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Learning ordinal data
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Classification is an important topic in statistical learning. The goal of classification
is to build a predictive model from the training dataset for the class label of an
observation. It is commonly assumed that the class labels are unordered. However,
in many real applications, there exists an intrinsic ordinal relation between the class
labels. Examples of these include cancer patients grouped in early, mediocre, and
terminal stages, customers grouped into low, middle, and high credit levels, and
experimental subjects enriched with different amounts of bacterial. In this article,
we focus on the classification problem for ordinal data and introduce the theoretical
setup of the problem. We review both traditional and modern methods in learning
ordinal data. In particular, we emphasize the trade-off between model flexibility
and interpretability. Lastly, we discuss some issues regarding ordinal data learning,
including an appropriate loss function for this problem. © 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Aclassification problem is often started with
a training dataset {(xi, yi), i= 1, … , n} where

(xi, yi) s are independent and identically distributed
observations from an unknown distribution ℙ of
(X, Y), xi ∈ℝp is a p-dimensional covariate vec-
tor and yi ∈ C is the class label, with C the set of
all possible labels. The goal of any classification
method is to build a classification rule (classifier)
𝜙 that maps a future observation x (whose class
label is unknown) to 𝜙 (x) ∈ C so that one may use
𝜙(x) to predict the class label of x. In the regular
classification setting, C includes a set of unordered
class labels, such as A, B, C, or Asia, Europe and
America. There is a very large literature on classifi-
cation. See Refs 1 and 2 for an overall introduction.
Regular classification is an important problem of
its own and there are many different treatments
for different settings, ranging from the more tradi-
tional k -nearest neighbor classifier3,4, Fisher’s linear
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discriminant analysis5 and logistic regression, to the
more machine learning-based support vector machine
(SVM),6 neural networks, and classification trees. In
particular, margin-based methods, including SVM, are
very popular and many articles have studied various
related issues, such as Fisher consistency,7,8 multicat-
egory margin-based methods,9–12 angle margin-based
methods,13,14 the surrogate loss,15 the use of mar-
gin based methods in probability estimation,16

classification with a reject option,17,18 the excess
risk,19,20 variable selection through sparsity,21 and
the high-dimensional, low-sample size asymptotics
of margin-based methods.22,23 These margin-based
methods have heavily influenced the development of
new approaches in statistical learning.

In this article, we focus on a more specialized
case in classification where the class labels are ordered,
that is, the ordinal data. Examples of ordinal data
are ubiquitous. For instance, cancer patients can be
categorized to Stage I (early stage), II, III, and IV (the
terminal stage), and a predictive model (a classifier)
may be needed to make cancer prognosis. A simple
approach to ordinal data is to convert ordered labels
to numerical values, such as to convert {I, II, III, IV}
to {1, 2, 3, 4}, so that a regression method can be
applied to the converted dataset. In most situations,
however, the scale of the difference between classes
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may not be identical, unlike the equally spaced inte-
gers {1, 2, 3, 4}. An alternative is to use a predefined
function h ∶ C → ℝ to convert the class labels to more
general numerical values than positive integers. How-
ever, how to define this coding function is unclear.
This article hence focuses on more sophisticated
approaches to the ordinal data classification problem.
In the sequel, we first formally define the problem and
introduce some theoretical considerations, followed
by an introduction to some traditional methods. Next,
we introduce several machine learning methods in the
literature. Some methods have motivated an appropri-
ate loss function for this problem. Lastly, we conclude
the article by stressing the issues of flexibility and
interpretability.

SETTING AND CLASSIC METHODS

Similar to regular (multiclass) classification prob-
lems, an ordinal classification problem may have
the goal of minimizing the misclassification error
for a future (random) observation (X, Y), also
known as the generalization error, defined as
pr(𝜙(X)≠Y). Pc(x) := pr(Y = c|X= x) is denoted
as the conditional probability for class c. The
Bayes optimal classifier is the one with the small-
est conditional prediction error given any X=x,
that is 𝜙Bayes (x) = argminc∈Cpr (Y ≠ c|X = x) =
argmaxc∈Cpr (Y = c|X = x) = argmaxc∈CPc (x).

Hence if one knew the true underlying distribu-
tion ℙ, they can calculate the class conditional proba-
bility Pc(x) (regardless of the order information) for
each class c and make the optimal decision. How-
ever, as the distribution is unknown, one may seek to
estimate the class conditional probabilities. There is a
large literature on this topic (see, for example, Refs 16,
24–27) but we will omit it here and instead focus on
approaches that do not rely on probability estima-
tion. We stress, however, that the k -nearest neighbor
method could be viewed as a means to estimate the
class conditional probability, and hence falls into this
category.

Remark
The generalization error is associated with the 0−1
loss which counts loss 1 if there is a misclassi-
fied observation. Note that no ordinal information
is incorporated into the 0− 1 loss. Hence one may
want to consider more specific loss functions that
incorporate the ordinal information. We will dis-
cuss two such examples in the next section. In the
literature, Huhn and Hullermeier28 have conducted
an investigation to show that incorporating ordinal

information often helps boosting the classification
performance.

In addition to methods that rely on probability
estimation, ordered logistic regression is another
traditional method for ordinal data.29 Different from
multinomial logistic regression (which is a generaliza-
tion of logistic regression from binary classification
to the multicategory case), ordered logistic regression
fully incorporates the order information. For an illus-
tration, suppose that there are four ordered classes,
1, … , 4. The log-odd (or logit) of probability p of an
event is defined as logit(p)= log[p/(1− p)]. Consider
the event that an observation belongs to the meta-class
{1, … , j}, that is {Y ∈ {1, … , j}}, whose probability

is
j∑

k=1

Pk (x). The ordered logistic regression model

assumes that the log-odds are

logit
(
P1 (x)

)
= log

(
P1 (x)

P2 (x) + P3 (x) + P4 (x)

)

= xT 𝛽 + b1

logit
(
P1 (x) + P2 (x)

)
= log

(
P1 (x) + P2 (x)
P3 (x) + P4 (x)

)

= xT 𝛽 + b2

logit
(
P1 (x) + P2 (x) + P3 (x)

)
= log

(
P1(x)+P2(x)+P3(x)

P4(x)

)
= xT 𝛽 + b3

That is, it models the logit of the sum of class
condition probabilities using linear functions of the
covariates x. However, note that the coefficient vectors
𝛽 in all three equations above are the same; only their
intercept terms are different. As a consequence, the
boundaries that divide classes 1 and 2, 2 and 3, and 3
and 4 are hyperplanes parallel to each other. This lack
of flexibility may be undesirable in some applications.
Moreover, it is unclear whether the linear function is
the right way to model the logits.

SOME MACHINE LEARNING
METHODS

In this section, we introduce several machine
learning-oriented methods for learning ordinal data.
This review is not exclusive and omission of any
reference does not reflect the lack of importance of
the work.

Herbrich et al.30 used the principle of struc-
tural risk minimization to formulate an ordinal learn-
ing problem based on a novel loss function. This
loss function is defined based on pairs of inter-class
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observations. In particular, a loss is generated if
the learning algorithm mistakenly assigns the wrong
ranks between the two observations from two differ-
ent classes. However, a drawback of this approach,
despite its novelty, is that for relatively large sam-
ple with n observations, the computational burden
can be very heavy. For example, suppose there are
k classes with n0 observations in each class (hence
a total of n=kn0 observations), the empirical loss
entails k

(
k − 1

)
∕2 × n2

0 pairs, that is, the actual num-
ber of terms involved in the optimization problem is
in the order of O(n2).

Frank and Hall31 converted an ordinal classifi-
cation problem to several nested binary classification
problems. For each j∈ {1, … , k− 1}, each observa-
tion is classified between the meta-class that includes
classes 1 to j and the meta-class that includes classes
j+ 1 to k. The final classification result can be inferred
from the k− 1 binary predictions. For example, sup-
pose k=4, then three binary classification problems
with 1 versus {2, 3, 4}, {1, 2} versus {3, 4} and {1, 2, 3}
versus 4 are considered. An observation which is
classified to all three meta-classes that contain class
3 would be unarguably classified to class 3. In con-
trast to the work of Herbrich et al.30, this method is
very straightforward, and requires no modification
to existing binary classification methods. However,
because the three classification boundaries are trained
separately, sometimes the boundaries may cross with
each other. In particular, it is possible that an obser-
vation is classified to class 1 when comparing with
meta-class {2, 3, 4}, and is classified to meta-class
{3, 4} when comparing with meta-class {1, 2}. In this
case, no sensible classification result can be obtained
for this observation.

There is another group of methods which enjoys
great computational convenience. These methods
typically consider mapping observations to the real
line using a function g(x) trained from the data.
Ordinal classification is then conducted by thresh-
olding the mapped observations g(xi) using a series
of (k− 1) cut-off numbers, b1 ≤ b2 ≤ … ≤ bk− 1. For
example, Shashua and Levin32 generalized the SVM
formulation for ordinal regression. In particular, a
common classification direction vector 𝛽 is found
which maps observation x to xT 𝛽. With the thresh-
olds b1 ≤ b2 ≤ … ≤bk− 1, this method has induced
k− 1 parallel separating hyperplanes defined by
{x : xT 𝛽 = bj} for j= 1, … , k− 1, which divide the
sample space into k parts, one for each class. An
optimization problem is solved to encourage large
margins from observations to these hyperplanes.
For example, for the jth hyperplane, observations
in classes j and j+1 are treated as if they are in a

new binary SVM problem, with class j the new neg-
ative class and class j+1 the new positive class. The
Hinge loss is evaluated for each subproblem using
the slack variable technique as in the regular binary
SVM method. The k− 1 binary SVM subproblems
are jointly trained with the constraint that they have
the same coefficient vectors 𝛽. A kernel version is also
possible for more flexibility.

However, Chu and Keerthi33 pointed out that
the thresholds obtained in Shashua and Levin32

may not satisfy the natural ordering constraint
b1 ≤ b2 ≤ … ≤ bk− 1. This may be because of the fact
that class j′ (j′ ≤ j− 1 or j′ ≥ j+2) does not directly
contribute to the fitting of the jth hyperplane. In
this case, similar to the crossing-boundary issue in
Frank and Hall31, the classification result may be
difficult to infer. Hence, Chu and Keerthi33 pro-
posed an improvement which can implicitly enforce
ordered thresholds, and hence provide more sensible
separating hyperplanes.

Chu and Ghahramani34 introduced a Bayesian
approach where the latent score g(xi) for the ith
observation is modeled from a Gaussian process while
the covariance between the scores is defined by Mercer
kernel functions. Given the score, the probability that
an observation belongs to a class is modeled by the
difference of two Gaussian cumulative distribution
functions, which generalize the probit function in the
binary case to the multiclass setting.

Lastly, Cardoso and da Costa35 introduced
another simple adaption of existing methods in order
to handle ordinal data. In particular, for each training
data observation (yi, xi), they propose the replicated
and augmented data

{(
ỹj

i, x̃
j
i

)
, j = 1, … ,k − 1

}
,

where ỹj
i = sign

(
yi − j − 1∕2

)
∈ {−1,+1} and

x̃j
i =

(
xi; ej−1

)
is the augmented vector with e𝓁 ∈ℝk−2

a (k− 2)-dimensional vector with h> 0 on the 𝓁th
element and 0 elsewhere. Hence the dataset has been
replicated for k−1 times and the x vector has been
augmented by k− 2 additional covariates. Here ỹj

is the binary class label (−1 or + 1) for a binary
subproblem involving meta-classes {1, … , j} and
{j+ 1, … , k}. To solve all these binary subproblems
together, an existing binary classification method can
be applied to the replicated and augmented dataset,
which now includes (k− 1)n data points with p+k−2
dimensions. A final decision for classification is made
from pooling decisions from the binary classification
for the replicated and augmented data.

The method of Cardoso and da Costa35 shares
the similar idea to that of Frank and Hall.31 In par-
ticular, Cardoso and da Costa35 tried to solve (k− 1)
binary classification problems, like Frank and Hall,31
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except that it was done by a single classifier. Each
of the additional covariates counts for a threshold. A
major difference is that the method of Cardoso and
da Costa35 calls for a common direction among all
the boundaries while the boundaries in Frank and
Hall31 are trained independently and hence are more
flexible.

It is interesting to note that the method of Car-
doso and da Costa35 is also similar to ordered logis-
tic regression. In particular, both methods implicitly
assume that the boundaries are parallel in the fea-
ture space. In parameter estimation, the ordered logis-
tic regression is model-based, while Cardoso and da
Costa35 can be more flexible.

The idea of both Frank and Hall and Cardoso
and da Costa31,35 is to solve the ordinal classifica-
tion problem via several binary classification problems
(whether separately or jointly). We provide a theo-
retical insight to this framework. As was discussed
earlier, the generalization error is associated with the
0− 1 loss which does not consider the ordinal infor-
mation. Let us consider an improved loss function
that does. For each class label y, ỹj = sign(y− j− 1/2) is
denoted as the converted class code which is the binary
class label (−1 or + 1) for the jth binary subproblem
involving meta-classes {1, … , j} and {j+ 1, … , k}. If
we aggregate the 0− 1 losses for these k−1 binary
problems together, then one can show that the sum
of these 0−1 losses is the same as the distance loss,
that is,

L (x, y, 𝜙) = |y − 𝜙 (x) | = k−1∑
j=1

1{ỹj≠sign [𝜙 (x)−j−1∕2]}

=
k−1∑
j=1

L0−1

(
x, ỹj, 𝜙j

)
,

where 𝜙j is defined as sign(𝜙 – j – 1/2). Note that
𝜙j can be viewed as the induced decision of 𝜙 for
the jth binary sub-problem involving meta-classes
{1,… ,j} and {j+1, … , k}. Hence an ordinal clas-
sification method which considers the k−1 binary
problems altogether may be viewed as an attempt
to minimize the distance loss defined as |y−𝜙(x)|.
Compared to the 0− 1 loss, the distance loss has
incorporated the ordinal information. In particular,

misclassifying a class 1 observation to class 10 would
cost much more than misclassifying it to class 2, where
the latter case seems to be a less severe misclassification
to make. In contrast, a simple 0− 1 loss treats these
two types of misclassification equally. This could be
problematic in multicategory classification especially
if the classes are imbalanced in the sample size.36

The distance loss can be easily generalized to
a weighted version, counting for different levels of
cost for misclassifying an observation from meta-class
{1, … , j} to {j+1, … , k}.

CONCLUSION

When modeling ordinal data, especially
high-dimensional ones, there seem to be two con-
cerns that compete with each other. On one end, the
model is supposed to be simple and easy to interpret.
The classic ordered logistic regression would be a
good example of this kind. However, the simple linear
model may not reflect the true relation between the
covariate and the class conditional probability, and
the assumption that the coefficients are identical
among different classes may not be ideal in some
cases. Hence, on the other end, for improved classifi-
cation performance, some flexibility is desired. Many
of the machine learning approaches mentioned above
allow for flexible boundaries that are beyond the
linear model. However, if the model gets too flexible,
such as in Frank and Hall31 and Shashua and Levin32,
the classification boundaries for two adjacent binary
classification problems may cross with each other,
leading to ill-classification results that are difficult
to handle. This in turn leads to a difficulty in inter-
pretation. Several aforementioned works have been
dedicated to strategies that can help avoid crossings of
the classification boundaries (or unnatural ordering
of the thresholds). In the ideal world, one would
wish to amplify the flexibility to the greatest extend
while keeping the boundaries noncrossing to maintain
certain straightforwardness and interpretability [see
a related work in Qiao37]. We see that the general
framework to consider (k− 1) binary subproblems
can be viewed as to minimize the expected distance
loss, which is specific and desirable for the ordinal
classification problem.
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