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RA is an autoimmune disorder affecting tens of millions of people 
worldwide and is associated with increased mortality owing to car-
diovascular and other systemic complications. However, the etiology 
of RA remains elusive1. Although studies on genetic predisposition 
to RA have implicated genes such as HLA-DRB1, TNFAIP3, PTPN22 
and PADI4, environmental factors have also been shown to contribute 
to disease pathogenesis1–5. Microbial triggers have been implicated 
in RA1; however, the identity and pathogenicity of specific microbes 
have remained unclear. Although there are reports of clinical success 
in reducing inflammation in RA with disease-modifying antirheumatic 
drugs (DMARDs), the development of specific and more effective ther-
apies has been hindered by insufficient understanding of factors that 
trigger or promote the disease. Investigation of the microbiome might 
also reveal probiotics that could prevent or attenuate RA symptoms.

Although joint inflammation is characteristic of RA, inflam-
mation may develop in other body sites years before the onset of  
joint inflammation1,6,7. The gut microbiota is an environmental  
factor that influences metabolic and immune homeostasis8,9. 
The composition of the gut microbiome is reasonably stable in a 
given individual10–12; however, it is quite heterogeneous between 
individuals12,13. The oral microbiome is relatively understudied 
compared with the gut microbiome, with the Human Microbiome 
Project sampling only healthy individuals for shotgun sequencing14. 
Metagenomic analysis of the oral microbiome and its association 
with disease has been lacking15, despite the fact that dental plaque 
and salivary samples are more readily obtained at clinical visits  
than fecal samples. It is also not known to what extent oral and  
gut microbial disease markers might converge in terms of their  
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We carried out metagenomic shotgun sequencing and a metagenome-wide association study (MGWAS) of fecal, dental and 
salivary samples from a cohort of individuals with rheumatoid arthritis (RA) and healthy controls. Concordance was observed 
between the gut and oral microbiomes, suggesting overlap in the abundance and function of species at different body sites. 
Dysbiosis was detected in the gut and oral microbiomes of RA patients, but it was partially resolved after RA treatment. 
Alterations in the gut, dental or saliva microbiome distinguished individuals with RA from healthy controls, were correlated  
with clinical measures and could be used to stratify individuals on the basis of their response to therapy. In particular, 
Haemophilus spp. were depleted in individuals with RA at all three sites and negatively correlated with levels of serum 
autoantibodies, whereas Lactobacillus salivarius was over-represented in individuals with RA at all three sites and was present  
in increased amounts in cases of very active RA. Functionally, the redox environment, transport and metabolism of iron,  
sulfur, zinc and arginine were altered in the microbiota of individuals with RA. Molecular mimicry of human antigens related 
to RA was also detectable. Our results establish specific alterations in the gut and oral microbiomes in individuals with RA and 
suggest potential ways of using microbiome composition for prognosis and diagnosis.
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composition or function, as this is not apparent from 16S rRNA gene 
analyses of fecal or dental samples from individuals with RA16–19.

RESULTS
Gut microbial dysbiosis is detectable in RA and is associated 
with clinical indices
To investigate the gut microbiome in RA patients, we carried out 
metagenomic shotgun sequencing of 212 fecal samples (77 treatment- 
naive individuals with RA and 80 unrelated healthy controls; 
17 treatment-naive individuals with RA paired with 17 healthy  
relatives; and 21 samples from DMARD-treated individuals with RA) 
(Supplementary Tables 1 and 2). We then integrated the data into 
an existing gut microbial reference-gene catalog to obtain a set of  
5.9 million genes, which allowed for saturation mapping of the 
sequencing reads (80.3% ± 2.3%, mean ± s.d.)12. Gut microbial diversity 
and richness were similar between the 77 treatment-naive individuals 
with RA and 80 unrelated healthy controls (Supplementary Fig. 1).  
The duration of RA did not significantly separate the individuals 
with RA in principal-coordinate analysis at the genus level or in  
permutational analysis of variance (PERMANOVA) of the gene  
profile (Supplementary Fig. 2 and Supplementary Table 3).

To delineate features of the RA-associated gut microbiome, we 
identified 117,219 gene markers that were differentially enriched 
in RA patients versus controls (Wilcoxon rank-sum test, false dis-
covery rate (FDR) < 0.3) and clustered the genes into metagenomic 
linkage groups (MLGs) on the basis of their correlated abundance 
variation among samples20. The 88 MLGs that contained at least 100 
genes (Supplementary Fig. 3 and Supplementary Table 4) separated  
RA-enriched and control-enriched MLGs along the vector for RA status 
in canonical correspondence analysis (CCA) (Supplementary Fig. 4),  
confirming that they were associated mainly with RA status, rather 
than with other complicating factors.

A cluster containing Veillonella and Haemophilus strains 
(Spearman’s correlation coefficient > 0.3), along with other MLGs 
including Klebsiella pneumoniae, Bifidobacterium bifidum, Sutterella 
wadsworthensis and Megamonas hypermegale, were enriched in the 
healthy controls compared with the RA subjects (Supplementary 
Fig. 3). In contrast, the RA-enriched MLGs formed a large cluster 
including Clostridium asparagiforme, Gordonibacter pamelaeae, 
Eggerthella lenta and Lachnospiraceae bacterium, as well as small 
clusters or single MLGs containing strains such as Bifidobacterium 
dentium, Lactobacillus sp. and Ruminococcus lactaris. A few control 
MLGs negatively correlated with RA MLGs (e.g., K. pneumoniae and 
Bacteroides sp., B. bifidum and R. lactaris) (Supplementary Fig. 3), 
suggesting an antagonistic or mutually exclusive relationship.

The RA gut was enriched in Gram-positive bacteria and depleted 
of Gram-negative bacteria, including some Proteobacteria and Gram-
negative Firmicutes of the Veillonellaceae family (Supplementary 
Fig. 3). A few phylogenetically related strains showed different direc-
tions of enrichment. For instance, Con-1511 (most closely related to 
Bacteroides plebeius) was enriched in controls, whereas a Bacteroides sp.  
(most closely related to Bacteroides sp. 20_3) was enriched in patients 
(Supplementary Fig. 3 and Supplementary Table 4). These results 
partly confirm and extend the results of previous studies based on 16S 
rRNA sequencing16,17,19 (Supplementary Table 5).

Consistent with results from principal-coordinate analysis and 
PERMANOVA at the genus and gene levels (Supplementary Fig. 2a 
and Supplementary Table 3), the abundance of only one gut MLG 
was different among treatment-naive individuals with RA of different 
durations (Kruskal-Wallis test, P < 0.05; Supplementary Fig. 2b).  

In contrast, the abundance of three dental MLGs and ten salivary 
MLGs changed with disease duration, with RA-enriched MLGs 
often increasing and control-enriched MLGs decreasing as a func-
tion of the duration of RA (Supplementary Fig. 2c,d). None of the 
MLGs containing 100 or more genes was annotated to Prevotella copri  
(Supplementary Fig. 3 and Supplementary Table 4), in agree-
ment with its existence and genomic variability in the healthy pop-
ulation10,13,19,21–25. Yet according to the P. copri NCBI reference  
draft genome (DSM 18205), there was a trend toward increased 
abundance of P. copri as a function of RA duration in the first year 
(Supplementary Fig. 5), consistent with its reported expansion in 
subjects with new-onset RA (6 weeks to 6 months)19.

In line with the relative depletion of Gram-negative bacteria in 
RA, Kyoto Encyclopedia of Genes and Genomes (KEGG) modules 
involved in lipopolysaccharide biosynthesis, lipopolysaccharide trans-
port, and secretion systems (type II, type IV and type VI) were more 
abundant in samples from healthy controls (Fig. 1 and Supplementary 
Table 6). In contrast, enrichment of the reductive acetyl-CoA pathway 
in individuals with RA was consistent with the overabundance of 
acetate-producing bacteria such as Clostridium spp. and modules for 
converting acetate to methane (Fig. 1 and Supplementary Table 6). 
Together, these results indicate that the gut microbiome of individuals 
with RA is distinct from that of healthy individuals.

To explore the diagnostic or prognostic value of the gut microbiome 
for RA, we investigated numerical covariations between the relative 
abundance of the MLGs and clinical indices using Spearman’s correla-
tion (Supplementary Fig. 4). The abundance of RA-enriched MLGs 
such as C. asparagiforme and Bacteroides sp. was positively correlated 
with titers of immunoglobulin A (IgA), and that of an unclassified 
Lactobacillus sp. (most likely L. salivarius; Supplementary Table 4) 
positively correlated with titers of the major serum immunoglobulin, 
IgG (Supplementary Fig. 4). A positive correlation between RA-2166 
(which is related to Enterococcus faecalis; Supplementary Table 4) and 
platelet count (Supplementary Fig. 6) was detected, which is consistent  
with prior reports showing that E. faecalis binds platelets26,27.

Additional correlations with clinical indices were found with MLGs 
enriched in controls but also present in a fraction of individuals  
with RA (Supplementary Table 4). The abundance of Con-7851 and 
B. bifidum correlated negatively with titers of IgA and IgG; Con-1511,  
Con-2297, Con-2316 and an unclassified Haemophilus sp. (most 
closely related to B. plebeius, Streptococcus australis, Veillonella sp.  
oral taxon 158 and Haemophilus parainfluenzae, respectively; 
Supplementary Table 4) negatively correlated with titers of the RA-
specific autoantibodies anticyclic citrullinated peptide (anti-CCP) 
and rheumatoid factor (RF) (Supplementary Fig. 6). Furthermore, 
cross-validated random forest models based on the gut MLGs were 
able to fit the clinical indices with a small R2 value (Supplementary 
Table 7), which indicated that the gut MLGs could to some extent 
reflect the clinical variations among these subjects.

Oral microbial dysbiosis is present in RA and is associated  
with clinical indices
Next we investigated whether dysbiosis is also evident in the oral 
microbiome. We shotgun-sequenced 105 dental and 98 saliva samples 
(dental: 54 treatment-naive RA, 51 controls; saliva: 51 RA, 47 controls; 
69 of the subjects had a complete set of fecal, dental and salivary 
samples) (Supplementary Tables 1 and 2). De novo assembly of these 
sequences led to a gene catalog of 3.2 million genes, with 76.6% ± 1.8% 
and 70.7% ± 7.3% (mean ± s.d.) mapping of the dental and salivary 
sequencing reads, respectively.
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RA status had the strongest effect on the dental and salivary 
microbiomes among all available phenotypes (lowest P value in 
PERMANOVA; Supplementary Tables 8 and 9). We identified 
371,990 and 258,055 gene markers enriched in either healthy controls  

or individuals with RA from the dental and salivary samples, respec-
tively (Wilcoxon rank-sum test, FDR < 0.1). MLGs were constructed 
in the same way as for the fecal samples20, making this, to our knowl-
edge, the first MGWAS on the oral microbiome.

Gut Dental Salivary

Glutamate-aspartate transport system
Lysine-arginine-ornithine transport system
Thiamine transport system
Type IV secretion system
Complex IV (cytochrome c oxidase), cytochrome o ubiquinol oxidase/cytochrome c oxidase/quinol oxidase polypeptide
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Histidine transport system
Arginine transport system
Lipopolysaccharide biosynthesis, KDO2−lipid A
Sulfate transport system
Dipeptide transport system
Microcin C transport system
Type VI secretion system
Ubiquinone biosynthesis, prokaryotes, chorismate => ubiquinone
Manganese-iron transport system
Complex IV (cytochrome c oxidase), cytochrome c oxidase, cbb3−type
Lipopolysaccharide biosynthesis, inner core => outer core => O−antigen
Type II general secretion system
ADP−L−glycero−D−manno−heptose biosynthesis
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Arginine-ornithine transport system
Polyamine biosynthesis, arginine => ornithine => putrescine
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Biotin biosynthesis, pimeloyl−CoA => biotin
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Fatty acid biosynthesis, initiation
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Complex III (cytochrome bc1 complex)
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Ornithine biosynthesis, glutamate => ornithine
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Reductive acetyl−CoA pathway (Wood−Ljungdahl pathway)
Putative multiple sugar transport system
Bacitracin transport system
N−acetylglucosamine transport system
Cellobiose transport system
C4−dicarboxylic acid cycle, NAD+ −malic enzyme type
Aminoacyl−tRNA biosynthesis, prokaryotes
Multiple sugar transport system
C1−unit interconversion, prokaryotes
Formaldehyde assimilation, ribulose monophosphate pathway
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Complex I (NADH dehydrogenase), NADH dehydrogenase I
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Simple sugar transport system
C5 isoprenoid biosynthesis, non−mevalonate pathway
Pyrimidine ribonucleotide biosynthesis, UMP => UDP/UTP, CDP/CTP
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PTS system, ascorbate−specific II component
Methionine salvage pathway
Glutamine transport system
Pyrimidine deoxyribonucleotide biosynthesis, CDP/CTP => dCDP/dCTP, dTDP/dTTP
Sec (secretion) system
Lipopolysaccharide transport system
Cell division transport system
D−methionine transport system
RNA polymerase, bacteria
PTS system, lactose−specific II component
PTS system, mannose−specific II component
PTS system, galactitol−specific II component
Maltose-maltodextrin transport system
Putative sugar transport system
Putative ABC transport system
ABC−2 type transport system
PTS system, fructose−specific II−like component
Polar amino acid transport system
Uncharacterized ABC transport system
PTS system, galactosamine−specific II component
Zinc transport system
Pentose phosphate pathway (pentose phosphate cycle)
ATP synthase
F−type ATPase, bacteria
Peptide-nickel transport system
Glycolysis (Embden−Meyerhof pathway), glucose => pyruvate
Gluconeogenesis, oxaloacetate => fructose−6P
Glycolysis, core module involving three−carbon compounds
Ribosome, bacteria
Ribosome, archaea
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Reporter score

Figure 1 Microbial dysbiosis in the gut, dental plaques and saliva of individuals with RA. Heat map of KEGG modules differentially enriched  
between samples of feces (n = 157), dental plaques (n = 105) and saliva (n = 98) from RA and control subjects (reporter score ≥ 1.7;  
Supplementary Tables 5, 15 and 16). The KEGG orthology group modules and body sites are ordered by unsupervised hierarchical clustering.  
Blue, enriched in controls; red, enriched in RA subjects. Modules missing from one or more body sites are not plotted.
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The 171 dental and 142 salivary MLGs that contained at least 100 
genes (Fig. 2 and Supplementary Tables 10 and 11) were separated 
into control-enriched and RA-enriched MLGs along the vector for 
RA status in CCA (Supplementary Fig. 4b,c), confirming their 
association with RA. The dental MLGs were highly interconnected 
in the controls, whereas the salivary MLGs were more intercon-
nected in the RA patients than in the controls (Fig. 2, Spearman’s 
correlation > 0.55). Veillonella MLGs were overrepresented in the 
gut of healthy controls (Supplementary Fig. 3) but were elevated 
in the dental plaques and saliva of individuals with RA (Fig. 2 and 
Supplementary Tables 10 and 11). These Veillonella MLGs possi-
bly belonged to different species (Supplementary Table 12). MLGs 
annotated to Haemophilus spp. remained enriched in the control  
samples at all three sites, although the exact strain could differ 
between the gut and oral sites (Supplementary Tables 4 and 10–12).  
MLGs corresponding to common childhood endocarditis–related  

Gram-negative bacteria (Haemophilus, Aggregatibacter, Cardio-
bacterium, Eikenella, Kingella (HACEK)) were enriched in the 
control dental and/or salivary samples (Fig. 2 and Supplementary 
Tables 10 and 11). The peptidyl-arginine deiminase (PAD)-encoding  
Porphyromonas gingivalis was enriched in control saliva and, to a 
lesser extent, in control dental plaques (Fig. 2 and Supplementary 
Tables 10 and 11), in agreement with recent studies that did not  
find an association between P. gingivalis or its PAD and RA18,28.  
Rothia spp. have been implicated in treatable periodontitis, endo-
carditis, and joint infections29–31. We found that Rothia aeria was 
enriched in control saliva, Rothia mucilaginosa–like MLGs were 
enriched in RA saliva and dental plaques (RA-8122 and RA-15331, 
respectively), and RA-24511 (Rothia dentocariosa) was enriched in 
RA dental plaques (Fig. 2 and Supplementary Tables 10 and 11).  
Anaerobes such as Lactobacillus salivarius, Atopobium spp.  
and Cryptobacterium curtum were enriched in both salivary and  
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Con-2402

Bacteroidetes sp.
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Con-2374
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Con-3145

Control-enriched RA-enricheda

Figure 2 Oral MLGs enriched in dental and salivary samples of RA subjects and controls. (a,b) MLGs (≥100 genes) enriched in oral (a) and salivary (b)  
samples (for dental samples, n = 51 controls and 54 RA; for salivary samples, n = 47 controls and 51 RA), colored according to family. MLG 
identification numbers are listed in parentheses if more than one MLG annotated to the same species or unclassified species in a genus (sp.). Possible 
strain names are listed in Supplementary Tables 10 and 11 for all MLGs with more than 50% of genes annotated to the strain(s), even if the criteria 
for pinpointing a species or a genus were not met (Online Methods). Sizes of nodes reflect the number of genes in the MLGs (100–4,667 for dental, 
102–4,996 for salivary). Blue edges, Spearman’s correlation coefficient > 0.55, P < 0.05; red edges, Spearman’s correlation coefficient < −0.35 for 
dental and < −0.5 for salivary, P < 0.05.
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dental samples from subjects with RA, in contrast to aerobes such  
as Nesseria spp. and R. aeria, which were enriched in controls  
(Fig. 2 and Supplementary Tables 10 and 11). Strains enriched 
in control saliva such as Lactococcus sp., Con-1, Con-80 and 
Cardiobacterium hominis negatively correlated with MLGs enriched 
in RA samples, including Atopobium sp. and Veillonella strains 
(Spearman’s correlation coefficient <−0.5; Fig. 2b). Control oral 
MLGs such as Capnocytophaga ochraea and Leptotrichia sp. and  
RA-enriched Selenomonas flueggei had taxa similar to those reported 
in previous 16S studies18,32,33 (Supplementary Table 5). Collectively, 
these findings indicate that microbial markers enriched in control and 
RA samples were differentially distributed among the fecal, dental  
and salivary microbiomes, although the dental and salivary sites 
showed greater similarity to each other.

Next we computed covariations between the relative abundance of 
dental and salivary MLGs and clinical indices for RA, and we noted the 
separation between control-enriched and RA-enriched MLGs on the 

basis of the clinical indices (Supplementary Figs. 7 and 8). A number 
of MLGs enriched in the healthy control dental samples, including 
Aggregatibacter sp., Haemophilus spp., Neisseria spp. and Prevotella  
intermedia, negatively correlated with C-reactive protein (CRP), a marker 
for acute inflammation (Supplementary Fig. 7). Healthy control MLGs 
such as Con-3223 and Con-5472 negatively correlated with both CRP 
and anti-CCP autoantibodies, whereas RA-enriched Actinomyces sp.  
and RA-16259 positively correlated with anti-CCP autoantibodies. 
Con-6189 and Con-8374 negatively correlated with CRP and RF, an 
autoantibody directed against the Fc region. In the saliva, RA-11340 
positively correlated with anti-CCP, whereas Con-658, Con-662 and 
Haemophilus spp. negatively correlated with anti-CCP (Supplementary 
Fig. 8). Con-2134 negatively correlated with RF, whereas RA-5059,  
RA-7901 and Prevotella spp. positively correlated with RF.

Cross-validated random forest models based on dental or salivary 
MLGs were able to fit clinically measured indices such as DAS28, CRP, 
anti-CCP and IgG in the cohort (Supplementary Tables 13 and 14),  
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which indicated that measured oral MLGs could be used to derive 
these clinical indices in this cohort. Thus, although the oral micro-
biome may be influenced by additional factors such as diet and  
oral hygiene, our results indicate that, consistent with clinical  
observations, the oral microbiome deviates from a healthy status  
in individuals with RA.

Concordance between gut and oral microbiomes
To examine the concordance and divergence of the microbiome at 
different body sites in individuals with RA, we analyzed functional 
modules using the KEGG database. Like the gut microbiome, the 
dental and salivary microbiomes of RA patients were relatively 
depleted of type II, type IV and type VI secretion systems; arginine 
and putrescine transport systems; and synthesis of putrescine and 
spermidine from arginine (Fig. 1; Supplementary Tables 5, 15  
and 16; and Supplementary Note).

The module related to ubiquinone (coenzyme Q) synthesis was more 
abundant in the control oral and gut samples, whereas menaquinone 
(vitamin K2) synthesis was elevated in individuals with RA at the same 
sites (Fig. 1 and Supplementary Tables 5, 15 and 16), suggesting more 
anaerobic respiration. Complex I (NADH dehydrogenase) of the respi-
ratory chain was enriched in RA subjects, whereas Complexes III and IV  
were relatively depleted in these subjects (Fig. 1). RA saliva samples 
were enriched for iron(III) transport instead of iron(II) transport sys-
tems (Supplementary Fig. 9a). Salivary MLGs that correlated with 
iron(III) transport included RA-5626 and RA-5778 (which are most 
closely related to Solobacterium moorei; Supplementary Table 11),  
whereas iron(II) transport (manganese-iron transport system) was 
associated with control-enriched MLGs such as gut K. pneumoniae, 
dental and salivary Haemophilus spp., Aggregatibacter spp. and Eikenella 
corrodens (Supplementary Tables 17 and 18). Zinc transport systems 
were enriched in the control fecal samples but were also enriched 
in the RA oral samples compared with control oral samples (Fig. 1; 
Supplementary Fig. 9a; and Supplementary Tables 5, 15 and 16).

The healthy oral microbiome was enriched in modules involved  
in sulfur reduction and sulfate transport (Fig. 1; Supplementary  
Fig. 9b; Supplementary Tables 15 and 16; and Supplementary Note). 

KEGG orthology groups responsible for hydrogen sulfide produc-
tion correlated with control MLGs such as Aggregatibacter spp., 
Haemophilus spp. and Kingella dinitrificans; in contrast, Bacteroides spp.  
were enriched in the gut of RA subjects (Supplementary Tables 17  
and 18). Alterations in nitrogen, iron and sulfur metabolism in  
RA also manifested as differential enrichment of heme transport  
and synthesis pathways in gut and oral sites between control and  
RA subjects (Fig. 1 and Supplementary Fig. 9c).

Molecular mimicry of RA-associated antigens such as Collagen 
XI and HLA-DRB1*0401 (ref. 34) by gut microbial genes from 
Clostridium, Eggerthella, Bacteroides and Citrobacter was also sug-
gested, with a number of the genes belonging to MLGs enriched in RA 
gut samples (Supplementary Fig. 10 and Supplementary Table 19).  
In contrast, only one gut microbial gene contained a motif similar 
to the spondyloarthropathy-related antigen HLA-B27. Although the 
signal was more diverse in the oral microbiome, RA-enriched genes 
from Atopobium, Oribacterium, Actinomyces and Cryptobacterium 
mimicked motifs in Collagen XI and HLA-DRB1*0401, whereas few 
motifs similar to HLA-B27 could be found (Supplementary Fig. 10 
and Supplementary Tables 20 and 21). Thus, both the gut and the 
oral microbiome might contribute to RA through molecular mimicry 
of self-antigens34,35.

Despite differences between the gut and oral bacterial taxa  
associated with RA, Haemophilus spp. were overrepresented in the 
control samples from all gut and oral sites and negatively correlated 
with amounts of serum anti-CCP, RF and CRP (Supplementary  
Figs. 6–8). L. salivarius was consistently enriched in individuals with 
RA. Amounts of gut and salivary L. salivarius positively correlated 
with IgG levels, and the dental L. salivarius showed the second high-
est odds ratio among all dental MLGs (Supplementary Table 10). 
Furthermore, L. salivarius was more abundant in very active cases  
of RA (DAS28 > 5.1) compared with mild to moderately active 
(DAS28 ≤ 5.1) cases (Fig. 3), underscoring its potential for use in 
patient stratification.

To better understand the distribution of RA-associated bacteria 
across body sites, we computed the correlation of the relative abun-
dances of fecal, dental and salivary MLGs among samples (n = 69).  
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Figure 3 Patient stratification on the basis of RA-associated bacteria. (a–c) Relative abundance of L. salivarius MLGs in fecal (a), dental (b) and  
salivary (c) samples from patients with very active (filled circles) and moderately active (open circles) RA (P = 0.017, 0.036 and 0.084, respectively; 
Wilcoxon rank-sum test). The MLG identification numbers are 2169 (gut), 16600 (dental) and 4643 (salivary) (Supplementary Tables 4, 10 and 11). 
The disease classification followed EULAR criteria: moderate, 3.2 < DAS28 ≤ 5.1; very active, DAS28 > 5.1 (Supplementary Table 1). 
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L. salivarius (Lactobacillus sp. in the gut; Supplementary Table 4) showed  
a positive correlation among all three sites (Fig. 4, Supplementary 
Fig. 11 and Supplementary Table 12), confirming its presence in  
multiple body sites. The RA-enriched gut bacteria B. dentium and 
RA-6364 negatively correlated with a number of control-enriched 
dental MLGs (Spearman’s correlation < −0.4; Fig. 4a). The MLG Con-
5303, which was enriched in control gut samples, positively correlated 
with many control-enriched dental MLGs such as Haemophilus spp., 
Aggregatibacter sp. and P. intermedia (Spearman’s correlation > 0.4).  
The RA-enriched gut bacteria C. aspar-
agiforme negatively correlated with control 
salivary MLGs P. intermedia, Haemophilus 
spp. and Kingella denitrificans and positively 
correlated with RA salivary MLGs such as 
RA-8057 and RA-8551 (Fig. 4b). A similar  
pattern was observed for RA-enriched 
gut MLGs Bacteroides sp., B. dentium and 
Lactobacillus sp. The control salivary MLG 
Lactococcus sp. correlated negatively with an 
RA gut Bacteroides sp. and positively with 
control gut MLGs including Con-5303 and  
K. pneumoniae. Together, these results dem-
onstrate covariation of bacteria at different 
body sites in individuals with RA and indicate 
that the microbiome at a given site contains 
information for other sites.

Microbiome-based identification of RA 
patients
To illustrate the diagnostic value of the RA-
associated microbiome, we first constructed 
random forest disease classifiers based on the 
gut MLGs (Fig. 5). Tenfold cross-validation 
was done five times on the cohort (N = 157),  
and the final model contained 8 of the  
88 gut MLGs (Supplementary Fig. 12  
and Supplementary Table 4), leading to 
an area under the receiver operating curve 
(AUC) of 0.940 (specificity, 0.922; sensitiv-
ity, 0.838; Fig. 5a). The model also classi-
fied an additional set of samples comprising  
consanguineous and nonconsanguine-
ous case-control pairs (N = 34) (Fig. 5b). 
Thus, the performance of our model with 

gut MLGs was comparable to that of existing classifiers based on  
RA serum markers36.

Similarly, six dental MLGs and two salivary MLGs performed well 
in our cohort (Dental: AUC, 0.870; specificity, 0.860; sensitivity, 0.800. 
Salivary: AUC, 0.814; specificity, 1.000; sensitivity, 0.702; Fig. 5d,f, 
Supplementary Fig. 12 and Supplementary Tables 10 and 11). Of the 
two salivary MLGs, RA-32522 was present only in individuals with 
RA and their healthy relatives, whereas the unclassified Lactococcus 
sp. was present in the unrelated healthy controls. Salivary Lactococcus 
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Figure 4 Correlation between gut and oral 
MLGs. (a,b) Spearman’s correlation between 
the relative abundances of gut and dental (a) 
or gut and salivary (b) MLGs (≥100 genes) were 
calculated for subjects with full sets of fecal, 
dental and salivary samples (n = 69). Sizes 
of nodes reflect the number of genes in each 
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and RA-32522 also correlated with a number of MLGs in the gut  
(Fig. 4b and Supplementary Table 11). When classification based on 
two sites was used to overrule the few misclassifications based on the 
third site, no subjects were misclassified except for one related control 
(Supplementary Table 1); this highlights the power of examining the 
microbiome at multiple sites. Moreover, testing the MLG classifiers on 
samples from DMARD-treated RA patients still correctly identified 
the individuals as having RA for most of the fecal and dental samples 
(Fig. 5c,e,g and Supplementary Table 1). However, dental samples 
with low disease activity (DAS28) were often classified as healthy, 
consistent with clinical relief of periodontitis after treatment of RA.

DMARD treatment partially restores a healthy RA microbiome
To examine whether DMARD treatment restores a healthy micro-
biome, we compared the relative abundance of control and RA gut and 
oral MLGs before and after treatment (for 3 months in 34 individuals 
and for other time periods for six fecal samples) (Supplementary 
Tables 1 and 2). Consistent with results from the RA classifiers, more 
dental and salivary MLGs showed significant changes in abundance  
than did gut MLGs (P < 0.05, Wilcoxon rank-sum test; Fig. 6  

and Supplementary Fig. 13). In the dental plaques, amounts of 
RA-24803 were decreased after DMARD therapy, especially in 
patients who showed good or moderate improvement after treat-
ment compared to those with no improvement (P < 0.05, Wilcoxon 
rank-sum test; Fig. 6b,c), according to the European League Against 
Rheumatism (EULAR) response criteria based on DAS28 reduction. 
MLGs enriched in healthy control dental samples, including Prevotella 
maculosa, increased in RA patients after treatment, especially in those 
who showed good or moderate improvement. Among the control 
MLGs that were differentially enriched in dental samples of patients 
with good, moderate or no improvement after DMARD therapy were 
MLGs (unclassified Aggregatibacter sp., Con-3223 and Con-6189) that 
negatively correlated with CRP, anti-CCP or RF, implying clinically 
relevant improvement in the dental microbiome.

Cross-validated random forest models based on gut, dental or 
salivary MLGs in before-treatment samples were able to distinguish 
patients who showed good or moderate improvement from patients who 
showed no improvement after DMARD therapy (dental: AUC, 0.881; 
specificity, 1.000; sensitivity, 0.667; Fig. 6d, Supplementary Fig. 14  
and Supplementary Table 22). Gut MLGs used in the improvement  

Figure 6 The microbiome is altered after DMARD treatment. (a) Control gut MLGs (≥100 genes; Supplementary Fig. 3) affected by DMARD treatment  
(P < 0.05, paired Wilcoxon rank-sum test, N = 32). (b) Control dental MLGs (≥100 genes; Fig. 2a) affected by DMARD treatment (P < 0.05, paired  
Wilcoxon rank-sum test, N = 15). (c) Control dental MLGs differentially enriched in patients with good, moderate or no improvement (N = 9, 21 or 10,  
respectively; P < 0.05 between good and moderate, good and unimproved, and moderate and unimproved, Wilcoxon rank-sum test). (d) Receiver  
operating characteristic curve for prediction of improvement after DMARD treatment from before-treatment dental samples. Tenfold cross-validation  
with a random forest classifier was done five times, and 17 MLGs were selected (Supplementary Table 10). N = 24 for good or moderate improvement,  
N = 7 for no improvement (Supplementary Table 22). AUC = 0.881; 95% CI shown as a shaded area. The diagonal line marks an AUC of 0.5 (i.e., random 
classification). (e) Control salivary MLGs (≥100 genes; Fig. 2b) affected by DMARD treatment (P < 0.05, paired Wilcoxon rank-sum test, n = 10).  
MLGs enriched in control samples are shown in blue text, and MLGs enriched in RA samples are in red text (a–c,e,f). (f) Control dental MLGs differentially 
enriched in patients after treatment with MTX, MTX + T2 or T2 (N = 14, 10 or 12, respectively; P < 0.05 between MTX and MTX + T2, between MTX and T2,  
and between MTX + T2 and T2, Wilcoxon rank-sum test). In all box plots, interquartile ranges (IQRs; boxes), medians (dark vertical lines in boxes), the lowest 
and highest values within a range 1.5 times the IQR from the first and third quartiles (whiskers) and outliers beyond the whiskers (circles) are shown.
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Figure 5 Gut and oral MLGs  
can be used to distinguish RA  
patients from healthy controls.  
(a,d,f) Receiver operating  
characteristic curves for fecal (a),  
dental (d) and salivary (f) training  
sets comprising samples from  
treatment-naive RA subjects  
and unrelated controls (N = 157,  
100 and 94 for fecal, dental and  
salivary samples, respectively).  
AUC = 0.9396 for fecal, 0.8702 for  
dental and 0.8135 for salivary samples. The 95% confidence intervals (CIs) are shown as shaded areas. (b) Classification of fecal samples from 17 controls  
and 17 RA subjects, either consanguineous or nonconsanguineous relatives. Open circles, controls; filled circles, RA subjects. (c,e,g) Classification of 
fecal (c), dental (e) and salivary (g) samples from DMARD-treated RA patients (N = 40, 37 and 24 for fecal, dental and salivary samples, respectively), 
shaded on a scale relative to DAS28. NA (no shading), DAS28 not available. The classification results for all samples are listed in Supplementary Table 1. 
Diagonal lines in graphs mark an AUC of 0.5 (i.e., random classification). Horizontal lines mark the probability cutoff (0.5).
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classifiers included Con-5303, Con-3144 and Holdemania filiformis,  
which correlated with dental and salivary MLGs (Fig. 4 and 
Supplementary Table 4). Oral MLGs included in the classifiers, 
including Veillonella spp., also correlated with gut MLGs (Fig. 4 and 

Supplementary Tables 10 and 11). Fecal, dental and salivary samples 
from RA patients who showed improvement contained a greater number 
of virulence factors (according to the virulence factor database37)  
than did those from patients with no improvement, and the dental and 
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salivary control samples had more virulence factors than the RA patient 
samples (Supplementary Fig. 15 and Supplementary Tables 23–25).  
In summary, DMARD treatment partially modified the RA-associated 
microbiome, and the associated MLGs might facilitate the prediction 
and evaluation of treatment effects.

Most of the treated RA patients received methotrexate (MTX), gly-
cosides of the traditional Chinese medicinal component Tripterygium 
wilfordii (thunder god vine) (T2)38–40 or both (MTX + T2) for DMARD 
treatment (Supplementary Tables 1 and 22). MLGs enriched in RA 
gut such as H. filiformis and Bacteroides sp. were reduced to a greater 
extent after treatment with T2 than after treatment with MTX or  
MTX + T2 (Supplementary Fig. 13b). MLGs enriched in control den-
tal samples, including P. intermedia, were more abundant in patients 
treated with MTX + T2 than in those treated with T2 alone or MTX 
alone, whereas Veillonella sp. and RA-8489, enriched in RA saliva 
samples, were reduced to a greater extent in patients treated with T2 
or with MTX + T2 (Fig. 6f and Supplementary Fig. 13d). These data 
suggest that distinct DMARDs modulate the gut and oral microbiome 
differently, although differences among RA patients remain likely.

DISCUSSION
Our MGWAS identified compositional and functional alterations in 
RA-associated gut and oral microbiomes that were partly relieved by 
DMARD treatment. Gut and oral MLGs correlated with each other and 
with clinical indices such as CRP, anti-CCP and RF, and they permit-
ted preliminary classification of RA subjects. The dental and salivary  
microbiomes were altered, and these could be sampled easily at  
clinical visits or by the patients themselves. Our comprehensive survey 
of the gut and oral microbiomes in individuals with RA supports the 
notion that RA represents a state of chronic inflammation that might 
be provoked or aggravated by the overgrowth of pathogenic bacteria 
or a lack of immune-modulating commensal bacteria (Supplementary 
Note). These findings are a first step toward microbiome-based thera-
peutics and patient stratification in preclinical and clinical phases of 
RA. The identified markers need to be validated in larger and inde-
pendent cohorts. Experiments in animal models and detailed in vitro 
characterizations of the strains will be necessary to elucidate whether 
a few of the identified markers are ‘driver species’ for the disease, 
although non-causal associations could still serve as markers for diag-
nosis or patient stratification. With further investigation of the possible 
mechanisms (Supplementary Note), microbiome-assisted diagnosis, 
prognosis and treatment could hold great promise for effective long-
term management of autoimmune diseases such as RA, together with 
their accompanying dental and cardiovascular symptoms.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Metagenomic sequencing data for all samples  
have been deposited in the European Bioinformatic Institute (EBI) 
database under accession code PRJEB6997.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METhODS
Study cohort. RA was diagnosed at Peking Union Medical College Hospital 
on the basis of the 2010 American College of Rheumatology and EULAR clas-
sification criteria. All phenotypic information was collected upon a subject’s 
initial visit to the hospital according to standard procedures. Individuals with 
RA between 18 and 65 years old with a disease duration of at least 6 weeks, at 
least one swollen joint and at least three tender joints were enlisted. Individuals 
were excluded if they had a history of chronic serious infection, any current 
infection or any type of cancer. Pregnant or lactating women were excluded. 
All individuals were informed of the risk of infertility associated with the 
treatment, and individuals with a desire to have children were excluded. Even 
though some of the individuals had experienced symptoms of RA for years, 
they were all DMARD naive because they had not been diagnosed with RA 
at local hospitals before visiting Peking Union Medical College Hospital, and 
they had taken only painkillers to relieve their symptoms.

The healthy control group had to meet the following inclusion criteria:  
18–65 years of age, with normal values on recent screens for liver and kidney 
function, routine blood tests, erythrocyte sedimentation rate, fasting blood 
glucose, blood lipids, and blood pressure. Subjects were excluded if they had a 
history of chronic serious infection, any current infection, any type of cancer or 
autoimmune disease. Pregnant or lactating women were excluded. Subjects who 
had received antibiotic treatment within 1 month before participating in this 
study were also excluded. Informed consent was obtained from all subjects.

No formal power analysis was done for sample-size calculation. The  
sample size was no smaller than those used in previous MGWAS studies  
on other diseases20,41.

The treatment was performed with MTX-based DMARDs as part of a single-
blind randomized trial40. 97% of the patients received MTX alone (7.5 mg weekly 
(QW) initially, increased to 15 mg (maximum of 0.3 mg/kg) QW from week 4 on;  
supplemented with 10 mg QW folate), T2 alone (20 mg TID), or MTX + T2 (same 
doses as when administered individually) (Supplementary Table 1). Other drugs 
used on the remaining patients included leflunomide, prednisolone, hydroxychlo-
roquine and etanercept, which were not compared because of the small sample 
size (Supplementary Table 1). Reduction in DAS28-ESR after treatment was clas-
sified as good, moderate or no improvement according to the EULAR response 
criteria. As patients from all over China came to visit Peking Union Medical 
College Hospital, samples were not available from all patients after treatment.

The study was approved by the institutional review boards at Peking Union 
Medical College Hospital and BGI-Shenzhen.

Sample collection. Fecal samples were collected at Peking Union Medical 
College Hospital, transported frozen, and extracted at BGI-Shenzhen as  
previously described20. Dental plaques were scraped from dental surfaces using 
ophthalmology forceps until a 3-µl volume was obtained. Each dental sample 
was transferred into 200 µl of 1× lysis buffer containing 10 mM Tris, 1 mM 
EDTA, 0.5% Tween 20 and 200 µg/ml proteinase K (Fermentas) and incubated 
for 2 h at 55 °C. Lysis was terminated by incubation at 95 °C for 10 min, and 
the samples were then frozen at −80 °C until transport. DNA extraction was 
done according to the protocol for fecal samples. For saliva, 100 µl of saliva was 
added to 100 µl of 2× lysis buffer. The posterior pharynx wall was swabbed, 
and the swab was added to the tube containing saliva and buffer. The samples 
were then lysed and extracted in the same manner as the dental samples. All 
available samples were analyzed (Supplementary Tables 1 and 2). Fecal samples 
were missing or unusable for some subjects because of patient constipation or 
inappropriate sample preservation, and some of the oral samples could not be 
used because of a low concentration of microbial DNA.

Metagenomic sequencing and assembly. Paired-end metagenomic sequencing 
was done on the Illumina platform (insert size, 350 bp; read length, 100 bp), and 
the sequencing reads were quality controlled and de novo assembled into contigs 
with SOAPdenovo v2.04 (ref. 42) as described previously20. The average rates 
of host contamination were 0.37% for fecal samples, 5.55% for dental samples 
and 40.85% for saliva samples.

Gene catalog construction. Gene prediction from the assembled contigs was 
done with GeneMark v2.7d. Redundant genes were removed using BLAT43, 

with a cutoff of 90% overlap and 95% identity (no gaps allowed), resulting in a 
non-redundant gene catalog of 3,800,011 genes for 212 fecal samples (including 
21 of the DMARD-treated samples) and a catalog of 3,234,997 genes for the 203 
treatment-naive oral samples (Supplementary Tables 1 and 2). The gene catalog 
for fecal samples was further integrated into an existing gut microbial reference 
catalog of 4.3 million genes using BLAT (95% identity, 90% overlap)20, resulting 
in a final catalog of 5.9 million genes (from 481 samples). We determined relative 
abundances of the genes by aligning high-quality sequencing reads to the gut or 
oral reference gene catalog using the same procedure as in ref. 20.

Taxonomic annotation and abundance calculation. Taxonomic assignment of 
the predicted genes was done according to the Integrated Microbial Genomes 
(IMG, v400) database using an in-house pipeline detailed previously20, with 70% 
overlap and 65% identity for assignment to phylum, 85% identity to genus, and 
95% identity to species. The relative abundance of a taxon was calculated from 
the relative abundance of its genes.

a-Diversity and gene count. α-Diversity (within-sample diversity) was  
calculated on the basis of the gene profile of each sample according to the 
Shannon index, as described previously20. The total gene count in each fecal 
sample was surveyed as in ref. 44. Genes with at least one mapped read were 
considered present.

PERMANOVA of the influence of clinical and lifestyle factors. Permutational 
multivariate analysis of variance (PERMANOVA)45 was performed on the  
gene-abundance profiles of the samples to assess the effect of each of  
the factors listed41. We used Bray-Curtis distance and 9,999 permutations  
in R (3.10, vegan package46).

Metagenome-wide association study (MGWAS). For case-control comparison 
of the fecal microbiome, we removed genes detected in less than 10% of the 
samples, leading to a set of 2,007,643 genes. 117,219 genes showed differences 
in relative abundance between controls and RA subjects (Wilcoxon rank-sum 
test, FDR < 0.3). These marker genes were then clustered into MLGs according 
to their abundance variation across all samples20. For the construction of dental 
MLGs, 371,990 marker genes (Wilcoxon rank-sum test, FDR < 0.1) were selected 
from 1,900,774 genes (present in at least 10% of the samples). For salivary MLGs, 
we selected 258,055 marker genes (Wilcoxon rank-sum test, FDR < 0.1) from 
2,030,636 genes (present in at least 10% of the samples).

Taxonomic assignment and abundance profiling of the MLGs were done 
according to the taxonomy and the relative abundance of the constituent genes, 
as previously described20. Briefly, assignment to a species required that more 
than 90% of the genes in an MLG align with the species’ genome with more 
than 95% identity and 70% overlap between the subject sequence and the query 
sequence. For an MLG to be assigned to a genus, more than 80% of its genes had 
to align with a genome with 85% identity in both DNA and protein sequences. 
Average identity with the genome(s) calculated from all genes was shown for 
reference only.

MLGs were further clustered according to Spearman’s correlation between 
their abundances in all samples regardless of case-control status, and the  
co-occurrence network was visualized with Cytoscape 3.0.2. Correlation 
of MLGs from different body sites was analyzed in the same manner for the  
69 subjects (36 controls and 33 treatment-naive RA subjects) who had provided 
a full set of fecal, dental and salivary samples.

Canonical correspondence analysis (CCA). CCA was performed on the MLG 
abundance profiles of control and RA samples to assess the effect of each of the 
factors listed41. The plot was generated by R (3.0.1, vegan package46).

Association between MLGs and clinical indices. Spearman’s correlation was 
assessed between the relative abundance of each MLG and continuous variables 
measured clinically, as previously described41,47.

MLG-based classifier. Tenfold cross-validation was performed on a random 
forest model (R 3.0.1, randomForest4.6-10 package) using the MLG abundance 
profiles of the control and RA samples. The cross-validational error curves  

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



nature medicinedoi:10.1038/nm.3914

(average of ten test sets each) from five trials of tenfold cross-validation were 
averaged, and the minimum error in the averaged curve plus the s.d. at that point 
were used as the cutoff. All sets (≤50) of MLG markers with an error less than the 
cutoff were listed, and the set with the fewest MLGs was chosen as the optimal 
set. The model was further applied to the related case-control pairs and samples 
from DMARD-treated subjects. Regression for the clinical indices and predic-
tion of improvement after DMARD therapy were done in the same manner.

KEGG analysis. Putative amino acid sequences were translated from the gene 
catalogs and aligned against the proteins or domains in the KEGG databases 
(release 59.0, with animal and plant genes removed) using BLASTP (v2.2.24, 
default parameter, except −e1e − 5a6 − b50 − FFm8). Each protein was assigned 
to a KEGG orthology group on the basis of the highest scoring annotated hit(s) 
containing at least one high-scoring segment pair scoring over 60 bits. KEGG 
orthology groups present in fewer than six fecal, dental or salivary samples 
were removed.

Identification of microbial proteins that possibly mimic human proteins. 
Sequences for human proteins mentioned in ref. 34 were downloaded from 
the NCBI protein database (HLA-DRB1*0401, HLA-B27 and collagen XI), and 
exact matches in five or six amino acid mimicry motifs were identified in the gut 
microbial reference gene catalog. Taxonomic and functional annotations of the 
genes were retrieved from our gut microbial reference gene catalog.

Statistical analyses of differentially enriched markers. Significant differences 
in the relative abundance of an MLG between individuals with RA and healthy 

controls were identified by two-tailed Wilcoxon rank-sum test with P < 0.05. 
Enrichment in RA subjects or controls was then determined according to the 
higher rank-sum.

Differentially enriched KEGG modules were identified according to  
their reporter score24,41,48, from the Z-scores of individual KEGG orthology 
groups. A reporter score of Z = 1.6 or higher (90% confidence according to  
a normal distribution) was used as a detection threshold for significantly  
differentiating modules.

41. Feng, Q. et al. Gut microbiome development along the colorectal adenoma–
carcinoma sequence. Nat. Commun. 6, 6528 (2015).

42. Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read 
de novo assembler. Gigascience 1, 18 (2012).

43. Kent, W.J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 
(2002).

44. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic 
markers. Nature 500, 541–546 (2013).

45. McArdle, B.H. & Anderson, M.J. Fitting multivariate models to community data:  
a comment on distance-based redundancy analysis. Ecology 82, 290–297 
(2001).

46. Zapala, M.A. & Schork, N.J. Multivariate regression analysis of distance matrices 
for testing associations between gene expression patterns and related variables. 
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