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While Distance Weighted Discrimination (DWD) is an appealing approach to classification in high dimensions, it was designed for balanced
datasets. In the case of unequal costs, biased sampling, or unbalanced data, there are major improvements available, using appropriately
weighted versions of DWD (wDWD). A major contribution of this paper is the development of optimal weighting schemes for various non-
standard classification problems. In addition, we discuss several alternative criteria and propose an adaptive weighting scheme (awDWD)
and demonstrate its advantages over nonadaptive weighting schemes under some situations. The second major contribution is a theoretical
study of weighted DWD. Both high-dimensional low sample-size asymptotics and Fisher consistency of DWD are studied. The perfor-
mance of weighted DWD is evaluated using simulated examples and two real data examples. The theoretical results are also confirmed by
simulations.
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1. INTRODUCTION

The Support Vector Machine (SVM) (Vapnik 1995) is a
powerful classification tool. Distance Weighted Discrimination
(DWD; Marron, Todd, and Ahn 2007) is an improved classifi-
cation method for high-dimensional, low sample-size (HDLSS)
data settings, where the dimension d is greater than the sample
size n.

In the separable case, SVM seeks the separating hyperplane
maximizing the minimum of the distances, ri, from each data
point to the hyperplane. SVM has a good performance record,
but it may suffer from a loss of generalizability in HDLSS set-
tings, as noted in Marron, Todd, and Ahn (2007) (see figure 1 of
that paper), due to the data-piling property. That is, the support
vectors tend to pile up on top of each other at the boundaries
of the margin when projected on the normal vector of the sep-
arating hyperplane. Data-piling generally leads to loss of gen-
eralizability because it is driven by small-scale noise artifacts
of the particular realization of the data. DWD overcomes this
issue by finding the hyperplane that minimizes the sum of the
reciprocals of ri (min

∑
i r−1

i ). DWD allows all data vectors to
have influence on the separating hyperplane, instead of only the
support vectors as in the SVM.

Standard DWD (hereafter labeled as stdDWD) was originally
designed for balanced data, that is, the case where the sample
proportions for the two classes are similar. It has inefficient gen-
eralizability under nonstandard situations, for example, unequal
costs or biased sampling (addressed for SVM by Lin, Lee, and
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Wahba 2002), or when the two populations are seriously unbal-
anced (Qiao and Liu 2009). In particular, uneven class propor-
tions can lead to a classifier which is poor in the sense that it
ignores the minority class. In this paper, we propose weighted
DWD (wDWD) to incorporate class proportions as well as prior
costs to improve upon standard DWD. In particular, wDWD
uses the new objective function, min

∑
i wir

−1
i , where wi is

the weight for the ith training data point. Note that weighted
DWD is more flexible than standard DWD by allowing flexi-
ble choices of weights. This leads to better generalizability of
weighted DWD under nonstandard situations.

Figure 1 studies classification for a high-dimensional simu-
lated example (d = 1000; this is the constant signal case in Sec-
tion 3.1.1). In the projection plot of all data points on the std-
DWD direction (top panel of Figure 1), the stdDWD boundary
(the vertical dashed line) works well for the training set (shown
as triangles). However, a potential problem is that it is too close
to the positive class (on the right) because of the unbalanced
class proportions. The test data (the + and × signs) in Figure 1
show that stdDWD does not have good generalizability. In the
bottom panel of Figure 1, note that the wDWD boundary pro-
vides a dramatic improvement over stdDWD for the test set.

Section 2 develops optimal weighting schemes under the
Overall Misclassification (OM) criterion. In strongly unbal-
anced cases, OM may ignore the minority class. Thus we also
study several alternative criteria. To implement some of them,
we propose an adaptive weighting scheme, which leads to adap-
tive wDWD (awDWD). In our simulation studies, we show that
adaptive weighting greatly improves performance.

Section 4.1 develops asymptotic properties of wDWD in
HDLSS settings. Ge and Simpson (1998) analyzed the high-
dimensional asymptotics of some classifiers. Bickel and Lev-
ina (2004) and Fan and Fan (2008) also studied the impact of
high dimensionality on various modifications of linear classi-
fiers. Hall, Marron, and Neeman (2005) found conditions where
there exists a geometric representation of HDLSS data, a spe-
cial structure which gives insight into the classification prob-
lem. The results in Hall, Marron, and Neeman (2005) assume
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Figure 1. High-dimensional simulated example: Projection plots of
data points on the stdDWD (top) and wDWD (bottom) directions.
The separating hyperplanes intersect the wDWD and stdDWD direc-
tions at the two dashed vertical lines respectively. These plots show
much better performance of wDWD in this unbalanced HDLSS set-
ting. A color version of this figure is available in the electronic version
of this article.

the entries of each data vector to be nearly independent, in a
mixing conditional sense. Ahn et al. (2007) extended their work
by showing that the conditions can be relaxed to asymptotic
properties of the sample covariance matrix and its eigenvalues,
assuming Gaussianity. A much broader set of assumptions for
geometric representation has been developed in Jung and Mar-
ron (2009). In this article, our theory makes use of this broader
framework.

To study asymptotic properties of wDWD, Section 4.1.2 de-
velops a geometric representation for two data samples from
two classes as in Hall, Marron, and Neeman (2005) but un-
der milder assumptions. Using this representation, we study
two aspects of the wDWD asymptotic properties as d → ∞
with n fixed. Both properties follow from the geometric rep-
resentation described above. First, we study the classification
error of wDWD. Second, we explore the relationship between
the wDWD direction and the optimal linear classification direc-
tion. Both aspects are driven by appropriate notions of signal-
to-noise ratios, defined in terms of class means and within-
class variances. Furthermore, we show Fisher consistency for
wDWD in Section 4.3.

As observed in many applications, in high-dimensional set-
tings, linear classifiers such as the SVM and DWD often
give better performance than their nonlinear extensions (cf. El
Karoui 2007). Though nonlinear methods are known to be more
flexible than linear ones, they may be more prone to overfit than
linear classifiers when the simple size is small. Furthermore, the
geometric representation theory in Hall, Marron, and Neeman
(2005) and this article can shed some light on this issue. As dis-
cussed in Section 4.2.1, when d � n, two classes of points will
form two simplicies asymptotically under certain conditions,
which makes linear classifiers a natural choice. In this paper,
we only use linear classifiers for high-dimensional examples.

The rest of this article is organized as follows. We propose
wDWD in Section 2.1, and focus on optimal weighting schemes
in Section 2.2. Alternative criteria, and their implementations
by adaptive weighting schemes, are developed in Section 2.3.
Numerical studies are given in Section 3 based on simulated
and real-data examples. In Section 4.1, we provide the geomet-
ric representation of two HDLSS data samples from two classes
and study the HDLSS asymptotic properties of wDWD, fol-
lowed by a simulation confirmation in Section 4.2. Fisher con-
sistency of wDWD is provided in Section 4.3. Some concluding
remarks are given in Section 5. Proofs of the theoretical results
are included in the Appendix.

2. WEIGHTED DWD

Consider the problem of classifying subjects associated with
the covariate vector X ∈ X ⊆ R

d (d predictors) into one of two
classes with the class label Y ∈ {±1}. Assume the target pop-
ulation has an unknown probability distribution P(X,Y), and
the examples are independently generated from P(X,Y). Let
the marginal class probabilities of the populations be π+ =
Pr(Y = +1) and π− = Pr(Y = −1), and g+(x) and g−(x) the
conditional densities of X given Y = +1 and Y = −1, respec-
tively. Then the conditional probability of a subject belonging
to Class “+1” given X = x is

p(x) = Pr(Y = +1|X = x) = π+g+(x)

π+g+(x) + π−g−(x)
. (1)

A linear classifier φ(x) can be obtained from φ(x) =
sign(f (x)), where f (xi) = fi = x′

iω + b, ω ∈ R
d , b ∈ R. The data

vector with covariate xi is classified to Class “+1” if
sign(fi) = +1 and Class “−1” otherwise.

2.1 Formulation for Weighted DWD

Suppose the classification boundary is represented as a sep-
arating hyperplane, x′ω + b = 0. The standard DWD proposed
in Marron, Todd, and Ahn (2007) seeks to find a separating hy-
perplane minimizing a notion of inverse distance between each
point and the hyperplane (details below). As mentioned in Sec-
tion 1, standard DWD has some limitations for unbalanced data.
For example, in Figure 1, the stdDWD classification boundary
is pushed towards the positive class, mainly caused by the dra-
matic difference between two class proportions. Our proposed
weighted DWD aims to address this problem by allowing flexi-
ble weights for data points from different classes. In particular,
wDWD solves (ω,b) via the following optimization problem:

min
ω,b,ξ

n∑
i=1

W(yi)

(
1

ri
+ Cξi

)
, (2)

s.t. ri = yi(x′
iω + b) + ξi, ω′ω ≤ 1,

(3)
ri ≥ 0, ξi ≥ 0 for i = 1,2, . . . ,n.

Here we assign different weights to data vectors from different
classes. Note that the solution to (2) is totally determined by
the ratio of W(+1) and W(−1), instead of the exact values of
the two weights. The standard DWD is a special case of the
weighted DWD with equal weights, W(+1) = W(−1).
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To have a better understanding of (2), we first consider a sim-
ple separable setting with a choice of C where all ξi’s are 0.
Then wDWD minimizes the total weighted inverse distances of
all points to the decision boundary. When the perfect separation
is not possible, (2) allows violation with amount ξi for training
data point i.

The constant parameter C in (2) controls the penalty on the
variable ξi, the amount of violation of classification. Note that
C plays the similar role as the tuning parameter in the SVM
[see equation (54) in Chen, Lin, and Schölkopf 2005; also see
Vapnik 1995 and Schölkopf and Smola 2002]. This optimiza-
tion problem in (2) can be reformulated as a second-order cone
programming (SOCP) problem (Alizadeh and Goldfarb 2003),
as shown in Marron, Todd, and Ahn (2007).

Marron, Todd, and Ahn (2007) discussed the choice of C and
suggested that C should be a large constant (e.g., 100 in their
work) divided by a notion of typical squared distance of the
training points (e.g., squared median of the pairwise interclass
Euclidean distances). The usage of typical squared distance will
result in a choice of C that is essentially “scale-invariant.” From
the simulation results in Section 3.1, where we tune for the best
parameter C using a grid search on the tuning set, we find that
the tuned C values are reasonably close to their suggestion.

It is worth noting that careful tuning needs to be done for
DWD when the data are unbalanced and the signal (denoted
by the distance between the two population means) is small. In
particular, a small C should be avoided. For unbalanced data, a
small value of C tends to yield undesired results for stdDWD,
with most data vectors classified into the majority class. This
is because DWD optimization avoids large values of recipro-
cal distances 1/ri by sacrificing the data from the minority
class. Thus C needs to be large enough to increase the misclas-
sification cost. Weighted DWD, on the other hand, alleviates
this problem in tuning since the adverse effect of the unbal-
anced proportion ratio on stdDWD can be greatly reduced if
the weighting scheme is appropriately chosen.

2.2 Optimal Weighting Schemes

Define W(−1)I[y = −1]I[φ(x) = +1]+ W(+1)I[y = +1]×
I[φ(x) = −1] as the weighted 0–1 loss function corresponding
to problem (2). The Bayes decision rule for this weighted 0–1
loss is given in (4) as follows

φ∗(x) = sign

[
p(x) − W(−1)

W(−1) + W(+1)

]
. (4)

In this section, we discuss two nonstandard classification sit-
uations which are commonly encountered in practice, and study
the choices of optimal weights for each situation. We consider
the situation of unequal costs in Section 2.2.1 and the biased
sampling situation in Section 2.2.2. The optimal weights are
given for both Overall Misclassification (OM) criterion and
Mean Within Group Error (MWGE) criterion.

2.2.1 Unequal Costs. For some real applications, it is more
proper to use different costs for different types of misclassi-
fication, say, classifying a “+1” subject as “−1” represents a
more serious error than classifying a “−1” subject as “+1.” For
example, failing to diagnose a potentially fatal illness may be
viewed as substantially more costly than concluding that the

Table 1. Unequal costs for different types of
misclassification

Classify as

+1 −1

True population: +1 0 c−
−1 c+ 0

disease is present when it is not. We use c+ for the false-positive
cost and c− for the false-negative cost. Table 1 shows these
costs.

Using the OM criterion, for any classifier φ, where either
φ(x) = +1 or φ(x) = −1, its loss function for classifying a pair
(x, y) is defined as L[φ] = c+I[y = −1]I[φ(x) = +1]+c−I[y =
+1]I[φ(x) = −1]. Given x, the risk, that is, the expected loss
of φ given X = x, is E[L(φ)|X = x] = c+[1 − p(x)]I[φ(x) =
+1] + c−p(x)I[φ(x) = −1]. The Bayes optimal decision rule
φ∗ for this loss function minimizes the risk and is given by

φ∗(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1 if
p(x)

1 − p(x)
>

c+

c−

−1 if
p(x)

1 − p(x)
<

c+

c−

or

(5)

φ∗(x) = sign

[
p(x) − c+

c+ + c−

]
.

Comparing this to (4), by defining W(+1) = c− and
W(−1) = c+, we have the two Bayes rules identical to each
other.

Our discussions so far assume the traditional OM criterion.
This criterion has some limitations. For example, if the two
classes are extremely unbalanced, a naive classifier, which clas-
sifies all the data vectors to the majority class, can still be re-
garded as a good one by this criterion. Alternatively, one can
use the MWGE criterion (Qiao and Liu 2009), which con-
siders the average of the within-class errors. Under MWGE,
the modified 0–1 loss function becomes c+

π− I[y = −1]I[φ(x) =
+1] + c−

π+ I[y = +1]I[φ(x) = −1]. The corresponding Bayes

rule φ∗ is given by φ∗(x) = sign[p(x) − c+/π−
c+/π−+c−/π+ ], which

implies that the optimal weighting scheme under MWGE is
W(+1) = c−

π+ ,W(−1) = c+
π− . Discussion on several other alter-

native criteria will be given in Section 2.3.

2.2.2 Biased Sampling. In some real situations, the propor-
tions in the sample may not reflect those in the target population
due to sampling bias. For example, if the two classes have very
different proportions in the population, the smaller class may
be oversampled, while the larger class may be undersampled in
order to achieve more balance in the sample. Because we build
the classification model on the sample while we predict a future
data vector from the population, the discrepancy of the class
proportion ratios between the sample and the population could
lead to a problematic classifier. Lin, Lee, and Wahba (2002)
discussed nonstandard situations for the SVM.

Assume the proportions are labeled as in Table 2. Let (Xs,Ys)

be a random pair that has the same distribution as the sample.
Note that the conditional densities g+

s and g−
s are the same as
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Table 2. Proportions in the target population
and the sample

Proportions +1 class −1 class

In population π+ π−
In sample π+

s π−
s

g+ and g−. Then the conditional probability of a case from the
sample belonging to the +1 class given that Xs = x is

ps(x) = Pr(Ys = +1|Xs = x) = π+
s g+

s (xs)

π+
s g+

s (xs) + π−
s g−

s (xs)

= π+
s g+(x)

π+
s g+(x) + π−

s g−(x)
. (6)

Comparing (1) and (6), the relationship of the odds ratio of p(x)

from the population and that of ps(x) from the sample is

p(x)

1 − p(x)
= π+g+(x)

π−g−(x)
= π+

s g+(x)

π−
s g−(x)

π+π−
s

π−π+
s

= ps(x)

1 − ps(x)

π+π−
s

π−π+
s

.

Then the Bayes rule in (5) can be expressed in terms of ps(x) as

φ∗(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1 if
ps(x)

1 − ps(x)
>

c+π+
s π−

c−π−
s π+

−1 if
ps(x)

1 − ps(x)
<

c+π+
s π−

c−π−
s π+

or

φ∗(x) = sign

[
ps(x) − c+π−/π−

s

c+π−/π−
s + c−π+/π+

s

]
.

Note that because the calculation of a classifier is based on
the sample, instead of the population, when biased sampling ex-
ists, ps(x) should be used in the classification rule φ(x) whereas
p(x) in (5) is not useful, since p(x) �= ps(x). Again, using the
formulation in (4), we can see that the choice of weights be-
comes W(+1) = c−π+

π+
s

and W(−1) = c+π−
π−

s
.

Now we consider the situation where the MWGE criterion is
used. The Bayes rule φ∗ under MWGE is then given by

φ∗(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1 if
ps(x)

1 − ps(x)
>

c+π+
s

c−π−
s

−1 if
ps(x)

1 − ps(x)
<

c+π+
s

c−π−
s

.

Accordingly, we can define the weights W(+1) = c−
π+

s
,

W(−1) = c+
π−

s
.

In summary, the optimal weighting scheme is displayed in
Table 3.

2.3 Alternative Criteria and Adaptive
Weighting Schemes

In Section 2.2, we introduced the optimal weighting schemes
under the OM and MWGE criteria (Table 3). Recall that the
OM criterion aims to minimize the OM cost. Qiao and Liu
(2009) pointed out that this criterion may result in a high er-
ror for the minority class when the proportions are unbal-
anced. In addition to MWGE, they introduced Mean Square
Within Group Error (MSWGE). In this paper, we also consider
the criterion of Maximal Within Group Error (MaxWGE). Let
ej = E[I(φ(X) �= j)|Y = j] be the conditional error for class j.

Table 3. Optimal weighting schemes for
biased sampling under two criteria

Criterion OM MWGE

W(+1) c−π+
π+

s

c−
π+

s

W(−1) c+π−
π−

s

c+
π−

s

We reformulate the minimization of these criteria equivalently
as follows:

(i) OM:

arg min
φ

π+e+ + π−e−

(ii) the alternatives:

arg min
φ

(ep
+ + ep

−)1/p

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

arg min
φ

1

2
(e+ + e−) (MWGE) if p = 1

arg min
φ

√
1

2
(e2+ + e2−) (MSWGE) if p = 2

arg min
φ

max(e+, e−) (MaxWGE) if p = ∞.

(7)

The alternative criteria can be simply expressed as |e|p, the
Lp norm of the within-class error vector e = [e+, e−]T . One
important feature of the alternative criteria (MWGE, MSWGE,
and MaxWGE) is that they do not require knowledge of, or even
specification of, the prior proportions π+ and π−. Thus, these
criteria overcome the severe limitations of OM in the unbal-
anced case. The three alternative criteria provide different sum-
maries of the error. The MWGE (L1) criterion tends to min-
imize the mean of the within-class errors while the MSWGE
(L2) criterion minimizes the mean and variation at the same
time. The MaxWGE (L∞) criterion controls the worse class er-
ror. Choice among these will depend on the statistical context
at hand.

To demonstrate the relative performance of these criteria, we
consider a one-dimensional toy example with two classes, the
density curves of which are two triangles as shown in Figure 2.
Note that the OM Bayes rule is sensitive to the change of the
class proportions and is not desirable when the class propor-
tions are unknown. On the other hand, the Bayes rules for the
alternative criteria do not change with proportions. Different
alternative criteria provide different Bayes cut-off points in this
example.

Qiao and Liu (2009) showed that there exist closed forms
for the OM and MWGE Bayes rules, which lead to the opti-
mal DWD weighting schemes introduced in Section 2.2. How-
ever, the Bayes rules under the other two alternative criteria
(MSWGE and MaxWGE) do not seem to have simple closed
forms. Therefore, in order to achieve better results based on the
alternative criteria, we propose a two-step procedure to adap-
tively choose the weights using the sample within-class errors.
The proposed adaptive procedure is implemented as follows:

Step 1. Train wDWD with the MWGE optimal weights
W(±1), from the right column (MWGE) in Table 3. Calculate
the within-class errors ê+ and ê− for the combined dataset in-
cluding both training and tuning sets.
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Figure 2. One-dimensional density curves for two populations and
the Bayes rules for OM (dotted), MWGE (dashed), MSWGE (solid),
and MaxWGE (dot-dashed) criteria when the population proportion
ratio is 5 : 1, 1 : 1, or 1 : 5. Shows OM is very sensitive to class propor-
tions, and compares the three alternative criteria. A color version of
this figure is available in the electronic version of this article.

Step 2. Update weights for class j as W(j) · exp(max(êj, η)),
for j ∈ {+,−}, and calculate wDWD using the new weights.

We call the resulting classifier the adaptive weighted DWD
(awDWD). The adaptive weighting adjustment at the sec-
ond step gives a bigger weight to the class with larger error.
The threshold η is added to avoid adversely decreasing the
weight for the nearly perfectly classified class. We set η to 0.1
in the simulation. For the updating rule, we use an exponen-
tial form: this provides a simple weight adjustment with less
potential for overweighting compared to alternative forms such
as a linear form, as discussed in Qiao and Liu (2009). Simula-
tion there also showed better performance for the exponential
updating rule. To reduce the computational cost, we use a sim-
ple two-step procedure, instead of an iterative version. We will
show in Section 3.1.2 that awDWD can provide additional im-
provements over wDWD.

3. NUMERICAL STUDY

In this section, we compare wDWD with stdDWD and sev-
eral other classification methods, based on two high-dimen-
sional simulated examples (independent predictors and corre-
lated predictors) in Section 3.1 and two real data examples in
Section 3.2.

We consider L1 SVM (Fung and Mangasarian 2004), weight-
ed SVM (wSVM), standard SVM (stdSVM), the L1 penal-
ized logistic regression (L1 PLR; Lokhorst 1999; Shevade and
Keerthi 2003) and the L2 penalized logistic regression (L2 PLR;
Lee and Silvapulle 1988; Le Cessie and Van Houwelingen
1992). L1 SVM and L1 PLR use the L1 penalty for variable
selection. Weighted SVM is the weighted version of standard
SVM, where we use the same weights as that of wDWD. In
Section 3.1.1, we also implement awDWD to show its perfor-
mance. For comparison purpose, we apply the same adaptive
weights for wSVM, namely awSVM. As a remark, we note that

the results for the L1 and L2 PLR are not available for some
examples due to numerical difficulties.

3.1 Simulation

Let the dimension d = 1000, and the sample size of the
training data n = 200. Assume that the data are balanced with
π+ = π− = 50% and equal costs c− = c+, but with a biased
sampling, π+

s = 20% and π−
s = 80%. For simplicity, we denote

w+ and w− as the two weights W(+1) and W(−1). The weights
for this dataset are w+ = 2.5 and w− = 0.625. Note that be-
cause π+ = π−, the two weighting schemes given by Table 3
and the two Bayes rules for the two criteria (OM and MWGE)
are the same.

3.1.1 Independent Predictors. We consider three settings
of high-dimensional simulated data, namely constant sig-
nal, proportional signal, and sparse signal. In the constant
signal setting, the variable-wise mean differences are equal
for all 1000 variables, while in the sparse signal setting,
only the first 10 variables have nonzero mean differences.
One intermediate setting is the proportional signal where
the squared mean difference for each variable is propor-
tional to the variable index ({1, . . . ,1000}). The data vectors
from the positive class follow d-dimensional normal distri-
butions Nd(u11d,0.752Id), Nd(u2(1,2, . . . ,d)T ,0.752Id) and
Nd(u3(1T

10,0, . . . ,0)T ,0.752Id) corresponding to the three set-
tings, where 1k = [1,1, . . . ,1]T is the k-dimensional vector
of 1’s. The negative data vectors are generated in a similar man-
ner except with negative means −u11d , −u2(1,2, . . . ,d)T and
−u3(1T

10,0, . . . ,0)T in the normal distributions. The positive
constants u1, u2 and u3 are chosen so that the Euclidean dis-
tances of the two population means for the three settings are all
equal to 3. For tuning and testing purposes, we generate a tun-
ing set with size 200 and a test set with size 600. We replicate
this simulation 100 times.

From Table 4, we first compare the nonadaptive methods for
the three settings. In each setting, wDWD works much better
than stdDWD. In addition, wDWD works better than all the
other nonadaptive methods in the constant signal and propor-
tional signal settings. For the sparse signal case, both L1 SVM
and L1 PLR are better than wDWD. This is expected since our
current wDWD does not attempt to handle sparsity by variable
selection. A potential approach to improving wDWD for the
sparse signal setting is to design a classification algorithm com-
bining wDWD and some sparse penalty such as the L1 (Tibshi-
rani 1996) or SCAD (Fan and Li 2001) penalty to implement
variable selection.

Table 4 also indicates that adaptive weighted DWD intro-
duced in Section 2.3 works very well. In all three signal set-
tings, awDWD dominates all the other methods except L1 SVM
and L1 PLR in the sparse setting. It seems that the advan-
tage of awDWD comes from the fact that it prevents wDWD
from overweighting by incorporating both class proportions and
within-class performance in the weights. Moreover, both adap-
tive weighting methods (awDWD and awSVM) provide fur-
ther improvement on wDWD and wSVM in these examples,
in terms of the MSWGE and MaxWGE criteria, in addition to
the MWGE criterion.

Furthermore, we note that for the nonadaptive weighting
methods, even though their OM error or MWGE seem to be
fine, their MSWGE and MaxWGE are not satisfactory (e.g.,
wDWD for proportional signal has MaxWGE of 27.02%).
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Table 4. Summary statistics of the simulation results for the three simulation settings: Averaged OM/MWGE, MSWGE, and MaxWGE
(in percentage) over 100 runs. The numbers reported in the parentheses are the standard error

Data Constant Proportional Sparse

(%) OM/MWGE MSWGE MaxWGE OM/MWGE MSWGE MaxWGE OM/MWGE MSWGE MaxWGE

Bayes 2.22 (0.06) 2.3 (0.07) 2.71 (0.08) 2.27 (0.06) 2.34 (0.06) 2.74 (0.08) 2.26 (0.06) 2.33 (0.06) 2.73 (0.08)

wDWD 16.3 (0.68) 19.66 (1.08) 26.36 (1.61) 16.39 (0.69) 20.03 (1.08) 27.02 (1.62) 16.28 (0.68) 19.85 (1.06) 26.95 (1.57)
awDWD 13.05 (0.21) 13.76 (0.3) 16.42 (0.51) 13.04 (0.22) 13.85 (0.34) 16.81 (0.56) 13.2 (0.18) 13.97 (0.25) 17.02 (0.44)
stdDWD 45.72 (0.11) 64.65 (0.15) 91.42 (0.22) 45.69 (0.12) 64.6 (0.17) 91.36 (0.24) 45.4 (0.12) 64.19 (0.17) 90.78 (0.24)

L1 SVM 36.35 (0.32) 36.77 (0.32) 40.49 (0.46) 32.64 (0.26) 38.47 (0.56) 52.03 (0.98) 7.24 (0.13) 9.05 (0.18) 12.63 (0.25)
wSVM 21 (0.48) 28.09 (0.77) 39.52 (1.12) 20.97 (0.49) 28 (0.79) 39.38 (1.14) 21.4 (0.43) 28.73 (0.69) 40.48 (0.99)
awSVM 15.48 (0.28) 18.53 (0.47) 25.15 (0.75) 15.2 (0.31) 18.18 (0.51) 24.67 (0.8) 15.42 (0.24) 18.57 (0.41) 25.39 (0.65)
stdSVM 30.65 (0.23) 42.82 (0.32) 60.54 (0.46) 30.58 (0.22) 42.75 (0.31) 60.45 (0.44) 30.44 (0.25) 42.48 (0.36) 60.07 (0.51)

L1 PLR 39.07 (0.23) 50.85 (0.35) 71.59 (0.5) 37.94 (0.19) 49.45 (0.29) 69.62 (0.42) 6.72 (0.16) 8.81 (0.22) 12.39 (0.31)
L2 PLR 34.03 (0.22) 47.89 (0.32) 67.72 (0.45) 33.88 (0.21) 47.68 (0.3) 67.43 (0.42) 33.54 (0.24) 47.16 (0.34) 66.69 (0.48)

Adaptive weighting methods usually lead to lower MSWGE
and MaxWGE as shown in Table 4.

Among these different methods, L1 SVM performs much bet-
ter than wDWD under the sparse signal setting. To further com-
pare them, we consider their classification directions. Figure 3
contains four projection plots which study the angles between
the optimal linear classification direction and the classification
direction from wDWD (in the left panel) or from L1 SVM (in
the right panel) for the constant signal setting (in the first row)
or the sparse signal setting (in the second row). We can see that
the angles for wDWD are comparable between the two settings,
whereas the angles for L1 SVM are larger than those for wDWD
in the constant signal setting but smaller in the sparse signal set-
ting. These angles help to explain the difference between clas-
sification performances of these two methods. Note that there

Figure 3. Projection plots of all the data vectors to the
two-dimensional space spanned by the Bayes optimal classification di-
rection (Bayes drn) and the wDWD direction (in the left panels) or the
L1 SVM direction (in the right panels) for simulated data from the con-
stant signal setting (the first row) and the sparse signal setting (the sec-
ond row). A color version of this figure is available in the electronic
version of this article.

is severe data-piling for L1 SVM, as shown in the right column
of Figure 3.

3.1.2 Correlated Predictors. We modify the high-dimen-
sional example in Section 3.1.1 by adding correlations among
the predictors. Instead of assuming iid Gaussian noise, we let
the noise term be an autoregressive process of order 1 [AR(1)]
with marginal variance 0.752. We use several choices of the au-
tocorrelation parameter, ρ = 0.05, 0.35, 0.65, and 0.95. Before
adding the three types of variablewise mean difference (which
was chosen for each case to give good separation between the
classifiers, while conveying the challenge of highly correlated
errors), we permute the order of the variables to break down the
AR structure.

In Figure 4, we plot the OM test errors for various methods in
three signal settings: constant, proportional, sparse. For all three
settings, wDWD works the best when ρ = 0.05 and 0.35, ex-
cept for L1 SVM in the sparse setting. For larger ρ, such as 0.65
and 0.95, wDWD and wSVM are comparable. In the sparse set-
ting, L1 SVM is the best as expected. One important observation
we have is that wDWD is less efficient in the highly correlated
case, which was also noted by Ahn and Marron (2010), who
showed more data-piling is actually better in this type of very
nonstandard case.

In these studies, we choose the tuning parameter C based
on a search grid of 10{−4,−3.5,...,3.5,4}. In all the three settings,
we observe that our tuning parameter search procedure tends
to choose 10−1.5 for weighted DWD, while the recommenda-
tion of C by Marron, Todd, and Ahn (2007) turns out to be
about 10−1.05. Based on our limited experience, their recom-
mendation appears to work reasonably well.

3.2 Real Data Examples

In this section we demonstrate the performance of various
classifiers including stdDWD, wDWD, stdSVM, wSVM, and
L1 SVM on two real examples: the Human Lung Carcino-
mas Microarrays Dataset (lung cancer data) (Bhattacharjee et
al. 2001; http://www.broad.mit.edu/mpr/ lung/ ) and the Gisette
data (http://www.nipsfsc.ecs.soton.ac.uk/ ).

The Lung cancer dataset has six classes: adenocarcinoma,
squamous, pulmonary carcinoid, colon, normal, and small cell
carcinoma, with sample sizes of 128, 21, 20, 13, 17, and 6,
respectively. Liu et al. (2008) used this data as a test set to

http://www.broad.mit.edu/mpr/lung/
http://www.nipsfsc.ecs.soton.ac.uk/
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(a) (b) (c)

Figure 4. Simulation results of wDWD (solid), stdDWD (wide-dotted), wSVM (dashed), stdSVM (dotted), and L1 SVM (dot-dashed) for
three 1000-dimensional settings (constant, proportional, and sparse signals) with AR(1) noise where ρ = 0.05, 0.35, 0.65, and 0.95. (a) Constant,
(b) proportional, (c) sparse. A color version of this figure is available in the electronic version of this article.

demonstrate their proposed significance analysis of clustering.
We combine the last four and the first two subclasses to form
the positive and negative classes respectively. We randomly
split the data into training (n+ = 100 and n− = 40) and test
(49 + 16) sets. In order to reduce the computational cost, we
first screen the variables according to the cluster indices (the
within-class sums of squares about the mean, divided by the
total sum of squares about the overall mean), on each variable
(Dudoit, Fridlyand, and Speed 2002). The 500 variables with
the lowest cluster indices are kept.

The context of the Gisette dataset is a handwritten digit
recognition problem to separate the highly confusable digits “4”
and “9.” The original dataset has 6000 (3000 + 3000) cases in
the training set and 1000 (500 + 500) in a separate test set. We
randomly choose 600 and 200 cases for each class from the
original training set, and equally split them to form the new
training and tuning set. There are 5000 predictors in all, where
2500 predictors have true predictive power and the rest of them
are deliberately irrelevant.

For the choice of the tuning parameter C, we use 5-fold cross
validation for the lung cancer data and use the tuning set for the
Gisette data. For computational simplicity, we use the MWGE
weighting scheme in Table 3.

We run the random splitting 100 times and report the mean
of the errors for the test data, and the associated standard error,
in Table 5. For both data, weighted DWD appears to be better
than stdDWD, L1 SVM and stdSVM for all types of criteria.
For the lung cancer data, the weighted DWD works better than
wSVM in terms of the MWGE, MSWGE, and MaxWGE, al-

though not for the OM error. For the Gisette data, the weighted
DWD works better than weighted SVM for all criteria.

4. THEORETICAL RESULTS

In this section, we study several theoretical aspects of
wDWD. HDLSS asymptotics are discussed in Section 4.1, fol-
lowed by simulation validation in Section 4.2. Fisher consis-
tency for wDWD is discussed in Section 4.3.

4.1 HDLSS Asymptotics for Weighted DWD

In this section, we explore the HDLSS asymptotics of
wDWD. The geometric representation by Hall, Marron, and
Neeman (2005) implies that the pairwise distances between the
n+ (n−, resp.) data points from the same “+1” (“−1,” resp.)
class are approximately constant as d → ∞ with n+ (n−, resp.)
fixed. As a consequence, each sample from one class (of size
n+ or n−) can be viewed as a regular (n+ −1) ((n− −1), resp.)-
simplex. The results in Hall, Marron, and Neeman (2005) as-
sume that when the entries of each data vector are viewed as
a time series with the time index d, these entries must satisfy
a ρ-mixing condition. Ahn et al. (2007) relaxed this condition.
We will first improve the theory of Ahn et al. (2007) using a
much broader set of assumptions. In addition, we geometrically
represent two data samples under the new assumption.

4.1.1 Geometric Representation for One Sample Under
Mild Conditions. First consider the positive class X +(d) =
{x+

1 (d),x+
2 (d), . . . ,x+

n+(d)} with n+ data vectors and d vari-
ables. We have a d × n+ data matrix X+

d = [x+
1 ,x+

2 , . . . ,x+
n+]

Table 5. Summary statistics of the classification errors in the lung cancer data and the Gisette data: Mean classification errors (OM, MWGE,
MSWGE, and MaxWGE) for the test sets over 100 random splitting of training and test sets. The numbers reported

in the parentheses are the standard error

Data Lung cancer data Gisette data

(%) OM MWGE MSWGE MaxWGE OM/MWGE MSWGE MaxWGE

wDWD 5.11 (0.25) 4.88 (0.28) 5.66 (0.29) 7.26 (0.38) 8.29 (0.11) 10.28 (0.17) 14.31 (0.25)
stdDWD 7.49 (0.26) 10.93 (0.43) 13.21 (0.57) 18.03 (0.83) 13.98 (0.14) 19.39 (0.21) 27.41 (0.29)
L1 SVM 7.88 (0.25) 9.43 (0.39) 10.68 (0.46) 13.87 (0.66) 9.14 (0.1) 11.21 (0.14) 15.61 (0.19)
wSVM 4.91 (0.25) 5 (0.29) 5.75 (0.3) 7.4 (0.39) 8.34 (0.11) 10.53 (0.17) 14.73 (0.24)
stdSVM 6.03 (0.25) 7.64 (0.41) 8.94 (0.51) 11.78 (0.72) 9.4 (0.12) 12.53 (0.18) 17.68 (0.26)
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with d > n+, where x+
j = (x+

1j, x+
2j, . . . , x+

dj)
T ∈ R

d, j = 1,2,

. . . ,n+, are independent and identically distributed from a
d-dimensional multivariate distribution with positive definite
covariance matrix �+

d . Without loss of generality, we as-
sume that each x+

j has zero mean. Denote the d × d sample

covariance matrix of X+
d as S+

d = n−1+ X+
d X+

d
T

. The eigen-

value decomposition of �+
d is �+

d = V+
d �+

d V+
d

T
, where

�+
d = diag{λ+

1 , . . . , λ+
d } is the diagonal matrix of eigenval-

ues. Furthermore, we define the average of the eigenvalues

σ 2
d = 1

d

∑d
i=1 λ+

i,d . We can write X+
d = V+

d �+
d

1/2
Z+

d , where

Z+
d = �+

d
−1/2

V+
d

T
X+

d is a d × n+ random data matrix from
a distribution with zero mean and identity covariance matrix.
The n+ × n+ dual sample covariance matrix is defined as
S+

D,d = d−1X+
d

T
X+

d , reversing the roles of rows and columns in

the data matrix. Denote the n+ ×n+ matrix W+
i,d as (Z+

i,d)
TZ+

i,d ,

where Z+
i,d , i = 1,2, . . . ,d, are the row vectors of Z+

d . It was

noted in Ahn et al. (2007) that dS+
D,d has a simple Wishart rep-

resentation,

dS+
D,d =

d∑
i=1

λ+
i,dW+

i,d. (8)

Note that if X+
d is Gaussian, then each W+

i,d follows the Wishart
distribution Wn+(1, In+) independently.

Assumption 1. For a fixed n+, consider a sequence of ran-
dom data matrices X+

1 , . . . ,X+
d , . . . , indexed by the number of

rows d. Assume each X+
d comes from a multivariate distribu-

tion with dimension d. Let λ+
1,d ≥ · · · ≥ λ+

d,d be the eigenvalues

of the covariance matrix �+
d , and let S+

D,d be the corresponding
n+ ×n+ dual sample covariance matrix. We assume the follow-
ing,

(i) Each column of X+
d has zero mean and positive definite

covariance matrix �+
d .

(ii) The fourth moment of each entry of each column is uni-
formly bounded by M+ > 0 and also the representation in (8)
holds for each X+

d .

(iii) Entries of Z+
d = �+

d
−1/2

X+
d = �+

d
−1/2

V+
d

T
X+

d (as de-
fined above) are independent.

(iv) The eigenvalues of �+
d are sufficiently diffused, in the

sense that

ε+
d =

∑d
i=1(λ

+
i,d)

2

(
∑d

i=1 λ+
i,d)

2
→ 0 as d → ∞. (9)

(v) The sum of the eigenvalues of �+
d is the same order as d,

in the sense that σ 2
d = O(1) and 1/σ 2

d = O(1).

Condition (9) can be viewed as a measure of the sphericity
of the data matrix. This restricts the underlying distribution to
be not too close to the extreme case of a few dominant eigen-
values. The spherical Gaussian is an example which has perfect
sphericity, that is, εd = 1

d . As mentioned in Ahn et al. (2007),
the ρ-mixing condition in Hall, Marron, and Neeman (2005) is
also a special case that satisfies Assumption 1.

One main result of Ahn et al. (2007) is that under their
weaker version of Assumption 1 [in particular, condition (iii)

did not appear there], the sample eigenvalues behave as if
they follow an identity covariance matrix, in the sense that
1
σ 2 SD,d → In, as d → ∞. Based on this theory they claim that
the pairwise squared distance between the data vectors from
X +(d), rescaled by 1

d , is approximately constant. However,
John Kent pointed out that an additional assumption is needed,
using a counter-example. Kent’s example is a mixture of nor-
mals, which is Nd(0, Id) with probability 1/2 and Nd(0,10Id)

also with probability 1/2. This example satisfies conditions (i),
(ii), (iv), and (v). But the pairwise distances have a nondegen-
erate discrete limiting distribution.

The theory in Ahn et al. (2007) goes through if additional
assumptions are added. A simple strengthening is to assume
Gaussianity. Our (iii) is weaker than Gaussianity, assuming
only a set of underlying independent entries, Z+

d . We restate
the theorem as follows.

Theorem 1. Under Assumption 1, the dual sample covari-
ance matrix, rescaled by σ 2

d , becomes approximately the iden-
tity matrix In, as d → ∞.

1

σ 2
d

SD,d → In in probability, as d → ∞.

A direct consequence of Theorem 1 is that the pairwise
squared distance rescaled by d−1 is approximately constant as
d → ∞.

Corollary 2. Under Assumption 1, the pairwise distances be-
tween the n+ data vectors are approximately the same. In par-
ticular, scaled by 1/dσ 2

d , the squared distance satisfies

1

dσ 2
d

‖x+
k − x+

l ‖2 → 2 in probability, as d → ∞.

Thus these n+ data vectors form a regular (n+ − 1)-simplex
in R

d .

4.1.2 Geometric Representation for Two Samples. The n−-
point sample X −(d) = {x−

1 (d),x−
2 (d), . . . ,x−

n−(d)} is defined
similarly to X +(d). In particular, the average of the eigenval-
ues is defined as τ 2

d = 1
d

∑d
i=1 λ−

i,d . When the eigenvalues for
the negative class data matrix are sufficiently diffused, that is,

ε−
d =

∑d
i=1(λ

−
i,d)2

(
∑d

i=1 λ−
i,d)2

→ 0 as d → ∞, in the same manner, the pair-

wise squared distances between the n− data vectors are approx-
imately the same,

1

dτ 2
d

‖x−
k − x−

l ‖2 → 2, as d → ∞. (10)

Now we generalize the two classes to allow different means.
We assume that the squared distance between the population
means, rescaled by 1/d, is a constant μ2,

1

d
‖E(x+) − E(x−)‖2 → μ2. (11)

For convenience, we assume that the limiting average eigenval-
ues exist,

σ 2
d → σ 2 and τ 2

d → τ 2 as d → ∞. (12)
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Theorem 3. Assume two independent data samples X +(d)

and X −(d) satisfy Assumption 1, (11), and (12). Then the
squared distance between a data vector in X +(d) and a data
vector in X −(d), divided by d, converges in probability to
l2 := σ 2 + τ 2 + μ2, that is,

Pr

[∣∣∣∣1

d
‖x+

k −x−
l ‖2 − l2

∣∣∣∣ ≥ ε

]
→ 0, as d → ∞, for any ε > 0.

Theorem 3 says that, if both samples satisfy Assumption 1,
then the pairwise rescaled distance between all pairs of data
vectors from the two samples is approximately constant. Theo-
rem 3 gives the interclass distances in the d-limit, while Corol-
lary 2 and (10) give the intraclass distances. From these results,
one can organize the linear discrimination possibilities as fol-
lows.

1. If μ2 is so large that σ 2 + τ 2 + μ2 is significantly greater
than 2σ 2 and 2τ 2, then the two simplices are far from
each other, and thus as discussed in Section 4.1.3 and Sec-
tion 4.1.4, there is a natural separating hyperplane, that
will give good classification, that is, good generalizabil-
ity.

2. If μ2 is so small that σ 2 + τ 2 + μ2 < 2 max(σ 2, τ 2), then
it is much harder than above to classify by linear discrim-
ination as shown in Section 4.1.3 and the generalizability
is weak as discussed in Section 4.1.4.

4.1.3 Asymptotic Properties of the wDWD Intercept. In
this section, we illustrate the asymptotic properties of the
wDWD intercept in the HDLSS data settings. Let O+ be the
centroid of the (n+ − 1)-simplex X +(d) and O− the centroid
of the (n− − 1)-simplex X −(d). As noted in Hall, Marron, and
Neeman (2005), an important corollary of Corollary 2 and The-
orem 3 is:

Corollary 4. In the d-asymptotic limit, the DWD hyperplane
is orthogonal to the line O+O− joining the two centroids.

Let P be any point on the interval O+O−. In Figure 5, let α

and β be the distances from P to the centroids. P lies on the
weighted DWD hyperplane only when

α

β
=

(
w+n+

w−n−

)1/2

. (13)

This determines the DWD hyperplane, which is orthogonal to
the line O+O− and passes through the point P which satisfies

condition (13). The larger w+n+
w−n− is, the closer the cut-off point

P will be to O−, and thus it will be more likely that a new data
point will be classified to X +. Theorem 5 shows the conditions
under which a future data point is always correctly classified or
misclassified.

Theorem 5. Assume that σ 2/[n3/2
+ w1/2

+ ] ≥ τ 2/[n3/2
− w1/2

− ]; if
needed, interchange X + and X − to satisfy this assumption.

Figure 5. Simplex centroids O+, O− and the candidate DWD
cut-off point P.

• For a new data point x+
0 from the X +-population,

1. If μ2 > (n−w−/n+w+)1/2σ 2/n+ − τ 2/n−, then

Pr(x+
0 is correctly classified by weighted DWD) → 1,

as d → ∞.
2. If μ2 < (n−w−/n+w+)1/2σ 2/n+ − τ 2/n−, then

Pr(x+
0 is wrongly classified by weighted DWD) → 1,

as d → ∞.

• For a new data point x−
0 from the X −-population, for any

μ > 0,

Pr(x−
0 is correctly classified by weighted DWD) → 1,

as d → ∞.

An intuitive interpretation of Theorem 5 is that the intraclass
average variances σ 2 and τ 2, the sizes n+ and n− and the in-
terclass squared distances μ2, jointly control the ability to clas-
sify the new data point from X + and X −. Large interclass dis-
tance will lead to better accuracy in general. When one class has
a smaller intraclass variance or a larger sample size, standard
DWD will give a more accurate classification rule. This comes
at a cost of worse classification performance for the other class.
Weighted DWD helps to offset the effect of unbalanced sample
size to some extent.

Theorem 5 is the weighted extension to theorem 3 in Hall,
Marron, and Neeman (2005). Compared to its original ver-
sion, Theorem 5 extends DWD by the introduction of w+
and w− into the assumptions. For example, in the case of
unbalanced data with equal cost and unbiased sampling, for
relatively small n− and large n+, we have the weight ratio
w+
w− = n−

n+ under MWGE. In Theorem 5, the main condition in

Hall, Marron, and Neeman (2005), σ 2/n3/2
+ ≥ τ 2/n3/2

− , is re-
laxed to σ 2/n+ ≥ τ 2/n−. This condition is more easily satis-
fied so that, as shown in Theorem 5, one can classify a new
data point from X − correctly by weighted DWD in contrast to
standard DWD. However, the condition in Hall, Marron, and
Neeman (2005), under which the data point from X + is cor-
rectly classified, μ2 > (n−/n+)1/2σ 2/n+ − τ 2/n−, becomes
μ2 > σ 2/n+ − τ 2/n− now, which is not as easily attained as
before.

To summarize, for standard DWD in the asymptotic setting
of Theorem 5, misclassifying some future points is unavoidable,
because this is totally controlled by the relative magnitudes of
μ2, n+, n−, σ 2, τ 2, which are all aspects of the underlying
distributions. However for weighted DWD, we can adaptively
choose the weights to adjust those relevant quantities, which
can reduce the misclassified region and lead to better classi-
fication accuracy. In the ideal (but unrealistic) case, where the
values μ2, n+, n−, σ 2, τ 2 are known in advance, we can choose
the weights intelligently such that the scenario 2. in Theorem 5
can be avoided as much as possible.
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4.1.4 Asymptotic Properties of the wDWD Direction. The-
orem 5 gives a sufficient condition under which new data are
correctly classified. However, it holds under the assumption that
the intraclass average variances σ 2 and τ 2, that is, the noise lev-
els, are not very large. When the noise level is not negligible
with respect to the signal (the interclass distance μ2), Theo-
rem 5 does not indicate the performance of wDWD. Instead,
in this case, the relationship between the wDWD direction (the
vector orthogonal to the separating hyperplane) and the direc-
tion of the line joining the two population means is more useful.
If the angle between the above two directions is close to 0, the
classification can be generalizable, in the sense of performing
well for new data.

Theorem 6. Assume that X +(d) and X −(d) satisfy Assump-
tion 1. As d → ∞, with probability converging to 1, the angle
between the direction joining the two population means and the
direction joining the centroids of the two simplices becomes

θ = cos−1(
μ2

μ2+σ 2/n++τ2/n− )1/2.

Recall from Corollary 4, the weighted DWD direction co-
incides with the direction which joins the two centroids d-
asymptotically. The asymptotic property of the angle θ between
the wDWD direction and the optimal linear classification direc-
tion is then implied by Theorem 6. In particular,

θ ≈

⎧⎪⎪⎨
⎪⎪⎩

90◦ if μ2 � σ 2

n+ + τ 2

n−

0◦ if
σ 2

n+ + τ 2

n− � μ2,

(14)

in the sense that limγ→0 θ = 90◦ and limγ→∞ θ = 0◦ for γ =
μ2/( σ 2

n+ + τ 2

n− ). Theorem 6 and (14) imply that wDWD tends to
give the optimal linear classification direction when the signal
level μ2 is much higher than the noise levels σ 2 and τ 2, and
on the other hand tends to give a direction which is orthogonal
to the desired direction, that is, is strongly inconsistent, when
the noise is significantly greater than the signal. The second
implication of Theorem 6 is that the angle goes to 0 if n+ and
n− → ∞, giving another notion of consistency of wDWD from
the d-asymptotic point of view.

4.2 Simulation Confirmation

In this section, we verify the asymptotic results for weighted
DWD by simulations. To verify Theorem 1, Corollary 2, and
Theorem 3, which provide the interclass and intraclass pairwise
distances, in Section 4.2.1, we calculate the corresponding dis-
tances for the high-dimensional simulated example discussed in
Section 3.1.1. To verify Theorem 5 and Theorem 6, we perform
a new simulation study in Section 4.2.2.

4.2.1 Pairwise Distances. We calculate the pairwise
squared distances (scaled by d−1) within each class and be-
tween classes for the constant signal simulation described in
Section 3.1.1. Table 6 shows the summary statistics. In Table 6,
note that all three of the mean rescaled squared distances fall
reasonably close to the theoretical predictions. Moreover, the
small standard deviation of the observed distance is consistent
with Theorem 1 and Theorem 3, which imply that the distance
should be constant in the large d-limit.

4.2.2 DWD Classification Performance. To verify Theo-
rem 5 and Theorem 6, we consider three simulated examples
similar to the constant signal setting in Section 3.1.1. Here we
fix the same noise level (σ 2 = τ 2 = 1) and the sample sizes
(n+ = 60, n− = 150), but assign different signal levels (μ2)
over the three examples. With the assumption of equal costs
and equal class proportions, the optimal weights from Table 3
are w+ = 1

n+ and w− = 1
n− . Standard DWD is a special case of

weighted DWD with w+ = w− = 1. Theorem 5 gives a thresh-
old for μ2,

(n−w−/n+w+)1/2σ 2/n+ − τ 2/n−. (15)

According to the theorem, standard/weighted DWD correctly
classifies x+

0 with probability 1 if μ2 is greater than the thresh-
old. Here, the value of (15) for standard DWD is (n−/n+)1/2σ 2/

n+ −τ 2/n− = 0.020, and that for weighted DWD it is σ 2/n+ −
τ 2/n− = 0.010. We explore the possible cases, by choosing:

• μ2 = 0.005, where neither correct classification probabil-
ity takes to 1

• μ2 = 0.011, where only the wDWD correct classification
probability takes to 1

• μ2 = 0.059, where both wDWD and stdDWD correct clas-
sification probabilities take to 1.

In Table 7, note that when the signal is weak enough (μ2 =
0.005), both weighted and standard DWD fail to classify future
data vectors from the X + population. However, when the sig-
nal is strong enough (μ2 = 0.059), both methods succeed. If
the data have intermediate signal strength (μ2 = 0.011), then
weighted DWD works reasonably well (error < 30%) while the
standard DWD does not (error > 60%). These observations are
consistent with Theorem 5. Secondly, we find that the observed
angles in the simulation for both weighted and standard DWD
are in line with the theoretical angles based on the d-asymptotic
results given by Theorem 6. Note that the angle between the op-
timal direction and the weighted DWD direction will often be
closer to the theoretical angle (from Theorem 6), than that of
the standard DWD.

Table 6. Summary statistics for the rescaled pairwise squared distances. The standard deviation of the distance is small relative to the mean

# of pairs Mean SD Theoretical Formula

Within positive class 72,010 1.1241 0.0489 1.1250 2σ 2

Within negative class 191,890 1.1242 0.0491 1.1250 2τ2

Between classes 235,600 1.1339 0.0491 1.1340 σ 2 + τ2 + μ2
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Table 7. Simulation results for theorem verification: The top rows investigate Theorem 5; they display the average misclassification errors for
both classes over 100 simulations and the standard error (in parentheses). The bottom rows validate Theorem 6, by showing that the

theoretical angle between the DWD direction and the optimal classification direction given by the theorem, and the average
observed angles for both wDWD and stdDWD together with the standard error (in parentheses)

Case 1 weak Case 2 intermediate Case 3 strong
μ2 = 0.005 < 0.01 0.01 < μ2 = 0.011 < 0.02 μ2 = 0.059 > 0.02

Class + Class − Class + Class − Class + Class −
Error wDWD 43.91 (1.714) 33.76 (1.674) 29.41 (1.368) 25.3 (1.244) 2.4 (0.148) 0.71 (0.078)
Error stdDWD 78.04 (0.381) 8.63 (0.233) 67.06 (0.432) 4.67 (0.148) 13.17 (0.291) 0.05 (0.015)

Theoretical angle 65.16 55.43 32.15
Obs. angle wDWD 65.41 (0.208) 55.59 (0.189) 32.56 (0.139)
Obs. angle stdDWD 66.86 (0.193) 57.5 (0.189) 34.06 (0.127)

4.3 Fisher Consistency of DWD

This section studies Fisher consistency of weighted DWD.
As noted in Bartlett, Jordan, and McAuliffe (2006), many of
the classification algorithms developed in the machine learning
literature can be viewed as minimum contrast methods that min-
imize a convex surrogate of the 0–1 loss function. The weighted
DWD (2) minimizes a surrogate of the corresponding weighted
0–1 loss function, W(−1)I[y = −1]I[φ(x) = +1] + W(+1) ×
I[y = +1]I[φ(x) = −1]. We first demonstrate the convex sur-
rogate loss function for DWD (Section 2.1). This is similar
to the hinge loss function for SVM (Wahba 1999) through
an equivalent formulation of the DWD optimization. A binary
classifier with loss V(yf (x)) is Fisher consistent if the mini-
mizer of E[W(Ys)V(YSf (Xs))] has the same sign as ps(x) −

W(−1)
W(−1)+W(+1)

. Liu (2007) studied Fisher consistency for multi-
categorical SVM and its various extensions. To our knowledge,
Fisher consistency of DWD has not been studied.

4.3.1 Equivalent Formulation. For each i = 1, . . . ,n, we
define fi = f (xi|ω,b) = x′

iω + b. The weighted DWD optimiza-
tion problem (2) can be shown to be equivalent to the following
problem

min
{ω,b:ω′ω≤1}

min
ξ≥0

n∑
i=1

W(yi)

(
1

yifi + ξi
+ Cξi

)
. (16)

It can be shown that the optimal solution for the inside op-
timization part of (16) is given by ξ∗ = (ξ∗

1 , . . . , ξ∗
n )T , where

ξ∗
i = 1√

C
− yifi if yifi ≤ 1√

C
; ξ∗

i = 0 otherwise. Then the DWD
optimization problem amounts to

min
ω,b

n∑
i=1

W(yi)

(
[2√

C − C · yifi]I
[

yifi ≤ 1√
C

]

+ 1

yifi
I

[
yifi >

1√
C

])
, s.t. ω′ω ≤ 1.

If we define the DWD loss function as

V(yf ) =

⎧⎪⎪⎨
⎪⎪⎩

2
√

C − C · yf if yf ≤ 1√
C

1

yf
otherwise,

(17)

then the weighted DWD optimization is minω,b
∑n

i=1 W(yi) ×
V(yifi(ω,b)), s.t. ω′ω ≤ 1. This representation provides some

insights into DWD as a modification of the hinge loss of SVM,
H(yf ) = (1 − yf )+. Actually, the first expression for the DWD
loss is similar to the hinge loss, while the second expression 1

yf
is positive, in contrast to being 0 for the hinge loss when yf > 1.
The statistical insight is that all the points correctly classified by
DWD (yf > 1√

C
) have some impact on the optimization (i.e.,

1
yf > 0), while those for SVM (yf > 1) do not.

4.3.2 Fisher Consistency. For any classification function f ,
the expected DWD loss, that is, the risk, is R(f ) = E[W(Ys) ×
V(Ysf (Xs))]. Fisher consistency of the classifier f can be proved
by showing that the sign of the global minimizer of the uncon-
ditional risk arg minf R(f ), is equal to the Bayes optimal deci-
sion rule φ∗ given in (4). Theorem 7 proves this relationship
and thus shows Fisher consistency of weighted DWD under the
OM criterion.

Theorem 7. Let f ∗ be the global minimizer of E[W(Ys) ×
V(Ysf (Xs))], where V(·) is the DWD loss function given
in (17). Then sign[f ∗(x)] = φ∗(x), where φ∗(x) is the Bayes
decision rule under the OM criterion given in (4), or equiva-
lently, sign[f ∗(x)] = sign[ps(x) − W(−1)

W(+1)+W(−1)
].

Similarly, under the MWGE criterion, with the weighting
scheme W(·) given by Table 3, weighted DWD can also be
shown to be Fisher consistent.

5. CONCLUSION

In this article, we have proposed weighted DWD to im-
prove standard DWD for unbalanced data and various non-
standard situations. We have made the following contributions.
First, we have provided the optimal weighting schemes for sev-
eral nonstandard situations, using one of the two criteria, OM
error and MWGE. Second, we propose an adaptive weight-
ing scheme to improve one of the two alternative criteria,
MSWGE and MaxWGE. Third, we represent datasets from two
classes geometrically in HDLSS settings. Fourth, we develop
the HDLSS asymptotic properties of weighted DWD. Lastly,
we show Fisher consistency for wDWD. Our numerical studies
demonstrate the effectiveness of weighted DWD and verify the
asymptotic results.

The results on the tuning parameter C from our simula-
tions suggest that the recommendation for the tuning parame-
ter C = 100/(dt)2 proposed by Marron, Todd, and Ahn (2007),
which was originally designed for balanced data, also works
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well in unbalanced and nonstandard situations as long as we
use weighted DWD instead of standard DWD. Thus their rec-
ommendation of tuning parameter C can be used for weighted
DWD as a simple alternative of cross validation.

The simulation results show that in the sparse signal setting,
our current version of weighted DWD does not work as well
as some sparse methods, for example, L1 SVM. One possible
future research direction is to study weighted DWD with built-
in sparse penalty for variable selection.

APPENDIX

For Theorem 1, Corollary 2, and Theorem 5, we only outline the
main steps of the proofs. Readers can refer to Qiao et al. (2008) for
technical details.

Proof of Theorem 1

Let Z+
d = �+

d
−1/2

V+
d

T
X+

d = [z+
1 , . . . , z+

n+], where z+
k = [z+1k,

. . . , z+dk]T is the kth column. Each column of Z+
d is independently

and identically distributed as an underlying d-dimensional distrib-
ution with identity covariance matrix Id , where �+

d and V+
d form

the eigenvalue-decomposition of the covariance matrix, �+
d = V+

d ×
�+

d V+
d

T
. Define the relative eigenvalue by λ̃+

i,d = λ+
i,d/(

∑d
i=1 λ+

i,d).
The sphericity condition in Assumption 1 is equivalent to∑d

i=1(λ̃+
i,d)2 → 0, as d → ∞. Note that relative eigenvalues sum up

to 1, that is,
∑d

i=1 λ̃+
i,d = 1.

From the representation in (8), 1
σ 2

d
S+

D,d = 1∑d
i=1 λ+

i,d

∑d
i=1(λ+

i,d ×
W+

i,d) = ∑d
i=1(λ̃+

i,dW+
i,d). The kth diagonal element of 1

σ 2 S+
D,d can be

expressed as
∑d

i=1 λ̃+
i,d(z+ik)2, where the z+ik ’s (i = 1, . . . ,d) are inde-

pendent distributed with mean 0 and unit variance. And the (k, l)th off-
diagonal element of 1

σ 2
d

S+
D,d can be expressed as

∑d
i=1 λ̃+

i,d(z+ikz+il ),

where all z+ik ’s and z+il ’s are independent (i = 1, . . . ,d), with mean 0
and unit variance.

Chebyshev’s inequality is then used twice (one for the diagonal el-
ements, one for the off-diagonal elements) to show that each element
of 1

σ 2
d

S+
D,d converges to the counterpart of the identity matrix In in

probability as d → ∞.
Note that when each column of X+

d follows the multivariate

Gaussian distribution, so does z+
k , the kth column of Z+

d . Hence, with

identity covariance matrix of z+
k , its entries, z+ik (i = 1, . . . ,d), are

independent, which satisfies the independence condition.

Proof of Corollary 2

Let x+
j = (x+

1j, . . . , x+
dj)

T , j = 1, . . . ,n+, be the jth column of the

data matrix X+. Let x−
j = (x−

1j, . . . , x−
dj)

T , j = 1, . . . ,n−, be the jth col-

umn of the data matrix X−. The squared distance between x+
k and x+

l ,

rescaled by (dσ 2
d )−1 is 1

dσ 2
d
‖x+

k − x+
l ‖2 = 1

dσ 2
d

∑d
i=1(x+

ik − x+
il )2 =

1
dσ 2

d

∑d
i=1(x+

ik)2 + 1
dσ 2

d

∑d
i=1(x+

il )2 − 2
dσ 2

d

∑d
i=1 xikxil. The first and

second terms on the right-hand side are the kth and lth diagonal el-
ements of 1

σ 2
d

S+
D,d , respectively, which were proved to converge to 1

in probability as d → ∞ in Theorem 1. The third term is the (k, l)th
off-diagonal element of 1

σ 2
d

S+
D,d , which converges to 0 in probability

as d → ∞. Thus 1
dσ 2

d
‖x+

k − x+
l ‖ → 2, in probability as d → ∞.

Lemma A.1. Assume that
∑d

i=1(λ+
i,d)2,

∑d
i=1(λ−

i,d)2 → 0, as

d → ∞ and that
∑d

i=1 λ+
i,d = ∑d

j=1 λ−
j,d = 1. Denote by U =

[uij]i,j=1,...,d as an arbitrary d × d orthogonal matrix. Then it holds

that
∑d

i=1
∑d

j=1 u2
i,jλ

+
i,dλ−

j,d → 0, as d → ∞.

Note that sum of squared entries in each column and row of U is 1.
Lemma A.1 can be proved using the Cauchy–Schwarz inequality.

Proof of Theorem 3

Let x+
j = (x+

1j, . . . , x+
dj)

T , j = 1, . . . ,n+, be the jth column of the

data matrix X+. Let x−
j = (x−

1j, . . . , x−
dj)

T , j = 1, . . . ,n−, be the jth

column of the data matrix X−. The squared distance between x+
k and

x−
l is

‖x+
k − x−

l ‖2

=
d∑

i=1

{[x+
ik − E(x+

i· )] − [x−
il − E(x−

i· )] + [E(x+
i· ) − E(x−

i· )]
}2 (A.1)

=
d∑

i=1

(ẋ+
ik)2 +

d∑
i=1

(ẋ−
il )2 − 2

d∑
i=1

(ẋ+
ik)(ẋ−

il ) (A.2)

+
d∑

i=1

[E(x+
i· ) − E(x−

i· )]2

+ 2
d∑

i=1

[E(x+
i· ) − E(x−

i· )][ẋ+
ik − ẋ−

il ]. (A.3)

Here ẋ+
ik = x+

ik − E(x+
i· ) and ẋ−

il = x−
il − E(x−

i· ) are the ith entries on

the kth and lth columns of the de-meaned data matrices Ẋ+ and Ẋ−.
The first two terms in (A.2), rescaled by (dσ 2

d )−1 and (dτ2
d )−1, re-

spectively, are the kth and lth diagonal entries of 1
σ 2

d
S+

D and 1
τ 2

d
S−

D . By

the proof of Theorem 1, both converge to 1 in probability as d → ∞.
Thus, for any ε > 0, Pr(| 1

d
∑d

i=1(ẋ+
ik)2 − σ 2| ≥ ε) → 0, as d → ∞

and Pr(| 1
d

∑d
i=1(ẋ−

il )2 − τ2| ≥ ε) → 0, as d → ∞.

The third term,
∑d

i=1(ẋ+
ik)(ẋ−

il ), is the inner product of ẋ+
k and ẋ−

l ,

the kth column of the de-meaned data matrix Ẋ+, and the lth col-
umn of the de-meaned data matrix Ẋ−. Recall that we can write
ẋ+

k = V+�+1/2z+
k , where z+

k = (z+1 , . . . , z+d )T is a d dimensional
vector from a distribution with the identity covariance matrix and
zero mean. So is ẋ−

l = V−(�−)1/2z−
l , where z−

l = (z−1 , . . . , z−d )T .
Let U = [uij]i,j=1,...,d = V+T V−. Define the relative eigenval-

ues by λ̃+
i,d = λ+

i,d/
∑d

i=1 λ+
i,d and λ̃−

j,d = λ−
j,d/

∑d
j=1 λ−

j,d . Then

(dσdτd)−1 ∑d
i=1(ẋ+

ik)(ẋ−
il ) becomes

(dσdτd)−1[z+1 , . . . , z+d ](�+)1/2V+T
V−(�−)1/2[z−1 , . . . , z−d ]T

=
( d∑

i=1

λ+
i,d

)−1/2( d∑
j=1

λ−
j,d

)−1/2 d∑
s=1

d∑
t=1

us,tz
+
s z−t

√
λ+

s,dλ−
t,d

=
d∑

s=1

d∑
t=1

us,tz
+
s z−t

√
λ̃+

s,dλ̃−
t,d.

The expectation of
∑d

s=1
∑d

t=1 us,tz+s z−t
√

λ̃+
s,dλ̃−

t,d is 0. Thus by

Chebyshev’s inequality,

Pr

[∣∣∣∣∣
d∑

s=1

d∑
t=1

us,tz
+
s z−t

√
λ̃+

s,dλ̃−
t,d

∣∣∣∣∣ ≥ ε

]

≤ ε−2E

( d∑
s=1

d∑
t=1

us,tz
+
s z−t

√
λ̃+

s,dλ̃−
t,d

)2

= ε−2
d∑

s=1

d∑
t=1

u2
s,tλ̃

+
s,dλ̃−

t,d.
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Since U is the product of two orthogonal matrix U = V+T V−, U
is itself orthogonal. The relative eigenvalues satisfy the condition
in Lemma A.1. Thus by Lemma A.1, Pr[|∑d

s=1
∑d

t=1 us,tz+s z−t ×√
λ̃+

s,dλ̃−
t,d| ≥ ε] → 0, as d → ∞. Thus (dσdτd)−1 ∑d

i=1(ẋ+
ik)(ẋ−

il )

converges to 0 in probability as d → ∞. Further, since σ 2
d → σ 2 < ∞

and τ2
d → τ2 < ∞, 1

d
∑d

i=1(ẋ+
ik)(ẋ−

il ) → 0 in probability as d → ∞.

The fourth term is the squared distance between means, which is
defined as dμ2.

The last term can be decomposed into two components:∑d
i=1[E(x+

i· ) − E(x−
i· )]ẋ+

ik and
∑d

i=1[E(x+
i· ) − E(x−

i· )]ẋ−
il . Let δi =

E(x+
i· ) − E(x−

i· ). Note that
∑d

i=1 δ2
i = dμ2. Each component, after

being rescaled by d−1, can be shown to converge to 0 in probability
as d → ∞. For example, the first component, rescaled by (dσd)−1,

becomes 1
dσd

∑d
i=1[E(x+

i· ) − E(x−
i· )]ẋ+

ik = 1
d1/2

√
1

dσ 2
d

∑d
i=1 δiẋ

+
ik =

1
d1/2

∑d
i=1 δi

∑d
s=1 v+

i,s

√
λ̃+

s,dz+s . By Chebychev’s inequality,

Pr

(∣∣∣∣∣ 1

d1/2

d∑
i=1

δi

d∑
s=1

v+
i,s

√
λ̃+

s,dz+s

∣∣∣∣∣ > ε

)

≤ ε−2E

(
1

d1/2

d∑
i=1

δi

d∑
s=1

v+
i,s

√
λ̃+

s,dz+s

)2

= ε−2 1

d
E

( d∑
s=1

d∑
i=1

δiv
+
i,s

√
λ̃+

s,dz+s

)2

= ε−2 1

d

d∑
s=1

( d∑
i=1

δiv
+
i,s

)2

λ̃+
s,dE(z+s )2

= ε−2 1

d

d∑
s=1

( d∑
i=1

δiv
+
i,s

)2

λ̃+
s,d

≤ ε−2 1

d

d∑
s=1

( d∑
i=1

δiv
+
i,s

)2

max
i

(λ̃+
i,d)

= ε−2μ2 max
i

(λ̃+
i,d) → 0, as d → ∞.

Note that
∑d

s=1(
∑d

i=1 δiv
+
i,s)

2 = ∑d
i=1 δ2

i = dμ2 because V+ is an
orthogonal matrix, which keeps the norm of δ after transformation.
Hence the first component

∑d
i=1[E(x+

i· )−E(x−
i· )]ẋ+

ik , rescaled by d−1,
converges to 0 in probability as d → ∞. And so does the second com-
ponent

∑d
i=1[E(x+

i· ) − E(x−
i· )]ẋ−

il .

To summarize the analysis above, 1
d ‖x+

k − x−
l ‖2 → σ 2 + τ2 + μ2,

in probability, as d → ∞.

Proof of Theorem 5

Recall that the DWD hyperplane cut-off point P∗ satisfies (13):
α∗
β∗ = (

w+n+
w−n− )1/2. Let x+

0 be a new data point from the X +-population.

It was shown in Hall, Marron, and Neeman (2005) that the rescaled
squared distance of x+

0 from O+ and O− are σ 2(1 + n−1+ ) and

μ2 + σ 2 + τ2/n−, respectively, and it was known that the squared
distance between O+ and O− was μ2 +σ 2/n+ + τ2/n−. Let P be the
projection of x+

0 to the line O+O−, with distances to the two centroids
being α and β . It was shown by a series of geometric calculations in

Hall, Marron, and Neeman (2005) that α
β

= σ 2/n+
μ2+τ2/n− .

The point x+
0 will be correctly classified as X + type if it lies on

the same side of the DWD hyperplane as O+, that is, if σ 2/n+
μ2+τ2/n− <

(
w+n+
w−n− )1/2. It will be wrongly classified as X − if σ 2/n+

μ2+τ2/n− >

(
w+n+
w−n− )1/2.

The first and second parts of Theorem 5 follows from the two

inequalities above immediately. Now assume that σ 2/[n3/2
+ w1/2

+ ] ≥
τ2/[n3/2

− w1/2
− ]. This ensures the nonnegativity of (n−w−/

n+w+)1/2σ 2/n+ − τ2/n−, the right-hand side of the inequality in
the first and second parts. Furthermore, suppose that we have a
data point x−

0 from the X −-population. By the inequality above,
τ 2/n−
σ 2/n+ ≤ (

w−n−
w+n+ )1/2. Then for any positive μ2 we have τ 2/n−

μ2+σ 2/n+ <

τ 2/n−
σ 2/n+ ≤ (

w−n−
w+n+ )1/2, that is, x−

0 will always be classified as belonging

to X −. Theorem 5 simply combines the analysis above.

Proof of Theorem 6

Denote the centroids of the (n+ − 1)-simplex from X + as On+
+ and

the (n− − 1)-simplex from X− as On−
− . Also denote the population

means of X + and X − as O∞+ and O∞− , respectively. In the large d-

limit, the expected squared distance, rescaled by d−1, between On+
+

and On−
− is μ2 + σ 2/n+ + τ2/n−. If we consider k more data vectors

from X +, the expected squared distance, rescaled by d−1, between

the centroids O(n++k)
+ , of the new (n+ + k − 1)-simplex, and the cen-

troid On−
− , of the (n− − 1)-simplex is μ2 + σ 2/(n+ + k) + τ2/n−.

Also the expected squared distance, rescaled by d−1, between On+
+

and O(n++k)
+ is ( k

n+(n++k) )σ
2. This can be shown by calculating the

distance between the two (n+ + k)-dimensional vectors,
√

dσ(n−1+ ,n−1+ , . . . ,n−1+︸ ︷︷ ︸
n+

,0,0, . . . ,0︸ ︷︷ ︸
k

)T

and
√

dσ((n+ + k)−1, (n+ + k)−1, . . . , (n+ + k)−1︸ ︷︷ ︸
n++k

)T ,

which are the centroids of the (n+ − 1)-simplex

{√d(1,0, . . . ,0︸ ︷︷ ︸
n+

,0, . . . ,0︸ ︷︷ ︸
k

), . . . ,
√

d(0, . . . ,0,1︸ ︷︷ ︸
n+

,0, . . . ,0︸ ︷︷ ︸
k

)}

and the (n+ − 1 + k)-simplex

{√d(1,0, . . . ,0︸ ︷︷ ︸
n++k

), . . . ,
√

d(0, . . . ,0,1︸ ︷︷ ︸
n++k

)},

respectively.

Thus by the Pythagorean theorem, On+
+ O(n++k)

+ , On+
+ On−

− , and

O(n++k)
+ On−

− form a right triangle, with On+
+ On−

− being the hy-

potenuse. And it follows that the angle between O(n++k)
+ On−

− and

On+
+ On−

− becomes approximately cos−1(
μ2+σ 2/(n++k)+τ 2/n−

μ2+σ 2/n++τ2/n− )1/2.

Let k → ∞. O(n++k)
+ converges to O∞+ . Thus the angle between

O∞+ On−
− and On+

+ On−
− becomes cos−1(

μ2+τ2/n−
μ2+σ 2/n++τ2/n− )1/2.

In the same manner, consider l more data vectors from X −,
and let l → ∞. Then the angle between O∞+ O∞− and On+

+ On−
− is

cos−1(
μ2

μ2+σ 2/n++τ2/n− )1/2, that is, the angle between the direction

joining the means of two populations and the DWD direction joining
the centroids of the (n+ −1)-simplex X +(d) and the (n− −1)-simplex

X −(d) becomes θ = cos−1(
μ2

μ2+σ 2/n++τ2/n− )1/2.
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Proof of Theorem 7

For any fixed x, the conditional risk is

E[W(Ys)V(Ysf )|Xs = x]
= ps(x)W(+1)V(f (x)) + (1 − ps(x))W(−1)V(−f (x)).

Here the DWD loss V(·) is defined in (17). For simplicity, we
write R(f ) = psW(+1)V(f ) + (1 − ps)W(−1)V(−f ). Then f ∗ is ob-
tained by solving R′(f ) = 0, where R′(f ) = psW(+1)1V ′(f ) − (1 −
ps)W(−1)V ′(−f ). Straightforward computations give

V(f ) =

⎧⎪⎪⎨
⎪⎪⎩

2
√

C − Cf if f ≤ 1√
C

1

f
otherwise

and

V(−f ) =

⎧⎪⎪⎨
⎪⎪⎩

2
√

C + Cf if f ≥ − 1√
C

−1

f
otherwise.

We can show that, for fixed ps, R(f ) is continuous and differentiable
everywhere and R(f ) is convex in [−∞,∞], that is, R′(f ) is nonde-
creasing. By directly solving the equation R′(f ) = 0, we get f ∗, the
minimizer of R(f ) as

f ∗ = 1√
C

·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
psW(+1)

(1 − ps)W(−1)
if

psW(+1)

(1 − ps)W(−1)
> 1

0 if
psW(+1)

(1 − ps)W(−1)
= 1

−
√

(1 − ps)W(−1)

psW(+1)
if

psW(+1)

(1 − ps)W(−1)
< 1.

Note when psW(+1)
(1−ps)W(−1)

= 1, f ∗ can take any value in [−(((1 −
ps)W(−1))/(CpsW(+1)))1/2, ((psW(+1))/(C(1 − ps)W(−1)))1/2].
We choose 0 here for convenience. Therefore, the minimizer of
R(f ) satisfies sign[f ∗] = sign[ psW(+1)

(1−ps)W(−1)
− 1] = sign[psW(+1) −

(1 − ps)W(−1)] = sign[ps{W(+1) + W(−1)} − W(−1)] = sign[ps >
W(−1)

W(+1)+W(−1)
] = φ∗.

[Received September 2008. Revised November 2009.]
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