(F,F′) for the set of all (F,F′)–measurable functions, and we write m(F) for the set of all
(F,B)–measurable functions (i.e., the codomain is the measure space (R,B)). Thus,

f is (F,F′)–measurable ⇔ f ∈ m(F,F′) ,

f is F–measurable ⇔ f ∈ m(F) . �

AAA
@@Author

This is the spot for Example 4.16 on p.?? in the addenda to this chapter.

Example 4.5. (a) Consider the set Q+ = {q ∈ Q : q ≥ 0} with σ–algebras F := {∅,Q+}, F′ := 2Q+ =
{ all subsets of Q+ }.
Let f : (Q+,F)→ (Q+,F

′) be defined as f(q) = 4q. Then f is not (F,F′)–measurable.
For example {4} ∈ F′, but its preimage {f = 4} = {1} /∈ F. Matter of fact, only constant functions
with domain Ω are guaranteed to be measurable if the domain σ–algebra is {∅,Ω}. (Here, Ω = Q+.)

(b) Consider the set Q+ = {q ∈ Q : q ≥ 0} with the σ–algebra F := 2Q+ , the set [0,∞[ with the σ–
algebra F′ := B([0,∞[) (the Borel sets of [0,∞[), and the function g : (Q+,F)→ ([0,∞[,F′), defined
as f(q) = sin(

√
4q). Then g is (F,F′)–measurable, since any preimage of any function belongs to the

power set of the domain.

(c) Consider the set N with σ–algebras F := 2N, F′ := {∅,N}. Let h : (N,F)→ (N,F′) be an arbitrary
function. Then h is (F,F′)–measurable for the reason given in (b). �

See SCF2 Definition 1.2.1 for the next definition.

Definition 4.10 (Random Variable). Let
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X : (Ω,F, P ) −→ (R,B)

be a function which has a probability space (Ω,F, P ) as its domain and the real numbers
with the Borel σ–algebra as its codomain.
If X is F–measurable, i.e.,

{X ∈ B} belongs to F for all Borel sets B,(4.41)

then we call X a random variable. on (Ω,F, P ).
If there is a countable subset A of R such that the random variable X “lives” on A, i.e.,

X(Ω) = {X(ω) : ω ∈ Ω} ⊆ A

then we call X a discrete random variable. �

Remark 4.10. ?

(1) IfX is a discrete random variable andA = {x1, x2, . . . } is countable set which contains the range
X(Ω) of X then we can shrink the codomain of X to the measurable space (A, 2A) and talk about
the random variable

X : (Ω,F, P ) −→ (A, 2A).

Here is the reason that we can and often will take the entire power set 2A as the σ–algebra of the
codomain of X :
• All singletons {a} ⊆ A are Borel sets, thus each B ⊆ A is Borel since it is the countable

union B =
⋃
a∈B{a} of Borel sets.

(2) Occasionally we allow X to assume the values ∞, and −∞, i.e., X can be an extended real–
valued, F–measurable, function. �

It seems awkward not to call a measurable function Ω → Ω′ from a probability space (Ω,F, P ) to a
measurable space (Ω′,F′) a random variable only because its function values are not numbers. We
give a name to such measurable functions of randomness.

Definition 4.11 (Random element).

• Let (Ω,F, P ) be a probability space, (Ω′,F′) a measurable space. A random element
is an (F,F′)–measurable function X : Ω→ Ω′. �

Note that all random variables are random elements.

For the following see also SCF2 Definition 1.3.9 and SCF2 Definition 1.1.5.

Definition 4.12 (Almost everywhere and almost surely). Let (Ω,F) be a measurable space and let A
be the set of all ω ∈ Ω such that a certain property is true. For example,
• A = {ω ∈ Ω : f(ω) ≤ g(ω)},
• A = {ω ∈ Ω : the function t 7→ Yt(ω) is continuous },
• A = {ω ∈ Ω : |X(ω)| ≤ 1}.
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(1) In the context of a measure space (Ω,F, µ) we say that the property is satisfied, or
holds, or is true µ–almost everywhere if µ(A{) = 0. We also write µ–a.e.

(2) In the context of a probability space (Ω,F, P ) we say that the property is satisfied, or
holds, or is true P–almost surely if P (A{) = 0 or, equivalently, if P (A) = 1. We also
write P–a.s.

(3) In either case we will drop the µ– and P– prefixes if there is no confusion about which
measure or probability this refers to. �

Remark 4.11. ? The set A might not be measurable. To be precise we would have had to formulate the above as

follows. The property holds µ–a.e. if there is a measurable set B such that µ(B) = 0 and B contains the set A{ on which
this property is not satisfied. We will not worry about such fine points concerning measurability. �

Remark 4.12. We follow the lead of SCF2 and often will not explicitly mention that a certain prop-
erty is assumed to be true or can be proven to be true only almost everywhere/almost surely. �

Remark 4.13.

Since random variables are special cases of measurable functions, it follows that
All statements that are true for measurable functions are true for random elements. In
particular, they are true for random variables. �

Theorem 4.1.

Let (Ω,F) and (Ω′,F′) be measurable spaces and f : Ω→ Ω′. Let E′ ⊆ F′ be a generator of F′, i.e.,

σ(E′) = F′.

to prove that f is (F,F′)–measurable it suffices to show that

f−1(A′) ∈ F for allA′ ∈ E′.(4.42)

PROOF: ?

Step 1. We show that

HHH ′ := {H ′ ⊆ Ω′ : f−1(H ′) ∈ F } is a σ–algebra.

Clearly, ∅ ∈ HHH ′. We will show that countable unions of sets in HHH ′ also belong to HHH ′. The proof
that H ′ ∈HHH ′ implies (H ′){ ∈HHH ′ is similar.
Let H ′n ∈ HHH ′ for n ∈ N. Then f−1(H ′n) ∈ F by definition of HHH ′. Since F is a σ–algebra,⋃
n f
−1(H ′n) ∈ F. Since

⋃
n f
−1(H ′n) = f−1

(⋃
nH

′
n

)
by Theorem 3.4 (f−1 is compatible with all

basic set ops) on p.45, it follows that f−1
(⋃

nH
′
n

)
∈ F, i.e.,

⋃
nH

′
n ∈HHH ′.
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Step 2. By assumption, f−1(E′) ∈ F for all E′ ∈ E′. Thus, E′ ⊆HHH ′, thus,

σ(E′) ⊆ σ(HHH ′)( ???)

Since σ(E′) = F′ by assumption, and HHH ′ = σ(HHH ′) by Step 1, it follows from (???) that F′ ⊆HHH ′, i.e.,
f−1(A′) ∈ F for all A′ ∈ F′. Thus, f ∈ m(F,F′). �

Corollary 4.1. Let (Ω,F) be a measurable space and f : (Ω,F)→ (R,B1). to prove that f is F–measurable
it suffices to show that one of the following four conditions is met:

(1) {f < c} ∈ F for all c ∈ R ,
(2) {f ≤ c} ∈ F for all c ∈ R ,
(3) {f > c} ∈ F for all c ∈ R ,
(4) {f ≥ c} ∈ F for all c ∈ R . �

Note that this implies the following. If the domain of f actually is a probability space (Ω,F, P ) then f is a
random variable if one of the above four conditions is satisfied.

PROOF: ? Essentially follows from Theorem 4.1 above and Remark 4.5 on p.54. �

Proposition 4.10.

• Any continuous function f : Rm → Rn is Borel–measurable, i.e., (Bm,Bn)–
measurable.

• In particular, any continuous, real–valued function f(x) of real values x is Borel–
measurable. �

PROOF: ? A triviality if you recall that the open n–dimensional parallelepipeds generate Bn

and if you know the following:

f is continuous (at each ~x ∈ Rm) ⇔ the preimages of all open sets in Rn are open in Rm. �

Proposition 4.11. ?

Let (Ω,F) be a measurable space and f, g extended real–valued Borel measurable functions. Then
each one of the sets {f < g}, {f ≤ g}, {f > g}, {f ≥ g},
is F–measurable.

PROOF:
For the set {f < g} we proceed as follows. For q ∈ Q let Aq := {f < q < g}. Then Aq = {f <
q} ∩ {q < g} is measurable as the intersection of two measurable sets. Note that

f(ω) < g(ω) ⇔ there is (at least one) q ∈ Q such that f(ω) < q < g(ω) ,

and thus
{f < g} =

⋃
q∈Q

Aq .
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It follows that {f < g} is measurable as the countable union of the measurable sets Aq.
From this we obtain measurabilty of the set {f ≤ g} since

{f ≤ g} =
⋂
n∈N

{
f < g +

1

n

}
.

Lastly, {f > g} and {f ≥ g} are measurable as complements of the measurable sets {f ≤ g} and
{f < g} �

For the following see Definitions 2.17 and 2.18 on p.20.

Theorem 4.2.

Let (Ω,F) be a measurable space and f, g : Ω→ R. Let c ∈ R.
If f, g in m(F) then each of the following also is (F,B)–measurable:

c, cf, f ± g, fg; f/g (on {g 6= 0}), |f |, f+, f−, f ∨ g, f ∧ g.

Here c denotes the constant function ω 7→ c and cf denotes the function ω 7→ cf(ω).

• Moreover, all statements above which involve two functions f and g generalize to finitely
many measurable functions f1, f2, . . . , fn.

• Moreover, the statements about f ∨ g and f ∧ g generalize to sequences (fn)n of functions
as follows: If each fn is measurable then so are the functions

sup
n
fn : ω 7→ sup{fn(ω) : n ∈ N}, inf

n
fn : ω 7→ inf{fn(ω) : n ∈ N}.

PROOF: Omitted except for this one:
We prove that f(ω) := supn fn(ω) is measurable as follows. Observe that for any c ∈ R it is true that

f(ω) ≤ c ⇔ fn(ω) ≤ c for alln,

thus
{ f ≤ c } =

⋂
n∈N

{ fn ≤ c },

and this set is F–measurable as the intersection of the F–measurable sets {fn ≤ c} . The assertion
now follows from Corollary 4.1. �

Example 4.6 (Binomial random variable v.s. binomial distribution). This example continues Exam-
ple 4.4 (Binomial distribution) on p.58 which was about the binomial distribution Bin(n, p) defined
by its probability mass function

pj = P{j} =

(
n

j

)
pj (1− p)n−j .(4.43)

Let (Ω,F, P ) be a probability space and let X ∈ m(F), i.e., X is a random variable on (Ω,F, P ). We
all are familiar with what it means that X is a Bin(n, p)–distributed random variable. It satisfies
formula (4.43), right?
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Not exactly! There is a problem with the probability P . In formula (4.43) it occurs as a measure on
the measurable space (

{0, 1, . . . , n}, 2{0,1,...,n}
)

and NOT on our abstract measurable space (Ω,F) which may not have numbers 0, 1, 2, . . . as ele-
ments ω.
Here is the explanation. These numbers j are not the argument ω of the random variable ω 7→ X(ω);
they are the function values j = X(ω). If, by chance, randomness occurs as ω1, then the associated
outcome for X might be, e.g., X(ω1) = 7. On the other hand, if ω2 happens instead, then we
observe X(ω2), and that outcome might be X(ω2) = 4. And if ω3 happens instead, then we observe
the outcome X(ω3), which might again be 7, and so on.
So the answer is that Bin(n, p){j} =

(
n
j

)
pj (1− p)n−j refers to events on the codomain (R,B1) of X ,

and this leads to the following question.
• There must be a relationship between the measure P on (Ω,F), the random variable X ,

and the measure Bin(n, p) on (R,B1). What is it?
The answer to the first question was given in Introduction 4.1 to this chapter 4.2 (Measurable Func-
tions and Random Elements). See p.61. We will use X and P to build a measure PX on (R,B1) as
follows:

PX(B) := P{X ∈ B} = P{ω ∈ Ω : X(ω) ∈ B}, (B ∈ B1).

That will work for any random variable. Matter of fact, that will work for any measurable function
f : (Ω,F, µ)→ (Ω′,F′), since we can define a measure µf on F′ from the measure µ on F via

µf (A′) := µ{f ∈ A′} = µ{ω ∈ Ω : f(ω) ∈ A′}, (A′ ∈ F′). �

Proposition 4.12. Let (Ω,F, µ) be a measure space and (Ω′,F′) a measurable space.

Let f : Ω→ Ω′ be (F,F′) measurable. Then the set function

µf : F′ → [0,∞];A′ 7→ µ{f ∈ A′} = µ{ω ∈ Ω : f(ω) ∈ A′}(4.44)

defines a measure on (Ω′,F′). Moreover, if µ is a probability measure on F, i.e., µ(Ω = 1), then µf
is a probability measure on F′.

PROOF: ? µf (∅) = 0, since f−1(∅) = ∅, and µ is a measure.

We show here in detail that µf is monotone: A ⊆ B ⇒ µf (A) ≤ µf (B), for all A,B ∈ F′. According
to Proposition 3.3 on p.45, A ⊆ B implies f−1(A) ⊆ f−1(B). Since µ is a measure, this implies
µ
(
f−1(A)

)
≤ µ

(
f−1(B), i.e., by definition of µf , µf (A) ≤ µf (B)

The proof that µf (
⊎
nBn) =

∑
n µf (Bn) for any disjoint sequence Bn ∈ F′, is just as simple, since

the order of taking preimages and unions can be switched. See Proposition 3.4 (f−1 is compatible
with all basic set ops) on p.45. �

For the following see SCF2 Definition 1.2.3.
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Definition 4.13 (Image measure).

(1) We call the measure µf of Proposition 4.12 the image measure of µ under f aka the
measure induced by µ and f .

(2) We now switch notation from f and µ to the more customaryX and P for the sake of
clarity. In the case of a random element X : (Ω,F, P ) → (Ω′,F′), we call the image
measure PX of P under X which is, according to (4.44), given by

PX(B′) := P{X ∈ B′} = P{ω ∈ Ω : X(ω) ∈ B′}, (B′ ∈ F′)(4.45)

the probability distribution aka the distribution of X . SCF2 also calls PX the dis-
tribution measure of X . �

Proposition 4.13.

Let Ω be a nonempty set, (Ω′,F′) a measurable space, and f : Ω→ Ω′ an arbitrary function. Then
(1) the collection σ(f) := {f−1(A′) : A′ ∈ F′} of all preimages of F′–measurable sets is a

σ–algebra.
(2) The function f is (σ(f),F′)–measurable.
(3) σ(f) is the smallest σ–algebra F on Ω which makes f (F,F′)–measurable in the following

sense: If F is a σ–algebra on Ω and there are sets A ∈ σ(f) which do not belong to F, then f
is not (F,F′)–measurable.

PROOF: ?

(1) follows from Proposition3.4 (f−1 is compatible with all basic set ops) on p.45.
(2) is easy to see from the definition of measurability of a function. �

Definition 4.14 (σ–algebra generated by a function). Let Ω,Ω′ be nonempty, F′ a σ–algebra on Ω′,
and f : Ω→ Ω′.

We call the σ–algebra from Proposition 4.13

σ(f) := {f−1(A′) : A′ ∈ F′}(4.46)

the σ–algebra generated by f . �

Remark 4.14. Assume that f : (Ω,F) → (Ω′,F′) with measurable spaces for both domain and
codomain.

(1) The minimality of σ(f) stated in Proposition 4.13.(3) implies that

f is (F,F′)–measurable ⇔ σ(f) ⊆ F.

(2) In particular, ifX is a random variable defined on a probability space (Ω,F, P ), then σ(X) ⊆ F,
since X is F–measurable by the very definition of a random variable.
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(3) In a sense we can think of σ(X) as the information one associates with a random
element X . This is discussed at length in Chapter 5 (Conditional Expectations) and
in SCF2, ch.2. �

4.3 Convergence of Function Sequences

This subchapter is very skeletal in nature. It contains excerpts of [10] Fochler, Michael: Lecture
Notes for Math 447 - Probability.
Much of this material is optional.

Definition 4.15 (Convergence of Random Variables). ONLY convergence in probability ((4.49) be-
low) is optional. All other concepts must be remembered!

Let Yn (n ∈ N) and Y be random variables on a probability space (Ω,F, P ). We define

Yn
pw→Y or pw – lim

n→∞
Yn = Y , if lim

n→∞
Yn(ω) = Y (ω), for all ω ∈ Ω ,(4.47)

Yn
a.s.→Y or a.s. – lim

n→∞
Yn = Y , if P{ω ∈ Ω : lim

n→∞
Yn(ω) = Y (ω)} = 1 ,(4.48)

Yn
P→Y or P – lim

n→∞
Yn = Y , if ∀ ε > 0 lim

n→∞
P{ω ∈ Ω : |Yn(ω)− Y (ω)| > ε} = 0 ,(4.49)

Yn
D→Y, if lim

n→∞
FYn(y) = FY (y), ∀ y ∈ R where the CDF FY of Y is continuous.(4.50)

We also say:
If Yn

pw→ Y , Y is the pointwise limit of the Yn, or: Yn converges pointwise to Y .
If Yn

a.s.→ Y , Y is the almost sure limit of the Yn, or: Yn converges almost surely to Y .
If Yn

P→ Y , Y is the limit in probability; of the Yn, or: Yn converges in probability to Y .
If Yn

D→ Y , Y is the limit in distribution of the Yn, or: Yn converges in distribution to Y .

Example 4.7. ?

Consider Ω := [0, 1] with F := B1 as a probability space (Ω,F, P ), by defining

P (]a, b]) := b− a, for 0 ≤ a < b ≤ 1 .

In other words, P is the uniform distribution on [0, 1]. We define

Yn(ω) := ωn, U(ω) = 0, V (ω) := ω, (for 0 ≤ ω ≤ 1) Y (ω) :=

{
0 , if 0 ≤ ω < 1,

1 , if ω = 1 .

Part I: Pointwise and a.s convergence

Pointwise convergence behavior of the Yn corrresponds to that of (??):
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• Y is the pointwise limit of the sequence Yn,
• U is the pointwise limit of the Yn on [0, 1[ only, but not on Ω,
• V is not the pointwise limit of the Yn (except for ω = 0) or ω = 1).

With respect to almost sure convergence, we see that

• Yn
a.s.→ Y , since { lim

n→∞
Yn = Y } = [0, 1] = Ω, and P (Ω) = 1.

• Yn
a.s.→ U , since { lim

n→∞
Yn 6= U} = {1}, and P ({1}) = 0.

• (Yn)n does not converge to V a.s., since P{ lim
n→∞

Yn = V } = P{0, 1} = 0 6= 1.

Part II: Convergence in probability

Next, we examine convergence in probability. We will see that a sequence of random variables can
have more than one P–limit by showing the following: The sequence ω 7→ Yn(ω) = ωn has both
ω 7→ U(ω) = 0 and ω 7→ Y (ω) = 1 if ω = 1 and 0 else as P–limits.
By definition of P– lim

n→∞
Yn = Ỹ , we must prove that, for any fixed, but arbitrary ε > 0,

lim
n→∞

P{ |Yn − Ỹ | > ε } = 0. See (4.49).

Since this probability decreases as ε increases and we must show that it approaches 0 as n→∞, we
only need to worry about the very small ε. Thus, we may assume that 0 < ε < 1.
We observe that, for Yn(ω) = ωn and 0 < ε < 1,[

|Yn(ω)| ≥ ε ⇔ ωn ≥ ε ⇔ ω ≥ ε1/n
]

⇒
[
P{ |Yn| ≥ ε } = P

(
[ε1/n, 1]

)
= 1 − ε1/n

]
.

(A)

0 < ε < 1 ⇒ lim
n→∞

ε1/n = 1 ⇒ lim
n→∞

(
1− ε1/n

)
= 0.(B)

Part II (1): We now prove that P– lim
n→∞

Yn = Y :

[
|Yn(ω) − Y (ω)| ≥ ε ⇔ |Yn(ω)| ≥ ε and ω 6= 1

]
⇒
[
P{|Yn − Y | ≥ ε} ≤ P{|Yn| ≥ ε}

(A)
= 1 − ε1/n (B)→ 0, as n→∞.

]
.

(a)

Thus, lim
n→∞

P{|Yn − Y | ≥ ε} = 0.

Part II (2): We now prove that P– lim
n→∞

Yn = U :

• We could repeat the proof for the P–convergence of Yn to Y with very minor modifications
and the reader is encouraged to do so. Instead, we will use that result to show that P–
lim
n→∞

Yn = U

• Since the outcome {1} has probability zero and Y (ω) = U(ω) for ω 6= 1,

P{|Yn − Y | ≥ ε} = P{|Yn − Y | ≥ ε and ω 6= 1}
= P{|Yn − U | ≥ ε and ω 6= 1} = P{|Yn − U | ≥ ε} .
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• Since lim
n→∞

P{|Yn − Y | ≥ ε} = 0,

lim
n→∞

P{|Yn − U | ≥ ε} = lim
n→∞

P{|Yn − Y | ≥ ε} = 0.

Thus, P– lim
n→∞

Yn = U .

Part II (3): Next, we show that it is not true that (Yn)n converges in probability to V .
We argue by picture rather than giving an exact proof, since that would require some very tedious
of terms containing ln(k).
• The picture makes it very clear that

ε = 1/10 ⇒ ω − ωn > ε for 49
100 ≤ ω ≤ 51

100 and
n ≥ 100.
Thus, P{|Yn − V | ≥ ε} ≥ ε ·

(
51
100 −

49
100

)
= 2

1000 .
Thus, lim

n→∞
P{|Yn − V | ≥ ε} = 0 is not true.

• Since lim
n→∞

P{|Yn−V | ≥ ε} = 0 must hold for ALL

ε and we showed that this is not so for ε =
1

10
,

it follows that (Yn)n does not converge in proba-
bility to V .

Part III: Convergence in distribution

We will show that Yn does not converge to V in distribution as follows.
• Let 0 < y < 1. We recall that P ]a, b] = b− a, for all 0 ≤ a < b ≤ 1.
• From V (ω) = ω, we get FV (y) = P{V ≤ y} = P{ω ∈ Ω : V (ω) ≤ y} = P ]0, y] = y.

• Since Yn(ω) = ωn, FYn(y) = P{Yn ≤ y} = P{ω ∈ Ω : ωn ≤ y} = P ]0, y1/n] = y1/n.
• We note that 0 < y < 1 ⇒ lim

n→∞
y1/n = 1.

Thus, FV (y) = y, whereas, lim
n→∞

FYn(y) = 1 for 0 < y < 1.

Thus, lim
n→∞

FYn(y) 6= FV (y) for 0 < y < 1.

• Since all those y are points of continuity for FV , it follows that (Yn)n does not converge in
distribution to V .

On the other hand, the theorem that follows now shows that (Yn)n converges in distribution to Y
and U , since we have shown convergence in probability to those random variables. �

Theorem 4.3 (Relationship between the modes of convergence). ?

72 Math 454 - Version 2025-02-11



Math 454 – Additional Material Student edition with proofs

Let Y and Y1, Y2, . . . be random variables on a probability space (Ω,F, P ). Then,

(4.51) Yn
pw→ Y ⇒ Yn

a.s.→ Y ⇒ Yn
P→ Y ⇒ Yn

D→ Y .

Moreover, if Y , the prospective limit, is constant a.s. (so that P{Y = E[Y ]} = 1), then

(4.52) Yn
P→ Y ⇔ Yn

D→ Y .

PROOF:

I: It is obvious that Yn
pw→ Y ⇒ Yn

a.s.→ Y for the following reason:
• Let A := {ω ∈ Ω : lim

n→∞
Yn(ω) 6= Y (ω)}.

• Then, Yn
pw→ Y ⇒ A = ∅ ⇒ P (A) = 0 ⇒ Yn

a.s.→ Y .

II: The proofs that Yn
a.s.→ Y ⇒ Yn

P→ Y and Yn
P→ Y ⇒ Yn

D→ Y are outside the scope of this
course. Fairly accessible proofs for those who can work with sets like

⋂
n≥1

⋃
j≥n
{ω ∈ Ω : |Yj(ω)− Y (ω)| ≥ ε}


and are familiar with the exact definition of convergence of sequences 18 can be found at this
Wikipedia link. �

There are many theorems concerning the convergence of random variables. We only mention here
the following two which will be used later in this chapter.

Theorem 4.4 (Slutsky’s Theorem). ?

Let Y1, Y2, . . . ) and U1, U2, . . . be two sequences of random variables. Let Y be another random
variable and c a constant such that

• Yn
D−→ Y (convergence in distribution) • Un

P−→ c (convergence in probability)

Then,

Yn + Un
D−→Y + c ,(4.53)

Yn · Un
D−→cY ,(4.54)

Yn
Un

D−→ Yn
c
, assuming that c 6= 0.(4.55)

PROOF: Omitted. See, e.g., [6] Bickel and Doksum: Mathematical Statistics.

Theorem 4.5 (Convergence is maintained under continuous transformations). ?

18xn converges to x ⇔ for all ε > 0 one can find N ∈ N such that |xn − x| < ε whenever n ≥ N .
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Let Y1, Y2, . . . ) and Y be random variables on some probability space (Ω,F, P ). Let f : R → R be
continuous. Then,

Yn
a.s.−→ Y ⇒ f ◦ Yn

a.s.−→ f ◦ Y .

Yn
P−→ Y ⇒ f ◦ Yn

P−→ f ◦ Y .

Yn
D−→ Y ⇒ f ◦ Yn

D−→ f ◦ Y .

PROOF: Omitted. 19 �

Example 4.8 (Convergence in probability but not a.s.). ?

Consider the “sliding hump” example. 20 As our probability space we choose Ω := [0, 1], the unit
interval in R, with the probability measure defined by P

(
]a, b]

)
:= b− a.

(a) We partition Ω into the two intervals I1 = [0, 1/2] and I2 =]1/2, 1].

• For n = 1, 2, let Yn(ω) :=

{
1 , if ω ∈ In,
0 , else .

(b) We partition Ω into the three intervals I3 = [0, 1/3], I4 =]1/3, 2/3], and I5 =]2/3, 1],

then into I6 = [0, 1/4], I7 =]1/4, 2/4], I8 =]2/4, 3/4], and I9 =]3/4, 1], and so on .....

• We define random variables Yn as in (a): For n ∈ N, let Yn(ω) :=

{
1 , if ω ∈ In,
0 , else .

(c) Then the sequence Yn converges in probability to the (deterministic) random variable
ω 7→ Y (ω) := 0. A proof is given directly after this example.

(d) But this sequence of random variables does not converge almost surely. In fact, there is no
0 ≤ ω ≤ 1 for which lim

n→∞
Yn(ω) exist:

• Fix ω ∈ [0, 1]. By construction, there are indices

n1 = n1(ω) < n2 = n2(ω) < n3 = n3(ω) < · · · , such that ω ∈ Ink and Ink has length 1/k.
(Thus, P (Ink) = 1/k.)

(e) Let ω′ ∈ [0, 1];ω′ 6= ω. The subsequences nk(ω) and nk(ω′) will differ for all k so large that
1

k
<
|ω − ω′|

2
, i.e.,

2

k
< |ω−ω′| , since ω ∈ Ink(ω) and ω′ ∈ Ink(ω′) ⇒ Ink(ω)∩Ink(ω′) = ∅.

(Draw a picture!)
(f) It follows for such big k, that Ynk(ω)(ω) = 1 and Ynk(ω)(ω

′) = 0.
On the other hand, Ynk(ω′)(ω) = 0 and Ynk(ω′)(ω

′) = 1.
Thus, the full sequences Yn(ω) does not have a limit, since it would have to be 1 along the
subsequence nk(ω) and 0 along the subsequence nk(ω′).

(g) ω is arbitrary in Ω = [0, 1]. This shows that there is no ω ∈ Ω for which lim
n→∞

Yn(ω) exists. �

19A proof can be found at this Convergence of random variables (Mann–Wald theorem, general transformation theo-
rem) Wikipedia link.

20See this StackExchange link.
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PROOF that (Yn) converges in probability:
If we write |In| for the length of the interval In, then

(h) � |In| = 1 ⇔ n = 1 � |In| = 1/2 ⇔ n = 2, 3 � |In| = 1/3 ⇔ n = 4, 5, 6.

Thus, if s1 = 1, s2 = s1 + 2, s3 = s2 + 3, . . . , sk = sk−1 + k =
k∑
j=1

j =
k · (k + 2)

2
, . . . ,

(i) then In = 1/k ⇔ n = sk−1 + 1, sk−1 + 2, . . . , sk−1 + k ⇔ sk−1 < n ≤ sk.

(j) It should be clear that
[
n→∞

][
k →∞

]
For a proof: � “⇐” follows from n ≥ k.

�For the other direction, we observe that n
(i)
≤ 2sk = 2k(k + 1) < 2(k + 1)2,

i.e.,
√
n/2− 1 < k. Thus,

[
n→∞

]
⇒
[
k →∞

]
and “⇒” follows.

(k) Since Yn(ω) :=

{
1 , if ω ∈ In,
0 , else

for n ∈ N, we obtain P{|Yn| ≥ ε} = 0 for ε ≤ 1 and, with nk

as defined in (k), P{|Ynk | ≥ ε} =
1

k
for 0 < ε ≥ 1. Thus, P{|Ynk | ≥ ε} ≤

1

k
for ε > 0.

(l) Fix ε > 0 and k ∈ N. |In| and hence, P{|Yn| > ε} is nonincreasing with n. Thus,

n ≥ nk ⇒ P{|Yn| > ε} ≤ P{|Ynk | > ε} =
1

k
. Since

[
n → ∞

] (j)⇒
[
k → ∞

]
, it follows

that lim
n→∞

P{|Yn| > ε} = 0 and this shows that Yn
P→ 0. �

�

4.4 Stochastic Processes and Filtrations

In finance and other disciplines we are interested in undertanding random evolutions in time, i.e.,
trajectories t 7→ X(t, ω) which are thought of be random and thus are a function of randomness
ω. Time may be discrete if we we observe X(t, ω) only at countably many discrete times t = t0 <
t1 < t2 < · · · or it may be continuous if we observe X(t, ω) for t0 ≤ t ≤ T or t0 ≤ t < T , where
0 ≤ t0 < T < ∞. For example, X(t, ω) can the price of a stock at some future time t which is
unknown to us, and ω captures that uncertainty.

Definition 4.16 (Stochastic Process).

A stochastic process aka random process X on a probability space (Ω,F,F, P ), often just
called a process, is a collection of random elements Xt which take values Xt(ω) in a mea-
surable space (Ω′,F′), the state space, of the process.

Being a random element, each Xt is F–F′ measurable.
Nothing particular was assumed in Definition 4.16 about the nature of the index set, I . However,
the most important case is when the argument t takes values in an interval of the form [ t0, T ] or
[t0, T [ or [ t0,∞[ or in a discrete collection {t0 < t1 < t2 < . . . }, finite or infinite, of real numbers.
Such is the case when we interpret t as time. Usually the start time t0 will be zero. The end time T ,
if it is given, will be the time of expiration of one or several financial instruments. 21 For example,
consider a European call 22 that expires at time T . Then Xt, its market price at t ≤ T , is a random
variable, and the collection (Xt)0≤t≤T is a stochastic process indexed by time.

21Definition 4.17 below is about such stochastic processes.
22see the introduction to Section 7.2 (Assets and Contingent Claims, Trades, Portfolios and Arbitrage)
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Unless something different is specified, the symbol I will denote the index set of the
stochastic process X .

Depending on what is convenient, we will include or omit the randomness argument ω. The same
applies to the index t. Here is an incomplete list of the notation you will encounter in this document
for a stochastic process.

X = Xt = X(t) = (Xt)t =
(
X(t)

)
t0≤t≤T = Xt(ω) = X(t, ω) = . . .

Unless stated otherwise, we assume that X is numeric, i.e., Xt(ω) is an extended real number for
each randomness argument ω and time t. Thus, each random element Xt actually is a (extended
real–valued) random variable. Note that we also deal with vector valued stochastic processes

~X = ~Xt = [X
(1)
t , X

(2)
t , . . . , X

(m)
t ].

We sometimes use the notation X(·, ω) if we want to emphasize that we consider the ran-
domness ω as fixed and only t varies. We call this function X(·, ω) : t 7→ X(t, ω) the ω–
trajectory or ω–path or, in short, the trajectory or path of X .

At other times we write X(t, ·) or Xt(·) if we want to emphasize X as the random variable which
results when we look at the potential outcomes at a fixed time t. �

We introduce some more terminology for random processes indexed by time where the index set is
not of the most general nature.

Definition 4.17. Given are a probability space (Ω,F, P ), a measurable space (Ω′,F′), an index set
I ⊆ [0,∞[, and a family X = (Xt, t ∈ I), of Ω′–valued random elements with index set I . We
further assume that the indices t ∈ I are to be interpreted as points in time.

(a) If I is a contiguous interval of the form [ t0, T ] or [t0, T [ or [ t0,∞[ (t0 ≥ 0), then we
refer to X as a continuous time stochastic process with start time t0 and, in the first
case, with end time or expiration time T .

(b) If I is an infinite sequence of real numbers 0 ≤ t0 < t1 < · · · or a finite sequence of
real numbers 0 ≤ t0 < t1 ≤ tn = T , we call X a discrete time stochastic process
with start time t0 and, in the second case, with end time or expiration time T .

(c) If I is an infinite, contiguous sequence of integers 0 ≤ k0, k0 + 1, k0 + 2, . . . then we
call X a stochastic sequence. with start time k0. This is a special case of a discrete
time stochastic process.

76 Math 454 - Version 2025-02-11



Math 454 – Additional Material Student edition with proofs

(d) If the index set of the form I = 1, 2, . . . d and we interpretX1, . . . Xd as the coordinate
values of a d–tuple rather than the values of a real–valued process observed at the
times 1, 2, . . . d, then we prefer to write

~X = (X(1), . . . X(d)) or ~X(ω) =
(
X(1)(ω), . . . X(d)(ω)

)
and call this expression a (d–dimensional) random vector.

(e) If the set Ω′ of (a) – (c) satisfies Ω′ ⊆ R, we speak of a real–valued stochastic process
or stochastic sequence. If the Ω′ ⊆ Rd, we speak of a vector–valued stochastic process
or stochastic sequence. �

Remark 4.15. Any nonnegative finite or infinite sequence of real numbers t0 < t1 < · · · is a suitable
index set for a discrete time stochastic process. Thus stochastic sequences and random vectors are
special cases of such processes.

We almost exclusively deal with random processes which are either
• continuous time stochastic processes,
• discrete time stochastic processes. �

Before we can proceed we must discuss the information associated with a stochastic process. We
briefly touched upon a σ–algebra as the information belonging to a random variable in Remark
4.14(3) on p.69. We recall Proposition 4.13 in which we defined σ(f) := {f−1(A′) : A′ ∈ F′}, the
σ–algebra generated by f , for any function f : Ω → Ω′ from an arbitrary, nonempty set Ω to a
measurable space (Ω′,F′).
We can generalize this notion to more than one function as long as they all have the same domain
Ω. So let g : Ω→ Ω′′ also have a codomain which is a measurable space (Ω′′,F′′). we then define

σ(f, g) := σ{A ⊆ Ω : A = f−1(A′) for someA′ ∈ F′ or A = g−1(A′′) for someA′′ ∈ F′′},

i.e., σ(f, g) is the smallest σ–algebra that contains all preimages of measurable events for both f and
g. This definition easily scales for any finite or infinite, even uncountable, collection of functions
fi : Ω→ (Ωi,Fi) which have measurable spaces as codomains.

Definition 4.18.

Let Ω be an arbitrary, nonempty set and let fi : Ω→ Ωi, i ∈ I be a family of functions which
have measurable spaces (Ωi,Fi) as codomains and are indexed by an arbitrary, nonempty,
index set I . No assumptions are made about I so do not think of those functions fi as being
indexed by “time”! We call the σ–algebra

σ(fi : i ∈ I) := σ{A ⊆ Ω : A = f−1
i (Ai) for some i ∈ I andAi ∈ Fi }(4.56)

the σ–Algebra generated by the family of functions fi �
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Remark 4.16. This last definition can be applied to the special case of a collection of random ele-
ments Xi, i ∈ I on a probability space (Ω,F, P ), indexed again by an arbitrary index set I . Thus
each Xi(ω) is an element of a measurable spaces (Ωi,Fi). We then have

σ(Xi : i ∈ I) = σ
{
A ⊆ Ω : A = {Xi ∈ Ai} for some i ∈ I andAi ∈ Fi

}
.(4.57)

Note that since each Xi is a random element, each preimage {Xi ∈ Ai} belongs to F, thus

σ(Xi : i ∈ I) ⊆ F. �

We are now back to stochastic processes and index sets I which can be interpreted as time intervals.
As we just have seen in Remark 4.16 we can associate with each random element Xt of a stochastic
process X =

(
Xu

)
u∈I the σ–algebra σ(Xt), which we interpret as the stochastically relevant infor-

mation of Xt. See Remark 4.14 on p.69. However, we are not only interested in the stochastically
relevant information of Xt, but in that of the entire past of the process X up to time t. Since this
information is stored in σ{Xs : s ≤ t}, we are lead to the definition of a filtration.

Definition 4.19 (Filtration for a process Xt).

For a continuous time or discrete time stochastic process X with index set I we define, for
t ∈ I ,

FXt := σ{Xs : s ∈ I, s ≤ t}(4.58)

We call the family (FXt )t∈I of all those sub–σ–algebras of F the filtration generated by X .
�

Remark 4.17. For the following see also Remark 4.14 on p.69.

The σ–algebra FXt associated with a stochastic process (Xs)s∈I is, in a sense to be made
more precise in Chapter 5.1 (Functional Dependency of Random Variables), the container
of all stochastically relevant information of this process up to time t. �

The next example shows you how to interpret the previous remark. It is very important that you
understand it intuitively, without trying to apply any mathematical reasoning.

Example 4.9 (Filtrations as seat of the information of the past). In the following we assume that X
is real–valued and I = [0,∞[.

(1) LetA = {2.78 < Xs ≤ 3.14, for 5 ≤ s < 7}. ThenA ∈ FX7 , but notA ∈ FX6.999, since observing
the process Xs up to time t = 6.999 and seing that 2.78 < Xs ≤ 3.14 for 5 ≤ s ≤ 6.999 does
not determine whether or not 2.78 < X7 ≤ 3.14.

(2) For some arbitrary t, h > 0. Let B = {Xt+h < 0}. Then B ∈ FXt+h. but not B ∈ FXt , since one
cannot decide whether or not B has occurred just from knowing how X behaved up to and
including time t.
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(3) Assume that X has continuous trajectories s 7→ Xs(ω) Then Z(ω) =
T∫
0

Xu(ω)du (Riemann

integral) is defined for any given T > 0 and ω ∈ Ω. Z is FXT –measurable since knowing the
behavior of the trajectory X(·, ω) between times 0 and T suffices to understand the behavior

of
T∫
0

Xu(ω)du. But note that Z /∈ m(FXT−δ) for any δ > 0, no matter how small.

(4) Assume that X has continuous trajectories s 7→ Xs(ω). Let

τ(ω) := inf{s ≥ 0 : Xs(ω) ≥ 20},

i.e., the random time τ denotes the first time that the trajectory enters the interval [20,∞[.
Then the event {τ ≤ 8.5} is in F8.5, since

τ(ω) ≤ 8.5 ⇔ Xs(ω) ≥ 20 for some s ≤ 8.5,

and this clearly is determined by the behavior of Xs(ω) for 0 ≤ s ≤ 8.5.
(4a) More generally assume again that X has continuous trajectories. Let γ be an arbitrary real

number. Let
τ(ω) := inf{s ≥ 0 : Xs(ω) ≥ γ}

be the time of first entry into [γ,∞[. Then {τ ≤ t} is in Ft for any t > 0, since

τ(ω) ≤ t ⇔ Xs(ω) ≥ γ for some s ≤ t.

(5) Assume that X has continuous trajectories s 7→ Xs(ω) and let

ρ(ω) := sup{s ≥ 0 : Xs(ω) ≥ 20},

i.e., the random time ρ denotes the last time that the trajectory is inside the interval [20,∞[.
Then the event {ρ ≤ t} is not in Ft for any t > 0 since we cannot predict at time t the future
behavior of the trajectory. �

Remark 4.18. It is obvious that, for a time t after time s, more info (more measurable preimages)
has accrued until time t than just until the time s of the past. In other words,

if s < t then FXs ⊆ FXt . �

The property just mentioned by itself is so useful that we encapsulate it in its own definition, with-
out referring to stochastic processes.

Definition 4.20 (Filtration-general).
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Let (Ω,F, P ) be a probability space and I ⊆ R. Assume that for each t ∈ I there is a sub–σ–
algebra Ft of F and that this family (Ft)t∈I satisfies monotony with respect to t:

If s < t then Fs ⊆ Ft

for all s, t ∈ I . We call such a family a filtration on (Ω,F, P ), and we call the quadruple
(Ω,F, (Ft)t∈I , P ), usually denoted by (Ω,F, (Ft), P ) or (Ω,F,Ft, P ) if there is no confusion
about I or its particulars are irrelevant for the discussion at hand, a filtered probability
space. �

We have a special definition for a processes X = (Xt)t∈I if its trajectories Xs, s ∈ I, s ≤ t are deter-
mined by the member Ft of a filtration (Ft)t∈I .

Definition 4.21 (Adapted Process).

Let X be a discrete time or continuous time process with index set I on a filtered prob-
ability space (Ω,F, (Ft)t∈I , P ). If the trajectory X(s) (s ∈ I, s ≤ t), is determined by the
information in Ft for each time t, i.e., if

Xs is Ft–measurable for each s ∈ I such that s ≤ t,

then we say that X is adapted to the filtration Ft. �

Proposition 4.14.

Every process Xt is adapted to its own filtration FXt = σ{Xs : s ∈ I, s ≤ t}.

PROOF:
Let t ∈ I . Observe that

{X−1
s (B) : B ∈ F′ and s ≤ t} ⊆ {X−1

t (B) : B ∈ F′}.

Since E 7→ σ(E) is monotone in E, we obtain

FXt = σ{Xs : s ∈ I, s ≤ t}
= σ{Xs{X−1

s (B) : B ∈ F′, s ∈ I, s ≤ t} ⊇ σ{X−1
t (B) : B ∈ F′} = σ{Xt} .

Since σ{Xt} ⊆ FXt ⇔ Xt is σ{Xt}–measurable, the assertion follows. �

If a random variable ω 7→ τ(ω) is nonnegative then one can interpret τ as a random time It can be
used, e.g., as the time argument of a stochastic process

(
Xt

)
t≥0

. The resulting random variable

ω 7→ Xτ(ω)(ω)

then denotes the value of the ω–trajectory X(·, ω) at time τ(ω).
We will now use special random times, called stopping times, to create adapted processes.
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Definition 4.22 (Stopping time). ?

We call a random time tau on a filtered probability space (Ω,F, (Ft)t) a stopping time if

{τ ≤ t} = {ω ∈ Ω : τ(ω) ≤ t} ∈ Ft for all t ∈ [0,∞[ .(4.59)

Proposition 4.15. ?

If τ is a random time on a filtered probability space (Ω,F, (Ft)t) then

τ is a stopping time ⇔ the process (t, ω) 7→ X(t, ω) := 111[0,τ(ω)[(t) is Ft–adapted.

PROOF: We note that

Xt(ω) :=

{
1 if τ(ω) > t,

0 if τ(ω) ≤ t.
(A)

Let c ∈ R. Then the value of the set {Xt < c} only depends on whether either c ≤ 0 or 0 < c ≤ 1 or
c > 1. We obtain from (A) the following.

Case c ≤ 0: {Xt < c} = ∅,
Case c > 1: {Xt < c} = Ω,

Case 0 < c ≤ 1: {Xt < c} = {Xt = 0} = {τ ≤ t}.
Since the empty set and Ω belong to any σ–algebra of Ω the Ft–adaptedness of Xt is entirely deter-
mined by the last case 0 < c ≤ 1 as follows:

Xt is Ft–adapted ⇔ {Xt = 0} ∈ Ft for all t ⇔ {τ ≤ t} ∈ Ft for all t ⇔ τ is a stopping time .

This concludes the proof. �

Remark 4.19. In a financial market filtrations appear, e.g., as follows. Given are one or more “un-
derlying assets”, e.g., stocks, whose prices S(1), . . . , S(n) depend on time t and randomness ω, i.e.,
each stock price S(j) is a stochastic process S(j)

t (ω). They will be “driven”, i.e., stochastically deter-
mined, by one or more processes W (1)

t , . . . ,W
(m)
t . 23 By this we mean that each stock price S(j) is

adapted to the filtration defined by

Ft := σ
(
W (j)
s : 1 ≤ j ≤ m, s ≤ t, s ∈ I

)
for each t ∈ I,

i.e., to the filtration generated by those W (j)
t . Optimal estimates of future financial data with re-

spect to this fitration will play a key role in determining the price of a financial derivative which
is based on the underlying assets. Those optimal estimates are obtained by means of conditional
expectations, a tool that will be discussed in Chapter 5. �

23so-called Brownian motions or Wiener processes
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4.5 Integration and Expectations

The following should be read in conjunction with SCF2 ch.1.3: Expectations.

Remark 4.20. We recall that (1) if f : R→ {0, 1} and g : Rn → {0, 1} are Riemann–integrable and (2)
if also the sets A ⊆ R and B ⊆ Rn are Riemann–integrable, i.e., the Riemann integrals∫ ∞

−∞
111A(x) dx and

∫ ∞
−∞
· · ·
∫ ∞
−∞

111B(x1, x2, . . . , xn) dx1dx2 · · · dxn

of the indicator functions 111A : R→ {0, 1} and 111B : Rn → {0, 1} exist, then we write∫
A
f(x) dx =

∫ ∞
−∞

f(x)111A(x) dx,(4.60) ∫
B
g(x1, . . . , xn) dx1 · · · dxn =

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x1, . . . , xn)111B(x1, . . . , xn) dx1 · · · dxn. �(4.61)

Introduction 4.2. We start out with a few things we know about integration from calculus.
A. If f : R→ R is a function of the form

f(x) =
k∑
j=1

cj 111]aj ,bj ](x),

then ∫ ∞
−∞

f(x) dx =

k∑
j=1

cj

∫ ∞
−∞

111]aj ,bj ](x) =

k∑
j=1

cj

∫ bj

aj

dx

=

k∑
j=1

cj(bj − aj) =

k∑
j=1

cj λ
1(]aj , bj ]) .

(4.62)

Here λ1 denotes Lebesgue measure which was introduced in Definition 4.7 on p.56.
B. Things are similar in the multidimensional case. If g : Rn → R has the form

g(~x) =
k∑
j=1

cj 111]u1j ,v1j ]×···×]unj ,vnj ](~x), (uij < vij for i = 1, . . . , n),

where ~x = (x1, x2, . . . , xn), then∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x1, . . . , xn) dx1 · · · dxn =
k∑
j=1

cj

∫ v1j

u1j

· · ·
∫ vnj

unj

dx1 · · · dxn

=

k∑
j=1

cj(v1j − u1j) · · · (vnj − unj)

=

k∑
j=1

cj λ
n(]u1j , v1j ]× · · ·×]unj , vnj ]) .

(4.63)
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C. If X is a random variable on the probability space (Ω,F, P ) and if f : R→ R is of the form

f(x) =
k∑
j=1

cj 111]aj ,bj ](x), (k ∈ N),

then the expected value E[f ◦X] of the composite function f ◦X : ω 7→ f
(
X(ω)

)
is

E[f ◦X] =

k∑
j=1

cjE
[
111]aj ,bj ](X)

]
=

k∑
j=1

cjP{X ∈]aj , bj ]} =

k∑
j=1

cjPX(]aj , bj ]).(4.64)

Here PX is the distribution of X , i.e., the image of P under X .

In each of those three cases we have a function of the form f =
k∑
j=1

cj111Aj which takes finitely

many values cj , and we have computed in each case an integral or an expected value of the form
k∑
j=1

cjµ(Aj) for a suitable measure µ. We will now establish a common thread. �

Definition 4.23 (Integral of a simple function).

Let (Ω,F, µ) be a measure space, n ∈ N, and A1, A2, . . . , An ∈ F a finite collection of mea-
surable sets. Let f : Ω→ R be defined as

(4.65) f :=
n∑
j=1

cj111Aj , 0 ≤ cj <∞ for j = 1, . . . , n.

We call such a function a simple function.

Note that f ≥ 0 and f is measurable as the sum of the measurable functions ω 7→ cj ·111Aj (ω). We call

(4.66)
∫
f dµ :=

∫
f(ω) dµ(ω) :=

∫
f(ω)µ(dω) :=

n∑
j=1

cjµ(Aj).

the integral aka abstract integral of f with respect to µ, also the µ–integral of f . �

Remark 4.21. ?

A. We made no assumption about finiteness of µ, so some or all of theAj may have infinite measure.
We confined ourselves to non-negative cj in order to avoid expressions of the form∞−∞.
B. Note that the choice of k,Aj , and cj is not unique for a given function f . For example, the constant
function

f : (R,B1, λ1) −→ R; x 7→ 3,

can be written as

f = 3 · 111R = 3 · 111]−∞,0[ + 3 · 111[0,∞[

= 1 · 111]−∞,−1[ + 2 · 111]−∞,1[ + 1 · 111]−1,∞[ + 2 · 111[1,∞[.
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Thus the following is important since it ensures that the definition of
∫
fdµ is consistent:

C. Let the simple, nonnegative, function f have representations

f :=
k∑
j=1

cj111Aj =
k′∑
j=1

c′j111A′j .

Then
k∑
j=1

cjµ(Aj) =
k′∑
j=1

c′jµ(A′j), thus
∫
fdµ does not depend on the choice of the sets Aj and the

coefficients cj . �

We extend the definition of
∫
fdµ to more general measurable functions, in particular all f ∈ m(F)

which are nonnegative or nonpositive.

For the following review the decomposition f = f+ − f− given in Definition 2.17 (Absolute value,
positive and negative part) on p.20.

Definition 4.24 (Integral of a measurable function). Let (Ω,F, µ) be a measure space and f an ex-
tended real–valued, F–measurable, function.

(1) If f ≥ 0, we define∫
f dµ := sup

{∫
h dµ : h is simple and 0 ≤ h ≤ f

}
.(4.67)

If not both
∫
f+dµ =∞ and

∫
f−dµ =∞, we define∫

f dµ :=

∫
f+ dµ −

∫
f− dµ.(4.68)

Again, we call
∫
fdµ the integral aka abstract integral of f with respect to µ.

(2) If
∫
|f | dµ < ∞ we call f integrable with respect to µ or just µ–integrable.

As in (4.66) on p.83, we have the following alternate notation.∫
f dµ =

∫
f(ω) dµ(ω) =

∫
f(ω)µ(dω). �

Remark 4.22. ? Note that there are measurable functions f which are not µ–integrable even
though

∫
fdµ exists. For example, let

f : (R,B1, λ1) −→ (R,B1); f(x) := x+ = x111[0,∞[.

Here is a formal proof that
∫
x+dλ1(x) = ∞. For each n ∈ N, let hn := n · 111[n,2n]. Then hn ≤ f and

this simple function has integral
∫
hndλ = n · λ1([n, 2n]) = n2. Thus∫

x+ dλ1 = sup

{∫
h dλ1 : h is simple and 0 ≤ h ≤ x+

}
≥ sup

n∈N

{∫
hn dλ

1

}
= ∞.

In particular the integral
∫
x+dλ1 exists but is infinite. Since |f(x)| = f(x) for all x we see that∫

|f |dλ1 =∞, thus f is not λ1-integrable. �
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We next define expected values of random variables as abstract integrals
∫
· · · dP .

Definition 4.25 (Expected value of a random variable). Let (Ω,F, P ) be a probability space and X a
random variable on that space, possibly extended real–valued.

If
∫
XdP exists, we define the expectation or expected value E[X] of X , with respect to P ,

also simply written as EX , as

E[X] :=

∫
X dP =

∫
X(ω) dP (ω) =

∫
X(ω)P (dω). �(4.69)

Definition 4.26. (p–integrable functions and random variables)

(1) Let (Ω,F, µ) be a measure space and f an extended real–valued, F–measurable,

function. Let p ≥ 1. If
∫
|f |p dµ < ∞ we call f p–integrable with respect to µ.

(2) Let (Ω,F, P ) be a probability space andX a random variable on that space, possibly
extended real–valued. Let p ≥ 1. IfE

[
|X|p

]
< ∞ we callX a p–integrable random

variable
(3) If p = 2 we also refer to square–integrable functions and random variables

Note thatX is a p–integrable random variable if and only ifX is a p–integrable function with respect
to the (probability) measure P .

Proposition 4.16. ?

Let (Ω,F, µ) be a measure space and A ∈ F. Let µA be the measure defined in Proposition 4.8 on
p.61:

µA(A′) = µ(A ∩A′)
If f ∈ m(F) is µ–integrable then f111A is integrable with respect to both µ and µA, and then∫

f111A dµ =

∫
f111A dµA =

∫
f dµA.

PROOF: Not entirely trivial. You first prove this for simple functions h and then use

0 ≤ h ≤ f ⇔ 0 ≤ h111A ≤ f111A

to prove the general case. �

The last proposition shows that if f is µ–integrable and A ∈ F then
∫
f111Adµ exists. We are in a

position to define the following.

Definition 4.27. Let (Ω,F, µ) be a measure space, A ∈ F.
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If f is a measurable function and
∫
f111Adµ exists (is not of the form∞−∞) then we call∫
A
f dµ :=

∫
f · 111A dµ(4.70)

the integral or abstract integral, of f over A with respect to µ. We also write∫
A
f dµ =

∫
A
f(ω) dµ(ω) =

∫
A
f(ω)µ(dω).

Observe that
∫

Ω fdu =
∫
fdu. �

For the following see SCF2 Theorem 1.3.4. We formulate it twice, once for general measures and
then again for probability spaces.

Theorem 4.6 (Fundamental properties of the abstract integral).

Let f be a measurable function on a emasure space (Ω,F, µ).
a. If f takes only finitely many distinct function values x0, x1, . . . , xn, then∫

f dµ =
n∑
k=0

xk µ
(
f−1{xk}

)
.

Also, if Ω is finite and F = 2Ω, then∫
f dµ =

∑
ω∈Ω

f(ω)µ{ω}.

b. (Integrability) The measurable function f is integrable if and only if∫
f+ dµ < ∞ and

∫
f− dµ < ∞.

Let g be another measurable function on (Ω,F, µ).
c. (Comparison) If f = g a.e. and f and g are integrable or nonnegative a.e., then∫

f dµ =

∫
g dµ.

d. (Linearity) If α and β are real constants and f and g are integrable or if α and β are nonnegative
constants and f and g are nonnegative, then∫

(αf + βg) dµ = α

∫
f dµ + β

∫
g dµ.

PROOF: See SCF2, proof of Theorems 1.3.1 and 1.3.4. �

And this is the version for probability spaces which you will find as SCF2 Theorem 1.3.4.

86 Math 454 - Version 2025-02-11



Math 454 – Additional Material Student edition with proofs

Theorem 4.7.

Let X be a random variable on a probability space (Ω,F, P ).
a. If X takes only finitely many distinct values x0, x1, . . . , xn, then

E(X) =
n∑
k=0

xk P{X = xk}.

Also, if Ω is finite and Ω = 2Ω, then

E(X) =
∑
ω∈Ω

X(ω)P{ω}.

b. (Integrability) The random variable X is integrable if and only if

E[X+] < ∞ and E[X−] < ∞

Now, let Y be another random variable on (Ω,F, P ).
c. (Comparison) If X = Y a.s. and X and Y are integrable or a.s. nonnegative, then

EX = E Y.

d. (Linearity) If α and β are real constants and X and Y are integrable or if α and β are
nonnegative constants and X and Y are nonnegative, then

E(αX + βY ) = αE(X) + βE(Y ).

e. (Jensen’s inequality:) The following need NOT be true for measures which are not proba-
bility measures. If ϕ is a convex, real–valued function defined on R and if E(X) <∞, then

ϕ
(
E(X)

)
≤ E

(
ϕ(X)

)
.

PROOF: See SCF2. �

Theorem 4.8. Let (Ω,F, µ) be a measure space and assume that the extended real–valued functions f, g ∈
m(F,B) both are µ–integrable. We have the following.

(4.71) If
∫

Γ
f dµ ≤

∫
Γ
g dµ for all Γ ∈ F then f ≤ g µ–a.e.

(4.72) If
∫

Γ
f dµ =

∫
Γ
g dµ for all Γ ∈ F then f = g µ–a.e.

PROOF: ?

Proof of (4.71): We assume that
∫

Γ fdµ ≤
∫

Γ g dµ for all Γ ∈ F, and f ≤ g µ–a.e.. Let A := {f > g}.
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Let A := {f > g} and assume that µ(A) > 0. It suffices to show that

there exists Γ ∈ F such that
∫

Γ
f dµ >

∫
Γ
g dµ ,(A)

since this contradicts the assumptions made in (4.71). This allows us to conclude that the assump-
tion µ(A) > 0 is wrong, since it lead to that contradiction. Thus, µ

(
{f > g}

)
= 0. This proves that

f ≤ g, µ–a.e., and we are done.
It remains to prove (A) by finding Γ ∈ F such that

∫
Γ fdµ >

∫
Γ gdµ.

For n ∈ N let An := {f > g+ 1
n}. Then An ↑ A, hence µ(An) ↑ µ(A). See Proposition 4.7 (Continuity

properties of measures) on p.60.
Assume to the contrary that µ(A) > 0. Then there exists γ > 0 such that µ(A) = 2γ and hence some
n ∈ N such that µ(An) ≥ γ. Since f > g + 1

n on all of An,∫
An

f dµ ≥
∫
An

(
g +

1

n

)
dµ =

∫
An

g dµ +
1

n
µ(An) ≥

∫
An

g dµ +
γ

n
>

∫
An

g dµ.

In other words, Γ := An satisfies (A). This concludes the proof of (4.71).
Proof of (4.72): Note that, according to the already proven validity of (4.71), the assumption∫

A
f dµ =

∫
A
g dµ for all A ∈ F implies f ≤ g µ–a.e., and g ≤ f µ–a.e.

This proves f = g µ–a.e. �

The following theorem, [SCF2 Theorem 1.3.8, is specific to Lebesque measure. It is true in multiple
dimensions, but we only state it for the one dimensional case.

Theorem 4.9. Connection between Riemann and Lebesgue integrals] Let f : R→ R be a bounded function
and let a < b.

(1) The Riemann integral
b∫
a
f(x) dx exists (i.e., the lower and upper Riemann sums converge

to the same limit) ⇔ the set of points x in [a, b] where f(x) is not continuous has Lebesgue
measure zero.

(2) If the Riemann integral
b∫
a
f(x) dx exists, then f is Borel–measurable (so the Lebesgue inte-

gral
∫

[a,b]

f(x) dλ1(x) also exists), and both integrals agree.

PROOF: ? Beyond the scope of this course. �

Remark 4.23.
(1) Theorem 4.9(1) can be expressed as follows: The Riemann integral

∫ b
a f(x) dx exists ⇔ f(x)

is almost everywhere continuous on [a, b].
(2) All singleton sets {x} in R have Lebesgue measure zero, hence any finite set of points has

Lebesgue measure zero. Thus (1) above guarantees that if we have a real–valued function
f on R that is continuous except at finitely many points, then there will be no difference
between Riemann and Lebesgue integrals of this function.
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(3) Lebesgue integrals are the appropriate vehicle to develop and prove mathematical theory.
But to actually evaluate integrals we use the formulas for computing Riemann integrals.

(4) Because the Riemann and Lebesgue integrals agree whenever the Riemann integral is de-
fined, we often use the familiar notation

∫ b
a f(x) dx instead of

∫
[a,b] f(x) dλ1(x), even if we

do Lebesgue integration.
(5) If the set B over which we integrate is Borel but not necessarily an interval, we also write∫

B f(x) dx instead of
∫
B f(x) dλ1(x). �

4.6 Convergence of Measurable Functions and Integrals

The following corresponds to SCF2 Chapter 1.4, but note that what is formulated in these lec-
ture notes for arbitrary measure spaces (Ω,F, µ) is developed there only for the measurable space
(R,B(R), λ1).
We start by applying the definition of a.e. and a.s (almost everywhere and almost surely, see Defi-
nition 4.12 on p.64), to the convergence of functions. In this case the property of interest for a given
ω ∈ Ω is whether the sequence of numbers or extended real numbers f1(ω), f2(ω), . . . has a limit.
For the next two definitions see SCF2 Definitions 1.4.1 and 1.4.3.

Definition 4.28 (Convergence almost everywhere).

Let (Ω,F, µ) be a measure space, and fn, f : Ω→ R Borel–measurable functions (n ∈ N). Let

A := {ω ∈ Ω : lim
n→∞

fn(ω) = f(ω)}.

If µ(A{) = 0, we say that the sequence fn has limit f µ–almost everywhere , and we write

lim
n→∞

fn = f µ–a.e. , or fn → f µ–a.e. asn→∞ . �

Definition 4.29 (Convergence almost surely).

Let (Ω,F, P ) be a probability space and Xn, X a sequence of random variables with domain
Ω such that lim

n→∞
Xn = X P–a.e. as defined above. In the context of a probability space we

prefer to say that the sequence Xn has limit X P–almost surely , and we write

lim
n→∞

Xn = X P–a.s. or Xn → X P–a.s. asn→∞ . �

Definition 4.30 (iid random variables).
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A sequence of random variables X1, X2, . . . is called indedependent and identically dis-
tributed aka iid, if it is a sequence of independent random variables and if all Xn have the
same distribution, i.e.,

P{X1 ∈ B} = P{X2 ∈ B} = P{X3 ∈ B} = · · · holds true for all Borel sets B. �

The next theorem gives one of the most important examples of almost sure convergence.

Theorem 4.10 (Strong Law of Large Numbers).

Let Xn be an iid sequence of integrable random variables, i.e., E
[
|Xn|

]
<∞ for all n. Then,

lim
n→∞

X1 +X2 + · · ·+Xn

n
= E

[
X1

]
a.s.

PROOF: See, e.g., [9] Dudley, Real Analysis and Probability. �

There also is a less powerful version of the Law of Large Numbers. It can be stated in two different
ways. The version given in SCF2 replaces convergence a.s. with convergence in probability. In
most other sources convergence a.s. is replaced with convergence in distribution. The next theorem
combines both versions.

Theorem 4.11 (Weak Law of Large Numbers).

Let Xn be an iid sequence of integrable random variables, i.e., E
[
|Xn|

]
<∞ for all n. Then both,

lim
n→∞

X1 +X2 + · · ·+Xn

n
= E

[
X1

]
in probability,

lim
n→∞

X1 +X2 + · · ·+Xn

n
= E

[
X1

]
in distribution.

PROOF: Can be found, for the version which states convergence in probability, in most undergrad-
uate texts on probability theory. �

Remark 4.24. Note that convergence in probability and convergence in distribution are equivalent
under the assumptions of Theorem 4.11, because the limit is E[X1], a (deterministic) constant. See
Theorem 4.3 (Relationship between the modes of convergence) on p.72. �

In the laws of large numbers the limit is deterministic because division by zero causes the standard
deviations of the arithmetic averages (X1 + · · · + Xn)/n to go to zero. To see this, note that the
variance of a sum of independent random variables is the sum of the variances.
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Thus, if V ar[Xj ] = σ2, 24 and if Sn =
n∑
j=1

Xj , then

V ar

[
Sn
n

]
=

1

n2

n∑
j=1

σ2 =
σ2

n
.

Thus, the standard deviations
√
V ar [Sn/n] = σ/

√
n converge to zero. We have reason to assume

that if we keep the standard deviations constant by dividing Sn/n by σ/
√
n, then there might be

a non–deterministic limit. In addition, we center the expectations of Sn/n at zero by replacing Xj

with Xj − E[Xj ], we obtain the well–known Central Limit Theorem.

Theorem 4.12 (Central Limit Theorem).

Let Xn be an iid sequence of square–integrable random variables, i.e., E
[
X2
n

]
< ∞ for all n. Let

NNN (α, σ2) denote the normal distribution with mean α and variance σ2. Then,

lim
n→∞

1√
nσ

n∑
j=1

(
Xj − E[Xj ]) exists in distribution and has a NNN (0, 1) distribution.

PROOF: Can be found in most undergraduate texts on Probability. �

The following is SCF2 Example 1.4.4.

Example 4.10. Let (Ω,F, µ) := (R,B1, λ1) the real numbers with Lebesgue measure. Let fn : R→ R
be the continuous and hence (B1,B1)–measurable functions

fn(x) :=

√
n√
2π

e−
nx2

2 (the density function of the N(0,
√
n)–distribution) ,(4.73)

f(x) :=

{
0 ifx 6= 0,

∞ ifx = 0.
(4.74)

Then fn(ω) → f(ω) as n → ∞ for all ω, thus fn → 0 λ1–a.e., since λ1{0} = 0. But observe∫
R fn(x)dλ1(x) = 1 for all x whereas

∫
R f(x)dλ1(x) = 0. What conditions are needed so this does

not happen, in other words, what guarantees that we can switch
∫

and limn? �

Here is another example that shows that switching the order of integration and taking a limit may
yield different results.

Example 4.11. Let (Ω,F, µ) := (R,B1, λ1) the real numbers with Lebesgue measure. Let fn : R→ R
be defined as

fn := 111[n,∞[, n = 1, 2, 3, . . . , i.e., fn(x) = 1 for x ≥ n and zero else.(4.75)

24Since the Xj have identical distribution for each j, it is true that

E[X1] = E[X2] = . . . , and V ar[X1] = V ar[X2] = . . . = σ .
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Then each fn is Borel measurable (why?) and fn(ω) → 0 as n → ∞. But the integrals
∫

R fn dλ
1 do

not converge to
∫

R 0 dλ1 = 0 since each
∫

R fn dλ
1 equals infinity. �

We have had two examples where a sequence of functions converges a.e., but the integrals do not
converge to the integral of that limit function. We are now formulating conditions under which this
cannot happen.

The following corresponds to SCF2 Theorem 1.4.5.

Theorem 4.13 (Monotone Convergence Theorem).

(1) Let (Ω,F, µ) be a measure space and let f, f1, f2, · · · : Ω→ R be m(F,B).

If 0 ≤ f1 ≤ f2 ≤ . . . a.e. and lim
n→∞

fn = f a.e., then lim
n→∞

∫
fn dµ =

∫
f dµ.

(2) Let X and X1, X2, X3, . . . be random variables on a probability space (Ω,F, P ).

If 0 ≤ X1 ≤ X2 ≤ . . . a.s. and lim
n→∞

Xn = X a.s., then lim
n→∞

E[Xn] = E[X].

PROOF ? : Will not be given. Observe though that (2) matches (1) in the special case that
µ(Ω) = 1. �

Remark 4.25. ?

Observe that neither Example 4.10 nor Example 4.11 satisfy the condition of the theorem. (The
functions in example 4.11 are nonnegative and monotone, but there they are decreasingrather than
increasing.) �

Here is another example where the Monotone Convergence Theorem does not apply.

Example 4.12. Is it possible to find Borel measurable functions f, fn : R→ R as follows?
(1) fn is a bounded sequence, i.e., there is a constant α such that |fn(x)| ≤ α for all x
(2) fn ↓ f , but lim

n→∞

∫
fndλ 6=

∫
fdλ.

The answer: Yes, this is possible.
Let αn ∈ R such that αn ↓ 0. Let fn(x) := αn. Clearly, this sequence of constant functions satisfies∫
fndλ = αn λ(R) =∞ for all n, thus limn

∫
fndλ = ∞.

On the other hand,
∫ (

limn fn
)
dλ =

∫
0dλ = 0.

Any sequence fn ↓ 0 such that
∫
fndλ = ∞ for all n will do the trick. Thus, fn := 111[n,∞[, i.e.,

fn(x) = 1 if x ≥ n, and 0 otherwise, is another example that satisfies (1) and (2).
Note that the Monotone Convergence theorem does not apply since fn ↑ f is not satisfied. The
Dominated convergence theorem does not apply either, since f1 is not integrable, thus no integrable
g such that |fn| ≤ g for all n can be found. �

Just as useful as the Monotone Convergence Theorem is the following one (SCF2 Theorem 1.4.9.)
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Theorem 4.14 (Dominated convergence Theorem).

(1) Let (Ω,F, µ) be a measure space and let f, g, f1, f2, · · · : Ω → R be m(F,B). Further assume
that g ≥ 0 and g is integrable, i.e.,

∫
gdµ < ∞.

If |fj | ≤ g a.s. for each j and lim
n→∞

fn = f a.s., then lim
n→∞

∫
fn dµ =

∫
f dµ.

(2) Let X,Y and X1, X2, X3, . . . be random variables such that Y ≥ 0, and E[Y ] <∞.

If |Xj | ≤ Y a.s. for each j and lim
n→∞

Xn = X a.s., then lim
n→∞

E[Xn] = E[X].

PROOF ? : Will not be given. Observe again that (2) matches (1) in the special case that
µ(Ω) = 1. �

You should appreciate how useful the above two theorems are for your other Math classes where
integration or summation or probability plays a role. Here is an example which you can find, e.g.,
in [4] Bauer, Heinz: Measure and Integration Theory.

Proposition 4.17. ?

Let (Ω,F, µ) be a probability space and a < b two real numbers. Assume that the function
f : ]a, b[×Ω→ R satifies the following.
(1) For any fixed a < t < b, the function ω 7→ f(t, ω) is µ–integrable (and thus F–measurable).
(2) For any fixed ω ∈ Ω, the function t 7→ f(t, ω) has a partial derivative

ft : s 7→ ft(s, ω) =
∂f

∂t
(s, ω).

Note that t is not a variable in this context since its only purpose is to indicate differentiation
with respect to the first argument of f(·, ·).

(3) There exists a non-negative and µ–integrable function g : Ω→ R which dominates |ft|:
|ft(s, ω)| ≤ g(ω) for all a < s < b, ω ∈ Ω.

Then we can differentiate under the integral. More specifically,

s 7→
∫

Ω
f(s, ω) dµ(ω) is differentiable for each ω,

Further,
ω 7→ ft(s, ω) is µ–integrable for each a < s < b, and∫

Ω
ft(s0, ω) dµ(ω) =

d

dt

∫
Ω
f(s0, ω) dµ(ω).

PROOF: Fix a < s0 < b and an arbitrary sequence a < sn < b of real numbers such that sn 6= s0 for
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all n and limn sn = s0. Define hn : Ω→ R as

hn(ω) :=
f(sn, ω) − f(s0, ω)

sn − s0
.

Then hn is µ–integrable for each n by assumption (1) and, by assumption (2),

lim
n→∞

hn(ω) = ft(s0, ω) for all ω ∈ Ω.(4.76)

In particular, the function ω 7→ ft(s0, ω is measurable as limit of the measurable hn.
We next show that |hn| ≤ g so we will be able to apply dominated convergence. According to the
mean–value theorem of differential calculus we can find for each sn a value αn in the open interval
with endpoints sn and s0 such that

hn(ω) =
f(sn, ω) − f(s0, ω)

sn − s0
= ft(αn, ω) .

From assumption (3), we thus obtain |hn(ω)| ≤ g(ω). It follows that the function ω 7→ ft(s0, ω) is
µ–integrable. We apply dominated convergence to formula (4.76) and obtain

lim
n→∞

∫
Ω
hn(ω) dµ(ω) =

∫
Ω
ft(s0, ω) dµ(ω).(4.77)

From the definition of hn and linearity of the integral we obtain∫
Ω
hn(ω) dµ(ω) =

∫
Ω f(sn, ω) dµ(ω) −

∫
Ω f(s0, ω) dµ(ω)

sn − s0
for all n ,

and this sequence of difference quotients has limit

lim
n→∞

∫
Ω
hn(ω) dµ(ω) = =

d

dt

∫
Ω
f(s0, ω) dµ(ω).

We apply formula (4.77) and obtain∫
Ω
ft(s0, ω) dµ(ω) =

d

dt

∫
Ω
f(s0, ω) dµ(ω). �

Here is a simple consequence of monotone convergence.

Theorem 4.15.

(1). Let (Ω,F, µ) be a measure space and let f ≥ 0 be an extended real–valued, Borel–measurable
function on Ω. Then the set function

ν : F −→ [0,∞], ν(A) :=

∫
A
f dµ(4.78)

defines a measure on F.
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PROOF:
A. To show that ν(∅) = 0 we observe that 111∅ = 0, thus f · 111∅ = 0, thus

ν(∅) =

∫
0 dµ = µ(Ω) · 0 = 0.

(We have had to use the rule∞ · 0 = 0 once or twice!)
B. ν is monotone since A ⊆ A′ for measurable A and A′ implies f · 111A ≤ f · 111A′ , thus

ν(A) =

∫
f · 111A dµ ≤

∫
f · 111A′ dµ = ν(A′).

C. ν is σ–additive: Let An ∈ F be disjoint and A :=
⊎
n∈N

An. For k ∈ N let Bk :=
⊎
j≤k

Aj . Then

0 ≤
n∑
j=1

f · 111Aj = f · 111Bn ↑ f · 111A .

Thus, by monotone convergence,

ν(A) =

∫
f · 111A dµ = lim

n→∞

∫
f · 111Bn . = lim

n→∞

k∑
j=1

∫
f · 111Aj = lim

n→∞

k∑
j=1

ν(Aj) =
∞∑
j=1

ν(Aj) �

4.7 The ILMD Mehod

Introduction 4.3. The abstract integral was defined or computed in the following stages:

(2) For simple functions f(ω) =
n∑
j=1

cj111Aj (ω), we defined
∫
fdµ =

n∑
j=1

cjµ(Aj) .

(3) For any nonnegative (measurable) function f , choose simple functions 0 ≤ fn ↑ f .

By monotone convergence,
∫
fdµ = lim

n→∞

∫
fndµ.

(4) For arbitrary (measurable) f = f+− f− such that
∫
f+dµ <∞ or

∫
f−dµ <∞,

we defined
∫
fdµ =

∫
f+dµ −

∫
f−dµ .

Note that replacing f and fn with f111A and fn111A, A ∈ F, also covers
∫
A · · · dµ.

Why is (1) missing? We reserve that case for particularly simple simple functions, the indicator
functions. We could have preceded Definition 4.23 (Integral of a simple function) on p.83, which
handles (2), by the following.

(1) For A ∈ F, define
∫

111Adµ = µ(A) .

This section describes a general method for proving statements that are about integrals. �
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Remark 4.26 (The ILMD Mehod). If one wants to prove a theorem in which integration plays a
central role, the following procedure, which we call the ILMD method, 25 often is successful.

I Prove the statement for integrands which are I ndicator functions 111A(ω).
L L inearity of the integral (Theorem ??(b) on p.?? often extends the result to simple

functions at little or no cost.
M M onotone convergence (Theorem ??(c) on p.?? often extends the result to nonneg-

ative integrands at little or no cost.
D Writing f as the D ifference of two nonnegative functions, e.g., f = f+ − f−,

extends the result to general integrands. This might prove more difficult than the
preceding two steps, since expressions of the form∞−∞must be avoided. �

The proof of the next theorem demonstrates the usefulness of ILMD.

Theorem 4.16 (Integrals under Transforms). (Ω,F, µ) be a measure space and let (Ω′,F′) be a measurable
space. Assume that f : Ω→ Ω′ is m(F,F′). and g : Ω′ → R is m(F′,B1). We denote again by µf the image
measure of µ under f on F′, defined in Definition 4.13 on p.68 and given by

µf (A′) = µ{f ∈ A′} = µ{ω ∈ Ω : f(ω) ∈ A′}.

If g ≥ 0 or g ◦ f is integrable then

(4.79)
∫
g ◦ f dµ =

∫
g dµf , i.e.,

∫
g
(
f(ω)

)
dµ(ω) =

∫
g(ω′) dµf (ω′).

PROOF:
Step 1. Assume that g = 111A′ for some A′ ∈ F′. Note that

111A′
(
f(ω)

)
= 1 ⇔ f(ω) ∈ A′ ⇔ ω ∈ f−1(A′),

thus,∫
Ω

111A′
(
f(ω)

)
dµ(ω) =

∫
Ω

111f−1(A′)(ω) dµ(ω) = µ
(
f−1(A′)

)
= µf (A′) =

∫
Ω′

111A′(ω
′) dµf (ω′).

We have shown the validity of formula (4.79) for g = 111A′ .

Step 2. Let g ≥ 0 be a simple function g =
n∑
j=1

cj111A′j (n ∈ N, cj ≥ 0, Aj ∈ F). It then follows from the

linearity of the integral and what we already haven proven in step 1 that∫
Ω
g ◦ f dµ =

n∑
j=1

cj

∫
Ω

111A′j ◦ f dµ =
n∑
j=1

cj

∫
Ω′

111A′j dµf =

∫
Ω′
g dµf .

25When googling the phrase “ILMD Mehod”, the author found the following result:
• The Improved Local Mean Decomposition (ILMD) is employed to decompose remanufacturing cost time

series data into several components with smooth, periodic fluctuation and use this as input.
So be sure to explain the term when you use it in discussions with others! Other authors use different terms. For

example, [14] Shreve, Steve: Stochastic Calculus for Finance II: Continuous-Time Models refers to the ILMD method as
the “Standard Machine”. .
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Step 3. Assume that g is a nonnegative, F′–B1 measurable function. For each nonnegative integer
n let

Bj,n :=

{
j

2n
≤ g <

j + 1

2n

}
(j = 0, 1, . . . , 4n − 1),

gn(ω′) :=

4n−1∑
j=0

j

2n
· 111Bj,n(ω′).

Then gn is a simple function which is constant on the preimages g−1
(
[ j

2n ,
j+1
2n [
)

of the partition

0 <
1

2n
<

2

2n
< · · · 4n

2n
= 2n.

We have gn ≤ gn+1 for all n since each partition is a refinement of the previous one.

ω

g(ω)

k−1
2n
k−1
2n
k−1
2n

k
2n
k
2n
k
2n

k+1
2n
k+1
2n
k+1
2n

~x1~x1~x1 ~x2~x2~x2 ~x3~x3~x3 ~x3~x3~x3 ~x4~x4~x4 ~x5~x5~x5 ~x6~x6~x6 ~x7~x7~x7 ~x8~x8~x8 ~x9~x9~x9

The picture above demonstrates how the simple functions fn ↑ f are constructed. Observe that

gn(ω) =
k − 1

2n
≤ g(ω) on Bk,n .

Moreover gn(ω′) ↑ g(ω′) for each ω since, if j is the index such that j
2n ≤ g(ω′) < j+1

2n , then

ω′ ∈ Bj,n, thus gn(x) =
j

2n
≤ g(ω′) <

j + 1

2n
, thus |gn(ω′)− g(ω′)| < j + 1

2n
− j

2n
=

1

2n
.

It now follows from Step 2 and the monotone convergence theorem that∫
Ω
g ◦ f dµ = lim

n→∞

∫
Ω
gn ◦ f dµ = lim

n→∞

∫
Ω′
gn dµf =

∫
Ω′
g dµf .

If f ≥ 0 then we are done.
Step 4. From now on we may assume that g ◦ f is µ–integrable, i.e., both

∫
(g ◦ f)+dµ < ∞ and∫

(g ◦ f)−dµ <∞. We have shown in step 3 that the nonnegative functions g+ ◦ f and g− ◦ f satisfy∫
Ω
g+ ◦ f dµ =

∫
Ω′
g+ dµf ,

∫
Ω
g− ◦ f dµ =

∫
Ω′
g− dµf ,(4.80)

97 Math 454 - Version 2025-02-11



Math 454 – Additional Material Student edition with proofs

We also have

(g+ ◦ f)(ω) = g+
(
f(ω)

)
=
[
g
(
f(ω)

)]+
= (g ◦ f)+(ω),

(g− ◦ f)(ω) = g−
(
f(ω)

)
=
[
g
(
f(ω)

)]−
= (g ◦ f)−(ω).

(4.81)

It follows that ∫
Ω
|g ◦ f | dµ =

∫
Ω

(g ◦ f)+ dµ +

∫
Ω

(g ◦ f)− dµ

(4.81)
=

∫
Ω

(g+ ◦ f) dµ +

∫
Ω

(g− ◦ f) dµ

(4.80)
=

∫
Ω′
g+ dµf +

∫
Ω′
g− dµf .

All quantities here are finite since
∫

(g ◦ f)+dµ < ∞ and
∫

(g ◦ f)−dµ < ∞. We thus may subtract
and obtain ∫

Ω
g ◦ f dµ =

∫
Ω′
g+ dµf −

∫
Ω′
g− dµf . �

Here is another application of the ILMD Mehod.

Proposition 4.18.

Let (Ω,F, µ) be a measure space and let f ≥ 0 be an extended real–valued, Borel–measurable func-
tion on Ω. Let ν be the measure defined by

ν(A) :=

∫
A
f dµ

(see Theorem 4.15 on p.94). Moreover, let ϕ be an extended real–valued, Borel–measurable function
on Ω such that ϕ ≥ 0 or ϕ is ν–integrable. Then,

(4.82)
∫
A
ϕdν =

∫
A
ϕ · f dµ, for all A ∈ F .

PROOF:
Step 1. We prove formula (4.82) for indicator functions. Assume that ϕ = 111B for some B ∈ F. Then∫

A
ϕdν =

∫
111A111B dν =

∫
111A∩B dν = ν(A ∩B)

=

∫
A∩B

f dµ =

∫
111A111Bf dµ =

∫
A

111Bf dµ =

∫
A
ϕf dµ .

We have shown the validity of formula (4.82) for ϕ = 111B .
We only give an outline of the remainder of the proof. It closely follows the corresponding steps in
the proof of Theorem 4.16 on p.96.
Step 2. linearity of the integral allows to extend the formula from indicator functions to simple

functions ϕ =
n∑
j=1

cj111Aj (n ∈ N, cj ≥ 0, Aj ∈ F).
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Step 3. Assume that ϕ is a nonnegative, F−−B1 measurable function. We construct a increasingse-
quence ϕn of simple functions such that ϕn ↑ ϕ in a fashion similar to the proof of Theorem4.16. It
easily follows from the monotone convergence theorem that (4.82) is true for ϕ.
Step 4. To prove the proposition for ν–integrable ϕ we decompose ϕ = ϕ+ − ϕ−. Then∫

A
ϕdν =

∫
A
ϕ+ dν −

∫
A
ϕ− dν =

∫
A
ϕ+ · f dµ −

∫
A
ϕ− · f dµ

=

∫
A

(ϕ+ − ϕ−) · f dµ =

∫
A
ϕ · f dµ .

Here we repeatedly used linearity of the integral and we applied what we proved in Step 3 to obtain
the second equation. �

4.8 Equivalent Measures and the Radon–Nikodým Theorem

It is not necessary for you to remember the next definition. It is of a technical nature to ensure that
certain important theorems are valid.

Definition 4.31 (σ–finite measure). ?

• Let (Ω,F, µ) be a measure space. We call µ a σ–finite measure if there exists a
sequence An ∈ F such that

µ(An) < ∞ for all n, and
⋃
n∈N

An = Ω. �

Example 4.13. ?

• All finite measures are σ–finite. In particular, all probability measures are σ–finite
• Lebesgue measure λn is σ–finite: For k ∈ N let Ak := [−k, k]n.

Then λn(Ak) = (2k)n <∞, and Ak ↑ Ω.
• Counting measure Σ (Definition 4.8 on p.59) is σ–finite:

For k ∈ N let Ak := {j ∈ Z : |j| ≤ k}. Then Σ(Ak) = 2k + 1 <∞, and Ak ↑ Z. �

The next definition is an important one to remember.

Definition 4.32 (Radon–Nikodým derivative). Let µ and ν be measures on a given measurable space
(Ω,F), assume that µ is σ–finite (see Definition 4.31 (σ–finite measure) on p.99), and let f ≥ 0 be in
m(F,B1).
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If µ, ν, and f satisfy formula (4.78) of Theorem 4.15 on p.94, i.e.,

ν(A) =

∫
A
f(ω) dµ(ω), for all A ∈ F,(4.83)

then we call f the density of ν with respect to µ on F or also the Radon–Nikodým deriva-
tive of ν with respect to µ on F. We write either of

• f =
dν

dµ
, • dν = f dµ, • dν(ω) = f(ω) dµ(ω), • ν(dω) = f(ω)µ(dω). �(4.84)

Remark 4.27. We assume again that µ is a σ–finite measure on (Ω,F). If f̃ is a second function that
satisfies ν(A) =

∫
A f̃dµ for allA ∈ F and if f and f̃ are µ–integrable, then f̃ = f µ–a.e. This follows

from Theorem 4.8 on p.87. A straightforward application of monotone convergence shows that this
almost everywhere uniqueness of the Radon–Nikodým derivative also holds if µ–integrability of f
and f̃ is replaced with nonnegativity of f and f̃ .
These uniqueness results allow us to refer to “the” Radon–Nikodým derivative. �

Proposition 4.19. Let (Ω,F, µ) be a σ–finite measure space. Let f, g ≥ 0 be in m(F,B1). Assume that the
measures ν and ρ, defined by

ν(A) :=

∫
A
f dµ , ρ(A) :=

∫
A
g dν , (A ∈ F)

are σ–finite so that uniqueness of the Radon–Nikodým derivative allows us to write

f =
dν

dµ
and g =

dρ

dν
.

Then
dρ

dµ
= fg. In other words, there is a

Chain rule for Radon–Nikodým derivatives:

(4.85)
dρ

dµ
=

dρ

dν
· dν
dµ

.

PROOF: Let A ∈ F. We must prove that ρ(A) =
∫
A(gf)dµ. It follows from Proposition 4.18 on p.98

that
∫
A ϕdν =

∫
A(ϕf)dµ for all measurable and nonnegative ϕ. Thus, for ϕ = g,

ρ(A) =

∫
A
g dν =

∫
A

(gf) dµ ,

and this is what had to be shown. �
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Remark 4.28. ? There are reasons besides the chain rule (4.85) to call the function f in formula
(4.83) a derivative. Consider the normal distribution with mean µ and variance σ2, i.e., the measure
ν on B1 defined by

ν(]a, b]) =

∫ b

a
f(x) dx =

∫
]a,b]

f dλ1 , a, b ∈ R, a < b,(4.86)

where f is the normal density

f(x) =
1√

2πσ2
e

(x−µ)2

2σ2 .

Observe that formula (4.86) extends to arbitrary Borel sets (see Fact 4.1 on p.56). In other words, if
we write µ for λ1, then λ1, ν, and f satisfy formula (4.83), thus

f =
dν

dλ1
.(4.87)

Actually ν is completely determined by its values on intervals of the form ]−∞, x] since

ν(]a, b]) = ν(]−∞, b]) − ν(]−∞, a]).

This should not come as a surprise, since we only stated that the N(µ, σ2) distribution is defined by
its cumulative distribution function

F (x) =

∫ x

−∞
f(u) du =

∫
]−∞,x]

f(u) dλ1(u).

By the Fundamental Theorem of Calculus, f(x) = dF (x)
dx . Since (4.87) holds true, we have both

f(x) =
dF (x)

dx
, f(x) =

dν(x)

dλ1

(the second equation follows from (4.87)). This is the reason why a function f that satisfies formula
(4.83) is called a (Radon–Nikodým) derivative.
A last comment: This example has nothing to do with normal distributions. All we needed was
that the function f in formula (4.86) is nonnegative, in m(B1,B1), and such that the function x →
F (x) = ν(] −∞, x]) is differentiable so that we can apply the Fundamental Theorem of Calculus.
Continuity of f at all points suffices for that. �

Definition 4.33 (µ–continuous measure). ?

Let µ and ν be measures on a measurable space (Ω,F).

• We call ν a continuous measure with respect to µ on F or a µ–continuous measure on
F, and we write ν � µ, if

µ(A) = 0 ⇒ ν(A) = 0, for allA ∈ F.

• We call µ and ν equivalent measures, and we write µ ∼ ν, if both

µ � ν and ν � µ. �
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Remark 4.29.
(1) Two measures µ and ν on (Ω,F) are equivalent if and only if

µ(A) = 0 ⇔ ν(A) = 0, for allA ∈ F.

Thus the relation µ ∼ ν above is an equivalence relation on the set of all
measures for (Ω,F).

(2) Two probabilities P and P̃ on (Ω,F) are equivalent if and only if the P–
almost sure events coincide with the P̃–almost sure events. �

Proposition 4.20.

Let µ and ν be measures on a given measurable space (Ω,F) and assume moreover that the measure
ν has a Radon–Nikodým derivative with respect to µ on F. Then ν � µ.

PROOF: ? For convenience we write f rather than dµ
dν for the Radon–Nikodým derivative.

Thus f satisfies ν(A) =
∫
A fdµ for all A ∈ F.

We must show that
µ(A) = 0 ⇒

∫
f111A dµ = 0.

It suffices to show that
∫
hdµ = 0 for all simple functions h that satisfy 0 ≤ h ≤ f111A, since

∫
f111Adµ

is the supremum of all such integrals.

Since f111A = 0 on A{ and thus 0 ≤ h ≤ f111A = 0 on A{, we obtain h = h111A.

Also, h has the form h =
n∑
j=1

cj111Aj for suitable n ∈ N, cj ∈ R, and Aj ∈ F. Thus,

∫
h dµ =

∫
h111A dµ =

∑
j

cj

∫
A

111Aj dµ =
∑
j

cjµ(A ∩Aj) ≤
∑
j

cjµ(A) = 0.

The last equation follows from the assumption µ(A) = 0. �

Theorem 4.17 (Radon–Nikodým Theorem). Let µ and ν be measures on a measurable space (Ω,F).

If the measure µ is σ–finite then

ν possesses a Radon–Nikodým derivative
dν

dµ
with respect to µ on F ⇔ ν � µ.

PROOF: ? The “⇒” direction was proven in Proposition 4.20. The proof of the reverse direc-
tion is beyond the scope of these lecture notes. �

Corollary 4.2.
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Let µ and µ̃ be equivalent and σ–finite measures on a given measurable space (Ω,F). Then both
Radon–Nikodým derivatives dµ̃

dµ and dµ
dµ̃ exist, and they satisfy the relation

dµ̃

dµ
· dµ
dµ̃

= 1 a.e.(4.88)

PROOF: ? The Radon–Nikodým Theorem guarantees the existence of both dµ̃
dµ and dµ

dµ̃ , and
(4.88) follows from

1 =
dµ̃

dµ̃
=

dµ̃

dµ
· dµ
dµ̃

.

The second equation is immediate from Proposition 4.19 (the chain rule for Radon–Nikodým
derivatives), and the first one follows from µ̃(A) =

∫
A 1 dµ̃ and the a.e. uniqueness of the Radon–

Nikodým derivative. �

Remark 4.30. Assume as in Corollary 4.2 that µ and µ̃ are equivalent measures. We write Z := dµ̃
dµ

for convenience. Let B0 := {Z = 0}. Then µ̃(B0) = 0 because

µ̃(B0) =

∫
B0

Z dµ =

∫
B0

0 dµ = 0.

Since µ ∼ µ̃ we also have µ(B0) = 0.
Let X be an arbitrary, nonnegative, random variable. Then∫

XZ dµ =

∫
B0

XZ dµ +

∫
B{

0

XZ dµ = 0 +

∫
B{

0

XZ dµ. =

∫
B{

0

X111{Z 6=0}Z dµ.

The above holds in particular for indicator functions X = 111A of any A ∈ F and tells us that we may
replace Z with Z111{Z 6=0}. This should have been expected since a Radon–Nikodým derivative is a
conditional expectation and thus determined only almost everywhere.
We thus may assume that

dµ̃

dµ
= 1

/ dµ

dµ̃
. �

We finish the discussion of the Radon–Nikodým Theorem with two concrete examples.

Example 4.14. Let p, q : N →]0, 1[ be strictly positive. Assume that
∑
j
p(j) =

∑
j
q(j) = 1. Thus

P ({k}) := p(k) and Q({k}) := q(k) defines two probability measures P and Q on the measurable
space (N, 2N).
Since the empty set is the only set A ⊆ N such that P (A) = 0 and Q(A) = 0, those two measures are
equivalent. Thus both Radon–Nikodým derivatives dQ

dP and dP
dQ exist. We claim that

dQ

dP
(k) =

q(k)

p(k)
, and

dP

dQ
(k) =

p(k)

q(k)
, (k ∈ N).
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For the proof, let A ⊆ N. Since A =
⊎

[{k}; k ∈ A],∫
A

q(k)

p(k)
P (dk) =

∑
k∈A

∫
{k}

q(k)

p(k)
P (dk) =

∑
k∈A

q(k)

p(k)
P ({k})

=
∑
k∈A

Q({k}
P ({k}

P ({k}) =
∑
k∈A

Q({k} = Q(A) .

This proves that dQ
dP (k) = q(k)

p(k) for all k ∈ N To show that dP
dQ(k) = p(k)

q(k) , you can either repeat the
proof above with the roles of p, q switched and those of of P,Q switched, or you can use the relation
dQ
dP ·

dP
dQ = 1. �

AAA
@@Author

This is a placeholder for Example 4.17 on p.109, in the addenda to this chapter.

4.9 Digression: Product Measures ?

We know from calculus that under certain conditions the order of integration in an integral of the
form

∫∫
f(x, y)dxdy can be switched. For example, if f(x, y) is a continuous function of x and y in

a bounded rectangle [a, b]× [c, d], then∫ b

a

(∫ d

c
f(x, y) dy

)
dx =

∫ d

c

(∫ b

a
f(x, y) dx

)
dy .

This skeletal chapter gives an outline of how the above generalizes to integration in abstract mea-
sure spaces.

Definition 4.34 (Product spaces and product measures of two factors).
Let (Ω1,F1, µ) and (Ω2,F2, ν) be two measure spaces with σ–finite measures µ and ν.

We call the σ–algebra

F1 ⊗ F2 := σ{A1 ×A2 : A1 ∈ F1, A2 ∈ F2 },(4.89)

which is generated by all “rectangles” of measurable factors A1 and A2, the product σ–
algebra of F1 and F2. One can show that the set function

A1 ×A2 7→ µ(A1) ν(A2)(4.90)

can be uniquely extended to a measure µ × ν on all of F1 ⊗ F2. We call µ × ν the product
measure, also just the product, of µ and ν, and we call

(Ω1 × Ω2,F1 ⊗ F2, µ× ν)

the product space of (Ω1,F1, µ) and (Ω2,F2, ν). �
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Example 4.15. We examine the case of two Euclidean spaces (Rm,Bm, λm) and (Rn,Bn, λn) with
their Borel sets and Lebesgue measures. It can be shown that

Bm ⊗Bn = Bm+n,

and it is obvious from the formula

λm × λn(B1 ×B2) = λm(B1)λn(B2) = λm+n(B1 ×B2)

and the uniqueness of the product measure, that λm × λn = λm+n. In particular, λ2 = λ× λ. �

Theorem 4.18 (Fubini-Tonelli). Let (Ω1,F1, µ) and (Ω2,F2, ν) be two measure spaces with σ–finite mea-
sures µ and ν. Assume that the extended real–valued function

f : (Ω1 × Ω2,F1 ⊗ F2, µ× ν)→ (R̄,B1)

is (F1 ⊗ F2–B1–measurable. Then ω1 7→ f(ω1, ω2) is F1–measurable for each fixed ω2 (and thus can be
integrated with respect to µ1), and ω2 7→ f(ω1, ω2) is F2–measurable for each fixed ω1.

If f ≥ 0 or f is µ× ν–integrable then∫
A1×A2

f dµ× ν =

∫
A1

(∫
A2

f(ω1, ω2) dν(ω2)

)
dµ(ω1)

=

∫
A2

(∫
A1

f(ω1, ω2) dµ(ω1)

)
dν(ω2).

(4.91)

In particular, switching the order of integration yields the same result.

Remark 4.31. ?

• We have omitted some technical details concerning µ1–a.e. and µ2–a.e. properties in the
case of integrable f .

• The case for integrable f was proved first by Guido Fubini in 1907, the case for nonnega-
tive f two years later by Leonida Tonelli, both Italian mathematicians. Since Fubini was
first, Theorem 4.18 is often just referred to as Fubini’s theorem.

• For general A ∈ F1 ⊗ F2 one defines “ω1–slices” Aω1 := {ω2 ∈ Ω2 : (ω1, ω2) ∈ A} and
“ω2–slices” Aω2 := {ω1 ∈ Ω1 : (ω1, ω2) ∈ A} and evaluates integrals over A as iterated
integrals involving those slices. We omit the arguments:∫

A
f dµ× ν =

∫
Ω1

(∫
Aω1

f dν

)
dµ =

∫
Ω2

(∫
Aω2

f dµ

)
dν. �

• Of particular interest will be the case of an extended real–valued continuous time stochas-
tic process X = X(t, ω), t ∈ I which we assume to be (B(I)⊗F)–measurable. Recall that
expectations are integrals dP . Thus Fubini-Tonelli asserts that for [a, b[⊆ I ,∫

[a,b[×Ω
X dλ1 × P =

∫ b

a
E[Xt] dt = E

[∫ b

a
Xt dt

]
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4.10 Independence

All material in this chapter is standard and no effort is made to present the material different from
SCF2. Consult SCF2 ch.2.2 (Independence) for examples and more background information.

Introduction 4.4. We proceed in stages. Let (Ω,F, P ) be a probability space.
Stage 1.
We say that two sets A and B in F are independent if

P (A ∩ B) = P (A) · P (B).

Stage 2.
The following is SCF2 Definition 2.2.1. Let (Ω,F, P ) be a probability space, let G and H be sub–σ–
algebras of F, and let X and Y be random variables on (Ω,F, P ).

(a) We say that the σ–algebras G and H are independent if

P (A ∩ B) = P (A) · P (B) for all A ∈ G, B ∈ H.

(b) We say that the random variables X and Y are independent if the σ–algebras they
generate, σ(X) and σ(Y ), are independent.

(c) We say that the random variable X is independent of the σ–algebra G if the σ–
algebras σ(X) and G, are independent.

Note that independence of the (Borel–measurable) random variables X and Y implies that

X and Y are independent ⇔

{
P{X ∈ U andY ∈ V } = P{X ∈ U} · P{Y ∈ V }

for all Borel subsets U and V of R.

Stage 3.
SCF2 Definition 2.2.3 generalizes independence from two sub–σ–algebras or random variables to
countably many.
Let (Ω,F, P ) be a probability space, let G1,G2,G3, . . . be sub–σ–algebras of F, and letX1, X2, X3, . . .
be a sequence of random variables on (Ω,F, P ).

(a) We say that the σ–algebras G1,G2, . . . ,Gn are independent if

P (A1 ∩ A2 · · · ∩ An) = P (A1) · P (A2) · · ·P (An) for all Aj ∈ Gj , j = 1, . . . n.

(b) We say that the random variables X1, X2, . . . Xn are independent if the σ–algebras
they generate, σ(X1), σ(X2), . . . , σ(Xn), are independent.

(c) We say that the sequence of σ–algebras Gj , j ∈ N is independent if, for each n ∈ N,
the σ–algebras Gj , j = 1, . . . , n are independent.

(d) We say that the sequence of random variables Xj , j ∈ N is independent if, for each
n ∈ N, the random variables Xj , j = 1, . . . , n are independent.

It is not hard to see that items (c) and (d) of that definition are equivalent to
(c’) We say that the sequence of σ–algebras Gj , j ∈ N is independent if, for each finite

subsequence n1, n2, . . . , nk of distinct integers nj , the σ–algebras Gnj , j = 1, . . . , k
are independent.
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(d’) We say that the sequence of random variables Xj , j ∈ N is independent if, for
each finite subsequence n1, n2, . . . , nk of distinct integers nj , the random variables
Xnj , j = 1, . . . , k are independent.

We will use this observation to define independence of arbitrary (possibly uncountable) families of
sub–σ–algebras and random variables. �

Definition 4.35 (Independence). Let (Ω,F, P ) be a probability space, let Gi, i ∈ I , be an arbitrary,
indexed family of sub–σ–algebras of F, and let Xi, i ∈ I , be an arbitrary, indexed family of random
variables on (Ω,F, P ).

(a) We say that the σ–algebras Gi, i ∈ I , are independent if, for each finite subsequence
i1, i2, . . . , ik of distinct indices ij ∈ I ,

P (Ai1 ∩ Ai2 · · · ∩ Aik) = P (Ai1) · P (Ai2) · · ·P (Aik) for all Aij ∈ Gij , j = 1, . . . k.

(b) We say that the random variables Xi, i ∈ I , are independent if the σ–algebras they
generate, σ(Xi), i ∈ I , are independent.

Theorem 4.19 (SCF2 Theorem 2.2.5).

Let X and Y be independent mndom variables, and let f and g be Borel-measurable functions on R.

Then, f ◦X and g ◦ Y are independent random variables.

PROOF: A simple consequence of the fact that the measurability of f and g yields σ(f ◦X) ⊆ σ(X)
and σ(g ◦Y ) ⊆ σ(Y ), so fewer equations of the form P (A∩B) = P (A)P (B) need to be verified. �

You will have to consult SCF2, ch.2.2 if you need a refresher on joint distributions to understand the
next theorem.

Theorem 4.20 (SCF2 Theorem 2.2.7).

Let X and Y be random variables. We have equivalence

(1) ⇔ (2) ⇔ (3) ⇔ (4) ⇔ (5)

of the following conditions.
(1) X and Y are independent.
(2) The joint distribution measure, i.e., the image measure of P under the measurable function

ω 7→
(
X(ω), Y (ω)

)
, factors:

(4.92) PX,Y (A×B) = PX(A) · PY (B) for all Borel setsA,B ⊆ R.
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(3) The joint cumulative distribution function factors:

(4.93) FX,Y (a, b) = FX(a) · FY (b) for all a, b ∈ R.

(4) The joint moment–generating function factors:

(4.94) E
[
euX+vY

]
= E

[
euX

]
· E
[
evY
]

for allu, v ∈ R
assuming that the expectations are finite.

(5) If there is a joint density then it factors:

(4.95) fX,Y (x, y) = fX(x) · fY (y) for allx, y ∈ R.

The conditions above imply but are not equivalent to the following.
(6) The expectation factors:

(4.96) E[X · Y ] = E[X] · E[Y ], provided E[ |X · Y | ] < ∞.

PROOF (outline): See the SCF2 text. �

4.11 Exercises for Ch.4

Exercise 4.1. Prove Thm.4.1 on p.65 of this document: Let (Ω,F) and (Ω′,F′) be measurable spaces
and f : Ω→ Ω′. Let E′ ⊆ F′ such that σ(E′) = F′. Then the following is true:

If f−1(A′) ⊆ F for all A′ ∈ E′ then f is (F,F′)–measurable. �

Exercise 4.2. Let (Ω,F, P ) be a probability space, and let (Ω′,F′) be a countable, measurable space
in which {ω′} ∈ F′ for all ω′ ∈ Ω′. Let f : Ω→ Ω′ be a random element, i.e., f is (F,F′)–measurable.
Prove the following. If P (A) = 1 or P (A) = 0 for all A ∈ F, then f = const P–a.s. In other words,
there exists ω′0 ∈ Ω′ such that P{f = ω0} = 1.
Hint: There are counterexamples if Ω′ is not countable, so use it! �

4

Exercise 4.3. Prove (1) and (2) of prop.4.13 on p.69 of this document. �

Exercise 4.4. Prove prop.4.12 on p.68 of this document: If f ∈ m(F,F′) then

µ′(A′) := µ{f ∈ A′} defines a measure on (Ω′,F′).

If µ is a probability measure then so is µf . �

Exercise 4.5. Prove closed book prop.4.14 on p.80 of this document: Every process Xt is FXt =
σ{Xs : s ∈ I, s ≤ t}–adapted. �
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Exercise 4.6. Let (Ω,F, µ) be a measure space with a sub–σ–algebra G and let µ′ := µ
∣∣
G

be the
restriction µ′(G) := µ(G)(G ∈ G) of µ to G.
Prove that if f is a nonnegative and G–measurable function then∫

f dµ =

∫
f dµ′. �

4.12 Addenda to Ch.4

The following example shows why measurability is important.

Example 4.16. We model a random element that transforms letter grades to pass/fail grades as
follows. For simplicity, we assume that the only letter grades are A,B,C,D, F .
Let Ω := {A,B,C,D, F}, F :=

{
∅, {A,B}, {C,D, F},Ω

}
.

Then P{A,B} := 0.3, P{C,D, F} := 0.7, defines a probability measure P : F→ [0, 1].
Let Ω′ := {P, F}. F′ :=

{
∅, {P}, {F},Ω′

}
= 2Ω′ .

Let (Ω,F, µ) := (R,B1, λ1), and let X : Ω→ Ω, be the function

X(ω) :=

{
P, if ω ∈ {A,B,C,D},
F, if ω = F.

Question: What is P{X = P}, i.e., the probability that a student’s letter grade corresponds to a
Pass?
Answer: The model does not allow us to determine that probability, since {X = P} /∈ F and hence,
no probability is associated with that event. Note that X /∈ m(F,F′: {P} ∈ F′, but {X = P} =
{A,B,C,D} /∈ F The measurability condition for random elements has been imposed to avoid this
kind of problems. �

AAA
@@Author

The following example belongs after Example 4.14 on p.103.

Example 4.17. Let Y be a continuous random variable. Let fY : R → R be its probability density
function aka PDF. In other words, if B is a Borel set (in particular, if B is an interval [α, β]), then

(4.97) PY (B) = P{Y ∈ B} =

∫
B
fY (y)dy =

∫
B
fY dλ.

For example, if Y has a normal distribution with mean a and variance b2 ( (b > 0)), then

fY (y) =
1

b
√

2π
e(y−a)2/(2b2) , (y ∈ R).

We claim that fY is the Radon–Nikodým derivative of the distribution of Y with respect to λ:

(4.98) fY (y) =
dPY
dλ

.

To see this, we recall the definition of a PDF, by which
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(4.99) P{α < Y ≤ β} = PY
(
]α, β]

)
=

∫ β

α
fY (y) dy =

∫ β

α
fY dλ .

On the other hand, dνdµ , the Radon–Nikodým derivative of ν with respect to µ, was defined by

(4.100) ν(A) =

∫
A

dν

dµ
(ω) dµ(ω), for all A ∈ F .

See (4.83) of Definition 4.32 (Radon–Nikodým derivative) on p.99. We obtain (4.99) from (4.100), by
replacing ν with PY , µ with λ, and dν

dµ , (now equals dPY
dλ ) with fY . Since dPY

dλ is determined uniquely
up to a λ–null set, it follows that fY = dPY

dλ . We have shown (4.98). �
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5 Conditional Expectations

We will explore in Section 5.1 (Functional Dependency of Random Variables) in what sense a σ–
algebra can be interpreted as holding some or all stochastically relevant information about a random
variable before devoting the remainder of this chapter to the subject of conditional expectations.
For a random variable X on a probability space (Ω,F, P ), we will not define its conditional expec-
tation E[X | G] with respect to a sub–σ–algebra G of F as a number. Instead, E[X | G] will be a
G–measurable random variable (a function of ω!), which satisfies the

partial averaging property:
∫
G
E[X | G] dP =

∫
G
X dP for all G ∈ G .

This property has its name from the fact that X and E[X | G] possess matching “averages”

1

P (G)

∫
G
E[X | G] dP =

1

P (G)

∫
G
X dP for all G ∈ G such that P (G) > 0 ,

i.e., for that part of the stochastically relevant information about X that is accessible in G.
In Section 5.2 (σ–Algebras Generated by Countable Partitions and Partial Averages), we examine
this first in the special case where G is generated by a countable partition

Ω = G1

⊎
G2

⊎
G3

⊎
· · ·

of eventsGj , before treating the general case in Section 5.3 (Conditional Expectations in the General
Setting).

5.1 Functional Dependency of Random Variables

All propositions and theorems of this subchapter are marked as optional, since they are quite ab-
stract in nature and not easy to understand. Thus it is OK if you skip them if you cannot make
sense of what they tell you. Note though, that it is very important that you study Remark 5.2 on
p.114 (at the end of this subchapter) very carefully, since it gives you a feeling for σ–algebras and
filtrations as the stores of information of random variables and stochastic processes, and that is very
important knowledge if you want to understand the mathematical models of financial markets to
be presented in later chapters. This section makes heavy use of the notion of σ–algebras generated
by one or an entire collection of random elements. 26

You are not expected to recall the next proposition from memory, but you are expected to know
how to apply it if it is listed on a reference sheet.

Proposition 5.1 (Doob Composition Lemma). ?

Assume that Ω is a nonempty set, not necessarily a measurable space, that (Ω′,F′) is a measurable
space, and that f : Ω → Ω′ is a function about which we assume nothing. Recall that f transforms
Ω into a measurable space

(
Ω, σ(f)

)
by means of the σ–algebra

σ(f) = {f−1(A′) : A′ ∈ F}.

26See Definition 4.14 on p.69 and the proposition preceding it.
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Further, assume that ϕ : Ω→ R̄ is an extended real–valued function with domain Ω. Then,
(1) ϕ is

(
σ(f),B1

)
–measurable ⇔ there is (F′,B1)–

measurable g such that
ϕ = g ◦ f , i.e., ϕ(ω) = g

(
f(ω)

)
for all ω ∈ Ω.

(2) If f ≥ 0, then g can be chosen such that g ≥ 0.
(3) If |f | <∞, then g can be chosen such that |g| <∞.

(Ω, σ(f)) (Ω′,F′)

(R̄,B1)

f

g
ϕ

PROOF (outline):
We will only prove the nontrivial direction “⇒” of (1). The other direction is obvious, since if there
is (F′,B1)–measurable g such that ϕ = g ◦ f then ϕ is

(
σ(f),B1

)
–measurable as the composition of

the
(
σ(f),F′

)
–measurable f with the (F′,B1)–measurable g.

The proof of “⇒” is done according to the ILMD Mehod.
Step 1: ϕ is a σ(f) measurable indicator function, i.e., ϕ = 111A for some A ∈ σ(f). Any such set A
must be the preimage f−1(A′) of some A′ ∈ F′. Note that if f is not bijective, then A will generally
not uniquely determine A′. We define

g := 111A′ ,

and it is easily verified that 111A′ ◦ f = 111A. It follows that g ◦ f = ϕ.

Step 2: For a nonnegative simple function ϕ :=
k∑
j=1

cj111Aj (cj ≥ 0, Aj ∈ σ(f)), we define

g :=
k∑
j=1

cj111A′j ,

where each A′j ∈ F′ is chosen such that Aj = f−1(A′j). Then g ◦ f = ϕ.
Step 3: For general measurable ϕ ≥ 0 there exists a sequence of simple functions ϕn such that
ϕn ↑ ϕ. See the proof of step 3 of Theorem 4.16 on p.96. According to Step 2, there exist F′–
measurable (simple) functions gn such that ϕn = gn ◦ f for each n. Clearly the sequence gn is
increasing. Therefore, it has an F′–measurable limit g. This limit function satisfies ϕ = g ◦ f .
The proof of (1) for general g and that of (3) will not be given, since it is somewhat tedious to
consider the case∞−∞. But note that we have given a proof of (2). �

The following corollary to the Doob Composition Lemma is so important, that we give it the status
of a theorem. You are not expected to recall it from memory, but you are expected to know how to
apply it if it is listed on a reference sheet.

Theorem 5.1 (Functional dependency theorem I). Given are a probability space (Ω,F, P ), a measurable
space (Ω′,F′), a random element X , i.e., X is (F,F′)–measurable, 27 and an extended real–valued random
variable Y on (Ω,F, P ). Note that our assumptions imply

σ(X) ⊆ F and σ(Y ) ⊆ F .

Thus, the probablities P{X ∈ A′} and P{Y ∈ B} exist for all A′ ∈ F′ and B ∈ B.

27See Definition 4.11 on p.64.
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Then σ(Y ) ⊆ σ(X) ⇔ there is (F′,B1)–measurable g such that
Y = g ◦X , i.e., Y (ω) = g

(
X(ω)

)
for all ω ∈ Ω.

(Ω,F, P ) (Ω′,F′)

(R̄,B1)

X

g
Y

PROOF: This is an immediate consequence of the Doob Composition Lemma, Proposition 5.1, since
σ(Y ) ⊆ σ(X) ⇔ Y is

(
σ(X),B1

)
–measurable �

We now apply Doob composition to stochastic processes.

Theorem 5.2 (Functional dependency theorem II). ?

Let X = (Xu)0≤u≤T and Y = (Yu)0≤u≤T be stochastic processes on (Ω,F, P ) such that Y is
adapted to X , i.e., Yt is FXt –measurable for each 0 ≤ t ≤ T .
Then there is for each t ∈ [0, T ] a (F′,B1)–measurable function g = g(t, ·) (which carries t as an
additional argument since it depends on t) such that

Yt(ω) = g
(
t,
(
Xu(ω)

)
0≤u≤t

)
.(5.1)

PROOF (outline): We can interpret the process X = (Xu)0≤u≤T as a random element

(Xu)0≤u≤T : (Ω,FXT , P )→ (Ω′,F′) ; ω 7→ (Xu)0≤u≤T (ω)

which assigns to ω ∈ Ω its X–trajectory between times 0 and T . So Ω′ is the space of all trajectories
between times 0 and T and F′ a suitable σ–algebra on that space.
We can do the above with any 0 ≤ t ≤ T instead of T and view (Xu)0≤u≤t as a random element

(Xu)0≤u≤t : (Ω,FXt , P )→ (Ω′,F′) ; ω 7→ (Xu)0≤u≤t(ω)(5.2)

which assigns to ω ∈ Ω its X–trajectory u 7→ Xu(ω) between times 0 and t.
The Doob composition lemma remains valid in that setting but now the diagram is

(Ω,FXt , P ) (Ω′,F′)

(R̄,B1)

(Xu)0≤u≤t

g(t, ·)
Yt

This way we obtain for each t ∈ [0, T ] the existence of a (F′,B1)–measurable function g = g(t, ·)
(which carries t as an additional argument since it depends on t) such that

Yt(ω) = g
(
t,
(
Xu(ω)

)
0≤u≤t

)
. �(5.3)
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Remark 5.1. ? It is easy to see that the condition “Yt is FXt –measurable for each 0 ≤ t ≤ T”

is equivalent to “FYt ⊆ FXt for each 0 ≤ t ≤ T .”

Remark 5.2. Given are a probability space (Ω,F, P ), and a measurable space (Ω′,F′).
The results of this chapter are not needed to see the following:

(1) For a random elementX inm(F,F′), we can interpret the σ–algebra σ(X) as the con-
tainer of all stochastically relevant information of X in the following sense. Knowl-
edge of all events that belong to σ(X) means knowledge of the probabilities of all
those events A ⊆ Ω that can be described in terms involving X .

(2) Likewise, the filtration element FXt = σ{Xs : s ≤ t} of Definition 4.19 (Filtration
for a process Xt) on p.78 belonging to a stochastic process (Xt)t of such random
elements Xt in m(F,F′) is the container of all stochastically relevant information of
this process up to time t (for each time t).

(3) More generally, a process (Xt)t is adapted to a filtration (Ft)t ⇔ Fu contains all
stochastically relevant information of (Xt)t up to time u (for each u). �

The functional dependency theorems of this subchapter tell us that certain measurabilty conditions
for two random elements or two stochastic processes imply an ω–by–ω connection between them.

(4) Assume that the random variable Y is stochastically known to a random element X
in the sense that its stochastically relevant information σ(Y ) is part of that of X . In
other words, assume that σ(Y ) ⊆ σ(X). Then that by itself implies that Y is known
toX on an ω–by–ω basis: The functional dependency Y = g◦X , i.e., the assignment
ω 7→ g(ω), determines Y (ω) from X(ω) as Y (ω) = g

(
X(ω)

)
.

(5) Given are two processes Xt and Yt. Then (Yt)t is (FXt )t–adapted ⇔ for each t, the
random element Yt(ω) is a (measurable) function of the X(·, ω) trajectory between
times 0 and t. �

5.2 σ–Algebras Generated by Countable Partitions and Partial Averages

Introduction 5.1. We consider σ–algebras as stores of information from a different perspective. In
Section 5.1 (Functional Dependency of Random Variables) we were comparing the σ–algebras σ(X)
and σ(Y ) of two random variables X and Y and saw that a functional dependency Y = g ◦X exists
if σ(Y ) ⊆ σ(X).
Now we relate a random variable X on a probability space (Ω,F, P ) to a σ–algebra G ⊆ F which
only contains some but not all of the stochastically relevant information about X , i.e., we examine
the relationship of X and G in case that

σ(X) is not contained in G.

The following questions arise in this context.
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(A) Is there a random variable XG ∈ m(G,B1) which is, in some sense, the best possible
approximation of X?

(B) Is such an XG uniquely determined?
(C) What happens in the extreme case G = {∅,Ω}? 28

Since we expect G and XG to be about stochastically relevant information of X , and since all such
information is about probabilities, we immediately have the following partial answer to (B):

XG is, at best, only determined almost surely, i.e., up to a set of probability zero.

In other words, if a best approximation XG exists, then any random variable X ′G ∈ m(G,B1) which
satisfies X ′G = XG P–a.s. will serve as well.
Consider the special case in which a finite or infinite sequence of events G1, G2, . . . is a partition of
Ω and generates G, i.e., if J denotes the finite or infinite index set for this sequence,

Gi ∩Gj = ∅ for i 6= j,
⊎
j∈J

Gj = Ω, G = σ{Gj : j ∈ J}.(5.4)

The partitioning events Gj are the “atoms” of G, since each G ∈ G is a union of some or all of the
Gj . See Proposition 4.2 on p.53. Let n be the finite or infinite number of sets Gj .

(1) If |J | = 1, then Ω = G1, i.e., G = {∅,Ω}. Only constant functions Ω → R are G–
measurable, and the best estimate ω 7→ XG(ω) of a random variable X by a number
is its expectation XG(ω) = E[X]. We have found answers to questions (A) and (C).

(2) If |J | = 2, then Ω = G1
⊎
G2, thus G2 = G{1, and G = {∅, G1, G2,Ω}. We now can

separately consider the cases ω ∈ G1, ω ∈ G2 and take the weighted averages on G1 and
G2, i.e, we define

XG(ω) :=

{
1

P (G1) E [X111G1 ] if ω ∈ G1,
1

P (G2) E [X111G2 ] if ω ∈ G2.

=
1

P (G1)
E [X111G1 ] · 111G1(ω) +

1

P (G2)
E [X111G2 ] · 111G2(ω)

=
∑
j=1,2

1

P (Gj)
E
[
X111Gj

]
· 111Gj (ω).

(3) For general J we take the weighted averages on each Gj and splice them into a function
of ω:

XG(ω) :=
1

P (Gj)
E
[
X111Gj

]
if ω ∈ Gj , i.e., XG(ω) =

∑
j∈J

1

P (Gj)
E
[
X111Gj

]
· 111Gj (ω).

The equations given in (2) and (3) only work if P (Gj) 6= 0 for all indices j. Otherwise we amend
those formulas as follows. We partition our index set J into two index sets

J = J1

⊎
J0, defined as J1 := {j ∈ N : P (Gj) > 0}, J0 := {j ∈ N : P (Gj) = 0} .

We have learned that XG can be determined at best up to a P–null set. The set A0 :=
⊎
J0
Gj has

probability zero as the countable union of P–null sets. Thus we do not change any stochastically
28The other extreme case, G = F, is not up for discussion since we assumed that σ(X) * G.
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relevant properties if we set XG on A0 to some arbitrary number, most conveniently zero. In other
words, we replace the definition given in (3) with

XG(ω) :=
∑
j∈J1

1

P (Gj)
E
[
X111Gj

]
· 111Gj (ω) .(5.5)

Now let us reason why XG might be a solution to question (A). For this we briefly explore the
connection between XG and conditional expectations E[X | G] with respect to events G ∈ G. You
have encountered such conditional expectations in your probability course for the special case that
X is a discrete random variable. For an event G, they were defined as

E[X | G] =
∑
x

xP{X = x | G} .

In particular, if Y is another variable and G = {Y = y}, then

E[X | Y = y] =
∑
x

xP{X = x | Y = y} .

If X is not discrete but possesses a conditional density fX|G(x) instead, then we defined

E[X | G] =

∫ ∞
−∞

xfX|G(x) dx , i.e., P (A | G) =

∫
A
fX|G(x) dx for all events A .

We obtain for indicator functions X = 111A(A ∈ F) the following.

XG(ω) =
∑
j

1

P (Gj)
E
[
111Gj111A

]
· 111Gj (ω) =

∑
j

P (Gj ∩A)

P (Gj)
· 111Gj (ω)

=
∑
j

P (A | Gj) · 111Gj (ω) =
∑
j

E(111A | Gj) · 111Gj (ω) =
∑
j

E(X | Gj) · 111Gj (ω) .

This relationship,

XG(ω) =
∑
j

E(X | Gj) · 111Gj (ω) ,(5.6)

betweenXG and conditional expectations of the formE[X | Gj ] can be extended by use of the ILMD
Mehod to arbitrary nonnegative or integrable random variables X .

Note that the right hand side of (5.6) is constant in ω on each partitioning event Gj of G:

(5.7) XG(ω) = E(X | Gj) for each ω ∈ Gj .

This formula gives us the justification to call XG (a random variable!) the conditional expectation
of X with respect to G, the σ–algebra which is generated by those events Gj .
Proposition 5.2 which follows this introduction, will show that the integral equation∫

G
XG dP =

∫
G
X dP(5.8)
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holds for all events G ∈ G, and that this property, together with its G–measurability, characterizes
the random variable XG. It will be the key to generalizing the definition of XG from σ–algebras
which are generated by a finite or countable partition, Ω = G1,

⊎
G2
⊎
· · · of F–measurable sets Gj

to arbitrary sub–σ–algebras of F.
We will find for any σ–algebra G ⊆ F and nonnegative or integrable X a G–measurable XG which
satisfies formula (5.8). Since this formula yields matching “averages”

1

P (G)

∫
G
XG dP =

1

P (G)

∫
G
X dP(5.9)

for all events G ∈ G which have positive probability, there is hope that this random variable XG is
the answer to question (A) that was raised above. In fact, Theorem 5.6 on p.124 will show that XG

is the best least–squares estimate of X among all G–measurable functions. �

Proposition 5.2. We work under the assumptions of the introduction.

(1) Given are a probability space (Ω,F, P ) and a finite or infinite sequence G1, G2, . . . of elements of
F which constitute a partition of Ω. We write J for the finite or infinite index set for this sequence
and J1 for the set of those indices j such that P (Gj) > 0.

(2) Let G := σ{Gj : j ∈ J}. For an integrable or nonnegative random variable X on (Ω,F, P ), we
define again the G–measurable random variable XG via (5.5):

XG(ω) :=
∑
j∈J1

1

P (Gj)
E
[
X111Gj

]
· 111Gj (ω).

Then formula (5.8) of the introduction,
∫
G
XGdP =

∫
G
X dP , holds true for all G ∈ G.

PROOF: ? We employ the ILMD Mehod.

Step 1. If X = 111A for some A ∈ F, then for each k ∈ J ,∫
Gk

XG dP =
∑
j∈J1

1

P (Gj)

∫
Gk

E
[
111A111Gj

]
· 111Gj dP

=
∑
j∈J1

1

P (Gj)

∫
Gk

P (A ∩Gj) · 111Gj dP

=
∑
j∈J1

1

P (Gj)
P (A ∩Gj) · P (Gk ∩Gj) dP.

But theGj are disjoint, thus P (Gk∩Gj) = 0 for k 6= j, and P (Gk∩Gj) = P (Gk) for k = j. Therefore,
all terms in the sum except the one for j = k vanish, and we are left with∫

Gk

XG dP =
1

P (Gk)
P (A ∩Gk) · P (Gk) dP = P (A ∩Gk)

=

∫
Gk

111A dP =

∫
Gk

X dP.
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Since all elements of G are a finite or infinite union Gj1
⊎
Gj2

⊎
· · · of the sets Gj , this last result

extends for arbitrary events G ∈ G to ∫
G
XG dP =

∫
G
X dP.

Step 2. If X =
m∑
i=1

αi111Ai for some m ∈ N, A1, . . . , Am ∈ F, and nonnegative α1, . . . αm, we obtain by

first using the definition of XG, then linearity of expectations, then using the result obtained in Step
1 for each random variable 111Ai , then linearity of the integral,∫

G
XG dP

(5.5)
=

∫
G

∑
j∈J1

1

P (Gj)
E
[
X111Gj

]
· 111Gj dP =

∫
G

∑
j∈J1

1

P (Gj)
E

[
m∑
i=1

αi111Ai111Gj

]
· 111Gj dP

=
m∑
i=1

αi

∫
G

∑
j∈J1

1

P (Gj)
E
[
111Ai111Gj

]
· 111Gj

 dP
(5.5)
=

m∑
i=1

αi

∫
G

(
111Ai
)
G
dP

Step 1
=

m∑
i=1

αi

∫
G

111Ai dP =

∫
G

m∑
i=1

αi111Ai dP =

∫
G
X dP.

This proves the proposition for all simple functions.

Step 3: Monotone convergence allows us to extend the result from simple functions to any nonneg-
ative random variable.
Step 4: If X is integrable then we apply the result obtain step 3 to X+ and X−. It follows from∫
GX

+
GdP =

∫
GX

+dP , and
∫
GX

−
GdP =

∫
GX

−dP , that∫
G
XGdP =

∫
G

(
X+ −X−

)
G
dP =

∫
G
X+

GdP −
∫
G
X−GdP

=

∫
G
X+dP −

∫
G
X−dP =

∫
G

(
X+ −X−

)
dP =

∫
G
XdP

holds true for all G ∈ G. �

5.3 Conditional Expectations in the General Setting

What we have seen in the previous section was just of a motivational nature. We are ready now to
attack the general case of an arbitrary sub–σ–algebra G of F.

Theorem 5.3 (Existence Theorem for Conditional Expectations).

Let (Ω,F, P ) be a probability space, and let G be a sub–σ–algebra of F.
(I) Let X be a nonnegative random variable on (Ω,F, P ), let ν be the measure A 7→

∫
AXdP on F.

Let PG := P
∣∣
G

be the restriction of P to G, and let νG := ν
∣∣
G

be the restriction of ν to G. (See
Definition 2.21 on p.24.) In other words, PG and νG are the set functions defined as

PG(G) = P (G), νG(G) = ν(G), (G ∈ G).
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Then PG is a probability measure and νG is a measure on the measurable space (Ω,G) such that
νG � PG. The Radon–Nikodým derivative

E
[
X | G

]
:=

dνG
dPG

plays the role of XG in formula (5.8) on p.116 in the following sense:
E
[
X | G

]
is G–measurable and satisfies the partial averaging property:

(5.10)
∫
G
E
[
X | G

]
dP =

∫
G
X dP for all G ∈ G.

(II) Let X be an integrable random variable on (Ω,F, P ). The random variables E
[
X+ | G

]
and

E
[
X− | G

]
exist according to (I). Define

E
[
X | G

]
:= E

[
X+ | G

]
− E

[
X− | G

]
.

Then, E
[
X | G

]
satisfies formula (5.10).

PROOF: ?

PROOF of I: It is trivial that νG and PG are measures on the shrunken domain G, since they assign
the same function values ν(G) and P (G) to their arguments G as ν and P .
We now show that νG � PG, i.e., if G ∈ G such that PG(G) = 0, then νG(G) = 0. We obtain this
from ν � P (see prop.4.20 on p.102) as follows.

PG(G) = 0 ⇒ P (G) = PG(G) = 0 ⇒ ν(G) = 0 ⇒ νG(G) = ν(G) = 0.

The Radon–Nikodým theorem then guarantees the existence of the Radon–Nikodým derivative
dνG
dPG

, determined uniquely P–a.s. 29 We decide to name it E
[
X | G

]
rather than dνG

dPG
.

The next point is subtle and very important. Since the measures νG and PG live on the measurable
space (Ω,G) the Radon–Nikodým theorem applies to this space, thus E

[
X | G

]
is G–measurable

and not just F–measurable!
Next, we prove formula (5.10). Let G ∈ G. Since the function ω 7→ E

[
X | G

]
(ω)111G(ω) is G–

measurable, it follows from PG = P
∣∣
G

that∫
G
E
[
X | G

]
dP =

∫
E
[
X | G

]
111G dP =

∫
E
[
X | G

]
111G dPG =

∫
G
E
[
X | G

]
dPG.(5.11)

(See Exercise 4.6 on p.109 for the second equation.) Further,

E
[
X | G

]
=

dνG
dPG

, i.e., E
[
X | G

]
dPG =

dνG
dPG

dPG = dνG.(5.12)

We obtain from equations (5.11) and (5.12) that∫
G
E
[
X | G

]
dP =

∫
G
dνG = νG(G) = ν(G) =

∫
G
X dP

29For the a.s. uniqueness of the Radon–Nikodým derivative see Remark 4.27 on p.100.
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The equation next to the last holds since the set functions νG = ν
∣∣
G

and ν are identical for arguments
G ∈ G

PROOF of II (Outline): Formula (5.10) holds for X+ and X−. It is a straightforward exercise to
show the validity of (5.10) from the linearity of the integral. �

Remark 5.3. We state once more that the partial averaging property (5.10) determines the G–
measurable random variableE

[
X | G

]
P–a.e. in the following sense. IfX∗ is another G–measurable

random variable such that ∫
G
XdP =

∫
G
X∗dP for all G ∈ G ,

then P{X∗ 6= E
[
X | G

]
} = 0. �

This last remark allows us to make the following definition (see SCF2 Definition 2.3.1).

Definition 5.1 (Conditional Expectation w.r.t a sub–σ–algebra).
Let (Ω,F, P ) be a probability space and X a nonnegative or integrable random variable.

For a sub–σ–algebra G of F we call any(!) random variable X∗ that satisfies
(a) (Measurability): X∗ is G–measurable,
(b) GGG–Partial averaging or Partial averaging:∫

G
X∗ dP =

∫
G
X dP for all G ∈ G,(5.13)

a conditional expectation of X with respect to G.
In most cases it does not matter which version X∗ that satisfies (a) and (b) is chosen. It is
customary to let the symbol E

[
X | G

]
denote any such X∗ and refer to it as the conditional

expectation of X with respect to G.

If Z is another random variable on (Ω,F, P ) then σ(Z) ⊆ F, thus E
[
X | σ(Z)

]
is defined. In

this case we will generally use the notation

E
[
X | Z

]
:= E

[
X | σ(Z)

]
.

We call E
[
X | Z

]
the conditional expectation of X with respect to Z. �

Remark 5.4. We can think of E[X | G] as an estimate of X based on only the information that is
available in G. The collecton of averages

1

P (G)

∫
G
X dP, where G ∈ G and P (G) > 0,

is sufficient to represent all stochastically relevant information for the G–measurable E
[
X | G

]
. The

word “partial” in “partial averaging” indicates that those averages only are a part of

1

P (A)

∫
A
X dP, where A ∈ F and P (A) > 0 .
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This larger collection constitutes the stochastically relevant information for X itself.
Partial averaging makes it plausible that E[X|G] is a well chosen estimate ofX since all its averages
over sets in G match those of X . The larger G, the better an estimate for X we obtain.
Consider in particular the case of the introduction 5.1 to this chapter on p.114 where G was gener-
ated by a partitioning sequence Ω = G1

⊎
G2
⊎
· · · . In that case,

E[X | G](ω) =
∑
j∈J1

1

P (Gj)
E
[
X111Gj

]
· 111Gj (ω),(5.14)

where J1 is the set of indices for which P (Gj > 0). See formula (5.5) on p.116. So the estimate
E[X | G] of X is constant on each atom Gj of G. Moving to a partition with more sets with smaller
probabilities will improve this estimate. �

Remark 5.5 (Composition of conditional expectations). ? According to Proposition 5.1 (Doob
Composition Lemma) on p.111 the σ(Z)–B1 measurable function on Ω,

E
[
X | Z

]
: Ω→ R, ω 7→ E

[
X | Z

]
(ω),

can be written as a composite function

E
[
X | Z

]
= g ◦ Z,(5.15)

where Z : z 7→ g(z) is B1–B1 measurable. Very confusingly it is common to write

E[X | Z = ·] : z 7→ E[X | Z = z](5.16)

for this function g(z). With this notation the functional relationship E
[
X | Z

]
(ω) = g

(
Z(ω)

)
which

is obtained by replacing the dummy variable z with the function value Z(ω), reads

E[X | Z](ω) = E[X | Z = · ]
(
Z(ω)

)
= E[X | Z = Z(ω)] . �(5.17)

The following concrete example shows how to compute a conditional expectation for a σ–algebra
which is generated by a finite partition of Ω.

Example 5.1. Let Ω :=]0, 6],F := B(]0, 6]) := all Borel sets of ]0, 6], P := uniform probability on
]0, 6], i.e.,

P (]a, b]) :=
b− a

6
for all 0 < a ≤ b ≤ 6.

Let G := σ(]0, 2], ]2, 6]), and let X be the random variable defined by X(ω) := 5ω.
We compute the conditional expectation ω 7→ E[X | G](ω) as follows. According to Proposition 5.2
on p.117,

E[X | G](ω) =
∑
j=1,2

1

P (Gj)
E[X111Gj ](ω) =

{
1

P (G1) E [X111G1 ] if ω ∈ G1,
1

P (G2) E [X111G2 ] if ω ∈ G2.
(5.18)
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We have P (G1) =
2

6
, P (G2) =

4

6
,

∫
]a,b]

X dP =
5

6

∫ b

a
xdx =

5

6

(
b2

2
− a2

2

)
for all 0 < a ≤ b ≤ 6.

Thus the solution is

0 < ω ≤ 2 ⇒ E[X | G](ω) =
6

2
· 5

6

(
22

2
− 02

2

)
=

5

2

(
2 − 0

)
= 5,

2 < ω ≤ 6 ⇒ E[X | G](ω) =
6

4
· 5

6

(
62

2
− 22

2

)
=

5

4

(
18 − 2

)
= 20, i.e.,

E[X | G] = 5 · 111]0,2] + 20 · 111]2,6] .

We are done, but here is a sanity check. It should be true that E
[
E[X | G]

]
= E[X]. We have

E
[
E[X | G]

]
= 5 · P (]0, 2]) + 20 · P (]2, 6]) =

2 · 5
6

+
4 · 20

6
=

90

6
= 15,

E[X] =

∫
Ω
X dP = 5

∫ 6

0
x
dx

6
=

5

6

(
62

2
− 02

2

)
=

5

6
· 18 = 15. �

Theorem 5.4 (Monotony of Conditional Expectations). Let X and Y be two random variables on a
probability space (Ω,F, P ) which both are integrable or nonnegative. and let G be a sub–σ–algebra of F.

If X ≤ Y a.s. then E[X | G] ≤ E[Y | G] a.s.(5.19)

PROOF: ? The proof is a repetition of that of Theorem 4.8 on p.87.

Let A := {E[X | G] > E[Y | G]} and An :=

{
E[X | G] > E[Y | G] +

1

n

}
; (n ∈ N) .

We will prove (5.19) by showing that the assumption P (A) > 0 implies
∫
An
X dP >

∫
An
Y dP for

large n. This contradicts X ≤ Y a.s., since that assumption implies
∫
BXdP ≤

∫
B Y dP for all B ∈ F.

The sets An are G–measurable, thus partial averaging implies that∫
An

X dP =

∫
An

E[X | G] dP and
∫
An

Y dP =

∫
An

E[Y | G] dP .(5.20)

Assume to the contrary that P (A) > 0. SinceAn ↑ A, P (An) ↑ P (A). See Proposition 4.7 (Continuity
properties of measures) on p.60. Thus there exists γ > 0 such that P (A) = 2γ and hence some n ∈ N
such that P (An) ≥ γ. Since E[X | G] > E[Y | G] + 1

n on all of An,∫
An

X dP
(5.20)
=

∫
An

E[X | G] dP ≥
∫
An

(
E[Y | G] +

1

n

)
dP

=

∫
An

E[Y | G] dP +
1

n
P (An) ≥

∫
An

E[Y | G] dµ +
γ

n

>

∫
An

E[Y | G] dP =

∫
An

Y dP .

122 Math 454 - Version 2025-02-11



Math 454 – Additional Material Student edition with proofs

As mentioned earlier this contradicts X ≤ Y a.s., and we conclude that P (A) = 0. Thus

E[X | G] ≤ E[Y | G] a.s. . �

The following is SCF2 Theorem 2.3.2 which I reproduce here essentially unaltered. In particular I
use his phrase “Taking out what is known”. It sounds awkward to me, but I would not know a
better formulation: It expresses the fact that a G–measurable random variable (i.e., one for which G
contains all its stochastically relevant information,) can be pulled out of a conditional expectation
E[· · · | G] the same way a constant number can be pulled out of an ordinary expectation E[. . . ].
Note that all equations and inequalities are uderstood to only hold P–a.s., since conditional
expectations are defined only P–a.s.!

Theorem 5.5. Let (Ω,F, P ) be a probability space. let G be a sub–σ–algebra of F.

(a) (Linearity of conditional expectations) If X and Y are integrable random variables and c1

and c2 are constants, then

(5.21) E[c1X + c2Y |G] = c1E[X|G] + c2E[Y |G].

This equation also holds if we assume that X and Y are nonnegative (rather than integrable) and
c1 and c2 are positive, although both sides may be +∞.

(b) (Taking out what is known) If X and Y are integrable random variables, if XY is integrable,
and if X is G–measurable, then

(5.22) E[X · Y |G] = X · E[Y |G].

This equation also holds if we assume that X is positive and Y is nonnegative (rather than inte-
grable), although both sides may be +∞.

(c) (Iterated conditioning) If H is a sub–σ–algebra of G (H contains less information than G), and
if X is an integrable random variable, then

(5.23) E
[
E[X|G]

∣∣H] = E[X|H].

This equation also holds if we assume that X is nonnegative (rather than integrable), although
both sides may be +∞.

123 Math 454 - Version 2025-02-11



Math 454 – Additional Material Student edition with proofs

(d) (Independence) If X is integrable and independent of G, then

(5.24) E[X|G] = E[X].

This equation also holds if we assume that X is nonnegative (rather than integrable), although
both sides may be +∞.

(e) (Conditional Jensen’s inequality) Let ϕ : R → R be a convex function, (see Definition 2.25
(Concave-up and convex functions) on p.31) and that X is integrable. Then

(5.25) ϕ
(
E[X | G]

)
≤ E[ϕ ◦ (X) | G].

PROOF: See the SCF2 text. �

Example 5.2. Here is an example for the Jensen inequality for conditional expectations. Let Wt be a
Brownian motion on a filtered probability space (Ω,F,Ft, P ), let g(x) := 2x6−8, and let Yt := g(Wt).
Then g is convex (concave–up). Thus, for any t, h ≥ 0,

Yt = g(Wt)
(a)
= g

(
E[Wt+h | Ft]

) (b)
≤ E

[
g
(
Wt+h

)
| Ft
]

= E
[
Yt+h | Ft

]
.

In the above, (a) holds because Wt is a martingale, and (b) follows from the conditional form of
Jensen’s inequality. �

Proposition 5.3.

Let (Ω,F, P ) be a probability space, G a sub–σ–algebra of F, and X a nonnegative or integrable
random variable. Then

(5.26) E
[
E[X|G]

]
= E[X].

PROOF: The proof is left as exercise 5.1. See p.126. �

Note the significance of formula (5.26). It states that E[X|G] is an unbiased estimator of X .

Theorem 5.6. Let X be a square–integrable random variable on a probability space (Ω,F, P ), i.e.,

E[X2] < ∞ .

Let G be a sub–σ–algebra of F. Then

E[X | G ] is the best possible estimate of X , since it minimizes the distance to X in the following
sense. If AAA = {X̂ : X̂is G–measurable and E[X̂2 <∞]} then

E
[(
X − E[X | G]

)2]
= min

(
E[(X − X̂)2] : X̂ ∈AAA

)
.(5.27)

In other words, E[X | G] is the optimal least squares estimate of X among all G–measurable and
square–integrable random variables.
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PROOF: ? We first prove that

E
[ (
X − E[X | G]

)2 | G] ≤ E[ (X − Z)2 | G] , for all Z ∈AAA .(5.28)

Let

X1 := E
[ (
X − E[X | G]

)2 | G] .
X2 := E

[ (
E[X | G] − Z

)2 | G] .
X3 := E

[ (
X − E[X | G]

) (
E[X | G] − Z

) ∣∣G] .
Then

E
[
(X − Z)2 | G

]
= E

[(
(X − E[X | G]) + (E[X | G] − Z)

)2 ∣∣G]
= X1 + X2 + 2X3 ≥ X1 + 2X3 ,

(5.29)

(The inequality results from X2 ≥ 0 and the monotony of conditional expectations.)
We will show that X3 = 0.

X3 = E[ (X · E[X | G]) | G] − E[
(
E[X | G] · E[X | G]

)
| G]

− E[X · Z | G ] + E
[ (
E[X | G] · Z

)
| G
]
.

(5.30)

We apply the “pull out what is known” rule to terms #1 and #3 of (5.30) and obtain

E[ (X · E[X | G]) | G] = E[X | G] · E[X | G] ,

E[X · Z | G ] = Z · E[X | G] .

For terms #2 and #4 of (5.30) we observe that E[X | G]·E[X | G] and E[X | G]·Z are G–measurable
random variables, thus E[... | G] has no effect, thus

E[
(
E[X | G] · E[X | G]

)
| G] = E[X | G] · E[X | G] ,

E
[ (
E[X | G] · Z

)
| G
]

= E[X | G] · Z .

We substitute those four indentities into formula (5.30) and obtain

X3 = E[X | G] · E[X | G] − E[X | G] · E[X | G] − Z · E[X | G] + E[X | G] · Z.

This proves X3 = 0. It follows from (5.29) that E
[
(X − Z)2 | G

]
≥ X1, i.e.,

E
[
(X − Z)2 | G

]
≥ E

[ (
X − E[X | G]

)2 | G] .
We have shown that (5.28) is true.
Formula (5.27) now is obtained easily. Let Z ∈AAA . Since

E
[
E [Y | G]

]
= E[Y ] and Y1 ≤ Y2 a.s. ⇒ E[Y1] ≤ E[Y2]

for any integrable or non–negative random variables Y, Y1, Y2, it follows from (5.28) that

E
[
(X − Z)2

]
= E

[
E[(X − Z)2 | G]

]
≥ E

[
E[ (X − E[X | G])2 | G ]

]
.
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But this is the assertion of formula (5.27). �
Remark: Note that statisticians also refer to the expressionE[(X−X̂)2] of (5.26) as the mean square
error of the estimate X̂ of the random variable X . �

The next theorem, which Shreve calls the Independence Lemma, can be very useful to actually
compute conditional expectations. This is SCF2 Lemma 2.3.4.

Theorem 5.7 (Independence Lemma).

Let (Ω,F, P ) be a probability space, and let G be a sub–σ–algebra of F. Assume that
• the random variables X1, . . . , XK are G–measurable,
• the random variables Y1, . . . , YL are independent of G.

Let f(x1, . . . , xK , y1, . . . , yL) be a function of the dummy variables x1, . . . , xK and y1, . . . , yL.
Let g(x1, . . . , xK) be the function

g(x1, . . . , xK) = Ef(x1, . . . , xK , Y1, . . . , YL).

Then E[f(X1, . . . , XK , Y1, . . . , YL)|G] = g(X1, . . . , XK).

PROOF: See the outline given in the text. �

5.4 Exercises for Ch.5

Exercise 5.1. Prove prop.5.3 on p.124 of this document: Let (Ω,F, P ) be a probability space, G a
sub–σ–algebra of F, and X a nonnegative or integrable random variable. Then

E[E[X | G] ] = E[X] . �
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6 Brownian Motion

Key properties of Brownian Motion will be that this process is both a martingale and a Markov
process. We start out this chapter by discussing those two concepts. We follow closely the SCF2
text.

6.1 Martingales and Markov Processes

Introduction 6.1. We will see that the pricing of stock options and other financial derivatives with
the help of tools from stochastic calculus fundamentally depends on the following.

(1) Consider the filtered probability space (Ω,F,Ft, P ), in which the filtration element Ft repre-
sents the financial market information that accrued until the time t. Then the “real world”
probability P can be replaced by a “risk–neutral” probability P̃ which is characterized as
follows: Let St be the price of a stock at time t. How much would we be willing to pay at
t = 0 for the asset if the bank pays interest at a rate R(s) at time s? Certainly not the full
amount St, since, if we invest St dollars in the bank instead, then compound interest would
grow that money to e

∫ t
0 R(s)dsSt. Rather, the fair price of the stock at t = 0 would be the

discounted stock price, Mt := e−
∫ t
0 R(s)dsSt.

The risk–neutral world, the one governed by P̃ , is characterized as follows: the future de-
velopment of the discounted price process Mt(ω) of the stock shows no trend that can be
inferred from the information Ft that is available at time t.

In other words, the best possible prediction of this process at a future time t + h in risk–
neutral terms is its present state, Mt:

(6.1) Best estimate of Mt+h given Ft = Mt (h > 0) .

We have seen in Theorem 5.6 on p.124 that the best estimate based on the information con-
tained in Ft is the conditional expectation w.r.t. Ft. Thus (6.1) is made mathematically
precise by the formula

(6.2) Ẽ[Mt+h | Ft] = Mt, (h > 0).

Here Ẽ[. . . ] is the expectation
∫
. . . dP̃ with respect to risk–neutral probability P̃ .

Stochastic processes Mt that satisfy (6.2) are called martingales. We will discuss some of
their properties.

(2) The future development of any function ϕ(Mt) of that discounted price processMt, but also
of other processes such as stock price St itself, does not depend on the entire past informa-
tion, i.e., not on all of Ft. Rather the knowledge of the present information concerning those
processes will be sufficient. The formal mathematical definition is that of a Markov process,
a process Xt which satisfies

(6.3) E[ϕ
(
Xt+h

)
|Ft] = E[ϕ

(
Xt+h

)
|Xt] , (h > 0)

for all reasonable, i.e., nonnegative and measurable, functions ϕ(x) �

We now give the formal definition of a martingale.

Definition 6.1 (Martingale). Let (Ω,F, (Ft)t∈I , P ) be a filtered probability space.
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We assume that I is the index set of an extended real–valued, adapted, continuous time or
discrete time process X that satisfies E[|Xt|] <∞ for all t. We call X

(a) a martingale if E[Xt | Fs] = Xs a.s., for all s ≤ t such that s, t,∈ I ,

(b) a submartingale if E[Xt | Fs] ≥ Xs a.s., for all s ≤ t such that s, t,∈ I ,

(c) a supermartingale if E[Xt | Fs] ≤ Xs a.s., for all s ≤ t s.t. s, t,∈ I . �

Remark 6.1. A simple proof by induction shows that, if I = N then
(a) X is a martingale ⇔ E[Xn+1 | Fn] = Xn a.s., for all n ∈ N,

(b) X is a submartingale ⇔ E[Xn+1 | Fn] ≥ Xn a.s., for all n ∈ N,

(c) X is a supermartingale ⇔ E[Xn+1 | Fn] ≤ Xn a.s., for all n ∈ N. �

Remark 6.2.

Comparisons on an ω–by–ω basis involving conditional expectations can generally only be
asserted to hold almost surely since such conditional expectations only are determined up
to a set of probability zero. We will follow the example of Shreve and often drop the “a.e.”
in such statements. �

Proposition 6.1.

A martingale X satisfies E[Xs] = E[Xt] for any s, t ∈ I .

PROOF:
Let s < t. We apply the partial averaging property for conditional expectations. Integration over
the set Ω (which belongs to Fs) results in

E[Xt] =

∫
Ω
Xt dP =

∫
Ω
E[Xt | Fs] dP =

∫
Ω
Xs dP = E[Xs] . �

The following connection between sums of independent variables and submartingales is worth-
while remembering.

Lemma 6.1. If Xn are Fn adapted and independent, and if Sn =
n∑
j=1

Xj , then

E[Sn] increasing ⇒ Sn is a submartingale ,
E[Sn] = const ⇒ Sn is a martingale .
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PROOF:

E[Sn+k | Fn] = Sn + E

 n+k∑
j=n+1

Xj | Fn


= Sn + E

 n+k∑
j=n+1

Xj

(independence of Xj and Fn)

= Sn +
(
E
[
Sn+k] − E

[
Sn]
)
.

Since E
[
Sn+k] − E

[
Sn] ≥ 0 for submartingales and E

[
Sn+k] − E

[
Sn] = 0 for martingales, the

assertion follows. �

Definition 6.2 (SCF2 Definition 2.3.6 - Markov Process). Let (Ω,F, P ) be a probability space, let T
be a fixed positive number, let (Ft)t∈[0,T ], be a filtration of sub-a-algebras of F.
Let X = (Xt)t∈[0,T ], be an adapted stochastic process for which the codomain Ω′ of the random
variables ω 7→ Xt(ω) is the real numbers or Rn. (It is thus more appropriate to write x = Xt(ω)
instead of ω′ = Xt(ω).)

Assume that for all 0 ≤ s ≤ t ≤ T and for every nonnegative, Borel–measurable function
ft : x 7→ ft(x), one can find another Borel–measurable function fs : x 7→ fs(x) such that

E[ft
(
Xt

)
| Fs] = fs

(
Xs

)
.(6.4)

Then we call X a Markov process (with respect to the filtration (Ft)t∈[0,T ]. �

There is yet another alternate definition of the Markov property which has the advantage of being
very well suited to determine in practical terms whether a process is Markov:

Proposition 6.2.

A process X is a Markov process if and only if the following is satisfied.
Let 0 ≤ s ≤ t ≤ T , and let ϕ be an arbitrary, nonnegative, Borel–measurable function x 7→ ϕ(x).
Then,
(6.5) E[ϕ

(
Xt

)
|Fs] = E[ϕ

(
Xt

)
|Xs].

The interpretation is as follows: 30

The future development of a Markov process does not depend on the past, only on the present.

PROOF: The equivalence of (6.4) and (6.5) is not hard to see.
First, assume that (6.4) holds true. Let ϕ be nonnegative and Borel–measurable. Setting ft(x) :=
ϕ(x) in (6.4), we see that there is a Borel measurable function x 7→ fs(x) that satisfies

E[ϕ
(
Xt

)
| Fs] = fs

(
Xs

)
.

30https://en.wikipedia.org/wiki/Markov_property
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Since the right–hand side is a function of Xs, the same must be true for the left–hand side, i.e.,
E[ϕ

(
Xt

)
| Fs] is σ(Xs)–measurable. This yields the first equation in

E[ϕ
(
Xt

)
| Fs] = E

[
E[ϕ

(
Xt

)
| Fs] | Xs

]
= E[ϕ

(
Xt

)
| Xs].

The second equation follows from the Iterated Conditioning property. See Theorem 5.5 on p.123.

Now assume that (6.5) is satisfied. Let ft be nonnegative and Borel–measurable and s ≤ t. Then

E[ft
(
Xt

)
|Fs] = E[ft

(
Xt

)
|Xs].

We argue as before and see that E[ft
(
Xt

)
|Xs] is σ(Xs)–measurable, since it equals, by definition,

E[ft
(
Xt

)
|σ(Xs)]. We use Doob composition and conclude that we can write this as a function fs◦Xs

for a suitable Borel measurable function fs. In other words,

E[ft
(
Xt

)
|Fs] = fs ◦Xs.

This is formula (6.4). �

Remark 6.3. If Xt is a real–valued or n–dimensional Markov process, then we apply the previ-
ous proposition to the function ϕ(x) = x in the onedimensional case, or the coordinate functions
ϕ(x(1), . . . , x(n)) = x(j). We obtain

E[Xt+h | Ft] = E[Xt+h | Xt] ; (t, h ≥ 0) one dimensional case ,

E[X
(j)
t+h | Ft] = E[X

(j)
t+h | Xt] ; (t, h ≥ 0) n–dimensional case :

(6.6)

Conditioning of the position at a future time t + h with respect to the position at time t is
equivalent to conditioning with respect to the entire past Ft up to time t. �

Proposition 6.3 (Processes with independent increments are Markov). 31

An Ft–adapted exended real–valued process with independent increments is Markov.

PROOF: ? The proof can be found in many graduate level books on probability theory, e.g.,
[3] Bauer, Heinz: Probability Theory. �

Remark 6.4. The concept of a Markov process also exists for discrete time stochastic processes. Just
replace the index set [0, T ] with the set I of the countable set of times and adjust the conditions for
such indices.
For example, the condition “for all 0 ≤ s ≤ t” becomes “for all s, t ∈ I such that s ≤ t”.
The above applies in particular to random sequences X1, X2, X3, . . . . If such a random sequence
satisfies one of the equivalent conditions (6.4) or (6.5), then it is customary to speak of a Markov
chain rather than a time discrete Markov process. �

31Adapted from [8] Calin, O., An Introduction to Stochastic Calculus with Applications to Finance
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Example 6.1. Here are two informal examples of Markov chains.
(1) The random sequence X = Xn, n = 0, 1, 2, 3, . . . , is defined as follows. We assume that

X0(ω) = n0 for some fixed n0 ∈ Z and all ω, and

Xn(ω) =

{
Xn−1(ω) + 1 with probability 0 < p < 1,

Xn−1(ω) − 1 with probability 1− p.

Clearly, this sequence satisfies (6.5), since the value of Xn(ω) does not depend on any
Xj(ω) for j < n − 1. This Markov chain is called a random walk on the integers. In the
special case p = q = 1

2 we speak of a symmetric random walk. The beginning sections
of SCF2 Chapter 3 are about the symmetric random walk.

(2) The price S = Sn of a stock at times n = 0, 1, 2, 3, . . . develops according to the following
rules: S0(ω) = s0 for some fixed real number s0 and all (ω), and

Sn(ω) =

{
u · Sn−1(ω) with probability 0 < p < 1,

d · Sn−1(ω) with probability 1− p,

for two fixed real numbers 0 < d < u. Typically we will have d < 1 < u so that u
signifies an upward movement in stock price and d signifies a downward movement.
This sequence also satisfies (6.5), since the value of Sn(ω) does not depend on the stock
price at times prior to n− 1.
We will examine this process as part of the binomial asset model in Chapter 8 (The Bino-
mial Asset Model). �

6.2 Basic Properties of Brownian Motion

Definition 6.3 (Brownian motion). Given are the index set I := [0,∞[, a filtered probability space
(Ω,F,Ft, P ) with t ∈ I , and a stochastic process W = (Wt)t∈I .

We call W a Brownian motion with respect to the filtration Ft, if it satisfies the following.

(1) W is adapted to Ft.
(2) P{W0 = 0} = 1.
(3) P{t 7→Wt is continuous for ALL t } = 1.
(4) Let 0 ≤ s < t <∞. Then the increment Wt −Ws is independent of the σ–algebra Fs.
(5) Let 0 ≤ s < t <∞. Then Wt −Ws ∼NNN (0, t− s), i.e., Wt −Ws is normal with

E[Wt − Ws] = 0,

Var [Wt − Ws] = t − s. �
(6.7)

Remark 6.5. IfWt is a Brownian motion with respect to a filtration Ft then it also is one with respect
to its own filtration FW =

(
FWt
)
t∈I , defined as

FWt = σ(Ws : 0 ≤ s ≤ t).
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In this case we simply speak of Brownian motion without mentioning the filtration FWt .
One can prove that the increments are independent w.r.t.FWt , if

(4’) For any finite selection of times 0 ≤ t0 < t1 < · · · < tm <∞ the increments
Wt1 − Wt0 , Wt2 − Wt1 , . . . , Wtm − Wtm−1 are independent. �

A proof acceptable to mathematicians that definition 6.3 is free of contradictions and Brownian
motion actually exists (the tough part is proven continuity at all times t for the trajectories t 7→Wt(ω)
belonging to a set of probability 1) was first given by Norbert Wiener. For this reason you will find
books which refer to Brownian motion as Wiener process.

The consequences of the next theorem, which we include without proof, are profound. We cannot
define integrals ∫ t1

t0

Zt(ω)W ′t(ω) dt ,

since there is no derivative W ′t(ω).

Theorem 6.1.

For a Brownian motion (Wt)t≥0 on a filtered probability space (Ω,F),Ft, P ),

the paths t 7→Wt(ω) are nowhere differentiable with probability 1 .

In other words,

P

{
ω :

dWt(ω)

dt
exists for at least one t ≥ 0

}
= 0 .

PROOF: Out of scope. A proof can be found, e.g., in [3] Bauer, Heinz: Probability Theory. �

For the next definition, note the following.

(a) IfX be a random variable and u ∈ R, then the random variable ω 7→ euX(ω) is nonnegative
as an exponential. Thus, its expected value E

[
euX

]
is always defined (though it may be

infinite).
Here is the multidimensional analogue.

(b) If ~X = (X1, . . . , Xn) is a random vector and ~u = (u1, . . . , un) ∈ Rn, then the expected
value of the random variable

ω 7→ e~u•
~X(ω) = exp

 n∑
j=1

uj Xj(ω)


is always defined (though it may be infinite). In the above, as usual,

if ~a = (a1, . . . , an) ∈ Rn, ~b = (b1, . . . , bn) ∈ Rn, then ~a •~b =
n∑
j=1

ajbj

denotes the standard inner product of Rn

These obervations allow us to make the next definition for any random variable X and any random
vector ~X .
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Definition 6.4 (Moment–generating function). Let X be a random variable and let ~X =
(X1, . . . , Xn) be a random vector on a probability space (Ω,F, P ). We define

ΦX : R −→ [0,∞]; u 7→ ΦX(u) := E
[
euX

]
,(6.8)

Φ ~X : Rn −→ [0,∞], ~u 7→ Φ ~X(~u) := E
[
e~u•

~X
]
.(6.9)

We call ΦX (resp., Φ ~X ), the moment–generating function aka MGF of X (resp., of ~X).
In the multidimensional case we also call Φ ~X the joint moment–generating function aka
joint MGF of ~X . �

Proposition 6.4.

Let Z be a normal random variable with mean α and variance σ2 on a probability space (Ω,F, P ).
Then its moment–generating function is

ΦZ(u) = eαu+ 1
2
σ2u2

.(6.10)

PROOF: I was not able to locate the proof in [16] Wackerly, Mendenhall and Scheaffer: Mathematical
Statistics with Applications). but it can be found in most text books on probability theory You can
find it for the case µ = 0 in the proof of SCF2, Theorem 3.2.1. �

Proposition 6.5.

Let Wt, 0 ≤ t < ∞ be a Brownian motion on a filtered probability space (Ω,F,Ft, P ). If s, t ∈
[0,∞[, then

E[Wt] = 0,(6.11)
Cov[Ws,Wt] = E[WsWt] = min(s, t).(6.12)

PROOF: See SCF2, ch.3.3.2 �

Proposition 6.6. ?

Let Wt, 0 ≤ t <∞ be a Brownian motion on a filtered probability space (Ω,F,Ft, P ). Let

0 ≤ t0 < t1 < · · · < tm .

Then the covariance matrix for the m–dimensional random vector
(
Wt1 ,Wt2 . . . ,Wtm

)
is

E[Wt1Wt1 ] E[Wt1Wt2 ] ... E[Wt1Wtm ]

E[Wt2Wt1 ] E[Wt2Wt2 ] ... E[Wt2Wtm ]

...
...

. . .
...

E[WtmWt1 ] E[WtmWt2 ] ; ... E[WtmWtm ]

 =


t1 t1 ... t1
t1 t2 ... t2
...

...
. . .

...
t1 t2 ... tm

(6.13)
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Moreover the moment–generating function for
(
Wt1 ,Wt2 . . . ,Wtm

)
is

ϕ(u1, . . . , um) = E
[
exp

{
umWtm + um−1Wtm−1 + · · · + u1Wt1

}]
= exp

{1

2
(u1 + u2 + um)2t1 +

1

2
(u2 + u3 + um)2(t2 − t1) + · · ·

· · ·+ 1

2
(um−1 + um)2(tm−1 − tm−2) +

1

2
u2
m(tm − tm−1)

}
.

(6.14)

PROOF: See SCF2, ch.3.3.2 �

It is well known that moment–generating functions uniquely determine the distribution of random
variables and random vectors. Thus we have the following.

Theorem 6.2 (SCF2 Theorem 3.3.2 – Characterizations of Brownian motion). ?

Let (Ω,F, P ) be a probability space with a process Wt, 0 ≤ t <∞ satisfying
• W0(ω) = 0,
• the trajectories t 7→Wt(ω) are continuous functions of t P–a.s.

Then we have equivalence (1) ⇔ (2) ⇔ (3) of the following three statements:
(1) For all 0 = t0 < t1 < · · · < tm, the increments

Wt1 − Wt0 , Wt2 − Wt1 , . . . , Wtm − Wtm−1 ,

are independent, and each of these increments is normally distributed with mean zero and variance
Var[Wtm − Wtm−1 ] = tm − tm−1.

(2) For all 0 = t0 < t1 < · · · < tm, the random variables Wt1 ,Wt2 . . . ,Wtm are jointly normal with
means E[Wtj ] = 0 and covariance matrix (6.13).

(3) For all 0 = t0 < t1 < · · · < tm, the random variables Wt1 ,Wt2 . . . ,Wtm have the joint moment–
generating function (6.14).

Further, if one of (1), (2), (3) is satisfied, then
(
Wt

)
t≥0

is a Brownian motion with respect to FWt .

PROOF: �

The following is SCF2 Theorem 3.3.4.

Theorem 6.3 (Brownian motion is a martingale).

Let W =
(
Wt

)
t≥0

, be a Brownian motion on a filtered probability space (Ω,F,Ft, P ). Then W is
an Ft–martingale.

PROOF: For 0 ≤ s ≤ t, we have

E[Wt |Fs] = E[
(
Wt −Ws

)
+ Ws |Fs] = E[

(
Wt −Ws

)
|Fs] + E[Ws |Fs]

= E[Wt −Ws] + Ws = Ws.
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The third equation results a) from the independence of Wt − Ws and Fs, and b) from the Fs–
measurability of Ws. �

6.3 Digression: L1 and L2 Convergence ?

In this section we use the same symbol ‖ · ‖ for very different ways to define the size of an item, and
the same symbol d(·, ·) for very different ways to define the distance of two items.

Example 6.2. Here we give six examples of measuring sizes and distances. The first is well known
from linear algebra.

(a) For vectors ~x = (x1, . . . , xn) ∈ Rn and ~y = (y1, . . . , yn) ∈ Rn, we easily accept that

‖~x‖2 :=

√√√√ n∑
j=1

xj2 and d2(~x, ~y) := ‖~x − ~y‖2(6.15)

are a good way to measure the size of ~x and the distance between ~x and ~y. If n = 2 then
~x and ~y are ε–close, i.e., have distance less than ε, ⇔ ~y lies within a circle of radius ε
around ~x.

(b) The following is not quite as plausible, but we might also be willing to accept

‖~x‖1 :=
n∑
j=1

|xj | and d1(~x, ~y) := ‖~x − ~y‖1(6.16)

as a way to measure the size of ~x and the distance between ~x and ~y. Now, if n = 2, the
vectors ~x and ~y are ε–close ⇔ ~y lies within the tilted rectangle with edges (x1 ± ε, y2)
and (x1, y2 ± ε).

(c) For real–valued functions f, g : [a, b] → R, defined on an interval [a, b] ⊆ R, we could
measure the size ‖f‖L1 of f by the area enclosed by the graph of f , the x–axis, and the
vertical lines, y = a and y = b, and we could measure the distance d(f, g) between f and
g by the area which is enclosed by the graphs of f and g, and the vertical lines, y = a and
y = b. In other words,

‖f‖L1 :=

∫ b

a
|f(t)| dt and dL1(f, g) := ‖f − g‖L1 .(6.17)

(d) This time working with squares is not quite as plausible as what we did in (c), but we
might also be willing to accept for f, g : [a, b] → R to measure the size ‖f‖ of f and the
distance d(f, g) between f and g as follows.

‖f‖L2 :=

√∫ b

a
f(t)2 dt and dL2(f, g) := ‖f − g‖L2 .(6.18)

In the remaining examples we extend (d) to integrals of a more general type. The reader can easily
do the corresponding generalizations of (c).
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(e) We replace
∫
. . . dt with

∫
. . . ϕ(t)dt for some fixed, measurable, nonnegative, ϕ : R → R.

This includes the case of an interval −∞ < a < b <∞, since we can chose the “density”
ϕ to be zero outside [a, b]. We now define for f, g : R→ R, size and difference as follows.

‖f‖L2 :=

√∫ ∞
−∞

f(t)2ϕ(t) dt and dL2(f, g) := ‖f − g‖L2 .(6.19)

This last example shows how to make the transition from functions defined for real arguments

to functions defined on an abstract domain Ω by replacing
∞∫
−∞

. . . ϕ(t) dt with the abstract integral∫
Ω . . . dµ(ω).

(f) Let (Ω,F, µ) be a measurable space with a σ–finite measure µ, and assume that f and g
are real–valued and Borel measurable functions on Ω. We define size and difference as
follows.

‖f‖L2 :=

√∫
Ω
f(ω)2 dµ(ω) and dL2(f, g) := ‖f − g‖L2 . �(6.20)

It can be shown that the functions ‖ · ‖ which occur in all the examples above satisfy the properties
of the following definition if we exclude elements x for which ‖x‖ =∞.

Definition 6.5 (Seminorm).

Let V be a vector space (in the abstract sense). A function

‖ · ‖ : V −→ R, x 7→ ‖x‖

is called a seminorm on V if it satisfies the following.

‖x‖ ≥ 0 for all x ∈ V and ‖0‖ = 0(6.21a)
‖αx‖ = |α| · ‖x‖ for all x ∈ V, α ∈ R(6.21b)
‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V(6.21c)

positive semidefiniteness
absolute homogeneity
triangle inequality �

It can also be shown that the functions d(·, ·) in all examples satisfy the properties of the following
definition if we exclude elements x, y for which d(x, y) = ∞. Matter of fact, they are satisfied
whenever we set

d(x, y) := ‖y − x‖

for a seminorm ‖ · ‖ as defined above.

Definition 6.6 (Pseudometric spaces). Let X be an arbitrary, nonempty set.
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A pseudometric on X is a real–valued function of two arguments

d(·, ·) : X ×X → R, (x, y) 7→ d(x, y)

satisfying the following three properties:

d(x, y) ≥ 0 and d(x, x) = 0 for all x, y ∈ X(6.22a)
d(x, y) = d(y, x) for all x, y ∈ X(6.22b)
d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X(6.22c)

positive semidefiniteness
symmetry
triangle inequality

Let x, y ∈ X and ε > 0. We say that x and y are ε–close, if d(x, y) < ε. �

There is a fundamental difference between the cases (a), (b) and the cases (c)–(f). In the first two
cases it is easy to see that positive semidefiniteness can be strengthened to “positive definiteness”

‖~x‖ = 0 ⇔ ~x = 0 and d(~x, ~y) = 0 ⇔ ~x = ~y.(6.23)

On the other hand, regardless whether we interpret
∫
. . . dt as Riemann integral or Lebesgue inte-

gral, if f(t) = 1 for t = a+b
2 and zero else, and if g(t) = 0 for all t ∈ [a, b], then

‖f‖ = 0 and d(f, g) = 0 ,

even though f 6= 0 and f 6= g.
One can actually show the following for σ–finite measures µ.

∫
|f | dµ = 0 ⇔

∫
f2 dµ = 0 ⇔ f = 0 µ–a.e.,(6.24)

and thus ∫
|f − g| dµ = 0 ⇔

∫
(f − g)2 dµ = 0 ⇔ f = g µ–a.e.(6.25)

There is another difference but it is of more of a technical nature. It will never happen in exampless
(a), (b) that ‖~x‖ =∞ or d(~x, ~y) =∞. In contrast to this note that, for example,

∫ 1
0 ln(x)dx =∞ and∫ 1

0

(
ln(x)

)2
dx =∞.

Before we continue, note that there is no substantial difference between examples c and d. Moreover
d and e are specific cases of example f. We thus focus our attention on a, b, f.

The “positive definiteness” property of formula 6.23 is so important that it leads to the following
definitions which are a lot more important than those of seminorms and pseudometrics.
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Definition 6.7 (Norm).

Let V be a vector space (in the abstract sense). A function

‖ · ‖ : V −→ R, x 7→ ‖x‖

is called a norm on V if it satisfies the following.

‖x‖ ≥ 0 for all x ∈ V and ‖x‖ = 0 ⇔ x = 0
(6.26a)

‖αx‖ = |α| · ‖x‖ for all x ∈ V, α ∈ R
(6.26b)

‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V
(6.26c)

positive definiteness
absolute homogeneity
triangle inequality

The pair (V, ‖ · ‖) is called a normed vector space �

Definition 6.8 (Metric spaces).

Let X be an arbitrary, nonempty set. A metric on X is a real–valued function of two argu-
ments

d(·, ·) : X ×X → R, (x, y) 7→ d(x, y)

with the following three properties:

d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 ⇔ x = y(6.27a)
d(x, y) = d(y, x) for all x, y ∈ X(6.27b)
d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X(6.27c)

positive definite
symmetry
triangle inequality

The pair (X, d(·, ·)), usually just written as (X, d), is called a metric space. We write X for
short, if it is clear which metric is referred to. �

Remark 6.6. ?

From the perspective of advanced mathematics there are tremendous advantages to having norms
and metrics rather than seminorms and semimetrics. The mechanism to enforce positive definite-
ness is to call two measurable functions f and g equivalent if f = g µ–a.e. and work with those
equivalence classes [f ] rather than with the original functions f . We do not worry about such so-
phistication. We usually write f for those equivalence classes [f ]. �

6.4 Quadratic Variation of Brownian Motion

Notation 6.1. In the following the letter Π will not denote the pricing function of a contingent claim
as will be the case when we discuss financial markets, e.g., in Chapter 8 (The Binomial Asset Model).
Rather, it will denote a partition

Π := Πt := { t0, t1, . . . , tn }, where 0 = t0, < t1, < · · · < tn = t ; (0 ≤ t ≤ T ) .
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Such a partition is interpreted as a set of times for a stochastic process with index set I = [0, T ] for
some fixed T > 0 and 0 ≤ t ≤ T . We will often write Π for Πt if this does not lead to confusion.
The step sizes tj − tj−1 are not assumed to be of equal size. We denote by

‖Πt‖ := max {tj+1 − tj : j = 0, . . . , n− 1} .

the maximum step size (difference of neighboring times) of the partition. We will refer to ‖Πt‖ as
the mesh of Πt. �

SCF2 defines the first–order variation of a function [0, T ]→ R, but we have no use for it Instead we
directly introduce the quadratic variation of such functions. The following is SCF2 Definition 3.4.1

Definition 6.9 (Quadratic Variation).

Let f : [0, T ]→ R be a (Borel measurable) function of time t, and let 0 ≤ t ≤ T . We call

[f, f ](t) := lim
‖Πt‖→0

n−1∑
j=0

[ f(tj+1) − f(tj) ]2,(6.28)

the quadratic variation of f up to time t.

Here the limit lim
‖Π‖→0

is to be understood in the same way as

∫ b

a
f(u) du = lim

‖Π‖→0

n−1∑
j=0

f(t∗j )(tj − tj−1) , tj−1 ≤ t∗j ≤ tj ,

in the definiton of the Riemann integral. In other words, the limit is taken along partitions Πt =
{0 = t0 < t1 < · · · < tn = t} in such a way that the mesh becomes smaller and smaller. �

Remark 6.7 (Notation for quadratic variation of stochastic processes). Quadratic variation makes
sense for any function that depends on “time” t, including the paths t 7→ Xt(ω) of a stochastic
process Xt, 0 ≤ t ≤ T .

We will often write [X,X]t and [X,X]t(ω) rather than [X,X](t) and [X,X](t, ω). �

Remark 6.8. Let f : [0, T ] → R be a (Borel measurable) function with a continuous derivative. Let
0 ≤ t ≤ T . Then [f, f ](t) = 0.
You will find a proof of this in SCF2 Remark 3.4.2. �

SCF2 Theorem 3.4.3 states the following. Let W be a Brownian motion. Then, for almost surely all
ω ∈ Ω,

[W,W ]t(ω) = t for all 0 ≤ t ≤ T .

He actually proves a lot less:
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Theorem 6.4.

Let W be a Brownian motion. For 0 ≤ t ≤ T and a partition Π = { t0, t1, . . . , tn } of [0, t], let

QΠ(t) :=

n−1∑
j=0

(Wtj+1 − Wtj )
2.

Then,
lim
‖Π‖→0

E
[
(QΠ(t) − t)2

]
= 0.

PROOF: See the proof of SCF2 Theorem 3.4.3. �

Remark 6.9. SCF2 Remark 3.4.4 and 3.4.5 are to a large degree about making plausible the extremely
important relations

• dt dt = 0,
• dt dWt = dWt dt = 0,
• dWt dWt = dt.

Even though I can follow those remarks line by line I fail to see understand how they make it easier
to understand this so called multiplication table for Brownian motion differentials. I will explain
them differently later in the course.
Here is one thing he says that should be clear to all.

Brownian motion accumulates quadratic variation at rate one per unit time. �

6.5 Brownian Motion as a Markov Process

Theorem 6.5 (SCF2 Thm.3.5.1).

Let W be a Brownian motion on a filtered probability space (Ω,F,Ft, P ). Then W is a Markov
process.

PROOF (outline): Let 0 ≤ s ≤ t ≤ T and ft : R → [0,∞, x 7→ ft(x) Borel–measurable. According
to Definition 6.2 which corresponds to SCF2 Definition 2.3.6 of a Markov process one must find
another Borel–measurable function fs : x 7→ fs(x) such that

E[ft
(
Wt

)
| Fs] = fs

(
Ws

)
.(6.29)

It can be shown that

fs : R −→ R, x 7→ E [ft(x+Wt −Ws)](6.30)

is the sought after function. For the proof see SCF2 ch.3.5. Note that that proof does not require the
normality of Wt. It entirely relies on the fact that the increments Wt+h −Wt are independent of Ft.
�

We will show that Brownian motion has a transition density according to the next definition.
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Definition 6.10. ?

Let X = Xt be a real–valued and adapted Markov process on a filtered probability space
(Ω,F,Ft, P ). Assume there exists a Borel measurable function

p :]0,∞[×R× R −→ R ; (τ, x, y) 7→ p(τ, x, y)(6.31)

such that x 7→ p(τ, x, y) is Borel measurable for each fixed τ and y, and which satisfies, for
every nonnegative Borel measurable function f : R→ R and s ≥ 0 and τ > 0 the relation,

E[f
(
Xs+τ

)
| Fs] =

∫ ∞
−∞

f(y) p(τ,Xs, y) dy .(6.32)

We call p(τ, x, y) the transition density for X . �

Remark 6.10. ? Formula (6.32) is an equation of two random variables which holds true almost
surely. We supply the argument ω to emphasize this aspect and obtain for s ≥ 0 and τ > 0.

E[f
(
Xs+τ

)
| Fs](ω) =

∫ ∞
−∞

f(y) p(τ,Xs(ω), y) dy , a.s.(6.33)

In particular, let B ⊆ R be a Borel subset and f(x) := 111B(x). Then (6.33) becomes

P{Xs+τ ∈ B | Fs}(ω) = E[111B
(
Xs+τ

)
| Fs](ω) =

∫
B
p(τ,Xs(ω), y) dy , a.s.(6.34)

We recall from Proposition 6.2 on p.129 that the expressions above are σ(Xs)–measurable. This can
also be seen directly since the random variable

ω 7→
∫

R
f(y) p(τ,Xs(ω), y) dy

is, for frozen τ , a function of Xs(ω) only and hence σ(Xs) measurable. Thus conditioning with
respect to Fs is the same as conditioning with respect to Xs. Thus, from (6.34),

P{Xs+τ ∈ B | Xs}(ω) =

∫
B
p(τ,Xs(ω), y) dy , a.s. .(6.35)

As in Remark 5.5 on p.121, Doob composition applied to P{· · · | Xs} yields a Borel measurable
function x 7→ g(x) such that P{Xs+τ ∈ B | Xs} = g ◦Xs. Again, it is customary to write

P{Xs+τ ∈ B | Xs = x}

instead of g(x) for this function, and this turns out to be the ordinary conditional probability when
discrete random variables or random variables with joint density functions are involved. Under
this convention we obtain the following for fixed x: If Xs(ω) = x, then (6.34) and (6.35) yield

P{Xs+τ ∈ B | Xs = x} =

∫
B
p(τ, x, y) dy.(6.36)
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Thus y 7→ p(τ, x, y) is exactly that “ordinary” conditional density for the probability of X ending up
at time s+ τ in a set B, under the condition that its trajectory was at time s in x.
The time s of conditioning does not appear in the expression on the right hand. Thus this condi-
tional probability is equal to that of starting at time zero in x and ending up at time τ in B. This is
informally stated as follows. If I know the postion of X at time s then I can consider s as my new
start time. The trajectories τ 7→ Xs+τ will behave in terms of all probabilistic aspects just the same
as the trajectories Xτ that had originally started at time zero in x. �

Proposition 6.7.

The transition density for a Brownian motion is

p(τ, x, y) =
1√
2πτ

e−
(y−x)2

2τ .

PROOF: The proof is given as part of SCF2 Theorem 3.5.1. �

6.6 Additional Properties of Brownian Motion

We are skipping all of SCF2 Chapter 3.4.3 (Volatility of Geometric Brownian Motion) except for the
following definition.

Definition 6.11 (Geometric Brownian Motion).

Let W be a Brownian motion on a filtered probability space (Ω,F,Ft, P ). Let S0, α, σ be real
numbers such that S0, σ > 0 We call the process

St := S0 exp

[
σWt +

(
α− 1

2
σ2

)
t

]
.(6.37)

geometric Brownian motion or also GBM. We will see in Example 9.1 on p.199 how GBM
is obtained as the solution of a SDE (stochastic differential equation) which models the price
of the risky asset (stock) in the Black–Scholes option pricing framework. �

Definition 6.12 (Exponential martingale).

Let W = Wt, t ≥ 0, be a Brownian motion on a filtered probability space Ω,F,Ft, P , and
σ ∈ R. We call the process Z = Zt, t ≥ 0, defined as

Zt := exp

[
σWt −

1

2
σ2t

]
,(6.38)

the level σ exponential martingale of W . �

Zt derives its name from the following theorem (SCF2 Theorem 3.6.1).
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Theorem 6.6.

Let W = Wt, t ≥ 0, be a Brownian motion on a filtered probability space Ω,F,Ft, P and σ ∈ R.
Then the level σ exponential martingale of W is an Ft–martingale.

PROOF: See SCF2 Theorem 3.6.1 for the proof. �

The SCF2 text contains an entire chapter 3.2 on discrete time versions X(n)
t , defined only for times

tj = 2−nj and called symmetric random walks. In a sense, one can represent (continuous time)
Brownian motion as a limit of properly scaled and linearly interpolated symmetric random walks.
We now briefly discuss a small part of this material.

Definition 6.13 (Scaled symmetric random walk).

Let Bj be an iid sequence of random variables with two possible outcomes, 1 and −1. As-
sume that

p := P {Bj = 1} =
1

2
; q := 1− p =

1

2
= P {Bj = −1} .

Let

(6.39) X0 := 0, Xk :=

k∑
j=1

Xj , k = 1, 2, . . .

Then the process Mk lives on the grid of the integers, and, at each time k, it is equally likely
that the process moves one unit to the left or to the right. For this reason we call this process
a symmetric random walk. �

To approximate a Brownian motion, we speed up time and scale down the step size of a symmetric
random walk. More precisely, we proceed as follows.

Definition 6.14 (Scaled symmetric random walk).

Let n ∈ N. For t ≥ 0 let the integer k be determined by k ≤ nt ≤ k + 1. Let

W
(n)
t :=

{
1√
n
Xnt if nt is an integer,

the linear interpolation of 1√
n
Xk and 1√

n
Xk+1 otherwise.

(6.40)

We call the continuous time process W (n)
t the n–th scaled symmetric random walk. �

Theorem 6.7 (SCF2 Theorem 3.2.1 - Central Limit Theorem for scaled random walk). ?

Let t > 0. As n → ∞, the distribution of the scaled random walk W (n)(t) evaluated at time t
converges to the normal distribution with mean zero and variance t.

PROOF: See SCF2. �
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6.7 Exercises for Ch.6

Exercise 6.1. Prove the assertions of Remark 6.1 on p.128 of this document.
Hint: Use induction to prove the remark for a submartingale Xn. Apply this result to−Yn to obtain
a proof for the case of a supermartingale Yn. The result for a martingale is then immediate. �

Exercise 6.2. Prove prop.6.1 on p.128 of this document:

A martingale X satisfies E[Xs] = E[Xt] for any s, t ∈ I . �
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7 Financial Models - The Basics

7.1 Interest Bearing Financial Assets

Before we discuss financial markets, we list some facts about interest payments. We assume that
the student has some basic knowledge about interest paid on interest bearing financial instruments
such as a bank account or a bond and how to discount such an instrument, if it pays a certain
amount at a future date, to its present value.
This material that is taught, e.g., in Math 346 (Introduction to Financial Mathematics), a course
which is officially listed as a prerequisite for Math 454. Students who did not attend Math 346
are expected to study this material on their own in a text like, e.g., [1] Anthony, Martin and Biggs,
Norman: Mathematics for Economics and Finance - Methods and Modelling.

Unless something else is stated explicitly, we assume the following.
• The unit of time is one year, so t = 3.5 means 3 years and 6 months

after t = 0, which denotes the initial point in time.
• All interest rates are annual interest rates, so r = 0.048 means an

annual interest rate of 4.8%.
• The unit of currency is one dollar, as opposed to one dime or 15

yen or one renminbi or ...

7.1.1 Interest Compounded at Discrete Points in Time

Remark 7.1. We start with the following observation. Let s < t. Consider a bank account that
contains xs dollars at time s, an interest rate that is constant = r between s and t, and assume that
interest is not compounded continously, but computed at t based on xs, the account balance at s.
(a) What is xt, the balance at time t, if no changes have been made to the original investment?

The answer to this question is as follows. Each dollar earns interest in height of r(t− s) during t− s
years. Since the interest paid on xs dollars is xs · r(t− s). Accordingly, xs has grown to

(7.1) xt = xs + xs · r(t− s) = xs
(
1 + r(t− s)

)
.

(b) In reverse, if the account balance at time t is xt dollars, how much money had to be invested at
time s? We obtain the answer from (a) by solving (7.1) for xs:

(7.2) xs =
xt

1 + r(t− s)
.

(b’) Note that (7.2) also answers the following question, since it is a reformulation of the one asked
in (b): If an investment in an interest bearing asset pays the amount xt at the future time t, how
much money is it worth today, at time s < t? The answer is given by (7.2),

(7.3) xs =
xt

1 + r(t− s)
,

since only xs dollars need to be invested today to achieve a payout of xt dollars at time t.
The process of removing from xt the interest to be earned during the interval ]s, t] is referred to as
discounting xt to its present value, xs (at time s). �
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Example 7.1. Assume that the annual interest rate is 4%, interest is compounded semiannually, and
an amount of xt0 = 600 dollars has been invested today, at time t0. Interest will be paid as follows.

• The first interest payment happens after half a year, at t1 := t0 + 1
2 . The investment

has grown to
xt1 = 600 + 600 · 1

2
· 0.04 = 600

(
1 + 0.02

)
= 612 dollars .

• Interest is paid again at t2 := t1 + 1
2 . Since it is based on xt1 = $612, the original

investment has grown to
xt2 = 612 + 612 · 1

2
· 0.04 = 600

(
1 + 0.02

)(
1 + 0.02

)
= 624.24 dollars .

• At t3 := t2 + 1
2 , the time of the third interest payment, the account balance is

xt3 = xt2 + xt2 · 0.02 = 600
(
1 + 0.02

)3
= 636.7248 dollars ,

and so on. Since interest is only added at t1, t2, . . . , we see that

xt = xt0 for t0 ≤ t < t1, xt = xt1 for t1 ≤ t < t2, xt = xt2 for t2 ≤ t < t3, . . . �

Example 7.1 easily generalizes to the case where interest can vary but remains constant between
consecutive interest payments. We do this next.

Example 7.2. Assume that an interest bearing account is opened at time t0 and that interest is com-
pounded only at the specific times

t1 < t2 < t3 < · · ·

Further, assume that the interest rate for the period ]tj−1, tj ] is constant and equals rj . The calcu-
lations that were done in Example 7.1 show the following: Due to interest added, each dollar that
was invested at time t0 will have grown at time t to the following amount bt:

t0 ≤ t < t1: bt = 1 (no interest has been added yet),
t1 ≤ t < t2: bt = b0

(
1 + r1(t1 − t0)

)
= 1 + r1(t1 − t0),

t2 ≤ t < t3: bt = b1
(
1 + r2(t2 − t1)

)
=
(
1 + r1(t1 − t0)

)(
1 + r2(t2 − t1)

)
,

. . . . . . . . . . . . .
tj ≤ t < tj+1: bt = btj−1

(
1 + rtj (ttj − ttj−1)

)
.

=
(
1 + r1(t1− t0)

)(
1 + r2(t2− t1)

)
· · ·
(
1 + rj−1(tj−1− tj−2)

)(
1 + rj(tj − tj−1)

)
As in Example 7.1, xt remains constant during the intervals ]tj−1, tj [, since interest is not added
other than at t1, t2, . . . . �

This course focuses on financial models in which interest is compounded continuously. We discuss
discrete time interest payments only in connection with the binomial asset model. 32 There we
assume that the initial investment happens at t0 = 0 and that interest is compounded at times
1, 2, 3, . . . at one and the same rate r. The formulas of Example 7.2 become much simpler under
those conditions:

Example 7.3. Assume that an interest bearing account is opened at time t0 = 0 and that interest is
compounded only at the specific times

t1 = 1, t2 = 2, t3 = 3, . . .

32See Chapter 8 (The Binomial Asset Model).
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Further, assume that the interest rate is constant and equals r at all times t. Then the results of
Example 7.2 read as follows:
(a) x0 dollars invested at t = 0 grow to

0 ≤ t < 1: xt = x0 (no interest has been added yet),
1 ≤ t < 2: xt = 1 + r,
2 ≤ t < 3: xt = x1(1 + r) = x0(1 + r)2,

. . . . . . . . . . . . .
j ≤ t < j + 1: xt = xj−1(1 + r) = x0(1 + r)j .

In particular, for a time which is an integer n,

(7.4) xn = x0(1 + r)n .

(b) Let m,n ∈ [0,∞[Z and m < n. An investment of xn at time n is discounted to its present value
at m as follows:

xm =
xn

(1 + r)n−m
.

In particular, if m = 0,

(7.5) x0 =
xn

(1 + r)n
. �

• There is a special name and symbol for the interest accrual of (7.4), if the initial investment
is one monetary unit, i.e., x0 = 1 dollar. 33

• There also is a special name and symbol for the discounting of (7.5), if the account balance
at the future time n is one monetary unit, i.e., xn = 1 dollar.

Definition 7.1. We assume the settings of Example 7.3 above.

• We write Bt for the amount of money to which an investment of one dollar at time
t0 = 0 in an interest bearing account has increased at time t. We call t 7→ Bt its
money market account price aka money market account price process.

• We write Dt for the amount of money that needs to be invested at time t0 = 0 in
an interest bearing account, so that it will grow by means of interest accrual to one
dollar at time t. We call t 7→ Dt the discount process of the account.

Clearly, if an investment of x0 = 1 at t0 = 0 grows to Bt at time t and Dt invested at t0 = 0 grows
to 1 at time t, then then an investment of x0 at t0 = 0 grows to x0Bt at time t and xtDt invested at
t0 = 0 grows to xt at time t.

• We call the dollar amount xtDt the present value of xt (with respect to the time t),
and we say that xt has been discounted to xs, the present value of the investment
(at time s). �

33We express monetary amounts in dollars, but we could also have chosen another currency instead, e.g., euros, ren-
minbi, yen, rubels, ...
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Proposition 7.1.

We assume that an interest bearing account compounds interest at the times 1, 2, . . . (years) at a
constant, annual interest rate, given by r ≥ 0. Then, money market account priceBn and discounted
value Dn are

Bn = (1 + r)n ,(7.6)

Dn =
1

Bn
= (1 + r)−n .(7.7)

PROOF: This is a trivial consequence of (7.4) and (7.5). �

7.1.2 Continuously Compounded Interest

Remark 7.2. As in Remark 7.1 on p.145, we consider a bank account that contains xs dollars at time
s, and an interest rate that is constant = r between s and t (s < t).

(A) We assume that the interval from s to t is partitioned into k equally sized subintervals of size
(t− s)/k,

(7.8) xs, xs +
t− s
k

, xs +
2(t− s)

k
, . . . , xt = xs +

k(t− s)
k

,

and that interest is compounded at each time xs + j(t−s)
k , where j = 1, . . . , k.

The calculations in Example 7.3 on p.146 show the following, if one considers that r, the interest rate,
is based on an interval of length 1 (year), and one must adjust it to r(t − s)/k, for each partition
interval of length (t− s)/k.

(1) Total interest accrued between s and t is xs

(
1 +

r(t− s)
k

)k
.

(2) Thus, continuously compounded interest (the limit as k →∞) is xs e
r(t−s).

(B) Next, we assume that interest is compounded continuously and the interest rate varies, but it is
constant and equals rj , on each subinterval[

xs +
(j − 1)(t− s)

k
, xs +

j(t− s)
k

[
.

We apply (2) to each one of those and see that the total interest accrued between s and t is

(7.9) xs · er1(t−s) · er2(t−s) · · · erk(t−s) = xs · exp


k∑
j=1

rk(t− s)

 .

(C) Finally, we assume that interest is compounded continuously and the interest rate is not piece-
wise constant on [s, t], but modeled by a Riemann integrable function u 7→ r(u). For k ∈ N, we
subdivide [s, t] as we did in (B) and we set

rj := r(uj) , for some xs +
(j − 1)(t− s)

k
≤ uj ≤ xs +

j(t− s)
k

.
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Now, the right–hand side exponent of (7.9) denotes a Riemann sum. We obtain that the interest that
accrues between s and t is

(7.10) xs · e
∫ t
s r(u)du . �

We recall from Definition 7.1 on p.147 the following.
• Bt, the money market account price of an interest bearing account, is is the worth of an

investment of one dollar at time 0
• Dt, the value of the discount process at time t, is the amount of money one must deposit at

time 0 so that interest earned increases it to one dollar at time t.

Proposition 7.2.

We assume that an interest bearing account compounds interest continuously, at a varying interest
rate which is given by t 7→ r(t). Then, money market account price Bt and discounted value Dt are

Bt = e
∫ t
0 r(u)du ,(7.11)

Dt =
1

Bt
= e−

∫ t
0 r(u)du .(7.12)

PROOF: This is a trivial consequence of (7.10) and the fact that

xt = xs e
∫ t
0 r(u)du ⇔ xs =

xt

e
∫ t
0 r(u)du

. �

7.2 Assets and Contingent Claims, Trades, Portfolios and Arbitrage

The remainderof this entire chapter 7 (Financial Models - The Basics) closely follows the book [7]
Björk, Thomas: Arbitrage Theory in Continuous Time. We use to a large degree the notation found
there.
Everything happens in the context of a once and for all given probability space (Ω,F,Ft, P ). We
interpret the filtration (Ft)t as the information available up to time t for a given financial market.
We call this filtration the information filtration or also simply the filtration of the financial market.
Before you continue with this chapter, we suggest that you review chapters 4.4 (Stochastic Processes
and Filtrations) and 6.1 (Martingales and Markov Processes) about the following:
• For the exact definition of a stochastic Process see Definition 4.16 on p.75.
• For the exact definition of a filtration see Definition 4.20 on p.79.
• For the exact definition of an adapted Process see Definition 4.21 on p.80.
• The definition of a Markov process is precise. See Proposition 6.2 on p.129. �

Introduction 7.1. The finance part of this course is about pricing financial derivatives which are
financial instruments defined in terms of (derived from) one or more underlying assets like stocks
and bonds. Such financial derivatives are also called contingent claims. A prime example is a
European call option for which the underlying asset is a stock. This option is a contract written at
some time t0. It specifies that, at the time of expiration T > t0, the holder of this option has the
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right, but not the obligation, to buy a share of this stock for the price of K (dollars), the so called
strike price, regardless of the market price ST of that stock at time T .
We see several features in this example.
• The stock price S is a stochastic process St(ω) since it depends on time t and is non–

deterministic, i.e., it depends on randomness ω.
• The value of this contract at time of expiration is a function of the stock price ST (ω) at

that time: The contract allows us to make a profit XT (ω) −K if the price of the stock at
time T exceeds the strike price, and it is worthless (but does not lead to a loss) otherwise.

• We call this contract value at time T the contract function X (ω) of this option. For a
European call, it is

X (ω) = Φ
(
ST (ω)

)
, where Φ(x) = (x−K)+ = max(x−K, 0).

We write Πt(X ) for the price process of a contingent claim X . In other words, Πt(X )(ω)
is the price of the financial derivative at time t. It is obvious that

ΠT (X ) = X ,

since paying more for the claim at expiration time would be an unwise decision by the
buyer, whereas offering the option for less would lead to a loss by the seller.

• Not so obvious: What is the appropriate price Πt(X ) at a time t prior to T ? In particular,
what should be the price of this contract at the time t0, when it is written? �

Definition 7.2 (Financial Market). A financial market model aka financial market consists of the
following.

(1) A collection of financial assets ~AAA =
(
AAA (0),AAA (1), . . . ,AAA (n)

)
, e.g., stocks, bonds, op-

tions written on stocks, ... We distinguish between riskless assets such as bank
accounts or zero coupon bonds where the money will grow according to an under-
lying interest rate and risky assets such as stocks which will fluctuate in value for a
variety of reasons. Of course the real world is more complex and this distinction has
been made for conceptual simplicity.

(2) Unit prices ~St(ω) =
(
S

(0)
t (ω), S

(1)
t (ω), . . . , S

(n)
t (ω)

)
of the assets ~AAA .

(3) Trading times t ≥ 0 at which the assets AAA (j) may be bought or sold. We speak of a
continuous time financial market, if those trading times form an interval [t0, T ] or
[t0,∞[ . We speak of a discrete time financial market, if those trading times form a
finite or infinite sequence t0 < t1 < t2 < . . . In either case, usually t0 = 0.
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• We consider the trading times tj of a discrete time market as special times, i.e., as real
numbers. We follow this convention even if the trading times happen to be integers
n0, n0 + 1, n0 + 2, . . . .

• Thus, [tj , tn[ = {t ∈ R : tj ≤ t < tn}, NOT [tj , tn[ = {tj , tj+1, . . . , tn−1}.
• In particular, [tj−1, tj [ denotes the times from the time of trade tj−1 until “just before”

the time tj of the next trade. This is not the empty set!

(4) Interest is earned by holdings in a riskless asset and increases their value as time
progresses. Recall that accrual of interest defines two processes Bt and Dt as follows.
• x dollars invested at time zero will have increased at time t toBt ·x dollars. In other
words, Bt is the money market account price process of the riskless asset.
• To have y dollars in the account at time t, only Dt · y = (1/Bt) · y dollars need to
be invested at time zero. So, Dt is the discount process of the riskless asset.

• In a discrete time financial market, we assume that interest is added to the money in
a bank account only at the trading times tj , and that the value of the holdings in that
account remains constant during the interval [ tj−1, tj [.

• In a continuous time financial market, we assume that interest is compounded con-
tinuously. �

Remark 7.3. The focus of these lecture notes is on continuous time financial markets. Only Chapter
8 (The Binomial Asset Model) is about discrete time financial markets. There, we assume that the
trading times are the non–negative integers 0, 1, 2, . . . �

Notation 7.1.

• We use the term “stock” as a synonym for “risky asset”.
• We use the terms “bond”, “bank account”, “money market account” as synonyms for

“riskless asset”. We do this even though there are differences. For example, bonds
have risks if one intends to sell them before maturity, since their price will fall if
interest rates rise.

• There usually will be a single riskless asset. We reserve slot zero for that asset and
often write Bt rather than S(0)

t for the price of this asset to improve readability. �

Remark 7.4. The reader may have noted that Definition 7.1 on .p147 employs the symbol Bt for the
money market account price at time t. Does it coincide with S(0)

t ? The answer is affirmative. This
topic will be discussed in Section 7.3 (The Holdings Process of a Riskless Asset). �

We list here a few more financial derivatives in addition to the European call.

151 Math 454 - Version 2025-02-11



Math 454 – Additional Material Student edition with proofs

Definition 7.3.

• A European put option is a contract written at some time t0. It specifies that, at
the time of expiration T > t0, the holder of this option has the right, but not the
obligation, to sell a share of an underlying security for the price of K (strike price).
Note that the contract function, which specifies the value of this derivative at time T
to the contract holder, is

Φ
(
ST (ω)

)
, where Φ(x) = (K − x)+ = max(K − x, 0).

• An American call option is a contract written at some time t0. It specifies that, at
any time up to the time of expiration T > t0, the holder of this option has the right,
but not the obligation, to buy a share of an underlying security stock for the price of
K (strike price).

• An American put option is a contract written at some time t0. It specifies that, at
any time up to the time of expiration T > t0, the holder of this option has the right,
but not the obligation, to sell a share of an underlying security for the price of K
(strike price).

• A forward contract is a contract between two parties AAA (the seller of the contract)
and BBB (the buyer), written at some time t0. It specifies that, at the time of expiration
T > t0, AAA has the obligation to sell a share of an underlying security for the price of
K (strike price), and BBB has the obligation to buy at this price. Clearly the value of the
option to the buyer at time T is

Φ
(
ST (ω)

)
, where Φ(x) = x − K. �

Trade happens in this market, so people will have portfolios which list for each asset how many
units are being held. We have access to the market information F

~S
t up to the time t of the trade, i.e.,

we can base our trades on the development of the asset prices up to that time, but we cannot peek
into the future.

Definition 7.4 (Portfolio strategy).
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A portfolio or portfolio strategy is a stochastic process

~H = ~Ht(ω) =
(
H

(0)
t (ω), H

(1)
t (ω), . . . ,H

(n)
t (ω)

)
(7.13)

which denotes the holdings (quantity) H(j)
t someone has in asset AAA (j) at time t. Negative

values indicate that this quantity is not owned but owed. We speak of a Markovian port-
folio if ~H is a Markov process. In other words, a Markovian portfolio depends on current
stock price ~St only and not on F

~S
t , the stock price of the past.

We say that ~H denotes a long position in the asset AAA (j) at time t if H(j)
t > 0. We say that

~H denotes a short position in this asset if H(j)
t < 0.

We have to make some distinctions between continuous time and discrete time models:

Continuous case:
• We assume that ~Ht is F~St –adapted.

Discrete case, with trading times t0 < t1 < t2 < . . . :
(1) we assume that ~Ht(ω) is constant on each interval [tk−1, tk[,
(2) we assume that ~Htk is F~Stk−1

–adapted (k > 0),
(3) We define ~Ht0 := ~Ht1 . �

Notation 7.2 (Alternate notation for assets and portfolios). We almost exclusively deal with only
one riskless asset. Also, most of the financial models we study only have one risky asset. The major
exception is Chapter 13 (Black–Scholes Model Part II: Risk–neutral Valuation). There, the case of
multiple risky assets is examined. These considerations justify to introduce the following notation.

Given is a financial market with assets vector ~AAA =
(
AAA (0),AAA (1), . . . ,AAA (n)

)
and associated

portfolio process ~Ht =
(
H

(0)
t , H

(1)
t , . . . ,H

(n)
t

)
.

• We assume that there is only one riskless asset and that AAA (0) denotes it. We write

AAA B := AAA (0), and HB
t := H

(0)
t

for this riskless asset and its holdings in the associated portfolio.

• If there is only one risky asset, we write

AAA S := AAA (1) and HS
t := H

(1)
t ,

for this risky asset and its holdings in the associated portfolio.
• Otherwise, there will be n risky assets AAA (1),AAA (2), . . .AAA (n), with stock prices

~St =
(
S

(1)
t , . . . , S

(n)
t

)
. We use vector notation for the risky assets and write

AAA
~S :=

(
AAA (1), . . .AAA (n)

)
and H

~S
t :=

(
H

(1)
t , . . . H

(n)
t

)
.

�
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Remark 7.5. Everybody understands the meaning of shares and price in the context of a stocks. For
example owning 800 shares of a stock that currently has a price of $25.00 per share means that the
value of the holdings in that asset is 800 · 25.00 = 20, 000.00 dollars.
But what about the riskless asset? What could be the meaning of someone owning a bank account
with 20,000 “bank shares” which are valued at $0.83 each? An answer to that question will be given
in Section 7.3 (The Holdings Process of a Riskless Asset). �

Definition 7.5 (Self–financing portfolio).

A portfolio is a self–financing portfolio strategy (simply, self–financing portfolio), if
money can be shifted around at times of trade by selling some assets and reinvesting the
proceeds into other assets, subject to the following:
• It is not allowed to move any proceeds out of the portfolio to finance, e.g., the purchase

of consumer goods or the next vacation.
• There is no infusion of external money to purchase additional shares.

In other words, the acquisition of additional shares in such portfolios must be financed
through the sale of shares in some other asset or assets. �

Remark 7.6. The above definition of a self–financing portfolio is not very mathematical. We make
it precise by formulating what is called a Budget equation. We will see later that discrete time
trading models such as the multiperiod binomial asset model (Chapter 8.2) and continuous time
trading models such as the Black–Scholes market (Chapter 10) have completely different budget
equations. �

Definition 7.6 (Portfolio value).

Given a portfolio ~H =
(
H

(0)
t , . . . ,H

(n)
t

)
, its portfolio value aka portfolio value process is

V
~H := V

~H
t (ω) := ~Ht(ω) • ~St(ω) =

n∑
j=0

H
(j)
t (ω) · S(j)

t (ω)

= H
(0)
t S

(0)
t + HS

t S
(1)
t + · · · + H

(n)
t S

(n)
t .

(7.14)

Since H(j)
t · S

(j)
t equals

number of units owned of asset AAA (j) × unit price of asset AAA (j),

V
~H
t equals the total worth at time t of all holdings in that portfolio.

To simplify the notation, we often write V H
t for V ~H

t . If it is clear from the context which portfolio is
referenced, we omit the superscript and write Vt for V ~H

t . �

Remark 7.7. Note that determining the portfolio value in a tiscrete time market presents a concep-
tual difficulty. At each time of trade tk 6= t0, two portfolios exist, since the trade can be thought of
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as the sale of the entire old portfolio (HB
t , H

S
t ) which was purchased at time tk−1, followed by the

purchase of the new portfolio (HB
t+1, H

S
t+1).

• If the investor decides to liquidate some of the investments to finance, e.g, a cruise aroound
the world, the new portfolio will be worth less than the old one.

• Conversely if new money is used to purchaseadditional holdings, the new portfolio will be
worth more than the old one.

• So, what should Vt, the portfolio value at such a time of trade be?
Fortunately, we will deal almost exclusively with self–financing portfolios. There is no ambiguity
concerning the portfolio value of such portfolios, since both the sales value of the old portfolio and
the purchase price of the new portfolio, must coincide for a self–financing portfolio. �

Definition 7.7 (Arbitrage Portfolio).

A portfolio ~Ht is an arbitrage portfolio, if it allows with zero probability of risk to create
money out of nothing with positive probability and does so without the infusion or with-
drawal of money at any trading time t > 0.
In other words, ~Ht must be self–financing, and its value process V ~H

t must satisfy

V
~H

0 = 0,(7.15)

P{V ~H
T ≥0} = 1,(7.16)

P{V ~H
T >0} > 0. �(7.17)

Note that the above is equivalent to replacing T with some 0 < t ≤ T , since we can invest the
positive amount V ~H

t entirely into the bond and have at least that much profit at time T .

Remember that we are designing a model and it is natural to make some simplifying assumptions
even though they may be unrealistic in the real world.

Assumption 7.1. Unless stated differently, the market adheres to the following:

• Shares H(j)
t can equal any real number, and asset price per share S(j)

t can equal any
strictly positive number. In particular we allow fractions of shares and asset prices.

• There is no bid–ask spread: The trading institution will not charge you more when it
sells you an asset than the price at which it would buy it from you.

• There are no costs for executing a trade.
• The market is completely liquid: one can buy and/or sell unlimited quantities of any

asset. In particular one can borrow unlimited amounts from the bank (by acquiring a
short position in the bond).

The last condition is so central to the market model that we list it separately for emphasis.

• The market is efficient and thus free of arbitrage, i.e., it does not allow the existence
of arbitrage portfolios. �
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Definition 7.8 (Contingent Claim).

A contingent claim, also called a financial derivative, is a FST –measurable random variable
X (ω). We call X a simple claim if there is a function s 7→ Φ(s) of asset price s or a function
~s 7→ Φ(~s) of an asset price vector ~s such that

X = Φ ◦ ST .

We occasionally refer to Φ as the contract function of that claim. �

Definition 7.9 (Hedging/Replicating Portfolio). Given are a contingent claim X and a portfolio ~H .

(a) We say that ~H is a hedging portfolio or a hedge or a replicating portfolio for X ,
and we say that X is reachable by ~H , if ~H is self–financing and

V H
T = X almost surely.

(b) If all claims can be replicated then we say that the market is complete. �

Remark 7.8. We stress that part of the definition of a replicating portfolio is the condition that it be
self–financing. �

Part of Assumption 7.1 about a market is that there be no arbitrage. The next theorem states that in
such a market all hedgeable contingent claims can be priced correctly (without admitting arbitrage)
by means of their replicating portfolios. Björk refers to the next theorem as a pricing principle.

Theorem 7.1 (Pricing principle).

Given is a contingent claim X with a replicating portfolio strategy ~H .
For ~H to be free of arbitrage it it necessary that the option price process Π(X ) for that claim satisfies

Π(X ) = V H , i.e., Πt(X ) = V H
t , for all trading times t.

PROOF:
The case t = T is immediate: We mentioned already in the introduction 7.1 to Chapter 7.2 on Assets
and Contingent Claims, Trades, Portfolios and Arbitrage (see p.149) that we must have ΠT (X ) = X
since otherwise we could borrow money to purchase the lesser valued item and immediately sell it
at the higher price.
It follows from the definition of a replicating portfolio that X = V H

T . This proves in conjunction
with ΠT (X ) = X that ΠT (X ) = V H

T .
Let us now assume that there is some 0 ≤ t0 < T such that Πt0(X ) 6= V H

t0 . We examine separately the
cases Πt0(X ) < V H

t0 and Πt0(X ) > V H
t0 and show that each one allows for arbitrage opportunities.

Case I: Πt0(X ) > V H
t0
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1. t = t0 : We sell short a claim X at a price of Πt0(X ).
2. t = t0 : We use the proceeds to purchase a replicating portfolio ~Ht0 at its value, V H

t0 .
3. We create a separate portfolio by investing the difference ∆ := Πt0(X ) − V h

t0 in the riskless asset.
4. Compounded interest will make that investment grow to ∆′ ≥ ∆ at time t = T . The specific value

of ∆′ will depend on the interest rate process.
5. The original portfolio will grow in value from V H

t0 at time t = t0 to V H
T at time t = T . We then sell

the portfolio and use that money to buy one unit of the claim. We use that security to cover the
short sale that happened at t = t0.

6. We have made a profit of ∆′ without investing any of our own money.

Case II: Πt0(X ) < V H
t0

1. t = t0 : We sell short a hedge ~Ht0 for X at a price of V H
t0 .

2. t = t0 : We use the proceeds to purchase a claim X at a price of Πt0(X ).
3. We create a separate portfolio by investing the difference ∆ := V h

t0 − Πt0(X ) in the riskless asset.
4. That investment will grow to ∆′ at time t = T .
5. X will be worth V H

T at time t = T since ~H replicates this claim. We then sell the claim, buy ~H from
the proceeds, and use ~H to cover the short sale that happened at time t = t0.

6. We have made a profit of ∆′ without investing any of our own money. �

7.3 The Holdings Process of a Riskless Asset

In this subchapter we assume, for simplicity, that the financial market consists of
• a single riskless asset (e.g., bank account) AAA B ,
• a aingle risky asset (e.g., stock) AAA S .

We write Bt for the money market account price and Dt for the discount process of AAA B .
For example, if trading happens at continuous time and AAA B is governed by the interest rate process
Rt, we have
For example, in a continuous time market with interest rate process Rt

• Bt = exp
[ ∫ t

0 Rs ds
]
, • Dt = 1/Bt = exp

[
−
∫ t

0 Rs ds
]
.

On the other hand, if trades occur at the years 0, 1, 2, . . . with a fixed, annual interest rate r,
• Bt = (1 + r)n, • Dt = 1/Bt = (1 + r)−n.

Introduction 7.2. Associated with the assets vector ~AAA =
(
AAA B,AAA S

)
is the portfolio ~Ht =

(
HB
t , H

S
t

)
.

The value of this portfolio is

(7.18) Vt = HB
t S

(0)
t + HS

t St.

Here, S(0)
t is the price per share of the riskless asset and St = S

(1)
t is the price of the risky asset.

We announced in Remark 7.4 on p.151 that S(0)
t equals the money market account price and that

this justifies to write Bt = S
(0)
t . 34

For convenience, we define the symbols

(7.19) V B
t := HB

t S
(0)
t , V S

t := HS
t St .

34See Notation 7.1 on p.151.
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Thus V B
t is the money value of the bank account holdings, and V S

t is the money value of the stock
holdings of the portfolio ~Ht. Note that Vt = V B

t + V S
t .

It is clear how to interpret the equation V S
t = HS

t St. If today’s stock price is St dollars and I
hold HS

t shares of that stock, then those shares contribute V S
t to my overall portfolio value Vt. For

example, if I hold 20 shares of stock and each share’s current value is 30, then my holdings in that
stock are worth 600.
Bank account holdings are approached completely differently. Consider a balance of 1, 000 dollars
in that account. Then V B

t should certainly be $1, 000. But what about HB
t and S(0)

t ?
The obvious approach is to say that a dollar is a dollar, so one dollar should be one share in the
bank account, and HB

t , the number of shares, should be 1, 000. Let us assume the account was
established about a year ago with a balance of $980, no money was deposited or withdrawn ever
since, and the $20 increase is due to interest earned on the deposit. Then our approach would imply
that the unit value per share remained the same (one dollar), and the holdings increased from 980
shares to 1, 000 shares. This is completely different from investments in a stock, where the number
of shares remains unchanged if no trades are executed.
It turns out that it is more advantageous for finance modeling to take another, much less obvious
approach and to define bank shares and bank share prices in such a way that they behave like stock
shares and stock price.
• If I own 100 shares of the stock at t0 = 0, i.e., HS

0 = 100, and if I do not make any trades in
that stock until time t1, then my holding in that asset remain constant: HS

t = HS
0 = 100,

for 0 ≤ t ≤ t1.
• However, the (money) value V S

t of those holdings will change, since V S
t = HS

t · St, and
the stock price does not remain constant.

The analogous situation for investing in the riskless asset would be as follows.

• I consider one currency unit (one dollar), 35 invested AT TIME t = 0, to be one bank
share, i.e., one share of that asset.

• If I own 100 bank shares at t0 = 0, i.e., HB
0 = 100, and if I do not make any trades in the

riskless asset until time t1, then my bank account holding (the number of bank shares)
should remain constant: HB

t = HB
0 = 100, for 0 ≤ t ≤ t1.

However, the (money) value V B
t of those 100 dollars that were invested at time 0 will change, since

interest is added, at certain times or continually, to that investment.
• Due to interest, today’s value of one unit is Bt, today’s money market account price.

Accordingly, today’s balance in that account is 100Bt = HB
0 Bt = HB

0 Bt.
• Interest payments have increased, today’s value of each bank share to Bt, today’s money

market account price. Accordingly, today’s balance in the account is

V B
t = 100Bt = HB

0 Bt = HB
0 Bt.

• In reverse, if I invest at time t 100 dollars into my bank account, this will not buy me 100
bank shares. (We just saw that V B

t = Bt · 100 dollars are needed for that.)
• Rather, the 100 dollars must be discounted to time 0 by multiplying this amount with

Dt = 1/Bt, since today’s 100 dollars only buy HB
t = Dt · 100 bank shares.

35if you prefer, Euro or Chinese Yuan or Rubel or ...
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• Of course, the value of those HB
t bank shares at time t is, due to accrued interest,

HB
t ·Bt = (Dt · 100) ·Bt = (B−1

t · 100) ·Bt = 100 dollars,
just as it should be.

In summary, good choices for shares in and price per share of a riskless asset would be
• HB

t = DtV
B
t , where V B

t denotes today’s worth of the investment in that asset,
• S

(0)
t = Bt = today’s money market account price. �

All that remains is to formalize the definition of bank shares and the finding that it results in the
price per such a share being equal to the money market account price.

Definition 7.10 (Bank shares).

Assume that a riskless asset has a money market acccount price processBt(ω) and discount
process Dt(ω) = 1/Bt(ω).
If the monetary value of that investment at time t is V B

t dollars, then we call

(7.20) HB
t (ω) := Dt(ω) · V B

t (ω) =
V B
t (ω)

Bt(ω)

the number of bank shares which the investor holds in that asset. �

Proposition 7.3. Given the assumptions of this section, it follows that

the price of a bank share at time t equals the money market account price of the asset, i.e.,

(7.21) S
(0)
t = Bt , for t ≥ 0.

PROOF: Follows from the material presented in the introduction to this section �

Remark 7.9. Stock price St and stock holdings HS
t have the following analogies for riskless assets:

(1) asset price per unit at a given time t = Bt = money market account price at t,
(2) Holdings HB

t = DtV
B
t = today’s value discounted to time zero.

�

7.4 Discrete Time Financial Markets

The following examples are about interest in discrete markets.

Example 7.4.
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• In a discrete time financial market, interest is added only at the trading times tj . See
Definition 7.2(4) (Financial Market) on p.150.

• The most complicated case occurs when the trading times are not equally spaced,
and different interest rates rj per unit of time may occur during different intervals
[ tj−1, tj [. Then the account value jumps at tj by a factor 1+(tj−tj−1)r, fromHB

tjBtj−1

to HB
tjBtj = HB

tjBtj−1

(
1 + (tj − tj−1)r

)
.

• The most complicated case occurs when the trading times are not equally spaced,
and different interest rates rj per unit of time may occur during different intervals
[ tj−1, tj [. Then the money market account price jumps at tj by a factor 1+(tj−tj−1)r,
from Btj−1 to Btj = Btj−1

(
1 + (tj − tj−1)r

)
.

• For example, if the annual interest rate is 4% and trades occur one per day and tj
denotes day j, then the daily interest rate is r = 4

365%, and interest earned increases
the money in the account at each day j by a factor of 1 + 4

36,500 . �

Here are some remarks concerning the portfolio value process V ~H 36 of a discrete market.

Remark 7.10. Recall that ~Ht0 = ~Ht1 by the definition of a discrete market portfolio. Thus

V
~H
t0 = ~Ht1 • ~St0 =

n∑
j=0

H
(j)
t1
S

(j)
t0
, �(7.22)

Remark 7.11. Portfolio value is interpreted differently in discrete and continuous trading models.
In discrete time markets there are two cases to consider.
A. The case tk > t0, i.e., k > 0.
We interpret, for each trading time tk > t0, ~Htk as the holdings in asset AAA (j) during the interval
[tk−1, tk[. In other words, the quantities ~Htk are bought and sold at time tk−1 and held constant until
the next time of trade tk. The times t1, t2, . . . are genuine times of trade.
The following happens at t = tk:

(a) The entire “old” portfolio ~Htk , which was purchased at time tk−1 at prices ~Stk−1
, is sold at

current prices ~Stk .
The money received from that sale is Vtk = ~Htk • ~Stk .

(b) This amount Vtk now is used to purchase the new portfolio ~Htk+1
. This purchase also hap-

pens at current prices ~Stk .
Since money spent = money received = Vtk , we have Vtk = ~Htk+1

• ~Stk .

Important: The “obvious” portfolio value equation

Vtk = ~Htk • ~Stk

applies to the sale of the old portfolio ~Htk , but NOT to the purchase of the new portfolio ~Htk+1 ! �

The equation

(7.23) Vtk = ~Htk • ~Stk = ~Htk+1
• ~Stk

36See Definition 7.6 (Portfolio value) on p.154
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expresses that no money is added or removed when the old portfolio ~Htk is traded for the new
portfolio ~Htk+1

Thus
money spent = money received.

B. The case k = 0.
The time t0 is the setup time for the initial portfolio ~Ht0 . There is no old portfolio which can be
traded for this initial portfolio. Rather, the first time of trade is t1.

Recall that ~Ht0 = ~Ht1 by definition. The following happens at t0:

• The amount Vt0 is available to setup (buy) the initial portfolio ~Ht0 . This purchase takes place
at current prices ~St0 . Since the money spent at setup is Vt0 , this is the value of the portfolio
~Ht0 . In other words,

(7.24) Vt0 = Portfolio setup value = ~Ht0 • ~St0 = ~Ht1 • ~St0 . �

We refer to (7.23), the equation which expresses the “money spent = money received” balance when
a portfolio is traded for a new one, as the budget equation for the portfolio. This equation also
allows us to amend Definition 7.5 (Self–financing portfolio) on p.154 to one that is mathematically
more precise.

Definition 7.11 (Discrete time budget equation and self–financing portfolios).

(A.) The budget equation for a portfolio ~Ht in a discrete time financial market is

(7.25)
n∑
j=0

H
(j)
tk+1

S
(j)
tk

= V
~H
tk

=

n∑
j=0

H
(j)
tk
S

(j)
tk

for tk > t0.

(B.) We call ~Ht a self–financing portfolio strategy aka self–financing portfolio, if it satis-
fies this budget equation. �

7.5 Continuous Time Financial Markets

We recall from part (4) of Definition 7.2 (Financial Market) on p.150, that interest is compounded
continuously in a continuous time market. Clearly, this implies the following.

Proposition 7.4.

Assume that Rt is an interest rate process, for the riskless asset AAA (0), i.e., Rt(ω) is the interest
rate given at time t. Then each dollar invested into the asset at time zero will increase to

(7.26) Bt := exp

[ ∫ t

0
Rs ds

]
at time t. Thus, Bt is the money market account price, and

(7.27) Dt :=
1

Bt
= exp

[
−
∫ t

0
Rs ds

]
is the discount process of AAA (0).
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Remark 7.12.
• More generally, between times t1 < t2, the holdings in a money market account

increase during the interval [t1, t2[ by the factor

Bt2
Bt1

= exp

[
−
∫ t2

t1

Rs ds

]
.

• In the special case of a constant interest rate r on the interval [0, T ], those holdings
increase during the interval [t1, t2[ by the factor e(t2−t1)r. �

Here are some remarks concerning the portfolio value process V ~H 37 of a continuous time market.

Example 7.5. If AAA (3) denotes IBM stock which is traded at time t at a price of S(3)
t = $120.15 per

share and H(3)
t = −27.78 shares, (a short position!) then IBM stock contributes −3337.767 dollars to

the value V ~H
t of that portfolio. �

Remark 7.13. Portfolio value is interpreted differently in discrete and continuous trading models.
In continuous time markets, each time t is a trading time. We interpret ~Ht as the holdings (number
of shares) in asset AAA (j) at that time t. The value of those AAA (j)–holdings is

quantity × price = H
(j)
t · S

(j)
t .

Thus the sum of those holdings,
n∑
j=0

H
(j)
t S

(j)
t , is the value of the entire portfolio at time t. �

Remark 7.14. Definition 7.11 (Discrete time budget equation and self–financing portfolios) on p.161
gave the budget equation for a discrete trading times financial market. Such a budget equation can
also be formulated for continuous trading times, It turns out to be

dV H
t = ~Ht • d~St =

N∑
i=1

H
(i)
t dS

(i)
t ,(7.28)

where dS(i)
t = dS

(i)
t (ω) is a “stochastic differential”. We need knowledge of stochastic calculus to

understand the meaning of (7.28), so we will defer dealing with continuous time budget equations
until Chapter 10.1 (Prologue: The Budget Equation in Continuous Time Markets). 38 �

7.6 Exercises for Ch.7

37See Definition 7.6 (Portfolio value) on p.154
38See Definition 10.1 on p.209.
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8 The Binomial Asset Model

A very simple financial market model is the binomial model. It is characterized as follows.

Assumption 8.1 (Binomial Asset Model).

Trading only happens at times t = 0, 1, 2, . . . (we have a discrete time financial market in the sense of
Definition 7.2 (Financial Market) on p.150), and there are only two assets:

(1) AAA B is a bond/bank account. We denote its money market account price at time t
by Bt. Interest is compounded only at the trading times t = 1, 1, 2, . . . (no interest is
due yet at start time zero), and the interest rate r is fixed and deterministic. Thus

(8.1) B1 = (1 + r)B0, . . . , Bn = (1 + r)Bn−1 = (1 + r)nB0.

(2) AAA S is a stock. We denote its price process by St.

(3) St remains unchanged between trading times. At the next such time it will either
go up by a factor u with a probability pu, or it will do down by a factor d with a
probability pd. Thus the dynamics for St are

Sn = Sn−1 · Zn =

{
u · Sn−1, with probability pu > 0,

d · Sn−1, with probability pd > 0 ,
(8.2)

Here Zn :=

{
u, with probability pu > 0,

d, with probability pd > 0 .
(8.3)

is an iid sequence of binomial random variables with success probability pu.

(4) We assume that B0 = 1 and S0 has the deterministic value S0 = s.
(5) We assume that trading ends at time T (an integer). The meaning of T will often be

the time of expiry of a contingent claim. �

Remark 8.1 (Portfolio Strategy for the binomial model).
According to Definition 7.4 (Portfolio Strategy) on p.152
a portfolio strategy for the binomial asset model is a process

~Ht(ω) =
(
HB
t (ω), HS

t (ω)
)
, t = 1, 2, . . . , T(8.4)

which denotes the holdings HB
t in AAA B and HS

t in AAA S of an investor during the interval [t − 1, t].
Negative values indicate that this quantity is not owned but owed.
Its portfolio value is

V
~H

0 = HB
1 B0 + HS

1 S0,

V
~H
t = HB

t Bt + HS
t St if t > 0, at time of sale. �

(8.5)

Note that, according to Definition 7.4(3), ~H0 is defined by ~H0 = ~H1.
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We next specify the budget equation that must be satisfied by a self–financing portfolio. See Defini-
tion 7.11 (Budget Equation) on p.161.

Proposition 8.1 (Budget equation in the binomial asset model). A portfolio strategy

~Ht(ω) =
(
HB
t (ω), HS

t (ω)
)
, t = 1, 2, . . . , T

for the binomial asset model is self–financing if and only if the following condition holds.

Budget equation:

HB
t (1 + r)t + HS

t St = HB
t+1(1 + r)t + HS

t+1St (t = 1, . . . , T − 1).(8.6)

PROOF: HB
t “bank shares” is the amount of money one would have had to deposit at time 0 to

obtain, due to compound interest, the bank account balance HB
t Bt−1 = HB

t (1 + r)t−1 that belongs
to the new portfolio ~Ht purchased at time t− 1.
This money in the bank increases during the interval [t − 1, t] by a factor 1 + r to HB

t (1 + r)t. In
other words, the bank account portion of ~Ht has become HB

t (1 + r)t at time t.
Clearly, the value of the stock shares was HS

t St−1 at time t− 1 and has changed to HS
t St at time t.

Thus the sales value of ~Ht is V
~H
t = HB

t (1 + r)t + HS
t St.

We use that money to purchase (still at time t) the new portfolio ~Ht+1. Its bank account portion is
worth HB

t+1Bt = HB
t+1(1 + r)t, the HS

t+1 shares of stock are worth HS
t+1St, thus the value of the new

portfolio is HB
t+1(1 + r)t + HS

t+1St.
The budget equation states that this amount must equal the sales value of the old portfolio. Hence,

V
~H
t = HB

t (1 + r)t + HS
t St = HB

t+1(1 + r)t + HS
t+1St �

One of the key properties of the binomial asset model will be that, if it does not admit arbitrage, one
can replace the probabilities pu and pd which were introduced in Assumption 8.1(3) made about the
binomial asset model (p.163), with different probabilities p̃u and p̃d. Those two numbers then define
a probability P̃ on FS = σ{S0, S1, . . . } which is equivalent to P and makes discounted stock price
(1 + r)−nSn a P̃–martingale. We collect here some material which will help establish that fact.

Proposition 8.2.

If (Ω,F, P ) is a probability space, n ∈ N and A1, . . . , An ∈ F, then

P (An ∩An−1 ∩ · · · ∩A1) = P (An | An−1 ∩ · · · ∩A1)P (An−1 | An−2 · · · ∩A1) · · ·
· · ·P (A3 | A2 ∩A1)P (A2 | A1)P (A1).

(8.7)

PROOF:
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Repeated use of P (U ∩ V ) = P (U | V )P (V ) with U = Aj and V = Aj−1 ∩ · · · ∩A1 yields

P (An ∩An−1 ∩ · · · ∩A1)

= P (An | An−1 ∩ · · · ∩A1)P (An−1 ∩ · · · ∩A1)

= P (An | An−1 ∩ · · · ∩A1)P (An−1 | An−2 · · · ∩A1)P (An−2 · · · ∩A1)

= .......................

= P (An | An−1 ∩ · · · ∩A1)P (An−1 | An−2 · · · ∩A1) · · ·P (A3 | A2 ∩A1)P (A2 | A1)P (A1). �

Proposition 8.3.

Let the process X =
(
Xj

)
j=0,1,...

follow a binomial tree model, i.e., there exist x0, u, d, πu, πd ∈ R
such that u < d and

X0 = x0 = const ,(8.8)
πu > 0 , πd > 0 , πu + πd = 1 ,(8.9)

either Xn+1 = Xnu with probability πu (“upward move”) ,
or Xn+1 = Xnd with probability πd (“downward move”) .

(8.10)

Then πu and πd determine a probability P on the measurable space (Ω, σ{X0, X1, . . . }).

This probability is characterized as follows.

Assume that the path
x1 = X1(ω), x2 = X2(ω), . . . , xn = Xn(ω)

consists of k upward moves xj+1 = xju and of n− k upward moves xj+1 = xjd. Then

P{X0 = a0, X1 = x1, . . . , Xn = xn} = πku π
n−k
d ,(8.11)

P{Xn = x0 u
k dn−k} =

(
n

k

)
πkuπ

n−k
d .(8.12)

In particular, the number of upward moves of Xn has a binom(n;πu) distribution.

PROOF: ?

The process X has been constructed in such a fashion that Xn will be one of x0 u
j dn−j where j =

0, 1, . . . , n. Xn+1 only depends on Xn and not on the prior values X0, . . . , Xn−1, thus

P (Xn+1 = a | σ(X1, . . . , Xn) ) = P (Xn+1 = a | X1, . . . , Xn) = P (Xn+1 = a | Xn)(8.13)

for any number a. It follows from (8.10) that

P{Xn = xn | Xn−1 = xn−1} =


πu ifxn = xn−1u,

πd ifxn = xn−1d,

0 else .

(8.14)

Let x0, . . . , xn such that

xj = uxj−1 or xj = d xj−1 (j = 1, 2, . . . , n) .(8.15)
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Then (8.13) and (8.14) yield

P{Xn = xn | Xn−1 = xn−1, . . . , X1 = x1} = P{Xn = xn | Xn−1 = xn−1}

=

{
πu ifxn = xn−1u,

πd ifxn = xn−1d.

(8.16)

The condition (8.15) is necessary for the following reason: If it is not satisfied then
P{Xn−1 = xn−1, . . . , X1 = x1} = 0, and the leftmost conditional probability is not defined.
Case 1: Assume that the numbers x0, . . . , xn satisfy the condition (8.15). We apply (8.16) to formula
(8.7) of Proposition 8.2 on p.164 with Aj = {Xj = xj} (j = 0, 1, . . . , n). We obtain

P{X0 = x0, X1 = x1, . . . , Xn = xn}
= P{X0 = x0}P{X1 = x1 | X0 = x0} · · · P{Xn = xn | Xn−1 = xn−1} .

(8.17)

If the event A describes k upward moves and thus n− k downward moves of the process, i.e., there
are k indices j such that xj = uxj−1 and n − k indices j such that xj = uxj−1, then the above
equals, since P{X0 = x0} = 1,

P{X0 = x0, X1 = x1, . . . , Xn = xn} = πkuπ
n−k
d .

We have derived formula (8.11) of this proposition.
Case 2: If x0, . . . , xn do not satisfy (8.15) then P{X0 = x0, X1 = x1, . . . , Xn = xn} = 0. Let

B :=
{

(x0, . . . , xn) : P{X0 = x0, . . . , Xn = xn} = 0
}
.

By construction, each Xk can only take one of the k + 1 values x0u
jdk−j where j = 0, 1, . . . , k. Thus

the size of B is finite, thus

P{(X0, . . . , Xn) ∈ B} =
∑[

P{X0 = x0, . . . , Xn = xn} : (x0, . . . , xn) ∈ B
]

=
∑

0 = 0

Both cases together show that the finite distributions of the process X are determined by formula
(8.11) and thus by πu and πd.
The proof of (8.12) is obtained as follows. Observe that, for any 0 ≤ j ≤ n,

Xn(ω) = x0 u
j dn−j ⇔ there were j upward moves and n− j downward moves ,

and that there as many combinations of k upward moves and n− k downward moves as there are
ways to select k items from n items. According to (8.11) each one of those combinations occurs with
the same probability πkuπ

n−k
d . It follows that

P{Xn = x0 u
j dn−j} =

(
n

k

)
πku π

n−k
d . �

Corollary 8.1.

In the settings of Proposition 8.3 we assume that Φ(x) is a function which is defined for all values x
which can be assumed by Xn, i.e., for x ∈ {x0u

kdn−k : k = 0, 1, . . . , n}. Then,

E[Φ(Xn)] =

n∑
k=0

(
n

k

)
πkuπ

n−k
d Φ(x0u

kdn−k).(8.18)
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PROOF:
We have seen in Proposition 8.3 that the number of upward moves of Xn follows a binom(n;πu)
distribution, i.e.,

P{Xn = x0 u
k dn−k} =

(
n

k

)
πkuπ

n−k
d (k = 0, 1, . . . , n) .(8.19)

For Xn(ω) = x0u
kdn−k we obtain

Φ
(
Xn(ω)

)
= Φ(x0u

kdn−k) = ψ(k) .

It follows for the expected value of X that

E[Φ(Xn)] =
∑
x

Φ(x)P{Xn = x}

=

n∑
k=0

Φ(x0u
kdn−k)P{Xn = x0u

kdn−k}

=
n∑
k=0

Φ(x0u
kdn−k)

(
n

k

)
πkuπ

n−k
d . �(see (8.19))

It will be almost immediate from the next proposition that if Mt = DtSt (St = stock price) then Mt

is a FSt –martingale under risk–neutral probability.

Proposition 8.4.

Let the process X and the probability measure P constructed on (Ω, σ{X0, X1, . . . }) be as defined
in Proposition 8.3 (see p.165). We write EP for the expectation with respect to that probability and,
as usual, FXn = σ{X0, X1, . . . , Xn}. Then

(8.20) EP [Xn+1 | FXn ] = (uπu + d πd)Xn .

PROOF:
According to formula (5.6) on p.116:

XG(ω) =
∑
j

E(X | Gj) · 111Gj (ω) ,

applied to G := σ{Xj : j ≤ n}. G is generated by the sets {X1 = x1, X2 = x2, . . . , Xn = xn}. Such a
set has probability zero unless xj = xj−1u or xj = xj−1d for each j = 1, 2, . . . , n.
Since conditional expectations are determined only up to a set of probability zero, (8.20) is valid if
we can prove the following. Let

A := {X1 = x1, X2 = x2, . . . , Xn = xn} such that P (A) > 0, i.e.,
xj = xj−1u or xj = xj−1d for all j = 1, 2, . . . , n .

Then

EP [Xn+1 | A] = (uπu + d πd)Xn(ω) for all ω ∈ A .(A)
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To prove (A) we observe that

EP [Xn+1 | A] =
∑
x

x · P{Xn+1 = x | A}

= (xnu)P{Xn+1 = xnu | A} + (xnd)P{Xn+1 = xnd | A}
= (xnu)P{Xn+1 = xnu | Xn = xn, . . . , X1 = x1}

+ (xnd)P{Xn+1 = xnd | Xn = xn, . . . , X1 = x1}

It follows from the definition of πu and πd that

P{Xn+1 = xnu | Xn = xn, . . . , X1 = x1} = πu ,

P{Xn+1 = xnd | Xn = xn, . . . , X1 = x1} = πd ,

thus EP [Xn+1 | A] = (xnu)πu + (xnd)πd = xn(uπu + d πd) .

Since A ⊆ {Xn = xn}, we have Xn(ω) = xn and thus EP [Xn+1 | A] = (uπu + d πd)Xn(ω) for all
ω ∈ A. This proves (A) and, hence, (8.20). �

Remark 8.2. Except for item (1), this remark will be about stock price St and discounted stock price
DtSt rather than about a general binomial tree Xt.
(1) If x0 > 0 and d > 0 (hence, u > 0), then Xn(ω) > 0 for all n and all ω.
(2) Stock price Sn follows a binomial tree model for which the above proposition applies if we
restrict the events of Ω to FS = σ{S0, S1, . . . }. This is true for the real world probabilities pu, pd of
upward and downward moves which thus define a probability P on (Ω,FS) via

P{Sn+1 = au | Sn = a} := pu , P{Sn+1 = ad | Sn = a} := pd .

Note though that (8.9) explicitly requires that both pu > 0 and pd > 0.
(3) Discounted stock price Mn := DnSn, where Dn = (1 + r)−n, also follows a binomial tree model
under the real world probabilities pu and pd. To see this we write

u′ :=
u

1 + r
, d′ :=

d

1 + r
, Zn(ω) :=

{
u ifSn+1(ω) = Sn(ω)u ,

d ifSn+1(ω) = Sn(ω)d .

Then

Mn+1 = Dn+1Sn+1 = D1DnSnZn = Mn(D1Zn) =

{
Mnu

′ with probability pu ,
Mnd

′ with probability pd .

Thus we have the following: If we replace Sn with Mn, u with u′, d with d′ and keep Bn, pu, pd
unchanged, then the new system satisfies formula (8.2) on p.163. Thus we have again a binomial
asset model.
(4) We claim that FM = FS . The proof is as follows. FSn is generated by the events

{S0 = s0, S1 = s1, . . . , Sn = sn} where sk = u sk−1 or sk = d sk−1 (k = 1, 2, . . . , n) .

See the proof of Proposition 8.3 above. Since there is some 0 ≤ j ≤ k such that sk = s0u
jdk−j (the

case where sk represents j upward moves and k− j downward moves) for each k = 1, 2, . . . , n, and
that is the case if and only if

Mk(ω) = s0(u′)j(d′)k−j = Dks0u
jdk−j = Dksk ,
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it follows that

{S0 = s0, S1 = s1, . . . , Sn = sn} = {M0 = s0, M1 = D1s1, . . . ,Mn = Dnsn} ,

and thus that FM = FS .
(5) All that was discussed in (2) and (3) remains in force if we replace the real world probabilities pu
and pd with the risk neutral probabilities p̃u and p̃d. as long as both p̃u > 0 and p̃d > 0, i.e.,

d < 1 + r < u .

Note that the resulting probability P̃ on (Ω,FS) is equivalent to P since

P{S0 = s0, S1 = s1, . . . , Sn = sn} > 0

⇔ P{S0 = s0, S1 = s1, . . . , Sn = sn} = pkup
n−k
d for some k = 1, 2, . . . , n

⇔ P̃{S0 = s0, S1 = s1, . . . , Sn = sn} = p̃kup̃
n−k
d for some k = 1, 2, . . . , n . �

We now return to examining the properties of a general binomial tree.

Theorem 8.1. With the same definitions as before we have the following.

Let the process M be defined as

Mn :=
1

(uπu + dπd)n
Xn .

Then M is both an FXt –martingale and an FMt –martingale)

PROOF: Let α := uπu + dπd. Then Mn = 1
αnXn and Xn = αnMn. Deterministic expressions can

be moved in and out of conditional expectations. Further, according to Proposition 8.4 on p.167,
EP [Xn+1 | FXn ] = αXn. Thus

EP [Mn+1 | FXn ] = α−(n+1)EP [Xn+1 | FXn ] = α−(n+1)(αXn) = α−nXn = Mn .

It follows that M is an FXt –martingale. We have seen in Remark 8.2 that FMt = FXt . Thus M also is
an FMt –martingale.
�

Considering that the stock price joint probabilities are given by

P{S0 = a0, S1 = s1, . . . , Sn = sn} = pkup
n−k
d in the real world,

P̃{S0 = a0, S1 = s1, . . . , Sn = sn} = p̃kup̃
n−k
d in the risk–neutral world,

and the number of upward moves of stock price at time T follow a binomial distribution in both
worlds (see (8.11) and (8.12) on p.165 and Remark 8.2(2) on p.168), it should not come as a surprise
that the options price process ΠT (X ) for a simple claimX , and thus also the identical portfolio value
process V H

t for a replicating portfolio ~Ht, have a close connection with the binomial distribution.
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Corollary 8.2 (Expectation of a simple claim in the binomial tree model).

Let πu and πd be the risk–neutral probabilities for up and down moves of stock price.
Then the expected value of a simple claim X = Φ(ST ) is

(8.21) E[X ] =

T∑
k=0

(
T

k

)
πkuπ

T−k
d Φ(sukdT−k).

PROOF:
This follows from Corollary 8.1 on p.166. �

8.1 The One Period Model

In the one period model there are only two times t = 0 and t = 1. A portfolio ~H1 = (HB
1 , H

S
1 ) is

purchased at t = 0. 39

We follow the notation of [7] Björk, Thomas: Arbitrage Theory in Continuous Time and write

x := HB
1 , y := HS

1 .

According to assumption 8.1, parts (4) and (3), the value process is
• V0 = x ·B0 + y · S0 = x + y · s,
• V1 = x(R+ 1) + ysZ.

Proposition 8.5.

The model above is free of arbitrage if and only if the following conditions hold:

(8.22) d < (1 + r) < u.

Informal PROOF that if (8.22) does not hold then there will be arbitrage portfolios:
First case – We assume u > d ≥ 1 + r: We borrow money from the bank and invest it in the stock,
with a return at least as high as the interest we must pay on our loan. There is positive probability
pu that Z = u, and in this case we will not just break even but make a profit.
Second case – We assume d < u ≤ 1 + r: We sell short the stock and invest the proceeds in the bank
with a return guaranteed to be high enough to buy that stock on the market and deliver it to the
buyer. There is positive probability pd that Z = d, and in this case we will not just break even but
make a profit.
The proof of the reverse direction is left as exercise 8.1. See p.188. �

We focus on the stock price process S = (S0, S1) and the discounted stock price D1S1. Since S0 = s
= const, σ(S0) = {∅,Ω}. Let A := {S1 = su}. Since either S1 = su or S1 = sd, we obtain

A{ = {S1 = sd} , σ(S1) = {∅,Ω, A,A{} , σ(S0, S1) = σ(S1) = {∅,Ω, A,A{} .

We thus have completely determined the filtration (FSt )t=0,1 generated by S as

FS0 = {∅,Ω}, FS1 = {∅,Ω, A,A{}.
39Recall that ~H0 = ~H1 = portfolio holdings established at time t = 0!
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Let F := σ(S0, S1) = FS1 , i.e., we restrict the probability space (Ω,F, P ) to the events known by S.
Then P is completely specified by pu as follows.

P (∅) = 0, P (Ω) = 1, P (A) = pu, P (A{) = pd = 1 − pu.

The relation d < (1 + r) < u yields a unique number p̃u such that 1 + r is the convex combination

1 + r = (1− p̃u)d + p̃uu = p̃uu + p̃dd (define p̃d := 1 − p̃u).(8.23)

This pair of numbers, p̃u and p̃d, defines a probability measure P̃ on (Ω,F) via

P̃ (∅) := 0, P̃ (Ω) := 1, P̃ (A) := p̃u, P̃ (A{) := p̃d = 1 − p̃u.(8.24)

To summarize, absence of arbitrage allows us to define a probability measure P̃ on the information
σ–algebra σ(S0, S1) = FS1 = F of stock price S such that

p̃uu + p̃dd = 1 + r .

It can easily be seen that P̃ is equivalent to P . See Exercise 8.2 on p.188.

Now a reminder about the discount process. We have seen in formula (8.1) on p.163 that the interest
factor by which a hank account holding increases between times zero and n is

Bn = (1 + r)n .

We can turn this around and see that an asset worth Vn at time n has to be discounted to 1
(1+r)nVn

if one wants to determine how many units of the riskless asset AAA B are needed at t = 0 to generate
the amount Vn at time n. It follows that the discount process in the binomial model is given by

D0 = 1, D1 =
1

1 + r
, ; . . . , Dn =

1

(1 + r)n
, . . .(8.25)

This is, of course, just as it must be, since discount process Dt and price of money market account
Bt are always reciprocal to each other.

Proposition 8.6. The measure P̃ defined by p̃u (and p̃d = 1− p̃u) of formula (8.23) on FS1 satisfies

(a) The present stock price is obtained from its price in the future by discounting that one
and taking its expectation with respect to the measure P̃ :

(8.26) S0 =
1

1 + r
· Ẽ[S1],

(b) The discounted stock price Mn = DnSn, n = 0, 1, is an FSn–martingale.

PROOF: Since
Dn =

1

(1 + r)n
=

1

(up̃u + dp̃d)n
,

we obtain (b) from Theorem 8.1 on p.169 by setting

πu := p̃u , πd := p̃d , Xn := Sn (n = 0, 1) .
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For the proof of (8.26) we proceed as follows. For n = 0, 1, let Mn := Sn/(1 + r)n.

Since S0 = s = const, Ẽ[S0] = S0. Since Mn is a P̃–martingale, Ẽ[M0] = Ẽ[M1]. Thus

S0 = Ẽ[S0] = Ẽ[M0] = Ẽ[M1] = Ẽ

[
1

1 + r
S1

]
=

1

1 + r
Ẽ[S1] . �

We give some definitions in the sequel which will be restated later in a more general context.

Definition 8.1 (Martingale Measure).

We call a probability measure P̃ for which discounted stock price DtSt is a martingale, a
martingale measure. We also call P̃ a risk–neutral measure, since, the equation

Ẽ [Dt+hSt+h | Ft] = DtSt for h > 0 ,

has the following interpretation: On average, when we account for the riskless (“risk–
neutral”) growth by discounting St+h to t = 0, this discounted value must equal the
(known) present value St of the asset if we also discount that one to t = 0. �

We now compute the probabilities p̃u and p̃d which determine the martingale measure P̃ .

Proposition 8.7.

The martingale probabilities p̃u and p̃d of formula (8.23) on p.171 can be explicitly computed as

(8.27) p̃u =
(1 + r)− d
u− d

, p̃d =
u− (1 + r)

u− d
.

PROOF: Trivial. �

Remark 8.3 (Contingent Claim). Since the expiration time is T = 1, a contingent claim (Definition
7.8 on p.156) in the one period model is a FS1 –measurable random variable X (ω). Note that

FS1 = σ(S0, S1) = σ(S1), since S0 = s = const.

Thus, by Doob’s composition lemma, there is a function x 7→ Φ(x) of stock price x such that

X = Φ ◦ S1.

In other words, any contingent claim in the one period binomial model possesses a contract function
Φ and thus is a simple claim. In a more general setting it will not always be true that all contingent
claims are simple. �

To find an answer to the question how, in the one period model, a derivative X expiring at time
t = 1 should be priced today, we work with replicating portfolios. In the general case a portfolio
was the entire collection (process) ~H = ~Ht since assets can be traded at any time t. In the discrete
case t = t0 < t1 < t2 < · · · < T trades only happen at times tj−1, and those holdings

~Htj =
(
H0
tj , H

1
tj , . . . ,H

n
tj

)
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remain constant until tj . In the discrete case t = t0 < t1 < t2 < · · · < tm = T , there is no more trade
at expiration time tm = T . Thus things are very simple in the one period model.
• Since T = 1, the only trade that influences V H

T takes place at t = 0.
• There are only two assets, the bond (risk free asset) with prices Bt = B0, B1 (where B0 = 1),

and the stock (risky asset) St = S0, S1.
Our entire portfolio strategy can be described by two numbers ~H0 = (x, y) which are deterministic
since this portfolio is established at t = 0, and we know today what our holdings are today.

We recall our assumption that the market is efficient and that there is no arbitrage.

The next proposition shows us how to build a hedging portfolio for an arbitrary contract function.

Proposition 8.8.

Let the one period binomial model be free of arbitrage, i.e., d < 1 + r < u. Let X be an arbitrary
claim with contract function Φ, i.e.,

X = Φ ◦ S1

Then this contract is hedged by the following portfolio ~H1 =
(
HB

1 , H
S
1

)
:

HB
1 =

1

1 + r
· uΦ(sd)− dΦ(su)

u− d
,

HS
1 =

1

s
· Φ(su)− Φ(sd)

u− d
.

(8.28)

Note for the above that Φ(x) is a function of stock price at t = 1, i.e., Φ is given by its two function
values Φ(sd) and Φ(su).

PROOF: For convenience, let
x := HB

1 , y := HS
1

be the portfolio which was established at t = 0. Thus we claim that that the portfolio ~H1 = (x, y),
given by

x =
1

1 + r
· uΦ(sd)− dΦ(su)

u− d
,

y =
1

s
· Φ(su)− Φ(sd)

u− d
.

(8.29)

is a hedge for X . Rather than doing this the mathematically elegant way and showing that this
choice of x and y will lead to the equation V H

1 (ω) = X (ω), we proceed the opposite way.
We recall from formulas (8.1) and (8.2) on p.163 that, since S0 = const = s, and since money market
investments will increase by a factor 1 = R, the portfolio ~H1 = (x, y) yields at time t = 1 a value

V h
1 = x(1 + r) + y(sZ1) =

{
x(1 + r) + ysu, if Z1 = u,

x(1 + r) + ysd, if Z1 = d.

On the other hand

V h
1 = X = Φ(S1) = Φ(sZ1) =

{
Φ(su), if Z1 = u,

Φ(sd), if Z1 = d.
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We equate the right–hand sides separately for Z1 = u and Z1 = d and obtain

(1 + r)x+ suy = Φ(su),

(1 + r)x+ sdy = Φ(sd).

This is a linear system of equations with determinant (1 + r)s(d − u) which is not zero since d < u
and s > 0. Thus there is a unique solution (x, y). It is easy to see that

x =
1

1 + r
· uΦ(sd)− dΦ(su)

u− d
,

y =
1

s
· Φ(su)− Φ(sd)

u− d
. �

(8.30)

We have computed a replicating portfolio for an arbitrary simple contract function in a one period
binomial market which satisfies d < 1 + r < u. In other words, such a financial market is complete.
40 Thus we have the following corollary.

Corollary 8.3.

If the one period binomial model is free of arbitrage then it is complete.

PROOF: Immediate from the preceding proposition. �

Complete markets have the following benefit: We know how to correctly price an arbitrary claims
at any point in time if we know how to construct a corresponding hedge, since this price equals the
value of that hedge at the given time.

We have seen in Proposition 8.6 on p.171 that discounted stock price is a martingale with respect to
risk–neutral measure P̃ . The next proposition states that the same is true for (arbitrage free) pricing
of contingent claims.

Proposition 8.9.

In the one period binomial model, the discounted, arbitrage free, price process Dt ·Πt(X ) of a conti-
gent claim X is a P̃–martingale. In particular, we have risk–neutral valuation

(8.31) Π0(X ) =
1

1 + r
· Ẽ[X ].

PROOF: Let ~H be a hedging portfolio forX . Since trading only takes place at t = 0, ~H is determined
by (x, y) := ~H1, i.e., x = HB

1 and y = HS
1 . Moreover,

Π0(X ) = V H
0 = x · 1 + y · s

We use the expressions (8.30) for x and y and afterwards the expressions (8.27) for the martingale
probabilities p̃u and p̃d. We obtain

Π0(X ) =
1

1 + r
·
[(1 + r)− d

u− d
Φ(su) +

u− (1 + r)

u− d
Φ(sd)

]
=

1

1 + r
·
(
Φ(su) · p̃u + Φ(sd) · p̃d

)
=

1

1 + r
Ẽ [Φ ◦ S1] =

1

1 + r
Ẽ [X ] . �

40See Definition 7.9 (Hedging/Replicating Portfolio) on p.156.

174 Math 454 - Version 2025-02-11



Math 454 – Additional Material Student edition with proofs

8.2 The Multiperiod Model

After having given special attention to the one period model, we now continue with the general
binomial asset moded where expiration time T may be greater than one. We recall from Assumption
8.1 for the binomial model that the dynamics that govern the development of the price Bt of the
riskless asset (the bond) and the price of the risky asset (the stock) St for t = 0, 1, . . . , T ) are, for
T = 3, described by the following diagrams.

1

Bond Price Dynamics

(1 + r) · 1 (1 + r)2 · 1 (1 + r)3 · 1

s

Stock Price Dynamics

su

sd

u

d

su2

sud

sd2

u

d

u

d

su3

su2d

sud2

sd3

u

d

u

d

u

d

8.1 (Figure). Stock price dynamics

Notation 8.1.
A. We look at a vertical slice of the diagram in Figure 8.1 by fixing a time t0 and name its t0 + 1
nodes, starting at the bottom, Nt0,0,Nt0,1, . . . ,Nt0,t0 . This way, the node Nt0,k is reached at t = t0
⇔ exactly k of the t0 stock price movements were upward and t0 − k of them were downward.
Thus Nt0,k is the node in the t0–slice of the diagram with stock price St0 = sukdt0−k.
Clearly, stock price uniquely identifies the t0–node since d < u.
Assuming that the arbitrage free prices for a given simple claim exist, we further write Π

(
Nt0,k

)
for

this arbitrage free price belonging to that node, i.e., associated with St0 = sukdt0−k. We will see in
Theorem 8.2 on p.180, that in an arbitrage free market every simple claim has such prices for every
node in the tree.
B. Remember for the following that ~Ht = (HB

t , H
S
t ) is the portfolio resulting from the trade that

took place at time t − 1, and that the bank shares HB
t must be multiplied with the money market

account price Bt−1 = (1 + r)t−1 to obtain the bank account balance at that time. Throughout this
chapter on the multiperiod binomial model we write for t = 1, 2, . . . , T
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• xt := HB
t · (1 + r)t−1 = bank money at time t− 1 after the trade,

• yt := HS
t = stock shares at time t− 1 after the trade.

Actually, this formulation is correct only for t > 1. For t = 0, we should replace the phrase “at time
0 after the trade” with “after the initial setup”, since trade of an old portfolio for a new one did not
take place at t− 1 = 0. �

We recall from Definition 7.7 on p.155 that an arbitrage portfolio is a self–financing portfolioH with
the properties

V H
0 = 0, P{V H

T ≥ 0} = 1, P{V H
T > 0} > 0. �

We will see that the condition d < 1 + r < u is both necessary and sufficient for the multiperiod
binomial asset model. The proof that this condition is sufficient will be given in Theorem 8.3, but
the proof of sufficiency will be done now.

Proposition 8.10.

If the multiperiod model is free of arbitrage, then it satisfies the condition

(8.32) d < (1 + r) < u.

PROOF: Similar to the one period case (Proposition 8.5 on p.170).
We prove the contrapositive. We assume that 1 + r ≤ d < u or d < u ≤ 1 + r and construct an
arbitrage portfolio. We only handle the case 1 + r ≤ d < u. The proof for d < u ≤ 1 + r is similar.
• At t = 0 we borrow x dollars from the bank and use it to buy stock. The portfolio value

is zero since what we own in stock is what we owe the bank.
• At each trading time t = 1, 2, 3, ... we do nothing.
• Since 1 + r ≤ d < u, the following is true for each period: The increase in stock value is

at least as high as the interest penalty that is added to the bank loan.
• There is positive probability pu that Zt = u for one or more t. In such a case we will not

just break even but make a profit since u > 1 + r.
• Thus the probability is at least pu, thus strictly positive, for the following event: When

we sell the stock at time T the proceeds will exceed (1 + r)Tx, the amount we owe to the
bank. We have constructed an arbitrage portfolio. �

We remind the reader of Assumption 7.1 on p.155 about efficient market behavior.

• The binomial model is free of arbitrage. We thus assume that

d < (1 + r) < u. �

We next adapt Definition 8.1 (Martingale Measure) on p.172 to the multiperiod model, remembering
from Proposition 8.6 which precedes it, that a martingale measure was characterized by making the
discounted stock price a martingale.
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Definition 8.2 (Martingale Measure).

We call a probability measure P̃ that satisfies for all trading times t = 0, 1, 2, . . . , T − 1 and
for all possible values s′ of St the relation

s′ =
1

1 + r
· Ẽ[St+1|St = s′],

i.e., St =
1

1 + r
· Ẽ[St+1|St],

(8.33)

a martingale measure or also a risk–neutral measure. �

Proposition 8.11.

The multiperiod model (which does not admit arbitrage by assumption) possesses a unique martin-
gale measure P̃ . As in the one period model it is defined by the two “martingale probabilities”

p̃u =
(1 + r)− d
u− d

,

p̃d =
u− (1 + r)

u− d
.

PROOF:
It follows from the definition of p̃u and p̃d that up̃u + dp̃d = 1 + r. Thus the discount process is

Dt =
1

(1 + r)t
=

1

(uπu + dπd)t
.

We conclude from Theorem 8.1 on p.169 that the process DtSt is a martingale. �

Proposition 8.12.

Let P̃ be a probability measure in the multiperiod model. We have the following.
(a) P̃ is a martingale measure ⇔ Discounted stock price DtSt is a P̃–martingale.
(b) In particular, DtSt is a martingale with respect to the risk–neutral probability measure P̃ ,

defined by p̃uu + p̃dd = 1 + r.

PROOF: of (a): First some preparatory work.
St is clearly Markov, since either St+1 = uSt, or St+1 = dSt. Thus St+1 does not depend on stock
price before t.
It follows from the alternate characterization of the Markov property in Proposition 6.2 on p.129
that if Y is a random variable that only depends on stock price information St, St+1, St+2, . . . , then

Ẽ[Y | FSt′ ] = Ẽ[Y | St′ ], for all t′ < t.
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In particular, since Y := St only depends on such information, it follows that

Ẽ[St | FSt′ ] = Ẽ[St | St′ ], for all t′ < t .(?1)

Further, (1 + r)Dt+1 = Dt, i.e.,
1

1 + r
=

Dt+1

Dt
.(?2)

Thus,
1

1 + r
· Ẽ[St+1 | St]

(?1)
=

1

1 + r
· Ẽ[St+1 | Ft]

(?2)
=

Dt+1

Dt
· Ẽ[St+1 | Ft] =

1

Dt
· Ẽ[Dt+1St+1 | Ft] .(?3)

PROOF: of (a),⇒): We show that Ẽ[Dt+1St+1 | Ft] = St as follows.

Ẽ[Dt+1St+1 | Ft] = Dt+1 Ẽ[St+1 | Ft]
(??)
=

Dt

1 + r
· Ẽ[St+1 | Ft]

(?)
=

Dt

1 + r
· Ẽ[St+1 | St]

(8.33)
= St .

PROOF: of (a),⇐): Since Dt is an Ft–martingale for P̃ ,

Ẽ[Dt+1St+1 | Ft] = St .(?4)

Thus,
1

1 + r
· Ẽ[St+1 | St]

(?3)
=

1

Dt
· Ẽ[Dt+1St+1 | Ft]

(?4)
=

1

Dt
· (DtSt) = St .

PROOF: of (b): This follows from (a) and Proposition 8.11. �

Proposition 8.13.

In the multiperiod model, assume that
(a) P̃ is a martingale measure,
(b) ~Ht = (HB

t , H
S
t ) is a self–financing portfolio.

Then discounted portfolio value DtV
~H
t is a FSt –martingale with respect to P̃ .

PROOF: ~Ht is self–financing, thus we have the budget equation

Vt = xt(1 + r) + ytSt = xt+1 + yt+1St .(A)

We also know that discounted stock price is a martingale, thus

(1 + r)−1 · Ẽ[St+1 | Ft] = St .

We recall that xt+1 and yt+1 were established during the trade at time t and thus are Ft–measurable.
We write as usual D1 = (1 + r)−1 and obtain

Ẽ [D1Vt+1 | Ft] = Ẽ [D1xt+1(1 + r) + D1yt+1St+1 | Ft]

= Ẽ [xt+1 | Ft] + Ẽ [yt+1D1St+1 | Ft]

= xt+1 + yt+1 · Ẽ [D1St+1 | Ft](B)
= xt+1 + yt+1 · St = Vt.(C)

178 Math 454 - Version 2025-02-11



Math 454 – Additional Material Student edition with proofs

Here we obtained (B) by moving the Ft–measurable variables xt+1 and xt+1 out of the conditional
expectation. The first equation of (C) follows from the fact that DtSt is a P̃–martingale, and the
second equation of (C) follows from the budget equation (A). Thus

Ẽ [Dt+1Vt+1 | Ft] = Dt Ẽ [D1Vt+1 | Ft] = DtVt �

The fact that the discounted portfolio value of a self–financing portfolio is a P̃–martingale (thus, by
the pricing principle, the discounted price Πt(X ) of a reachable claim X ) also is a P̃–martingale),
will be employed in the next example.

Example 8.1. Consider a market which follows the multiperiod binomial model with the following
parameters.
• Time of expiry is T = 4.
• The interest rate is R = 0.5 (per unit of time). That’s not very realistic, but it makes this

example computationally simple.
• We denote the “true” probability with P , and the martingale probability with P̃ . The corre-

sponding expectations are EP and Ẽ. Note that nothing is said about pu, pd, p̃u, p̃d.
• Assume that a hedge portfolio must be created for a simple claim with contract value Φ(S4)

(a) If it is known today that EP [Φ(S4)] = $240, is V0 = $50 possible as the setup value of this
hedge?

(b) If it is known today that Ẽ[Φ(S4)] = $180, is V0 = $50 possible as the setup value of this
hedge?

We answer the questions above as follows.
(a) Given the real world probabilities, everything is possible. That’s about all that can be said with
the information at hand.

(b) The situation is different under risk–neutral probability measure P̃ , even if we do not know the
values of p̃u and p̃d.
Since DtVt is a P̃–martingale, the expected value is constant for all t, thus,

Ẽ[D4V4] = Ẽ[D0V0] = Ẽ[V0].
Since Dt = (1 + r)−t and V0 are deterministic and Bt = (1 + r)−t, and V4 = Φ(S4) by the pricing
principle, we obtain V0 = Ẽ[V0] = (1 + r)−4Ẽ[V4](1 + r)−4Ẽ[Φ(S4)] = 180 · 1.5−4.
Since 1.54 = 2.252 and 2 ≤ 2.25 ≤ 3, we obtain 180/9 ≤ V0 ≤ 180/4, i.e., 20 ≤ V0 ≤ 45.
Thus, $50 is too big a value for the value V0 of the hedge at time 0. �

Example 8.2. We have a financial market with one bond and one stock which follows the one period
model. We assume the interest rate is R = 0, so the bond price is B0 = B1 = 1. We also assume that

S0 = s = 100; S1 =

{
5
4 · S0 = 125 with probability 0.8,
3
4 · S0 = 75 with probability 0.2.

(1) How do you price a European call at a strike price of 115 at t = 0?
(2) If x = the money in the bank and y = number of shares in the stock in the hedge you establish

for this contract, what are x and y at t = 0?
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This problem is solved as follows. The risk–neutral probabilities are p̃u = p̃d = 1
2 , since

1 + r = 1 =
1

2
· 5

4
+

1

2
· 3

4
.

Contract values are Φ(su) = 125− 115 = 10 and Φ(sd) = 0.
Thus, the options price at time zero is

Π0(X ) = Ẽ[X ] = p̃d · Φ(sd) + p̃u · Φ(su) =
1

2
· 10 =

10

2
= 5.

The quantities involved for setting up the hedge are (see Proposition 8.8 on p.173)

x =
1

1 + r
· uΦ(sd)− dΦ(su)

u− d
= 1 · 1.25 · 0 − 0.75 · 10

0.5
= −15,

y =
1

s
· Φ(su)− Φ(sd)

u− d
=

1

100
· 10− 0

0.5
=

20

100
= 0.2.

Thus the hedging portfolio consists of 0.2 shares of the stock and a short position (loan) of 15 bond
units (worth $15.00 at the time of setup t = 0).
For a sanity check, we validate that in fact V H

0 = 5 = Π0(X ), as must be true according to the
definition of a hedge for the claim.
V H

0 = x + ys = −15 + 0.2 · 100 = 5. �

In the one period model absence of arbitrage was sufficient to yield completeness of the market, i.e.,
every claim can be hedged. In the multiperiod model we can still show that every simple claim, i.e.,
a claim for which the payoff X is a function Φ(ST ) of stock price at time T , can be hedged.

Theorem 8.2. Let X be a simple claim with expiration date T and contract function Φ(x),
i.e., X = Φ(ST ). Let Πt(X ) denote the arbitrage free price of that option at time t ≤ T .

(1) The discounted option price
1

(1 + r)t
Πt(X ) is a P̃–FSt –martingale.

(2) The option price is computed at time 0 ≤ t ≤ T for a stock price of St(ω) = sukdt−k,
attained by k upward moves and t− k downward moves, as

Πt(X ) =
1

(1 + r)T−t
Ẽ
[
Φ(ST ) | St = sukdt−k

]
.(8.34)

(3) X can be hedged. The portfolio quantities HB
t+1 and HS

t+1 are HB
t+1 = (1 + r)−txt+1

and HS
t+1 = yt+1, where xt+1, yt+1 for the node Nt,k (remember: ~Ht = purchases at time

t− 1!) in the tree excerpt shown below are as follows.

xt+1 =
1

1 + r
·
uΠ
(
Nt+1,k

)
− dΠ

(
Nt+1,k+1

)
u− d

,

yt+1 =
1

s
·

Π
(
Nt+1,k+1

)
−Π

(
Nt+1,k

)
u− d

.

(8.35)
St

Π
(
Nt,k

)

St · u

Π
(
Nt+1,k+1

)

St · d

Π
(
Nt+1,k

)

u

d
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PROOF: (outline): ? For the following all indices, including t, T, T ′, . . . , are assumed to
be trading times in the binomial model, hence non–negative integers. Also recall the notation we
introduced for the nodes of the binomial tree displayed in Figure 8.1 (Stock price dynamics) on
p.175. Fix a time 0 ≤ t < T and assume that the arbitrage free claim price are known for all nodes
at time t+ 1. We can consider those prices as the contract function Φ(t+1) of a new contingent claim

X (t+1) = Φ(t+1)(s′), where s′ = sdt+1, sudt, su2dt−1, . . . , sutd, sut+1

runs through the stock prices that can be attained at time t+ 1.
Fix 0 ≤ k ≤ t and consider the node Nt,k in the tree. That node was reached by a combination of k
upward movements and t − k downward movements in stock price. The two nodes at time t + 1
that can be reached from Nt,k by either an upward move or a downward move in stock price are
Nt+1,k+1 and Nt+1,k. In particular, if t = T − 1, we obtain X (t+1) = X and Φ(t+1)(s′) = Φ(s′) for
each s′ = sdT , sudT−1, . . . , suT .

We now condition on St = sukdt−k. Since such
conditioning makes stock price constant at t,
we can apply our findings from the one period
model to the tree which consists of the nodes
Nt,k,Nt+1,k+1 and Nt+1,k.

sukdt−k

suk+1dt−k

sukdt−k+1

u

d

With the symbols introduced in Notations 8.1 on p.175 we have

Π
(
Nt+1,k+1

)
= Φ(t+1)(suk+1dt−k), and Π

(
Nt+1,k

)
= Φ(t+1)(sukdt−k+1).

We apply the risk–neutral valuation formula (8.31) of Proposition 8.9 on p.174 to this one–period
tree with the new contract function Φ(t+1). We must adjust the notation as follows:
• Times 0 and 1 in Prop.8.9 correspond to times t and t+ 1 here.
• Stockprice S0 = s in Prop.8.9 corresponds to St = sukdt−k.
• Stockprices S1 = su and S1 = sd in Prop.8.9 correspond to St+1 = suk+1dt−k

and St+1 = sukdt−k−1.
• Option values Π0(X ) at time 0 and X at time 1 in Prop.8.9 correspond to Π

(
Nt,k

)
at time t,

and to Π
(
Nt+1,k+1

)
= Φ(t+1)(suk+1dt−k) and Π

(
Nt+1,k

)
= Φ(t+1)(sukdt−k−1) at time t+ 1.

Thus we obtain the arbitrage free price of X for the node Nt,k, which we denote by Π
(
Nt,k

)
, as

Π
(
Nt,k

)
=

1

1 + r
· Ẽ[X (t+1)]

=
1

1 + r

(
p̃u · Φ(t+1)(suk+1dt−k) + p̃d · Φ(t+1)(sukdt−k+1)

)
=

1

1 + r

(
p̃u ·Π

(
Nt+1,k+1

)
+ p̃d ·Π

(
Nt+1,k

))
.

(8.36)

Since Ẽ[X (t+1)] is just a real number, Πt(X )(ω) is constant for all ω such that St(ω) belongs to Nt,k,
i.e., for all ω such that St(ω) = sukdt−k. In other words, Π

(
Nt,k

)
is a function of stock price at time

t. Thus there is a function Φ(t)(x) of x > 0 such that

Π
(
Nt,k

)
= Φ(t)(St) .

We have managed to express the arbitrage free option price at t as a simple contract at time t.
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The above procedure tells us how to recursively compute today’s (t = 0) arbitrage free option price
Π0(X ) from the contract values Φ(x) at time T :
We compute Φ(T−1)(x) from Φ(T )(x) = Φ(x), then Φ(T−2)(x) from Φ(T−1)(x), ...., then Φ(1)(x) from
Φ(2)(x), then Φ(0)(x) from Φ(1)(x). We now obtain from those contract functions Φ(t)(x) the corre-
sponding options prices Πt(X ) = Φ(t)(St), in particular, Π0(X ).
Working our way backward in time also is how we find the arbitrage free option price at time zero
from its contract values at expiration time in practice. See Example 8.3 which follows this proof.
But a correct proof is done best by using strong induction in the forward direction.
This proof is very complicated and omitted. Be sure to carefully study instead Example 8.3 on
p.182 which follows the “proof” given above. It shows you how to apply this theorem in practical
computations! �

In the following we will draw trees which look like
the one to the right. (We did so already in the proof
of Theorem 8.2.) The nodes have an upper half
which denotes stock price and a lower half which
denotes the arbitrage free price of a claim. If there
is a label above such a node, then it denotes the
quantities xt and yt of the corresponding replicat-
ing portfolio, evaluated at that node. Note that
u = 1.5 and d = 0.5 since the stock price of 180
increases to 270 and decreases to 90.

180

100

x3 = −80,y3 = 1

270

190

90

10

u

d

The following example is taken from chapter 2 of [7] Björk, Thomas: Arbitrage Theory in Continu-
ous Time.

Example 8.3. We set T = 3, s := S0 = 80, u = 1.5, d = 0.5, pu = 0.6, pd = 0.4 and R = 0.
These numbers have been chosen to make computations as simple as possible. Since there is no
interest, 1 = 1 + r is the midpoint between u = 1.5 and d = 0.5, thus p̃u = p̃d = 0.5.
Figure 8.1 shows the binomial tree for this example. There are no values in the lower halfs of the
nodes for the claims prices since we did not yet decide on a claim.

The claim we want to price is a European call with a strike price of K = $80.00, and an expiration
date of T = 3.
This is a simple claim X = Φ(ST ) with contract function Φ(s) = (s − 80)+ = max(s − 80, 0). We
immediately compute Π3(X ) for the stock prices S3 as follows.

Φ(270) = (270− 80)+ = 190; Φ(90) = (90− 80)+ = 10,

Φ(30) = (30− 80)+ = 0, Φ(10) = (10− 80)+ = 0,

Figure 8.2 shows the updated tree.
We know from formula (8.36) on p.181 how to compute a claims price from those of the two child
nodes to the right. With the notations introduced in Notations 8.1 on p.175,

Π
(
Nt,k

)
=

1

1 + r

(
p̃u ·Π(Nt+1,k+1) + p̃d ·Π(Nt+1,k)

)
.
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80

d = 0.5,u = 1.5

120

40

u

d

180

60

20

u

d
u

d

270

90

30

10

u

d
u

d
u

d

Figure 8.1: Stock prices.

80

d = 0.5,u = 1.5

120

40

u

d

180

60

20

u

d
u

d

270

190

90

10

30

0

10

0

u

d
u

d
u

d

Figure 8.2: Stock prices and contract function values.

For example, for node N2,2 we obtain S2 = 180, Π(N3,3) = 190, Π(N3,2) = 10. Thus

Π
(
N2,2

)
=

1

1 + 0

(
0.5 · 190) + 0.5 · 10

)
= 100.

Likewise, for node N2,1 we obtain S1 = 60, Π(N3,2) = 10, Π(N3,1) = 0. Thus

Π
(
N2,1

)
=

1

1 + 0

(
0.5 · 10) + 0.5 · 0

)
= 5.

We just computed the two options prices for the descendants of node N1,1, the one with stock
price S1 = 120. Its associated price for the European call is

Π
(
N1,1

)
=

1

1 + 0

(
0.5 · 100) + 0.5 · 0.5

)
= 52.5.
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80

d = 0.5,u = 1.5

120

52.5

40

u

d

180

100

60
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20

u

d

u

d
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90

10

30

0
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u

d

u

d
u

d

Figure 8.3: Stock prices and contract function values.

Figure 8.3 shows the tree with those additional values.
We compute the arbitrage free option prices for the remaining three nodes in this order:

Π
(
N2,0

)
, Π
(
N1,0

)
, Π
(
N0,0

)
.

The completed tree is shown in Figure 8.4.

80

27.5

d = 0.5,u = 1.5

120

52.5

40

2.5

u

d

180

100

60

5

20

0

u

d

u

d

270

190

90

10

30

0

10

0

u

d

u

d

u

d

Figure 8.4: Completed tree with all option prices.

The result of all the above: We have managed to compute the arbitrage free prices of the simple
claim with contract function X = Φ(S3) = (S3−K)+ for all possible stock prices St, t = 0, 1, 2, 3. In
particular we found that the correct price for the option at time zero is 27.5.
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We are not finished yet. Next we compute the quantities xt and yt of the replication portfolio for
this claim.
We start at t = 0, and since we want to reproduce the claim
(52.5, 2.5) at t = 1, we can use formulas (8.35) of Theorem 8.2 on
p.180 and obtain x1 = −22.5, y1 = 5

8 since

x1 = 1
1+0 ·

1.5·2.5−0.5·52.5
1.5−0.5 = 3·5−1·105

4 = −90
4 = −22.5,

y1 = 1
s ·

Φ(u)−Φ(d)
u−d = 1

80 ·
52.5−2.5
1.5−0.5 = 50

80 = 5
8 .

80

27.5

x1 = −22.5,y1 = 5/8

120

52.5

40

2.5

You are encouraged to verify that the cost of this portfolio is indeed 27.5.

If an upward move takes place and S1 = 120 then the value of
our hedging portfolio at time 1 is computed from
x1 = −22.5 and y1 = 5

8 as −22.5 · (1 + 0) + 5
8 · 120 = 52.5.

To reproduce the claim claim (100, 5) at t = 2 we again use the
formulas (8.35) and obtain x2 = −42.5, y2 = 95

120 .
Again you should check that the cost of those holdings, valued
at a stock price of S1 = 120,

120

52.5

x2 = −42.5,y2 = 95/120

180

100

60

5

equals the value 52.5 of the previous holdings x1 and y1.

If instead of an upward move a downward move had taken
place and S1 = 40 then the value of our hedging portfolio at
time 1 is computed from the same holdings
x1 = −22.5 and y1 = 5

8 as −22.5 · (1 + 0) + 5
8 · 40 = 2.5.

To reproduce the claim claim (100, 5) at t = 2 we again use the
formulas (8.35) and obtain x2 = −2.5, y2 = 1.8.
Again you should check that the cost of those holdings, valued
at a stock price of S1 = 120,

40

2.5

x2 = −2.5,y2 = 1/8

60

5

20

0

equals the value 52.5 of the holdings x1 and y1 established at time zero.

We can continue in this manner with the nodes at time t = 2 and afterwards at expiration time T = 3
and in this way compute the hedging portfolio holdings at each node of the tree. The resulting tree
is shown in figure 8.5.

This concludes the example. �

Remark 8.4. The following is a cookbook recipe for computing the prices of a simple claim using
the risk–neutral validation method.

Step 1: Compute the martingale probabilities!
Note that the martingale probabilities p̃u, p̃d are constant for the entire tree since they only
depend on u, d, and R. In this example they are

p̃u =
(1 + r) − d

u − d
=

3
2 − 1
3
2 ,−

1
2

=
1
2

1
=

1

2
, p̃d = 1 − p̃u =

1

2
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80

27.5

x1 = −22.5,y1 = 5/8

Hedging Portfolio

120
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x2 = −42.5,y2 = 95/120
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x2 = −2.5,y2 = 1/8
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d

180

100

x3 = −80,y3 = 1

60
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u
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u

d

270
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90
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0

u

d

u
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u

d

Figure 8.5: Hedging portfolio holdings.

Step 2: Use the risk–neutral valuation formula from the one–period model to compute for
each of the three t = 2 nodes in the tree its option price Π(2;X ) from the option prices
Π(3;X ) of the two t = 3 nodes that can be reached from this t = 2 node. We then compute

Π(2;X ) =
1

1 + r

[
p̃u ·Π(3;X ) of upward node + p̃d ·Π(3;X ) of downward node

]
.

This method can be employed for any binomial tree, for arbitrarily many periods.

Step t-1: Let NNN be a t − 1 node in the binomial tree. We denote the reachable node to the
upper left byNNNu and the reachable node to the lower left byNNNd. We write Πt−1(NNN) for the
option price of node NNN and we write Πt(NNNu) and Πt(NNNd) for the option prices of NNNu and
NNNd.
If Πt(NNNu) and Πt(NNNd) have already been computed then we use the risk–neutral valuation
formula from the one–period model to compute Πt−1(NNN):

Πt−1(NNN) =
1

1 + r

[
p̃u ·Πt(NNNu) + p̃d ·Πt(NNNu)

]
. �

We mention again that this entire chapter 8 (Financial Models - Part 1) closely follows the book [7]
Björk, Thomas: Arbitrage Theory in Continuous Time.

Notation 8.2. We will write
V
(
Nt,k

)
(0 ≤ t ≤ T ),

for the value process of the replicating portfolio strategy, determined in Theorem 8.2 on p.180 by
the formulas (8.35), when computed for the node Nt,k of the binomial tree. �
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Proposition 8.14. Given are a simple claim X = Φ(ST ), its associated pricing process Πt(X ), and its
hedging portfolio ~Ht with value process V H

t . If we replace the symbols Πt(X ) and V ~H
t with their tree node

equivalents, Π
(
Nt,k

)
and V

(
Nt,k

)
, we have the following.

The replicating portfolio is determined by the recursive formulas

V
(
Nt,k

)
=

1

1 + r

(
p̃uV

(
Nt+1,k+1

)
+ p̃dV

(
Nt+1,k

))
,

V
(
NT,k

)
= Φ(sukdT−k).

(8.37)

Here, p̃u and p̃d are the martingale probabilities from Proposition 8.11 on p.177, given by

(8.38) p̃u =
(1 + r)− d
u− d

, p̃d =
u− (1 + r)

u− d
.

Further, the hedging portfolio quantities xt+1, yt+1 for the node Nt,k are

xt+1 =
1

1 + r
·
uV
(
Nt+1,k

)
− dV

(
Nt+1,k+1

)
u− d

,

yt+1 =
1

s
·
V
(
Nt+1,k+1

)
− V

(
Nt+1,k

)
u− d

,

and the arbitrage free option prices are given by Π
(
Nt,k

)
= V

(
Nt,k

)
, for all trading times 0 ≤ t ≤

T and number of upward moves 0 ≤ k ≤ t. In particular, the arbitrage free price of the claim at
t = 0 is given by V

(
N0,0

)
= x1 + y1S0.

PROOF: This is just a rehash of Proposition 8.11 and Theorem 8.2 together with the pricing princi-
ple, Theorem 7.1 on p.156, which states that

V
(
Nt,k

)
= Π

(
Nt,k

)
for all nodes Nt,k in the binomial tree. �

Considering that stock price St develops according to an iid sequence of Bernoulli variables Zt
(with success probability pu under the “real world” measure P and success probability p̃u under
the risk–neutral measure (martingale measure) P̃ it should not come as a surprise that the options
price process ΠT (X ) for a simple claim X , and thus also the identical portfolio value process V H

t

for a replicating portfolio ~Ht, have a close connection with the binomial distribution.

Proposition 8.15 (Arbitrage free price at time zero).

The arbitrage free price at t = 0 of a simple claim X at time T is

(8.39) Π0(X ) =
1

(1 + r)T
· Ẽ[X ],

where P̃ denotes the martingale measure. Further,

(8.40) Π0(X ) =
1

(1 + r)T
·
T∑
k=0

(
T

k

)
p̃kup̃

T−k
d Φ(sukdT−k).
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PROOF: According to Theorem 8.2 on p.180, discounted option price (1 + r)−tΠt(X ) is a P̃–
martingale and thus has constant expectations in t. Hence, since ΠT (X ) = X ,

1

(1 + r)T
Ẽ[X ] = Ẽ

[
1

(1 + r)T
ΠT (X )

]
= Ẽ[Π0(X )] .

This proves (8.39). Formula (8.40) is immediate from Corollary 8.2 (Expectation of a simple claim in
the binomial tree model) on p.170 �

We end this section by proving absence of arbitrage.

Theorem 8.3.

The binomial asset model is free of arbitrage ⇔ d < 1 + r < u.

PROOF: We already proved the “⇒” direction in Proposition 8.10 (see p.176).

For the other direction, we assume that d < 1 + r < u and that ~Ht is a self–financing portfolio such
that P{V ~H

0 ≥ 0} = 1 and P{V ~H
T > 0} > 0. We now show that P{V ~H

0 > 0} > 0.

It follows from Proposition 8.13 on p.178, that DtV
~H
t is a P̃–martingale for the martingale measure

P̃ determined by p̃u and p̃d such that up̃u + dp̃d = 1 + r and p̃u + p̃d = 1. We recall that P and P̃ are
equivalent measures, i.e., the P -Null sets coincide with the P̃ -Null sets, thus P (A) > 0⇔ P̃ (A) > 0
for any event A.

It follows from P{V ~H
T > 0} > 0 that P̃{V ~H

T > 0} > 0, hence, Ẽ
[
V
~H
T

]
> 0. Since the P̃–martingale

DtV
~H
t has constant expectations in t,

Ẽ
[
V
~H

0

]
= Ẽ

[
DTV

~H
T

]
> 0 .

It follows from V
~H

0 ≥ 0 P̃–a.s. that P̃{V ~H
0 > 0} > 0. Thus P{V ~H

0 > 0} > 0, hence, ~H is not an
arbitrage portfolio. Since ~H is an arbitrary self–financing portfolio such that P{V ~H

0 ≥ 0} = 1 and
P{V ~H

T > 0} > 0, we have shown that arbitrage portfolio do not exist. �

8.3 Exercises for Ch.8

Exercise 8.1. Prove the following part of Proposition 8.5 on p.170 of this document: If

d < (1 + r) < u. �

then the one period binomial asset model is free of arbitrage.
Hint: Show that

V h
1 = ys (u− (1 + r)), if Z = u, ys(d− (1 + r)), if Z = d,

and examine this separately for y > 0 and y < 0. �

Exercise 8.2. We asserted that the probability measure P̃ defined by (8.24) on p.171 is equivalent to
P on σ(S0, S1). Prove it. �
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9 One dimensional Stochastic Calculus

9.1 Riemann–Stieltjes Integrals

In stochastic finance one would like to work with “stochastic integrals” where one integrates a
process Z = Zt not simply with respect to time t, but rather with respect to the “density” W ′t = dWt

dt
of Brownian motion, i.e., we sould like to form integrals∫ t2

t1

Zt(ω)W ′t(ω) dt .

Unfortunately, this is not possible, since the paths of Wt are nowhere differentiable almost surely.
See Theorem 6.1 on p.132. Riemann–Stieltjes integrals provide a way out of this dilemma. We will
discuss this topics briefly in this subchapter.

Remark 9.1. Let a, b ∈ R such that a < b, let f, g : [a, b] → R be such that the derivative g′(t) exists
for all a < t < b. By definition of the Riemann integral as the limit of Riemann sums,∫ b

a
f(t)g′(t)dt = lim

‖Π‖→0

n−1∑
j=0

f(uj)g
′(uj) (tj+1 − tj) (tj ≤ uj ≤ tj+1 for all j) ,

where the limit is taken over partitions Π = {0 = t0 < t1 < · · · < tn = T} in such a way that
mesh ‖Π‖ = maxj(tj+1 − tj) converges to zero. See Definition 6.9 (Quadratic Variation) on p.139.
Of course we must assume that this limit exists.

For small differences tj+1 − tj we obtain approximately g′(uj) ≈
g(tj+1)− g(tj)

tj+1 − tj
, hence

∫ b

a
f(t)g′(t)dt ≈

n−1∑
j=0

f(uj)g
′(uj) (tj+1 − tj)

≈
n−1∑
j=0

f(uj)
g(tj+1)− g(tj)

tj+1 − tj
(tj+1 − tj)

=

n−1∑
j=0

f(uj) (g(tj+1) − g(tj)) .

Thus, if the right–hand limit for ‖Π‖ = maxj(tj+1 − tj) → 0 exists, it will be a generalization of
b∫
a
f(t)g′(t)dt, in case that g is not differentiable. �

This leads to the next definition.

Definition 9.1 (Riemann–Stieljes Integral).
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Let a, b ∈ R such that a < b and f, g : [a, b]→ R. If∫ b

a
f(t)dg(t) := lim

‖Π‖→0

n−1∑
j=0

f(uj) (g(tj+1) − g(tj))

exists as limit over all partitions Π of the interval [a, b], then we call
b∫
a
f(t)dg(t) the

Riemann–Stieltjes integral of f with respect to g over [a, b] with integrand f and inte-
grator g. �

The above definition will become the starting points for stochastic integrals
b∫
a
ZtdWt with respect to

Brownian motion.

9.2 The Itô Integral for Simple Processes

This chapter is very sketchy as far as proofs are concerned since the material follows extremely closely that of
SCF2 Chapter 4.

Unless explicitly stated otherwise (Ω,F,Ft, P ) is a filtered probability space and W = Wt is
a Brownian motion on Ω with respect to Ft.
Often we assume a fixed expiration time T > 0 and W and all other stochastic processes
have index set [0, T ], but occasionally we also consider other index sets. Usually this would
be the interval [0,∞[ of all times, or it would be the interval [t0, T ] in which 0 ≤ t0 < T
asumes the role of a start time.

The following definitions are from SCF2 ch.4.2.1.

Definition 9.2 (Simple Process).

Let T > 0 be fixed, and let Π := { t0, t1, . . . , tn } be a partition of [0, T ]. In other words,

0 = t0, < t1, < · · · < tn = T.

An adapted process Z = Zt is called a simple process if t 7→ Zt(ω) is constant on each
interval [tj , tj+1[ almost surely. �

Definition 9.3 (Itô Integral of a Simple Process).
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Let Π := { t0, t1, . . . , tn }, where 0 = t0, < t1, < · · · < tn = T be a partition of [0, T ],
and let Zt be a simple process on Ω which has constant trajectories on each partitioning
interval [tj , tj+1[. Let

∫ t

0
ZudWu :=


k−1∑
j=0

Z(tj)[W (tj+1)−W (tj)] + Z(tk)[Wt −W (tk)] if 0 ≤ t < T ,

n−1∑
j=0

Z(tj)[W (tj+1)−W (tj)] if t = T ,

(9.1)

where the index k is chosen such that tk ≤ t < tk+1. We call
t∫

0

ZudWu the Itô integral of Z

with respect to W . �

Theorem 9.1 (SCF2 Theorem 4.2.1).

The Itô integral
t∫

0

ZudWu is an Ft–martingale.

PROOF: See SCF2. �

Because It =
t∫

0

ZudWu is a martingale and I(0) = 0, it follows that

E[It] = 0 for all t ≥ 0. Thus V ar[It] = E[I2
t ].

The next theorem shows how to evaluate E[I2
t ].

Theorem 9.2 (SCF2 Theorem 4.2.2 - Itô isometry).

The Itô integral defined by (9.1) on p.192 satisfies

(9.2) E[I2
t ] = E

[∫ t

0
Z2
udu

]
.

PROOF: See SCF2. �

Theorem 9.3 (SCF2 Theorem 4.2.3).

The quadratic variation [I, I]t up to time t of the Itô integral It =
t∫

0

ZudWu is

(9.3) [I, I]t =

∫ t

0
Z2
udu.

PROOF: See SCF2. �
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Remark 9.2. If we think of integration and differentiation as operations that cancel each other when
we look at

∫ t
0 ZudWu as a function of the upper limit of integration then we obtain

d

∫ t

0
Zu dWu = Zt dWt(A)

Strictly speaking the above is the definition of the differential d
t∫

0

ZudWu in terms of the right hand

side. The above makes a lot of sense for Zt = 1: If we take the partition Π = {0, t} then Definition
9.3 (Itô Integral of a Simple Process) yields∫ t

0
1 dWu = 1(Wt − W0) = Wt, thus applying d on both sides should give d

∫ t

0
1 dWu = dWt.

Formula (A) results in exactly that last equation when Zt = 1. �

Remark 9.3. We write the Itô integral It =
t∫

0

ZudWu as a differential

d It = d

∫ t

0
Zu dWu = Zt dWt.

We square both sides of this equation and obtain

dIt dIt = Z2
t dWt dWt = Z2

t dt.

See Remark 6.9 on p.140 for the last equation. �

9.3 The Itô Integral for General Processes

We apply Example 6.2(f) on 135 and formula (6.20) of that example to the following.

Definition 9.4 (L2 convergence of random variables). ?

Given is a probability space (Ω,F, P ), T > 0. Let Z and Z ′ be random variables which are
square integrable, i.e., E[Z2] <∞ and E[Z ′2] <∞. Then

‖Z‖L2 =

√∫
Z2dP =

√
E[Z2] < ∞ ,(9.4)

dL2(Z,Z ′) = ‖Z − Z ′‖L2 =

√
E [Z − Z ′]2 < ∞ .(9.5)

Let Z(n) and Z, where n ∈ N, be square integrable random variables. We say that the
sequence Z(n) converges in L2 to Z, and we write

L2– lim
n→∞

Z(n) = Z, if lim
n→∞

dL2(Z(n), Z) = 0, i.e., lim
n→∞

E
[
(Z(n) −X)2

]
= 0. �(9.6)

193 Math 454 - Version 2025-02-11



Math 454 – Additional Material Student edition with proofs

Definition 9.5 (L2 convergence of stochastic processes). ?

Given is a filtered probability space (Ω,F, (Ft)t, P ), T > 0. Let X = (Xu)0≤u≤T be an

adapted process. We say that Xt is square integrable, if E

[
T∫
0

X2
udu

]
<∞.

Let Xu, X
(1)
u , X

(2)
u , X

(3)
u , · · · be adapted, square integrable, stochastic processes. We say that

the sequence X(n) converges in L2 to X , and we write

L2– lim
n→∞

X(n) = X, if lim
n→∞

E

[∫ T

0
(X(n)

u −Xu)2 du

]
= 0. �(9.7)

Fact 9.1.

Let T > 0. Let Zu, 0 ≤ t ≤ T , be an adapted and square–integrable process. Then
(a) One can find a sequence Z(n) of simple processes, also square–integrable, such that

L2– lim
n→∞

Z(n) = Z (see formula (9.7)).

(b) There exists an adapted process Φ = Φt with continuous paths such that the Itô integrals

I
(n)
t :=

t∫
0

Z
(n)
u dWu converge in L2 to Φ, i.e.,

(9.8) lim
n→∞

E

[∫ T

0
(Iu − Φu)2 du

]
= 0.

(c) If Z ′(n) is another sequence of simple and square–integrable processes such that
L2– lim

n→∞
Z ′(n) = Z , and if Φ′t is another square–integrable process with continuous paths

such that L2– lim
n→∞

I
(n)
t :=

t∫
0

Z
′(n)
u dWu = Φ′, then there exists a set of probability zero

which contains the set {ω ∈ Ω : Φ(·, ω) 6= Φ′(·, ω)}. �

Remark 9.4. ? We would not be able to ascertain in Fact 9.1(c) that the trajectories t 7→ Φ(t, ω)

and t 7→ Φ′(t, ω) are identical, except on a set of probability zero, without assuming that those
trajectories are continuous. �

Definition 9.6 (Itô integral for general integrands). We write

∫ t

0
Zu dWu(9.9)

for the process Φt = L2– lim
n→∞

∫ t
0 Z

(n)
u dWu ,

described in (b) of Fact 9.1, and call it the Itô integral of Zt with respect to Wt. �
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Remark 9.5. Chances are that you have overlooked the following dissimilarity between the sums
n−1∑
j=0

f(uj) (g(tj+1) − g(tj)) which approximate the Riemann Stieltjes integral
∫
f(s)dg(s) and the

sums
n−1∑
j=0

Z(tj)[W (tj+1) −W (tj)] which approximate the Itô integral
∫
ZsdWs. In the first case we

only require for the arguments uj of the integrand that tj ≤ u+j ≤ tj+1, in the second case we
specifically demand that uj = tj , i.e., the arguments of the integrand must be the left endpoints of
the partitioning intervals.
Why do we not allow the argument uj to vary In the definition of the Itô integral? Because doing
so would rule out even a nice, continuous process such as Wt as an integrand: Let

Π = { t0, t1, . . . , tn }, where 0 = t0, < t1, < · · · < tn = T,

be a partition of [0, T ] and let

XΠ
T :=

n−1∑
j=0

Wtj (Wtj+1 −Wtj ) , Y Π
T :=

n−1∑
j=0

Wtj+1(Wtj+1 −Wtj ) .

According to Definition 9.3 (Itô Integral of a Simple Process) on p.191,∫ T

0
WsdWs = L2– lim

‖Π‖ →0
XΠ
T .(A)

If the choice of uj did not matter as long as tj ≤ u+j ≤ tj+1, then it should also be true that∫ T

0
WsdWs = L2– lim

‖Π‖ →0
Y Π
T .(B)

However, these limits are fundamentally different sinceE[XΠ
T ] = 0, andE[Y Π

T ] = T for all partitions
Π, 41 hence the expectation of (A) is zero and that of (B) is T .
So why then did we choose in formula (9.1) of Definition 9.2 above to pick the values Ztj which
correspond to the left bounds of the intervals [tj , tj+1[ rather than, say. the values Z(tj+1−tj)/2 taken
at the midpoints or the values Ztj+1 taken at the right bounds?
There are some important technical reasons. For example Theorem 9.1 which follows this remark
asserts that the Itô integral is a martingale when viewed as a process t 7→

∫ t
0 ZudWu. If uj > tj then

this theorem will generally no longer be valid.

But at least as important is the way we use Itô integrals when modeling financial markets.
The Brownian motion increments Wtj+1 − Wt represent uncertainty that happens in the
future, whereas the history of the integrand Zt up to the “present” tj is known to us (since
it is Ftj–measurable for all times t < tJ of the past.) �

Theorem 9.4 (SCF2 Theorem 4.3.1 - Itô isometry). Given are the Itô integrals

41You are asked to prove that E[XΠ
t ] = 0, and E[Y Π

t ] = t in Exercise 9.1 on p.204.
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t∫
0

ZudWu := L2– lim
n→∞

t∫
0

Z(n)
u dWu ,

t∫
0

ZudWu := L2– lim
n→∞

t∫
0

Z(n)
u dWu . Then

a. (Continuity) The paths of t 7→
t∫

0

ZudWu are continuous.

b. (Adaptivity) For each t, It is Ft–measurable.

c. (Linearity) If α, β ∈ R, then
t∫

0

(
αYu + βZu

)
dWu = α

t∫
0

YudWu + β
t∫

0

ZudWu.

In particular, for every constant α,
t∫

0

αZudWu = α
t∫

0

ZudWu.

d. (Martingale)
t∫

0

ZudWu is a martingale.

e. (Itô isometry) E
[
t∫

0

ZudWu

]
= E

[
t∫

0

Z2
udu

]
.

f. (Quadratic variation) If It =
t∫

0

ZudWu, then [I, I]t =
t∫

0

Z2
udu.

PROOF: Not given. �

9.4 The Itô Formula for Functions of Brownian Motion

Theorem 9.5 (SCF2 Theorem 4.4.1 - Itô–Doeblin formula for Brownian motion).

Let f(t, x) be a function for which the partial derivatives ft(t, x), fx(t, x), and fxx(t, x) are defined
and continuous, and let Wt be a Brownian motion. Then, for every T ≥ 0,

f
(
T,WT

)
−f
(
0,W (0)

)
=

∫ T

0
ft
(
t,Wt

)
dt +

∫ T

0
fx
(
t,Wt

)
dWt +

1

2

∫ T

0
fxx
(
t,Wt

)
dt.

(9.10)

PROOF: See SCF2 for a sketch. �

9.5 The Itô Formula for Functions of an Itô Process

Definition 9.7 (SCF2 Definition 4.4.3 - Itô process). Let Wt, t ≥ 0, be a Brownian motion, and let
Ft, t ≥ 0, be an associated filtration.
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An Itô process on (Ω,F,Ft, P ) is a stochastic process

Xt = x +

∫ t

0
∆udWu +

∫ t

0
Θudu,(9.11)

which we also equivalently express as
dXt = ∆tdWt + Θtdt,(A)
X0 = x .(B)

Here ∆t and Θt are Ft–adapted processes, and x ∈ R. We call (A) the stochastic differential,
also just the dynamics, and (B) the initial condition of (9.11). Furthermore we say that (A)
and (B) express (9.11) in differential notation, and that (9.11) expresses (A) and (B) as an
integral equation. �

Remark 9.6.
(1). The phrase “.... which we also equivalently express as ....” is to be taken literally: We do

not mathematically distinguish between the integral equation (B) and the associated set
of stochastic differential (A) plus initial condition (B). They mean exactly the same thing.

(2). We bury into this footnote 42 a technical remark taken literally from SCF2. �

Lemma 9.1 (SCF2 Lemma 4.4.4). The quadratic variation of the Itô process (9.11) is

[X,X]t =

∫ t

0
∆2
udu.(9.12)

PROOF: See SCF2 for a sketch. �

Definition 9.8 (SCF2 Definition 4.4.5).

Given are an Itô process

Xt = X0 +

∫ t

0
∆udWu +

∫ t

0
Θudu,

on (Ω,F,Ft, P ) and an adapted process Γt, t ≥ 0.

We define 43

∫ t

0
ΓudXu :=

∫ t

0
Γu∆udWu +

∫ t

0
ΓuΘudu. �(9.13)

42This note literally from SCF2: We assume that
t∫

0

∆udWu and
t∫

0

Θudu are finite for every t > 0 so that the integrals

on the right–hand side of formula (9.11) are defined and the Itô integral is a martingale. We shall always make such
integrability assumptions, but we do not always explicitly state them.

43We assume that E
[
t∫

0

Γ2
u∆2

udu

]
and

t∫
0

|ΓuΘu|du are finite for each t > 0 so that the integrals on the right-hand side

of (9.13) are defined.
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Theorem 9.5 (Itô–Doeblin formula for Brownian motion) on p.196. which was stated for functions
f(t,Wt) can be generalized to functions f(t,Xt) where the second argument is an Itô process. This
will be done here.

Theorem 9.6 (SCF2 Theorem 4.4.6 - Itô–Doeblin formula for an Itô process).

Let Xt, t ≥ 0 be an Itô process as described in Definition 9.7 on p.196, and let (t, x) 7→ f(t, x) be a
function with continuous partial derivatives ft(t, x), fx(t, x), andfxx(t, x). Then, for every T ≥ 0,

f
(
T,XT

)
= f

(
0, X0

)
+

∫ T

0
ft
(
t,Xt

)
dt +

∫ T

0
fx
(
t,Xt

)
dXt

+
1

2

∫ T

0
fxx
(
t,Xt

)
d[X,X]t

= f
(
0, X0

)
+

∫ T

0
ft
(
t,Xt

)
dt +

∫ T

0
fx
(
t,Xt

)
∆tdWt

+

∫ T

0
fx
(
t,Xt

)
Θtdt +

1

2

∫ T

0
fxx
(
t,Xt

)
∆2
tdt.

(9.14)

PROOF: See SCF2. �

Remark 9.7. The reader may wonder about the meaning of the term “d[X,X]t”. We claim that

d[X,X]t = dXt dXt .

This is seen as follows. According to Lemma 9.1 on p.197, [X,X]t =
∫ t

0 ∆2
udu. This means that

[X,X]t is an Itô process. (Set ∆u = 0 in Definition 9.7 of an Itô process which precedes that lemma.)
The differential form of this Itô process is, according to (A) of that definition, d[X,X]t = ∆2

tdt.
We will see in (???), which occurs further down in this remark, that dXtdXt = ∆2

tdt. A comparison
of those two equation yields d[X,X]t = dXtdXt.

Itô formula for an Itô process in differential notation:

df
(
t,Xt) = ft

(
t,Xt

)
dt + fx

(
t,Xt

)
dXt +

1

2
fxx
(
t,Xt

)
dXtdXt.(9.15)

The differential form of Xt = X0 +
∫ t

0 ∆udWu +
∫ t

0 Θudu is

dXt = ∆tdWt + Θtdt

from this we compute dXtdXt using the multiplication table as follows.

dXt dXt = (∆tdWt + Θtdt) (∆tdWt + Θtdt)

= ∆2
tdWtdWt + 2∆tΘtdWtdt + Θ2

tdtdt = ∆2
tdt(???)

We make these substitutions in (9.15) and group the dt terms:
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df
(
t,Xt

)
= fx

(
t,Xt

)
∆t dWt

+

(
ft
(
t,Xt

)
+ fx

(
t,Xt

)
Θt +

1

2
fxx
(
t,Xt

)
∆2
t

)
dt. �

(9.16)

Example 9.1 (Generalized Geometric Brownian Motion). Definition 6.11 on p.142 gave the defini-
tion of geometric Brownian Motion as the process

St = S0 exp

[
σWt +

(
α− 1

2
σ2

)
t

]
,

defined on a filtered probability space (Ω,F,Ft, P ) with a Brownian motion W = Wt.
We will obtain this process in a more general setting as the solution of a stochastic differential
equation. Let

Xt =

∫ t

0
σudWu +

∫ t

0

(
αu −

1

2
σ2
u

)
du ,(9.17)

where αt and σt are adapted processes. Then X is an Itô process with differential

dXt = σtdWt +

(
αt −

1

2
σ2
t

)
dt, X0 = 0.(9.18)

From the multiplication table we obtain its squared differential

dXtdXt = σ2
t dWtdWt = σ2

t dt.(9.19)

Let S0 ∈]0,∞[ (i.e., S0 is deterministic), and f(x) := S0e
x. Since f does not have t as an argument it

is constant in t, thus ft = 0. There also is no need for using partial derivatives notation and we can
write f ′(x) for fx(x) and f ′′(x) for fxx(x). Note that

f ′(x) = f ′′(x) = f(x) = S0 e
x.

We define generalized geometric Brownian motion as the process

St := S0e
Xt = S0 exp

[ ∫ t

0
σsdWs +

∫ t

0

(
αs −

1

2
σ2
s

)
ds

]
,(9.20)

Since St = f(Xt) an application of the Itô formula yields

dSt = df
(
Xt

)
= f ′

(
Xt

)
dXt +

1

2
f ′′
(
Xt

)
dXtdXt

= S0e
Xt dXt +

1

2
S0e

Xt dXtdXt = St dXt +
1

2
StdXtdXt .

(9.21)

This last formula describes a stochastic differential equation. It defines the random process St via
a formula for its differential dSt, and this formula involves, besides the random process St itself,
also the differential dXt of an Itô process Xt. �
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Remark 9.8. It follows from formulas (9.18) and (9.19) that

StdXt
(9.18)
= σtSt dWt + αtSt dt −

1

2
σ2
t St dt

(9.19)
= σtSt dWt + αtSt dt −

1

2
St dXtdXt,

We plug this expression for StdXt into the last equation of (9.21) and obtain

dSt =

(
σtSt dWt + αtSt dt −

1

2
St dXtdXt

)
+

1

2
StdXtdXt

= σtSt dWt + αtSt dt.

This last formula is another example of a stochastic differential equation. It improves on the one
given at the end of Example 9.1, since the differential dWt of a Brownian motion replaces that of the
more general Itô process Xt.
Here is a Financial market interpretation of this formula

dSt = αtSt dt + σtSt dWt(9.22)

which describes the dynamics of St. If this process denotes the price of a stock, then (9.22)
expresses that this asset has an instantaneous mean rate of return αt and volatility σt.
“Instantaneous” indicates that t 7→ αt(ω) depends on the paricular time (and the sample
path ω) where the price is observed.

Generalized GBM is a good model for the price evolution of a stock for the following reasons.
• It is always positive.
• The fluctuations introduced by the random term σtdWt express the risk inherent in in-

vesting in such an asset.
The drawback: The trajectories of St are continuous at all points in time. To consider asset prices
with jumps a different model is needed.
In the Black–Scholes market we specialize to constant α and σ. Then (9.20) becomes ordinary GBM

St = S0 exp

{
σWt +

(
α− 1

2
σ2

)
t

}
.(9.23)

If we further assume that the instantaneous mean rate of return α is zero then the asset price and its
dynamics are

St = S0 exp

{
σWt −

1

2
σ2 t

}
, dSt = σSt dWt.

We recognize St as the level σ exponential martingale of Definition 6.12 on p.142. We obtain a new
proof that St is a martingale from the fact that dSt = σSt dWt reveals this process as a stochastic
integral with respect to Brownian motion,

St = S0 +

∫ t

0
σuSu dWu. �
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Theorem 9.7 (SCF2 Theorem 4.4.9 - Itô integral of a deterministic integrand).

Let Ws, s ≥ 0, be a Brownian motion and let ∆s be a nonrandom function of time. Let

It :=

∫ t

0
∆s dWs .

Then, for each t ≥ 0, the random variable It is normally distributed with

E[It] = 0 , V ar[It] =

∫ t

0
∆2
s ds .

PROOF: See SCF2. �

Here are some examples of the Itô firmula.

Example 9.2. Source: [7] Björk, Thomas: Arbitrage Theory in Continuous Time.
Assume that Z is a normal variable with expectation zero. Compute Compute E[Z4].
We will solve this problem with stochastic calculus by transforming it into one concerning Brownian
motion Wt. We accomplish this by writing t := V ar[Z]. Then Z and Wt have the same distribution.
Hence, E[Z4] = E[W 4

t ]. Let Xt = W 4
t . Then Xt = f

(
t,Wt

)
, where f is given by f(t, x) = x4. The

partial derivatives are
∂f

∂t
= 0 ,

∂f

∂x
= 4x3 ,

∂2f

∂x2
= 12x2 .

The Itô formula plus the equation W 4
0 = 0 yield

dXt = df(t,Wt) = ftdt + fxdWt +
1

2
fxxdt = 0 + 4W 3

t dWt + 6W 2
t dt ; X0 = 0 .

The equivalent integral form is Xt = 0 + 6

∫ t

0
W 2
s ds+ 4

∫ t

0
W 3
s dWs. We take expected values of

all members of this equation. Since Itô integrals
∫
. . . dW are martingales,

E

[∫ t

0
W 3
s dWs

]
= E

[∫ 0

0
W 3
s dWs

]
= 0 .

Since E[. . . ] is an abstract integral
∫
. . . dP , Fubini allows us to move the expectation inside the

ds–integral. We obtain

E[Xt] = 6

∫ t

0
E[W 2

s ]ds = 6

∫ t

0
sds = 3t2. �

Example 9.3. Let W be a Brownian motion on a filtered probability space (Ω,F,Ft, P ).
Let the processes At and Bt be defined as follows.

dAt = 5At dt − At dWt, A0 = 0 ,

Bt = e−5tAt .
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Apply Itô’s formula to the function f(t, x) = e−5tx to
(a) compute dBt so it has the form dBt = Utdt+VtdWt where Ut and

Vt are adapted stochastic processes.
(b) Prove that Vt is a martingale. This is easy once you have com-

puted part (a)

We solve this problem as follows.
The partial derivatives of f are

ft(t, x) = −5e−5tx , fx(t, x) = e−5t , fxx(t, x) = 0 .

Further, it follows from dtdt = dtdWt = dWtdt = 0 and dWtdWt = dt, that

dAtdAt = (−At)2dt = A2
tdt .

Observe that we won’t need this, since fxx = 0. Since Bt = f(t, At), Itô’s formula yields

dBt = df(t, At) = ftdt + fxdAt +
1

2
fxxdAt dAt

= (−5)e−5tAtdt + e−5t
(
5At dt − At dWt

)
+ 0

= (−5)e−5tAtdt + 5e−5tAt dt − e−5tAt dWt = −e−5tAt dWt .

We have solved (a) (with Ut = 0 and Vt = −e−5tAt) and also (b), since the integrated form of the
above is

Bt = B0 −
∫ t

0
e−5uAudWu = −

∫ t

0
e−5uAudWu ,

and integrals with respect to Brownian motion are martingales.
As an aside, we also note that Bt is a generalized geometric Brownian motion: Since Bt = e−5tAt,
dBt = −e−5tAtdWt can be rewritten as

dBt = −BtdWt .

Thus the differential Bt is if the form (9.22) when we set αt = 0 and σt = −1. Since α and σ are
constant in t and ω, Bt actually is a (non–generalzied) geometric Brownian motion. �

Example 9.4. Let (Ω,F,Ft, P ) be a filtered probability space with a Brownian motion Wt. Let

Xt = 5 +

∫ t

0
Wudu + 2

∫ t

0
W 2
udWu .

What is d
(
t2X2

t

)
? We will apply the Itô formula to compute this differential as follows.

Since dXt = Wtdt + 2W 2
t dWt, and dtdt = dtdWt = dWtdt = 0, and dWtdWt = dt,

dXt dXt = (Wtdt + 2W 2
t dWt)(Wtdt + 2W 2

t dWt)

= W 2
t dt dt + 2

(
2W 3

t dt dWt

)
+ 22W 2

t dWtdWt .

We aim to compute df(t,Xt) for the function f(t, x) = t2x2. Since

ft = 2tx2; fx = 2t2x; fxx = 2t2 ,
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Itô’s formula yields

d
(
f(t,Xt)

)
= 2tX2

t dt + 2t2XtdXt +
2

2
t2dXtdXt

= 2tX2
t dt + 2t2Xtd[Wtdt + 2W 2

t dWt] + t2(4W 4
t )dt

= 2tX2
t dt + 2t2XtWtdt + 2t2Xt2W

2
t dWt + t2(4W 4

t )dt

=
[
2tX2

t + 2t2XtWt + 4t2W 4
t

]
dt + 4t2XtW

2
t dWt . �

The following propositions are applications of the Itô formula to interest rate models.

Proposition 9.1 (SCF2 Example 4.4.10 - Vasicek interest rate model). ?

Given is a filtered probability space (Ω,F,Ft, P ) with a Brownian motion W = Wt. The Vasicek
model is a financial market in which the interest rate R = Rt(ω) has dynamics

(9.24) dRt =
(
α− βRt

)
dt + σ dWt .

Here we assume that α, β, σ ∈]0,∞[, i.e., they are positive and deterministic constants.
The solution to this SDE is

(9.25) Rt = e−βtR0 +
α

β
(1− e−βt) + σe−βt

∫ t

0
eβsdWs.

For a proof see SCF2. �

Remark 9.9. ?

The following results from that last proposition. Since the normal density is strictly positive for all
arguments, there is positive probability that Rt is negative, no matter how one choses α > 0, β > 0,
and σ > 0. This is not desirable for an interest rate model.
On the other hand, the Vasicek model has the desirable property that the interest rate is mean–
reverting:
• When Rt = α

β , the drift term (the dt term) in (9.24) is zero.
• When Rt > α

β , this term is negative, which pushes Rt back toward α
β .

• When Rt < α
β , this term is positive, which pushes Rt back toward α

β .

Moreover, we have the following:
• if R0 = α

β , then E[Rt] = α
β for all t ≥ 0,

• if R0 6= α
β , then lim

t→∞
E[Rt] = α

β . �

Proposition 9.2 (SCF2 Example 4.4.11 - Cox–Ingersoll–Ross (CIR) interest rate model). ?
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Given is a filtered probability space (Ω,F,Ft, P ) with a Brownian motion W = Wt. Assume that
the interest rate R = Rt(ω) in a market economy is modeled by the SDE

(9.26) xx

dRt =
(
α− βRt

)
dt + σ

√
Rt dWt,(9.27)

α, β, σ ∈]0,∞[ are positive and deterministic constants. We call this the Cox–Ingersoll–Ross
model, We also abbreviate this as the CIR model.

The CIR model has the following properties:

(9.28) E[Rt] = e−βtR0 +
α

β
(1− e−βt).

Note that this is the same expectation as in the Vasicek model.

(9.29) V ar[Rt] =
σ2

β
R0(e−βt − e−2βt) +

ασ2

2β2
(1− 2e−βt + e−2βt).

In particular,
lim
t→∞

V ar[Rt] =
ασ2

2β2
. �

For a proof see SCF2. �

The next theorem will be proven later, when we have the multidimensional Itô formula at our
disposal. We state it here since we use it in Chapter 10 (Black–Scholes Model Part I: The PDE)

Theorem 9.8.

If Xt and Yt are two Itô processes then

(9.30) d
(
Xt Yt

)
= Xt dYt + Yt dXt + dXt dYt.

PROOF: Will be given later, in Chapter 11 (Multidimensional Stochastic Calculus). See Corollary
11.1 (Itô product rule) on p.230. �

9.6 Exercises for Ch.9

Exercise 9.1. Prove the following assertion which was made in Remark 9.5 on p.195 of this docu-
ment: Let Π = {t0, t1, . . . , tn} (0 = t0 < t1 < · · · < tn = T ) and

XΠ
T :=

n−1∑
j=0

Wtj (Wtj+1 −Wtj ) , Y Π
T :=

n−1∑
j=0

Wtj+1(Wtj+1 −Wtj ) .

Here Wt is a Brownian motion on (Ω,F,Ft, P ), Wj := Wtj , and Ij := [tj , tj+1[. Then

E[XΠ
t ] = 0, and E[Y Π

t ] = T. �
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Exercise 9.2. Let Wt be a Brownian motion, Yt an adapted process on a filtered probability space
(Ω,F,Ft, P ). Assume that the process X has dynamics

dXt = Y 2
t dWt; X0 = 16.

Compute E[X10].
Hint: Stochastic integrals with respect to Brownian motion are martingales. �

Exercise 9.3 (Björk exc-4.2). Let

Z(t) :=
1

Xt
, where Xt is an Itô process with differential dX(t) = αX(t)dt+ σX(t)dW (t).

Prove that Zt also is an Itô process by showing that this process has a differential of the form dZt =
Φtdt+ ΨtdWt for suitable processes Φt and Ψt.
Hint: Apply the Itô formula with the function f(x) = x−1. �

Exercise 9.4. Let α ∈ R. Compute E[eαWt ] by doing the following.
(1). Let Yt := eαWt . Use Itô’s formula with f(x) := eαx to obtain

Yt = 1 + 1
2α

2

∫ t

0
Yudu+ α

∫ t

0
YudWu.( A)

(2). Define m(t) := E[Yt]. Apply Fubini to (A) and then differentiate d
dt to show that t 7→ m(t)

satisfies the ODE (ordinary differential equation)

m′(t) = α2

2 m(t), m(0) = 1.( B)

(3). (B) shows that m(t) satisfy a relation of the kind y′ = cy, y(0) = 1. Convince yourself that
this means that y(x) = ecx and show that m(t) = eα

2t/2

(4). Now it is easy to compute m(t) = E[eαWt ] and thus finish the problem. �
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9.7 Blank Page after Ch.9

This page is intentionally left blank!

206 Math 454 - Version 2025-02-11



Math 454 – Additional Material Student edition with proofs

10 Black–Scholes Model Part I: The PDE

Introduction 10.1. This chapter is based on the finance application oriented aspects of GBM (geo-
metric Brownian motion) that were briefly mentioned in Remark 9.8 about generalized GBM (p.200)
and replicating portfolios for a contingent claim given in Chapter 8 (The Binomial Asset Model).
There the dynamics of price of the risky asset developed as a binomial tree: price either was multi-
plied by an upward factor u with probability pu, or it was multiplied by a downward factor d with
probability pd.
The Black–Scholes market model has in common with the Binomial Asset Model that there is a
single risky asset (a stock) in addition to a single risk free asset (bond). In this chapter, we study
the dynamics of the discounted asset price and build a hedging portfolio based on the idea that its
value must match, at each point in time, the price of the contingent claim it replicates. From this
condition we will derive a (deterministic) partial differential equation for the pricing function of the
claim. �

10.1 Prologue: The Budget Equation in Continuous Time Markets

This subchapter closely follows [7] Björk, Thomas: Arbitrage Theory in Continuous Time.

To derive the continuous time budget equation of a self–financing portfolio at a fixed time t, we
discretize the trading times and assume, for some small h > 0, that trading takes place only at

. . . , t− 2h, t− h, t, t+ h, t+ 2h, . . .

Then we examine what happens in the limit as h→ 0.

Since we will deal quite extensively with differences Xt+h −Xt , it is convenient to introduce some
special notation for such differences.

Notation 10.1. We assume for the remainder of this subchapter 10.1 that h > 0 is fixed.

Given is an arbitrary real–valued stochastic process X = Xt = Xt(ω). We define

∆Xt := ∆X(t) := ∆X(t, ω) := Xt+h − Xt .

For a vector–valued process ~Yt =
(
Y

(1)
t , . . . , Y

(n)
t

)
, we write

∆~Yt := ~Yt+h − ~Yt .

The ∆ operation binds stronger than arithmetic operations. Thus,

∆Xt + Yt =
(
∆Xt

)
+ Yt , ∆Xt Yt =

(
∆Xt

)
Yt , ∆ ~Xt • ~Yt =

(
∆ ~Xt

)
• ~Yt .

Here are some examples.
• ∆Xt−h = Xt − Xt−h.
•

(
∆~Yt

)(j)
= ∆

(
Y

(j)
t

)
= Y

(j)
t+h − Y

(j)
t . In other words, we take the ∆ differences separately

for each coordinate. �

Let us review portfolios in discrete time financial markets. We recall from Remark ?? that the hold-
ings ~Ht were created at time t− h. They will be traded at time t for new holdings ~Ht+h, which will
be traded at time t+ h for new holdings ~Ht+2h, which will be traded at time t+ 2h ...
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A self–financing portfolio is one which satisfies the budget equation

n∑
j=0

H
(j)
t S

(j)
t = V

~H
t =

n∑
j=0

H
(j)
t+hS

(j)
t .(10.1)

In other words, the previously established holdings ~Ht, valued at time t, are worth the same amount
V
~H
t as the newly established holdings ~Ht+h, also valued at time t. We apply • and ∆ notation to

(10.1) and obtain ~Ht • ~St = ~Ht+h • ~St . Hence, the budget equation becomes

~St •∆ ~Ht = 0 .(10.2)

We remember the following from calculus. The derivative

f ′(x) =
df

dx
, written in differential form as df(x) = f ′(x)dx ,

was obtained from the difference quotient as a limit

df

dx
= lim

h→0

f(x+ h)− f(x)

(x+ h)− x
= lim

h→0

∆f(x)

∆x
.

Thus, letting h → 0 in (10.2) should give us the budget equation ~St • d ~Ht = 0. But this approach
has a fatal flaw and gives an incorrect result. To understand the nature of the problem, we examine

the j-th term S
(j)
t dH

(j)
t of ~St • d ~Ht =

n∑
j=0

S
(j)
t dH

(j)
t .

1. S
(j)
t dH

(j)
t represents

t∫
0

S
(j)
u dH

(j)
u , just as Zt dWt represents

t∫
0

Zu dWu.

2. The Itô integral
t∫

0

Zu dWu is a limit of
∑

k Ztk
(
Wtk+1

−Wtk

)
, as maxk(tk+1 − tk)→ 0.

3. It is crucial that a forward difference Wtk+1
−Wtk of the integrator process W was taken:

Neither tk+1 nor tk is in the past of the integrands time, tk. 44 Intuitively, this means that the
value of the integrand must be known by the times tk and tk+1 when the integrator values
Wtk+1

−Wtk are used.

4. Likewise,
t∫

0

S
(j)
u dH

(j)
u is a limit of

∑
k S

(j)
tk

(
H

(j)
tk+1
−H(j)

tk

)
, as maxk(tk+1 − tk)→ 0.

5. Again, forward differences H(j)
tk+1
−H(j)

tk
of the integrator process H(j) must be taken.

6. The problem: The integrator value H(j)
t is the portfolio holding for the period [t− h, t[. It is

established at time t− h, before the integrand, the asset price St is known.

Note that the problem goes away if we can work in (4) with
∑

k S
(j)
tk−1

(
H

(j)
tk+1
− H

(j)
tk

)
instead of∑

k S
(j)
tk

(
H

(j)
tk+1
−H(j)

tk

)
, since S(j)

tk−1
is known at tk−1, the time where H(j)

tk
is established.

We achieve this by subtracting and re–adding ~St−h •∆ ~Ht to (10.2) as follows.

0 =
(
~St •∆ ~Ht − ~St−h •∆ ~Ht

)
+ ~St−h •∆ ~Ht = ∆~St−h •∆ ~Ht + ~St−h •∆ ~Ht(10.3)

44For example, taking forward differences is necessary so that stochastic integrals with respect to Brownian motion are
martingales.
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Now we may take limits h→ 0 for ~St−h•∆ ~Ht , since ∆ ~Ht = ~Ht+h− ~Ht, and both portfolio holdings
are known at t− h. It follows from (10.3) that

d~St • d ~Ht + ~St • d ~Ht = 0 .(10.4)

We fix a coordinate 0 ≤ j ≤ n. By Itô’s product rule,

d
(
H

(j)
t S

(j)
t

)
= H

(j)
t dS

(j)
t +

(
S

(j)
t dH

(j)
t + dS

(j)
t dH

(j)
t

)
.(10.5)

Since, by (10.1), V ~H
t =

n∑
j=0

H
(j)
t S

(j)
t = ~St • ~Ht,

dV
~H
t =

n∑
j=0

d
(
H

(j)
t S

(j)
t

) (10.5)
=

n∑
j=0

H
(j)
t dS

(j)
t +

 n∑
j=0

S
(j)
t dH

(j)
t +

n∑
j=0

dS
(j)
t dH

(j)
t


= ~Ht • d~St +

(
~St • d ~Ht + d~St • d ~Ht

) (10.4)
= ~Ht • d~St .

Those observations are of a heuristic nature because taking the limit h → 0 was involved to bridge
the gap from discrete trading times to continuous trading times. Nevertheless, it suggests how to
define the continuous time budget equation and give mathematical precision to Definition 7.5 of a
self–financing portfolio (see p.154). for a continuous market portfolio ~Ht.
The following definition also provides a solid mathematical foundation for Definition 7.7 on p.155
of an arbitrage portfolio, and for Definition 7.9 on p.156 of a hedging portfolio.

Definition 10.1 (Continuous time budget equation and self–financing portfolios).

(A.) The budget equation for a portfolio ~Ht in a continuous time financial market is

(10.6) dV
~H
t =

n∑
j=0

H
(j)
t dS

(j)
t = ~Ht • d~St , for 0 ≤ t ≤ T.

(B.) We call ~Ht a self–financing portfolio strategy aka self–financing portfolio, if it satis-
fies this budget equation. �

10.2 Formulation of the Black–Scholes Model

Notation 10.2. I will stay in this chapter close to SCF2 Chapter 4.5 (Black–Scholes–Merton Equa-
tion). I often will just copy the theorems and propositions presented there and refer to the text as
far as the proofs are concerned.
I also will mostly use that book’s notation and doing so make it easier for you to relate the material
presented here to the SCF2 text even though I much prefer the notation of [7] Björk, Thomas: Ar-
bitrage Theory in Continuous Time which I used in Chapter 8 (The Binomial Asset Model) of these
lecture notes. The following table summarizes the most important differences.
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Björk Shreve
St St price of the risky asset (stock, the underlying).
Bt N/A unit price of the riskless asset (money market account price).
~Ht N/A portfolio (# of shares) vector for all assets.

xt = HB
t Bt N/A dollar value of the riskless asset.

yt = HS
t ∆t # of shares of the stock.

Vt Xt value process of the portfolio.
Πt(X ) N/A price process of a contingent claim X .
N/A c(t, x) pricing function of a European call. c(t, St) equals Πt(X ).
N/A p(t, x) pricing function of a European put. p(t, St) equals Πt(X ).

The most likely exception to me trying to stick with SCF2 notation will occur with respect to port-
folio holdings and values, but since only two assets are involved, including the bank account, I will
use a modified Björk notation and write
• HB

t for the number of bank account shares (with a money value of Bt dollars per share),
• V B

t rather than HB
t Bt for the value (dollars) invested in the bank account,

• HS
t (S = Stock) for the number of shares in the stock.

• either Vt or V ~H
t for value of the portfolio ~Ht.

• Xt and Yt for xt and yt, since those are stochastic processes.

The portfolio value process thus will be written in any of the following ways.

(10.7) V
~H
t = Vt = HB

t Bt + HS
t St = V B

t + HS
t St = Xt + YtSt .

Also note that Xt = V B
t , the money value of the bank account holdings, satisfies

(10.8) Xt = Vt − YtSt , and HB
t =

Xt

Bt
= DtXt . �

Definition 10.2 (Black–Scholes Market Model).
The Black–Scholes market model consists of a time T > 0, a risk free asset (bond) with price process
B = Bt, 0 ≤ t ≤ T , a risky asset (stock) with price process S = St, 0 ≤ t ≤ T , a simple contingent
claim X = Φ(ST ) with expiration date T , contract function Φ(x), and price process Πt(X ), such that
the following conditions hold.

dBt = rBt dt; B0 = 1;(10.9)
dSt = αSt dt + σSt dWt; S0 ∈ [0,∞[;α, σ ∈]0,∞[ ,(10.10)
X = Φ(ST ) (simple contingent claim),(10.11)

• c : [0, T ]× [0,∞[ (t, x) 7→ c(t, x) twice continuously differentiable such that

Πt(X ) = c(t, St) (price process of X )(10.12)

• The market is efficient: No arbitrage portfolios. �
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Remark 10.1.
(1) dBt = rBtdt; B0 = 1 is equivalent to Bt = ert, i.e., an account which pays continuously

compounded interest at the constant and deterministic rate r per unit time.
(2) Formula (10.10) states that St is GBM with constant, instantaneous mean rate of return α

and constant volatility σ. See Remark 9.8 on p.200. There are more general models (Defi-
nition 13.1 on p.243) in which the constants α and σ are replaced by measurable functions
α(t, x), σ(t, x) of time. The price of the stock then is given by

dSt = α(t, St)St dt + σ(t, St)St dWt; S0 ∈ [0,∞[.

(3) The symbol c was chosen for the function c(t, x) to remain in sync with the SCF2 text where
only the example of a (European) call is used when deriving the corresponding PDE. Note
that this function must satisfy the terminal condition

c(T, ST ) = Π(T ;X ) = Φ(ST ).(10.13)

(4) Smoothness (the existence of partial derivatives of any order) is not really necessary for
c(t, x). It suffices that this be a C2 function, , i.e., all partial derivatives of order 2 exist and
are continuous.

(5) Recall that Assumption 7.1 on p.155 includes that the market is free of arbitrage, in addition
to other assumptions such as complete liquidity, no transaction costs and no bid–ask spread.
�

10.3 Discounted Values of Option Price and Hedging Portfolio

Proposition 10.1.

The budget equation for a self–financing portfolio in a Black–Scholes market evolves according to the
following dynamics.

dVt = YtdSt + rXt dt(10.14)
= rVtdt + (α− r)YtStdt + YtσSt dWt .(10.15)

PROOF: See SCF2, Chapter 4.5.1 (Evolution of Portfolio Value). �

Remark 10.2. Formula (10.15) signifies that a portfolio value change dVt is composed of
a. An average underlying rate of return r on the bond value Vt − YtSt,
b. An average underlying rate of return r + (α − r) = α on the stock investment in height of

YtSt. Since people will not take a greater risk investing in a stock than putting money in the
bank we should expect that α ≥ r, thus (α− r) is a risk premium for investing in the stock.

c. A volatility term YtσStdWt. It is proportional to the size YtσSt of the stock investment. �

Remark 10.3. We already mentioned that Formula (10.14) which asserts that dVt = YtdSt + rXtdt,
is the budget equation of a self–financing portfolio in the Black–Scholes market.
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You obtain from it the discrete time analogue by replacing dVt with Vn+1 − Vn, replacing dSt with
Sn+1 − Sn, and replacing dt with (n+ 1)− n = 1. Then

Vn+1 − Vn = YnSn+1 − YnSn + rXn · 1
= YnSn+1 − YnSn + r(Vn − YnSn)

Thus

Vn+1 = Vn + YnSn+1 − YnSn + rVn − rYnSn

= (1 + r)Vn − (1 + r)YnSn + YnSn+1

= (1 + r)(Vn − YnSn) + YnSn+1 = (1 + r)Xn + YnSn+1 ,

just as the budget equation demands it: The portfolio value at the new trading time must be the old
bank account value Xn, increased by interest rXn, plus the value of the stock holdings Yn, valued
at the new price Sn+1 per unit, i.e., valued at YnSn+1. �

Proposition 10.2.

Discounted stock price e−rtSt and discounted portfolio value e−rtVt satisfy

d
(
e−rtSt

)
= (α− r) e−rtSt dt + σe−rtSt dWt ,(10.16)

d
(
e−rtVt

)
= (α− r)Yt e−rtSt dt + σYte

−rtSt dWt

= Yt d
(
e−rtSt

)
.

(10.17)

PROOF: See SCF2, Chapter 4.5.1 (Evolution of Portfolio Value). �

Remark 10.4.
(a) It follows from (10.16), that discounting stock price has the following effect: Whereas St

has a mean rate of return of α, it has dropped to α− r for e−rtSt.
(b) Formula (10.17) shows that change in the discounted portfolio value has nothing to do

with a change in the bank account. It entirely depends on the change in the discounted
stock price. �

We now investigate the ramifications of the existence of a deterministic function c(t, x) in the defi-
nition 10.2 of the Black–Scholes Market Model such that Πt(X ) = c(t, St).

Proposition 10.3.

The price dynamics of the contingent claim are

dc
(
t, St

)
=

[
ct
(
t, St

)
+ αSt cx

(
t, St

)
+

1

2
σ2S2

t cxx
(
t, St

) ]
dt + σSt cx

(
t, St

)
dWt.(10.18)

Those of the discounted option price e−rtc
(
t, St

)
are

d
(
e−rtc(St)

)
= e−rt

[
− rc

(
t, St

)
+ ct

(
t, St

)
+ αSt cx

(
t, St

)
+

1

2
σ2S2

t cxx
(
t, St

) ]
dt

+ e−rtσSt cx
(
t, St

)
dWt.

(10.19)

212 Math 454 - Version 2025-02-11



Math 454 – Additional Material Student edition with proofs

PROOF: See SCF2, Chapter 4.5.2 (Evolution of Option Value). �

10.4 The Pricing Principle in the Black–Scholes Market

According to the pricing principle (Theorem 7.1 on p.156) an arbitrage free price Πt(X ) = c(t, St) of
the contingent claim X requires that a replicating portfolio with value process Vt satisfies

c(t, St) = Vt, for all trading times t.

This is equivalent to e−rtVt = e−rtc(t, St
)

for all t. In terms of differentials:

d
(
e−rtVt

)
= d
(
e−rtc(t, St)

)
for all t,

V0 = c
(
0, S0

)(10.20)

We apply (10.16) and (10.19) to the first part of (10.20). We cancel the factor e−rt everywhere and
omit the argument (t, St) of the function c(t, x) and its derivatives ct(t, x), cx(t, x), cxx(t, x), and
obtain

YtσSt dWt +Yt(α− r)St dt

= σSt cx dWt +
[
− rc + ct + αSt cx +

1

2
σ2S2

t cxx

]
dt.

(10.21)

Since evolution with respect to dt is fundamentally different of that with respect to dWt it is allowed
to separately equate first the dWt terms and then the dt terms of formula (10.21). We first equate the
dWt terms and obtain after canceling σe−rtSt the

delta–hedging rule:

Yt = cx
(
t, St

)
for all t ∈ [0, T [.(10.22)

At each time t prior to expiration, the number of shares ∆t held by the hedging portfolio of the
short option position is the delta of the option price c(t, St) at that time.

Definition 10.3 (Delta (Greek)). Let X be a simple contingent claim in the Black–Scholes market,
and let (t, x) 7→ c(t, x) be the twice continuously differentiable function which yields the price
process Πt(X ) = c(t, St)

45 and thus, in particular, the contract function Φ(ST ) = c(T, ST ). We call
the partial derivative of c(t, x) with respect to stock price x,

delta :=
∂c

∂x
,(10.23)

the delta of the claim. Delta is one of the so called greeks of the claim. �

We just proved that Yt = cx(t, St). Equating the dt terms of formula (10.21) thus yields

cx(α− r)St = −rc + ct + αSt cx +
1

2
σ2S2

t cxx.

45See Definition 10.2 of the Black–Scholes Market Model on p.210
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We cancel the term αStcx on both sides:

−rcxSt = −rc + ct +
1

2
σ2S2

t cxx.

We reorder those terms and obtain

(10.24) rc = ct + rcxSt +
1

2
σ2S2

t cxx.

We bring back the arguments (t, St) and recall that the pricing principle asks that all equations we
have encountered must hold for all t:

r c
(
t, St

)
= ct

(
t, St

)
+ rSt cx

(
t, St

)
+

1

2
σ2S2

t cxx
(
t, St

)
for all t ∈ [0, T [,

together with the expiration time condition c(T, ST ) = Φ(ST ) of formula (10.13).
We summarize our findings. The pricing principle lets us demand that the pricing function of a
simple claim X = Φ(ST ) be function c(t, x) of time t and stock price x that solves the

Black–Scholes partial differential equation

ct(t, x) + rx cx
(
t, x) +

1

2
σ2x2cxx(t, x) = r c

(
t, x
)
, x ≥ 0,(10.25)

subject to the terminal condition

c(T, x) = Φ(ST ).(10.26)

The equations Vt = c(t, St) = V B
t + V S

t , V B
t = HB

t e
rt = Xt, V S

t = HS
t St = YtSt = cx(t, St)St,

allow us to express the hedging portfolio for the claim X purely in terms of the pricing function
c(t, x) for the claim and the discount factor e−rt as follows.

~Ht = (HB
t , H

S
t ) =

(
e−rt

[
c(t, St) − cx(t, St)St

]
, cx(t, St)

)
.(10.27)

In other words, at time t this portfolio invests c(t, St) − cx(t, St) in the bank and holds cx(t, St)
shares of the stock.

Remark 10.5. Observe that we only are concerned with stock price parameter x > 0 since St > 0 is
a GBM. Thus, if we can prove that the solution c(t, x) is continuous for all 0 ≤ t ≤ T satisfies the
PDE just for 0 ≤ t ≤ T and x ≥ 0 then we are fine, since continuity of t 7→ c(t, St) and t 7→ Vt for
0 ≤ t ≤ T implies that the hedge equation Vt = c(t, St) extends from 0 ≤ t < T to t = T , and the
boundary condition c(T, x) = Φ(x) yields VT = Φ(XT ).
To summarize, it is enough to show that the Black–Scholes PDE holds for all x ≥ 0 and t ∈ [0, T [ �

10.5 The Black–Scholes PDE for a European Call

The Black–Scholes PDE (10.25) on p.214 is a purely deterministic PDE, and it can be solved by exclu-
sively using tools from the theory of partial differential equations which do not rely on probability
theory.
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We need more knowledge of Itô calculus, in particular, the construction of martingale measures,
before we will solve this PDE. Obviously probability theory plays a heavy role there. Here we
simply present the solution for the special case of a European call, i.e., a simple contingent claim X
with contract function

Φ(x) = c(T, x) = (x−K)+.

Remark 10.6. Here are two conditions specific to the European call.
a. In the case of a European call the solution of the Black–Scholes PDE must satisfy the following
boundary condition for stock price x = 0.

c(t, 0) = 0 for all t ∈ [0, T ].(10.28)

This is true for the following reason. Formula (10.25) states that y(t) := c(t, 0) satisfies the ODE

y′ = ry; thus y(t) = const · ert.

We obtain const by setting t = 0: y(0) = const · 1, i.e., const = y(0) = c(0, 0). Thus

c(t, 0) = c(0, 0) ert for all 0 ≤ t ≤ T .(A)

K ≥ 0, thus c(T, 0) = Φ(0) = (0−K)+ = 0. From (A): 0 = c(T, 0) = c(0, 0)erT .
But expiration T > 0, thus erT > 0, thus c(0, 0) = 0.
We use (A) once more: c(0, 0) = 0 ⇒ c(t, 0 = 0 · ert = 0 for all t.
In summary: c(t, 0 = 0 for all t.
B. This solution not only satisfies the initial condition c(t, 0) = 0 for all t which we had deduced in
Remark 10.6 above but also the growth condition

lim
x→∞

(
c(t, x) − (x− er(T−t)K)

)
= 0 for all t ∈ [0, T ].(10.29)

Since er(T−t)K is constant in x this condition implies that the value c(t, x) of the call option grows
at the same rate as x as x→∞. It will thus exceed the strike price K by a significant amount for
large x and it is very likely that this will remain true as t approaches T . Since it is very unlikely for
large x that ST −K < 0, i.e.,

(ST − K)+ 6= St − K,

(the holder of the option will almost certainly be in the money, i.e., make a profit), it should not
come as a surprise that the price for a European call approaches that of a claim with contract func-
tion Φ(x) = x −K. You may recall from Definition 7.3 on p.151 that this was the contract function
for a forward contract with strike price K. �

Without proof for now:

Theorem 10.1. The solution to the Black–Scholes partial differential equation (10.25) with terminal condi-
tion (10.26), zero stock price condition (10.28), and growth condition (10.29) is
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c(t, x) = xN
(
d+(T − t, x)

)
− Ke−r(T−t)N

(
d−(T − t, x)

)
, 0 ≤ t < T, x > 0,(10.30)

where

d±(τ, x) =
1

σ
√
τ

[
log

x

K
+

(
r ± σ2

2

)
τ

]
,(10.31)

and N is the cumulative standard normal distribution

N(y) =
1√
2π

∫ y

−∞
e−

z2

2 dz =
1√
2π

∫ ∞
−y

e−
z2

2 dz.(10.32)

PROOF: Will be given later: The entire subchapter 13.4 (Risk–Neutral Pricing of a European Call) is
devoted to that proof. �

Remark 10.7. We will sometimes write BSM(τ, x;K, r, σ) for c(t, x) (where τ = T − t, i.e., t = T −τ ).

We call BSM(τ, x;K, r, σ) the Black–Scholes–Merton function. Then (10.30) becomes

BSM(τ, x;K, r, σ) = xN
(
d+(τ, x)

)
− Ke−r τN

(
d−(τ, x)

)
,(10.33)

In this formula, τ and x denote the time to expiration and the current stock price, respec-
tively. The parametersK, r, and σ are the strike price, the interest rate, and the stock volatil-
ity, respectively. �

Remark 10.8. There is various software to calculate the parameters for Black–Scholes contract func-
tions Here are some links that were active as of April 16, 2021.

a. Magnimetrics Excel implementation:
https://magnimetrics.com/black-scholes-model-first-steps/

b. Drexel U Finance calculator:
https://www.math.drexel.edu/~pg/fin/VanillaCalculator.html

b. EasyCalculation.com:
https://www.easycalculation.com/statistics/black-scholes-mode.php �

Remark 10.9. Formula (10.30) does not define c(t, x) when t = T (because then τ = T − t = 0
and this appears in the denominator in (10.31)), nor does it define c(t, x) when x = 0 (because log x
appears in (10.31)), and log 0 is not a real number). However, (10.30) defines c(t, x) in such a way
that

lim
t→T

c(t, x) = (x−K)+ and lim
x↓0

c(t, x) = 0.

You will be asked to prove those claims in Exercise 4.9 of SCF2. �
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10.6 The Greeks and Put–Call Parity

This chapter is largely a summary of SCF2 ch.4.5.5 and 4.5.6.
We assume for all of this chapter that we have a Black–Scholes market with interest rate r, instan-
taneous mean rate of return α, and volatility σ. All those are asumed to be constant. We further
assume that r ≥ 0 and σ > 0.
We denote by F (t, x) the pricing function for a simple claim X with contract function Φ(x):

F (t, St) = Πt(X ).

For people working in finance it often matters greatly how stable or volatile the function this pricing
function is with respect to

1. changes in the price St of the underlying asset, i.e., changes in x,
2. changes in the interest rate r and the volatility σ.

Those changes are given by the derivatives of F . As far as derivatives with respect to r and σ are
concerned we can examine F with respect to a variety of values of r and σ, i.e., we can think of F
as a function

F̃ : (t, x, r, σ) 7→ F̃ (t, x, r, σ).

So we really mean, e.g., ∂F̃∂r when we write ∂F
∂r .

Definition 10.4 (Björk Def.9.4: Greeks).
The following derivatives are part of what is known as the Greeks of the function F .

∆ =
∂F

∂x
delta(10.34)

Γ =
∂2F

∂x2
gamma(10.35)

ρ =
∂F

∂r
rho(10.36)

Θ =
∂F

∂t
theta(10.37)

ν =
∂F

∂σ
vega �(10.38)

Remark 10.10. When reading SCF2 you might get the impression that those Greeks only exist for
the pricing function c(t, x) of a European call but that is not so.

• One can replace c(t, x) with the pricing function F (t, x) of any simple contingent
claim in the Black–Scholes market where the underlying asset has a geometric
Brownian motion as price process.

• In particular the Greeks exist for puts and forward contracts. �

Having stated that the Greeks are defined for all simple claims, we emphasize that the following
formulas are specific for the pricing function c(t, x) of a European call.
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Proposition 10.4.

The following is true for the Greeks of a European call.

delta = cx(t, x) = N
(
d+(T − t, x)

)
,(10.39)

gamma = cxx(t, x) =
1

σx
√
T − t

N ′
(
d+(T − t, x)

)
,(10.40)

theta = ct(t, x) = −rK e−r(T−t)N
(
d−(T − t, x)

)
− σx

2
√
T − t

N ′
(
d+(T − t, x)

)
.(10.41)

Because both the cumulative distribution functionN(x) of a standard normal random variable and its density
N ′(x) are always strictly positive, Delta and Gamma are strictly positive, and Theta is strictly negative.

PROOF: Not given here. Those proofs are just an exercise in differentiation. �

The delta hedging rule allows us to compute the replicating portfolio for a simple contract in the
Black–Scholes market.

Proposition 10.5.

Let ~Ht =
(
HB
t , H

S
t

)
be the hedging portfolio for a simple claim with pricing function F (t, x). Thus

HB
t denotes the number of shares, i.e., dollars, in the bond, and HS

t denotes the number of shares
held in the stock. Take note that this one incident where we do not use SCF2 notation (he writes Xt

for HS
t )!

The following is true if it is known (or hypothesized) that St = x.

V H
t = F (t, x),(10.42)

ertHB
t = F (t, x)− x · Fx(t, x),(10.43)

HS
t = Fx(t, x).(10.44)

PROOF: Formula (10.42) is just the pricing principle which says that the value of a replicating port-
folio must always match the price of the option it replicates.
Formula (10.44) is the delta hedging rule which states the number of shares in the underlying stock
is the derivative of the pricing function F with respect to stock price, evaluated at x = St.

Formula (10.43) just reflects the simple fact that, since the hedge ~H is self–financing, whatever is not
invested in the underlying is in the bank.

ertHB
t = V B

t = V H
t − St ·HS

t , i.e., ertHB
t = F (t, x) − x · Fx(t, x)). �

Remark 10.11. The hedging portfolio tells us what amounts must be invested in bank account and
the underying by someone who holds a short position in the claim, i.e., someone who sold the
claim at t = 0 and wants to be able to have the funds available at t = T to deliver the derivative to
the buyer.
In the specific case of a European call option, HS

t = cx(t, St) is positive. See Proposition 10.4. We
thus have the following.
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• To hedge a short position in a European call, one needs to hold shares in the under-
lying and must borrow money from the bank to buy those shares.

• To hedge a long position in a Eoropean call, one must do the opposite, hold a posi-
tion of minus cx(t, St shares of stock (i.e., have a short position in stock) and invest,
assuming St = x, V B

t = c(t, x)−xcx(t, x) = Ke−r(T−t)N(d−) in the money market
account. See formula (10.39). �

Proposition 10.6.

Let f(t, x) be the pricing function of a forward contract, i.e., simple claim with contract function
Φ(x) = x−K. 46 Then

f(t, x) = x− e−r(T−t)K.(10.45)

PROOF: Assume that this forward contract is sold at time zero for a price of f
(
0, S0

)
= S0− e−rTK.

Then a bank loan of e−rTK will allow the seller to buy a share of the underlying. We look at the
portfolio strategy ~H = (HB, HS which thus has been established at t = 0 by the short sale of the
foward contract, i.e.,

HB
0 = −e−rTK, HS

0 = 1.

We make this a static hedge, i.e., there will be no further trades until time of expiration T . Note
though that the amount owed to the bank will increase due to compounded interest owed on the
loan. At time t the interest factor will be ert. Thus portfolio and portfolio value are

HB
t = −HB

0 = −e−rTK, and HS
t = HS

0 = 1 for 0 ≤ t ≤ T,
Vt = − ertHB

t + HS
t St = −e−r(T−t)K + 1 · St = St − e−r(T−t)K .

In particular, at expiration time T , the portfolio value is

V H
T = ST − e−r(T−T )K = ST − K = Φ(ST ) .

This static hedge thus is a replicating portfolio for the forward contract. It follows from the pricing
principle that

f(t, St) = V H
t = St − e−r(T−t)K for all 0 ≤ t ≤ T . �

We associate with such a forward contract its fair strike price, if it had been set at time 0 ≤ t ≤ T
and not at time zero. We call this the forward price Fort of the forward contract at time t:

Definition 10.5 (Forward price Fort).

The forward price Fort of the underlying asset at time t is that value of K for which the
forward contract has value zero at time t. �

To stay in sync with SCF2, we will repeat the definition of a forward price in Chapter 14 (Dividends).
See Definition 14.3 (Forward price ForS(t, T )) on p.275. The meaning remains the same, but the
symbol changes from Fort to ForS(t, T ). 47

47That notation is better suited to relate the forward price to the price of a zero–coupon bond.
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Remark 10.12. By definition, Fort is that value K, for which Πt(X ) = 0, i.e.,

0 = f(t, St) = St − e−r(T−t)Fort .

This is the basis for the following.
A. The forward price satisfies the equation

(10.46) St − e−r(T−t) Fort = 0.

B. Note that For0 = K. This should not come as a surprise. Both parties in the contract will agree at
t = 0 to a strike price which does not give one of them an advantage over the other.
C. We solve formula (10.46) for Fort and obtain

Fort = er(T−t)St.(10.47)

D. Note that, for a given time t,

the forward price Fort is NOT the price (or value) f(t, St) of the forward contract. �

We recall from Definition 7.3 on p.151 that a European put with strike priceK is a simple claim with
contract function Φ(x) = (K − x)+. It is an option to sell, rather than buy, a share of the underlying
at price K. Thus such an option generates a profit K − ST ) if share price at expiration is below K,
and it is worthless otherwise.
In the following we will write p(t, x) rather than F (t, x) for the price of a European put option.

We relate puts and calls by mean of the following simple identity.

Lemma 10.1. For any real number α,

α = α+ − (−α)+.(10.48)

PROOF:

Case 1 : α ≥ 0 ⇒ α+ = α, (−α)+ = 0 ⇒ α+ − (−α)+ = α − 0 = α.

Case 2 : α < 0 ⇒ α+ = 0, (−α)+ = −α ⇒ α+ − (−α)+ = 0 − (−α) = α. �

Corollary 10.1.

f
(
T, ST

)
= ST −K = (ST −K)+ − (K − ST )+ = c

(
T, ST

)
− p

(
T, ST

)
.

the contract function of a forward contract with strike price K coincides with that of a portfolio that
is long one European call and short one European put.

PROOF: This is an immediate consequence of Lemma 10.1. �
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Proposition 10.7 (Put–call parity). We write, for one and the same strike price K,
• c(t, x) for the pricing function of a European call,
• p(t, x) for the pricing function of a European put,
• f(t, x) for the pricing function of a forward contract.

Then the following formula is satisfied:

Put–call parity:

f(t, x) = c(t, x) − p(t, x), for all x ≥ 0, 0 ≤ t ≤ T.(10.49)

PROOF: We apply the pricing principle to the formula p
(
T, ST

)
= c

(
T, ST

)
− f

(
T, ST

)
. This is

valid according to Corollary 10.1. We obtain

p(t, x) = c(t, x) − f(t, x), for all x ≥ 0, 0 ≤ t ≤ T. �

Proposition 10.8.

The pricing function p(t, x) of a European put with strike price K satisfies

p(t, x) = x
(
N
(
d+(T − t, x)

)
− 1
)
− Ke−r(T−t)

(
N
(
d−(T − t, x)

)
− 1
)

= Ke−r(T−t)N
(
− d−(T − t, x)

)
− x

(
N
(
− d+(T − t, x)

)
,

(10.50)

PROOF: We abbreviate τ = T − t, N(d+) = N
(
d+(T − t, x), N(d−) = N

(
d−(T − t, x)

)
.

Put–call parity yields f(t, x) = c(t, x)− p(t, x), thus p(t, x) = c(t, x)− f(t, x).
The BSM formula yields f(t, x) = xN(d+) − Ke−rτN(d−). Thus,

p(t, x) = xN(d+) − Ke−rτN(d−) −
(
x − e−rτK

)
= x

(
N(d+)− 1

)
+ Ke−rτ

(
1−N(d−)

)
= x

(
N(d+)− 1

)
− Ke−rτ

(
N(d−)− 1

)
This proves the first equation of (10.50).
Symmetry of the normal density yields N(−α) = 1−N(α) for any α ∈ R. Thus,

N(d+)− 1 = −
(
1−N(d+)

)
= −N(−d+) ,

N(d−)− 1 = −
(
1−N(d−)

)
= −N(−d−) .

We substitute those expressions into the already proven first equation of (10.50) and obtain the
second equation. �

10.7 American Call Options

Recall the following from Definition 7.3 on p.151.
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• An American call option is a contract written at some time t0. It specifies that, at any time
up to the time of expiration T > t0, the holder of this option has the right, but not the
obligation, to buy a share of an underlying security stock for the price of K (strike price).

• An American put option is a contract written at some time t0. It specifies that, at any time
up to the time of expiration T > t0, the holder of this option has the right, but not the
obligation, to sell a share of an underlying security for the price of K (strike price).

Let X denote an American call or an American put. The freedom of the holder of such an American
option to exercise it at any time τ between the present time t and the time of expiration T obviously
implies the following. Its value Πt(X ) is at least as big as that of the corresponding European option.
How big? This is a complicated question since τ need not be deterministic. Rather, we assume that
τ can be any random time

τ = τ(ω),

which satisfies the following. Each σ–algebra Ft contains enough information to determine whether
τ has already happened at time t. This is expressed by the condition

{τ ≤ t} ∈ Ft , whenever 0 ≤ t ≤ T.

Such a random time is called a stopping time (for the filtration
(
Ft
)
t
).

You will find more information in SCF2 Chapter 8 (American Derivative Securities). For us this
material is outside the scope of our course. However, an answer can be obtained with elementary
reasoning in the case of an American call option.
We assume the following.

(a) A risk free asset with a constant interest rate r > 0.
(b) A stock which pays no dividends and has price dynamics dSt = αSt dt + σSt dWt, where

α, σ > 0 are constant.
(c) No arbitrage.

Compare the above market assumptions to those of Definition 10.2 (Black–Scholes Market Model)
on p.210.

Lemma 10.2. Under the assumptions (a)–(c) we have the following for the price function c(t, x) of a Euro-
pean call with expiration date T and strike price K.

c(t, St) ≥ St − Ke−r(T−t).(10.51)

PROOF:
Let Ct be the value at time t of a portfolio which consists of one European call option. Then

Ct = c(t, St) , thus, CT = c(T, ST ) = (ST −K)+.(A)

Let Bt be the value at time t of a portfolio which consists of one share of the stock and a bank loan
in height of K, due at time T . Today we only need the discounted value e−r(T−t)K to pay back that
loan at time K. it follows that

Bt = St − e−r(T−t)K , thus, BT = ST − K.(B)
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Since α+ ≥ α for all α ∈ R, we obtain CT ≥ BT . We employ risk–neutral validation to reason as
follows.

CT ≥ BT ⇒ e−r(T−t)CT ≥ e−r(T−t)BT

⇒ Ct = Ẽ[e−r(T−t)CT | Ft] ≥ Ẽ[e−r(T−t)BT | Ft] = Bt .

We use (A) and (B) to conclude that c(t, St) ≥ St − e−r(T−t)K. �

Proposition 10.9.

Under the assumptions (a)–(c) we have the following.
The optimal (stopping) time τ to exercise an American call option on that stock in (b) with expiration
time T and strike price K > 0, is τ = T . Accordingly, the price Πt(X ) of that option equals the
price c(t, St) of the corresponding European call option.

PROOF: Let 0 ≤ t ≤ T . Then
(A) Πt(X ) ≥ c(t, St), since exercising the American call at T guarantees a profit of c(T, ST ).
(B) c(t, St) ≥ St − e−r(T−t)K, according to Lemma 10.2.
(C) St − e−r(T−t)K > St − K, for 0 ≤ t < T , since 0 < e−r(T−t) < 1.

It follows from (A), (B), (C), that

Πt(X ) > St − K for 0 ≤ t < T .

St−K is the profit we stand to make if we exercise the option now 48 The larger amount of Πt(X ) is
what we make if we sell the option to another party, or what we expect to make under risk–neutral
validation, if we hold on to the option until expiration. Either way, selling the call before expiration
is not an optimal strategy. �

10.8 Miscellaneous Notes About Some Definitions in Finance

In this chapter we list some financial terms that are mentioned in SCF2 without ever having been
formally defined. It will be continually in flow and its references thus are subject to change in newer
editions of these lecture notes.

Remark 10.13.
The following is based on the Investopedia link http://www.math.fsu.edu/~pkirby/mad2104/
SlideShow/s2_1.pdf (Long Position vs. Short Position: What’s the Difference?).
SCF2 will deal a ot with hedges of short and long positions. Here is my understanding:

48Actually we stand to lose K − St if St < K and we are crazy enough to exercise the call anyway.
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(a) A “(short option) hedging portfolio” is a portfolio ~h = (hB, hS) meant to hedge a
short position in the (call) option. Note that I am short an option and NOT a share
of the underlying: I have sold such an option and now use that portfolio to hedge
that sale, i.e., V ~ht (ω) = c

(
t, St(ω)

)
.

(b) A “long position in a call option” is one where I have bought such an option, and
I now want to create a portfolio ~h = (hB, hS) to hedge this long position. Note that
I am hedging the purchase of an option and NOT of a share of the underlying, i.e.,
V
~h
t (ω) = −c

(
t, St(ω)

)
. �

10.9 Exercises for Ch.10

None at this time!
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11 Multidimensional Stochastic Calculus

We generalize in this chapter the results of Chapter 9 (One dimensional Stochastic Calculus)

This chapter is very sketchy as far as proofs are concerned since the material follows extremely closely that of
SCF2 Chapter 4.6.

11.1 Multidimensional Brownian Motion

Definition 11.1 (Multidimensional Brownian Motion). Given are a filtered probability space
(Ω,F,Ft, P ) and d ∈ N.

A d–dimensional Brownian motion is a vector–valued stochastic process

~Wt =
(
W

(1)
t ,W

(2)
t . . . ,W

(d)
t

)
with the following properties.

(1) Each W (j)
t is a one dimensional Brownian motion.

(2) If i 6= j, then the processes W (i)
t and W

(j)
t are independent, i.e., the σ–algebras

σ
(
W

(i)
t : t ≥ 0

)
and σ

(
W

(j)
t : t ≥ 0

)
are independent.

(3) The process ~Wt is Ft–adapted, i.e., the random vector ~Wt is Ft–measurable for
each t ≥ 0.

(4) Future increments are independent of the past: If t ≥ 0 and h > 0, then the
vector ~Wt+h − ~Wt is independent of Ft. �

Remark 11.1. SinceW (j) is a Brownian motion for each j = 1, . . . , d, all results derived for Brownian
motion apply to each one of those coordinate processes. In particular,

(1) [W (j),W (j)]t = t,
(2) dW

(j)
t dt = dtW

(j)
t = 0 and dW

(j)
t dW

(j)
t = t, �

Definition 11.2 (Cross variation). ?

225 Math 454 - Version 2025-02-11



Math 454 – Additional Material Student edition with proofs

Given are two adapted processes Xt and Yt on a filtered probability space (Ω,F,Ft, P ). Let
T > 0 and Π := 0 = t0 < t1 < · · · < tk = T a partition of [0, T ]. The random variable

CΠ[X,Y ]T :=
n−1∑
k=0

(Xtk+1
− Xtk) (Ytk+1

− Ytk)

is called the sampled cross variation of X and Y on [0, T ] with respect to Π.
If there is a stochastic process Z = Zt such that

lim
‖Π‖→0

E
[
(CΠ[X,Y ]T − ZT )2

]
= 0

for all T > 0 then we write [X,Y ]t for Zt, and we refer to the process [X,Y ]t the cross
variation of X and Y . �

Remark 11.2. Note that if X = Y then the process [X,X]t is the quadratic variation of X . �

Theorem 11.1.

Let ~Wt =
(
W

(1)
t ,W

(2)
t . . . ,W

(d)
t

)
be a d–dimensional Brownian motion on a filtered probability

space (Ω,F,Ft, P ) (d ∈ N). Let i and j be two integers such that 1 ≤ i < j ≤ d. Then[
W (i),W (j)

]
t

= 0.

PROOF: See SCF2 ch.4.6.1. �

Theorem 11.2.

Let ~Wt =
(
W

(1)
t ,W

(2)
t . . . ,W

(d)
t

)
be a d–dimensional Brownian motion on a filtered probability

space (Ω,F,Ft, P ) (d ∈ N). Let i and j be two integers such that 1 ≤ i, j ≤ d and i 6= j. Then

dW (i) dW (j) = 0.

PROOF: This can be shown with help of Theorem 11.1 on p.226. See SCF2 ch.4.6. for details. �

11.2 The Multidimensional Itô Formula

One can generalize The Itô formula which computes the differential f(t,Xt), to processes Xt which
are driven by a d–dimensional Brownian motion in the sense of the next definition.

Definition 11.3. ? Let ~Wt =
(
W

(1)
t ,W

(2)
t . . . ,W

(d)
t

)
be a d–dimensional Brownian motion on a

filtered probability space (Ω,F,Ft, P ) (d ∈ N).
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We call a process Xt an Itô process driven by ~W , if its dynamics are

dXt = Θt dt +
d∑
j=1

σj(t) dW
(j)
t = Θt dt + σ1(t) dW

(1)
t + · · ·+ σd(t) dW

(d)
t ,

X0 = x,

(11.1)

for suitable adapted and sufficiently integrable processes Θt and ~σ(t) =
(
σ1(t) . . . , σd(t)

)
.

In integrated form (11.1) is equivalent to

Xt = x +

∫ t

0
Θu du +

d∑
j=1

∫ t

0
σj(u) dW (j)

u . �(11.2)

All this can be written more compactly if we extend the “bullet notation” ~x • ~y from vectors to
differentials and integrals as follows.

Notation 11.1. Let n ∈ N. If ~Γt =
(
Γ

(1)
t , . . . ,Γ

(n)
t

)
and ~At =

(
A

(1)
t , . . . , A

(n)
t

)
are vector valued

stochastic processes for which the expressions
t∫

0

Γ
(j)
u dA

(j)
u exist, then we define

~Γt • d ~At :=
n∑
j=1

Γ
(j)
t dA

(j)
t ,

∫ t

0

~Γu • d ~Au :=
n∑
j=1

∫ t

0
Γ(j)
u dA(j)

u , �

(11.3)

With this notation we can rewrite (11.1) and (11.2) as follows.

dXt = Θt dt + ~σ(t) • d ~Wt; X0 = x,

Xt = x +

∫ t

0
Θu du +

∫ t

0
~σ(u) • d ~Wu. �

Remark 11.3. It should be mentioned that Itô’s Lemma not only generalizes to d–dimensional Brow-
nian motions for d > 2 but also to functions

f(t, ~x) = f(t, x1, x2, . . . , xn)

in which each dummy argument xk can be replaced by an Itô process

dX
(k)
t = Θ

(k)
t dt +

d∑
j=0

σkj(t) dW
(j)
t ;

X
(k)
0 = x

(k)
0 .

We will not strive for such generality. Instead, we follow SCF2 and limit ourselves to d = n = 2.
Thus there will be two Itô processes, each one driven by a two dimensional Brownian motion. �
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Notation 11.2. From now on we assume that ~Wt =
(
W

(1)
t ,W

(2)
t

)
is a two dimensional Brownian

motion and that Xt and Yt are the following Itô processes, driven by ~Wt.

dXt = Θ1(t) dt + σ11(t) dW
(1)
t + σ12(t) dW

(2)
t ,

dYt = Θ2(t) dt + σ21(t) dW
(1)
t + σ22(t) dW

(2)
t .

(11.4)

The integrands Θi(u) and σij(u) are adapted processes. We integrate and get

Xt = x0 +

∫ t

0
Θ1(u) du +

∫ t

0
σ11(u) dW (1)

u +

∫ t

0
σ12(u) dW (2)

u ,

Yt = y0 +

∫ t

0
Θ2(u) du +

∫ t

0
σ21(u) dW (1)

u +

∫ t

0
σ22(u) dW (2)

u . �

(11.5)

Theorem 11.3. The multiplication rules for the multidimensional Itô calculus are

• dt dt = 0, • dt dW (i)
t = dW

(i)
t dt = 0,

• dW (i)
t dW

(i)
t = t, • dW (i)

t dW
(j)
t = 0 for i 6= j.

PROOF: This follows from the one dimensional case (see Remark 6.9 on p.140), together with The-
orem 11.1 on p.226. �

Remark 11.4. The multiplication tables make computation of the differential dXtdYt of two Itô
processes Xt and Yt a trivial affair. For example, if those processes are given by (11.4), then

dXt dXt =
[
d
(
Θ1(t) dt + σ11(t) dW

(1)
t + σ12(t) dW

(2)
t

)]2
= Θ1(t)2dt dt + Θ1(t)dt σ11(t) dW

(1)
t + Θ1(t)dt σ12(t) dW

(2)
t

+ · · ·+ σ12(t)2 dW
(2)
t dW

(2)
t .

Only two of those nine terms survice, those with differentials
dW

(1)
t dW

(1)
t = dt and dW (2)

t dW
(2)
t = dt. Thus

dXt dXt = σ11(t)2 dt + σ12(t)2 dt =
(
σ11(t)2 + σ12(t)2

)
dt,

and similarly,

dYt dYt = σ21(t)2 dt + σ22(t)2 dt =
(
σ21(t)2 + σ22(t)2

)
dt.

Further,

dXt dYt = Θ1(t)Θ2(t)dt dt + Θ1(t)dt σ21(t) dW
(1)
t + Θ1(t)dt σ22(t) dW

(2)
t

+ · · ·+ σ12(t)σ22(t) dW
(2)
t dW

(2)
t

Again only the two terms with differentials dW (1)
t dW

(1)
t and dW (2)

t dW
(2)
t are not zero. Thus,

dXt dYt = σ11(t)σ21(t) dt + σ12σ22 dt. �
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Here is the Itô formula for a sufficiently smooth function f(t, x, y) of time t and two more param-
eters which will accept two Itô processes driven by a two dimensional Brownian motion. This is
SCF2 Theorem 4.6.2

Theorem 11.4 (Two dimensional Itô formula).

Let f(t, x, y) be a function whose partial derivatives ft, fx, fy, fxx, fxy, fyx, and fyy exist and are
continuous. Let Xt and Yt be Itô processes driven by a two dimensional Brownian motion.
The process (t, ω) 7→ f

(
t,Xt(ω), Yt(ω)

)
then has the dynamics

df
(
t,Xt, Yt

)
= ft

(
t,Xt, Yt

)
dt + fx

(
t,Xt, Yt

)
dXt + fy

(
t,Xt, Yt

)
dYt

+
1

2
fxx
(
t,Xt, Yt

)
dXtdXt + fxy

(
t,Xt, Yt

)
dXtdYt

+
1

2
fyy
(
t,Xt, Yt

)
dYtdYt.

(11.6)

PROOF: Omitted, but we mention that the continuity of fxy, fyx gives us fxy = fyx, That fact to-
gether with dXtdYt = dYtdXt is the reason that 1

2fxy
(
t,Xt, Yt

)
dXtdYt + 1

2fyx
(
t,Xt, Yt

)
dXtdYt can

be replaced by fxy
(
t,Xt, Yt

)
dXtdYt instead of �

Remark 11.5. We use for the differentials dXt, dYt, dXtdXt, dYtdYt and dXtdYt, the expressions
found in Notations 11.2 and Remark 11.4. If we express the Itô formula with integrals rather than
differentials, we obtain

f
(
t,Xt, Yt

)
− f

(
0, X0, Y0

)
=

∫ t

0

[
σ11(u) fx

(
u,Xu, Yu

)
+ σ21(u) fy

(
u,Xu, Yu

)]
dW1(u)

+

∫ t

0

[
σ12(u) fx

(
u,Xu, Yu

)
+ σ22(u) fy

(
u,Xu, Yu

)]
dW2(u)

+

∫ t

0

[
ft
(
u,Xu, Yu

)
+ Θ1(u) fx

(
u,Xu, Yu

)
+ Θ2(u) fy

(
u,Xu, Yu

)
+

1

2

(
σ2

11(u) + σ2
12(u)

)
fxx
(
u,Xu, Yu

)
+
(
σ11(u)σ21(u) + σ12(u)σ22(u)

)
fxy
(
u,Xu, Yu

)
+

1

2

(
σ2

21(u) + σ2
22(u)

)
fyy
(
u,Xu, Yu

)]
du

(11.7)

You probably agree that this version of the Itô formula is much harder to remember and more cum-
bersome to use than (11.6). Here is the other extreme, with all arguments of the tunction f(t, x, y)
and its partial derivatives omitted.

df
(
t,X, Y

)
= ft dt + fx dX + fy dY

+
1

2
fxx dXt dXt + fxy dXt dYt +

1

2
fyy dYt dYt. �

(11.8)

229 Math 454 - Version 2025-02-11



Math 454 – Additional Material Student edition with proofs

The following is an extremely useful consequence of the multidimensional Itô formula.

Corollary 11.1 (Itô product rule). If Xt and Yt are two Itô processes then

d
(
Xt Yt

)
= Xt dYt + Yt dXt + dXt dYt.(11.9)

PROOF: We apply formula (11.8) with f(t, x, y) = xy. Then ft = 0, fx = y, fy = x, fxx = 0, fxy = 1,
and fyy = 0. The corollary follows easily. �

Proposition 11.1.

Let W (1)
t , . . . ,W

(m)
t be a collection of n onedimensional Brownian motions. No assumption is made

that they are the coordinate processes of a multidimensional Brownian motion or that W (i) 6= W (j)

for i 6= j. Let X and Y be Itô processes with differentials

dXt =
m∑
i=1

(
∆

(i)
t dW

(i)
t + Θ

(i)
t dt

)
; dYt =

n∑
j=1

Ψ
(j)
t dt ,

where ∆
(i)
t ,Θ

(i)
t and Ψ

(j)
t are suitable adapted processes. Then (dXt)(dYt) = 0.

The proof is left as exercise 11.1 (see p.233). �

Corollary 11.2.

Let Xt and Yt be Itô processes such that dYt is free of Brownian motion differentials, i.e.,

dYt =

n∑
j=1

Ψ
(j)
t dt ,

for suitable adapted processes Ψ
(j)
t . Then,

d
(
Xt Yt

)
= Xt dYt + Yt dXt .

PROOF:
It follows from Proposition 11.1 that

(
dXt

)(
dYt
)

= 0. By Itô’s product rule,

d
(
Xt Yt

)
= Xt dYt + Yt dXt +

(
dXt

)(
dYt
)

= Xt dYt + Yt dXt . �

11.3 Lévy’s Characterization of Brownian Motion

Brownian motion Wt is characterized by the following.
• Wt is an Ft–martingale,
• W0 = 0 a.s.,
• t 7→Wt(ω) is continuous a.s.,
• Wt has quadratic variation [W,W ]t = t a.s.

A theorem by the french mathematician Paul Pierre Lévy (1886–1971) shows that a stochastic pro-
cess Mt with those properties is in fact a Brownian motion, i.e., those properties guarantee that
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future increments Wt+h−Wt are independent of Ft and they have a normal distribution with mean
zero and variance h.
d–dimensional Brownian motion ~Wt is characterized by the following.

• each coordinate W (j)
t is a (one dimensional) Brownian motion,

• Different coordinate processes W (i) and W (j) are independent, and they have
cross variation zero.

The multidimensional version of Lévy’s theorem proves that the reverse is true. Any process ~Mt

with those two properties is a d–dimensional Brownian motion.

First, we state the one dimensional version. This is SCF2 Theorem 4.6.4

Theorem 11.5 (Lévy’s characterization of one dimensional Brownian Motion).

let (Ω,F,Ft, P ) be a filtered probability space. Assume that the process Mt, t ≥ 0, satisfies

•M0 = 0, •Mt has continuous paths, •Mt is an Ft–martingale, • [M,M ]t = t for all t ≥ 0.

Then Mt is an Ft–Brownian motion.

PROOF: ? An outline of the proof can be found in SCF2. We summarize the major steps.

(1) The following can be defined and proven with a continuous martingaleMt such thatM0 = 0
in place of a Brownian motion Wt. One can define
• Itô integrals

∫ t
0 ZudMu which adhere to the multiplication rules

dt dt = dt dMt = dMt dt = 0, dMt dMt = t .

The last rule is obtained from the assumption [M,M ]t = t.
• Itô processes Xt = X0 +

∫ t
0 ∆udMu +

∫ t
0 Θudu driven by a continuous martingale Mt, and

one can prove the following Itô formula for Xt: 49

df
(
t,Xt

)
= fx

(
t,Xt

)
∆t dMt +

(
ft
(
t,Xt

)
+ fx

(
t,Xt

)
Θt +

1

2
fxx
(
t,Xt

)
∆2
t

)
dt.

(2) Fix u ∈ R. We apply this Itô formula to the function

f(t, x) := exp

[
ux − 1

2
u2t

]
.

This yields the following:
E
[
euMt

]
= e

1
2
u2t.

(3) Thus Mt has the same MGF as a Brownian motion Wt, i.e., it is Brownian motion.
(4) It remains to prove the independence of Mt+h −Mt and Ft for all t, h ≥ 0. �

There also is a multidimensional version of Lévy’s theorem (SCF2 Theorem 4.6.5).

49Compare this to (9.16) on p.198.
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Theorem 11.6 (Lévy’s characterization of multidimensional Brownian Motion).

Assume that the process ~Mt =
(
M

(1)
t , . . . ,M

(d)
t

)
satisfies the following.

• Each coordinate process M (j)
t is a continuous Ft–martingale,

• its initial value is ~M0 = 0,
• its quadratic variations are given by [M (j),M (j)]t = t (j = 1, . . . , d),
• its cross variations are given by [M (i),M (j)]t = 0 (i, j = 1, . . . , d; i 6= j).

Then, ~Mt is a d–dimensional Brownian motion. In particular, the coordinate processes
M

(1)
t , . . . ,M

(d)
t are independent Brownian motions.

PROOF: ? An outline of the proof can be found in SCF2 for d = 2. The idea is similar to that
of the one dimensional case. Make again use of the fact that the Itô formula extends to Itô processes
driven by continuous martingales. Apply it, for fixed ~u = (u1, . . . , ud), to the function

f(t, x1, . . . , xd) := exp

 d∑
j=1

ujxj −
1

2
t

d∑
j=1

u2
j

 .
Use this equation to prove that the joint moment–generating functions of ~Mt and ~Wt are identical.
This not only implies that each coordinate process M (j)

t is a Brownian motion (it better be since that
is part of our assumptions). This MGF factors , and thus those processes are independent. We again
refer to SCF2 for further detail. �

The next proposition is a reformulation of SCF2 Example 4.6.6 (Correlated stock prices).

Proposition 11.2. ?

Assume that ~Wt =
(
W

(1)
t ,W

(2)
t

)
is a two dimensional Brownian motion and that S(1)

t and S(2)
t are

two stocks with dynamics

dS
(1)
t = α1S

(1)
t dt + σ1S

(1)
t dW

(1)
t ,

dS
(2)
t = α2S

(2)
t dt + σ2S

(2)
t

[
ρ dW

(1)
t +

√
1− ρ2 dW

(2)
t

]
,

where σ1, σ2 > 0 and −1 ≤ ρ ≤ 1 are constant.

(1) Then the process
W ∗t := ρW

(1)
t +

√
1− ρ2W

(2)
t .

is a Brownian motion.
(2)

dS
(2)
t = α2S

(2)
t dt + σ2S

(2)
t dW ∗t ,

i.e., not only S(1)
t , but also S(2)

t is a GBM (with constants α2 and σ2).
(3) W

(1)
t and W ∗t have correlation ρ for all t. Since this implies that W (1)

t and W ∗t are not
independent,

(
W

(1)
t ,W ∗t

)
is not a two dimensional Brownian motion.
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PROOF:
W ∗t is a continuous martingale as the sum of continuous martingales, and W ∗0 = 0. Further,

dW ∗t dW
∗
t = ρ2 dW

(1)
t dW

(1)
t + 2ρ

√
1− ρ2 dW

(1)
t dW

(2)
t + (1− ρ2) dW

(2)
t dW

(2)
t

= ρ2 dt + 0 + (1− ρ2) dt = dt.

Thus [W ∗,W ∗]t = t and assertion (1) follows from Theorem 11.5 (Lévy’s characterization of one
dimensional Brownian Motion).
The equation of assertion (2) is true by definition of W ∗t . Since we just proved assertion (3), W ∗t is a
Brownian motion. Thus, dS(2)

t = α2S
(2)
t dt+σ2S

(2)
t dW ∗t is the equation of a GBM with parameters

α2 and σ2.
To prove assertion (3), we compute Cov[W 1

t ,W
∗
t ]. Since dW (1)

t dW
(2)
t = 0 and dW (1)

t dW
(1)
t = t,

dW
(1)
t dW ∗t = dW

(1)
t

(
ρ dW

(1)
t +

√
1− ρ2 dW

(2)
t

)
= ρ dW

(1)
t dW

(1)
t +

√
1− ρ2 dW

(1)
t dW

(2)
t = ρ dt.

By Itô’s product rule, d
(
W

(1)
t dW ∗t

)
= W

(1)
t dW ∗t +W ∗t dW

(1)
t + dW

(1)
t dW ∗t . We integrate and obtain

W
(1)
t W ∗t =

∫ t

0
W (1)
u dW ∗u +

∫ t

0
W ∗u dW

(1)
u + ρt.(A)

Since the Itô integrals on the right–hand side are martingales,

E

[∫ t

0
W (1)
u dW ∗u

]
= E

[∫ 0

0
W (1)
u dW ∗u

]
= 0, and E

[∫ t

0
W ∗u dW

(1)
u

]
= E

[∫ 0

0
W ∗u dW

(1)
u

]
= 0.

Thus, taking expectations in (A) yields E
[
W

(1)
t W ∗t

]
= ρt.

Since E[W 1
t ] = E[W ∗t ] = 0 , we conclude that

Cov[W
(1)
t ,W ∗t ] = E[W

(1)
t W ∗t ] − E[W

(1)
t ]E[W ∗t ] = E[W

(1)
t W ∗t ] = ρt.

Since Var[W (1)
t ] = Var[W ∗t ] = t, the correlation of W (1)

t ] and W ∗t is

Cor[W (1)
t ,W ∗t ] =

Cov[W
(1)
t ,W ∗t ]√

Var[W (1)
t ] · Var[W ∗t ]

=
ρt√
t2

= ρ .

This proves assertion (3). �

11.4 Exercises for Ch.11

Exercise 11.1. Prove prop.11.1 on p.230 of this document: If

dXt =

m∑
i=1

(
∆

(i)
t dW

(i)
t + Θ

(i)
t dt

)
; dYt =

n∑
j=1

Ψ
(j)
t dt ,

then (dXt)(dYt) = 0. �
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11.5 Blank Page after Ch.11

This page is intentionally left blank!
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12 Girsanov’s Theorem and the Martingale Representation Theorem

12.1 Conditional Expectations on a Filtered Probability Space

For all of this chapter let (Ω,F,Ft, P ) be a filtered probability space.

The following combines both SCF2 Lemma 5.2.1 and SCF2 Lemma 5.2.2.

Proposition 12.1.

LetZ be a nonnegative random variable on a filtered probability space (Ω,F,Ft, P ) such thatE[Z] =

1 and P{Z = 0} = 0. Let P̃ be the measure with density Z w.r.t. P , i.e.,

P̃ (A) =

∫
A
Z(ω) dP (ω).

In other words, Z is the Radon–Nikodým derivative
dP̃

dP
. See Chapter 4.8 (Equivalent Measures

and the Radon–Nikodým Theorem). Then P̃ is a probability measure which is equivalent to P , i.e.,

P (A) = 0 ⇔ P̃ (A) = 0.

We write Ẽ for the expectation of a random variable Y w.r.t. P̃ , i.e.,

Ẽ(Y ) =

∫
Ω
Y dP̃ .

For the following we assume that t, h ∈ [ 0,∞ [ and that Y is an Ft–measurable random variable.
Let Zt := E[Z | Ft] Then the following relations hold.

Ẽ[Y ] = E[Y Zt],(12.1)

Ẽ
[
Y |Ft] =

1

Zt
E[Y Zt+h |Ft](12.2)

PROOF: ?

A. We show that P̃ is a probability measure.

P̃ (Ω) =

∫
Ω
Z dP = E[Z] = 1.

This proves that P̃ is a probability measure.

B. We show that P̃ is equivalent to P .

Let A ∈ F such that P̃ (A) = 0. To show P̃ ∼ P we only must prove that P (A) = 0 since P̃ � P on
account of Proposition 4.20 on p.102.
Let Z ′ := (1/Z)111{Z>0}. Then

0 = P̃ (A) =

∫
A

1 dP =

∫
A
ZZ ′ dP +

∫
A

1 · 111Z=0 dP =

∫
A
ZZ ′ dP + 0

=

∫
(111AZ

′)Z dP =

∫
111AZ

′ dP̃ =

∫
A
Z ′ dP̃ = 0.
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The last equality follows from Proposition 4.20, applied to µ := P̃ and f := Z ′. We have shown that
all P̃–null sets are P–null sets, thus P ∼ P̃ .
C. Proof of (12.1). We use in sequence

• the definition of P̃ : dP̃ = ZdP ,
• iterated conditioning
• the “taking out what is known” rule
• the definition of Zt:

Ẽ[Y ] = E[Y Z] = E
[
E[Y Z |Ft] |

]
= E

[
Y E[Z |Ft]

]
= E[Y Zt]. �

D. Proof of (12.2). To prove that 1
Zt
E[Y Zt+h |Ft] is the conditional expectation of Y w.r.t. Ft and P̃

(not P !) we must show that

(1)
1

Zt
E[Y Zt+h |Ft] is Ft–measurable,

(2)
1

Zt
E[Y Zt+h |Ft] satisfies the partial averaging property

(A)
∫
A

1

Zt
E[Y Zt+h |Ft] dP̃ =

∫
A
Y dP̃ for all A ∈ Ft.

We see that (1) is trivially satisfied, since E[· · · | Ft] enforces Ft–measurability.

To prove (2), we first note that formula (12.1) with 111A ·
1

Zt
· E[Y Zt+h |Ft] in place of Y yields

Ẽ

[(
111A

1

Zt

)
E[Y Zt+h |Ft]

]
= E

[(
111A

1

Zt

)
E[Y Zt+h |Ft] · Zt

]
= E

[
111AE[Y Zt+h |Ft]

]
.(B)

Since (12.1) holds true for all nonnegative time indices, we can replace t with t+ h. Moreover, since
111AY is Ft–measurable, it follows from Ft ⊆ Ft+h that 111AY Ft+h–measurable. Thus, we are allowed
to also replace Y with 111AY in (12.1). We obtain

Ẽ[111AY ] = E[111AY Zt+h].(C)

Proving (2) means proving (A). We will accomplish this as follows.∫
A

1

Zt
E[Y Zt+h |Ft] dP̃ = Ẽ

[
111A

1

Zt
E[Y Zt+h |Ft]

]
(B)
= E

[
111AE[Y Zt+h |Ft]

]
= E

[
E[111AY Zt+h |Ft]

]
= E

[
111AY Zt+h

] (C)
= Ẽ[111AY ] =

∫
A
Y dP̃ .

Here we have used the “taking out what is known” rule tobtain the equation after (B) and the
iterated conditioning rule for the equation that follows it. We have shown that (A) is satisfied. �

12.2 One dimensional Girsanov and Martingale Representation Theorems

The following is SCF2 Theorem 5.2.3.
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Theorem 12.1 (Girsanov’s Theorem in one dimension).

Let T > 0 and let (Ω,F,Ft, P ) be a filtered probability space where the filtration members Ft and all
stochastic processes that are used in this theorem only need to exist for 0 ≤ t ≤ T .
Let Wt be a Brownian motion on this filtered space, and let Θt be an adapted process which satisfies
the integrability condition

(12.3) ? E

[ ∫ T

0
Θ2
u Z

2
u du

]
< ∞.

where the process Zt is defined in terms of Θt by formula (12.4) below.

Let

Zt := exp

{
−
∫ t

0
Θu dWu −

1

2

∫ t

0
Θ2
u du

}
,(12.4)

P̃ (A) :=

∫
A
ZT dP for all A ∈ FT i.e., ZT =

dP̃

dP
,(12.5)

W̃t = Wt +

∫ t

0
Θu du, i.e., dW̃t = dWt + Θt dt.(12.6)

Then (a) P̃ is a probability equivalent to P . (b) W̃t, 0 ≤ t ≤ T , is a Brownian motion w.r.t. P̃ .

PROOF ? : See the proof of SCF2 Theorem 5.2.3. �

Remark 12.1. ?

Strictly speaking, it is not correct to write ZT = dP̃
dP in (12.5), because the domain of the probability

measure P is all of F and P̃ only has domain FT . Rather, we have

ZT =
dP̃

dP
∣∣
FT

,

where P
∣∣
FT

is the restriction of the function P : F → [0, 1] to FT . See the formulation of Theorem
5.3 (Existence Theorem for Conditional Expectations) on p.118. �

Remark 12.2. The importance of the Girsanov theorem with respect to mathematical finance lies in
the following. We will see later that if stock price is a generalized GBM

dSt = αtSt dt + σtSt dWt, 0 ≤ t ≤ T ,(12.7)

and we have a discount process with an interest rate Rt which can be stochastic (adapted):

Dt = exp

[
−
∫ t

0
Rs ds

]
,(12.8)
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(see Definition 7.27 on p.161), Let us define Θt to be the so called market price of risk 50 process,

Θt =
αt −Rt
σt

.(12.9)

Then the discounted stock price has the dynamics

d (DtSt) = σt(DtSt)
[
Θtdt + dWt

]
.(12.10)

We apply formula (12.6) of Girsanov’s theorem and replace Θtdt + dWt with the differential of the
P̃–Brownian motion W̃t. We obtain

d (DtSt) = σt(DtSt) dW̃t .(12.11)

Itô calculus is defined for any Brownian motion, and all its theorems are in force. Thus, the process
DtSt is a martingale with respect to the probability P̃ . It follows that

DtSt = Ẽ[DTST | Ft] .(12.12)

Now, let us switch to self–financing portfolios

~Ht =
(
HB
t , H

S
t

)
=
(
Dt(Xt −∆tSt),∆t

)
.

Here we have given both the notion of MF454 Chapter 8 (The Binomial Asset Model) and SCF2:
Recall that SCF2 writes ∆t for the shares HS

t held in the stock and Xt for the portfolio value V H
t .

From (12.12) it will follow that the discounted portfolio value process has dynamics

d
(
DtXt

)
= ∆tσt(DtSt) dW̃t.(12.13)

Thus DtXt is a P̃–martingale. We obtain

DtXt = Ẽ[DTXT | Ft] .(12.14)

Now we get to the really important part. Assume that we have a contingent claim X with pricing
process Πt(X ), and that ~H is a replicating (thus self–financing) portfolio, i.e., it is a hedge for that
claim, i.e., XT = X . Then, of course, DTXT = DTX . By the pricing principle,

Xt = Πt(X ); hence, DtXt = DtΠt(X ) for 0 ≤ t ≤ T.(12.15)

We have found the long sought after pricing formula for a contingent claim based on a stock with
generalized GBM as its price process St. It follows from (12.14) and (12.15) that

Πt(X ) =
1

Dt
Ẽ[DTXT | Ft].(12.16)

This formula will be used, e.g., to prove formula (10.30) of Theorem 10.1 on p.215 which gives the
explicit solution for the price process c(t, x) of a European call.
Before we get to develop the program outlined here we need some more theory to close the follow-
ing gap. Formulas (12.15) and (12.16) hold for hedging portfolios of a contingent claim. But what
claims are reachable? The martingale representation theorem, which we will discuss next, can be
used to prove that all claims can be hedged if the information for the stock price St is contained in
that of the driving Brownian motion Wt. �

50The formal definition of the market price of risk process willb be given in Definition 13.2 on p.245.
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We have seen that being a martingale represents a very strong condition concerning what such a
process can look like. Lévy’s characterization of one dimensional Brownian Motion (Theorem 11.5
on p.231) tells us that if a martingale has continuous paths, starts at zero and has the quadratic
variation of Brownian motion, then it is in fact a Brownian motion. What we will see next is that
any martingaleMt with initial conditionM0 = 0 which is adapted to the filtration FWt of a Brownian
motion Wt is an Itô integral Mt =

∫ t
0 ΓudWu for some suitable adapted process Γt.

The following is SCF2 Theorem 5.3.1.

Theorem 12.2 (Martingale representation, one dimension).

Let T > 0. Assume that
• Wt, 0 ≤ t ≤ T is a Brownian motion on a probability space (Ω,F, P ),
• FWt , 0 ≤ t ≤ T is the filtration generated by this Brownian motion,
• Mt, 0 ≤ t ≤ T , is a martingale with respect to this filtration:
◦ for every t, Mt is FWt –measurable,
◦ E[Mt |FWs ] = Ms, for all 0 ≤ s ≤ t ≤ T.

Then there exists an adapted process Γu, 0 ≤ u ≤ T , such that

Mt =M0 +

∫ t

0
Γu dWu, 0 ≤ t ≤ T.(12.17)

PROOF: Beyond the scope of thix course. To find it, you must consult mathematically more ad-
vanced literature, e.g., [13] Øksendal, Bernt: Stochastic Differential Equations: An Introduction
With Applications. �

Remark 12.3.

If the assumptions of the martingale representation hold then all martingales are continu-
ous since they are Itô integrals. This has some undesirable consequences.
If we want to model stock prices St which can jump at certain times without losing the very
important property that the disounted stock price DTSt is a martingale and sufficiently
many claims can be hedged, then we need to include stochastic information, i.e., uncer-
tainty, different from or besides that of Brownian motion.

This course does not discuss (continuous time) financial markets with non–continuous asset prices.
Some material about this subject can be found in SCF2 Chapter 11 (Introduction to Jump Processes).
There, stock prices are driven by (generalized) Poisson processes in addition to Brownian motion,
and Poisson processes have jumps. �

We add the assumption Ft = FWt to Girsanov’s Theorem 12.1. This results in the following corollary
(SCF2 Corollary 5.3.2).

Corollary 12.1.

Let T > 0 and let Wt, be a Brownian motion on a probability space (Ω,F, P ) Let Θt, be an adapted
process w.r.t. the filtration FWt , 0 ≤ t ≤ T , i.e., the filtration generated by Wt (!) which satisfies
the integrability condition

(12.18) ? E

[ ∫ T

0
Θ2
u Z

2
u du

]
< ∞.
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• Let Zt := exp

{
−
∫ t

0
Θu dWu −

1

2

∫ t

0
Θ2
u du

}
,

• P̃ (A) :=

∫
A
ZT dP for all A ∈ FT , i.e., ZT =

dP̃

dP
,

• W̃t = Wt +

∫ t

0
Θu du, i.e., dW̃t = dWt + Θt dt and W̃0 = 0 .

• Let M̃t (0 ≤ t ≤ T ) be an FWt –martingale under P̃ (not P !)

Then there exists an FWt –adapted process Γ̃u (0 ≤ u ≤ T ), such that

(12.19) M̃t = M̃0 +

∫ t

0
Γ̃u dW̃u , 0 ≤ t ≤ T.

PROOF: Will not be given here. Just one comment. More needs to be done than just combining
Girsanov’s Theorem with the Martingale Representation Theorem, since the process Mt is a P̃–
martingale with respect to a filtration FWt , and this filtration is not generated by a P̃–Brownian
motion, but by the P–Brownian motion Wt ! �

Remark 12.2 on p.237 discussed the significance of Girsanov’s Theorem and alluded to that of the
martingale representation theorem (Theorem 12.1) when modeling contingent claims with one un-
derlying stock. We need multidimensional versions of those theorems to model claims with several
underlying stocks.

12.3 Multidimensional Girsanov and Martingale Representation Theorems

We will use in this chapter the bullet notation for stochastic integrals
∫ t

0
~Γu • d ~Au and differentials

~Γt • d ~At which was introduced in Notations 11.1 on p.227.

The following is SCF2 Theorem 5.4.1.

Theorem 12.3 (Girsanov’s Theorem in multiple dimensions).
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Let T > 0 and let (Ω,F,Ft, P ) be a filtered probability space where the filtration members Ft and all
stochastic processes that are used in this theorem only need to be defined for 0 ≤ t ≤ T .
Let ~Wt be a multidimensional Brownian motion

~Wt =
(
W

(1)
t , . . . ,W

(d)
t

)
(thus the coordinate processes Wi(t) are independent). w.r.t. the filtration Ft, 0 ≤ t ≤ T . Let

~Θt =
(
Θ

(1)
t , . . . ,Θ

(d)
t

)
be a d–dimensional adapted process which satisfies the integrability condition

? E

[ ∫ T

0
‖~Θu‖22 Z2

u du

]
<∞.(12.20)

Here, ‖~x‖2 =

√
d∑
j=1

x2
j is the standard Euclidean norm in Rd. See Example 6.2 on p.135.

Let

Zt := exp

{
−
∫ t

0

~Θu • d ~Wu −
1

2

∫ t

0
‖~Θu‖2 du

}
,(12.21)

P̃ :A 7→
∫
A
ZT dP, i.e., ZT =

dP̃

dP
,(12.22)

~̃
Wt = ~Wt +

∫ t

0

~Θu du, i.e., d
~̃
Wt = d ~Wt + ~Θt dt.(12.23)

Then (a) P̃ is a probability equivalent to P , (b) ~̃Wt, 0 ≤ t ≤ T , is a Brownian motion w.r.t. P̃ .

Note that the vector equations in 12.23 are to be understood componentwise:

W̃
(j)
t = W

(j)
t +

∫ t

0
Θ(j)
u du, i.e., dW̃

(j)
t = dW

(j)
t + Θ

(j)
t dt for j = 1, . . . , d.

PROOF ? : Will not be given here. �

Remark 12.4. The following aspect of the multidimensional Girsanov Theorem deserves special

mention. ~̃
Wt being a d–dimensional Brownian motion implies that its component processes W̃ (j)

t

are independent w.r.t. the new probability P̃ . This is not at all obvious from the fact that the
components of the original Brownian motion ~W are independent under the probability P . �

Next comes the multidimensional version of Theorem 12.2 (Martingale representation, one dimen-
sion) on p.239. This is SCF2 Theorem 5.4.2.

Theorem 12.4 (Martingale representation theorem, multiple dimensions). Let T be a fixed positive
time, and assume that
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• ~Wt, 0 ≤ t ≤ T is a d–dimensional Brownian motion on a probability space (Ω,F, P ),
• F

~W
t , 0 ≤ t ≤ T is the filtration generated by this Brownian motion,

• Mt, 0 ≤ t ≤ T , is a (one dimensional) P–martingale with respect to this filtration.

Then there is an adapted d–dimensional process ~Γu =
(
Γ1(u), . . . ,Γd(u)

)
, 0 ≤ u ≤ T , such that

Mt =M0 +

∫ t

0

~Γu • d ~Wu, 0 ≤ t ≤ T.(12.24)

We now assume in addition to the assumptions stated so far the notation and assumptions of Girsanov’s
Theorem in multiple dimensions (Theorem 12.3). Then the following also is true.

Let M̃t, 0 ≤ t ≤ T , be a (one dimensional) P̃–martingale with respect to F
~W
t , 0 ≤ t ≤ T , the

filtration generated by the original Brownian motion ~Wt. Here P̃ is the probability from Girsanov’s

Theorem, equivalent to P , which makes the process ~̃Wt defined by

dW̃
(j)
t = dW

(j)
t + Θ

(j)
t dt and W̃

(j)
t = 0 for j = 1, . . . , d,

an F
~W
t –Brownian motion.

Then there is an adapted d–dimensional process ~̃Γu =
(
Γ̃

(1)
u , . . . , Γ̃

(d)
u

)
, 0 ≤ u ≤ T , such that

M̃t =M̃0 +

∫ t

0

~̃
Γu • d

~̃
Wu, 0 ≤ t ≤ T.(12.25)

PROOF: Will not be given here. �

12.4 Exercises for Ch.12

None yet
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13 Black–Scholes Model Part II: Risk–neutral Valuation

In this chapter we elaborate on Remark 12.2 which gave an outline of how Girsanov’s Theorem
(Theorem 12.1 would be crucial in pricing a contingent claim.

13.1 The One dimensional Generalized Black–Scholes Model

In Chapter 10 (Black–Scholes Model Part I: The PDE), Definition 10.2 on p.210 stated the classical
assumptions of a Black–Scholes market economy. They are rather restrictive. For example, the
instantanous mean rate of return and volatility that are part of the dynamics of the stock price St
are assumed to be constant. We weaken those assumptions for most of this entire chapter 13.

Definition 13.1 (Generalized Black–Scholes market model). Let T > 0 and let (Ω,F,Ft, P ) be a
filtered probability space We only assume that the filtration Ft and all stochastic processes that will
be defined later exist for times 0 ≤ t ≤ T Let Wt, 0 ≤ t ≤ T , be a Brownian motion w.r.t Ft.
We no more require that the instantaneous mean rate of return α, the volatility σ of the stock St,
and the interest rate r that governs investments in the bond are constant. Instead, we assume the
following.

• Let Dt, St, Rt, αt, σt be Ft adapted processes.
• Assume that σt 6= 0 a.s. for any given t.

• Let Θt :=
αt − Rt

σt
, and Zt := e−

∫ t
0 Θu dWu− 1

2

∫ t
0 Θ2

u du. Assume that

(13.1) E

[ ∫ T

0
Θ2
u Z

2
u du

]
< ∞,

We speak of a generalized Black–Scholes market model if
dDt = −RtDt dt; D0 = 1;(13.2)
dSt = αtSt dt + σtSt dWt; S0 ∈ ]0,∞[ ;αt, σt ∈]0,∞[ ;(13.3)

The market is efficient: No arbitrage portfolios exist.(13.4)

• We interpret Dt as the discount process associated with a riskless asset (bank account): As-
sume that an investment will pay the amount 1 (dollar) at the future time t. Then it’s worth
today, at t = 0, only is the amount Dt, since this amount could be invested in the bank in-
stead, where it would increase to 1 due to interest compounded at the rate Rt.

• We interpret St as the price process associated with a risky asset (e.g., stock). �

Remark 13.1. First some remarks about the process Dt.
(1) From (13.2) we obtain

(13.5) Dt = exp

[
−
∫ t

0
Rudu

]
.

This follows easily from differentiating the right hand side with respect to t.
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(2) We could have worked instead with the interest rate process

dBt = RtBtdt ; B0 = 1 , i.e., Bt = exp

[∫ t

0
Rudu

]
=

1

Dt
;

but using Dt instead makes it easier to relate the contents of this chapter to the SCF2 text.

Also, be aware of the following.
(3) Formula (13.3) states that St is a generalized GBM with instantaneous mean rate of return

αt and volatility σt, for which we have the explicit representation

(13.6) St = S0 exp

[∫ t

0
σudWu +

∫ t

0

(
αu −

1

2
σ2
u

)
du

]
.

See Example 9.1 on p.199, the subsequent Remark 9.8, and (9.17) on p.199. .
(4) It was not necessary to explicitly require the adaptedness of the processes St and Dt. For-

mula (13.2) (equivalently, formula (13.5)) implies that, as far as measurability is concerned,
Dt only depends on the adapted processRs for s ≤ t, and thus only on information in Ft, i.e.,
Dt is adapted. We conclude similarly that formula (13.3) (equivalently, formula (13.6)) im-
plies that measurability of St only depends on the adapted process Ws. Thus St is adapted.

(5) Recall from Assumption 7.1 on p.155 that we always assume that, besides being free of
arbitrage, the market has complete liquidity, no transaction costs and no bid–ask spread. �

Remark 13.2. The degree of uncertainty, i.e., the risk of investing in the bank account, is significantly
smaller than that of investing in the stock. These are the reasons.
Only the randomness of the process Rt within a small interval [t, t + h] affects that of the change
Dt+h −Dt. Since dtdt = 0, this results in quadratic variation [D,D]t = 0. Thus

dDt dDt = (−RtDt dt) (−RtDt dt) = R2
tD

2
t dt dt = 0

In contrast the randomness of σt within [t, t + h] is multiplied by that of the increments of the
Brownian motionWt. Those increments are so unpredictable that they result in a quadratic variation
[W,W ]t 6= 0. As a consequence the nonzero volatility σt results in fluctuations of St which too are
so unpredictable that [S, S]t 6= 0. We see this from the dynamics of St:

dSt dSt = α2
tS

2
t dt dt + 2αtσtS

2
t dt dWt + σ2

t S
2
t dWt dWt = σ2

t S
2
t dt .

From Itô isometry we obtain the strictly positive expression

[S, S]t+h − [S, S]t =

∫ t+h

t
σ2
uS

2
u du .

In the words of SCF2,

Unlike the price of the money market account, the stock price is susceptible to instantaneous
unpredictable changes and is, in this sense, “more random” than Dt. Our mathematical
model captures this effect because St has nonzero quadratic variation, while Dt has zero
quadratic variation. �
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Formula (12.9) of Remark 12.2 on p.237 already introduced the market price of risk. Here is the
formal definition.

Definition 13.2. For the generalized Black–Scholes market economy of Definition 13.1 on p.243,

the market price of risk is the process

Θt =
αt −Rt
σt

.(13.7)

Note that Θt is adapted as the difference and quotient of adapted processes. �

Remark 13.3. The assumption (13.1) on p.243,

(13.8) E

[ ∫ T

0
Θ2
u Z

2
u du

]
< ∞,

will allow us to apply Girsanov’s Theorem to the market price of risk process. �

13.2 Risk–Neutral Measure in a Generalized Black–Scholes Market

Assumption 13.1.

We assume for the entire remainder of this Chapter 13 (Black–Scholes Model Part II: Risk–
neutral Valuation) that we have a generalized Black–Scholes market as defined in Definition
13.1 on p.243. �

Introduction 13.1. We recall definitions (8.1) on p.172 and (8.2) on p.177 of the binomial asset model
in which we defined a risk–neutral measure, also called there a martingale measure, as a probabil-
ity measure P̃ equivalent to the “true” probability which made discouned stock price DtSt a P̃–
martingale. To see that, observe that the (not continuously) compounded interest earned between
times 0 and t (t ∈ N) in the bank is (1 + r)t, thus the discount factor is

Dt =
1

(1 + r)t
.

We are now in a position to prove with the help of Girsanov’s Theorem the existence of a risk–
neutral measure for a generalized Black–Scholes market. �

Definition 13.3 (Risk–neutral measure).

A risk–neutral measure P̃ for our generalized Black–Scholes economy, also called a mar-
tingale measure, is the following.

(1) P̃ is a probability measure on FT , i.e., P̃ (A) need only be defined for events A ⊆ Ω
which belong to FT

(2) P̃ ∼ P , i.e., P̃ and P are equivalent on FT :
If A ∈ FT then P̃ (A) = 0 ⇔ P (A) = 0.

(3) Discounted stock price DtSt is a P̃–martingale w.r.t. the filtration Ft. �
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Proposition 13.1. The discounted stock price has the following dynamics and explicit representation.

d (DtSt) =
(
αt − Rt

)
(DtSt) dt + σt(DtSt) dWt ,(13.9)

DtSt = S0 exp

{∫ t

0
σu dWu +

∫ t

0

(
αu − Ru −

1

2
σ2
u

)
du

}
.(13.10)

Let dW̃t = dWt + Θtdt , where Θt is the market price process given by (13.7). Then

dSt = RtSt dt + σtSt dW̃t ,(13.11)

d (DtSt) = σt(DtSt) dW̃t .(13.12)

PROOF:
PROOF of (13.9): By (13.2), dDt = −RtDtdt. By (13.3), dSt = αtStdt+ σtStdWt.
Since dDt has no Brownian motion differentials, It follows from Corollary 11.2 on p.230 that

d (DtSt) = Dt dSt + StdDt = Dt

(
αtSt dt+ σtSt dWt

)
− StRtDt dt

= DtSt(αt −Rt)dt+ σtDtStdWt

)
This proves (13.9).
PROOF of (13.10): It follows from (13.9) that DtSt is a generalized GBM with instantaneous mean
rate of return α′t := αt −Rt and volatility σt Since D0S0 = S0, formula (9.20) on p.199 yields

DtSt = S0 exp

{∫ t

0
σu dWu +

∫ t

0

(
α′u −

1

2
σ2
u

)
du

}
.

Since α′t := αt −Rt, this proves (13.10).

PROOF of (13.11): We substitute dW̃t = dWt + Θtdt in formula (13.3) for dSt and obtain

dSt = αtSt dt+ σtSt dWt = αtSt dt + σtSt dW̃ − σtStθt dt

Since σtθt = αt −Rt,

dSt = αtSt dt + σtSt dW̃ − St
(
αt −Rt

)
dt = σtSt dW̃t + StRt dt .

This proves (13.11).

PROOF of (13.12): We substitute dW̃t = dWt + Θtdt in the already proven formula (13.9)

d (DtSt) = (αt −Rt)(DtSt)dt + σt(DtSt)
(
dW̃t − Θtdt

)
= (αt −Rt)(DtSt)dt − (σtΘt)DtSt dt + σtDtSt dW̃t .

Since σtθt = αt −Rt,

d (DtSt) = (αt −Rt)DtStdt − (αt −Rt)(DtSt) dt + σt(DtSt) dW̃t = σt(DtSt) dW̃t . �

This proves (13.12).

As a consequence of Girsanov’s Theorem we can prove the existence of a risk–neutral measure.
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Theorem 13.1.

Let the process Zt(0 ≤ t ≤ T ) be defined as follows.

Zt := exp

{
−
∫ t

0
Θu dWu −

1

2

∫ t

0
Θ2
u du

}
,

Here Θt is the market price of risk process, Θt =
αt −Rt
σt

, of Definition 13.2 on p.245.

Then,

• the measure P̃ : A 7→
∫
A
ZT (ω) dP (ω) (A ∈ FT ) is a probability on FT , and P̃ ∼ P .

• The process W̃t = Wt +

∫ t

0
Θu du, (equivalently, dW̃t = dWt + Θt dt ; W̃0 = 0),

is an Ft–Brownian motion w.r.t the new probability measure P̃ .
• Discounted stock price DtSt is a P̃–martingale.

PROOF: We can apply Theorem 12.1 (one dimensional Girsanov) on p.237 to Θt, since the assump-
tion (13.1) (p.243) implies that the integrability condition (12.3) of that theorem is satisfied. To show
that DtSt is a P̃–martingale, we apply (13.12) and obtain

d (DtSt) = σtDtSt
(
dW̃t

)
,

i.e., DtSt = S0 +

∫ t

0
σuDuSu dW̃u.

(13.13)

We are allowed above to write S0 for D0S0 because D0 = e−
∫ 0
0 Rudu = e0 = 1. Since W̃t is an Ft–

Brownian motion under P̃ , DtSt is the sum of the F0–measurable constant S0 and a P̃–Itô integral
of an Ft–Brownian motion, hence it is a P̃–martingale w.r.t to Ft. �

Corollary 13.1 (Existence of a risk–neutral measure).

• The probability measure P̃ of Theorem 13.1 is a risk–neutral measure for the generalized
Black–Scholes market in he sense of Definition 13.3 on p.245.

• The dynamics of discounted stock price when using W̃t instead of Wt are

(13.14) d (DtSt) = σt(DtSt)
(
dW̃t

)
.

PROOF: Formula (13.14) was established in the proof of Theorem 13.1. The remainder is an obvious
consequence of that theorem. �

Remark 13.4. Note the following.

• (13.14) holds true both under the “real” probability P and the risk–neutral probability P̃ !
It just so happens that the Θtdt part of dW̃t = dWt + Θtdt prevents DtSt from being a
martingale with respect to P unless Θt = 0, i.e., αt = Rt, for 0 ≤ t ≤ T .
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• Think of the above as follows. We may assume that the risk premium αt − Rt in the real
market, i.e., under the real world probability P , is positive on average. (See Remark 10.2
on p.211.) The redistribution of probability mass under risk–neutral probability P̃ has the
following effect. The upward trend of discounted stock price which happens under P as
a cause of the Θtdt term is neutralized by P̃ since this probability gives additional mass to
those ω for which αt < Rt, at the expense of those ω for which αt > Rt. �

Here are some additional remarks.

Remark 13.5. This is the significance of (13.9) and (13.10) of Proposition 13.1 on p.246:

Discounting transforms the generalized GBM St with an instantaneous mean rate of return
αt and volatility σt into another generalized GBM, DtSt, with reduced instantaneous mean
rate of return αt −Rt.

And this is the significance of (13.11) and (13.12):

Risk–neutral validation transforms the generalized GBM St with an instantaneous mean
rate of return αt and volatility σt into another generalized GBM, DtSt, with the same in-
stantaneous mean rate of return Rt as the risk free asset and unchanged volatility σt.

Neither transformation affects the volatility. It remains σt in all cases.

Let us also revisit formulas (13.9)–(13.12) from the point of view that P̃ is a martingale measure,
and W̃ is a P̃–Brownian motion.
• (13.9) and its equivalent form, (13.10), both state that discounting at the riskless rate Rt

decreases αt, the instantaneous rate of return, by Rt to αt −Rt.
• (13.11) expresses that risk–neutral validation amounts to not considering the risk that comes

with investing in the risky asset. It seems natural that the risk premium in height of αt −Rt
that we add to Rt, the rate of return for the riskless asset, should go away.

• Since St has Rt as its rate of return under P̃ and discounting with Dt reduces the rate of
return by Rt, discounted stock price DtSt should have no trend to move up or down, given
its current value. This is the meaning of (13.11) which shows that DtSt is a P̃–martingale.
�

13.3 Dynamics of Discounted Stock Price and Portfolio Value

We saw in Chapter 10.3 (Discounted Values of Option Price and Hedging Portfolio) that in a (clas-
sical) Black–Scholes market the budget equation for a self–financing portfolio is given by formula
(10.14) on p.211,

dVt = YtdSt + rXt dt .

Here, Yt = HS
t = stock shares, XtV

B
t = Vt − YtSt. 51 In the generalized Black–Scholes market we

obtain dVt by replacing the constant interest rate r with the varying interest rate Rt(ω).

51See Notations 10.2 on p.209.
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Proposition 13.2.

The budget equation for a self–financing portfolio is

(13.15) dVt = Yt dSt + RtXt dt

Further we have the following equation for the portfolio value dynamics.

(13.16) dVt = RtVt dt + YtσtSt
[

Θt dt + dWt

]
.

PROOF: Equation (13.15) is obvious. It just states that the number Yt of shares held in the stock
increases by the change dSt inasset price, and the value Xt of the bond holdings changes during dt
according to the interest rate, Rt.
We repeat here the proof of (13.16) as it is given in SCF2, Chapter 5.2.3 (Value of Portfolio Process
Under the Risk–Neutral Measure).

dVt = Yt dSt + RtXt dt

= Yt
(
αtSt dt + σtSt dWt

)
+ Rt

(
Vt − Yt St

)
dt

= αtYtSt dt + YtσtSt dWt + RtVt − RtYtSt dt .

We re–order, then group the YtStdt terms, then use αt −Rt = Θtσt (market price of risk equation).

dVt = RtVtdt + αtYtSt dt − RtYtSt dt + YtσtSt dWt

= RtVt dt + Yt
(
αt −Rt

)
St dt + YtσtSt dWt

= RtVt dt + YtσtSt
[

Θt dt + dWt

]
. �

Proposition 13.3.

The discounted portfolio value DtVt has dynamics

(13.17) d
(
DtVt

)
= YtσtDtSt dW̃t.

PROOF: Again we follow SCF2. It follows from Corollary 11.2 on p.230 and dDt = −RtDtdt, that

d(DtVt) = Dt dVt + VtdDt = Dt dVt − Vt(RtDtdt) .

Next we apply (13.16) to dVt and obtain

d(DtVt) = Dt

(
RtVt dt + YtσtSt

[
Θt dt + dWt

])
− Vt(RtDtdt)

= DtRtVt dt + DtYtσtSt
[

Θt dt + dWt

]
− VtRtDtdt

= DtYtσtSt
[

Θt dt + dWt

]
.

This proves (13.17). �

It follows from Proposition 13.3 that DtVt is a martingale under P̃ , thus

DtVt = Ẽ[DTVT |Ft] for all 0 ≤ t ≤ T.(13.18)
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Now assume that Vt is the value of the hedging portfolio for a contingent claim X . We denote the
arbitrage free price process of X by Πt(X ), and we recall that ΠT (X ) = X , since X denotes the
payoff at time T of the derivative on which this claim is based.
According to the pricing principle, Vt = Πt(X ) holds for all t ≤ T to avoid arbitrage. Of course, this
implies that DtVt = DtΠt(X ) for all t ≤ T . We obtain from Proposition 13.3 the following

Corollary 13.2.

Assume that Vt is the value process of a hedging portfolio for a contingent claim with price process
Πt(X ) for 0 ≤ t ≤ T . Then,

Dt Πt(X ) = Ẽ[DT X |Ft], 0 ≤ t ≤ T.

Πt(X ) = Ẽ
[
e−
∫ T
t RuduX

∣∣∣Ft] , 0 ≤ t ≤ T.

PROOF: The equation for DtΠt(X ) results from this process being a P̃–martingale. The formula for
Πt(X ) is then obtained by noting that

DT = exp

(
−
∫ T

0
Ru du

)
= exp

(
−
∫ t

0
Ru du

)
exp

(
−
∫ T

t
Ru du

)
and observing that the exponential e−

∫ t
0 Ru du is Ft measurable and can be pulled out of the condi-

tional expectation. �

Definition 13.4 (Risk–neutral valuation formula). We call either one of the Corollary 13.2 formulas,

Dt Πt(X ) = Ẽ[DT X |Ft], 0 ≤ t ≤ T.(13.19)

Πt(X ) = Ẽ
[
e−
∫ T
t RuduX

∣∣∣Ft] , 0 ≤ t ≤ T.(13.20)

the risk–neutral pricing formula, also the risk–neutral valuation formula for a contingent
claim with contract function X . �

13.4 Risk–Neutral Pricing of a European Call

Assumption 13.2. For this entire subchapter we assume the following.

• The instantaneous mean rate of return is constant: αt(ω) = α.
• The volatility is constant: σt(ω) = σ.
• The interest rate is constant: Rt(ω) = r.
• the derivative is a European call, i.e., the payoff is X = Φ(ST ) = (ST −K)+. �

We now derive the Black–Scholes formula for the price of this European call. 52 Since the contract
52SCF2 does not ask that αt be constant, presumably because this variable does not directly show in the formula

c
(
t, St

)
= Ẽ

[
e−r(T−t)(ST −K)+

∣∣Ft ] .
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function for a European call is
X = Φ(ST ) = (ST − K)+,

the risk–neutral valuation formula (13.20) on p.250 for Vt reads

Πt(X ) = Ẽ
[
e−r(T−t)(ST −K)+

∣∣Ft ] .(13.21)

We are looking for a way to evaluate this expression only using data known at time t. This could be
accomplished if there was a function (t, x) 7→ c(t, x) of time t and stock price x such that

c
(
t, St

)
= Ẽ

[
e−r(T−t)(ST −K)+

∣∣Ft ] .(13.22)

There is hope to find such a function because the geometric Brownian motion St is a Markov pro-
cess, thus the right–hand side of (13.22) only depends on stock price St and time t, but not on the
stock price prior to time t.
To achieve that goal, we fix a time 0 ≤ t ≤ T and define

τ := T − t; Y := − W̃T − W̃t√
τ

.(13.23)

h(t;x, y) := e−rτ
(
x · exp

{
−σ
√
τy +

(
r − σ2

2

)
τ

}
− K

)+

.(13.24)

Note that Y is standard normal w.r.t. P̃ since W̃t, t ≥ 0, is a P̃–Brownian motion.
We next provide three lemmas which have the following purpose.
• Lemma 13.1 shows that we can work with h(t;St, Y ) instead of e−rτ (ST −K)+.
• Lemma 13.2 gives the definition of c(t, x) in terms of h(t;x, y).
• Lemma 13.3 allows us to actually compute c(t, x). The result will be formula (10.30) of

Theorem 10.1 on p.215 which was stated there without proof.

Lemma 13.1. With the above definitions we can rewrite the risk–neutral valuation formula (13.21) for a
European call as follows.

Ẽ
[
e−rτ (ST −K)+

∣∣Ft ] = Ẽ
[
h(t;St, Y )

∣∣Ft ](13.25)

PROOF: According to (13.10) on p.246,

St = S0 exp

{∫ t

0
σs dW̃s +

∫ t

0

(
Rsds −

1

2
σ2
s

)
ds

}
= S0 exp

{
σ W̃t +

(
r − 1

2
σ2

)
t

}
.

For t = T we obtain similarly that ST = S0 exp
{
σ W̃T +

(
r − 1

2 σ
2
)
T
}

. Thus,

ST
St

= exp

{[
σ W̃T +

(
r − 1

2
σ2

)
T

]
−
[
σ W̃t +

(
r − 1

2
σ2

)
t

]}
= exp

{
σ (W̃T − W̃t) +

(
r − 1

2
σ2

)
(T − t)

}
,

But without that assumption St would not be a GBM, only a generalized GBM which is not necessarily Markov, since
part or all of the past could enter the dynamics dSt = αtStdt+ σStdt.
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thus

ST = St · exp

{
σ (W̃T − W̃t) +

(
r − 1

2
σ2

)
(T − t)

}
= St · exp

{
−στ −(W̃T − W̃t)

τ
+

(
r − 1

2
σ2

)
(T − t)

}
(13.23)

= St · exp

{
−στ Y +

(
r − 1

2
σ2

)
(T − t)

}
.

(A)

It follows that

h(t;St, Y ) = e−rτ
(
St · exp

{
−σ
√
τY +

(
r − σ2

2

)
τ

}
− K

)+

(A)
= e−rτ (ST − K)+.

We apply conditional expectations Ẽ[· · · | Ft] to both sides and assertion (13.25) follows. �

We remember our goal: find a function (t, x) 7→ c(t, x) such that (13.22) holds:

c
(
t, St

)
= Ẽ

[
e−r(T−t)(ST −K)+

∣∣Ft ] .(13.26)

Lemma 13.1 allows us to reformulate this problem as follows: Let h(t;x, y) be the function given in
formula (13.24). We want to find a function (t, x) 7→ c(t, x) such that

c(t, St) = Ẽ
[
h(t;St, Y )

∣∣Ft ] .(13.27)

The next lemma shows how to define this function c(t, x).

Lemma 13.2. Let

c(t, x) := Ẽ[h(t;x, Y )] ,(13.28)

where h(t;x, y) is the function defined in (13.24). Then c(t, St) satisfies (13.27) and hence also the risk–
neutral pricing formula (13.22), i.e.,

c(t, St) = Ẽ
[
e−rτ (ST −K)+

∣∣Ft ] .(13.29)

PROOF: We fix 0 ≤ t ≤ T . Since St is Ft–measurable and Y = −W̃T−W̃t√
τ

is, as a function of the

Brownian increment W̃T − W̃t, independent of Ft, it follows for each tixed 0 ≤ t ≤ T from the
Independence Lemma (Lemma 5.7 on p.126) 53 that

c(t, St) = Ẽ
[
h(t;St, Y )

∣∣Ft ] .
53 There we wrote h(x, y) instead of h(t;x, y),

and g(x) = E[h(x, Y )] instead of c(t, x) = Ẽ[h(t;x, Y )].
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This proves the validity of (13.27). We apply Lemma 13.1 and (13.29) follows. �

We have shown that the function c(t, x) = Ẽ[h(t;x, Y )] allows us to price a European call option,
at time t, conditioned on the stock price St at that time, via the risk–neutral pricing formula

Πt(X ) = c
(
t, St

)
= Ẽ

[
e−r(T−t)(ST −K)+

∣∣Ft ] .(13.30)

It follows from the definition of h(t;x, y) given in (13.24) that

c(t, x) = Ẽ[h(t;x, Y )] = Ẽ

[
e−rτ

(
x · exp

{
−σ
√
τY +

(
r − σ2

2

)
τ

}
− K

)+
]
.

This is an ordinary expected value of a function which depends on ω only by means of the P̃–
standard normal random variable Y . This we have learned to work with and we are able to obtain
a concrete representation of c(t, x) by computing this expected value. We use again the symbols
d−(τ, x) and d+(τ, x) introduced in Theorem 10.1 on p.215:

d±(τ, x) =
1

σ
√
τ

[
log

x

K
+

(
r ± σ2

2

)
τ

]
,(13.31)

Lemma 13.3. The pricing function c(t, x) for a European call option is given by the formula

c(t, x) = xN
(
d+(τ, x)

)
− e−rτKN

(
d−(τ, x)

)
.(13.32)

PROOF: It is true for any random variable U with a P̃–density fU (u), and for any deterministic

(measurable) function u 7→ ϕ(u), that Ẽ[ϕ(U)] =
∞∫
−∞

ϕ(u)fU (u) du.

We apply this to the random variable Y which has density fY (y) = 1√
2π
e−y

2/y since it is standard
normal, and to the function h(t;x, Y ) of Y . We obtain

c(t;x)
(13.28)

= Ẽ[h(t;x, Y )] =

∫ ∞
−∞

h(t;x, y)
1√
2π

e−
y2

2 dy

(13.24)
=

1√
2π

∫ ∞
−∞

e−rτ
(
x · exp

{
−σ
√
τy +

(
r − σ2

2

)
τ

}
− K

)+

e−
y2

2 dy .

Since the function u 7→ log(u) is strictly increasing: u < u′ ⇔ log u < log u′, and since always
e−rτ > 0, the integrand is positive (i.e., not zero) if and only if

log x +

{
−σ
√
τy +

(
r − σ2

2

)
τ

}
> logK

⇔ log x − logK +

(
r − σ2

2

)
τ > σ

√
τy

⇔ σ
√
τy < log

( x
K

)
+

(
r − σ2

2

)
τ

⇔ y <
1

σ
√
τ

[
log
( x
K

)
+

(
r − σ2

2

)
τ

]
= d−(τ, x) .

(13.33)
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Therefore,

c(t, x) =
1√
2π

∫ d−(τ,x)

−∞
e−rτ

(
x exp

{
−σ
√
τy +

(
r − 1

2
σ2

)
τ

}
− K

)
e−

1
2
y2
dy .

We simplify

e−rτ x e−σ
√
τy+ (r− 1

2
σ2)τ = x e−rτ e−σ

√
τyerτ e−

σ2

2
τ = x e−σ

√
τy e−

σ2

2
τ ,

and obtain

c(t, x) =
1√
2π

∫ d−(τ,x)

−∞
x exp

{
−y

2

2
− σ
√
τy − σ2τ

2

}
dy − 1√

2π

∫ d−(τ,x)

−∞
e−rτKe−

1
2
y2
dy

=
x√
2π

∫ d−(τ,x)

−∞
exp

{
−1

2
(y + σ

√
τ)2

}
dy − e−rτKN

(
d−(τ, x)

)
.

The last equation was obtained by replacing the integral
d−(τ,x)∫
−∞

e−
1
2
y2
dy over the standard normal

density with the CDF, N
(
d−(τ, x)

)
. Thus

c(t, x) =
x√
2π

∫ d−(τ,x)+σ
√
τ

−∞
exp

{
−z

2

2

}
dz − e−rτKN

(
d−(τ, x)

)
= xN

(
d+(τ, x)

)
− e−rτKN

(
d−(τ, x)

)
.

We have proven formula (13.32). The last equation holds because, according to (13.31),

d+(τ, x) = d−(τ, x) + σ
√
τ

=
1

σ
√
τ

[
log

x

K
+

(
r +

1

2
σ2

)
τ

]
. �

(13.34)

This was indeed the proof of Theorem 10.1 on p.215, since the classical Black–Scholes market con-
didions under which it was stated satisfy the assumptions 13.2 on p.250. The difference is that the
function c(t, x) was given there as the solution to the (deterministic) Black–Scholes PDE (10.25)

ct(t, x) + rx cx
(
t, x) +

1

2
σ2x2cxx(t, x) = r c

(
t, x
)
, x ≥ 0 ,

with terminal condition

c(T, x) = (x − K)+,

whereas we derived the same function in this chapter as an application of the risk–neutral valuation
formula.
The next theorem just reformulates the results of the preceding lemmas.

Theorem 13.2. We defined in Remark 10.7 on p. 216, for τ = T − t, i.e., t = T − τ ,

BSM(τ, x;K, r, σ) := c(t, x), where c(t, x) = xN
(
d+(τ, x)

)
− e−rτKN

(
d−(τ, x)

)
.(13.35)
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If we redefine BSM (τ, x;K, r, σ) to be

BSM(τ, x;K, r, σ) = Ẽ

[
e−rτ

(
x exp

{
−σ
√
τY +

(
r − 1

2
σ2

)
τ

}
− K

)+
]
,(13.36)

where Y is a standard normal random variable under P̃ , then the following holds true:

BSM(τ, x;K, r, σ) = xN
(
d+(τ, x)

)
− e−rτKN

(
d−(τ, x)

)
.(13.37)

PROOF: Follows from the preceding Lemmas and the fact that the right–hand side of (13.37)
matches the definition of c(t, x) given in (13.35). �

13.5 Completeness of the One dimensional Generalized Black–Scholes Model

We have seen in Corollary 13.2 on p.250 that any contingent claim X that can be replicated can be
priced by means of the risk–neutral valuation formula.

Πt(X ) = Ẽ
[
e−
∫ T
t RuduX

∣∣∣Ft] , 0 ≤ t ≤ T.(13.38)

The question that has not been aswered is the following. What claims can be hedged? We will
explore that in this chapter.
We assume that we operate in a generalized Black–Scholes market as was defined in Definition 13.1
on p.243, in particular, that the market price of risk process Θt is such that the integrability condition
(13.1) given in that definition is satisfied and thus Girsanov’s Theorem can be applied.

Assumption 13.3. We need to apply the martingale representation theorem and must make the
following additional assumptions.

The filtration Ft is generated by the Brownian motion Wt and F only contains information
generated that Brownian motion up to time T . In other words,

Ft = FWt = σ{Wu : u ≤ t} for all 0 ≤ t ≤ T ,
F = FWT .

We have the following result. See SCF2, ch.5.3.2 (Hedging with One Stock).

Theorem 13.3 (Completeness of the one dimensional Generalized Black–Scholes market). Given the
additional assumptions 13.3, we have the following.

The one dimensional Generalized Black–Scholes market is complete, i.e., every contingent claim can
be hedged. Further, if 0 ≤ t ≤ T , the quantity Yt of the replicating portfolio is given by either of

YtσtDtSt = Γ̃t ,(13.39)

Yt =
Γ̃t

σtDtSt
.(13.40)
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Here the process Γ̃t is implicitly defined by the equation

DtΠt(X ) =Π0(X ) +

∫ t

0
Γ̃u dW̃u (0 ≤ t ≤ T ) ,(13.41)

i.e., d(DtΠt(X )) = Γ̃t dW̃t (0 ≤ t ≤ T ) .(13.42)

PROOF: We create the hedge ~Ht by first looking at the pricing function Πt(X ) of the claim X that
the value process Vt of ~Ht must replicate for each t. This will allow us to determine the quantity Yt
of the underlying stock (and thus the bond holdings Xt = Vt − StYt) for ~Ht.

Since ~H replicates X , the pricing principle mandates Vt = Πt(X ) for all t. From risk–neutral valida-
tion (13.38) we obtain

Πt(X ) = Ẽ
[
e−
∫ T
t RuduX

∣∣∣Ft] , 0 ≤ t ≤ T .(13.43)

Since Πt(X ) = Vt, DtΠt(X ) = DtVt. This plus the other risk–neutral validation formula which
expresses the fact that the discounted portfolio value DtVt is a P̃–martingale, yields

DtΠt(X ) = Ẽ
[
DTX

∣∣∣Ft] , 0 ≤ t ≤ T .(13.44)

It now follows from Corollary 12.1 (p.239) to the martingale representation theorem in one dimen-
sion that there exists an FWt –adapted process Γ̃u, 0 ≤ u ≤ T , such that (13.41) holds. Here we made
use of the fact that

D0 = e−
∫ 0
0 Rudu = e0 = 1, hence, D0Π0(X ) = Π0(X ) .

We compare (13.42) to formula (13.17) on p.249 for the differential of DtΠt(X ),

d
(
DtVt

)
= YtσtDtSt dW̃t .

Since DtΠt(X ) = DtVt, both equations have matching left sides. Thus, the integrands are equal:

YtσtDtSt = Γ̃t .

Since σtDtSt > 0 as the product of three strictly positive quantities, we obtain Yt, the desired quan-
tity for the number of shares of a hedge ~H for our claim, according to either of (13.39) or (13.40).
�

Remark 13.6. Note that the formulas for Yt given in the preceding theorem are of no practical value
to compute this process, since the process Γ̃t cannot be constructed: The martingale representation
theorem is an existence only theorem. �

13.6 Multidimensional Financial Market Models

Assumption 13.4. For this entire subchapter we assume the following.
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Given are a filtered probability space (Ω,F,Ft, P ), a d–dimensional Brownian motion

~Wt =
(
W

(1)
t ,W

(2)
t . . . ,W

(d)
t

)
w.r.t. the filtration Ft (d ∈ N), and m risky assets (stocks)

~AAA =
(
AAA (0),AAA (1), . . . ,AAA (m)

)
,

with stock prices ~St =
(
S

(1)
t , . . . , S

(m)
t

)
.

We assume that each stock price S(i)
t is driven by ~Wt, with dynamics

dS
(i)
t = α

(i)
t S

(i)
t dt + S

(i)
t

d∑
j=1

σij(t) dW
(j)
t , i = 1, . . . ,m,(13.45)

and that we have the usual discount process which is based on an adapted interest rate
process Rt.

dDt = −RtDt dt, D0 = 1, i.e., Dt = exp

(
−
∫ t

0
Ru du

)
.(13.46)

In the above we assume that the vector valued process ~αt =
(
α

(1)
t , . . . , α

(m)
t

)
which we call the mean

rate of return vector, and the matrix valued adapted process
(
σij(t)

)
i=l,...,m;j=l,...,d

which we call the
volatility matrix both are Ft–adapted processes.
We further define the processes

σ
(i)
t :=

√√√√ d∑
j=1

σ2
ij(t), i = 1, . . . ,m.(13.47)

B
(i)
t :=

d∑
j=1

∫ d

0

σij(u)

σ
(i)
u

dW (j)
u , i = 1, . . . ,m.(13.48)

ρij(t) :=
1

σ
(i)
t σ

(j)
t

d∑
k=1

σik(t)σjk(t), i, k = 1, . . . ,m.(13.49)

We also assume that σ(i)
t > 0 for all t. �

We have the following result.

Proposition 13.4. ?
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Each process Bt(i) is a Brownian motion. The multiplication table is

dB
(i)
t dB

(i)
t = dt, i = 1, . . . ,m,(13.50)

dB
(i)
t dB

(j)
t = ρij(t) dt, i, j = 1, . . . ,m, i 6= j .(13.51)

The covariances are

(13.52) Cov
[
B

(i)
t B

(j)
t

]
= E

∫ t

0
ρij(u) du .

Further, each S(i) is a B(i)
t –driven generalized GBM with volatility σ(i)

t and unchanged drift α(i)
t :

(13.53) dS
(i)
t = α

(i)
t S

(i)
t dt + σ

(i)
t S

(i)
t dB

(i)
t .

PROOF: See Chapter 5.4.2 (Multidimensional Market Model) in SCF2. �

Corollary 13.3. ? Assume that
((
σij(t, ω)

((
is constant in t and ω. We define

σij := σij(t, ω), σ(i) := σ
(i)
t (ω), ρik := ρik(t)(ω).(13.54)

The latter is possible since the right hand side of (13.49) also is constant in t and ω. Then

ρik =
1

σ(i)σ(k)

d∑
j=1

σijσkj for i, k = 1, . . . ,m,(13.55)

Cov
[
B

(i)
t , B

(k)
t

]
= ρik t ,(13.56)

and the correlation between B(i)
t and B(j)

t is ρik.

PROOF: ? The proof of (13.55) and (13.56) is trivial. The last assertion follows from

Var
[
B

(i)
t

]
= t for all i = 1, . . . ,m. �

Now some terminology.

Definition 13.5. ?

If the volatility matrix has entries which are not constant in t and ω,
we call ρij(t) = ρij(t, ω) the instantaneous correlation between B(i)

t and B
(j)
t , and we call

σt(i) the instantaneous standard deviation of the relative change in Si. �

Remark 13.7. The reason for the term “relative change” is that σt(i) is tied to the “relative differen-
tial” dS(i)

t /S
(i)
t as follows. From

dS
(i)
t = α

(i)
t S

(i)
t dt + σ

(i)
t S

(i)
t dB

(i)
t ,

dt dB
(i)
t = dB

(i)
t dt = dtdt = 0, dB

(i)
t dB

(j)
t = ρijdt ,
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we obtain

dS
(i)
t dS

(j)
t =

(
σ

(i)
t S

(i)
t dB

(i)
t

)(
σ

(j)
t S

(j)
t dB

(j)
t

)
= σ

(i)
t σ

(j)
t S

(i)
t S

(j)
t

(
dB

(i)
t dB

(j)
t

)
= σ

(i)
t σ

(j)
t S

(i)
t S

(j)
t ρij dt .

Thus,

(
dS

(i)
t

S
(i)
t

) (
dS

(j)
t

S
(j)
t

)
= σ

(i)
t σ

(j)
t ρij dt .

We can express this last formula as follows. The product of the relative instantaneous changes of S(i)

and S(j) is the product of the instantaneous standard deviations and the instantaneous correlation.
�

Proposition 13.5. ?

Given the dynamics (13.45) for ~St and (13.46) for Dt, the discounted stock price vector Dt
~St has

dynamics

(13.57) d
(
DtS

(i)
t

)
= DtS

(i)
t

(α(i)
t −Rt

)
dt +

d∑
j=1

σij(t) dW
(j)
t

 .
PROOF: See Chapter 5.4.2 (Multidimensional Market Model) in SCF2. �

We must generalize the definition of risk–neutral measure given in Definition 13.3 on p.245 for a
financial market with a single risky asset price driven by a single Brownian motion to the multidi-
mensional model.

Definition 13.6 (Risk–neutral measure for multiple risky assets).

A risk–neutral measure or martingale measure P̃ in the multitimensional market model
given in the assumptions 13.4 on p.256 is the following.

(1) P̃ is a probability measure on FT , i.e., P̃ (A) need only be defined for events A ⊆ Ω
which belong to FT

(2) P̃ ∼ P , i.e., P̃ and P are equivalent on FT :
If A ∈ FT then P̃ (A) = 0 ⇔ P (A) = 0.

(3) Discounted stock price DtS
(i)
t is a P̃–martingale w.r.t. the filtration Ft for ALL

i = 1, . . . ,m. �

Proposition 13.6 (SCF2 Lemma 5.4.5).

Let P̃ be a risk–neutral measure, and let Vt be the value of a self–financing portfolio. Then discounted
portfolio value DtVt is a P̃–martingale, and its differential is

(13.58) d
(
DtVt

)
= Dt

(
dVt − RtVt dt

)
=

m∑
i=1

Y
(i)
t d

(
DtS

(i)
t

)
.
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PROOF: See the proof of SCF2, Lemma 5.4.5. �

Remark 13.8. We restate here for the reader’s convenience the definition 7.7 of an arbitrage portfolio
on p.155.

A portfolio ~Ht is an arbitrage portfolio if its value process Vt satisfies

V0 = 0,(13.59)
P{VT ≥ 0} = 1,(13.60)
P{T > 0} > 0. �(13.61)

Here is how we define the vector valued version of a market price of risk process.

Definition 13.7.

If it exists, then the market price of risk process is an adapted process

~Θt =
(
Θ

(1)
t , . . . ,Θ

(d)
t

)
which (a) solves the system of equations, called the market price of risk equations,

(13.62) αi(t) − Rt =
d∑
j=1

σij(t)Θ
(j)
t , i = 1, . . . ,m,

and (b) satisfies the Girsanov integrability condition (formula (12.20) on p.241). �

Remark 13.9. The existence of a market price of risk process is of central importance for an efficient
market.

(1) If there is no solution to the market price of risk equations, then we have a financial market
model which is not free of arbitrage. It is not suitable for pricing contingent claims. For
a simple example of a model which does not have a solution to the market price of risk
equations and an arbitrage portfolio that this allows to be created, see SCF2 Example 5.4.4.

(2) SCF2 does not state Girsanov integrability as a condition for ~Θ but we do it here because,
if Girsanov’s Theorem cannot be applied, then there is no guarantee that a risk–neutral
measure P̃ exists. We then would not able to rule out the existence of arbitrage portfolios.
See the first fundamental theorem of asset pricing below (Theorem 13.5 on p.262). �

Theorem 13.4.

If a solution to the market price of risk equations

αi(t) − Rt =

d∑
j=1

σij(t)Θ
(j)
t , i = 1, . . . ,m,

exists then the market model possesses a risk–neutral probability measure.

PROOF: ? Let P̃ be the probability equivalent to P which is created in Theorem 12.3 (Gir-
sanov’s Theorem in multiple dimensions) on p.240. We recall that the process
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~̃
Wt =

(
W̃ 1
t , . . . , W̃

d
t

)
with dynamics

dW̃
(j)
t = dW

(j)
t + Θ

(j)
t dt, W̃

(j)
0 = 0,(13.63)

is a d–dimensional Ft–Brownian motion under the probability P̃ . We plug the market price of risk
equations into formula (13.57) on p.259 and obtain

d
(
DtS

(i)
t

)
= DtS

(i)
t

 d∑
j=1

σij(t)Θ
(j)
t dt +

d∑
j=1

σij(t) dW
(j)
t


= DtS

(i)
t

d∑
j=1

σij(t)
[
Θ

(j)
t dt + dW

(j)
t

]
.

We apply formula (13.63) and obtain

d
(
DtS

(i)
t

)
= DtS

(i)
t

d∑
j=1

σij(t)dW̃
(j)
t .(13.64)

Since each W̃ (j)
t is a P̃–martingale, this also is true for each discounted stock price DtS

(i)
t . It follows

that P̃ is a risk–neutral probability measure. �

Remark 13.10. Let X be a contingent claim with price process Πt(X ), 54 We would like to be able to
create a hedge for that claim.
We can define DtΠt(X ) and Πt(X ) by the risk–neutral pricing formulas (13.19) and (13.20) on p.250,

DtΠt(X ) = Ẽ[DTΠT (X ) |Ft], 0 ≤ t ≤ T.

Πt(X ) = Ẽ
[
e−
∫ T
t RuduΠT (X )

∣∣∣Ft] , 0 ≤ t ≤ T.

Since DTΠT (X ) is constant in t, and DtΠt(X ) is the P̃–conditional expectation of DTΠT (X ), this
process is a martingale under P̃ . According to the Martingale Representation Theorem for multiple
dimensions (Theorem 12.4 on p.241), there are processes Γ̃1(u), . . . , Γ̃d(u) such that

DtΠt(X ) = Π0(X ) +

d∑
j=1

∫ t

0
Γ̃j(u) dW̃ (j)

u , 0 ≤ t ≤ T.(13.65)

Consider a self–financing portfolio ~Ht with value process Vt. By (13.58) on p.259 and (13.64) on
p.261,

d
(
DtVt

)
=

m∑
i=1

Y
(i)
t d

(
DtSt(i)

)
=

d∑
j=1

m∑
i=1

Y
(i)
t DtSt(i)σij(t) dW̃

(j)
t .

(13.66)

54Mathematically speaking, any nonnegative, FT –measurable and integrable random variable will do.
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(The first equation holds because ~Ht is self–financing.) Equivalently,

DtVt = V0 +

d∑
j=1

∫ t

0

m∑
i=1

Y
(i)
t DuS

(i)
u σij(u) dW̃ (j)

u .(13.67)

We compare the integrands of (13.65) and (13.67) and obtain

Γ̃j(u) = Du

m∑
i=1

Y
(i)
t S(i)

u σij(t), j = 1 . . . , d,

To hedge the short position, we should take V0 = Π0(X ) and choose the portfolio process
~Yt = Y

(1)
t , . . . , Y

(m)
t so that the hedging equations

Γ̃j(t)

Dt
=

m∑
i=1

Y
(i)
t St(i)σij(t), j = 1 . . . , d,(13.68)

are satisfied. Note that these are d equations in m unknown processes Y (1)
t , . . . , Y

(m)
t .

�

Next comes SCF2 Theorem 5.4.7.

Theorem 13.5.

First fundamental theorem of asset pricing:
If the market model given in Assumption 13.4 on p.256 has a risk–neutral probability measure, then
it does not admit arbitrage.

PROOF: ? Let P̃ be a risk–neutral measure and assume that ~H is a self–financing portfolio

with initial value V0 = 0. Since DtVT is a P̃–martingale and thus has constant expectation across all
times 0 ≤ t ≤ T and D0 = e−

∫ 0
0 Rudu = e0 = 1 we have

Ẽ
[
DTVT

]
= Ẽ

[
D0V0

]
= V0 = 0.(13.69)

Assume further that ~H satisfies condition (13.60), P{VT ≥ 0} = 1.

Then P{VT < 0} = 0, thus P̃{VT < 0} = 0.(13.70)

If we can show that it is impossible for ~H to satisfy (13.61): P{VT > 0} > 0, then we are done since
this means that no self–financing portfolio can satisfy all three conditions (13.59) (13.60), (13.61) of
an arbitrage portfolio. So,

let us assume to the contrary that P{VT > 0} > 0.(A)

Since P ∼ P̃ and thus both probabilities assign zero to the same events, we obtain P̃{VT > 0} > 0.
Moreover, {VT > 0} = {DTVT > 0}, because DT (ω) is strictly positive for all ω as an exponential.
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Let Aj := {DTVT ≥ 1
j } and A := {DTVT > 0}. If we write 2a for P̃ (A) then a > 0. Since

A =
⋃
j∈N

Aj and thus, by (4.39a) on p.60, P̃ (Aj) ↑ 2a,

there is some index j0 such that P̃ (Aj0) ≥ a. We have

0
(13.69)

= Ẽ[DTVT ] =

∫
Ω
DTVT dP̃ =

∫
A
DTVT dP̃ +

∫
{DTVT=0}

DTVT dP̃ +

∫
{DTVT<0}

DTVT dP̃ .

The second integral of the right hand expression is zero because the integrand vanishes on {DTVT =
0}. The third integral of the right hand expression is zero by (13.70), since any integral over a set of
measure zero is zero. This follows from Proposition 4.20 on p.102. Hence,∫

A
DTVT dP̃ = 0.

Since Aj0 ⊂ A and DTVT > 0 on A,

0 =

∫
A
DTVT dP̃ ≥

∫
Aj0

DTVT dP̃ ≥
∫
Aj0

1

j0
dP̃ =

1

j0
P̃ (Aj0) ≥ a

j0
> 0.

Thus assumption (A) has lead us to the contradiction 0 > 0. This proves that P{VT > 0} > 0; thus
~H is not an arbitrage portfolio. Since ~H was an arbitrary, self–financing portfolio, we have shown
that the model is free of arbitrage. �

Remark 13.11. Take a moment to reflect on how the proof of that last theorem was able to switch
between the equivalent probabilities P and P̃ by making use of

P̃ (...) = 0 ⇔ P (...) = 0,

P̃ (...) > 0 ⇔ P (...) > 0,

P̃ (...) = 1 ⇔ P (...) = 1.

Theorem 13.3 (Completeness of the one dimensional Generalized Black–Scholes market) in Sub-
chapter 13.5 (Completeness of the One dimensional Generalized Black–Scholes Model) gave con-
ditions under which the one dimensional market is complete, i.e., every contingent claim that is
reasonably integrable can be hedged. See Definition 7.9 (Hedging/Replicating Portfolio) on p.156.
We now want to examine under which conditions the multidimensional market is complete.

Assumption 13.5. We add to Assumption 13.4 the following conditions.

(1) The market price of risk equations of Definition 13.7 on p.260,

αi(t) − Rt =
d∑
j=1

σij(t)Θ
(j)
t , i = 1, . . . ,m,

have a solution process ~Θt =
(
Θ

(1)
t , . . . ,Θ

(d)
t

)
.

(2) Ft = F
~W
t , i.e., Ft is generated by the d–dimensional Brownian motion ~Wt. �
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Remark 13.12. The first of the above conditions implies that the conditions of Theorem 13.4 on
p.260 are satisfied, hence there exists a risk–neutral probability P̃ .
Both conditions together ensure that the multidimensional martingale representation theorem is
satisfied: Every Ft–martingale Mt under risk–neutral probability P̃ is of the form

Mt = M0 +
d∑
j=1

∫ t

0
Γ̃j(u) dW̃ (j)

u .

Here the process ~̃
Wt is the P̃–d–dimensional Brownian motion

~̃
Wt = ~Wt +

∫ t

0

~Θu du . �

The next theorem is SCF2 Theorem 5.4.9.

Theorem 13.6.

Second fundamental theorem of asset pricing:
Assume that a risk–neutral probability measure exists. Then

The market is complete ⇔ The risk–neutral probability measure is unique.

The proof is not given here. See SCF2! �

13.7 Exercises for Ch.13

Exercise 13.1. Prove the formula (13.9) of Proposition 13.1 on p.246:

d (DtSt) =
(
αt −Rt

)
DtSt dt + σtDtSt dWt

directly from the dynamics given in Definition 13.1 on p.243,

dDt = −RtDt dt,

dSt = αtSt dt + σtSt dWt,

by applying the Itô product rule or one of its corollaries to d(DtSt). �

Exercise 13.2. Prove the “⇒” direction of Theorem 13.6 (Second fundamental theorem of asset pric-
ing) on p.264 of this document: If the multidimensional market is complete then the risk–neutral
probability measure is unique. �
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14 Dividends

Many if not most stocks pay a dividend per share at discrete times, say, anually or semi–annually
or quarterly. We also consider stocks that pay dividends continually. Such stocks do not exist in
reality but they can be used to model the kind of mutual fund which holds many different kinds of
stocks which pay their dividends at different times.
Note that whatever money is paid out as a dividend to shareholders diminishes the company assets
and thus reduces the share value accordingly.
• If a quarterly dividend of 2 dollars per share is paid at time t then stock price per share

St will go down by 2 dollars.
• If dividends are paid continuously at a rate At(ω) per unit time then a dividend of (ap-

proximately)AtStdt is paid per share during [t, t+dt]. We must subtractAtStdt from dSt.
Both cases will yield more powerful results if we specialize to constant dividend rates which vary
neither with time t nor with randomness ω. Accordingly, we subdivide this chapter into
• continuously paying dividends
• dividends paid at discrete times,
• constant dividend rates.

We will limit ourselves to the one dimensional case: A single (one dimensional) Brownian motion
which drives a single underlying risky asset (stock).
We try to use SCF2 notation whenever feasible.

Proposition 14.2 on p.267 will show that the probability measure P̃ which is constructed in Gir-
sanov’s Theorem by means of the market price of risk process Θt no longer transforms the dis-
counted stock price DtSt into a martingale. Accordingly, P̃ no longer is a risk–neutral measure. 55

However, discounted portfolio value DtVt for a self–financing portfolio remains a P̃–martingale.

We thus decide to use in this chapter on dividends the term Girsanov measure or Girsanov
probability rather than risk–neutral measure for that probability P̃ .

14.1 Continuously Paying Dividends

Assumption 14.1. Unless stated otherwise we assume that we have a generalized Black–Scholes
market as defined in Definition 13.1 (Generalized Black–Scholes market model) on p.243, with the
following modification.

We assume that the stock pays a continuous dividend at a rate of At(ω) per unit time and
that this continuous time dividend rate process At is Ft–adapted and nonnegative. We
noted in the introduction to this chapter that this will result in the subtraction of AtStdt
from dSt. Thus we replace formula (13.3) for the stock price dynamics with the following.

dSt = αtSt dt + σtSt dWt − AtSt dt; S0 ∈ ]0,∞[ ; αt, σt ∈]0,∞[ ;(14.1)

All other processes remain unchanged. In particular we have the same discount processDt,
market price of risk process Θt, Girsanov measure P̃ , and the process W̃t = Wt +

∫ t
0 Θudu

which becomes a Brownian motion under P̃ . �

55See Definition 13.3 on p.245.
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We thus have

dDt = −RtDt dt ; D0 = 1 ,(14.2)

Θt =
αt −Rt
σt

,(14.3)

dW̃t = dWt + Θt dt ; W̃0 = 0 . �(14.4)

Proposition 14.1.

The value and discounted value of a self–financing portfolio have the following dynamics.
dVt = RtVt dt + YtStσt

(
Θt dt + dWt

)
= RtVt dt + YtStσt dW̃t,(14.5)

d
(
DtVt

)
= YtDtStσt dW̃t.(14.6)

In particular, the discounted portfolio process DtVt is a P̃–martingale.

For the proof see SCF2 ch.5.5.1. �

Remark 14.1. A. Discounted portfolio value being a P̃–martingale is all it takes to use risk–neutral
valuation for contingent claims. Let ~Ht with portfolio value Vt be a hedge for a contingent claim
X with pricing process Πt(X ). Then VT = X , thus DTX = DTVT and, according to the pricing
principle, Πt(X ) = Vt for all 0 ≤ t ≤ T . Moreover, since DtVt is an Ft–martingale under P̃ ,

DtΠt(X ) = DtVt = Ẽ
[
DTVT | Ft

]
= Ẽ

[
DTX | Ft

]
for 0 ≤ t ≤ T,

thus Πt(X ) = Ẽ
[
D−1
t DTX | Ft

]
= Ẽ

[
e−
∫ T
t RuduX | Ft

]
for 0 ≤ t ≤ T.

B. Note that formula (14.5) for dVt matches formula 13.16 on p,249, and note that formula (14.6) for
d(DtVt) matches formula 13.17 on p,249. Neither formula references the dividend rate process At!
C. A closer inspection of the proof of Theorem 13.3 (Completeness of the one dimensional General-
ized Black–Scholes market) on p.255 shows that it only depends on risk–neutral valuation and what
was shown in parts A and B of this remark. We will use this observation in the proof of the next
theorem. �

Theorem 14.1. Given the assumptions 13.3 on p.255 in addition to the assumptions 14.1 made at the begin-
ning of this chapter we have the following.

The one dimensional Generalized Black–Scholes market with continuous dividend payments is com-
plete, i.e., every contingent claim can be hedged. Further, the quantity Yt of the replicating portfolio
satisfies, for any 0 ≤ t ≤ T ,

YtσtDtSt = Γ̃t,(14.7)

Yt =
Γ̃t

σtDtSt
.(14.8)
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Here the process Γ̃t is implicitly defined by the equation

DtΠt(X ) = Π0(X ) +

∫ t

0
Γ̃u dW̃u for 0 ≤ t ≤ T ,(14.9)

i.e., d(DtΠt(X )) = Γ̃t dW̃t for 0 ≤ t ≤ T .(14.10)

PROOF: ? We can copy the proof of Theorem 13.3 word for word This follows from the

previous remark and the fact that the definitions of Θt and thus P̃ and W̃t have not changed. �

We have seen in Proposition 14.1 on p.266 that discounted portfolio value of a self–financing port-
folio behaves the same under continuous dividends and no dividend payments. In particular, dis-
counted portfolio value is a martingale under risk–neutral measure. The next proposition shows
that this is no more true for discounted stock price.

Proposition 14.2. ?

If At 6= 0, then
(a) The process DtSt is not a P̃–martingale.
(b) However, the process e

∫ t
0 AuduDtSt is a P̃–martingale, and this process satisfies

(14.11) e
∫ t
0 AuduDtSt = S0 exp

{∫ t

0
σu dW̃u −

1

2

∫ t

0
σ2
u du

}
.

PROOF (Outline): We rewrite (14.1) on p.265 as follows

dSt = (αt −At)St dt + σtSt dWt .

Clearly, St behaves like stock price in the ordinary generalized Black–Scholes market model, except
that the mean rate of return drops from αt to α′t = αt − At. In particular, St is a generalized GBM
with unchanged volatility σt and can be explicitly written as

St := S0e
Xt = S0 exp

[ ∫ t

0
σudWu +

∫ t

0

(
α′u −

1

2
σ2
u

)
du

]
.

See (9.20) on p.199. From there one obtains that the process Mt := exp
t∫

u=0

DtSt equals

Mt = S0 exp

[ ∫ t

0
σudW̃u +

∫ t

0

(
σu −

1

2
σ2
u

)
du

]
. �

14.2 Dividends Paid at Discrete Times

We now examine the case when the stock pays its dividend not at all times t, but only at times
0 < t1 < t2 < · · · < tn < T .
At each time tj the stock loses value in height of the dividend that is paid. If we assume that the
dividend paid at time tj is ajStj , i.e., the dividend rate is aj , then stock price will go down by that
amount.
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To work with these assumptions, we need to know how to work with continuous time processes
that possess a jump at some time t∗.

Definition 14.1.

Let t 7→ f(t) be a function of time t, let t∗ be a fixed time, and asume that lim
t↑t∗

f(t) exists. We

write
f(t∗−) := lim

t↑t∗
f(t)

and call this expression the left sided limit of f at t∗. We often use subscriptsXt rather than
parenthesized time arguments for stochastic processesXt(ω) and writeXt∗− forX(t∗−). �

We must modify the assumptions 14.1 of Chapter 14.1 (Continuously Paying Dividends) accord-
ingly.

Assumption 14.2. Unless stated otherwise, we assume that we have a generalized Black–Scholes
market as defined in Definition 13.1 (Generalized Black–Scholes market model) on p.243, with the
following modifications.

(1) The stock pays its dividend only at the discrete times 0 < t1 < t2 < · · · < tn < T .
The dividend rate at time tj is denoted by aj = aj(ω) We assume that those rates
are Ft–adapted in the sense that each aj is Ftj–adapted. We further assume that
0 ≤ aj ≤ 1 since the dividend cannot exceed the value of the stock. We write t0 := 0
and tn+1 := T , and a0 := an+1 := 0 in case that no dividend is paid at those dates.

(2) We assume that St is a generalized geometric Brownian motion for each interval
[tj , tj+1[. The initial condition absorbs the drop in stock price:

dSt = αtSt dt + σtSt dWt, where αt, σt ∈]0,∞[ ;(14.12)
Stj = Stj− − ajStj− .(14.13)

(4) All other items remain unchanged. In particular, this applies to the following:
• discount process Dt •market price of risk process Θt • Girsanov measure P̃
• W̃t = Wt +

∫ t
0 Θudu, which becomes a Brownian motion under P̃ . Thus,

dDt = −RtDt dt ; D0 = 1 ,(14.14)

Θt =
αt −Rt
σt

,(14.15)

dW̃t = dWt + Θt dt ; W̃0 = 0 . �(14.16)

Remark 14.2.
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(1) Since the dividend rate at tj is aj , the dividend paid on a share of stock is ajStj−. Thus stock
price Stj after the dividend payment is the difference

(14.17) S(tj) = S(tj−) − ajS(tj−) = (1− aj)S(tj−) .

(2) If aj = 0, then no dividend is paid, and Stj = Stj−.
(3) If aj = 1, then the full value of the asset is paid, and St = 0 for all t ≥ tj . �

Proposition 14.3.

The value of a self–financing portfolio has the same dynamics as in the case of no dividends or a
continuously paid dividend. See Proposition 14.1 on p.266

dVt = RtVt dt + YtStσt
(
Θt dt + dWt

)
= RtVt dt + YtStσt dW̃t ,(14.18)

d
(
DtVt

)
= YtDtStσt dW̃t .(14.19)

In particular, discounted portfolio value DtVt is a P̃–martingale, and risk–neutral validation still
applies:

DtΠt(X ) = DtVt = Ẽ
[
DTX | Ft

]
for 0 ≤ t ≤ T ,

thus Πt(X ) = Ẽ
[
D−1
t DTX | Ft

]
= Ẽ

[
e−
∫ T
t RuduX | Ft

]
for 0 ≤ t ≤ T .

PROOF: ? For the proof see SCF2 ch.5.5.2. �

14.3 Constant Dividend Rates

First the continuous time case.

Assumption 14.3.

We not only assume that a := At(ω) is constant in t and ω, but that the same is true for
r := Rt, α := αt, σ := σt. In other words, we have a classical Black–Scholes market as in
Chapter 10 (Black–Scholes Model Part I: The PDE). �

In the case of no divdidends we had seen in Subchapter 10.5 (The Black–Scholes PDE for a European
Call) that the pricing function of a European call is

c(t, x) = xN
(
d+(T − t, x)

)
− Ke−r(T−t)N

(
d−(T − t, x)

)
, 0 ≤ t < T, x > 0,(14.20)

where

d±(τ, x) =
1

σ
√
τ

[
log

x

K
+

(
r ± σ2

2

)
τ

]
,(14.21)

Here is the main result in the case of continuous and constant dividend payments with rate a.
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We derived in Chapter 13.4 (Risk–Neutral Pricing of a European Call) the formula

π(t, x) = xN
(
d+(τ, x)

)
− e−rτKN

(
d−(τ, x)

)
.

for the pricing function of a European call. See Theorem 13.2 on p.254. This was for a stock that
does not pay a dividend. We now derive the corresponding formula for the the case of a constant
dividend rate a. The proof is very similar to that of the no dividend case. Accordingly, there will be
quite a few references to Chapter 13.4.
To achieve our goal, let 0 ≤ t ≤ T be a fixed time, and

τ := T − t, r′ := r − a, Y := − W̃T − W̃t√
τ

,(14.22)

h(t;x, y) := e−rτ
(
x · exp

{
−σ
√
τy +

(
r′ − σ2

2

)
τ

}
− K

)+

.(14.23)

Note that Y is standard normal w.r.t. P̃ since W̃t, t ≥ 0, is a P̃–Brownian motion.
We next adapt Lemma 13.1, Lemma 13.2, Lemma 13.3 to the presence of a nonzero dividend rate.

Lemma 14.1. With the above definitions we can express the risk–neutral valuation formula for a European
call as follows.

Ẽ
[
e−rτ (ST −K)+

∣∣Ft ] = Ẽ
[
h(t;St, Y )

∣∣Ft ](14.24)

PROOF: According to (13.10) on p.246,

St = S0 exp

{∫ t

0
σs dW̃s +

∫ t

0

(
(Rs −As) −

1

2
σ2
s

)
ds

}
= S0 exp

{
σ W̃t +

(
r′ − 1

2
σ2

)
t

}
.

For t = T , we obtain similarly that ST = S0 exp
{
σ W̃T +

(
r′ − 1

2 σ
2
)
T
}

. Thus

ST
St

= exp

{[
σ W̃T +

(
r′ − 1

2
σ2

)
T

]
−
[
σ W̃t +

(
r′ − 1

2
σ2

)
t

]}
= exp

{
σ (W̃T − W̃t) +

(
r′ − 1

2
σ2

)
(T − t)

}
,

thus

ST = St · exp

{
σ (W̃T − W̃t) +

(
r′ − 1

2
σ2

)
(T − t)

}
= St · exp

{
−στ −(W̃T − W̃t)

τ
+

(
r′ − 1

2
σ2

)
(T − t)

}
(14.22)

= St · exp

{
−στ Y +

(
r′ − 1

2
σ2

)
(T − t)

}
.

It follows from that equation for ST that

h(t;St, Y )
(14.23)

= e−rτ
(
St · exp

{
−σ
√
τY +

(
r′ − σ2

2

)
τ

}
− K

)+

= e−rτ (ST − K)+.
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We apply conditional expectations Ẽ[· · · | Ft] to both sides and assertion (14.24) follows. �

Our goal is to find a function (t, x) 7→ π(t, x) such that Πt(X ) = π(t, St), i.e.,

π
(
t, St

)
= Ẽ

[
e−r(T−t)(ST −K)+

∣∣Ft ] .(14.25)

Lemma 14.1 allows us to reformulate this problem as follows: Let h(t;x, y) be the function given in
formula (14.23). We want to find a function (t, x) 7→ π(t, x) such that

π(t, St) = Ẽ
[
h(t;St, Y )

∣∣Ft ] .(14.26)

The next lemma shows how to define this function c(t, x).

Lemma 14.2. Let

π(t, x) := Ẽ[h(t;x, Y )] ,(14.27)

where h(t;x, y) is the function defined in (14.23). Then π(t, St) satisfies (14.26) and hence, also the risk–
neutral pricing formula

π(t, St) = Ẽ
[
e−rτ (ST −K)+

∣∣Ft ] .(14.28)

PROOF: We fix 0 ≤ t ≤ T . Since St is Ft–measurable and Y = −W̃T−W̃t√
τ

is, as a function of the

Brownian increment W̃T − W̃t, independent of Ft, it follows for each tixed 0 ≤ t ≤ T from the
Independence Lemma (Lemma 5.7 on p.126) 56 that

π(t, St) = Ẽ
[
h(t;St, Y )

∣∣Ft ] .
This proves the validity of (14.26). We apply Lemma 14.1, and (14.28) follows. �

We have shown the following. If X is a European call which is based on a stock which pays a
continuous dividend at the rate a, then the function π(t, x) = Ẽ[h(t;x, Y )] allows us to price that
option, at time t, by means of the risk–neutral pricing formula

Πt(X ) = π
(
t, St

)
= Ẽ

[
e−r(T−t)(ST −K)+

∣∣Ft ] .(14.29)

It follows from the definition of h(t;x, y) given in (14.23) that

π(t, x) = Ẽ[h(t;x, Y )] = Ẽ

[
e−rτ

(
x · exp

{
−σ
√
τY +

(
r′ − σ2

2

)
τ

}
− K

)+
]
.

This is an ordinary expected value of a function which depends on ω only by means of the P̃–
standard normal random variable Z. This we have learned to work with and we are able to obtain

56 There we wrote h(x, y) instead of h(t;x, y),
and g(x) = E[h(x, Y )] instead of π(t, x) = Ẽ[h(t;x, Y )].
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a concrete representation of π(t, x) by computing this expected value. We redefine the symbols
d−(τ, x) and d+(τ, x), defined in Theorem 10.1 on p.215:

d±(τ, x) =
1

σ
√
τ

[
log

x

K
+

(
r ± σ2

2

)
τ

]
,

to take into account the dividend rate a, as follows:

d∗±(τ, x) :=
1

σ
√
τ

[
log

x

K
+

(
(r − a)± σ2

2

)
τ

]
,(14.30)

Lemma 14.3. The pricing function π(t, x) for a European call option on a stock which pays a constant,
continuous dividend rate a, is

π(t, x) = xe−aτ N
(
d∗+(τ, x)

)
− e−rτKN

(
d∗−(τ, x)

)
.(14.31)

PROOF: It is true for any random variable U with a P̃–density fU (u), and for any deterministic

(measurable) function u 7→ ϕ(u), that Ẽ[ϕ(U)] =
∞∫
−∞

ϕ(u)fU (u) du.

We apply this to the random variable Y which has density fY (y) = 1√
2π
e−y

2/y since it is standard
normal, and to the function h(t;x, Y ) of Y . We obtain

π(t;x)
(14.27)

= Ẽ[h(t;x, Y )] =

∫ ∞
−∞

h(t;x, y)
1√
2π

e−
y2

2 dy

(14.23)
=

1√
2π

∫ ∞
−∞

e−rτ
(
x · exp

{
−σ
√
τy +

(
r′ − σ2

2

)
τ

}
− K

)+

e−
y2

2 dy .

Since the function u 7→ log(u) is strictly increasing: u < u′ ⇔ log u < log u′, and since always
e−rτ > 0, the integrand is positive (i.e., not zero) if and only if

log x +

{
−σ
√
τy +

(
r′ − σ2

2

)
τ

}
> logK

⇔ log x − logK +

(
r′ − σ2

2

)
τ > σ

√
τy

⇔ σ
√
τy < log

( x
K

)
+

(
r′ − σ2

2

)
τ

⇔ y <
1

σ
√
τ

[
log
( x
K

)
+

(
r′ − σ2

2

)
τ

]
(14.30)

= d∗−(τ, x) .

(14.32)

Therefore,

π(t, x) =
1√
2π

∫ d∗−(τ,x)

−∞
e−rτ

(
x exp

{
−σ
√
τy +

(
r′ − 1

2
σ2

)
τ

}
− K

)
e−

1
2
y2
dy .

Since r′ = r − a, and thus,

e−rτ x e−σ
√
τy+ (r′− 1

2
σ2)τe−

y2

2 = e−rτ x e
−σ
√
τy+

(
r−a− σ2

2

)
τ
e−

y2

2

= xe−aτ e−rτ e−σ
√
τyerτ e−

σ2

2
τe−

y2

2 = xe−aτ e−
σ2

2
τe−σ

√
τy e−

y2

2 , = xe−aτ e−
1
2(y+σ

√
τ)

2

,
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it follows that

π(t, x) =
1√
2π

∫ d∗−(τ,x)

−∞
xe−aτ e−

1
2(y+σ

√
τ)

2

dy − 1√
2π

∫ d∗−(τ,x)

−∞
e−rτKe−

1
2
y2
dy

=
xe−aτ√

2π

∫ d∗−(τ,x)

−∞
e−

1
2(y+σ

√
τ)

2

dy − e−rτKN
(
d∗−(τ, x)

)
.

The last equation holds, because N(α) = 1√
2π

α∫
−∞

e−
1
2
y2
dy is true for all α ∈ R.

In the last integral, we substitute u := y + σ
√
τ . Then du = dy, and the integration bounds change

from −∞ and d∗−(τ, x) to −∞ and d∗−(τ, x) + σ
√
τ . One easily sees from (14.30) that the formula

d∗+(τ, x) = d∗−(τ, x) + σ
√
τ which had been established previously for the case a = 0 remains valid,

and it follows that

π(t, x) =
xe−aτ√

2π

∫ d∗−(τ,x)+σ
√
τ

−∞
exp

{
−z

2

2

}
dz − e−rτKN

(
d∗−(τ, x)

)
= xe−aτ N

(
d∗+(τ, x)

)
− e−rτKN

(
d∗−(τ, x)

)
.

We have proven formula (14.31). �

We have collected the necessary tools to prove the next proposition.

Proposition 14.4. Under the assumptions 14.3, the pricing process Vt for European call can be written as a
function c(t, St) of time t and stock price St where c(t, x) is the following function:

c(t, x) = xe−aτN
(
d∗+(τ, x)

)
− Ke−rτN

(
d∗−(τ, x)

)
.(14.33)

Here 0 ≤ t < T, x > 0, τ = T − t and, differently from 14.21,

d±(τ, x) =
1

σ
√
τ

[
log

x

K
+

(
r − a± σ2

2

)
τ

]
.(14.34)

As usual N is the cumulative standard normal distribution

N(y) =
1√
2π

∫ y

−∞
e−

z2

2 dz =
1√
2π

∫ ∞
−y

e−
z2

2 dz.(14.35)

PROOF: Follows from Lemma 14.1, Lemma 14.2, and Lemma 14.3. �

Now we switch to discrete time dividend payments.

Assumption 14.4. We replace the assumptions 14.3 with the following.

(a) We assume that the processes r := Rt, α := αt, σ := σt, are constant in t and ω.

In addition, we now also have finite list of discrete time dividend rates aj , as we had defined
in the assumptions 14.2 of Subchapter 14.2 (Dividends Paid at Discrete Times).

(b) We assume that those rates aj are deterministic.
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Note that (a) implies that we have a classical Black–Scholes market as in Chapter 10 (Black–Scholes
Model Part I: The PDE). �

Under these assumption we will derive, for a European call, the price Π0(X ) at time zero.

Proposition 14.5.

Under the assumptions 14.4, the price at time zero for a European call is

Π0(X ) = S0

n∏
j=0

(1 − aj+1)N(d∗∗+ ) − Ke−r(T )N(d∗∗− ) ,(14.36)

where d∗∗± =
1

σ
√
T

log
S0

K
+

n−1∑
j=0

log(1 − aj+1) +

(
r ± σ2

2

)
T

 .(14.37)

As usual, N is the cumulative standard normal distribution

(14.38) N(y) =
1√
2π

∫ y

−∞
e−

z2

2 dz =
1√
2π

∫ ∞
−y

e−
z2

2 dz.

For the proof see SCF2 ch.5.5.1. �

Remark 14.3. A similar formula holds for the call price at times t between 0 and T . In those cases,
one includes only the terms (1 − aj+1) corresponding to the dividend dates between times t and
T . �

Remark 14.4. The software suggested earlier to calculate the parameters for Black–Scholes contract
functions also handles the case of a constant, continuous dividend:

a. Magnimetrics Excel implementation:
https://magnimetrics.com/black-scholes-model-first-steps/

b. Drexel U Finance calculator:
https://www.math.drexel.edu/~pg/fin/VanillaCalculator.html

b. EasyCalculation.com:
https://www.easycalculation.com/statistics/black-scholes-mode.php �

14.4 Forward Contracts and Zero Coupon Bonds

We now assume that a dividend is NOT paid for the stock, thus discounted stock priceDtSt
is a martingale under the Girsanov measure P̃ and P̃ is a genuine risk–neutral measure. We
also assume that T̄ is a time so large, that all securities we consider in this chapter will have
an expiration date before T̄ .

When we speak of having bought a $100 zero–coupon bond with a maturity date T , then we mean
that we bought a bond which will pay us $100 at time T without paying any interest beforehand.
We will follow SCF2 and think of this as owning 100 zero coupon bonds which pay one dollar each
at time T .
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Definition 14.2.

• A zero–coupon bond is a contingent claim with contract value X = 1 at time T . We
call T the maturity date of the zero–coupon bond.

• We write
B(t, T ) (0 ≤ t ≤ T ≤ T̄ ) ,

for the price of such a zero–coupon bond at time t. �

Proposition 14.6.

If P̃ is a risk–neutral probability, then DtB(t, T ) is a P̃–martingale, and

(14.39) B(t, T ) :=
1

Dt
Ẽ[DT | Ft], for 0 ≤ t ≤ T ≤ T̄.

PROOF: Formula (14.39) is risk–neutral validation for a contingent claim with constant value 1 at
T . Thus,

DtB(t, T ) = Ẽ[DT | Ft]

is a martingale, since conditioning with respect to Ft is done on an ordinary random variable which
is constant in t. �

We modify Definition 10.5 (Forward price Fort) on p.219 by including the expiration date and price
process of the underlying risky asset into the symbol of the forward price.

Definition 14.3 (Forward price ForS(t, T )).

Given is a forward contract with a strike price K (set at time 0) at expiration date T .

ForS(t, T ), the T–forward price of the underlying asset with price S = St at time t,

is that strike price, re-evaluated at t, for which the forward contract would have value zero
at time t. �

Note that this definition of a forward price coincides with the one given previously in Section
10.6 (The Greeks and Put–Call Parity). See Definition 10.5 (Forward price Fort) on p.219. We just
changed the symbol from Fort to ForS(t, T ), since inclusion of expiration time and stock price into
the notation is better suited to relate the forward price to the price of a zero–coupon bond.

The following is SCF2, Theorem 5.6.2.

Theorem 14.2. ?
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Assume that there is unlimited liquidity in the market for zero–coupon bonds with maturity dates
before T̄ . Let X be a forward contract with expiration date T ≤ T̄ for an underlying asset with price
St. Then the following holds, regardless of the strike price of that contract.
The T–forward price Fort at time t is

(14.40) ForS(t, T ) =
St

B(t, T )
for 0 ≤ t ≤ T ≤ T̄.

PROOF: The proof given here is the one to be found in SCF2 Remark 5.6.3.
We apply risk–neutral validation to the forward contract. Since it has strike price K, its value at
time T is X = ST −K. Thus,

Πt(X ) =
1

Dt
Ẽ[DT

(
ST −K

)
|Ft]

=
1

Dt
Ẽ[DTST |Ft] −

K

Dt
Ẽ[DT |Ft] .(A)

Note that DtSt is a martingale under risk–neutral probability P̃ , and so is DtΠt(X ′), if Πt(X ′) is the
pricing function of a claim with contract value X ′ = 1, i.e., of a zero–coupon bond with maturity
T . Note that DT = DT · 1 = DTX ′, and that Πt(X ′) = B(t, T ) by the very definition of B(t, T ) (and
Proposition 14.6). It follows from (A) that

Πt(X ) =
1

Dt
DtSt −

K

Dt
DtB(t, T ) = St −KB(t, T ).

The forward price ForS(t, T ) was defined as that strike priceK that would make the foward contract
a fair deal for both parties at time t, i.e., that would result in a zero value for the price Πt(X ) of that
contract at time t. Thus,

0 = St − ForS(t, T )B(t, T ) ,

and we have obtained (14.40). �

14.5 Exercises for Ch.14

Exercise 14.1. Theorem 14.2 on p.275 was done by means of a risk–neutral measure argument. In
SCF2 a proof of this theorem (Theorem 5.6.2 on p.241 in the book) is given by means of a no arbitrage
allowed argument, but only case 1 where the “seller” of the forward contract is not allowed to make
a profit is covered in detail.
The last four lines of the proof indicate what must be done for the proof of case 2: The seller cannot
have a loss: »..... If it is negative, the agent could instead have taken the opposite position .....«
Give a detailed proof of that case 2 by modifying the proof of case1. �
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15 Stochastic Methods for Partial Differential Equations

15.1 Stochastic Differential Equations

Definition 15.1 (Stochastic differential equation). Let Wt, t ≥ 0, be a Brownian motion on a filtered
probability space (Ω,F,Ft, P ) and let

β : [0, T ]× R → R, (t, x) 7→ β(t, x),

γ : [0, T ] → R, (t, x) 7→ γ(t, x),

be two (measurable) deterministic functions. Given are a stochastic differential and initial condition

dXt = β
(
t,Xt

)
dt + γ

(
t,Xt

)
dWt,(15.1)

Xt0 = x0, where 0 ≤ t0 ≤ T and x0 ∈ R .(15.2)

We call (15.1) a stochastic differential equation (short: SDE) with drift coefficient β and
diffusion coefficient γ. We call a processX = (Xt)t0≤t≤T that satisfies both (15.1) and (15.2)
a solution of the SDE (15.1) for the initial condition (15.2). �

A word on notation. We will often write Xu = a for the initial condition. This does not look
as intuitive as Xt0 = x0, but we often will write Xu,a

t for the SDE solution with initial condition
Xu = a, and that is more readable than Xt0,x0

t .

Remark 15.1. Note that the differential dYt = Θtdt + ∆tdWt of an Itô process Yt is more general
than that given by (15.1), since (t, ω) 7→ Θt(ω) and (t, ω) 7→ ∆t(ω) are merely adapted Ft–processes,
whereas β(t,Xt(ω)) and γ(t,Xt(ω)) are functions of t and Xt(ω), not just of ω. �

Fact 15.1. The SDE (15.1), with an intial condition Xu = a, possesses a unique solution

(15.3) Xu,a = (Xu,a
t )u≤t≤T

under very general conditions on drift β(t, x) and diffusion γ(t, x). �

It is absolutely OK if you skip the following technical note.

Note 15.1 (Technical note on the Markov property of SDE solutions). ?

For 0 ≤ u ≤ T and a ∈ R, let Xu,a be the unique SDE solution of Fact 15.1. Let

(15.4) P (u, a, t, B) := P{Xu,a
t ∈ B} (u ≤ t ≤ T,B ∈ B1) .

Then (u, a) 7→ P (u, a, t, B) is measurable in u and a, and B 7→ P (u, a, t, B) is a probability measure
on the Borel σ–algebra. In addition, it satisfies the so–called Chapman–Kolmogorov equations.
57 Such a function is customarily called a Markov transition function, a transition probability
function, or a transition probability (on R).

57See Definition 15.5 on p.290 of the optional subchapter 15.4 (Markov Processes With Transition Probability Functions).
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Let us ignore the role of the SDE solutions Xu,a
t in the definition of P (·, ·, ·, ·) and just think of it as

a function of three real numbers and a Borel set as arguments. If Z = Z(ω) is any (real–valued)
random variable, then it is perfectly fine to plug in Z(ω) for the second argument and examine the
properties of the random variable ω 7→ P (t0, Z(ω), t1, B

′), just as long as t0 ≤ t1 ≤ T and B′ is a
Borel set. Let X = X0,x be the SDE solution for X0 = x.
Assume in all that follows that 0 ≤ u ≤ t ≤ T and B ∈ B1. Then it can be proven that

(15.5) P{X0,x
t ∈ B | Fu} = P{X0,x

t ∈ B | X0,x
u } = P (u,X0,x

u , t, B) .

For different x, x′ ∈ R, consider the SDE solutions (X0,x
t )t and (X0,x′′

t )t. If ω ∈ Ω happens to be
such that X0,x

u (ω) = X0,x′
u (ω), then P

(
u,X0,x

u (ω), t, B
)

= P
(
u,X0,x′

u (ω), t, B
)
. By (15.5),

P{X0,x
t ∈ B | Fu} = P{X0,x′

t ∈ B | Fu} , and P{X0,x
t ∈ B | X0,x

u } = P{X0,x′

t ∈ B | X0,x′
u } .

In that sense it does not matter where the process had started when examining what happens at a
future time, and it is customary to drop the superscripts and write Xt for X0,x

t . We obtain

(15.6) P{Xt ∈ B | Fu} = P{Xt ∈ B | Xu} = P (u,Xu, t, B) .

We often follow SCF2 notation and write

(15.7) P u,a{Xt ∈ B} := P (u, a, t, B)
(15.4)
= P{Xu,a

t ∈ B} .

Recall from Definition 4.25 (Expected value of a random variable) on p.85 the connection between a
probability P and the expectation E. If Z is a non–negative or P–integrable random variable, then

E[Z] =

∫
ZdP =

∫
Z(ω)P (dω) .

Also recall from Definition 4.13 (Image measure) on p.68 the connection between P and the image
probability (distribution) PZ of the random variable Z, PZ(B) = P{Z ∈ B}. Also recall Theorem
4.16 on p.96 which states for Borel measurable functions g(z)(z ∈ R) of a random variable Z,∫

Ω
g
(
Z(ω)

)
P (dω) =

∫
R
g(z)PZ(dz) .

In our setting, P (u, a, t, B) = P u,a{Xt ∈ B} states that P (u, a, t, ·) = P u,aXt
(the distribution of Xu,a

t ).
Since P u,a(t, ·) is a probability measure, it comes with a corresponding expectation Eu,a;t. We limit
ourselves to random variables h(Xt) for Borel measurable functions h(x). Since a formula that refers
to h(Xt) tells us implicitly about t, we can abuse notation and drop t from Eu,a;t and simply write
Eu,a

[
h(Xt)

]
to indicate that the probability measure associated with that expectation is P u,a(t, ·).

We apply (15.7) twice and obtain

Eu,ah(Xt) =

∫
Ω
h ◦Xt(ω)P u,a(dω) =

∫
R
h(x)P u,aXt

(dx)

(15.7)
=

∫
R
h(x)PXu,a

t
(dx)

(15.7)
=

∫
R
h(x)P (u, a, t, dx) .

(15.8)

The second equation is the definition of the image of P u,a under the random variable Xt, the third
equation is the relation P u,a{Xt ∈ B} = P{Xu,a

t ∈ B}, which follows from (15.7). In terms of
expectations, (15.6) becomes

(15.9) E{h(Xt) | Fu} = E{h(Xt) | Xu} =

∫
R
h(x)P (u,Xu, t, dx) .
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We obtain a formula without reference to the transition probability by combining (15.8) and (15.9)
and replacing the real number a with the real number Xu(ω) and then dropping as usual, the refer-
ence to ω:

(15.10) Eu,Xuh(Xt) = E{h(Xt) | Fu} = E{h(Xt) | Xu} . �

Remark 15.2. This remark is meant to provide more intuition of a Markov process as one, for which
its future development does not depend on the past, only on the present. See Proposition 6.2 on
p.129.

(a) In the special case where h(x) = 111B(x) for some Borel set B, (15.10) reads

P u,Xu{Xt ∈ B} = P{Xt ∈ B | Fu} = P (u,Xu, t, B) . = P{Xt ∈ B | Xu} .

(b) We recall that Xt was just a convenience symbol which actually denotes X0,x
t , the PDE solution

which starts at time 0 in an arbitrary state x. If we happen to know that Xu(ω) = a, i.e., we
condition on Xu = a, then we obtain

P u,a{X0,x
t ∈ B} = P{X0,x

t ∈ B | Fu} = P{X0,x
t ∈ B | X0,x

u = a} = P (u, a, t, B) .

(c) Since the expression P (u, a, t, B) does not depend on x, 58 the following must be true. No
matter where the process was at t = 0, the probability of ending up in the set B (and thus, the
entire distribution of Xt, since B ∈ B1 was arbitrary), only depends on knowing that Xu = a,
i.e., knowing the state of the process at time u. �

The following is SCF2 Theorem 6.3.1.

Theorem 15.1. The original expectation E[. . . ] of (Ω,F,Ft, P ) is intimately related to the expectations
Eu,a[. . . ] belonging to the initial conditions (u, a) by means of conditioning:

(15.11) Eu,Xu
[
h(Xt)

]
= E{h(Xt) | Xu} = E{h(Xt) | Fu}.

PROOF: This is formula (15.10) of the preceding technical notes. �

The following is SCF2 Theorem 6.4.1.

Theorem 15.2 (Feynman–Kac Theorem).

58see the derivation of (15.6) in Remark 15.1 (Technical note on the Markov property of SDE solutions) above
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Let T > 0. We examine again the SDE with differential (15.1) and initial conditions (15.2),

dXt := β
(
t,Xt

)
dt + γ

(
t,Xt

)
dWt; Xt0 = x0 for 0 ≤ t0 < T, x0 ∈ R .(15.12)

Let x 7→ Φ(x) be Borel–measurable such that Et,x[Φ
(
XT

)
] <∞, for all 0 ≤ t ≤ T and x ∈ R.

Let (t, x) 7→ f(t, x) be the function

f(t, x) := Et,x[Φ
(
XT

)
](15.13)

Then f(t, x) is a solution to the PDE plus terminal condition

ft(t, x) +β(t, x)fx(t, x) +
1

2
γ2(t, x)fxx(t, x) = 0 ,(15.14)

f(T, x) = Φ(x) for all x.(15.15)

You can find an outline of the proof in the SCF2 text. �

The following is SCF2 Theorem 6.4.3.

Theorem 15.3 (Discounted Feynman–Kac).

Let T > 0. We examine again the SDE with differential (15.1) and initial conditions (15.2),

dXt := β
(
t,Xt

)
dt + γ

(
t,Xt

)
dWt; Xt0 = x0 for 0 ≤ t0 < T, x0 ∈ R) .(15.16)

Let x 7→ Φ(x) be Borel–measurable such that Et,x[Φ
(
XT

)
] <∞, for all 0 ≤ t ≤ T and x ∈ R.

Let (t, x) 7→ f(t, x) be the function

f(t, x) := Et,x[e−r(T−t)Φ
(
XT

)
](15.17)

Then f(t, x) is a solution to the following PDE plus terminal condition

ft(t, x) +β(t, x)fx(t, x) +
1

2
γ2(t, x)fxx(t, x)− rf(t, x) = 0,(15.18)

f(T, x) = Φ(x) for all x.(15.19)

You can find an outline of the proof in the SCF2 text. �

Remark 15.3. The two Feynman–Kac theorems are general theorems which relate the solution of an
SDE to that of an associated PDE + terminal condition. In stochastic finance we do option pricing
by means of risk–neutral validation, and we need a suitable setup in the model. Here is a very
important case.
• The SDE describes the dynamics dSt = . . . of stock price.
• The PDE solution f(t, x) will be the arbitrage free price Πt(X ), at time t, of a simple claim
X = Φ(ST )), given that stock price at t is St = x,

• The terminal condition f(T, x) = Φ(x) will be the contract function of X .
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• f(t, x) = Et,x[e−r(T−t)Φ
(
XT

)
] is guaranteed to be the solution of the PDE

ft + βfx + 1
2γ

2fxx − rf = 0, but what is that good for if E[...] is not risk neutral measure,
and Et,St [e−r(T−t)Φ

(
XT

)
] is NOT the arbitrage free price Πt(X ) of the option?

So the following must be done: Find the market price of risk process Θt to find P̃ and W̃t and
rewrite the dynamics

dSt = β(t, St) dt + γ(t, St) dWt,

with new coefficients β′ and γ′, and with the P̃– Brownian motion W̃t:

dSt = β′(t, St) dt + γ′(t, St) dW̃t.

Now (discounted) Feyman Kac gives you the correct PDE

ft(t, x) +β′(t, x)fx(t, x) +
1

2
γ′2(t, x)fxx(t, x)− rf(t, x) = 0 for 0 ≤ t0 < T, x0 ∈ R .

f(T, x) = Φ(x) for all x ,

for which the solution, f(t, x) = Ẽt,x[e−r(T−t)Φ
(
XT

)
], does the desired: Πt(X ) = f(t, St).

Examples for this are SCF2 Example 6.4.4 - Options on a geometric Brownian motion, and the inter-
est rate models of SCF2 Chapter 6.5. �

15.2 Interest Rates Driven by Stochastic Differential Equations

Given is a filtered probability space (Ω,F,Ft, P ) with a risk–neutral probability P̃ and an Ft–
adapted Brownian motion W̃ under P̃ .
We assume we have a market model in which the interest rate Rt(ω) is a stochastic process, but
not of the most general kind, i.e., just Ft–adapted and nothing more. We rather assume that Rt is
modeled by a stochastic Differential Equation

dRt = β
(
t, Rt

)
dt + γ

(
t, Rt

)
dW̃t.(15.20)

Since interest rates for short–term borrowing are modeled by such an SDE we speak of a short–rate
model for Rt. Very simple models for fixed income markets fall into this category.
We recall from Definition 7.4 (Discount process) on p.161, that

Bt = exp

{∫ t

0
Rs ds

}
is the money market account price process and

Dt =
1

Bt
= exp

{
−
∫ t

0
Rs ds

}
is the discount process of the bank account.
Clearly, the dynamics of those processes are

dDt = −RtDt dt, dBt = BtRt dt.
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We saw in Chapter 14.4 (Forward Contracts and Zero Coupon Bonds) that a zero–coupon bond with
maturity date T is a contingent claim with constant contract value VT = 1 and that the (arbitrage
free) price B(t, T ) at time 0 ≤ t ≤ T is, under risk–neutral probability P̃ ,

B(t, T ) =
1

Dt
Ẽ[DT | Ft] = Ẽ[e−

∫ T
t Rs ds | Ft] .(15.21)

Definition 15.2 (Yield).

We define the zero–coupon bond yield between times t and T as

Y (t, T ) := − 1

T − t
logB(t, T ) �

Remark 15.4. Formula (15.2) is equivalent to

B(t, T ) = e−Y (t,T ) (T−t).(15.22)

In other words, Y (t, T ) is that constant rate of continuously compounding interest between times t
and T which corresponds to the price B(t, T ) of a zero–coupon bond maturing at T . �

Proposition 15.1.

Given the dynamics of (15.20) for the interest rate Rt, one can write B(t, T ) = f(t, Rt). Here
f(t, x) is a function of time t and x ≥ 0 which satisfies the PDE plus terminal condition

ft(t, x) + β(t, x) fx(t, x) +
1

2
γ2(t, x) fxx(t, x) = xf(t, x) ,(15.23)

f(T, x) = 1 for all x.(15.24)

For the proof see SCF2 Chapter 6.5. �

15.3 Stochastic Differential Equations and their PDEs in Multiple Dimensions

As in Chapter 13.6 (Multidimensional Financial Market Models), the material discussed here can
be generalized to SDEs, in which an m–dimensional processes ~Xt =

(
X

(1)
t , . . . , X

(m)
t

)
is driven by

a d–dimensional Brownian motion ~Wt =
(
W

(1)
t , . . . ,W

(d)
t

)
. However, the notation is complicated

enough when we restrict ourselves to a two dimensional process ~Xt =
(
Xt, . . . , Yt

)
which is driven

by a 2–dimensional Brownian motion ~Wt =
(
W

(1)
t ,W

(2)
t

)
. Doing so will drastically reduce the

amount of superscripts you will encounter.

Definition 15.3. Let ~Wt =
(
W

(1)
t ,W

(2)
t

)
, t ≥ 0, be a two dimensional Brownian motion on a filtered

probability space (Ω,F,Ft, P ), and let

β1, β2, γ11, γ12, γ21, γ22, : [0, T ]× R2 → R ,
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be six (measurable) deterministic functions βi(t, x, y), γij(t, x, y), where i, j = 1, 2.
Given are the stochastic differentials and initial conditions

dXt = β1

(
t,Xt, Yt

)
dt + γ11

(
t,Xt, Yt

)
dW

(1)
t + γ12

(
t,Xt, Yt

)
dW

(2)
t ,

dYt = β2

(
t,Xt, Yt

)
dt + γ21

(
t,Xt, Yt

)
dW

(1)
t + γ22

(
t,Xt, Yt

)
dW

(2)
t ,

(15.25)

Xt0 = x0 , Yt0 = y0 , where 0 ≤ t0 ≤ t ≤ T and x0, y0 ∈ R .(15.26)

We call (15.25) a stochastic differential equation (short: SDE) with drift vector ~β =(
β1, β2

)
, and diffusion matrix γ∗∗ =

(
γij
)
ij

, where i = 1, 2, j = 1, 2.

We call a process ~X = (Xt, Yt)t0≤t≤T that satisfies both (15.25) and (15.26) a solution of the
SDE (15.25) for the initial condition (15.26). �

Similar to the onedimensional case we often define ~Xt = (Xt, Yt), ~a = (a, b), and write

~Xu = ~a , i.e., Xu = a , Yu = b

for the initial condition. Again, this is done to improve readability of superscripts.

Fact 15.2. The SDE (15.25), with an intial condition ~Xu = ~a, possesses a unique solution

(15.27) ~Xu,~a =
(
~Xu,~a
t

)
u≤t≤T

under very general conditions on drift vector ~β = (β1, β2) and diffusion matrix γ∗∗ =
(
γij
)
ij

. �

Note 15.1 on p.277 generalizes to the multidimensional case. It follows next. Feel free to skip this
note. If you study it, be sure to remember the concepts discussed in Note15.1.

Note 15.2 (Technical note on the Markov property of SDE solutions). ?

For 0 ≤ u ≤ T and a ∈ R, let ~Xu,~a be the unique SDE solution of Fact 15.2. Let

(15.28) P (u,~a, t, B) := P{ ~Xu,~a
t ∈ B} (u ≤ t ≤ T,B ∈ B2) .

Then (u,~a) 7→ P (u,~a, t, B) is measurable in u and ~a, B 7→ P (u,~a, t, B) is a probability measure
on B2, and P (·, ·, ·, ·) satisfies the Chapman–Kolmogorov equations. 59 We call such a function a
Markov transition function, a transition probability function, or a transition probability (on R2).

As in the onedimensional case, we ignore the role of the SDE solutions ~Xu,~a
t , and we simply con-

sider P (·, ·, ·, ·) as a function of two time parameters, a two dimensional vector, and a Borel set as
arguments. If ~Z = ~Z(ω) is a twodimensional random vector, then it is perfectly fine to plug in ~Z(ω)

for the second argument and examine the properties of the random variable ω 7→ P (t0, ~Z(ω), t1, B
′),

just as long as t0 ≤ t1 ≤ T and B′ is a Borel set. Let ~X = ~X0,~x
t be the SDE solution for ~X0 = ~x.

59As in the onedimensional case, we refer you to Definition 15.5 on p.290 of the optional subchapter 15.4.
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Assume in all that follows that 0 ≤ u ≤ t ≤ T and B ∈ B2. Then it can be proven that

(15.29) P{ ~X0,~x
t ∈ B | Fu} = P{ ~X0,~x

t ∈ B | ~X0,~x
u } = P (u, ~X0,~x

u , t, B) .

Since one and the same process ~X0,~x
t occurs in all four places of (15.29), it is customary to drop the

superscripts and write ~Xt for ~X0,~x
t . We obtain

(15.30) P{ ~Xt ∈ B | Fu} = P{ ~Xt ∈ B | ~Xu} = P (u, ~Xu, t, B) .

We often follow SCF2 notation and write

(15.31) P u,~a{ ~Xt ∈ B} := P (u,~a, t, B)
(15.28)

= P{ ~Xu,~a
t ∈ B} .

Recall from Definition 4.13 (Image measure) on p.68 the connection between P and the image prob-
ability (distribution) P~Z of a twodimensional random vector ~Z = (Z1, Z2). P~Z(B) = P{~Z ∈ B}.
Also recall Theorem 4.16 on p.96 which states for Borel measurable functions f(~z)(~z = (z1, z2) ∈ R2)

of a twodimensional random vector ~Z = (Z1, Z2),∫
Ω
g
(
~Z(ω)

)
P (dω) =

∫
R2

g(~z)P~Z(d~z) . =

∫
R2

g(z1, z2)P(Z1,Z2)(d(z1, z2)) .

In our setting, P (u,~a, t, B) = P u,~a{ ~Xt ∈ B} states that P (u,~a, t, ·) = P u,~a~Xt
(the distribution of ~Xu,~a

t ).

Since P u,~a(t, ·) is a probability measure, it comes with a corresponding expectation Eu,~a which also
is parametrized by t. We limit ourselves to random variables h( ~Xt) for Borel measurable functions
h(~x). That allows us to further abuse notation and write Eu,~a

[
h( ~Xt)

]
to indicate that the probability

associated with that expectation is P u,~a(t, ·). Thus,

Eu,~ah( ~Xt) =

∫
Ω
h ◦ ~Xt(ω)P u,~a(dω) =

∫
R
h(x)P u,~a~Xt

(d~x)

=

∫
R
h(x)P ~Xu,~a

t
(d~x)

(15.31)
=

∫
R2

h(~x)P (u,~a, t, d~x) .

(15.32)

The second equation is the definition of the image of P u,~a under the random variable ~Xt, the third
equation is the relation P u,~a{ ~Xt ∈ B} = P{ ~Xu,~a

t ∈ B}, which follows from (15.31). In terms of
expectations, (15.30) becomes

(15.33) E{h( ~Xt) | Fu} = E{h( ~Xt) | ~Xu} =

∫
R2

h(~x)P (u, ~Xu, t, d~x) .

We obtain a formula without reference to the transition probability by combining (15.32) and (15.33)
and replacing the vector ~a wih the real number Xu(ω) and then dropping as usual, the reference to
ω:

(15.34) Eu,
~Xuh( ~Xt) = E{h( ~Xt) | Fu} = E{h( ~Xt) | ~Xu} . �

We generalize now the Feynman–Kac to two dimensions.
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Theorem 15.4 (Two dimensional Feynman–Kac).

Let ~Xt := (Xt, Yt) be the solution of the SDE of Definition 15.3 on p.282. and let (x, y) 7→ h(x, y)

be Borel-measurable. Corresponding to the initial condition ~Xt′ = ~x′ = (x′, y′), where 0 ≤ t′ ≤ T
and x′, y′ ∈ R, we define

g(t′, x′, y′) := Et
′,~x′ h

(
XT , YT

)
,(15.35)

f(t′, x′, y′) := Et
′,~x′
[
e−r(T−t) h

(
XT , YT

) ]
(15.36)

Then g and f are solutions to the PDEs

gt +β1gx + β2gy

+
1

2
(γ2

11 + γ2
12)gxx + (γ11γ21 + γ12γ22)gxy +

1

2
(γ2

21 + γ2
22)gxy = 0 ,

(15.37)

ft +β1fx + β2fy

+
1

2
(γ2

11 + γ2
12)fxx + (γ11γ21 + γ12γ22)fxy +

1

2
(γ2

21 + γ2
22)fxy = rf .

(15.38)

Further, these PDE solutions f(t, x, y) and g(t, x, y) also satisfy the terminal conditions

g(T, x, y) = f(T, x, y) = h(x, y) for all x and y .

PROOF: See SCF2 Chapter 6.6 �

We demonstrate the use of the multidimensional Feynman–Kac Theorem in the context of deter-
mining the price of an Asian option. This is SCF2 Example 6.6.1.

Definition 15.4.

An Asian option with a strike price of K is a contract written at time 0, which specifies
that, at the time of expiration T > 0, the holder of this option will receive the amount

(15.39) X =

(
1

T

∫ T

0
Su du − K

)+

.

Here, St is a geometric Brownian motion and K > 0.

Remark 15.5 (The Asian option is not Markov). Because the contract value depends on the entire
history from 0 to t of the stock price trajectory, Πt(X ) is not a Markov process, and thus cannot be
written as a function F (t, St) of time and stock price. It should be clear that the entire history Su(ω)

for 0 ≤ u ≤ t ≤ T has a bearing on Πt(X ), since a history of high stock prices drives up
t∫

u=0

Sudu

and thus makes it more likely to obtain a big payoff X =

(
1
T

T∫
0

Su du − K

)+

. Of course, this will

result in a higher option price Πt(X ).

Surprisingly, if we define At :=
∫ T

0 Sudu, the twodimensional process
(
St, At

)
is Markov. This is
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so because we can model this process by the SDE

dSt = rSt dt + σSt dW̃t ,

dAt = St dt ,
(15.40)

with deterministic initial conditions A0 = 0 and S0. Be sure to understand the following:

Even though At by itself is not a Markov process, the vector process
(
St, At

)
is Markov

because the drift and diffusion coefficients of the SDE system (15.40) only possess St and At
(and, of course, time t) as arguments. �

Proposition 15.2. Assume that we operate in a classical Black–Scholes market, i.e., we have constant interest
rate r ≥ 0 and constant volatility σ > 0.

We specify the dynamics of St terms of the Brownian motion W̃t under risk–neutral measure P̃ . Thus,

• W̃t is the process dW̃t = dWt + Θtdt, where Θt = Θ = (α− r)/σ is the market price of risk.
Then the stochastic differential equation for St specifies the interest rate r rather than the stock’s instanta-

neous rate of return, αt, as its drift coefficient. Since the interest rate is constant,

dSt = rSt dt + σSt dW̃t.(15.41)
dDt = − rDt dt, D0 = 1, i.e., Dt = e−rt.(15.42)

(15.43) Let At :=

∫ t

u=0
Su du, i.e., dAt = St dt, A0 = 0.

Then the option price is
Πt(X ) = π(t, St, At) , (0 ≤ t ≤ T ),

where the function (t, x, y) 7→ π(t, x, y) solves the partial differential equation

(15.44) πt(t, x, y) + rxπx(t, x, y) + xπy(t, x, y) +
1

2
σ2x2πxx(t, x, y) − rπ(t, x, y) = 0 ,

and satisfies at time of expiry T the boundary condition

(15.45) π(T, ST , AT ) = X =

(
1

T

∫ T

0
Su du − K

)+

.

First PROOF: (Outline. For details, see SCF2 Example 6.6.1.)
One can prove this proposition without using Theorem 15.4 (Two dimensional Feynman–Kac]) on
p.284 by applying the Itô formula to compute the differential d

(
e−rt π

(
t, St, At

))
, where the Itô pro-

cesses St, At are defined by the SDE system, (15.40), and the function π(t, x, y) is implicitly defined
as follows:

π
(
t, St, At

)
= Πt(X ) = Ẽ

[
e−r(T−t)

(
1

T
AT − K

)+ ∣∣Ft] .
Such a function must exist due to the Markovian nature of the process

(
St, At

)
. One obtains from
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Corollary 11.2 on p.230, followed by the use of Itô’s formula to evaluate dπ
(
t, St, At

)
,

d
(
e−rt π

(
t, St, At

))
= e−rt

[
− rπ(·, ·, ·) + πt + πxrSt + πySt +

1

2
σ2S2

t πxx

]
dt

+ e−rt σStπx dW̃t .

(E)

We wrote π(·, ·, ·) to avoid confusion with the number π, and we omitted the arguments everywhere
else. One shows that e−rtπ

(
t, St, At

)
is a martingale. As a consequence, the dt term of (E) vanishes.

Replacing St with x one obtains (15.44). Since the expressioni under the conditional expectation is
FT –measurable, and r(T − T ) = 0,

π
(
T, ST , AT

)
= Ẽ

[
e0

(
1

T
AT − K

)+ ∣∣FT] . =

(
1

T
AT − K

)+

= X .

This proves (15.45). �
Alternate proof:
This second proof is based on the multidimensional Feynman–Kac Theorem 15.4 on p.284. Let

h(y) :=

(
1

T
y − K

)+

; π(t, x, y) := Ẽt,x,y
[
e−r(T−t)h(At)

∣∣Ft] .(F)

We translate the SDE system (15.40)

dSt = rSt dt + σSt dW̃t ,

dAt = St dt ,

to match Definition 15.3 on p.282, since we want to apply Feynman–Kac:

β1(t, x, y) = rx, β2(t, x, y) = x,

γ11(t, x, y) =σx, γ12(t, x, y) = γ21(t, x, y) = γ22(t, x, y) = 0.

Then (15.38) becomes

πt + rxπx + xπy +
1

2
σ2x2πxx = rπ(·, ·, ·) .

This is formula (15.44) of this proposition. According to the multidimensional Feynman–Kac Theo-
rem, the function π(·, ·, ·) is a solution to this PDE, and it satisfies

π(T, x, y) = h(y)
(F)
=

(
1

T
y − K

)+

.

Thus, π
(
T, ST , AT

)
= h(AT ) =

(
1

T
AT − K

)+

= X .

This proves formula (15.45) of this proposition. �

The following remark refers back to the proof of Proposition 15.2. It is intended to deepen your
understanding about hedging portfolios.
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Remark 15.6. Since the dt term of (E) is zero, we obtain

d
(
e−rt Πt(X )

)
= d
(
e−rt π

(
t, St, At

))
= e−rt σSt πx

(
t, St, At

)
dW̃t.

By the pricing principle, by e−rt = Dt, and by (13.17) on p.249,

d
(
e−rt Πt(X )

)
= d
(
e−rtVt

)
= e−rt σStYt dW̃t.

We equate the right hand sides and obtain

e−rt σSt πx
(
t, St, At

)
dW̃t = e−rt σStYt dW̃t .

Not surprisingly, we have again obtained the Delta hedging formula,

Yt = πx
(
t, St, At

)
.

If we sell the Asian option at time zero for π(0, S0, 0) and use this as the initial capital for a hedging
portfolio ( i.e., take V0 := π(0, S0, 0)), and at each time t adhere to the portfolio strategy in which we
set

# of stock shares = Yt := πx
(
t, St, At

)
,

then we will have

d
(
e−rt Vt

)
= d
(
e−rt π

(
t, St, At

))
for all times t, and hence

VT = π
(
T, ST , AT

))
=

(
1

T
AT − K

)+

.

We will be able to purchase an Asian option at time T to cover our short position in the.option with
the proceeds from the sale of the portfolio. In other words, this portfolio is a hedge for an Asian
option.

The delta–hedging rule, Yt = ∂/(∂x)( option price) ,

is the same for Asian options as for the European calls and puts (see (10.22) on p.213). But be aware
that the PDE we obtained for π(·, ·, ·) is structurally different from the one for c(t, x). For example,
it contains a term xπy(t, x, y) which has no counterpart in the PDE for c(t, x). �

15.4 Markov Processes With Transition Probability Functions ?

The presentation of this material follows [11] Friedman, Avner: Stochastic Differential Equations
and Applications.

Introduction 15.1. We have seen in Chapter 6.5 (Brownian Motion as a Markov Process) that one
can associate with a Brownian motion Wt a transition density, i.e., a function p(τ, x, y), such that the
formula (6.32),

E[f
(
Ws+τ

)
| Fs] = E[f

(
Ws+τ

)
| Ws] =

∫ ∞
−∞

f(y) p(τ,Ws, y) dy ,(15.46)

288 Math 454 - Version 2025-02-11



Math 454 – Additional Material Student edition with proofs

holds true for s ≥ 0, τ > 0, and nonnegative, Borel measurable f : R → R. Now let Xt be some
Markov process, not necessarily Brownian motion, which possesses a transition density p(τ, x, y).
For the function f(y) = 1 we obtain, when conditioning on Xs = x,

1 = E[1 | Xs = x] =

∫ ∞
−∞

1 · p(τ, x, y) dy .

Thus, for each fixed τ and x, the assignment

B 7→ P (τ, x,B) :=

∫
B
p(τ, x, y) dy ,

defines a probability measure P (τ, x, ·) on the Borelsets of R. According to (6.36),

P (τ, x,B) =

∫
B
p(τ, x, y) dy = P{Xs+τ ∈ B | Xs = x} .

This gives P (τ, x,B) an interpretation as the probability that Xs+τ will land in B, given that its
trajectory has value x at time s.
Brownian motion is a special kind of Markov process, since it possesses stationary increments, i.e.,
the distribution of Wt+τ −Wt does not change with t. We also call such a Markov process time–
homogeneous. Time–homogeneity usually is not satisfied for the Markov processes we obtain
as solutions of stochastic differential equations. If Xt is such a solution, and if the drift and/or
diffusion coefficient of the SDE has time as an argument, then the distribution of Xt+τ − Xt will
change with t. Rather than just considering τ = t − s, we must keep track separately of the time s
at which we condition Xs = x, and the later time t = s+ τ at which we examine the event Xt = B.
A transition density for Xt should then be a function p(s, x, t, y) such that the analoque of (15.46)
holds:

E[f
(
Xt

)
| Fs] = E[f

(
Xt

)
| Xs] =

∫ ∞
−∞

f(y) p(s,Xs, t, y) dy ,

for 0 ≤ s ≤ t ≤ T , and nonnegative, Borel measurable f : R→ R. Now,

B 7→ P (s, x, t, B) :=

∫
B
p(s, x, t, y) dy

is a probability measure, and P (s, x, t, B) can be interpreted as the probability that Xt will land in
B, given that its trajectory has value x at time s. One could also say that it gives the probability that
Xs = x transitions into the set B at time t. This function P (s, x, t, B) is the transition probability
function we discussed in the technical notes 15.1 on p.277 and, for the mulitidimensional case, 60 in
15.2 on p.283. �

The observations of this introduction lead us to the definition of a Markov transition function even
if no stochastic differential equations and their solution processes are involved.

60Yes, there are multidimensional analogues for transition densities and corresponding transition probability functions.
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Definition 15.5. Let P (s, ~x, t, B) ≥ 0 be a function of 0 ≤ s < t <∞, ~x ∈ Rd, B ∈ Bd, such that

(1) ~x 7→ P (s, ~x, t, B) is Bd–measurable for fixed s, t, B,
(2) B 7→ P (s, ~x, t, B) is a probability measure for fixed ~x, s, t,
(3) For any 0 ≤ s < t < u <∞, ~x ∈ Rd, and B ∈ Bd, P (s, x, t, B) satisfies the Chapman–

Kolmogorov equation

(15.47)
∫

Rd
P (s, ~x, t, d~y)P (t, ~y, u,B) = P (s, ~x, u,B) .

Then we call p a Markov transition function, a transition probability function, or a tran-
sition probability (on Rd). �

Example 15.1. The purpose of this example is to understand the connection between Markov tran-
sition functions and Definition 6.2 on p.129 of a Markov process.
Let X =

(
Xt

)
t≥0

be a stochastic process on a filtered probability space (Ω,F,Ft, P ) as follows.

The state space of the process is the set of n numbers S = {b1, . . . , bn}. Thus,

n∑
j=1

P{Xt = bj} = 1 for all t ≥ 0 .

We assume that Xt is Markov. We will work with the alternate definition of such a process given
in Proposition 6.2 on p.129. If 0 ≤ s ≤ t ≤ T , and ϕ is an arbitrary, nonnegative or bounded,
Borel–measurable function x 7→ ϕ(x), then

E[ϕ
(
Xt

)
| Fs] = E[ϕ

(
Xt

)
| Xs].(15.48)

For 0 ≤ s < t and i, j = 1, 2, . . . , n, let

p(s, x, t, y) := P{Xt = y | Xs = x} .

We combine this with (15.48) and obtain the following. If ω ∈ {Xs = a}, i.e, if Xs(ω) = a, then

E[ϕ
(
Xt

)
| Fs](ω) = E[ϕ

(
Xt

)
| Xs](ω) =

∑
y∈S

ϕ(y)p(s, a, t, y) .(15.49)

We will show that

P (s, x, t, B) :=
∑
y∈B

p(s, x, t, y)(15.50)

is a Markov transition probability, i.e., it satisfies the Chapman–Kolmogorov equation.
Since B is finite, integration simplifies to summation with respect to the finitely many elements
b1, . . . , bn of S. The right hand side of (15.49) exemplifies this. Thus the Chapman–Kolmogorov
equation we want to prove is

P (u, x, t, B) =
∑
y∈S

P (u, x, s, {y})P (s, y, t, B) for 0 ≤ u ≤ s ≤ t, u ∈ S, B ⊆ S .
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Since measures are additive, is suffices to show the above for singletons B = {z}, where z ∈ S.
Since P (u, x, t, {z}) = p(u, x, t, z), the last formula is equivalent to

p(u, x, t, z) =
∑
y∈S

p(u, x, s, y) p(s, y, t, z) for 0 ≤ u ≤ s ≤ t, u, z ∈ S .(15.51)

We will show more generally that, for a nonnegative function ϕ : S → R,∑
z∈S

ϕ(z)p(u, x, t, z) =
∑
z∈S

ϕ(z)
∑
y∈S

p(u, x, s, y) p(s, y, t, z) , for 0 ≤ u ≤ s ≤ t, x ∈ S .(15.52)

We obtain (15.51) from this formula by setting ϕ := 111{z} for arbitrary z ∈ S.
Let 0 ≤ u ≤ s ≤ t and ϕ : S → R. Iterated conditioning yields

E[ϕ
(
Xt

)
|Fu] = E

[
E[ϕ

(
Xt

)
| Fs]

∣∣Fu] .(15.53)

Use of the Markov property shows that, if a ∈ S and Xu(ω) = a, the left hand side of (15.53) equals

E[ϕ
(
Xt

)
|Xu](ω) =

∑
z∈S

ϕ(z)P{Xt = z | Xu = a} =
∑
z∈S

ϕ(z) p(u, a, t, z) .(LS)

Even though the conditional expectationE[ϕ
(
Xt

)
| Xs] is a function of ω, it is constant on the atoms

{Xs = b} = {ω : Xs(ω) = b}, i.e., it can be written as a function

ψ(b) = E[ϕ
(
Xt

)
| Xs = b] .

Note that

ψ(b) =
∑
z∈S

ϕ(z)P{Xt = z | Xs = b} =
∑
z∈S

ϕ(z) p(s, b, t, z) .(15.54)

If Xu(ω) = a, the right hand side of (15.53) thus equals

E
[
E[ϕ

(
Xt

)
|Xs]

∣∣Xu

]
= E

[
ψ(Xs)

∣∣Xu

]
=
∑
b∈S

ψ(b)P{Xs = b | Xu}(RS)

=
∑
b∈S

ψ(b)p(u, a, s, b) . =
∑
b∈S

∑
z∈S

ϕ(z) p(s, b, t, z) p(u, a, s, b) .

Since (LS) = (RS), we obtain for Xu(ω) = a,∑
z∈S

ϕ(z) p(u, a, t, x) . =
∑
b∈S

∑
z∈S

ϕ(z) p(u, a, s, b) p(s, b, t, z) .

This proves that (15.51) holds true, thus P (s, x, t, B) satisfies the Chapman–Kolmogorov equation
and is indeed a Markov transition function. �

We thus have shown the following in the previous example.

Proposition 15.3.

Any Markov process with a finite state space possesses a Markov transition function.
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PROOF: See Example 15.1. �

One could say that any reasonable process that is a Markov process is associated with a Markov
transition function. We confine the next definition to real–valued processes, even though it has
counterparts for multidimensional state spaces.

Definition 15.6.

Let (Ω,F,Ft) be a filtered measurable space. For each 0 ≤ t ≤ T , let Xt : Ω→ R be adapted
to the filtration, i.e., Xt is Ft–B–measurable. We are reluctant to call X = (Xt)t a stochastic
process, since there is no probability measure (yet). That comes now. Let

(
P s,x

)
s≥0,x∈R be a

family of probability measures on (Ω,F,Ft).

Thus, for each time s ≥ 0 and for each x ∈ R, X = (Xt)t is an adapted process on the filtered
probability space (Ω,F,Ft, P

s,x).

Let P (s, x, t, B) be a Markov transition function on R. Assume that the following is true.

(1) P s,x{Xs = x} = 1, for all s ≥ 0 and x ∈ R.
(2) P 0,x{ ~Xt ∈ B | Fs} = P (s,Xs, t, B) P 0,x − a.s. , for 0 ≤ s < t and x ∈ R.

Then we call Xt a Markov process with transition function P (s, x, t, B). �

In the following, Es,x[. . . ] denotes the expectation with respect to P s,x. In other words,

Es,x[Z] =

∫
ZdP s,x =

∫
Ω
Z(ω)P s,x(dω) ,

for any P s,x–integrable random variable Z.

Fact 15.3. If Xt is a Markov process with transition function P (s, x, t, B), then

(1) P 0,x{ ~Xt ∈ B | Fs} = P 0,x{ ~Xt ∈ B | Xs} = P (s,Xs, t, B) P 0,x − a.s. ,
for 0 ≤ s < t and x ∈ R. That is the Markov property

(2) E0,x{f
(
~Xt

)
| Fs} = E0,x{f

(
~Xt

)
| Xs} =

∫
R f(y)P (s,Xs, t, dy) P 0,xa.s. ,

for 0 ≤ s < t, x ∈ R, and nonnegative or bounded, Borel measurable f . See (6.5) on p.129.
(3) If x ∈ R, s < t1 < t2 < · · · < tn and B1, . . . , Bn ∈ B, then

P s,x{Xt1 ∈ B1, . . . , Xtn ∈ Bn} =

∫
B1

P (s, x, t1, dx1) · · ·
∫
Bn

P (tn−1, xn−1, tn, dxn) .

�

Remark 15.7. Note the following significant structural differences between the solutions of an SDE
as Markov processes and Markov processes with transition function.
In Note 15.1 (Technical note on the Markov property of SDE solutions) on p.277 we have:

(1) a fixed probability P on (Ω,F,Ft)
(2) a separate stochastic process Xs,x

t for each initial condition Xs = x
(3) a resulting Markov transition function P (s, x, t, B) = P{Xs,x

t ∈ B}.
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When defining a Markov process with transition function, we have
(1) a family of probabilities P s,x on (Ω,F,Ft)
(2) one and the same stochastic process Xt for each (Ω,F,Ft), P

s,x)
(3) a Markov transition function P (s, x, t, B) = P s,x{Xt ∈ B}.

It feels much more natural to work with the second scenario, since dealing with one and the same
process Xt(ω) makes it seem natural to think of P s,x{. . . } as a conditional probability P̃{· · · | Xs =
x}, i.e.,

P s,x{Xt1 ∈ B1, . . . , Xtn ∈ Bn} = P̃{Xt1 ∈ B1, . . . , Xtn ∈ Bn | Xs = x} .

(Careful here! No claim is made that such a probability P̃ actually exists as a mathematical object!)
�

Wouldn’t it be nice if we could have the SDE solutions Xs,x
t given by a single Markov process with

transition function? This can in fact be done, but it comes at a significant cost. We must abandon
the original filtered measurable space (Ω,F,Ft) (and also, of course the probability P and Brownian
motion Wt) and create that single process which incorporates all solutions Xs,x

t on a new filtered
measurable space (Ω̃, F̃, F̃t).
An important reason why that is possible is the following. A Markov transition function P (s, x, t, B)
is defined without reference to Ω. Rather, the probabilities P (s, x, t, ·) are defined on the Borel sets
of R.
The following can be shown.

Theorem 15.5.

Let (s, x, t, B) 7→ P (s, x, t, B) be a Markov transition function for (R,B1). Then there exist a
measurable space (Ω̃, F̃), a filtration

(
F̃t
)
t≥0

, a real–valued function

X̃ : [0,∞[×Ω̃ ; (t, ω̃) 7→ X̃t(ω̃) ,

and a family
(
P̃ s,x

)
s≥0,x∈R of probability measures on F̃ as follows.

X̃ is a Markov process with transition function P (·, ·, ·, ·). In other words,
(1) X̃ is an adapted process on the filtered probability space

(
Ω̃, F̃, F̃t, P̃

s,x
)
,

for each s ≥ 0 and x ∈ R.
(2) P̃ s,x{X̃s = x} = 1, for all s ≥ 0 and x ∈ R.
(3) P̃ 0,x{X̃t ∈ B | F̃s} = P (s, X̃s, t, B) P̃ 0,x − a.s. , for 0 ≤ s < t and x ∈ R.

PROOF: See the proof of Theorem 2.1.1 of [11] Friedman, Avner: Stochastic Differential Equations
and Applications. �

Remark 15.8.
(1) There is a multidimensional version of Theorem 15.5.
(2) one can choose for Ω̃ the set C([0,∞[,R) of all real–valued, continuous functions

ω̃ : [0,∞[,R ; t 7→ ω̃(t) .
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(3) If the Markov transition function is associated with an SDE

dXt = β
(
t,Xt

)
dt + γ

(
t,Xt

)
dWt,

then we not only have to consider the measurable space (Ω,F) and the filtration
(
Ft
)
t
, but

also the Brownian motion Wt and the specific probability P that makes Wt a Brownian
motion, i.e., Wt+tau −Wt has normal distribution with mean zero and variance τ under P ,
and the trajectories of W are continuous P–a.s. This can be dealt with:

(4) One can construct a generic filtered probability space
(
Ω̂, F̂, F̂t, P̂

)
with a Brownian motion

Ŵt, a real–valued function (t, ω̂) 7→ X̂t(ω̂), and a family
(
P̂ s,x

)
s≥0,x∈R of (additional) prob-

ability measures on F̂ as follows. X̂ is a Markov process with transition function P (·, ·, ·, ·),
and X̂t is a solution of the SDE with initial condition = with respect to the specific probabil-
ity P̂ s,x. For a proof, see Theorem IV.1.1 of [12] Ikeda & Watanabe: Stochastic Differential
Equations and Diffusion Processes.

(5) The construction done in (4) lets us keep the essence of what it means that a stochastic
process X̂ is a solution of the SDE given in (4) with initial condition X̂u = x:

X̂t = x +

∫ t

u
β
(
s, X̂s

)
ds + γ

(
t, X̂s

)
dŴs .

At the same time, we managed to gain the advantage we had hoped for before stating
Theorem 15.5: There now is a single process X̂t with enough trajectories to represent the
multitude of solutions Xu,x

t for the various initial conditions Xu,x
u = x.

(6) There is no magic. Different probability measures give nonzero probability to very different
parts of Ω̂, and thus to very different trajectories of X̂ . Consider the sets

A(u, xj) := { ω̂ : X̂u = xj } , for j = 1, 2, u ≥ 0, and different x1, x2 ∈ R .

Then P̂ u,x1
(
A(u, x1)

)
= P̂ u,x2

(
A(u, x2)

)
= 1,

but P̂ u,x1
(
A(u, x2)

)
= P̂ u,x2

(
A(u, x1)

)
= 0.

(7) There is special terminology for specifying solutions of an SDE without referring to a spe-
cific carrier space (Ω,F,Ft, P ) and Brownian motion Wt. They are referred to as weak
solutions. 61 �

15.5 Exercises for Ch.15

Exercise 15.1. Let T , Xt, Φ(x), f(t, x) be as defined in Theorem 15.2 (Feynman–Kac Theorem) on
p.279. Prove that the process

Mt := f(t,Xt) = Et,x[Φ(XT )]

is a martingale. Hint: Use formula (15.11) on p.279. �

61There is an entire litany of classifications of the solutions of an SDE Even worse, different authors sometimes choose
the same definition to describe solutions with different properties.
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16 Other Appendices

16.1 Greek Letters

The following section lists all greek letters that are commonly used in mathematical texts. You do
not see the entire alphabet here because there are some letters (especially upper case) which look
just like our latin alphabet letters. For example: A = Alpha B = Beta. On the other hand there
are some lower case letters, namely epsilon, theta, sigma and phi which come in two separate forms.
This is not a mistake in the following tables!

α alpha θ theta ξ xi φ phi
β beta ϑ theta π pi ϕ phi
γ gamma ι iota ρ rho χ chi
δ delta κ kappa % rho ψ psi
ε epsilon κ kappa σ sigma ω omega
ε epsilon λ lambda ς sigma
ζ zeta µ mu τ tau
η eta ν nu υ upsilon

Γ Gamma Λ Lambda Σ Sigma Ψ Psi
∆ Delta Ξ Xi Υ Upsilon Ω Omega
Θ Theta Π Pi Φ Phi

16.2 Notation

This appendix on notation has been provided because future additions to this document may use
notation which has not been covered in class. It only covers a small portion but provides brief
explanations for what is covered.
For a complete list check the list of symbols and the index at the end of this document.

Notation 16.1. a) If two subsets A and B of a space Ω are disjoint, i.e., A ∩ B = ∅, then we often
writeA

⊎
B rather thanA∪B orA+B. BothA{ and, occasionally, {A denote the complement Ω\A

of A.
b) R>0 or R+ denotes the interval ]0,+∞[, R≥0 or R+ denotes the interval [0,+∞[,
c) The set N = {1, 2, 3, · · · } of all natural numbers excludes the number zero. We write N0 or Z+ or
Z≥0 for N

⊎
{0}. Z≥0 is the B/G notation. It is very unusual but also very intuitive. �
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List of Symbols

(X, d(·, ·)) – metric space , 138
At – dividend rate process, 265
B(t, T ) zero–coupon bond price , 275
C2 – twice continuously diffble, 211
W

(n)
t – scaled symm. random walk , 143

[a, b[, ]a, b] – half-open intervals , 19
[a, b] – closed interval , 19
N(z) - std normal cumul. distrib. , 216, 273
ForS(t, T ) - T–forward price at t, 275
Fort - forward price at t, 219
d±(τ, x) , 216, 269, 273
m(F) – measurable fn. , 63
m(F,F′) – measurable fn. , 63
⇒ – implication , 11
‖f‖L1 – L1–norm , 135
‖f‖L2 – L2–norm , 135, 136
‖x‖ – (semi) norm , 136, 138
‖x‖1 , 135
‖x‖2 – Euclidean norm , 135
B(R̄) – extended Borel σ–algebra , 54
∅ – empty set, 9
dν
dµ – Radon–Nikodym deriv. , 100∫
A fdµ,

∫
A f(ω)dµ(ω),

∫
A f(ω)µ(dω) , 86

1A – indicator function of A , 46
B(R) – Borel σ–algebra of R , 54
B(Rn) – Borel σ–algebra of Rn , 54
P(Ω), 2Ω – power set , 15
µ ∼ ν – equivalent measures , 101
ν � µ – continuous measure , 101
±∞ – ± infinity , 19
ρik(t) – instantaneous correlation, 257
σ(f) – σ–algebra generated by f , 69
|x| – absolute value , 20
]a, b[Q – interval of rational #s , 20
]a, b[Z – interval of integers , 20
]a, b[ – open interval , 19
aj – discrete time dividend rate, 268
c(t, x) – Eoropean call pricing, 210
d(x, y) – (pseudo) metric , 137, 138
dL1(f, g) – L1–distance , 135
dL2(f, g) – L2–distance , 135, 136
p(t, x) - European put, 220
x ∈ X – element of a set, 8
x /∈ X – not an element of a set, 8

xn ↓ x – nonincreasing seq. , 49
xn ↑ x – nondecreasing seq. , 49
(Ω,F, (Ft), P ) – filtered prob. space, 80
(Ω,F, (Ft)t∈I , P ) – filtered prob. space, 80
A{ – complement of A , 12
Bt, – money market account price, 147
Dt, – discount process, 147
E[X | Z = z] cond. exp. w.r.t Z , 121
P–a.s. – almost surely , 65
Vt
(
Nt,k

)
, – hedge at Nt,k , 186

Xn → X P–a.s. – convergence P–a.s. , 89
∆ – delta (the greek), 217
Γ – gamma (the greek), 217
Φ(·) – contract function, 156
Π
(
Nt0,k

)
– arbitrage free claims price, 175

Θ – theta (the greek), 217
Nt,k – node k at time t, 175∫
fdµ,

∫
f(ω)dµ(ω),

∫
f(ω)µ(dω) , 84

N0 – nonnegative integers, 19
R+ – positive real numbers, 19
R>0 – positive real numbers, 19
R≥0 – nonnegative real numbers, 19
R 6=0 – non-zero real numbers, 19
R+ – nonnegative real numbers, 19
Z≥0 – nonnegative integers, 19
Z+ – nonnegative integers, 19
N – natural numbers, 17
Q – rational numbers, 18
R – real numbers, 18
Z – integers, 17
Z – integers, 17
X – contingent claim, 156
F1 ⊗ F2 product σ–algebra , 104
FXt – filtration of stoch. process X , 78
µ–a.e. – almost everywhere , 65
µ× ν product measure , 104
ν – vega (the greek), 217
ρ – rho (the greek), 217
fn → f µ–a.e. – convergence µ–a.e. , 89

A> – transpose of A, 35
(xj)j∈J – family , 26
2Ω,P(Ω) – power set , 15
[ 0,∞ ] – nonnegative extended , 48
[ a,∞ ] , 48
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[−∞,∞] – extended real #s , 48
[X,Y ]t – cross variation, 226
Yn

a.s.→ Y – almost sure limit , 70
Yn

D→ Y – limit in distrib. , 70
Yn

pw→ Y – pointwise limit , 70
Yn

P→ Y – limit in probab. , 70
χA – indicator function of A , 46
{A – complement , 295
λ1, λ2, . . . , λn, – Lebesgue measure , 57
N,N0 , 295
R+,R>0 , 295
R+,R≥0 , 295
R>0,R+ , 295
R≥0,R+ , 295
Z+,Z≥0 , 295
epi(f) – epigraph , 31
ΦX(u) – moment–generating function , 133
111A – indicator function of A , 46
|X| – size of a set , 16
{} – empty set, 9
A
⊎
B – disjoint union , 295

A ∩B – A intersection B, 10
A \B – A minus B , 11
A ⊂ B – A is strict subset of B, 9
A ⊆ B – A is subset of B , 9
A ( B – A is strict subset of B, 9
A4B – symmetric difference of A and B , 11
A ]B – A disjoint union B , 10
A{ – complement , 295
B ⊃ A – B is strict superset of A, 9
B ) A – B is strict superset of A, 9
CΠ[X,Y ]T – sampled cross variation, 226
f : X → Y – function, 23
f(A) – direct image , 43
f(t−) – value immediately before t, 268
f−1(B) – indirect image, preimage , 43
Xt− – value immediately before t, 268
(Ω,F) – measurable space , 51
(Ω,F, µ) – measure space , 55
[X,X]t, [X,X](t) – quadratic variation , 139
{A – complement of A , 12∫
f(t)dg(t) – Riemann–Stieltjes integral , 191
7→ – maps to , 22
F – σ–algebra , 51
µ(·) – measure , 55
µ – finite measure , 55

µ – measure , 55
R – extended real #s , 48
R+ – nonnegative extended , 48
Π – partition of time interval , 139
Πt(X ) – price of claim X , 150
Πt,Π – partition of time interval , 138
AAA (j) – financial asset , 150
sup(A) – supremum, 35
σ(E) – σ–alg. genned by E, 52
σ(fi : i ∈ I) – σ–alg. genned by functions fi, 77
|f |, f+, f− , 20
A ∪B – A union B , 10
A ⊇ B – A is superset of B, 9
Bt – money market account unit price , 151
f ∨ g, f ∧ g – max(f, g),min(f, g) , 20
St – stock price , 150
V H
t – portfolio value, 154
V
~H
t – portfolio value, 163
x ∨ y – max(x, y) , 20
x ∧ y – min(x, y) , 20
x+, x− – positive, negative parts , 20

a.e. – almost everywhere , 65
a.s. – almost surely , 65
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Index

C2 function, 211
T–forward price, 275
µ–null set, 55
σ–algebra, 51

product σ–algebra, 104
σ–algebra generated by a function, 69
σ–field, 51
σ–finite measure, 99
ε–closeness, 137
p–integrable function, 85
p–integrable random variable, 85

absolute value, 20
abstract integral, 83, 84
adapted to a filtration, 80
almost everywhere, 65
almost sure convergence, 70
almost sure limit, 70
almost surely, 65
American call, 152, 222
American put, 152, 222
antiderivative, 30
arbitrage portfolio, 155
argument, 23
Asian option, 285
assignment operator, 23

bank share, 158, 159
bid–ask spread, 155
binomial tree model, 165
Black–Scholes

market model, 210
Black–Scholes Black–Scholes market model

generalized, 243
Black–Scholes PDE, 214
Black–Scholes–Merton function, 216
bond

zero–coupon, 275
Borel σ–algebra, 54
Borel sets, 54
Brownian motion, 131

exponential martingale, 142
geometric, 142
geometric, generalized, 199
multidimensional, 225

budget equation, 154, 164
continuous time, 209
discrete time, 161

call
Americall, 152, 222

cartesian product, 25
Chapman–Kolmogorov equation, 290
characteristic function, 46
claim

simple, 156
closed interval, 19
codomain, 23
complement, 12
complete market, 156
concave-up, 31
conditional expectation

partial averaging, 120
conditional expectation w.r.t a random variable,

120
conditional expectation w.r.t a sub–σ–algebra,

120
contingent claim, 149, 156

reachable, 156
continuous measure, 101
continuous time

budget equation, 209
continuous time financial market, 150
continuous time stochastic process, 76
contract function, 156
convergence

almost surely, 70
in distribution, 70
in probability, 70
pointwise, 70

convergence in distribution, 70
convergence in probability, 70
convergence of random variables in L2, 193
convergence of stochastic processes in L2, 194
convex, 31
correlation

instantaneous, 258
counting measure, 59
counting measure, multidimensional, 59
Cox–Ingersoll–Ross interest rate model, 204
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cross variation, 226

De Morgan’s Law, 14, 42
decimal, 17
decimal digit, 17
decimal numeral, 17
decimal point, 17
decreasing, 49
decreasing sequence of sets, 40
delta, 213
delta–hedging rule, 213
density of a measure, 100
differential, 193

stochastic, 197
differential equation

stochastic, 199
diffusion coefficient, 277
diffusion matrix, 283
digit, 17
direct image, 43
direct image function, 43
discount, 145, 147
discount process, 147
discrete random variable, 64
discrete time

budget equation, 161
discrete time financial market, 150
discrete time stochastic process, 76
disjoint, 10
distribution, 69
distribution measure, 69
dividend rate, 268

discrete time, 268
dividend rate process

continuous time, 265
domain, 23
drift coefficient, 277
drift vector, 283
dummy variable (setbuilder), 8
dynamics, 197

element of a set, 8
empty set, 9
epigraph, 31
equivalent measures, 101
European call, 149
European put, 152

even, 17
event, 56
expectation

conditional, w.r.t a random variable, 120
conditional, w.r.t a sub–σ–algebra, 120

expiration time, 76
exponential martingale, 142
extended real–valued function, 48
extension of a function, 24

family, 26
mutually disjoint, 41

filtration, 80, 149
generated by a process, 78

financial asset
riskless, 150
risky, 150

financial derivative, 149, 156
financial market

continuous time, 150
discrete time, 150

financial market model, 150
finite measure, 55
finite sequence, 26
forward contract, 152
forward price, 219

T–forward price, 275
function, 23

p–integrable, 85
argument, 23
assignment operator, 23
codomain, 23
direct image, 43
direct image function, 43
domain, 23
extension, 24
function value, 23
indirect image function, 43
integrable, 84
inverse, 24
maps to operator, 23
measurable, 63
preimage function, 43
restriction, 24
simple, 83
square–integrable–integrable, 85

function sequence
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decreasing, 50
increasing, 50
limit almost everywhere, 89
nondecreasing, 50
nonincreasing, 50

function value, 23

GBM (geometric Brownian motion), 142
generalized Black–Scholes market model, 243
generalized geometric Brownian motion, 199
generated σ–Algebra

by collection of sets, 52
by family of functions, 77

geometric Brownian motion, 142
generalized, 199

Girsanov measure, 265
Girsanov probability, 265
graph, 23
greatest lower bound, 35
greek letters, 295
Greeks, 217
greeks, 213

delta, 213

half-open interval, 19
hedge, 156

static, 219
hedging equations, 262

iff, 10
iid, 90
ILMD method, 96
image measure, 69
in the money, 215
increasing, 49
increasing sequence of sets, 40
independence

σ–algebras, 107
random variables, 107

Independence Lemma, 126
index set, 26
indexed family, 26
indicator function, 46
indirect image, 43
indirect image function, 43
induced measure, 69
induction

proof by, 28

induction principle, 28
infimum, 35
infinite sequence, 26
information filtration, 149
initial condition, 197, 215
initial condition (SDE), 277, 283
injective, 24
instantaneous correlation, 258
instantaneous standard deviation, 258
integer, 19

even, 17
odd, 17

integrable function, 84
integral, 83, 84

abstract, 83, 84
definite, 30
indefinite, 31

integral equation, 197
integral over a subset, 86
integrand, 191
integrator, 191
interest, 151
interest rate process, 161
intersection

family of sets, 40
interval

n-dimensional, 57
closed, 19
half-open, 19
open, 19

inverse function, 24
investment

discount, 145, 147
present value, 145, 147

irrational number, 19
Itô integral w.r.t. Brownian motion, 192, 194
Itô process, 197
Itô process driven by a multidimensional Brow-

nian motion, 227

Lévy, Paul Pierre, 230
least squares estimate, 124
least upper bound, 35
Lebesgue measure, n-dimensional, 57
left sided limit, 268
limit

almost sure, 70
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in probability, 70
left sided, 268
pointwise, 70
pointwise limit, 50

limit almost everywhere of a function sequence,
89

limit almost surely of a sequence of random vari-
ables, 89

limit in probability, 70
long position, 153

maps to operator, 23
market

complete, 156
free of arbitrage, 155

market price of risk, 245, 260
market price of risk equations, 260
Markov chain, 130
Markov process, 129

stationary increments, 289
time–homogeneous, 289
transition density, 141

Markov process with transition function, 292
Markov transition function, 277, 283, 290
Markovian portfolio, 153
martingale, 128
martingale measure, 172, 177, 245, 259
mathematical induction principle, 28
maturity date, 275
maximum, 20
mean rate of return, 257

instantaneous, 200
mean square error, 126
measurable function, 63
measurable set, 51
measurable space, 51
measure, 55

σ–finite, 99
continuous, 101
density, 100
equivalence, 101
induced, 69
martingale measure, 172, 177, 245, 259
product, 104
product measure, 104
Radon–Nikodym derivative, 100
risk–neutral, 172, 177

risk–neutral measure, 245, 259
measure space, 55

product space, 104
member of a set, 8
member of the family, 26
mesh, 139
metric, 138
metric space, 138

ε–closeness, 137
MGF, 133

joint, 133
moment–generating function, 133

joint, 133
money market account price, 147
multidimensional Brownian motion, 225
multiplication table for Brownian motion differ-

entials, 140
mutually disjoint, 10

natural number, 19
negative part, 20
nondecreasing, 49, 50
nondecreasing function sequence, 50
nonincreasing, 49, 50
nonincreasing function sequence, 50
norm, 138
null measure, 55
null set, 55
numbers

integer, 17
irrational number, 18
natural numbers, 17
rational numbers, 18
real numbers, 18

odd, 17
open interval, 19
option

Asian, 285
or

exclusive, 17
inclusive, 17

parallelepiped, n-dimensional, 56
partial averaging (conditional expectation), 120
partition, 15, 41, 138

mesh, 139
partitioning, 15, 41
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path, 76
PDF (probability density function), 109
pointwise convergence, 70
pointwise limit, 50, 70
portfolio, 153

arbitrage portfolio, 155
bank shares, 159
hedging portfolio, 156
Markovian, 153
replicating portfolio, 156
self–financing, 154
self–financing (continuous time), 209
self–financing (discrete time), 161
value process, 154

portfolio strategy, 153
portfolio value, 154
position

long position, 153
short position, 153

positive part, 20
power set, 15
preimage, 43
preimage function, 43
present value, 145, 147
pricing principle, 156
principle of mathematical induction, 28
probability, 55
probability density function (PDF), 109
probability distribution, 69
probability mass function, 58
probability measure, 55
probability space, 55

filtered, 80
process

random process, 75
stochastic process, 75

product σ–algebra, 104
product measure, 104
product of measures, 104
product space, 104
proof by cases, 13
pseudometric, 137
put

American, 152, 222
European, 152

put–call parity, 221

quadratic variation, 139

Radon–Nikodym derivative, 100
random element, 64
random process, 75
random time, 80
random variable, 64

p–integrable, 85
convergence in L2, 193
discrete, 64
MGF, 133
moment–generating function, 133
square integrable, 193
square–integrable–integrable, 85

random variables
limit almost surely, 89

random vector, 77
MGF, 133
moment–generating function, 133

random walk, 131
scaled, symmetric, 143

random walk, symmetric, 131
rational number, 19
reachable

contingent claim, 156
real number, 19
rectangle

n-dimensional, 57
recurrence relation, 27
recursion, 27
restriction of a function, 24
Riemann–Stieltjes integral, 191
risk–neutral measure, 172, 177, 245, 259
risk–neutral pricing formula, 250
risk–neutral valuation formula, 250
riskless asset, 150
risky asset, 150

sampled cross variation, 226
scaled symmetric random walk, 143
SDE (stochastic differential equation), 277, 283
self–financing portfolio, 154

continuous time, 209
discrete time, 161

seminorm, 136
sequence, 25

finite, 26
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finite subsequence, 26
infinite, 26
start index, 25
stochastic, 76
subsequence, 26

set, 8
difference, 11
difference set, 11
disjoint, 10
intersection, 10
mutually disjoint, 10
proper subset, 9
proper superset, 9
setbuilder notation, 8
size, 16
strict subset, 9
strict superset, 9
subset, 9
superset, 9
symmetric difference, 11
union, 10

short position, 153
short–rate model, 281
simple claim, 156
simple function, 83
simple process, 191
size, 16
square integrable random variable, 193
square integrable stochastic process, 194
square–integrable function, 85
square–integrable random variable, 85
standard deviation

instantaneous, 258
standard machine = ILMD method, 96
start index, 25
static hedge, 219
stationary increments, 289
stochastic differential, 197
stochastic differential equation, 199

solution, 277, 283
stochastic differential equation (SDE), 277, 283
stochastic process, 75

adapted to a filtration, 80
continuous time, 76
convergence in L2, 194
discrete time, 76

simple, 191
square integrable, 194
state space, 75

stochastic sequence, 76
stopping time, 81, 222
strictly decreasing, 49
strictly increasing, 49
submartingale, 128
subsequence, 26

finite, 26
summation measure, 59
summation measure, multidimensional, 59
supermartingale, 128
supremum, 35
surjective, 24
symmetric random walk, 131, 143

time–homogeneous, 289
trajectory, 76
transition density, 141
transition probability, 277, 283, 290
transition probability function, 277, 283, 290
triangle inequality, 21, 29

unbiased estimator, 124
union

family of sets, 40
universal set, 11

Vasicek interest rate model, 203
vector space

normed, 138
volatility, 200
volatility matrix, 257

weak solution
stochastic differential equation, 294

weak solution of an SDE, 294
Wiener process, 132

yield, 282

zero measure, 55
zero–coupon bond, 275
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