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Abstract

The goal of confidence-set learning in the binary classification setting (Lei, 2014)
is to construct two sets, each with a specific probability guarantee to cover a class.
An observation outside the overlap of the two sets is deemed to be from one of the
two classes, while the overlap is an ambiguity region which could belong to either
class. Instead of plug-in approaches, we propose a support vector classifier to construct
confidence sets in a flexible manner. Theoretically, we show that the proposed learner
can control the non-coverage rates and minimize the ambiguity with high probability.
Efficient algorithms are developed and numerical studies illustrate the effectiveness of
the proposed method.
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1 Introduction

In binary classification problems, the training data consist of independent and identically

distributed pairs (Xi, Yi), i = 1, 2, ..., n drawn from an unknown joint distribution P , with

Xi ∈ X ⊂ Rp, and Yi ∈ {−1, 1}. While the misclassification rate is a good assessment of the

overall classification performance, it does not directly provide confidence for the classification

decision. Lei (2014) proposed a new framework for classifiers, named classification with

confidence, using notions of confidence and efficiency. In particular, a classifier φ(x) therein

is set-valued, i.e., the decision may be {−1}, {1}, or {−1, 1}. Such a classifier corresponds to

two overlapped regions in the sample space X , C−1 and C1, and they satisfy that C−1∪C1 =

X . With these regions, we have the set-valued classifier

φ(x) =





{−1},when x ∈ C−1\C1

{1},when x ∈ C1\C−1

{−1, 1},when x ∈ C−1 ∩ C1

Those points in the first two sets are classified to a single class as by traditional classifiers.

However, those in the overlap receive a decision of {−1, 1}, hence may belong to either class.

When the option of {−1, 1} is forbidden, the set-valued classifier degenerates to a traditional

classifier.

Lei (2014) defined the notion of confidence as the probability 100(1 − αj)% that set Cj

covers population class j for j = ±1 (recalling the confidence interval in statistics). The

notion of efficiency is opposite to ambiguity, which refers to the size (or probability measure)

of the overlapped region named the ambiguity region. In this framework, one would like to

encourage classifiers to minimize the ambiguity when controlling the non-coverage rates.

Lei (2014) showed that the best such classifier, the Bayes optimal rule, depends on the

conditional class probability function η(x) = P (Y = 1|X = x). Lei (2014) then proposed to

use the plug-in method, namely to first estimate η(x) using, for instance, logistic regression,

then plug the estimation into the Bayes solution. Needless to say, its empirical performance

highly depends on the estimation accuracy of η(x). However, it is well known that the latter

can be more difficult than mere classification (Wang et al., 2007; Fürnkranz and Hüllermeier,
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2010; Wu et al., 2010), especially when the dimension p is large (Zhang and Liu, 2013).

Support vector machine (SVM; Cortes and Vapnik, 1995) is a popular classification

method with excellent performance for many real applications. Fernández-Delgado et al.

(2014) compared 179 classifiers on 121 real data sets and concluded that SVM was among

the best and most powerful classifiers. To avoid estimating the conditional class probability

η(x), we propose a support vector classifier to construct confidence sets by empirical risk

minimization. Our method is more flexible as it takes advantage of the powerful prediction

power of support vector machine.

We show in theory that the population minimizer of our optimization is to some extent

equivalent to the Bayes optimal rule in Lei (2014). Moreover, in the finite-sample case, our

classifier can control both non-coverage rates while minimizing the ambiguity.

A closely related problem is the Neyman-Pearson (NP) classification (Cannon et al., 2002;

Rigollet and Tong, 2011) whose goal is to find a boundary for a specific null hypothesis class.

It aims to minimize the probability that an observation from the alternative class falls into

this region (the type II error) while controlling the type I error, i.e., the non-coverage rate

for the null class. See Tong et al. (2016) for a survey. Our problem can be understood as

a two-sided NP classification problem. Other related areas of work are conformal learning,

set-valued classification, or classification with reject and refine options. See (Shafer and

Vovk, 2008), Denis and Hebiri (2016), Tong et al. (2016), Vovk et al. (2017), Herbei and

Wegkamp (2006), Bartlett and Wegkamp (2008) and Zhang et al. (2017).

The rest of the article is organized as follows. Some background information is provided in

Section 2. Our main method is introduced in Section 3. A comprehensive theoretical study is

conducted in Section 4, including the Fisher consistency and novel statistical learning theory.

In Section 5, we present efficient algorithms to implement our method. The usefulness of

our method is demonstrated using simulation and real data in Section 6. Detailed proofs are

in the Supplementary Material.

2 Background and notations

We first formally define the problem and give some useful notations.
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It is desirable to keep the ambiguity as small as possible. On the other hand, we would like

as many class j observations as possible to be covered by Cj. Consider predetermined non-

coverage rates α−1 and α1 for the two classes. Let P−1 and P1 be the probability measure of

X conditional on Y = −1 and +1. Conceptually, we formulate classification with confidence

as the optimization below.

min
C−1,C1

P (C−1 ∩ C1) subject to Pj(Cj) ≥ 1− αj, j = ±1, C−1 ∪ C1 = X . (1)

Here the constraint that Pj(Cj) ≥ 1− αj means that 100(1− αj)% of the observations from

class j should be covered by region Cj.
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Figure 1: The left panel shows the two definite regions and the ambiguity region in the case
of symmetric Gaussian distributions. The right penal illustrates the weight function (see
Section 3).

Under certain conditions, the Bayes solution of this problem is: C∗−1 = {x : η(x) ≤ t−1}
and C∗1 = {x : η(x) ≥ t1} with t−1 and t1 satisfying that P−1(η(X) ≤ t−1) = 1 − α−1 and

P1(η(X) ≥ t1) = 1− α1. A simple illustrative toy example with two Gaussian distributions

on R is shown in Figure 1. The two boundaries are shown as the vertical lines, which lead

to three decision regions, {−1}, {+1}, and {−1,+1}. The non-coverage rate α−1 for class

−1 is shown on the right tail of the red curve (similarly, α1 for class 1 on the left tail of

blue curve.) In reality, the underlying distribution will be more complicated than a simple

multivariate Gaussian distribution and the true boundary may be beyond linearity. In these

cases, flexible approaches such as SVM will work better.
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3 Learning confidence sets using SVM

To avoid estimating η, we propose to solve the empirical counterpart of (1) directly using

SVM. Here, we present two variants of our method. We start with an original version to

illustrate the basic idea. Then we introduce an improvement.

Unlike the regular SVM, the proposed classifier has two (not one) separating boundaries.

They are defined as {x : f(x) = −ε} and {x : f(x) = +ε} where f is the discriminant

function, and ε ≥ 0. The positive region C1 is {x : f(x) ≥ −ε} and the negative region C−1

is {x : f(x) ≤ ε}. Hence when −ε ≤ f(x) ≤ ε, observation x falls into the ambiguity region

{−1, 1}.
Define R(f, ε) = P (|Y f(X)| ≤ ε) the probability measure of the ambiguity. We may

rewrite problem (1) in terms of the function f and threshold ε,

min
ε∈R+,f

R(f, ε), subject to Pj(Y f(X) < −ε) ≤ αj, j = ±1. (2)

Replacing the probability measures above by the empirical measures, we can obtain,

min
ε∈R+,f

1

n

n∑

i=1

1{−ε ≤ f(xi) ≤ ε}, subject to
1

nj

∑

i:yi=j

1{yif(xi) ≤ −ε} ≤ αj, j = ±1.

It is easy to show that as long as the equalities in the constraints are achieved at the optimum,

we can obtain the same minimizer if the objective function is changed to 1
n

∑n
i=1 1{yif(xi)− ε ≤ 0}.

For efficient and realistic optimization, we replace the indicator function 1{u ≤ 0} in the

objective function and constraints by the Hinge loss function (1−u)+. The practice of using

a surrogate loss to bound the non-coverage rates has been widely used in the literature of

NP classification, see Rigollet and Tong (2011). To simplify the presentation, we denote

Ha(u) = (1 + a− u)+ as the a-Hinge Loss and it can be seen that Ha(x) coincides with the

original Hinge loss when a = 0. Our initial classifier can be represented by the following

optimization:

min
ε∈R+,f

1

n

n∑

i=1

Hε(yif(xi)) + λJ(f), subject to
1

nj

∑

i:yi=j

H−ε(yif(xi)) ≤ αj, j = ±1 (3)

Here J is a regularization term to control the complexity of the discriminant function f .
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When f takes the linear form of f(x) = xTβ + b, J(f) can be L2-norm ‖β‖2 or L1-norm

|β|.
In SVM, yf(x) is called the functional margin, which measures the signed distance from

x to the boundary {x : f(x) = 0}. Positive and large value of yf(x) means the observation

is correctly classified, and is far away from the boundary. In our situation, we compare

yf(x) with +ε and −ε respectively. If yf(x) < −ε, then x is not covered by Cy (hence

is misclassified, in the classification language). On the other hand, if yf(x) ≤ ε, then x

either satisfies that yf(x) < −ε as above, or falls into the ambiguity, which is why we try

to minimize the sum of Hε(yif(xi)).

By constraining
∑

yi=j
H−ε(yif(xi)) for both classes, we aim to control the non-coverage

rates. Since H−ε(u) ≥ 1{u < −ε} (the latter indicates the occurrence of non-coverage) for

negatively large u. It may be more conservative by using the Hinge loss than the indicator

function 1{yif(xi) < −ε} in the constraint to control the non-coverage rates. We alleviate

this problem by imposing a weight wi to each observation in the constraint. In particular,

this weight is chosen to be wi = max{1, H−ε(yf̂(x))}−1, where f̂ is a reasonable guess of the

final minimizer f . Our goal is to weight the Hinge loss in the constraint, wiH−ε(yif(xi)),

so that it approximates the indicator function 1{yif(xi) < −ε}. This may be illustrated by

Figure 1 in which the blue bold line is the result of multiplying the weight (red dashed) by

the Hinge loss (purple dotted), which is close to the indicator function (black dot-dashed).

Note that by weighting the Hinge loss, the impact of those observations with very negatively

large u = yf(x) value is reduced to 1. The adaptive weighted version of our method changes

constraint (3) to 1
nj

∑
i:yi=j

wiH−ε(yif(xi)) ≤ αj, j = ±1.

In practice, we adopt an iterative approach, and use the estimated f from the previous

iteration to calculate the weight for each observation at the current iteration. We start with

equal weights for each observation, solve the optimization problem with the weights obtained

in the last iteration, and then calculate the new weights for the next iteration. Wu and Liu

(2013) first used this idea in their work of adaptively weighted large margin classifiers for

the purpose of robust classification.
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4 Theoretical Properties

In this section we study the theoretical properties of the proposed method. We start with

population level properties in Section 4.1. In Section 4.2, we discuss the finite-sample prop-

erties using novel statistical learning theory.

4.1 Fisher consistency and excess risk

Assume that P−1 and P1 are continuous with density function p−1 and p1, and πj = P (Y = j)

is positive for j = ±1. Moreover, η(X) is continuous, and t−1 and t1 are quantiles of η(X).

They satisfies P−1(η(X) ≤ t−1) = 1 − α−1 and P1(η(X) ≥ t1) = 1 − α1. We need to make

assumptions on the difficulty level of the classification task. In particular, the classification

should be difficult enough so that overlapping regions is meaningful (otherwise, there will be

almost no ambiguity even at small non-coverage rates.)

Assumption 1. t−1 ≥ 1
2
≥ t1.

Assumption 2. ∃c > 0, t−1 − c ≥ 1
2
≥ t1 + c.

Each assumption implies that the union of C∗−1 = {x : η(x) ≤ t−1} and C∗1 = {x : η(x) ≥
t1} is X . Otherwise, there will be a gap around the boundary {x : η(x) = 1/2}. It is easy

to see that Assumption 2 is stronger than Assumption 1.

Fisher consistency concerns the Bayes optimal rule, which is the minimizer of problem

(2). In (4) below, we replace the loss function in the objective function of (2) with risk under

the Hinge loss.

min RH(f, ε), subject to Pj(Y f(X) < −ε) ≤ αj, j = ±1, (4)

where RH(f, ε) = E[Hε(Y f(X))].

Theorem 1 shows that for any fixed ε, the minimizer of (4) is the same as the Bayes rule

Lei (2014).
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Theorem 1. Under Assumption 1, for any fixed ε ≥ 0, function

f ∗(x) =





1 + ε, η(x) > t−

ε · sign(η(x)− 1
2
), t+ ≤ η(x) ≤ t−

−(1 + ε), f(x) < t+

is the minimizer to both (2) and (4).

A key result in Bartlett et al. (2006) was that the excess risk of 0-1 classification loss is

bounded by the excess risk of surrogate loss. Here we show a similar result for the confidence

set problem. That is, the excess ambiguity R(f, ε)−R(f ∗, ε) vanishes as RH(f, ε)−RH(f ∗, ε)

goes to 0.

Theorem 2. Under Assumption (2), for any ε ≥ 0, and ∀f satisfying the constraints in

(2), there exists C
′
= 1

4c2
+ 1

2c
> 0 such that the following inequality holds,

C
′
(RH(f, ε)−RH(f ∗, ε)) ≥ R(f)−R(f ∗).

Note that C
′

does not depend on ε.

4.2 Finite-sample properties

Denote the Reproducing Kernel Hilbert Space (RKHS) with bounded norm as HK(s) =

{f : X → R|f(x) = h(x) + b, h ∈ HK , ||h||HK
≤ s, b ∈ R} and r = supx∈X K(x, x). For a

fixed ε, define the space of constrained discriminant functions as Fε((α−1, α1)) = {f : X →
R|E(H−ε(Y f(X))|Y = j) ≤ αj, j = ±1}, and its empirical counterpart as F̂ε((α−, α+)) =

{f : X → R|n−1
j

∑
i:yi=j

H−ε(yif(xi)) ≤ αj, j = ±1}. Moreover, we define the feasible

function space Fε(κ, s) = HK(s)∩Fε((α−1− κ√
n−1

, α1− κ√
n1

)) and its empirical counterpart

F̂ε(κ, s) = HK(s) ∩ F̂ε((α−1 − κ√
n−1

, α1 − κ√
n1

)). Lastly, consider a subset of the Cartesian

product of the above feasible function space and the space for ε, F(κ, s) = {(f, ε), f ∈
Fε(κ, s), ε ≥ 0} and its empirical counterpart F̂(κ, s) = {(f, ε), f ∈ F̂ε(κ, s), ε ≥ 0}. Then

optimization problem (3) of our proposed method can be written as

min
(f,ε)∈F̂(0,s)

n∑

i=1

Hε(yif(xi)) (5)
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In Theorem 3, we give the finite-sample upper bound for the non-coverage rate.

Theorem 3. Let (f, ε) be a solution to optimization problem (5), then with probability at

least 1− 2ζ, Z =
√
sr/
√
n, Tn(ζ) = {2srlog(1/ζ)/n}1/2 and r = supX K(x, x)

Pj(Y f(X) < −ε) ≤ 1

nj
E[H−ε(Y f(X))|Y = j] ≤

∑

yi=j

H−ε(yif(xi)) + 3Tnj
(ζ) + Z(nj)

Theorem 3 suggests that if we want to control the non-coverage rate on average at the

nominal α−1 or α1 rates with high probability, we should choose the α−1 or α1 values to

be slightly smaller than the desired ones in optimization (3) in practice. In particular, we

need to make
∑

yi=j
H−ε(yif(xi)) + 3Tnj

(ζ) + Z(nj) ≤ αj. Note that the remainder terms

3Tnj
(ζ) + Z(nj) will vanish as n−1, n1 →∞.

The next theorem ensures that the empirical ambiguity probability from solving (5) based

on a finite sample will converge to the ambiguity given by the solution on an infinite sample

(under the constraints E(H−ε(Y f(X))|Y = j) ≤ αj, j = ±1).

Theorem 4. Let (f̂ , ε̂) be the solution of the optimization problem (6)

min
(f,ε)∈F̂(κ,s)

n∑

i=1

Hε(yif(xi)) (6)

with κ = (6log(1
ζ
) + 1)

√
sr. Then with probability 1 − 6ζ, and large enough n−1 and n1 we

have

(i). f̂ ∈ Fε̂(0, s), and

(ii). RH(f̂ , ε̂)− min
(f,ε)∈F(0,s)

RH(f, ε̂) ≤ κ(2n−1/2 + 4 min {ν−1, ν1}−1 min {√n−1,
√
n1}−1).

5 Algorithms

In this section, we give details of the algorithm. Similar to the SVM implementation, we

propose to solve the dual problem. We start with the linear SVM with L2 norm for illustrative

purposes. After introducing two sets of slack variables, ηi = (1 − ε − yi(x
T
i β + b))+ and
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ξi = (1 + ε− yi(xTi β + b))+, we can show that (3) is equivalent to (7),

min
Θ

1

2
||β||22 + λ′

n∑

i

ξi (7)

subject to yi(x
T
i β + b) ≥ 1 + ε− ξi, yi(x

T
i β + b) ≥ 1− ε− ηi for all i = 1, 2, ..., n,

ξi ≥ 0,
∑

yi=−1

wiηi ≤ n−1α−1, ηi ≥ 0,
∑

yi=1

wiηi ≤ n1α1, ε ≥ 0.

Here Θ is the collection of all variables of interest, namely Θ = {ε,β, b, {ξi}ni=1, {ηi}ni=1}. We

can then solve it via the quadratic programming below,

min
Θ′

1

2

n∑

i=1

n∑

j=1

(ζi + τi)(ζj + τj)yiyjx
′
ixj −

n∑

i=1

ζi −
n∑

i=1

τi + n−1α−1θ−1 + n1α1θ1 (8)

subject to 0 ≤ ζi ≤ λ′, 0 ≤ τi ≤ θyiwi,

n∑

i=1

ζiyi +
n∑

i=1

τiyi = 0,
n∑

i=1

ζi −
n∑

i=1

τi ≥ 0.

Here Θ′ = {{ζi}ni=1, {τi}ni=1, θ−1, θ1} consists of all the variables in the dual problem. The

above optimization may be solved by any efficient quadratic programming routine. After

solving the dual problem, we can find β by β =
∑n

i ζiyixi +
∑n

i τiyixi. Then we can plug

β into the primal problem and find b and ε by linear programming.

For nonlinear f , we can adopt the widely used ‘kernel trick’. Assume f belongs to

a Reproducing Kernel Hilbert Space (RKHS) with a positive definite kernel K, f(x) =
∑n

i=1 ciK(xi,x) + b. In this case the dual problem is the same as above except that x′ixj is

replaced by K(xi,xj). After the solution has been found, we then have ci = ζi+τi. Common

choices for the kernel function includes the Gaussian kernel and the polynomial kernel.

6 Numerical Studies

In this section, we compare our confidence-support vector machine (CSVM) method and

methods based on the plug-in principal, including L2 penalized logistic regression (Le Cessie

and Van Houwelingen, 1992), kernel logistic regression (Zhu and Hastie, 2005), kNN Altman

(1992), random forest (Liaw et al., 2002) and SVM (Cortes and Vapnik, 1995; Platt et al.,

1999) using both simulated and real data.
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6.1 Simulation

We study the numerical performance over a large variety of sample sizes. In each case,

an independent tuning set with the same sample size as the training set is generated for

parameter tuning. The testing set has 20000 observations (10000 or nearly 10000 for each

class). We run the simulation 100 times and report the average and standard error. Both

non-coverage rates are set to 0.05.

We select the best parameter λ and the hyper-parameter for kernel methods as fol-

lows. We search for the optimal ρ in the Gaussian kernel exp (−‖x− y‖2/ρ2) from the grid

10{−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1} and the optimal degree for polynomial kernel from {2, 3, 4}.
For each fixed candidate hyper-parameter, we choose λ from a grid of candidate values rang-

ing from 10−8 to 104 by the following two-step searching scheme. We first do a rough search

with a larger stride {10−8, 10−7.5, . . . , 104} and get the best parameter λ1. Then we do a

fine search from λ1×{10−0.5, 10−.4, . . . , 100.5}. After that, we choose the optimal pair which

gives the smallest tuning ambiguity and has the two non-coverage rates for the tuning set

controlled.

To improve the performance, we make use of the suggested robust implementation in

Lei (2014) for all the methods. Following Lei (2014), we first obtain an estimate of η or a

monotone proxy of it such as the discriminant function f in SVM, then choose thresholds

t̂−1 and t̂1 which are two sample quantiles of η̂(x) (or f(x)) among the tuning set so that

the non-coverage rates for the tuning set match the nominal rates. The final predicted sets

are induced by thresholding η̂(x) (or f(x)) using t̂−1 and t̂1.

Because there are two non-coverage rates and one ambiguity size to compare here, how

to make fair comparison becomes a tricky problem since one classifier can sacrifice the non-

coverage rate to gain in ambiguity. One by-product of the robust implementation above is

that the non-coverage rate of most of the methods will become very similar and we only

need to compare the size of the ambiguity.

We also include a simple SVM approach whose discriminant function is obtained in the

traditional way, but which induces confidence sets by thresholding in the same way described

above.
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We consider three different simulation scenarios. In the first scenario we compare the

linear approaches (SVM and penalized logistic regression), while in the next two cases we

consider nonlinear methods. In all cases, we add additional noise dimensions to the data.

These noise covariates are normally distributed with mean 0 and Σ = diag(1/p), where p is

the total dimension of the data.

Example 1 (Linear model with nonlinear Bayes rule): In this scenario, we have

two normally distributed classes with different covariance matrices. In particular, denote

X|Y = j ∼ N (µj,Σj) for j = ±1, then µ−1 = (−2, 1)T , µ1 = (1, 0)T , and Σ−1 = diag(2, 1
2
),

Σ1 = diag(1
2
, 2). The prior probabilities of both classes are the same. Lastly, we add

eight dimensions of noise covariates to the data. The data are illustrated in the left penal of

Figure 2. We compare linear CSVM, and the plug-in methods L2 penalized logistic regression

(Friedman et al., 2010) and simple linear SVM to estimate η.

Example 2 (Moderate dimensional polynomial boundary): This case is sim-

ilar to the one in (Zhang et al., 2008). First we generate x1 ∼ Unif[−1, 1] and x2 ∼
Unif[−1, 1]. Define functions fj(x) = j(−3.6x2

1 + 7.2x2
2 − 0.8), j = ±1. Then we set

η(x) = f1(x)/(f−1(x) + f1(x)), where x = (x1, x2). We then add 98 covariates on top

of the 2-dimensional signal. The data are illustrated in the middle penal of Figure 2. In this

scenario, we choose to use the polynomial kernel for all the kernel based methods.

Example 3 (High-dimensional donut): We first generate a two-dimensional data,

(ri, θi) where θi ∼ Unif[0, 2π], ri|(Y = −1) ∼ Uniform[0, 1.2], and ri|(Y = +1) ∼ Unif[0.8, 2].

Then we define the two-dimensional Xi = (ri cos(θi), ri sin(θi)). The data are illustrated

in the right penal of Figure 2. We then add 498 covariates on top of the 2-dimensional

signal. We use the Gaussian kernel, K(x, y; ρ) = exp (−‖x− y‖2/ρ2) for all the kernel based

methods.

All methods are improved using the robust implementation. The results are reported

in Figure 3. We also show the performance of CSVM with weighting but without robust

implementation. For Example 1, our CSVM method gives a significantly smaller ambiguity

than either logistic regression or naive SVM. In Example 2 and Example 3, our method gives

a smaller or at least comparable ambiguity to the best plug-in method, which is kernel logistic

11



−4 −2 0 2

−
2

−
1

0
1

2
3

4

x1

x2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x2

−2 −1 0 1 2

−
2

−
1

0
1

2

x1

x2

Class −1
Class +1

Figure 2: Scatter plots of the first two dimensions for the simulated data with Bayes rules
showing the two definite regions and the ambiguity region.

regression. Our weighted CSVM performs the best when sample size is small in the linear

case and it outperforms kNN, Random Forest and naive SVM in nonlinear cases. The naive

SVM method which directly uses simple SVM to conduct confidence set learning performs

significantly worse than all the other methods in nonlinear cases. The non-coverage rates

(not shown here) of CSVM, random forest, kernel logistic regression and naive SVM methods

are close to each other while CSVM without robust implmentation and kNN have similar

non-coverage rates. A detailed comparison can be found in the Supplementary Material.
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Figure 3: Outcome of ambiguities in three simulation settings. Non-coverage rates are similar

among different methods and are not shown here. CSVM has the smallest ambiguity.
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6.2 Real Data Analysis

We conduct the comparison on the hand-written zip code data LeCun et al. (1989). The

data set consists of many 16× 16 pixel images of handwritten digits. It is widely used in the

classification literature. There are both training and testing sets defined in it. Lei (2014)

used the same dataset for illustrating the plug-in methods. We choose this dataset to directly

compare with the plug-in methods.

Following Lei (2014), to form a binary classification problem, we use the subset of the

data containing digits {0, 6, 8, 9}. Images with digits 0, 6, 9 are labeled as class −1 (they are

digits with one circle) and those with digit 8 (two circles) are labeled as class +1. Previous

studies Shafer and Vovk (2008) pointed out that there was discrepancies between the training

and testing set of this data set. So in this study we first mixed the training and testing data

and then randomly split into new training, tuning and testing data. The training and tuning

data both have sample size 800, with 600 from class −1 and 200 from class 1 to preserve the

unbalance nature of the data set. During training, we oversample class 1 by counting each

observation three times to alleviate the unbalanced classes issue.

Although Lei (2014) set both nominal non-coverage rates to be 0.05 in their study which

focused on linear methods, it needs to be pointed out that many nonlinear classifiers, such

as SVM with Gaussian kernel, can achieve this non-coverage rate without introducing any

ambiguity. Therefore we reduce the non-coverage rate to 0.01 for both classes to make the

task more challenging.

We apply Gaussian kernel for CSVM, and compare with kernel logistic regression with

Gaussian kernel, random forest, kNN and naive SVM with Gaussian kernel on this data set.

Classifier CSVM CSVM(r) KNN(r) KLR(r) RF(r) SVM-Prob(r)

Non-coverage(-1) 0.05(0.005) 1.02(0.05) 0.81(0.04) 0.98(0.05) 0.95(0.04) 1.00(0.05)

Non-coverage(+1) 0.56(0.06) 1.19(0.11) 1.04(0.09) 1.25(0.10) 1.10(0.11) 1.25(0.11)

Ambiguity 8.29(0.18) 2.52(0.13) 10.21(2.12) 3.46(0.17) 7.55(0.37) 2.60(0.13)

Table 1: CSVM gives better or comparable outcome to the best plug-in method.

The results are summarized in Table 1 with numbers in percentage. CSVM gives better
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results than all the plug-in methods. We plot the zip code data using t-distributed stochas-

tic neighbor embedding (t-SNE) (Maaten and Hinton, 2008) to give a visualization of our

method and the data.

−20

−10

0

10

20

−20 −10 0 10 20

tSNE1

tS
N

E
2

−20

−10

0

10

20

−20 −10 0 10 20

tSNE1

tS
N

E
2

label Ambiguity Class −1 Class 1

Figure 4: An illustration of CSVM method using t-SNE. The left penal shows the true labels,

and the right panel the predicted label for weighted CSVM.

It can be seen that the ambiguity region mainly lies on the boundary between the two

classes. In particular, they cover those points which appear to be closer to the class other

than the one they really belong to. Moreover, it can be seen that the union of the ambiguity

region and the predicted region for either class, covers almost all the ground of that class

(defined by the true labels). This is not surprising since the non-coverage rate of CSVM is

set to be a small number of 1% in this case.

7 Conclusion and future works

In this work, we propose to learn confidence sets using support vector machine. Instead of

a plug-in approach, we use empirical risk minimization to train the classifier. Theoretical

studies have shown the effectiveness of our approach in controlling the non-coverage rate and

minimizing the ambiguity.

We make use of many well understood advantages of SVM to solve the problem. For

instance the ‘kernel trick’ allows more flexibility and empowers us to conduct classification

in nonlinear cases.
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Hinge loss function is not the only surrogate loss that can be used. There are many other

useful loss functions with good properties in different scenarios Liu et al. (2011).

Confidence set learning for multi-class case is also an interesting future work. This has

a natural connection to the literature of multi-class classification with confidence (Sadinle

et al., 2017), classification with reject and refine options (Zhang et al., 2017) and conformal

learning (Shafer and Vovk, 2008).

References

Altman, N. S. (1992), “An introduction to kernel and nearest-neighbor nonparametric regression,”

The American Statistician, 46, 175–185.

Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. (2006), “Convexity, classification, and risk

bounds,” Journal of the American Statistical Association, 101, 138–156.

Bartlett, P. L. and Wegkamp, M. H. (2008), “Classification with a reject option using a hinge loss,”

Journal of Machine Learning Research, 9, 1823–1840.

Cannon, A., Howse, J., Hush, D., and Scovel, C. (2002), “Learning with the Neyman-Pearson and

min-max criteria,” Los Alamos National Laboratory, Tech. Rep. LA-UR, 02–2951.

Cortes, C. and Vapnik, V. (1995), “Support-vector networks,” Machine learning, 20, 273–297.

Denis, C. and Hebiri, M. (2016), “Confidence sets with expected sizes for Multiclass Classification,”

arXiv preprint arXiv:1608.08783.

Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D. (2014), “Do we need hundreds

of classifiers to solve real world classification problems,” J. Mach. Learn. Res, 15, 3133–3181.

Friedman, J., Hastie, T., and Tibshirani, R. (2010), “Regularization paths for generalized linear

models via coordinate descent,” Journal of statistical software, 33, 1.
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1 Proof

This part will give proofs to some of the statements and theorems in the main part.

Proof of Dual Representation

Firstly, the Lagrangian of problem (6) is

L(β, b, {ξi}ni=1, {ηi}ni=1, ε) =
1

2
||β||22 + λ′

n∑

i=1

ξi +
n∑

i=1

ζi(1 + ε− ξi − yi(xTi β + b))

+
n∑

i=1

τi(1− ε− ηi − yi(xTi β + b))−
n∑

i=1

ρiξi −
n∑

i=1

γiηi

+ θ−1(
∑

yi=−1

wiηi − n−1α−1) + θ1(
∑

yi=1

wiηi − n1α1)− νε (1)

Then we consider the Karush-Kuhn-Tucker conditions. We write L(β, b, ε, {ξi}ni=1, {ηi}ni=1)
as L for simplicity.

∂L

∂β
= β −

n∑

i

ξiyixi −
n∑

i

τiyixi = 0
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dent in the Department of Mathematical Sciences at Binghamton University, State University of New York,
Binghamton, New York, 13902 (E-mail: wang2@math.binghamton.edu); and Xingye Qiao is Associate Pro-
fessor in the Department of Mathematical Sciences at Binghamton University, State University of New York
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1

ar
X

iv
:1

80
9.

10
81

8v
1 

 [
st

at
.M

L
] 

 2
8 

Se
p 

20
18



∂L

∂b
= −

n∑

i=1

ξiyi −
n∑

i=1

τiyi = 0

∂L

∂ξi
= λ− ξi − ρi = 0 for ∀i

∂L

∂ηi
= −τi − γi + wiθ−1 = 0 for yi = −1

∂L

∂ηi
= −τi − γi + wiθ1 = 0 for yi = 1

∂L

∂ε
=

n∑

i

ζi −
n∑

i

τi − ν = 0

ζi(1 + ε− ξi − yi(xTi β − b)) = 0 for i = 1, 2, ..., n

τi(1− ε− ηi − yi(xTi β − b)) = 0 for i = 1, 2, ..., n

ρiξi = 0 for i = 1, 2, ..., n

γiηi = 0 for i = 1, 2, ..., n

θ−1(
∑

yi=−1

ηi − n−1α−1) = 0

θ1(
∑

yi=1

ηi − n1α1) = 0

νε = 0

After plugging the KKT conditions into expression 1, we can get the dual problem.

Proof of Theorem 1

In order to prove Theorem 1 and 2, we need to first introduce another risk function, R̄(f, ε) =
P (Y f(X) < ε) + 1

2
P (|f(X)| ≤ ε) and the optimization problem associate with it.

min R̄(f, ε) (2)

subject to Pj(Y f(X) < −ε) ≤ αj, j = ±1.

And here is a Lemma come with it.

Lemma 1. Under Assumption 1, for any fixed ε ≥ 0, the discrimination function f ∗ such
that

f ∗(x) =





1 + ε, η(x) > t−1

ε ∗ sgn(η(x)− 1
2
), t1 ≤ η(x) ≤ t−1

−(1 + ε), f(x) < t1

is a solution to the optimization problem (2) (in the main work) and (2).

Denote C∗−1 = {x : f ∗(x) ≤ ε} and C∗1 = {x : f ∗(x) ≥ −ε} and the set classifier
introduced by f ∗ is φ∗. The Assumption 1 ensures that C∗−1 ∪ C∗1 = X . Let’s denote
C∗−1 ∩ C∗1 by C∗0 .
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The optimality of φ∗ to Problem (2) (in the main work) is proved in Lei (2014). Here we
prove the optimality of f ∗ for problem 2. The technique used in the following prove is fairly
straight-forward in statistical decision and game theory. We start the proof with looking for
a so-called complete set of f . After that, we only need to focus on this set of discriminant
functions. We firstly make two definitions to simplify our proof.

Definition 1. For any (inequality) constrained optimization problem with m constrains

minL(f) such that

Ci(f) ≤ ci i = 1, ...,m

two function f1 and f2, f1 is said to be as good as than f2 when L(f1) ≤ L(f2) and Ci(f1) ≤
Ci(f2) for ∀i, and better than f2 when one of those inequality holds strictly.

Definition 2. Given the distribution of X and Y , denoted as P . Define a class of function,
F∗(a1, a2; b1, b2) consists all functions f which take at most two distinct non-negative values
a1 < a2 for {x : η > 1

2
} and at most two distinct non-positive values b1 > b2 for {x :

η(x) < 1
2
}. A constrained optimization problem is said to be simple monotone with respect

to F∗(a1, a2, b1, b2), if it satisfies:
(i). F∗(a1, a2, b1, b2) is a complete class of the problem, which means ∀f , ∃g ∈ F∗, and

g is as good as f .
(ii). If there exist disjoint B1, B2 ∈ X , such that P−1(B1) = P−1(B2) > 0, for ∀x1 ∈

B1, x2 ∈ B2, η(x1) > η(x2) > 1
2
. Moreover, for any pairs of function in F∗, f1(x) and

f2(x) such that f1(x) = f2(x) for ∀x /∈ B1 ∪ B2, and f1(x) =

{
a1, ∀x ∈ B1

a2, ∀x ∈ B2
and f2(x) =

{
a2, ∀x ∈ B1

a1, ∀x ∈ B2
, f2 is better than f1.

(iii). If there exist disjoint B1, B2 ∈ X , such that P1(B1) = P1(B2) > 0, for ∀x1 ∈
B1, x2 ∈ B2, η(x1) < η(x2) < 1

2
. Moreover, for any pairs of function in F∗, f1(x) and

f2(x) such that f1(x) = f2(x) for ∀x /∈ B1 ∪ B2, and f1(x) =

{
b1, ∀x ∈ B1

b2, ∀x ∈ B2
and f2(x) =

{
b2, ∀x ∈ B1

b1, ∀x ∈ B2
, f2 is better than f1.

It can be shown that a complete class of a simple monotone optimization problem can
be astonishingly simple. We are going to show that we only need to consider the function
which depend on η(x) rather than x. In other words, we can regard η as a sufficient statistic
of x.

Lemma 2. If an optimization O is simple monotone with respect to F∗(a1, a2; b1, b2), then
a solution of O in F∗ takes the form

f(x) =





a2, η(x) > t
a1,

1
2
≤ η(x) ≤ t

b1, t′ ≤ η(x) < 1
2

b2, η(x) < t′

3



for some t′ < 1
2
≤ t almost surely.

Proof. From the simple monotonicity, let’s prove there exists a 1
2
≤ t ≤ 1 such that f̂(x) =

a1,∀x, such that 1
2
< η(x) < t, a.s. and f̂(x) = a2, ∀η(x) > t, a.s.. Define T1 = {t :

∃C,P (C) > 0, η(x) > t, f̂(x) = a1,∀x ∈ C} and T2 = {t : ∃C ′, P (C ′) > 0, η(x) < t, f̂(x) =
a2,∀x ∈ C ′}. Firstly, if T1 = ∅, then t = 1

2
and similarly, if T2 = ∅, then t = 1. So now we

can assume T1 and T2 are nonempty.
If t1 ∈ T1, then by definition t2 ∈ T1,∀t2 < t1, so that T1 is a interval and 1

2
∈ T1.

Similarly, T2 is also a interval and 1 ∈ T2. Moreover, T1 and T2 are open interval. By
definition, t1 ∈ T1, then we have P (C ∩ (∪∞n {x : η(x) < t1 + 1

n
})) > 0, and ∃m, such that

P (C ∩ {x : η(x) < t1 + 1
m
}) > 0. Thus we have t1 + 1

m
∈ T1 as well. If T1 ∩ T2 6= ∅, then we

have a t′ ∈ T1 ∩ T2, which indicates there exists ∀C1, C2 ∈ X such that P (C1), P (C2) > 0,
1 > η(x1) > η(x2) > 1

2
, and f̂(x1) = a2, f̂(x1) = a2, ∀x1 ∈ C1, x2 ∈ C2. This will leads to a

contradiction with the optimality of f̂ . If we have P (C1), P (C2) > 0. Then we can choose
two subsets of C1 and C2, C ′1 and C ′2 such that P−(C ′1) = P−(C ′2), because Pη and P− is
continuous. If T1 ∩ T2 = ∅, then we can choose a point t in [sup {T1}, inf {T2}] and it will
satisfy our purpose.

By similar argument, we can show there exists a 0 ≤ t′ ≤ 1
2

such that f̂(x) = −(1 +

ε),∀η(x) < t′, a.s. and f̂(x) = 0, ∀1
2
> η(x) > t′, a.s..

As a result, the complete set of discriminant functions has the form described in Lemma
2.

Proof of Lemma 1: We want to show that 2 is simple monotone with respect to
F∗(ε+ 1, 0, 0,−(ε+ 1)).

Because optimization problem 2 can be regarded as an optimization problem for clas-
sifiers, it is sufficient to consider functions f with 3 values, ε + 1, −(ε + 1), 0, that is
f ∈ F(ε) := {f : X → {ε+ 1,−(ε+ 1), 0}}.

Firstly, we need to prove sign(η(X) − 1
2
)f̂(X) ≥ 0 with probability 1 for any f̂ , a

solution of 2 in F(ε). If there is a set A ⊂ X , ∀x ∈ A, η(x) > 1
2
, f̂ = −(ε + 1) and

P (A) > 0, then we can consider another function fA such that fA(x) = f̂(x), ∀x ∈ Ac but
fA(x) = 0,∀x ∈ A. fA will be better than f̂ . It is easy to check that two constraints still hold
for fA. But the objective function will be smaller, because 1

2
P (|f̂(X)| ≤ ε) + P (Y f̂(X) <

−ε) − 1
2
P (|fA(X)| ≤ ε) + P (Y fA(X) < −ε) = 1

2
P (|f̂(X)| ≤ ε,X ∈ A) + P (Y f̂(X) <

−ε,X ∈ A) − 1
2
P (|fA(X)| ≤ ε,X ∈ A) + P (Y fA(X) < −ε,X ∈ A) = E(η(X)1X∈A) > 0.

This will lead to a contradiction with the optimality of f̂ .
We only give the proof for part (ii), and part (iii) can be proved analogously. We can

check the constraints and objective function one by one.
Firstly, P+(Y f1(X) < −ε) = P+(Y f2(X) < −ε) because the set in which f1 and f2 take

−(1 + ε) are the same. Secondly, P−(Y f1(X) < −ε) − P−(Y f2(X) < −ε) = P−(B2) −
P−(B1) = 0. Lastly, 1

2
P (|f2(X)| ≤ ε) +P (Y f2(X) < −ε)− (1

2
P (|f1(X)| ≤ ε) +P (Y f1(X) <

−ε)) = E(1(X∈B2)(η(X) − 1
2
)) − E(1(X∈B1)(η(X) − 1

2
)) < 0. This comes from the fact that
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η(x1)− 1
2
> η(x2)− 1

2
> 0,∀x1 ∈ B1, x2 ∈ B2 and P (B2) < P (B1). The last inequality come

from P (Y = 1|X ∈ B1) > P (Y = 1|X ∈ B2) and P−(B1) = P−(B2).
Then by Lemma 2, we can see that the solution of 2 only depends on η.
The next part of this proof is to find out the optimal t and t′. Let’s show that the optimal

choice of t is t−1. If t 6= t−1 for f̂ , than t > t−1 and P (η(x) ≤ t) < 1 − α−1, otherwise f̂
does not satisfy the constraint that P−(Y f(X) < −ε) ≤ α−1. Then If we consider another
function f̂ ∗ such that f̂ ′(x) = 0,∀x, s.t. t−1 < η(x) < t and f̂ ∗(x) = f̂(x) elsewhere. Denote
C ′ = {x : t−1 < η(x) < t} and P (C ′) > 0. Then we have that 1

2
P (|f̂(X)| ≤ ε) +P (Y f̂(X) <

−ε)− (1
2
P (|f̂ ′(X)| ≤ ε) +P (Y f̂ ′(X) < −ε)) = E((1

2
− (1− η(X)))1{(C ′)}) > 0. So t = t−1.

The optimal choice for t′ can be found in a similar way.
The proof is completed by observing f ∗ gives exactly the same R̄ loss.

Now let’s start to prove Theorem 1.
The argument in the proof is similar to Lemma 1. We are going to show the optimization

problem (9) (in the main work) is simply monotone. We consider our proof in two parts.
The first is to show the minimizer of optimization problem (9) (in the main work) can only
takes four values and is Fisher consistent in a classification sense.

In the first step, let’s prove that with probability 1 that |f ∗(x)| ≤ 1 + ε. This step is
identical to proving the Fisher Consistency of SVM. If a function f(x) has a set A1 with
positive probability in X such that for ∀x ∈ X , |f(x)| > 1 + ε, then we can truncate
those values to 1 + ε. In other word, consider fnew(x) = f(x) for x ∈ A1

c, fnew(x) =
(1 + ε)sgn(f(x)) for x ∈ A1. Then let’s prove fnew is better than f . We can see that the
decision implied by f and fnew is the same. So the two constrains in ?? do not change.
However, by looking at the objective function E[(1 + ε − Y f(X))+] = E[η(X)(1 + ε −
f(X))+ + (1− η(X))(1 + ε+ f(X))+], we can see fnew gives smaller loss for all the X such
that ηX 6= 0, 1, so that f ∗ will give a smaller expected loss in A1.

The next step, we prove |f ∗(x)| ≥ ε in a similar way. If a function has a set A2 with
positive probability in X such that for ∀x ∈ X , |f(x)| < ε, then we can enlarge those
values of |f | to εsgn(η(X) − 1

2
). In other words, consider fnew(x) = f(x) for x ∈ A2

c,
fnew(x) = εsgn(η(X) − 1

2
) otherwise. Then let’s prove fnew is better than f . We can see

that the decision implied by f and fnew is the same. So the two constrains in ?? do not
change. However, by considering the objective function E[(1 + ε− Y f(X))+] and the result
of first step we have E[(1+ε−Y f(X))+] = E[(1+ε−Y f(X))] = E[η(X)(1+ε−f(X))+(1−
η(X))(1+ε+f(X))] = E[1+ε+(1−2η(X))f(X)]. Thus we have E[Hε(f)]−E[Hε(f

new)] =
E[(1− 2η(X))(f(X)− fnew(X))] = E[(1− 2η(X))(f(X)− εsgn(η(X)− 1

2
))1X∈A2 ] > 0.

In the third step, we are going to show that f ∗ is Fisher Consistent in the classic clas-
sification sense. In other words, sgn(f ∗(x)) = sgn(η(x) − 1

2
) with probability 1. Because

of symmetry, let’s just prove the case that η(X) > 1
2
. If a function has a set A3 with

positive probability in X such that for ∀x ∈ X , |f(x)| < 0, η(x) > 1
2
, then we can make

them to ε. In other words, consider fnew(x) = f(x) for x ∈ A3
c, fnew(x) = ε oth-

erwise. Then let’s prove fnew is more efficient than f . The second constraint will not
change since {x : f(x) > ε} = {x : fnew(x) > ε}. The second constraint is also satis-
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fied by fnew because we actually have {x : fnew(x) < −ε} ⊆ {x : f(x) < −ε}. However,
E[Hε(f)]− E[Hε(f

new)] = E[(1− 2η(X))(f(X)− ε)1X∈A3 ] > 0.
In last step of part one, we want to prove that f ∗(x) take values between ε and ε + 1

with probability 1. If a function has a set A4 with positive probability in X such that for
∀x ∈ X , ε < |f(x)| < 1+ε, then we can enlarge those values of f to (1+ε)sgn(η(X)− 1

2
). In

other words, consider fnew(x) = f(x) for x ∈ A2
c, fnew(x) = (1+ε)sgn(η(X)− 1

2
) otherwise.

Then let’s prove fnew is more efficient than f . By considering the result of step three, we
have the two constraints of f is the same as fnew, because here we only need to consider
the function f such that sgn(f(x)) = sgn(η(x) − 1

2
). However, E[Hε(f)] − E[Hε(f

new)] =
E[(1− 2η(X))(f(X)− (1 + ε)sgn(η(x)− 1

2
))1X∈A4 ] > 0.

Now we have proved that f ∗ only takes value of 1 + ε, ε, −ε, −(1 + ε), with probability
1. That is to say F∗(1 + ε, ε,−ε,−(1 + ε)) is a complete class of the problem

The second part of the proof is to show part (ii) of simple monotonicity. This can be
verified by direct calculation which is similar to the proof of Lemma 1. The last part of this
proof is to find out the optimal t and t′. The procedure is also analogous to proof of Lemma
1, thus is omitted here.

Proof of Theorem 2

We prove this Theorem in two steps. Firstly, we want to use excess risk of R̄ = P (Y f(X) <
−ε)+ 1

2
P (|f(X)| ≤ ε) to bound the excess ambiguity R. This can be formalized to a Lemma

below.

Lemma 3. Let f̂ be another function that suffices the constraints in (3), then under As-
sumption 2, for any ε ≥ 0, we have 1

c
(R̄(f̂ , ε)− R̄(f ∗, ε)) ≥ R(f̂ , ε)−R(f ∗, ε).

To prove this, we need to further use another lemma which can be regarded as an exten-
sion of the theorem before.

Lemma 4. There ∃c > 0 satisfies Assumption 2, then for any fixed ε ≥ 0, f ∗ is also a
solution of the following optimization problem

minimize (
1

2
− c)P (|f(X)| ≤ ε) + P (Y f(X) < −ε) (3)

subject to Pj(Y f(X) < −ε) ≤ αj, j = ±1.

The proof of this Lemma 4 is analogous to the proof of Lemma 1, thus is omitted here.
By Lemma 4, we have

1

c
(R̄(f̂ , ε)− R̄(f ∗, ε))− (R(f̂ , ε)−R(f ∗, ε))

=
1

c
(P (Y f̂(X) ≤ ε)− P (Y f ∗(X) ≤ ε))− (P (|Y f̂(X)| ≤ ε)− P (|Y f ∗(X)| ≤ ε))

=
1

c
(((

1

2
− c)P (|f̂(X)| ≤ ε) + P (Y f̂(X) < −ε))− (

1

2
− c)P (|f ∗(X)| ≤ ε) + P (Y f ∗(X) < −ε))
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≥0

The next step is the prove we can use the excess RH risk to bound the excess risk of R̄,
which gives the Lemma below.

Lemma 5. Under Assumption 2, for any f satisfies the constraints in (3), we have

C (RH(f, ε)−RH(f ∗, ε)) ≥
(
R̄ (f, ε)− R̄ (f ∗, ε)

)
(4)

where C = 1
4c

+ 1
2
.

The proof consists of two steps. First, we will show that we only need to consider the
f which takes those values: 1 + ε, ε+, ε, −ε, −ε−, −(1 + ε). Here ε+ can be regarded as
ε plus a arbitrarily small number and it is similar for −ε−. This can be shown by direct
calculation.

Assume f : X → R is an arbitrary discriminate function. Then we consider another func-
tion f̄(x) = (1+ε)1

[
f(x) > ε, η(x) ≥ 1

2

]
+(ε+)1

[
f(x) > ε, η < 1

2

]
+ε1

[
|f(x)| ≤ ε, η ≥ 1

2

]
+

(−ε)1
[
|f(x)| ≤ ε, η < 1

2

]
+ (−ε−)1

[
f(x) < −ε, η ≥ 1

2

]
+ (−(1 + ε))1

[
f(x) < −ε, η(x) < 1

2

]
.

It is easy to see φ(f,ε) = φ(f̄ ,ε) so that R̄(f, ε) − R̄(f ∗, ε) = R̄(f̄ , ε) − R̄(f ∗, ε). Moreover,

by direct calculation, one can show that RH(f(x)) ≥ RH(f̄(x)) for all x. So we can see
change f to f̄ will always leads to a smaller excess surrogate risk while keep the excess risk
the same.

The second part is to explicitly calculate the left hand side and the right hand side and
show that the C in the theorem really works. To simplify the notation, we give divide X by
value of f(now f take 6 values). For instance, we define Sε+1 = {x : f(x) = ε + 1} and by
the first part, we can assume η(Sε+) < 1

2
and η(S−ε−) > 1

2
. To ease the notation, we omit

the independent variable X in following expressions although the expectation is really taken
with respect to it. Then we have

RH(f)−RH(f ∗) = E(1[Sε+1](2(1 + ε)(1− η))) + E(1[Sε](1 + 2ε(1− η)))

+ E(1[S−ε−](1 + 2εη)) + E(1[Sε+](1 + 2ε(1− η)))

+ E(1[S−ε](1 + 2εη)) + E(1
[
S−(ε+1)

]
(2(1 + ε)η))

− E(1

[
1

2
≤ η ≤ t−1

]
(1 + 2ε(1− η)))− E(1

[
t1 ≤ η ≤ 1

2

]
(1 + 2εη))

− E(1[η > t−1](2(1 + ε)(1− η)))− E(1[η < t1](2(1 + ε)η))

and

R(f)−R(f ∗) = E(1[Sε+1](1− η)) + E(1[Sε](
1

2
)) + E(1[S−ε−](η)

+ E(1[Sε+](1− η)) + E(1[S−ε](
1

2
)) + E(1

[
S−(ε+1)

]
(η))

− E(1

[
1

2
≤ η ≤ t−1

]
(
1

2
))− E(1

[
t1 ≤ η ≤ 1

2

]
(
1

2
))
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− E(1[η > t−1](1− η))− E(1[η < t1](η))

Then by some algebra, we have C(RH(f) − RH(f ∗)) ≥ R(f) − R(f ∗) is equivalent to A +
2εCB ≥ 0 where

A = E(1[Sε+1]((2C − 1)(1− η))) + E(1[Sε](C −
1

2
))

+ E(1[S−ε−](C − η)) + E(1[Sε+](C − (1− η)))

+ E(1[S−ε](C −
1

2
)) + E(1

[
S−(ε+1)

]
((2C − 1)η))

− E(1

[
1

2
≤ η ≤ t−1

]
(C − 1

2
))− E(1

[
t1 ≤ η ≤ 1

2

]
(C − 1

2
))

− E(1[η > t−1]((2C − 1)(1− η)))− E(1[η < t1]((2C − 1)η))

and B = P (f(X)Y < 0) − P (f ∗(X)Y < 0). By the definition of f ∗ we can easily see that
B ≥ 0. So the rest is to show A ≥ 0. We can only focus on C > 1

2
. Divide A by 2C − 1 and

do some algebra, we have A ≥ 0 is equivalent to

(E(1[Sε+1]((1− η)) + E(1[Sε](
1

2
) + E(1[S−ε−](

1

2
)

+ E(1[Sε+](
1

2
)) + E(1[S−ε](

1

2
) + E(1

[
S−(ε+1)

]
(η)))

− (E(1

[
1

2
≤ η ≤ t−1

]
(
1

2
)) + E(1

[
t1 ≤ η ≤ 1

2

]
(
1

2
)

+ E(1[η > t−1](1− η)− E(1[η < t1](η)))

≥ 1

2C − 1
(E(1[S−ε−](η − 1

2
) + E(1[Sε+](

1

2
− η)))

It is not hard to see the first part of the left hand side is a R̄ risk of a classifier with +1
prediction at Sε+1, negative prediction at S−(ε+1) and ambiguity else where. The second part
is the risk of f ∗. By definition of f ∗, we have P−1(η ≤ t−1) = 1− α−1, P1(η ≥ t1) = 1− α1.
Let α′−1 = α−1−P−1(Sε+) and α′1 = α1−P1(S−ε−) and let t′−1 and t′1 satisfy P−1(η ≤ t′−1) =
1− α′−1, P1(η ≥ t′1) = 1− α′1. Because η(Sε+) < 1

2
, we have P (t−1 < η ≤ t′−1) > P (Sε+) by

Bayes Formula. Similarly P (t′1 ≤ η < t1) > P (S−ε−). So at last, we have

LHS of above ≥ E(1
[
t−1 < η ≤ t′−

]
(η − 1

2
)) + E(1

[
t′+ ≤ η < t1

]
(
1

2
− η))

≥ c(P (t−1 < η ≤ t′−) + P (t′+ ≤ η < t1)) ≥ c(P (Sε+) + P (S−ε−))

=
1

2C − 1

1

2
(P (Sε+) + P (S−ε−))

≥ 1

2C − 1
(E(1[S−ε−](η − 1

2
) + E(1[Sε+](

1

2
− η)))

So we have A ≥ 0 thus the statement of our theorem holds.
Note that one can induce a small δ, i.e., using ε+ δ instead of using the notation ε+ and
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let δ goes to 0 at the end of the proof to make it more rigorous. However, because there is
no limit involved in other parts of this proof, we can live with this notation to keep us from
those trouble.

Lastly, Theorem 2 is a direct corollary of Lemma 3 and Lemma 5.

Proof of Theorem 3

To prove this theorem, we need to introduce Rademacher complexity which has been widely
used in statistical machine learning theory.

Here we only prove inequality for Y = −1, the proof for Y = 1 case can be down
analogously. Without loss of generality, we assume the first n−1 observations are from −1.

Let σ = {σi; i = 1, ..., n−1} be independent and identically distributed random variables
from discrete uniform distribution U({-1,1}). Also denote by S a sample of observations
(xi, yi); i=1,...,n−1, independent and identically distributed from the underlying distribution
P (X, Y |Y = −1) (Y will always be −1 in this case). we define the empirical Rademacher
complexity of the function class with fixed b, Hb

K(s) = {h(x) + b|h ∈ HK , ||h||HK ≤ s} as
follows,

R̂n−1{Hb
K(s)} = Eσ[ sup

f∈HbK(s)

1

n−1

n−1∑

i=1

σiH−ε(yif(xi))] (5)

Here Eσ means taking expectation with respect to the joint distribution of σ. Moreover, we
can define the Rademacher complexity of Hb

K(s) to be

Rn−1{Hb
K(s)} = Eσ,S[ sup

f∈HbK(s)

1

n−1

n−1∑

i=1

σiH−ε(yif(Xi))] (6)

where S is the sample space given Y = −1.
The next step is to construct the standard inequality of Rademacher complexity. It

controls the expected hinge loss for negative group by the summation of empirical hinge
loss, empirical Rademacher complexity and a small penalty term, which can be summarized
in the following lemma. This lemma is important and will be used in the proves follows.

Lemma 6. Let R̂n{Hb
K(s)} and Rn{Hb

K(s)} be defined as above. Then with probability at
least 1− ζ,

E(H−ε(Y f(X))) ≤ 1

n−1

n−1∑

i=1

H−ε(yif(xi)) + 2Rn−1{Hb
K(s)}+ Tn−1(ζ), (7)

Moreover, with probability at least 1− ζ,

E(H−ε(Y f(X))) ≤ 1

n−1

n−1∑

i=1

H−ε(yif(xi)) + 2R̂n−1{Hb
K(s)}+ 3Tn−1(ζ/2). (8)

Proof. The proof consist of three parts. In the first part, we use the McDiarmid inequality
to bound the left hand side of inequality 7 by its empirical counterpart and φ(S) which is

9



define below:

φ(S) = sup
f∈HbK(s)

{E(H−ε(Y f(X)))− 1

n−1

n−1∑

i=1

H−ε(yif(xi))}

Let S(i) = {(x1, y1), ...(xi
′, yi), ...(xn, yn)} be another sample from P (X, Y |Y = −1),

where the difference between S and S(i,x) is just the ith observation. Then by definition, we
have

φ(S)− φ(S(i)) = sup
f∈HbK(s)

{E(H−ε(Y f(X)))− 1

n−1

∑

S

H−ε(yif(xi))}

− sup
f∈HbK(s)

{E(H−ε(Y f(X)))− 1

n−1

∑

Si,x

H−ε(yif(xi))}.

Note that it is easy to show the difference of supremum of two functions is smaller than
the supremum of the difference of two functions.

Then we have

φ(S)− φ(S(i)) ≤ sup
f∈HbK(s)

{E(H−ε(Y f(X)))− 1

n−1

∑

S

H−ε(yif(xi))}

− {E(H−ε(Y f(X)))− 1

n−1

∑

Si,x

H−ε(yif(xi))}

= sup
f∈HbK(s)

{ 1

n−1

H−ε(yif(xi))−H−ε(yif(x′i))}

≤ sup
f∈HbK(s)

{ 1

n−1

|{f(xi)− f(x′i)|}

≤ sup
h∈HK ,||h||HK≤s

{ 1

n−1

|{h(xi)− h(x′i)|}

≤ sup
h∈HK ,||h||HK≤s

{ 1

n−1

|〈h,K(xi, ·)〉 − 〈h,K(x′i, ·)〉|}

≤ 1

n−1

sup
h∈HK ,||h||HK≤s

{|〈h,K(xi, ·)〉|+ |〈h,K(x′i, ·)〉|}

≤ 2

n−1

sup
h∈HK ,||h||HK≤s,x∈X

{
√
||h||HK ||K(x,x)||}

≤ 2
√
sr

n−1

Because S and Si are symmetric, as a result, we have |φ(S)− φ(S(i))| ≤ 2
√
sr

n−1
.

Next, by the McDiarmid inequality, we have that for any t > 0, P (φ − E(φ(S)) ≥ t) ≤
exp(− t2n−1

2sr
), or equivalently, with probability 1− ζ, φ(S)−E(φ(S)) ≤ Tn(ζ). Consequently,

we have that with probability at least 1 − ζ, E(H−ε(Y f(X))) ≤ 1
n

∑n
i=1 H−ε(yif(xi)) +

10



E{φ(S)}+ Tn−1(ζ). This gives the first part of the proof.
In the second part, we need to bound E{φ(S)} by the Rademacher complexity. Define

S ′ = {(x′i, y′i); i = 1, ..., n−1} as an independent identical duplicate of S. Then we have that

E{φ(S)} = ES( sup
f∈HbK(s)

ES′ [
1

n

∑

S′

H−ε(y
′
if(x′

i))−
1

n

∑

S

H−ε(yif(xi))]|S)

≤ ES,S′ [
1

n

∑

S′

H−ε(y
′
if(x′

i))−
1

n

∑

S

Hε(yif(xi))]

= ES,S′,σ[
1

n

∑

S′

σiH−ε(y
′
if(x′

i))−
1

n

∑

S

σiHε(yif(xi))]

≤ 2Rn{Hb
K(s)}

Combining the first and second step, we have already proved first inequality in Lemma
6.

The third step is analogous to the first step. We will use the empirical Rademacher
complexity to bound the population Rademacher complexity.

This can be shown by defining ψ(S) = R̂n{Hb
K(s)} and it is easy to see |ψ(S)−ψ(S ′)| ≤

2
√
sr

n−1
by the definition of empirical Rademacher complexity. Then we can use McDiarmid

inequality again and get with probability at least 1 − ζ, ψ(S) − E(ψ(S)) ≤ Tn(ζ). At last,
we can combine this outcome and 7 by choose the confidence level to be 1− ζ/2 to get 8.

Then last step will be controlling the empirical Rademacher complexity for kernel learn-
ing. In particular, by Lemma 4.2 and Theorem 5.5 in Mohri et al. (2012), we can have that
R̂n{Hb

K(s)} can be upper bounded by the following inequality

R̂n{Hb
K(s)} ≤ Eσ[ sup

h∈HK ,||h||HK≤s

1

n

n∑

i=1

σih(xi)]

≤ rs√
n

Proof of Theorem 4

This proof is similar to proof of Theorem 5 in Rigollet and Tong (2011).
Statement (a) of this theorem is the direct Corollary of Theorem 3. One can see the proof

for Lemma 6 does not only work for H−ε, but also work for Hc with any c. In particular,
it works for ε. So define the events E1 and E2. Let Rj

H(f, c) = E(Hc(Y f(X))|Y = j), and

R̂j
H(f, c) be its empirical counterpart for j = ±1.

E−(f, ε) = {|R̂−1
H (f,−ε)−R−1

H (f,−ε)| ≤ κ√
n−1

, |R̂1
H(f,−ε)−R1

H(f,−ε)| ≤ κ√
n1

}
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E+(f, ε) = {|R̂−1
H (f, ε)−R−1

H (f, ε)| ≤ κ√
n−1

, |R̂1
H(f, ε)−R1

H(f, ε)| ≤ κ√
n1

}

By Theorem 3, P (E) ≥ 1− 2ζ for any fix f ∈ HK(s) and c ∈ R.
To study statement (b), we can decompose the left hand side of the inequality into three

parts and study them one by one. To simplify notations, we are going to omit norm upper
bound s in notation of F . For instance, we will write Fε(0) instead of Fε(0, s).

RH(f̂ , ε̂)− min
(f,ε)∈F(0)

RH(f, ε) = A1 + A2 + A3

Where

A1 = (RH(f̂ , ε̂)− R̂H(f̂ , ε̂)) + (R̂H(f̂ , ε̂)− min
(f,ε)∈F̂(κ)

RH(f, ε))

A2 = min
(f,ε)∈F̂(κ)

RH(f, ε)− min
(f,ε)∈F(2κ)

RH(f, ε)

A3 = min
(f,ε)∈F(2κ)

RH(f, ε)− min
(f,ε)∈F(0)

RH(f, ε)

Because we only focus on E1 = E+(f̂ , ε̂)
⋂
E+(argmin(f,ε)∈F̂(κ) RH(f, ε)), then we have

A1 ≤
2κ√
n

It is easy to see that A2 ≤ 0 for large enough n on E2 = E−(argmin(f,ε)∈F(2κ) RH(f, ε)).
The last part of the proof is to bound A3. To begin with the proof, let’s first introduce

a lemma.

Lemma 7. Let γs((α−1, α1)) = be a function from [0, 1]2 to inf
f∈F(0,s)

RH(f, ε). Then γε is

convex in [0, 1]2. Moreover, γs((α−1, α1)) ≤ γs((α
′
−1, α

′
1)) for α−1 ≥ α′−1 and α1 ≥ α′1.

Proof. By the convexity of loss function Hc, we have E(H(θc1+(1−θ)c2)(Y (θf1(X) + (1 −
θ)f2(X)))) ≤ θE(Hc1(Y f1(X))) + (1 − θ)E(Hc2(Y f2(X))) for all θ ∈ [0, 1]. By defini-
tion of infimum, for any µ > 0 and α1 = (α−1, α1), there exists a f1 ∈ F(0, s), such that
γs(α

1) > E(Hε(Y f1(X)))− µ, and for another α2, there exists a f2 as well.
By the argument above, we have γs(θα

1 + (1− θ)α2) ≤ E(H(θε1+(1−θ)ε2)(Y (θf1(X) + (1−
θ)f2(X)))) ≤ θE(Hε1(Y f1(X))) + (1− θ)E(Hε2(Y f2(X))) ≤ θγs(α

1) + (1− θ)γs(α2)− µ for
all positive µ. And it is easy to verify that θf1 + (1− θ)f2 and (θε1 + (1− θ)ε2) give satisfy
the constraints. So that γs is convex.

The second statement of the lemma is easy to see by noticing that HK(s)∩Fε(α′−1, α
′
1) ⊂

HK(s) ∩ Fε(α−1, α1) for α−1 ≥ α′−1 and α1 ≥ α′1.

The last part of the proof is from the convexity of γs. For a large enough n−1 and n1, we
will finally have κ√

n−1
< α−1,

κ√
n1
< α1). Let ν = ( κ√

n−1
, κ√

n1
).

Now by convexity of γs, we have γs(α)− γs(α− ν) ≥ ν · g and γs(α− ν0)− γs(α− ν) ≥
(ν − ν0) · g, where g in any member of the subgradiant of γ at α− ν. After combining these
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two inequalities, we have

γs((0, 0))− γs(α− ν) ≥ (α− ν) · (−g)

≥ min {
α−1 − κ√

n−1

κ√
n−1

,
α1 − κ√

n1

κ√
n1

}ν · (−g)

≥ min {
α−1 − κ√

n−1

κ√
n−1

,
α1 − κ√

n1

κ√
n1

}(γs(α− ν)− γs(α))

This will finally lead us to γs(α − ν) − γs(α) ≤ (γs(α) − γs(α − ν))
2 max { κ√

n−1
, κ√
n1
}

min {α−1,α1} ≤
2κ

min {α−1,α1}min {√n−1,
√
n1} . The last inequality is directly from the fact that f(x) ≡ 0 and

ε = 0 satisfies the constraints of problem (5) and gives a loss 1 (in the main work). Thus we
have A3 ≤ 4κ

min {α−1,α1}min {√n−1,
√
n1} .

Then the proof is finished by combining A1, A2, A3.

2 More on numerical study

For each simulation scenario, we give a plot of non-coverage rates for both −1 and 1 class.
We also give plots of the proportion of instances in which both classes have the desired test
non-coverage rates, e.g. 0.05 or smaller.
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Linear model with nonlinear Bayes rule
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Figure 1: Non-coverage rates for all the models. We can see that weighted CSVM has a
smaller non-coverage rates when sample size become larger, which explains why it has a
relatively larger ambiguity. It worth to note that when n = 80, weighted CSVM has a
significantly smaller non-coverage rates than plug-in methods and maintain a smaller (or
comparable) ambiguity.
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Figure 2: Success (to cover desired observations) rates for all the models. We can see that
weighted CSVM has a greater success rates when sample size become larger, which also
explains why it has a relatively larger ambiguity. It worth to note that when n = 80,
weighted CSVM has a much larger non-coverage rates than plug-in methods and maintain
a smaller (or comparable) ambiguity.
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Moderate dimensional polynomial boundary
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Figure 3: Non-coverage rates for all the models. We can see that weighted CSVM and kNN
has a smaller non-coverage rates when the other three have similar non-coverage rates. But
within those two groups, the proposed model always has a smaller ambiguity.
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Figure 4: Success rates for all the models. We can see that weighted CSVM and kNN has
a larger success rates when the other three have similar success rates. But within those two
groups, the proposed model always has a smaller ambiguity.
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Figure 5: Non-coverage rates for all the models. We can see that weighted CSVM and kNN
has a smaller non-coverage rates when the other three have similar non-coverage rates. But
within those two groups, the proposed model always has a smaller ambiguity.
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Figure 6: Success rates for all the models. We can see that weighted CSVM and kNN has
a larger success rates when the other three have similar success rates. But within those two
groups, the proposed model always has a smaller ambiguity..

References

Jing Lei. Classification with confidence. Biometrika, page asu038, 2014.

16



Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
MIT press, 2012.

Philippe Rigollet and Xin Tong. Neyman-pearson classification, convexity and stochastic con-
straints. Journal of Machine Learning Research, 12(Oct):2831–2855, 2011.

17


