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High-dimensional data analysis emerges in many different areas of scientific
research and social practice. Variable selection is an important task in statistical
analysis for high-dimensional data. The traditional all-subset-selection method
can be ideal for variable selection, but it is computationally intractable in the
high-dimensional setting. In both regression and classification contexts, sparsity
penalties are commonly used for the purpose of defining the complexity of the
resulting model so as to achieve variable selection. The current article reviews
a few important milestones and some recent works in the area of variable
selection, especially those methods which use Lq norm and their variants as the
penalty term. In particular, we review the Lq penalty, nonconvex penalties, among
others. In ultrahigh-dimensional data analysis, independence learning is often
used for the purpose of dimension reduction. Theoretical results, methodological
developments and computational innovations in regard to these methods are
discussed. These variable selection techniques can be easily extended to problems
beyond linear regression, such as classification, quantile regression, etc. Lastly, an
interesting and promising research trend is the combination of multiple methods
and we review several successful methods which fall into this category. © 2014 Wiley
Periodicals, Inc.
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INTRODUCTION

Nowadays, high- and ultrahigh-dimensional data
arise from almost every aspect of the human

society, ranging from scientific areas such as health
care, biological and genetic sciences, medical sci-
ences including medical imaging, geology, physical
science, chemistry, and meteorology, to social prac-
tices such as traffic control, social network, busi-
ness, homeland security, logistics, and supply chain
management and finance. When analyzing these high-
and ultrahigh-dimensional data, statisticians aim for
both interpretation of the statistical model and its
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power of accurate estimation, prediction, and classi-
fication. Donoho1 shows the pressing need for devel-
oping high-dimensional data analysis methodology
and theory. Fan and Li2 and Fan and Lv3 give com-
prehensive overviews of statistical challenges with
high-dimensionality and provide viable solutions to
variable selection with high dimensions and ultrahigh
dimensions.

One difficulty of high-dimensional data analy-
sis is the presence of multicollinearity: variables are
(nearly) linearly dependent from each other, which
makes traditional statistical procedures numerically
unstable and many times not identifiable. Multi-
collinearity is more likely to occur when the dimen-
sionality is large, and occurs almost surely when
the dimensionality is greater than the sample size.
Consequences of multicollinearity include overfit-
ting (models perform badly when being generalized
to the out-of-sample data), mis-modeling (irrelevant
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variables are identified as relevant variables by mis-
take) and data piling in classification problem (data
vectors pile upon each other when projected to the
classification direction.) Regularization directly tack-
les the multicollinearity problem. In particular, spar-
sity penalties have been used to shrink the param-
eter space from which we search for the optimal
solution. Herein, a de facto assumption we adopt is
that data lie in low-dimensional structures within a
high-dimensional space. With this assumption, spar-
sity becomes a very appealing property because it
encourages concise representations of the data, which
improve the model interpretation. For a statistical
method which is capable of doing variable selection,
two types of properties are desired. The first types of
properties focus on the statistical accuracy in estima-
tion, prediction, and classification. The second types
of properties focus on the accuracy of model selection,
variable selection, tuning parameter selection and so
on. A number of researchers have made great progress
on both ends. Moreover, in recent decades, we have
also witnessed the improvement of the computational
efficiency of these new statistical methods, compared
to the much slower traditional model selection meth-
ods, thanks to the marriage of statistics and machine
learning. For many procedures, we can even obtain the
whole solution path corresponding to a wide range of
parameter values. The current article takes a few snap-
shots in the journey of developing methods and the-
ory for variable selection using Lp penalties and their
variants. For data with ultrahigh dimensions, the inde-
pendence learning method provides an initial simplifi-
cation of the problem which we briefly discuss here.
Although we start with the canonical linear regression
problem as a working example, the variable selection
techniques introduced here can be easily extended to
other statistical problems. Some promising research
directions will be reviewed in the end of the article.

BACKGROUND AND NOTATIONS

We first introduce the background of the underlying
statistical problem as well as some general notations
to be used throughout the article.

For a general vector in the p-dimensional
Euclidean space v∈ℝp, let vj be the jth component

of v and |v|q =
(∑p

j=1 |vj|q)1∕q
be the Lq norm of v,

where 0≤ q≤∞. Note that the L0 norm of v is the
number of nonzero components in v and the L∞ norm
of v is max(v1, … , vp).

We consider the linear regression model as a
working example, although other topics such as quan-
tile regression and classification will be discussed later

as well. We consider the canonical linear regression
setting,

Y = X𝜷 + 𝜖, (1)

where Y = (Y1, … , Yn)T is the vector of the response
variable, X= (x1, … , xn)T is the n by p design matrix,
whose ith row, xi ∈ℝp, represents the ith observation
in the sample, 𝝐 is an n-dimensional vector for the
random error, and 𝜷 = (𝛽1, … , 𝛽p)T is the coefficient
vector. The ordinary least square solution to the linear
regression problem minimizes the sum of squared
errors, that is,

𝜷OLS = argmin
𝜷

∗

n∑
i=1

(
Y i − xT

i 𝛽
∗)2 =

(
XTX

)−1
XTY .

We denote the support set of the true coefficient
vector 𝜷 as 𝒮 =

{
1 ≤ j ≤ p ∶ 𝛽j ≠ 0

}
and 𝒮 c the

complement of 𝒮 in {1, … , p}. We refer 𝒮 to the
signals or relevant variables and 𝒮 c to the noises
or irrelevant variables. Moreover, we let X𝒮 be the
columns of X corresponding to the signals 𝒮 and X𝒮 c

be the columns of X for the noise variables. Similarly,
𝜷𝒮 is the vector of the nonzero coordinates of 𝜷.

CLASSICAL MODEL SELECTION

Given 𝜷†, an estimate to 𝜷, with model size (num-
ber of nonzero coordinates) d, that is, |𝜷†|0 = d, we
define the sum of squared errors SSEd ≡ SSE

(
𝜷†) =∑n

i=1

(
Yi − xT

i 𝜷
†)2

. We consider the assumption that
𝝐 ∼Nn(0, 𝜎2I), where 𝜎2 is an unknown equal vari-

ance, and I is an identify matrix with appropriate
dimensions. Many classical model selection methods
have been proposed to minimize an ultimate cri-
terion, such as the adjusted R2 criterion, or some
prediction error criteria. For example, many meth-
ods attempt to estimate the mean squared predic-
tion bias across all observations of the sample.
Among these methods, some well known ones include

PRESS ≡
∑n

i=1

(
Yi − Ŷi(i)

)2
where Ŷi(i) is the predic-

tion of Yi based on a reduced sample without the
ith observation, Mallow’s Cp criterion ≡ SSEd∕s2

p −(
n − 2d

)
where s2

p is the mean squared error estimated
under the full model, AIC≡ n log(SSEd/n)+ 2d and
BIC≡n log(SSEd/n)+ log(n)d. Readers are advised to
refer to classic statistical textbook on linear regression,
such as Faraway,4 for further references.

A statistician who aims to find the best (or cor-
rect) model should hopefully be able to calculate one
such measure for all possible linear regression models
with different combinations of variables. For models
with size d, there are ‘p choose d’ possible models.
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This amounts to 2p − 1 possible models in total. For
small p, the computational burden is reasonable. For
moderate p, it may be doable, given that the sample
size is not beyond manageable. A common practice
is to avoid trying all possible models using forward
selection, backward selection, stepwise selection, etc.
These schemes aim to mimic the global optimal model
through a single path with fewer evaluations involved.
As approximations, they may not have the guaran-
tee to achieve the global optimality. As is obvious, for
large p, it is infeasible to evaluate for all or even a sub-
stantial subset of all candidate models.

REGULARIZATION AND Lq PENALTIES

For high-dimensional data, the ordinary least square
approach to linear regression encounters some chal-
lenges. In addition to the potential computational
issue in model selection, collinearity is a notorious
problem. In high dimensions (p≫n), XTX is not
invertible with probability 1 and hence the least square
solution is not available. In the classification setting, a
similar issue can lead to the so-called data-piling phe-
nomenon, see for example, Refs 5 and 6.

For the regression problem, we consider a penal-
ized least square method now. A regularization term,
used to describe complexity of the model, is added to
the scaled sum of squared errors criterion to form the
new objective function. This leads to

𝜷† = argmin
𝜷

∗

{
1
2n

n∑
i=1

(
Yi − xT

i 𝜷
∗)2 + 𝜆 · p

(
𝜷∗)} ,

(2)
where p(𝜷) is the additional regularization term, also
known as the penalty term. See a general introduction
to regularization in statistics in Ref 7. Often we
consider p additive penalties, one for each of the
p coefficients, that is, we let 𝜆 · p (𝜷) =

∑p
j=1 p𝜆j

(
𝛽j

)
,

where p𝜆j
(·) ∶ ℝ → ℝ+.

For an instance, the ridge regression by Hoerl
and Kennard8, which employees the L2 norm as the
penalty term p (𝜷) = |𝜷|22 =

∑p
j=1 𝛽

2
j , has been very suc-

cessful in addressing the collinearity issue. In partic-
ular, the ridge regression makes use of the invertible
(XTX+ aI)−1, where a> 0 depends on the regulariza-
tion parameter 𝜆, in place of (XTX)− 1 in the ordinary
least square solution (XTX)− 1XTY.

The L0 norm of the coefficient vector|𝜷 |0 =
∑p

j=1 1[
𝛽j≠0

] is a natural choice for the penalty
term p( 𝜷 ) since it directly counts the number of
nonzeros in 𝜷 and hence, implies a selection of vari-
ables. In particular, the use of the objective function
1
2n

∑n
i=1

(
yi − xT

i 𝜷
)2 + 𝜆

∑p
j=1 1[

𝛽j≠0
] favors a model
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FIGURE 1 | The penalty functions for L0 norm, L1 norm, L0.5 norm,
and L2 norm.

with small sum of squared errors and small model
size. However, the penalized least square method with
the L0 norm as the penalty term is computationally
intractable because of the discontinuity of the function
1[𝜃 ≠ 0] at 𝜃 = 0. This makes it impossible to employ any
efficient optimization technique to solve this problem.
One way to overcome this technical difficulty is to
relax the noncontinuous and nonconvex L0 norm to a
continuous and convex function, such as the L1 norm,
p (𝜷) = |𝜷 |1 =

∑p
i=1 |𝛽j|. The L1 penalized least square

regression has been studied in the seminal LASSO
paper by Tibshirani9. The L1 regularization has also
been used in Dantzig selector by Candes and Tao10.
Figure 1 shows the penalty functions for L0 norm, L1
norm, L0.5 norm, and L2 norm. An obvious advantage
of the L1 penalty (over the L0 penalty) is that it is
continuous and convex. It turns out that LASSO can
be very efficiently solved using various algorithms.
The computation of LASSO and other penalized least
square methods will be discussed in a later section.

A broader framework for such relaxation of the
L0 norm to the L1 norm is described by Frank and
Friedman11 as bridge regression, using the Lq norm
|𝜷 |q for 0<q≤ 2, in which the penalty term p(𝜷) in Eq.
(2) is chosen to be

∑p
j=1 |𝛽j|q. This framework bridges

the L0 regression and the L2 ridge regression, hence
the name bridge regression. Theoretical properties of
the bridge regression estimator have been studied by
Knight and Fu.12

There are rich developments on theoretical
properties of L1 regularization, such as those by
Donoho and Johnstone,13 Donoho et al.,14 Chen
et al.,15 Zhao and Yu,16 Candes et al.,17 Zhang and
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Huang,18 Bickel et al.,19 and Wainwright.20 Many of
these works concern the problem of model selection
consistency. For an instance, the model selection sign
consistency is a desirable property of a model selec-
tion method. It states that with high probability, the
estimated coefficient vector resulting from the method
of interest can fully recover the sign of the true coeffi-
cients 𝜷 in Eq. (1). Often, some irrepresentable-type
condition is needed in order to show the model
selection sign consistency. For example, Zhao and
Yu16 consider the strong (or weak) irrepresentable
condition, |XT

𝒮 cX𝒮

(
XT

𝒮X𝒮

)−1
sign(𝜷𝒮 )|∞ ≤ 1 − 𝜂 (or

<1 respectively), for a constant 𝜂 >0. Intuitively,
these irrepresentable conditions imply that the noise
variables must not be well explained by the signal
variables so that they can be easily identified and
eliminated. However, irrepresentable conditions are
very difficult to verify in practice. As a matter of fact,
they turn out to be very stringent in high dimensions.
However, such conditions are nearly necessary for the
LASSO method to be selection consistent.

NONCONVEX PENALTIES
AND IMPROVEMENTS OF Lq
PENALTIES

While penalties such as p (𝜷) =
∑p

j=1 |𝛽j|q have been
studied by various groups of researchers, Fan and
Li21 systematically analyze penalized least square
problem (as a special case of the penalized likelihood
method) with a nonconvex penalty function (or, in
a more general case, nonconcave penalization for a
maximum log-likelihood approach.) They raise the
concern about the bias effect of a penalized estimator.
Moreover, they advocate three desirable properties
of a penalized estimator: sparsity, unbiasedness, and
continuity. They articulate the mathematical con-
ditions of the penalty function under which these
three conditions hold. Motivated by these properties,
they propose the SCAD penalty

∑p
j=1 pSCAD

(|||𝛽j
|||),

where pSCAD(·) is singular at the origin and non-
convex over (0,∞). In particular, the derivative
of the penalty pSCAD(𝜃) for 𝜃 > 0 is ṗSCAD (𝜃) =
min

{
1, (𝛾 − 𝜃∕𝜆)+ ∕ (𝛾 − 1)

}
for some 𝛾 > 2 where

(a)+ =max(a, 0) is defined as the positive part of a∈ℝ.
To obtain more insights to this penalty function, note
that a penalty function p(𝜃) must be singular at 0 to
have the sparsity and continuity properties; hence in
the case of Lq penalties, q must be less than or equal
to 1. On the other hand, a sufficient condition of the
unbiasedness property is that ṗ (𝜃) = 0 for large |𝜃|;
hence the Lq norm does not satisfy this condition. On
both ends, this SCAD penalty satisfies both conditions.

Fan and Li21 define a new theoretical property
called the oracle property. Simply put, an estimator
with the oracle property, (1) has zero coordinates for
those noise variables and (2) mimics the estimator that
would have been obtained by an oracle who knows
exactly which variables are signals. Fan and Li21

prove the oracle property for the nonconvex SCAD
penalty. Their result holds for finite-dimensional set-
tings. Fan and Peng22 show the oracle property results
in moderate-dimensional settings such as p=o(n1/5)
or p= o(n1/3). Zou23 proves that LASSO does not
have the oracle property and proposes to address this
issue by adaptively weighting the penalties imposed
for different variables. In particular, he proposes to
use p (𝜷) =

∑p
j=1 wj|𝛽j| where the weight wj for the jth

variable is |𝛽j|−𝛾 for some positive 𝛾. Here 𝛽j is a root-n
consistent estimator of 𝛽 j such as the ordinary least
square estimator. This adaptive version of LASSO has
been shown to have the oracle property.

Zhang24 proposes the minimax concave penalty
(MCP),

∑p
j=1 pMCP

(|||𝛽j
|||). The MCP is another choice

for nonconvex penalty which can achieve the three
basic properties and the oracle property. The moti-
vation of the MCP is that it provides the convexity
of the penalized loss in sparse regions to the great-
est extent while keeping the certain amount of con-
cavity for the purpose of variable selection and unbi-
asedness. To compare it with the SCAD penalty (cf.
Figure 1 in Ref 24), we note that the derivative of
the MCP penalty pMCP(𝜃) is ṗMCP (𝜃) =

(
1 − 𝜃∕𝛾1

)
+

for some 𝛾1 >0. When the parameters in both penal-
ties are chosen so that 𝛾1 = 𝜆𝛾, then both derivatives
have zero value when 𝜃 ≥ 𝛾1 = 𝜆𝛾; hence both satisfy
the sufficient condition for the estimator to be unbi-
ased. When 𝜃 =0, both are 1; however, the derivative
of MCP starts off decreasing right away when 𝜃 is
greater than 0 while that of the SCAD penalty remain
as a constant until 𝜃 = 𝜆.

COMPUTATION

As mentioned before, the LASSO method is very
attractive in its computation. Efron et al.25 have devel-
oped the least angle regression (LARS) algorithm to
solve LASSO. The LARS algorithm provides the whole
solution path as a function of the parameter 𝜆. This
solution path is, as a matter of fact, piecewise linear in
𝜆. Later on, Rosset and Zhu26 provide a general condi-
tion under which the solution to a penalized likelihood
method is piecewise linear.

Incidentally, another very efficient algorithm,
called coordinate descend, has been developed,
studied and applied to various settings by, for
example, Fu,27 Wu and Lange,28 Fan and Lv,29 and
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Mazumder et al.,30 among many others. The coordi-
nate descend approach sequentially optimizes each
coordinate separately, holding all other coordinates
as constants, and updates coordinates cyclically. It is
a general technique which can be applied to problems
beyond the LASSO method, although the LASSO has
a very simple closed form solution for each iteration
when the coordinate descent algorithm is applied.

On the nonconvex penalty side, Fan and Li21

suggest the local quadratic approximation (LQA)
scheme by iteratively, locally approximating the
penalty function by a quadratic function. In par-
ticular, the penalty p(𝜃) in p (𝜷) =

∑p
j=1 p

(|||𝛽j
|||)

is approximately by the quadratic function
p
(
𝜃(0)

)
+ 1

2

{
ṗ
(
𝜃(0)

)
∕𝜃(0)

}(
𝜃2 − 𝜃(0)

2
)

where 𝜃(0) is an

initial value of 𝜃 = |𝛽(0)j | close to the true value of |𝛽 j|.
However, the LQA algorithm has some drawbacks
which is commonly shared with many backward
stepwise variable selection methods. To address such
issue, Zou and Li31 propose the local linear approx-
imation (LLA), p (𝜃) ≈ p

(
𝜃(0)

)
+ ṗ

(
𝜃(0)

) (
𝜃 − 𝜃(0)

)
.

They further advocate to stop the iteration early (at
step one) because the results after the first step can
already provide sparse representation of the model
and good estimation of the coefficients. Early stopping
can help reduce the computational burden and avoid
the potential local minimal problem in minimizing
the penalized sum of squares. For the MCP method,
Zhang24 also develops the PLUS algorithm to achieve
penalized linear unbiased selection.

More recently, lots of attention have been drawn
to the relation between multiple local solutions and the
global optimal solution. Many of the aforementioned
methods are capable of reaching a local optimal solu-
tion which is not necessarily the global optimality. Fan
et al.32 provide a unified theory to show how to obtain
the oracle solution via the LLA algorithm. Zhang
and Zhang33 present a general theoretical frame-
work showing that under appropriate conditions, the
global solution of nonconvex regularization leads to
desirable recovery performance and conditions under
which the global solution corresponds to a unique
sparse local solution. Incidentally, Wang et al.34 prove
that a calibrated algorithm produces a consistent solu-
tion path which contains the oracle estimator with
high probability. Wang et al.35 propose an approxi-
mate path-following algorithm for a nonconvex reg-
ularization problem and provide rates of convergence
of arbitrary local solution obtained by the algorithm.

INDEPENDENCE LEARNING
While variable selection using a penalty term for the
sake of sparsity, such as the Lq norm, SCAD or MCP, is

efficient in high-dimensional or moderate-dimensional
settings, its performance may not be as good for
ultrahigh-dimensional data. Here ultrahigh dimen-
sions may be referred to as the case where log(p) is
at the same order as n𝜉 for some 𝜉 >0.

A common practice is to conduct fast dimen-
sionality reductions. Fan and Lv36 propose to use
the marginal information (particularly, correlations
between dependent variables and the response vari-
able) to screen out irrelevant variables and reduce
the data from ultrahigh dimensions to high dimen-
sions or moderate dimensions. After the dimension
reduction, the variable selection methods introduced
in the previous few sections can be applied. The name
independence learning is due to the fact that only
marginal information is used, implying the indepen-
dence among variables. Fan and Lv36 have proved the
sure screening property, which states that with high
probability, only irrelevant variables will be screening
out. Motivated by the theory in Fan and Lv,36 Wang37

investigates the forward regression method. Along the
similar line of employing the marginal information,
Huang et al.38 use the marginal bridge estimators for
selecting variables.

The regularization after retention (RAR) method
by Weng et al.39 is another instance of independence
learning. But it uses the marginal information at a
different direction from that of Fan and Lv.36 In
particular, the RAR method is a two-step procedure
where a subset of the signals are retained in the first
step using marginal correlations and a penalized least
square problem is considered in the second step where
penalties are imposed on only those not retained in
the first step. The RAR method possesses the model
selection sign consistency under a weaker condition
than the irrepresentable condition of LASSO and
has been shown to have very good finite sample
performance compared to the LASSO and the sure
screening method. Note that RAR is different from the
screening method because the variables not retained
in the first step will be reevaluated in the second step,
whereas they are discarded by the screening method
after the first step.

CLASSIFICATION, QUANTILE
REGRESSION, AND OTHERS

These variable selection methods can be easily
extended to applications beyond linear regression,
such as survival data analysis using penalized par-
tial likelihood, longitudinal data, semiparametric
regression modeling, among many others. We intro-
duce some works in classification and quantile
regression here.
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For simplicity, we focus on large margin clas-
sifiers, exemplified by the support vector machine
by Vapnik,40 Vapnik,41 and Cortes and Vapnik.42

See an excellent introduction in Cristianini and
Shawe-Taylor.43 Bradley and Mangasarian44 and Zhu
et al.45 introduce two versions of L1 penalized support
vector machine. Liu et al.46 propose Lq support vector
machine where the best q in the Lq penalty is automat-
ically chosen by data. Zou and Yuan47 select groups
of variables in the support vector machine when
grouping information is given. Zhang et al.48 consider
variable selection for multicategory classification
problem by using sup-norm regularization.

For ultrahigh-dimensional data, Fan and Fan49

advocate the use of independence classification rule
after a variable screening step (called annealing vari-
ables), much in the similar spirit of the sure indepen-
dence screening for regression by Fan and Lv.36 In
particular, marginal two-sample t-tests based on each
variable individually are considered to select poten-
tially important variables. They also establish the con-
dition under which all true signals are selected.

For quantile regression, Wu and Liu50 demon-
strate the oracle properties of the SCAD and
adaptive-LASSO penalized quantile regressions.
Instead of using the LLA algorithm, they solve the
optimization related to the SCAD penalty using the
difference convex algorithm (DCA). See Refs 51, 52,
and 53 for more instances where DCA is used.

In the linear mixed effect model, Fan and Li54 use
a nonconcave penalized profile likelihood methods for
the fixed effect and a group variable selection strategy
to select and estimate random effects.

COMBINATION OF TWO PENALTIES

There is a trend to combine multiple penalties to
achieve enhanced performance of variable selection
and estimation. The logic behind is quite natural: it
is rare that a single penalty possesses all the desired
properties for all situations, thus one may creatively
combine penalties to obtain more nice properties. For
example, the elastic net method proposed by Zou and
Hastie55 is a successful attempt to combine the L1
norm penalty and the L2 norm penalty. In particu-
lar, they use 𝜆1|𝜷 |1 + 𝜆2|𝜷 |22 =

∑p
j=1

{
𝜆1|𝛽j| + 𝜆2𝛽

2
j

}
where 𝜆1 and 𝜆2 are both positive parameters. The
elastic net outperforms the LASSO in certain sit-
uations, while enjoying a similar sparsity of rep-
resentation. In addition, the elastic net encourages
a grouping effect, where strongly correlated predic-
tors tend to be in or out of the model at the same
time.

Liu and Wu56 consider a combination of a L0
norm-ish penalty and the L1 norm penalty. In par-
ticular, they consider p𝜖

0 (𝜃) = 1[|𝜃|>𝜖] + |𝜃|∕𝜖 · 1[|𝜃|≤𝜖] as
a continuous approximation to the noncontinuous
p0(𝜃)=1[𝜃 ≠ 0], and then use the penalty term p (𝜷) =∑p

j=1 p
(
𝛽j

)
where p

(
𝛽j

)
= ap𝜖

0

(
𝛽j

)
+ (1 − a) |𝛽j|, for

0< a<1. The new combined penalty is expected to
enjoy the strengths of both the L0 and L1 penalties.
Lv and Fan57 provide a unified approach to model
selection and sparse recovery by considering a simi-
lar formulation: a smooth homotopy between the L0
and L1 penalties.

Inspired by the adaptive LASSO and the elastic
net, Zou and Zhang58 propose the adaptive elastic
net (or AdaEnet). The AdaEnet method makes use
of the penalty term, p (𝜷) =

∑p
j=1

{
𝜆1wj|𝛽j| + 𝜆2𝛽

2
j

}
,

where wj is the adaptive weight. Clearly, when 𝜆1
is forced to be 0, the AdaEnet reduces to the ridge
regression; when 𝜆2 =0, the AdaEnet becomes the
adaptive LASSO; when 𝜆2 =0 and wj =1, it is ordinary
LASSO; when wj =1, this is the same as the elastic
net. While maintaining the oracle property shared
by the adaptive LASSO, the AdaEnet method enjoys
better finite sample performance especially when the
collinearity problem exists, an advantage given by the
elastic net component.

In the classification regime, Wang et al.59 apply
the combined L1 and L2 penalty to support vector
machine which performs similarly to the elastic net in
regression.

Study on such unified frameworks, which are
originally motivated by combinations of multiple
methods, turns out to be very fruitful, inspiring and
helpful. Such combined formulations provide addi-
tional theoretical tools to explore the properties of the
methods involved over a broader spectrum. Moreover,
we often obtain additional computational gains from
these methods.

CONCLUSION

We have briefly reviewed some of the major devel-
opments in variable selection using Lq penalties
and their variants in recent decades. Lq regulariza-
tions and nonconvex regularizations often enjoy
computational advantage, have nice properties such
as the oracle property, and can be generalized to a
boarder span of problems, from classification, lin-
ear mixed effect model, to quantile regression and
nonparametric regression. For the more challenging
ultrahigh-dimensional setting, independence learning
methods use marginal information to reduce the
dimension, while keeping all the important variables
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with high probability. Fusions of different penalty
functions nicely inherit the advantages of different
methods.

There are more to be done in this active area
of research. For a nonconvex penalty, despite many
recent developments, the computational issue in the
difficulty of finding global optimality has not been
fully resolved. The choice of tuning parameters in
a penalization method is a rather challenging issue
in high and ultrahigh dimensions, especially because
the size of the true signals relative to the sample size
is typically unknown. In the ultrahigh-dimensional

space, the independence learning approach has opened
one door. However, effects beyond the marginal ones
may be ignored because only marginal information
is considered. This problem deserves further research
efforts. On the other hand, high-dimensional data
can be joined by the difficulty brought by big/massive
data sets and/or complex data structures, and vari-
able selection in these cases can be very involved.
Overall, penalization is a very useful tool for variable
selection. In light of these, more critical thinking and
innovations are needed and there are many promising
tracks to follow.

ACKNOWLEDGMENT

This work was partially supported by a grant from Simons Foundation (246649 to Xingye Qiao).

REFERENCES
1. Donoho DL. High-dimensional data analysis: the curses

and blessings of dimensionality. AMS Math Challenges
Lect 2000, 1–32.

2. Fan J, Li R. Statistical challenges with high dimension-
ality: feature selection in knowledge discovery. In: Pro-
ceedings of the International Congress of Mathemati-
cians, vol. 3, 2006, 595–622.

3. Fan J, Lv J. A selective overview of variable selection in
high dimensional feature space (invited review article).
Stat Sin 2010, 20:101–148.

4. Faraway JJ. Linear Models with R. Boca Raton: CRC
Press; 2004.

5. Ahn J, Marron J, Muller KM, Chi Y-Y. The
high-dimension, low-sample-size geometric repre-
sentation holds under mild conditions. Biometrika
2007, 940:760–766.

6. Hall P, Marron J, Neeman A. Geometric representation
of high dimension, low sample size data. J R Stat Soc
[Ser B] 2005, 670:427–444.

7. Bickel PJ, Li B, Tsybakov AB, van de Geer SA, Yu B,
Valdés T, Rivero C, Fan J, van der Vaart A. Regulariza-
tion in statistics. Test 2006, 150:271–344.

8. Hoerl AE, Kennard RW. Ridge regression: biased esti-
mation for nonorthogonal problems. Technometrics
1970, 120:55–67.

9. Tibshirani R. Regression shrinkage and selection via the
lasso. J R Stat Soc [Ser B] 1996, 58:267–288.

10. Candes E, Tao T. The dantzig selector: statistical esti-
mation when p is much larger than n. Ann Stat 2007,
35:2313–2351.

11. Frank LE, Friedman JH. A statistical view of some
chemometrics regression tools. Technometrics 1993,
350:109–135.

12. Knight K, Fu W. Asymptotics for lasso-type estimators.
Ann Stat 2000, 28:1356–1378.

13. Donoho DL, Johnstone IM. Ideal spatial adaptation by
wavelet shrinkage. Biometrika 1994, 810:425–455.

14. Donoho DL, Johnstone IM, Kerkyacharian G, Picard
D. Wavelet shrinkage: asymptopia? J R Stat Soc [Ser B]
1995, 57:301–369.

15. Chen SS, Donoho DL, Saunders MA. Atomic decom-
position by basis pursuit. SIAM J Sci Comput 1998,
200:33–61.

16. Zhao P, Yu B. On model selection consistency of lasso.
J Mach Learn Res 2006, 7:2541–2563.

17. Candes EJ, Wakin MB, Boyd SP. Enhancing sparsity by
reweighted 1 minimization. J Fourier Anal Appl 2008,
140:877–905.

18. Zhang C-H, Huang J. The sparsity and bias of the lasso
selection in high-dimensional linear regression. Ann Stat
2008, 360:1567–1594.

19. Bickel PJ, Ritov Y, Tsybakov AB. Simultaneous anal-
ysis of lasso and dantzig selector. Ann Stat 2009,
370:1705–1732.

20. Wainwright MJ. Sharp thresholds for high-dimensional
and noisy sparsity recovery. IEEE Trans Inf Theory
2009, 550:2183–2202.

21. Fan J, Li R. Variable selection via nonconcave penalized
likelihood and its oracle properties. J Am Stat Assoc
2001, 960:1348–1360.

22. Fan J, Peng H. Nonconcave penalized likelihood with
a diverging number of parameters. Ann Stat 2004,
320:928–961.

23. Zou H. The adaptive lasso and its oracle properties. J
Am Stat Assoc 2006, 1010:1418–1429.

Volume 6, May/June 2014 © 2014 Wiley Per iodica ls, Inc. 183



Advanced Review wires.wiley.com/compstats

24. Zhang C-H. Nearly unbiased variable selection
under minimax concave penalty. Ann Stat 2010,
380:894–942.

25. Efron B, Hastie T, Johnstone IM, Tibshirani R. Least
angle regression. Ann Stat 2004, 320:407–499.

26. Rosset S, Zhu J. Piecewise linear regularized solution
paths. Ann Stat 2007, 35:1012–1030.

27. Fu WJ. Penalized regressions: the bridge versus the lasso.
J Comput Graph Stat 1998, 70:397–416.

28. Wu TT, Lange K. Coordinate descent algorithms
for lasso penalized regression. Ann Appl Stat 2008,
2:224–244.

29. Fan J, Lv J. Nonconcave penalized likelihood with
np-dimensionality. IEEE Trans Inf Theory 2011,
570:5467–5484.

30. Mazumder R, Friedman JH, Hastie T. Sparsenet: Coor-
dinate descent with nonconvex penalties. J Am Stat
Assoc 2011, 1060:1125–1138.

31. Zou H, Li R. One-step sparse estimates in noncon-
cave penalized likelihood models. Ann Stat 2008,
360:1509–1533.

32. Fan J, Xue L, Zou H. Strong oracle optimality of
folded concave penalized estimation. arXiv preprint
arXiv:1210.5992, 2012.

33. Zhang C-H, Zhang T. A general theory of concave
regularization for high-dimensional sparse estimation
problems. Stat Sci 2012, 270:576–593.

34. Wang L, Kim Y, Li R. Calibrating nonconvex penalized
regression in ultra-high dimension. Ann Stat 2013,
410:2505–2536.

35. Wang Z, Liu H, Zhang T. Optimal computational and
statistical rates of convergence for sparse nonconvex
learning problems. arXiv preprint arXiv:1306.4960,
2013.

36. Fan J, Lv J. Sure independence screening for ultrahigh
dimensional feature space. J R Stat Soc [Ser B] 2008,
700:849–911.

37. Wang H. Forward regression for ultra-high dimen-
sional variable screening. J Am Stat Assoc 2009,
1040:1512–1524.

38. Huang J, Horowitz JL, Ma S. Asymptotic properties of
bridge estimators in sparse high-dimensional regression
models. Ann Stat 2008, 360:587–613.

39. Weng H, Feng Y, Qiao X. Regularization after retention
in ultrahigh dimensional linear regression models. arXiv
preprint arXiv:1311.5625, 2013.

40. Vapnik V. The Nature of Statistical Learning Theory.
New York: Springer; 1999.

41. Vapnik V. Statistical Learning Theory. New York: John
Wiley & Sons; 1998.

42. Cortes C, Vapnik V. Support-vector networks. Mach
Learn 1995, 200:273–297.

43. Cristianini N, Shawe-Taylor J. An Introduction to Sup-
port Vector Machines and Other Kernel-Based Learn-
ing Methods. Cambridge: Cambridge University Press;
2000.

44. Bradley PS, Mangasarian OL. Feature selection via
concave minimization and support vector machines. In:
International Conference on Machine Learning, vol. 98,
1998, 82–90.

45. Zhu J, Rosset S, Hastie T, Tibshirani R. 1-norm support
vector machines. Adv Neural Inf Process Syst 2004,
160:49–56.

46. Liu Y, Helen Zhang H, Park C, Ahn J. Support vector
machines with adaptive Lq penalty. Comput Stat Data
Anal 2007, 510:6380–6394.

47. Zou H, Yuan M. The f∞-norm support vector machine.
Stat Sin 2008, 18:379–398.

48. Zhang HH, Liu Y, Wu Y, Zhu J. Variable selec-
tion for the multicategory SVM via adaptive
sup-norm regularization. Electron J Stat 2008, 2:
149–167.

49. Fan J, Fan Y. High dimensional classification using
features annealed independence rules. Ann Stat 2008,
360:2605–2637.

50. Wu Y, Liu Y. Variable selection in quantile regression.
Stat Sin 2009, 190:801–817.

51. Shen X, Tseng GC, Zhang X, Wong WH. On
Ψ-learning. J Am Stat Assoc 2003, 980:724–734.

52. Liu Y, Shen X. Multicategory Ψ-learning. J Am Stat
Assoc 2006, 1010:500–509.

53. Wu Y, Liu Y. Robust truncated hinge loss sup-
port vector machines. J Am Stat Assoc 2007, 1020:
974–983.

54. Fan Y, Li R. Variable selection in linear mixed effects
models. Ann Stat 2012, 400:2043–2068.

55. Zou H, Hastie T. Regularization and variable selection
via the elastic net. J R Stat Soc [Ser B] 2005. ISSN
1467-9868, 670:301–320.

56. Liu Y, Wu Y. Variable selection via a combination of
the l0 and l1 penalties. J Comput Graph Stat 2007,
160:782–798.

57. Lv J, Fan Y. A unified approach to model selection and
sparse recovery using regularized least squares. Ann Stat
2009, 370:3498–3528.

58. Zou H, Zhang HH. On the adaptive elastic-net with
a diverging number of parameters. Ann Stat 2009,
370:1733–1751.

59. Wang L, Zhu J, Zou H. The doubly regularized support
vector machine. Stat Sin 2006, 160:589–615.

184 © 2014 Wiley Per iodica ls, Inc. Volume 6, May/June 2014


