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ABSTRACT
Fitted Q-Iteration (FQI) is a popular approximate value it-
eration (AVI) approach that makes effective use of off-policy
data. FQI uses a 1-step return value update which does not
exploit the sequential nature of trajectory data. Complex
returns (weighted averages of the n-step returns) use tra-
jectory data more effectively, but have not been used in an
AVI context because of off-policy bias. In this paper we
propose a new generalization of FQI called Complex Fitted
Q-Iteration (CFQI) which allows for complex returns. Theo-
retical properties are proved that show CFQI does not break
existing convergence properties. Two methods for integrat-
ing complex returns are presented. The first method uses
a simple truncating procedure for reducing off-policy bias.
Our second method applies a novel bounding operation that
utilizes the off-policy bias. We provide an empirical evalua-
tion of the proposed methods on several reinforcement learn-
ing benchmarks. The results demonstrate that our methods
significantly improve over FQI in terms of value estimation
accuracy, policy performance, and convergence speed.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms

Keywords
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Policy; Fitted Q-Iteration; Complex Returns

1. INTRODUCTION
Fitted Q-Iteration (FQI) is a widely used approximate

value iteration (AVI) framework for solving reinforcement
learning (RL) problems [4]. Since its introduction FQI has
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been used and extended by numerous works [1, 8, 13, 17].
FQI’s most compelling feature is its ability to learn effec-
tively from varied sources of off-policy sample data. Off-
policy data are generated from behavior policies that differ
from the target policy, the policy being learned. Whereas,
with on-policy data the behavior policy and target policy are
the same. In a multi-agent context, this ability is analogous
to learning from the aggregate experiences of heterogeneous
agents solving a given problem. Most other RL methods
make restrictive assumptions on sample data rendering such
collections of data useless. In many realistic learning situa-
tions, where simulation is impractical and obtaining samples
is difficult and costly, it is critically important to be able to
use all available data. FQI is a means to use all available
data to learn an approximation of the optimal policy.

Although FQI can use off-policy sample data effectively,
it does not exploit this data to the fullest extent. The key
operation of FQI, and its derivatives, is its Q-value update
function which makes use of the greedy 1-step return [19].
This 1-step update treats each sample as an independent
event and relies completely on bootstrapped value estimates.
These bootstrapped estimates can have significant error due
to the use of function approximation and irregularly dis-
tributed sample sets. Samples, however, are not typically
gathered as single-step experiences and they are not inde-
pendent of each other. Instead they are gathered as multi-
step experiences known as trajectories and share sequential
relationships that can be used to reduce this error.

Trajectory data has been used to great effect in on-policy
and policy iteration RL contexts through the use of complex
returns[5, 7, 9, 19]. Complex returns are weighted averages
of the n-step returns, value estimates made by looking fur-
ther down a trajectory. Through careful design, the aggre-
gated value estimates produced by complex returns have low
variance and are generally more accurate than 1-step return
estimates. Despite this advantage and the general availabil-
ity of trajectory data, complex returns have not been consid-
ered in an AVI context to the best of the author’s knowledge.
There are two primary reasons. First, off-policy trajectories
introduce bias into estimates. Second, the target policy is
unknown, making it impossible to apply importance sam-
pling to mitigate off-policy biases [15].

To meet these challenges we propose Complex Fitted Q-
Iteration (CFQI), a generalization of the FQI framework
which allows for any general return based estimate, enabling
the seamless integration of complex returns and AVI. We in-
troduce and analyze two distinct methods for utilizing com-
plex returns within the CFQI framework. The first method
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is similar to the idea of Q(λ) [19] and uses truncated por-
tions of trajectories, that are consistent with the approxima-
tion of Q∗, to calculate complex return estimates without
introducing off-policy bias. The second method is a more
nuanced approach that makes use of the inherent negative
bias of complex returns, due to the value iteration context,
as a lower bound for value estimates. We provide statistical
evidence and analysis that shows how an estimator with pre-
dictable, but unknown, bias can provide a bound on value
estimates to produce a more accurate estimator. Addition-
ally, we include convergence proofs showing that CFQI is
guaranteed to converge under the same assumptions as FQI.
Finally, we provide an empirical evaluation of our methods
on several RL benchmarks that show how CFQI improves
the accuracy of the learned Q∗ approximation, the quality
of the learned policy, and convergence behavior.

2. BACKGROUND
Our focus in this work is finding solutions to Markov De-

cision Processes (MDP) [16]. An MDP, M , is defined as
a 5-tuple, M = (S,A, P,R, γ), where S is a fully observ-
able finite set of states, A is a finite set of possible actions,
P is the state transition model such that P (s′|s, a) ∈ [0, 1]
describes the probability of transitioning to state s′ after
taking action a in state s, Ras,s′ is the expected value of the

immediate reward r after taking a in s, resulting in s′, and
γ ∈ (0, 1) is the discount factor on future rewards.

Solutions to MDPs are policies, which are functions on the
state space that determine which action to take, π : S 7→
A. The quality of a policy is determined by the expected
value that can be obtained by following it from any given
state. In RL we are concerned with Q-values which, given π,
are defined as: Qπ(s, a) = Eπ[

∑∞
i=0 γ

iri+1|s0 = s, a0 = a],
where ri+1 is the immediate reward given at time i+ 1.

Our goal is to derive an optimal policy, π∗, that max-
imizes this value for all s ∈ S. For this purpose we can
estimate the optimal Q-function, Q∗, which is defined as
the solution to the optimal Bellman equation: Q∗(s, a) =∑
s′∈S P (s′|s, a)[Ras,s′+γmaxa′∈AQ

∗(s′, a′)]. From this equa-
tion π∗ can be extracted as: π∗(s) = arg maxa∈AQ

∗(s, a).
If P and R are known, Q∗ can be solved for efficiently

using dynamic programming. However, in RL scenarios P
and R are unknown and Q∗ must be learned from samples.
Samples are single-step observations of transitions from the
domain. They are represented by tuples, (st, at, st+1, rt+1),
consisting of a state st, an action at, the state st+1 transi-
tioned to by taking at in st, and rt+1, the immediate reward
for that transition. There are many different RL approaches
for solving for Q∗. Here we focus on Fitted Q-Iteration.

2.1 Fitted Q-Iteration
Fitted Q-Iteration (FQI) [4] is a batch-mode, off-line, off-

policy approach for solving RL problems. It is an approxi-
mate value iteration [12] framework that solves directly for
Q∗ through a sequence of standard supervised learning re-
gression problems. As a batch-mode algorithm it makes ef-
ficient use of samples. It has also been proven that, under
restrictive assumptions of the regression model, FQI is guar-
anteed to converge towards Q∗ [14].

FQI starts with an arbitrarily initialized approximation of
Q∗, Q̂0. This approximation of Q∗ is then refined through
an iterative process. In this process the estimated Q-values
of each sample are calculated using the current Q̂ approx-

imation. These values are then used as target values for a
regression algorithm that “fits” them with their correspond-
ing sample state and action features producing the next ap-
proximation, Q̂m. The process is repeated for M iterations
or until some other stopping criteria.

A crucial component of this process is how the sample
value estimates are calculated. The accuracy of these es-
timates dictates the final accuracy of Q̂M and in turn the
quality of the derived policy. For this purpose FQI uses the

greedy 1-step return estimate, R
(1)
t :

Q̂m(st, at)← R
(1)
t = rt+1 + γmax

a∈A
Q̂m−1(st+1, a) , (1)

which combines the single-step observed immediate reward
with a greedy choice among all bootstrapped estimates of

future returns provided by Q̂m−1. R
(1)
t is a reasonable choice

for a value estimator as it is unbiased with regard to the
sampling policies. However, it is not the only choice and
it is very sensitive to error caused by biases and variances
in an imperfect function approximation model and irregular
sample distributions. In the following we show how complex
returns are more robust and can be used to provide more
accurate estimates in an AVI context.

2.2 Complex Returns
Sample data are most commonly collected in sequences

known as trajectories. A trajectory, T , is a sequentially or-
dered collection of observations where, T = [(s0, a0, s1, r1),
(s1, a1, s2, r2), . . . ]. Trajectories provide an alternative to

using just the R
(1)
t return. Given trajectory data, the 1-step

return estimate in Eq( 1) can be generalized to produce the
n-step returns:

R
(n)
t =

n−1∑
i=1

γi−1rt+i + γn max
a∈A

Q̂m−1(st+n, a) . (2)

It should be noted that this definition of the n-step returns
differs from the standard on-policy definition of the n-step
returns because of its use of the max operation. In principle
each of the n-step returns can be used as approximations of
Q∗(st, at). Individually each estimator has its own distinct
bias and variance. However, when combined, through av-
eraging they can produce an estimator with lower variance
than any one individual return [3]. It is this idea that moti-
vated the development of complex returns [19, Chapter 7].

A complex return is a weighted average, with the weights
summing to 1, of the n-step returns. The n-returns are
weighted differently because of their assumed relative vari-
ance behaviors. The general assumption behind existing
complex return methods is that the variance of the n-step
returns increases as n increases. From the on-policy liter-
ature there are two competing complex return approaches.
The classic complex return is the λ-return which serves as
the basis for the TD(λ) family of algorithms [19]. More
recently, the γ-return was introduced based upon different
variance assumptions of the n-step returns [9]. The γ-return
is defined as:

Rγt =

|T |∑
n=1

(
∑n
i=1 γ

2(i−1))−1∑|T |
m=1(

∑m
i=1 γ

2(i−1))−1
R

(n)
t . (3)

The difficulty in applying complex returns to FQI is that
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in an AVI context the trajectories can be sampled off-policy
and the target policy is also unknown. Off-policy trajec-
tories introduce undesirable bias into the n-step return es-
timates that cannot be reduced through averaging. If the
target policy were known, as in policy iteration, importance
sampling can be used to reduce off-policy bias [15]. How-
ever, the target policy is unknown in our AVI context. In the
following section we will introduce two methods that utilize
complex returns effectively in an AVI context.

3. COMPLEX FITTED Q-ITERATION
Here we introduce Complex Fitted Q-Iteration (CFQI)

our generalization of the popular FQI framework that en-
ables the use of complex return based value estimates. Al-
gorithm 1 provides the details of the approach.

Algorithm 1 CFQI(T ,M,RC)

Input: T : set of trajectories,
M : number of iterations, Rc: complex return function

1: Q̂0 ← 0
2: for m = 1 to M do
3: Let X and Y be empty sets.
4: for k = 1 to |T | do
5: for t = 1 to |Tk| do

6: X ← Append(X, (s
Tk
t , a

Tk
t ))

7: Y ← Append(Y,RC(t, Tk, Q̂m−1))
8: end for
9: end for

10: Q̂m ← Regression(X,Y )
11: end for
12: Return Q̂M

The primary distinction between FQI and CFQI lies in
the two update rules (line 7). FQI is limited to the R(1) re-
turn estimate, while CFQI makes use of any chosen complex
return RC to provide value estimates. A second difference
between FQI and CFQI is that CFQI processes over trajec-
tories, not unordered samples as in FQI. CFQI has the same
computational complexity as FQI, since the derivations of
the n-returns and complex returns can be performed effi-
ciently by processing trajectories in reverse order. One of
our contributions is to show that using complex returns as
value estimates does not break the theoretical convergence
guarantees of the original approach.

Theorem 1. CFQI converges w.p.1 if a normalized com-
plex return, computed from fixed length trajectories, is used
to derive value targets to be used in a kernel regression model,
as defined by Eq(7) and Eq(8).

The proof for Theorem 1 and equations Eq(7) and Eq(8)
are provided in the Appendix. Still, although CFQI can be
guaranteed to converge, the bias of off-policy n-step returns
will introduce bias into the final result possibly eliminating
any potential benefit from variance reduction. In the follow-
ing subsections we propose two methods which aim to either
mitigate or utilize this bias.

3.1 Method 1: Truncated Complex Returns
One way to handle the off-policy bias of the complex re-

turns is to attempt to avoid it by truncating the trajectories
where they appear to go off-policy. This idea is borrowed

from the Q(λ) [21] approach. However, this is the first work
to the author’s knowledge that has considered it for AVI.
In this approach the current Q̂ provides an approximation
of the optimal policy that can be used to infer when a tra-
jectory takes an off-policy sub-optimal action. During the
process of calculating the complex return estimates, sam-
ples in a trajectory after the first off-policy action are not
considered. Assuming Q̂ is a close approximation of Q∗ this
approach should not introduce off-policy bias and can take
advantage of portions of trajectories that follow the optimal
policy to reduce variance and overall error. We refer to this
method as CFQI-C.

However, the assumption that Q̂ is an accurate approxi-
mation of Q∗ is a poor one, especially early in the iterative
process. Additionally, because the learned policy will likely
change during the iterative process, the lengths of the trajec-
tories used to calculate the complex returns will change dy-
namically from one iteration to the next. Changing lengths
of the trajectories violates one of the assumptions made by
Theorem 1 and convergence may no longer be guaranteed.
This issue is examined further in the empirical study.

3.2 Method 2: Complex Returns as Bounds
Our second approach uses the off-policy n-step return bias

rather than attempting to eliminate it. It exploits the pre-
dictability of this bias enabling the effective use of complex
returns as a bound on the value of the R(1) return. In an
AVI context, such as CFQI, this is possible due to the fact
that the target policy is an optimal policy. Because the
target policy is optimal, it is a safe assumption that any off-
policy bias present in the n-step returns is negative in value.
A complex return derived from the biased n-step returns
will also be biased negatively, but should have relatively low
variance. This insight directly leads to the derivation of a
bounded complex return, RB :

RB = max(R(1), RC). (4)

where RC is some chosen complex return function. When
integrated with CFQI, we refer to this method as CFQI-B.

To help motivate this approach we first consider a simple
scenario. Let us assume R(1) is an unbiased estimator with
non-zero variance and RC is a constant that is known to
be less than the target value being estimated. In this case
it is always better to use max(R(1), RC) in place of R(1) to

estimate the value. When R(1) is less than RC it must be
farther away from the true value than RC , in which case the
greater observation RC should be used. Realistically, how-
ever, RC is not a constant and we must further examine the
conditions under which RC can provide an effective bound.

We now investigate when RB improves R(1) using some
distributional assumptions. The occurrence and degree of
improvement depends on the underlying distribution of R(1)

and RC . Here we assume both estimators follow normal dis-
tributions. Further, let us also assume that bias(R(1)) = 0

and STD(R(1)) = 1. The bias and STD of RC are chosen
from the range [−1.5, 1] × (0, 2]. For each pair of the bias
and STD, we estimate the mean squared error of the esti-
mators R(1) and RB by Monte Carlo integration. Figure 1
provides a rendering of this model. The red solid curve is
the boundary where RB and R(1) are equally good. The
area below the red curve is where RB improves upon R(1).

The black contours in Figure 1 show the log ratio of MSE,
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Figure 1: Contour plot showing the improvement of RB

over R(1). Red curves: boundaries between improvement
and no improvement for cases of bias(R(1)) = 0 (solid), 0.5
(dashed), and -0.5 (dotted).

log(MSE(R(1))/MSE(max(R(1), RC))). The greater this

value is, the more improvement max(R(1), RC) has. Clearly
the greatest improvement occurs at the unrealistic case where
RC is unbiased and has 0 variance. In general a combination
of small bias and small variance is sufficient to guarantee an
improvement. The more negative the bias is, the greater
variance is allowed. However, if the bias is overly nega-
tive, then the improvement becomes negligible. Addition-
ally, even if the bias of RC is positive there is still a chance
for the RB to be a better estimator if Var(RC) < Var(R(1)).

We also show the boundaries under the cases where R(1)

is biased. The dashed curve and the dotted curve corre-
spond to bias 0.5 and −0.5 respectively. Compared to the
solid curve, we have the impression that it is more likely
for a maximum estimator such as max(R(1), RC) to improve

R(1), when R(1) is itself negatively biased; and vice versa.
However, there is a potential risk of the bounding estimator
RC falls into the domain of loss (i.e., the northeast of the red

curve). Such risk increases as bias(R(1)) becomes more pos-

itive. Fortunately, |bias(R(1))| is generally under control in
an AVI context. Ideally one would choose a model that fits
well and thus does not have much bias without over-fitting.

We can now identify some characteristics about RC that
ensure an effective RB :

1. The bias of RC must be less than a positive value τ
that satisfies MSE(max(R(1), τ)) = MSE(R(1)). τ ≈
0.8399 in the example given in Figure 1.

2. The variance of RC should be small. It can be greater
than that of R(1) as long as RC has negative bias.

3. The bias of RC should not be overly negative.

The first two criteria ensure a safe bound from below such
that RB is no worse than R(1). The third criterion is neces-
sary to ensure there is a fair chance for R(1) < RC , enabling
an effective bound.

The preceding analysis provides the motivation for our
bounding approach. Given our AVI context the bias of
off-policy n-step returns generally decreases as n increases.
Hence, bias(R(n)) < bias(R(n−1)) < · · · < bias(R(1)). This
bias behavior means if one was to use an n-step return or a
complex return as the bounding estimator, it is very likely to
satisfy the first criterion. Our choice in RC will ultimately
determine if the second and third criterion are satisfied.

In this paper we choose the γ-return as RC for a proof
of concept. Optimal design and selection of the bounding

estimator is potentially an interesting future research direc-
tion. Given its proven variance reduction property [9], the
γ-return is likely to have small variance, satisfying criterion
2. Since the γ-return includes non-negligible weights for all
n-step returns its expected value is very likely to be negative,
satisfying criterion 1. It is possible for this bias to become
too negative, failing criterion 3. This can be remedied by
restricting the length of the trajectory γ-return considers as
was shown in [9].

Theorem 2 (proof in Appendix) below assures that CFQI
with the bounding method also converges under the same
conditions as FQI. This theorem can be further generalized
to state that if CFQI converges with any two complex return
estimates independently, then using one to bound the value
of the other is also guaranteed to converge.

Theorem 2. CFQI converges w.p.1 if the R(1) return is
bounded by a normalized complex return on fixed length tra-
jectories to produce value estimates used in a kernel regres-
sion model, as defined by Eq(7) and Eq(8).

4. RELATED WORK
Trajectory Fitted Q-Iteration (TFQI) [22] is a recently

introduced FQI based algorithm that also makes use of the
n-step returns. Instead of using a complex return, TFQI
uses the n-step return that has the highest observed value
as the sample Q-value estimate.

RMax = max(R(1), R(2), . . . , R(|T |)) (5)

Although there was no explicit mentioning of the bounding
idea, it essentially uses the RMax return as the bound for
the R(1) return. The authors of this method reported sig-
nificantly improved performance compared to that of FQI
on two RL benchmark problems. However, our analysis in
the previous subsections suggests that if any of the R(n) re-
turns exhibits positive bias and/or high variance the RMax

return will likely overestimate values. In addition, the TFQI
work did not provide any statistical explanation of why and
when the RMax return works or fails, and the experimental
evaluation was conducted in deterministic environments.

There exists many approaches that enable the use of com-
plex returns to improve value estimation in certain off-policy
contexts through the use of importance sampling[5, 20]. These
methods are similarly motivated but are limited to the pol-
icy iteration RL contexts where the target policy is known.

5. EMPIRICAL STUDY
In this section we provide an empirical evaluation of our

approaches on several non-deterministic RL benchmarks.
The methods are compared based upon accuracy of the learned
value function, quality of the derived policy, and convergence
behavior. We report comparative results for four methods,
with the return used by each method listed in the following.

Method Value Estimator

FQI R(1)

TFQI RMax

CFQI-Cγ Truncated Rγ

CFQI-Bγ(l) RB = max(R(1), R(γ))
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For the CFQI-Bγ(l) method, l denotes the limit on how
many steps down the trajectory to use when computing the
Rγ return. If l is not listed, it uses the full trajectory.

In all our experiments we use ridge linear regression with
Fourier Basis functions [10]. AVI is known to exhibit di-
vergence behavior when paired with this type of function
approximation model [2]. We are able to circumvent this
issue by bounding the values returned by the models with
Vmax. Vmax is the maximum possible value for any state-
action pair and can be calculated a priori as:

Vmax =
Rmax

(1− γ)
(6)

where Rmax is the maximum single step reward in the do-
main. This change was sufficient to ensure convergence for
most methods we tested. In our experiments this form of
function approximation provided results superior to the ker-
nel averaging based methods that AVI is guaranteed to con-
verge with. If the approximated values were not bounded
by Vmax we did observe divergence behavior from all meth-
ods. In our experimentation we examined a comprehensive
set of parameters varying the complexity of the model, regu-
larization, number of iterations, and trajectory counts. The
results we report are consistent with the general trends we
observed. Statistical significance is determined by perform-
ing a paired t-test. We report a result as significant in the
following analysis if (p < 0.005).

5.1 Value Function Approximation Accuracy
In this series of experiments we examine how accurately

the methods can derive Q∗ using identical trajectory data
sets. For this purpose we use a non-deterministic 51-state
Markov chain similar to the one presented in [11]. This en-
vironment is chosen because Q∗ can be calculated exactly
using dynamic programming. The goal is to traverse the
chain, starting from some random state, to one of the termi-
nal states in as few steps as possible. There are three termi-
nal states: 0, 25, and 50. From any non-terminal state the
agent can take an action to move to one of the two neighbor-
ing states with a cost of -1. We set the discount factor, γ, to
0.9 and there is a 20% probability that an action taken will
result in no transition. The function approximation model
uses a 10th order Fourier basis with no regularization.

In order to evaluate the methods under varying levels of
off-policy bias we generated multiple repositories of 10000
trajectories based on behavior policies that follow the opti-
mal policy with probability 0.9 to 0.5 (equivalent to a ran-
dom policy) at each step. For each run 1000 trajectories are
randomly selected from a chosen repository to form a train-
ing data set. The reported results are the average of 200
runs. We evaluate each method based on the average MSE
of the Q̂ functions, comparing to the true Q∗ function, after
50 iterations of learning (sufficient to ensure convergence).

For completeness, we also consider LSTD-Q [11], an alter-
native batch-mode algorithm. LSTD-Q’s performance was
nearly identical to FQI’s, so we do not include that result.
This finding is expected given that both LSTD-Q and FQI
use R(1) and optimize the same objective function.

The results reported in Figure 2 show the CFQI based
methods are stable and outperform FQI at most levels of
off-policy bias. The only exception is with data from a 90%
optimal policy, where CFQI performs comparably to FQI.
TFQI on the other hand shows unstable results. It performs

0

0.25

0.5

0.75

1

M
S
E

90% 80% 70% 60% 50%

FQI

TFQI

CFQI-Cγ

CFQI-Bγ

Figure 2: Average MSE of the Q̂ functions for the various
methods. The behavior policy is varied from 90% to 50% of
the optimal policy. Error bars show standard deviation.

poorly when there is less off-policy bias, demonstrating that
the RMax return can be prone to overestimate. However, it
is significantly better than all other methods on near random
trajectory data. Comparing CFQI-C and CFQI-B, we see
that the bounding approach can perform significantly better
than its truncated complex return counterpart.

5.2 Policy Performance
In this set of experiments we examine the impact of im-

proved value estimation on the policy quality on two RL
benchmarks: the Acrobot (Acro) swing-up and the Cart
Pole Balancing (CPB) [19]. These two particular problems
were chosen because they represent different classes of do-
main: goal oriented and failure avoidance respectively. In
the Acro domain the objective is to derive a policy that en-
ables an under-actuated robot to swing-up in as few steps
as possible, limited to 1000. A cost of −1 is given for every
non-terminal transition. Whereas, in the CPB domain the
goal is to avoid the failure conditions, for up to 10,000 steps,
of dropping the pole or exceeding the bounds of the track.
Here a positive reward of +1 is given for every non-terminal
transition. We set the discount factor γ = 0.9999 for Acro
and γ = 0.99 for CPB. Like the Markov chain these domains
were made non-deterministic by incorporating a 20% proba-
bility that an action results in no action taken. Fourier basis
of orders 2 and trained with small regularization penalties
are used to represent Q̂ in both domains.

Policy performance is measured by the mean aggregate
reward obtained by running a given policy over 50 trials,
necessary due to the non-determinism. Experiments are run
on data sets comprised of increasing numbers of trajectories
to examine the relative sample efficiency of the methods.
NEAT [18] is used to generate diverse trajectory sets, com-
prised of over 5000 trajectories, for both domains as was
done in the TFQI work [22]. This form of data violates
LSTD-Q’s assumptions on sampling distribution, so we do
not include it in these experiments. The reported results are
an average of 200 runs for each setting after 300 iterations
of learning. Error bars are not included in the results, but
statistically significant results are reported.

Figure 3 shows the policy performance results in the Acro
domain. TFQI performs the best, significantly outperform-
ing all other methods except at 100 trajectories. This obser-
vation suggests that there is significant negative bias stem-
ming from either the trajectories, model, or both, making
RMax a safe estimator. The results for CFQI-Cγ are pur-
posely missing from Figure 3. CFQI-Cγ has difficulty con-
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Figure 3: Policy performance after 300 iterations in the Ac-
robot domain using trajectory sets of increasing size.

verging on all data sets in this domain, confirming our sus-
picion from Section 3.1. The resulting policies all averaged
an aggregate reward value of -700 or less.

CFQI-Bγ performs well, but only significantly outperforms
FQI in the 20 through 50 trajectory range. This demon-
strates how the full γ-return can fail our third criterion by
incorporating too much off-policy bias. In Section 3.2 we
proposed a solution that limits the length of complex re-
turn. Figure 3 also shows results for CFQI-Bγ(l) for various
l settings. Setting l = 2 performs comparably to the default
full length setting, CFQI-Bγ , which are representatives of
the two extremes of the parameter’s range. It is worth not-
ing at l = 1 CFQI-Bγ(l) reduces to FQI. From l = 5 to 20,
CFQI-Bγ(l) demonstrates significantly better performance
than FQI at all trajectory counts. In terms of sample effi-
ciency the improvement is dramatic. With just 30 trajec-
tories CFQI-Bγ(10) achieves the same level of performance
as FQI with 100 trajectories. These results show CFQI-
Bγ(l) provides effective bounds that enable significantly bet-
ter policies to be learned on less data.
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Figure 4: Policy performance after 300 iterations in the Cart
Pole domain using trajectory sets of increasing size.

In Figure 4 we present the results from experiments on the
CPB domain. In sharp contrast to the Acro results, TFQI
performs the worst in this domain. It fails to find a compe-
tent policy at all trajectory counts, confirming that it can be
an overly aggressive bound and an unstable approach. All
other methods perform comparably with FQI with the ex-
ception of CFQI-Bγ . At higher trajectory counts CFQI-Bγ
learns a significantly better policy than all other methods.
This observation can be explained by the γ-return’s long-
tail weighting and the specifics of the CPB domain. In the
CPB domain all rewards are positive with the exception of
transitions to failure states. As a result, it is hard to ac-
cumulate negative bias needed for the bounding estimator
along a short trajectory segment.

5.3 Convergence Behavior
Convergence behavior is an important consideration be-

cause it determines how long before a consistent policy can
be extracted or if the approach will succeed at all. Here
we examine that behavior based on policy convergence and
convergence of the approximated Q functions, Q̂.
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Figure 5: Mean policy performance at every 10 iterations in
the Acrobot domain using 100 trajectories.
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Figure 6: Mean per-iteration Q̂ difference at every 10 itera-
tions in Acrobot using 100 trajectories.

The results for the Acrobot domain are shown in Figures
5 and 6. Figure 5 shows the policy performance evaluated
at every 10th iteration and Figure 6 shows the per-iteration
difference in Q̂ models. From Figure 5 it appears that the
policy for the methods shown all converge around the 100th
iteration. The explanation for this is that CFQI-C(γ) fails
to converge as shown in Figure 6. The lack of convergence
is caused by the non-fixed length of truncated trajectories.
This finding suggests that the CFQI-C approach is not reli-
able. TFQI converges the fastest of all approaches followed
by the CFQI-B methods, which all converge significantly
faster than FQI.
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Figure 8: Mean per-iteration Q̂ difference at every 10 itera-
tions in the Cart Pole domain using 100 trajectories.

Figures 7 and 8 show the similar results for the CPB do-
main. FQI, CFQI-Cγ , and CFQI-Bγ(10) all converge to
policies with similar performance after 100 iterations. It
is somewhat odd that the CFQI-Bγ runs produce near op-
timal policies early in the iterative process before converg-
ing to a lesser performing policy. This result demonstrates
how there can be a disconnect between deriving an accurate
value function and actual policy performance. TFQI also
converges quickly, but to a poor policy. Figure 8, again,
shows that CFQI-Cγ fails to converge, even though it does
manage to derive a stable policy. Truncating the trajecto-
ries dynamically causes oscillations in the policy and value
estimates that prevent convergence. CFQI-Bγ meanwhile,
converges towards the best performing policy significantly
quicker than FQI.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have explored, for the first time, the idea

of utilizing complex returns for AVI. A new AVI framework,
CFQI, and two new approaches based on this framework,
CFQI-C and CFQI-B, have been proposed. We have shown
through statistical evidence how the sub-optimal off-policy
bias, unique to the AVI context, can be exploited by using
the complex returns as bounds on value estimates. We have
provided proof that CFQI converges with fixed length com-
plex returns and when bounding is used. Finally, we have
provided an empirical evaluation that clearly demonstrates
our bounding approach improves the accuracy of value esti-
mates for AVI, resulting in significantly better policies, faster
convergence, and improved sample efficiency.

Specialized bounding complex returns are a potential fu-
ture direction for this research. In this paper we examined
the γ-return as bound. It was not designed with this purpose
and there are likely more effective bounding complex returns
to be discovered. In addition, our empirical results show dif-
ferent methods perform best depending on the learning sce-
nario. An adaptive method that mixes various approaches
based upon the data and domain could lead to even better
overall performance.
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APPENDIX
A. PROOFS FOR THEOREMS 1 AND 2

In previous works AVI, using R(1) as the value estimator,
has been shown to converge as long as the regression model
is an averager such as a normalized kernel method [6, 14, 4].
Specifically, the supervised learning method learns a model,
Q̂(s, a), defined by:

Q̂(s, a) =
∑
T`∈T

|T`|∑
t=1

k
(

(s
T`
t , a

T`
t ), (s, a)

)
Rc`,t (7)

where Rc`,t is the estimated value for sample t from T`. R
c
`,t

can be R(1), as in the standard AVI, or, as we will show,
any normalized complex return. Additionally the kernel,
k : (S ×A)2 7→ R, must satisfy the following condition:

∑
T`∈T

|T`|∑
t=1

∣∣∣k ((s
T`
t , a

T`
t ), (s, a)

)∣∣∣ = 1, ∀(s, a) (8)

A.1 Proof for Theorem 1
Proof. Following the proof from [4], the sequence of M

Q-functions can be rewritten as, Q̂m = ĤQ̂m−1 where Ĥ is
an operator mapping any function in a Banach space H of
functions over S ×A to H itself. Ĥ is defined as:

(ĤK)(s, a) =
∑
T`∈T

|T`|∑
t=1

k
(

(s
T`
t , a

T`
t ), (s, a)

)
∗

|T`−t|∑
n=1

w(n)

[
n−1∑
i=1

γi−1rt+i + γn max
a′∈A

K(st+n, a
′)

]
where w(n) is the set of weights on the individual n-

returns defined by the complex return. Next we show that Ĥ
is a contraction in H. Specifically we show ‖ĤK−ĤK̄‖∞ <
‖K − K̄‖∞ for any K and K̄ ∈ H

‖ĤK − ĤK̄‖∞

= max
(s,a)∈S×A

∣∣∣∣ ∑
T`∈T

|T`|∑
t=1

k((s
T`
t , a

T`
t ), (s, a))

|T`−t|∑
n=1

w(n)γn[
max
a′∈A

K(st+n, a
′)−max

a′∈A
K̄(st+n, a

′)

] ∣∣∣∣

≤ max
(s,a)∈S×A

∑
T`∈T

|T`|∑
t=1

k((s
T`
t , a

T`
t ), (s, a))∗

|T`−t|∑
n=1

w(n)γn
∣∣∣∣max
a′∈A

K(st+n, a
′)−max

a′∈A
K̄(st+n, a

′)

∣∣∣∣
< γ max

(s,a)∈S×A

∑
T`∈T

|T`|∑
t=1

k((s
T`
t , a

T`
t ), (s, a))∗

|T`−t|∑
n=1

w(n) max
a′∈A

∣∣K(st+n, a
′)− K̄(st+n, a

′)
∣∣

≤ γ max
(s,a)∈S×A

∑
T`∈T

|T`|∑
t=1

k((s
T`
t , a

T`
t ), (s, a))∗

max
t′≥t,(st′ ,a′)∈STl

×A
|K(st′ , a

′)− K̄(st′ , a
′)|

≤ γ max
(s,a)∈S×A

|K(s, a)− K̄(s, a)|

= γ‖K − K̄‖∞
< ‖K − K̄‖∞

By fixed-point theorem, we have completed the proof.

A.2 Proof for Theorem 2
Proof. Following proof of Theorem 1, Ĥ is defined as:

(ĤK)(s, a) =
∑
T`∈T

|T`|∑
t=1

k
(

(s
T`
t , a

T`
t ), (s, a)

)
max

{
rt+1 + max

a′∈A
K(st+1, a

′),

|T`−t|∑
n=1

w(n)

[ n−1∑
i=1

γi−1rt+i + γn max
a′∈A

K(st+n, a
′)

]}
We now show Ĥ is a contraction in H.

‖ĤK − ĤK̄‖∞

= max
(s,a)∈S×A

∣∣∣∣∣ ∑
T`∈T

|T`|∑
t=1

k
(

(s
T`
t , a

T`
t ), (s, a)

)
(

max
{
rt+1 + γmax

a′∈A
K(st+1, a

′),

|T`−t|∑
n=1

w(n)

[ n−1∑
i=1

γi−1rt+i + γn max
a′∈A

K(st+n, a
′)

]}
−

max
{
rt+1 + γmax

a′∈A
K̄(st+1, a

′),

|T`−t|∑
n=1

w(n)

[ n−1∑
i=1

γi−1rt+i + γn max
a′∈A

K̄(st+n, a
′)

]})∣∣∣∣∣
≤ max

(s,a)∈S×A

∣∣∣∣∣ ∑
T`∈T

|T`|∑
t=1

k
(

(s
T`
t , a

T`
t ), (s, a)

)
max

{
γmax
a′∈A

K(st+1, a
′)− γmax

a′∈A
K̄(st+1, a

′),

|T`−t|∑
n=1

w(n)∗[
γn max

a′∈A
K(st+n, a

′)− γn max
a′∈A

K̄(st+n, a
′)

]}∣∣∣∣∣
At this point all that remains is to show that both choices
in the second max{} function are less than ‖K−K̄‖∞ inde-
pendently. The first choice was proven in [4]. Finally, the
second choice is proven by Theorem 1.
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