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Improved Perfusion Pattern Score
Association with Type 2 Diabetes Severity
Using Machine Learning Pipeline: Pilot

Study
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Background: Type 2 diabetes mellitus (T2DM) is associated with alterations in the blood–brain barrier, neuronal damage,
and arterial stiffness, thus affecting cerebral metabolism and perfusion. There is a need to implement machine-learning
methodologies to identify a T2DM-related perfusion pattern and possible relationship between the pattern and cognitive
performance/disease severity.
Purpose: To develop a machine-learning pipeline to investigate the method's discriminative value between T2DM patients
and normal controls, the T2DM-related network pattern, and association of the pattern with cognitive performance/dis-
ease severity.
Study Type: A cross-sectional study and prospective longitudinal study with a 2-year time interval.
Population: Seventy-three subjects (41 T2DM patients and 32 controls) aged 50–85 years old at baseline, and 42 subjects
(19 T2DM and 23 controls) aged 53–88 years old at 2-year follow-up.
Field Strength/Sequence: 3T pseudocontinuous arterial spin-labeling MRI.
Assessment: Machine-learning-based pipeline (principal component analysis, feature selection, and logistic regression
classifier) to generate the T2DM-related network pattern and the individual scores associated with the pattern.
Statistical Tests: Linear regression analysis with gray matter volume and education years as covariates.
Results: The machine-learning-based method is superior to the widely used univariate group comparison method with
increased test accuracy, test area under the curve, test positive predictive value, adjusted McFadden's R square of 4%,
12%, 7%, and 24%, respectively. The pattern-related individual scores are associated with diabetes severity variables,
mobility, and cognitive performance at baseline (P < 0.05, jrj > 0.3). More important, the longitudinal change of individual
pattern scores is associated with the longitudinal change of HbA1c (P = 0.0053, r = 0.64), and baseline cholesterol
(P = 0.037, r = 0.51).
Data Conclusion: The individual perfusion diabetes pattern score is a highly promising perfusion imaging biomarker for
tracing the disease progression of individual T2DM patients. Further validation is needed from a larger study.
Level of Evidence: 1
Technical Efficacy: Stage 1
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Type 2 diabetes mellitus (T2DM) is a metabolic disorder
that increases the risk of cognitive impairment.1,2 T2DM

has been associated with alterations in the blood–brain

barrier,3,4 neuronal damage,5 and arterial stiffness,6 thus
affecting cerebral metabolism and perfusion.7 Impaired cere-
bral hemodynamics is considered a potential underlying cause
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of cognitive decline.8,9 Therefore, studies linking brain perfu-
sion with cognitive impairment in T2DM are crucial to reveal
the mechanism of cognitive deficits.

Studies using a variety of techniques that include phase-
contrast (PC) magnetic resonance angiograph (MRA), single-
photon emission computed tomography (SPECT), positron
emission tomography (PET), pulse arterial spin labeling
(PASL) magnetic resonance imaging (MRI), continuous arte-
rial spin labeling (CASL) MRI, and pseudocontinuous arterial
spin labeling (PCASL) MRI have investigated the effects of
T2DM on brain perfusion and made attempts to correlate
perfusion with cognitive performance.10–17 However, the
results from different studies have not been consistent. Most
studies rely on the comparison of the whole-brain perfusion,
gray matter (GM) perfusion, and several large regions of the
cerebrum10–15 for the discriminative value of brain perfusion
images. Recently, a couple of groups applied voxel-by-voxel
between-group comparisons by univariate statistical analy-
sis.16,17 The voxel-based techniques provided good insights in
perfusion deficits of different brain regions, but lacked separa-
tion of different covariance sources (eg, signal variation source
caused by cardiac pulsation), and hence may potentially have
poor discriminative value to distinguish T2DM patients from
controls at the individual level.

T2DM affects brain perfusion on a large volume of
brain regions instead of just isolated regions.11,15,16,18 Differ-
ent brain regions work in coordination even during its resting
state (without any explicit functional task) and the signals in
the coordinated regions fluctuate in synchrony.19 Separating
the brain images into different noise variation sources may
reflect the brain's underlying coordinated functional activities,
and therefore holds great potential to reveal the underlying
pathology. Machine-learning methods have been applied to
study brain structural changes (eg, brain atrophy) for diagno-
sis, and to investigate task-related responses using functional
MRI (fMRI).20–22 These methods have been rarely used to
investigate the resting brain functionality for disease effects.23

Here, we aimed to identify T2DM-related brain covariance
patterns with an improved discriminative value at the individ-
ual level by developing a method using pattern recognition
and machine-learning methods.

Materials and Methods
Subjects
In all, 131 subjects, 50–85 years old, were enrolled in this 2-year
study. All subjects signed an informed consent form (ICF) as
approved by the Institutional Review Board (IRB) at Beth Israel
Deaconess Medical Center. Of the 131 subjects, 73 subjects:
41 T2DM and 32 nondiabetic controls, were eligible and included
in the baseline analysis, according to the inclusion criteria of the
study. Of those, 42 subjects, 19 T2DM and 23 nondiabetic con-
trols, who completed the 2-year follow-up, were included in the
follow-up analyses. The inclusion and exclusion criteria for the

baseline study and rational for sample size are described in the
Appendix.

Experimental Protocol and Data Acquisition
The experimental protocol, including the screening protocol of sub-
jects, measurements of vital signs, walking test/gait assessment, a
fasting blood draw to measure hematocrit, glucose, insulin, and gly-
cated hemoglobin A1c (HbA1c) are described in the Appendix.

COGNITIVE ASSESSMENT. The cognitive assessment battery
is a standard battery of cognitive tests that evaluates specific
domains of cognition and daily living activities. It consists of
measures of learning and memory (Hopkins Verbal Learning
Test-Revised [HVLT-R] 24 and Mini-Mental State Examina-
tion [MMSE]), measures of executive function (Verbal Flu-
ency [VF],25 Trail Making [TM], Clock Drawing [CD]), and
measures of attention (Digit Span [DS]). HVLT-R includes a
Total Recall (HVLT: Total Recall, total number of list items
learned across trials), Delayed Recall (HVLT: Delayed Recall,
total number of list items recalled after the delay), and Reten-
tion (HVLT: Retention, percentage of items from Total
Recall that are subsequently recalled on Delayed Recall).
MMSE assesses cognitive mental states. VF semantic fluency
task requires the subject to generate items of a given semantic
category (eg, animals) for 1 minute. The dependent variable
for the fluency measure is the number of items generated for
the semantic task (eg, animals), which will be referred to as
VF: animals. Cognitive assessments were adjusted for educa-
tion years.

ASSESSMENT OF INSULIN RESISTANCE. The homeostatic
model assessment of insulin resistance (HOMA-IR) was cal-
culated as the product of fasting glucose times insulin levels
divided by 405.26 The model was also used to estimate
steady-state beta cell function (%B) and insulin sensitivity (%
S), as percentages of a normal reference population.

MRI ACQUISITION. All 73 subjects (41 T2DM patients and
32 controls) at baseline and 42 subjects (19 T2DM and 23 con-
trols) at follow-up were scanned at the same 3T, GE HDxt scan-
ner (GE Healthcare, Milwaukee, WI) using a receive-only
8-channel head array coil and a body transmit coil. Both baseline
and follow-up studies follow the same MRI acquisition protocols.
Brain 3D perfusion images were obtained using the PCASL27

with a 1.5-second labeling and 1.5-second postlabeling delay.
Additional reference images were obtained for absolute perfusion
quantification. Both perfusion images and reference images were
acquired with a 3D stack of spirals RARE imaging sequence (res-
olution: 4 × 4 × 4 mm3, matrix size: 64 × 64 × 40, TR: 5 sec,
acquisition time: 6 min, bandwidth: 62.5 kHz, three averages
per label-control pair). T1 anatomical images were acquired with
a 3D magnetization prepared rapid acquisition gradient echo
(MP-RAGE) sequence (resolution: 0.94 × 0.94 × 3 mm3,
matrix size: 256 × 256 × 52).
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Image Preprocessing
The quantitative perfusion image was calculated for each subject as
previously described.28 Perfusion images were normalized to the a
priori gray matter template using the SPM8 software package
(http://www.fil.ion.ucl.ac.uk/spm/). T1 anatomical images served as
intermediate images for perfusion image normalization, as they allow
better alignment with the template. They were segmented by the
"new segment" algorithm,29 which output gray matter images as well
as other images in the original image space. Subtraction images
(between label and control) from PCASL acquisition were coregis-
tered to the gray matter images from the segmentation and then the
gray matter images were normalized to the gray matter template.
The combined warping parameters from the coregistration and nor-
malization were used to warp the quantitative perfusion maps from
each subject to the template space. Quantitative perfusion images
were smoothed using a Gaussian kernel with full-width at half-
maximum (FWHM) of 8 mm. Image method development and
analysis was performed by Y. Chen, who had no access to the docu-
ment with clinical characteristics, cognitive performance, and mobil-
ity performance scores until the individual disease scores at baseline
and follow-up were calculated.

Logistic Regression (LR) Classification Pipeline
To avoid overfitting an LR model, we performed L2-regularized LR
with a grid search to tune the regularization term, λ. λ was searched
with the range [0 1] with step size 0.1. The L2-regularized LR
model was used to distinguish T2DM patients from controls. Three
measures: accuracy, area under the curve (AUC), and positive predic-
tive value (PPV) were used as the performance measures for the LR
model. Accuracy is evaluated as the ratio of correct numbers of pre-
diction to the total number of predictions. AUC is calculated as the
area under receiver operating characteristic curve. PPV is evaluated
as the ratio of correct numbers of positive prediction to the total
numbers of positive prediction.

The details of the classification pipeline were as follows. We
used stratified k-fold (k = 10) cross-validation to evaluate the perfor-
mance of the LR model. All subjects were divided into k folds, in
which each fold has similar distribution of class labels (4 or
5 T2DM patients and 3 or 4 controls). For the ith partition, the ith
fold served as the test set and the remaining k-1 folds served as the
training set. First, each 3D image from a single training subject was
rearranged into a one-dimensional vector (dimension: number of
voxels), and all the training subjects form a two-dimensional matrix
(dimension: number of training subjects × number of voxels) that
serves as the training dataset. The training data were demeaned for
each voxel. Then principal components analysis (PCA) was per-
formed on the training set to reduce the dimension and separate the
covariant sources of data. From all the demeaned training data, PCA
extracted the principal components (ie, the covariant noise sources).
PCA also outputs the scores of each subject, which are the corre-
sponding weights of the principal components. To remove the noisy
components, 90% of total variance was used to select the number of
principal components for further analysis. The full feature set is the
set of potential candidate features for the LR classification model,
including the PCA scores from the selected PCA components and a
few basic variables (age, gender, hematocrit, and hypertension). The
basic variables were selected based on the literature-reported factors

affecting perfusion. Second, feature scaling was applied to allow for
faster convergence of the classification algorithm. For feature scaling
of each feature, the mean of the feature was subtracted from each
subject's feature value and then divided by the standard deviation of
the feature. Third, the diabetes-related features were extracted from
the full feature set using a backward stepwise search. Leave-one-out
cross-validation accuracy served as the model selection criteria within
the search. Fourth, an LR classification model was built using the
selected features. Fifth, performance of the built LR model was eval-
uated using the test set. The test dataset was formed from the sub-
jects in the test fold, also as a 2D matrix (dimension: number of test
subjects × number of voxels). The test set was projected to the
selected principal components to derive the corresponding PCA
scores by following the procedure the same as performed in the
training dataset. Feature scaling on the test set was performed using
the mean and standard deviations of the training set. Note that PCA
and LR classification model building were performed on only the
training set to keep the test set independent of the training set. The
major processing steps of the classification pipeline, including PCA,
feature selection, and LR classification model, is illustrated in Fig. 1.

Each 10-fold stratified cross-validation corresponds to a ran-
dom 10-partition of the entire dataset. For each partition, we derived
three performance measures (accuracy rate, AUC, and PPV). Conse-
quently, one 10-fold cross-validation generates 10 values for each
performance measure. We ran 100 iterations of the 10-fold cross-val-
idation procedure and therefore output 1000 performance values for
each measure.

Pattern Generation and Pattern Score
T2DM-RELATED COVARIANCE PATTERN. We followed the
LR classification pipeline to obtain the selected features and
built an LR model using the selected features. The only dif-
ference from the LR classification pipeline was that all sub-
jects were included to generate the covariance pattern. The
T2DM-related pattern is Pattern = wPC · PC, where PC is
the selected principal components, and wPC is the weight vec-
tor associated with the selected principal components from
the model. To visualize the pattern, we reshaped the vector
back to the 3D image space.

To identify the reliable T2DM-related covariance pat-
tern, a bootstrap estimation procedure was used to approxi-
mate the standard deviation of the population. We first
generated the T2DM-related covariance pattern using all the
T2DM patients and controls. Using the bootstrapping resam-
pling method with replacement, we produced 500 surrogate
datasets based on the original dataset while maintaining the
same number of T2DM patients and controls. For each data-
set, one T2DM-related covariance pattern was generated.
From all 500 datasets, we calculated the standard deviation
image using 500 bootstrapped covariance patterns. Z-scores
were calculated using the ratio of the T2DM-related network
pattern generated from the original dataset to the standard
deviation image. A threshold of jzj > 3.27 corresponding to a
two-tailed P < 0.001 was used to identify the voxels that sig-
nificantly contribute to the T2DM-related pattern. For the
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clusters formed by connected voxels, a threshold for cluster
size was calculated to correct for multiple comparisons. All
clusters with size smaller than the threshold were removed.

T2DM-RELATED PATTERN SCORES AT BASELINE. Subject-
specific T2DM-related pattern scores at baseline were obtained
using the LR model with the selected features. Let x be the vec-
tor with all the selected features from a subject and w be the
weight vector derived from the LR model. The subject’s
T2DM-related pattern score was defined as Score = w · x.

T2DM-RELATED PATTERN SCORES AT THE 2-YEAR
FOLLOW-UP. We calculated the T2DM-related pattern
scores of the 42 subjects who were scanned at the 2-year
follow-up. The pattern scores of the subjects at the follow-up
were calculated as if the follow-up scans were images from
the test dataset for the baseline training dataset.

Simple LR Classification Model
In the proposed classification pipeline, we performed PCA and fea-
ture selection techniques to select the useful features out and built
the classification model using the selected features. It is worth inves-
tigating whether the PCA and feature selection steps could improve
the performance of the LR model. For comparison purposes, we
generated a simple LR classification model using the imaging fea-
tures from all the voxels in the brain and the same basic variables
(age, gender, hematocrit, and hypertension). Feature scaling was also
performed before building the LR model.

Univariate Analysis
Univariate analysis is still the most frequently used image analysis to
derive the disease-related pattern and discriminative value of an
imaging contrast (eg, perfusion in the current project). For the uni-
variate analysis, perfusion images were modeled as a multiple linear
regression on a voxel-by-voxel basis using SPM8. Age, hematocrit,
and hypertension were included as covariates. Gender was not
included as a covariate because gender was significantly correlated
with hematocrit, and hematocrit but not gender was correlated with

global perfusion in our dataset. The voxel-level significance threshold
was set for P < 0.01, while the cluster-level threshold was set for
P < 0.05 in order to minimize any false-positive findings because of
the multiple comparisons. The cluster with the most significant
P value (ie, the smallest corrected cluster-level P value) from univari-
ate analysis was used as the target region. The average perfusion on
the target region was one of the features used to distinguish between
T2DM and control group.

Comparison of the Proposed LR Pipeline, Simple LR
Classification Model, and Univariate Analysis
To compare the performance of our proposed LR pipeline against
the performance of the simple LR classification method and univari-
ate analysis, we calculated the performance measures (accuracy rate,
AUC, and PPV) of the simple classification model and univariate
analysis for the same 100 10-folds (1000 partitions). For univariate
analysis, the regional perfusion value on the target region was cor-
rected for the effects of age, hematocrit, and hypertension. A cutoff
perfusion value that maximizes the sum of training accuracy and
training PPV was derived. For the test set, the regional perfusion
value was also corrected for the covariates, and the cutoff perfusion
value was used to calculate performance measures.

The effect sizes for the proposed LR pipeline and univariate
analysis were compared. Because of the difference in numbers of
independent variables between the two models, the adjusted McFad-
den’s R squares30,31 were calculated to evaluate the overall effect size.
McFadden’s R square was chosen as a measurement of the effect size
because it can serve as a uniform measurement for both logistic
regression and multiple linear regression. Specifically, the adjusted
McFadden’s R square is defined as follows:

R2
McFadden = 1−

logðLcÞ−k
logðLnull Þ ð1Þ

where k is the number of predictors, Lc denotes the (maximized)
likelihood value from the fitted model, and Lnull denotes the corre-
sponding value for the null model, ie, the model with only an inter-
cept and no covariates.

FIGURE 1: Schematic of the logistic regression classification pipeline.
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Correlation Analysis
ASSOCIATION OF T2DM-RELATED PATTERN SCORES
AND DISEASE VARIABLES. After obtaining the individual
T2DM-related pattern scores, we calculated the sample Pear-
son correlation coefficient, r, between the pattern scores and
each of the clinical variables (including variables for disease
severity, cognitive functions, and mobility functions). The
difference in GM volume between T2DM and control groups
could potentially account for the perfusion differences, and
hence pattern score differences between the two groups, GM
volume was further included as a covariate in the partial cor-
relation analysis.

ASSOCIATION OF LONGITUDINAL T2DM-RELATED
PATTERN SCORE CHANGE AND CHANGE OF DISEASE
VARIABLES. In order to investigate whether the longitudinal
T2DM-related pattern score change is related to the longitu-
dinal change of cognitive and mobility performance, post-hoc
correlation analysis was performed. Partial correlation coeffi-
cients were calculated between pattern score change and each
of the baseline variables (including cognitive, mobility, and
disease severity variables) in order to investigate which base-
line variables can predict the longitudinal pattern score
change. GM volume and education years were used as covari-
ates. Education was included as an additional covariate
because it was significantly different between the T2DM and
control groups at 2-year follow-up (P = 0.012).

Results
Table A1 (see Appendix) summarizes subjects’ demographic
and clinical characteristics, gait results, and cognitive scores at
baseline and at the 2-year follow-up. At baseline, no differ-
ences between age, gender, education, and hematocrit values

were found between the two groups. The T2DM group had
a higher prevalence of hypertension (P ≤ 0.001), body mass
index (BMI) (P = 0.007), fasting glucose (P ≤ 0.001),
HbA1c (P ≤ 0.001), insulin level (P = 0.003), and HOMA-
IR (P ≤ 0.001) compared to controls. At the 2-year follow-
up, the significant differences between the T2DM and con-
trol groups remained similar in demographics and clinical
characteristics, while the years of education became
significant.

For the proposed LR classification pipeline, the grid search
of the regularization term showed that λ = 0.5 gave the best per-
formance for our dataset. Using this regularization term, the test
accuracy rate, test AUC, and test PPV for the proposed LR clas-
sification pipeline were 0.77 ± 0.15, 0.85 ± 0.15, and
0.82 ± 0.16, respectively, across 1000 different partitions. In
contrast, the test accuracy rate, test AUC, and test PPV for the
simple LR classification model were 0.51 ± 0.10, 0.58 ± 0.22,
and 0.53 ± 0.07 and for the univariate analysis were
0.73 ± 0.22, 0.73 ± 0.21, and 0.75 ± 0.20, respectively. The
comparison of the performance measures between the proposed
LR classification pipeline, simple LR classification method, and
univariate analysis across the same 1000 different partitions are
shown in Fig. 2a. We further compared the mean and standard
deviation of each performance measure between the proposed
LR classification pipeline, simple LR classification model, and
univariate analysis using nonparametric Wilcoxon signed-rank
tests. For all three performance measures: the proposed LR clas-
sification pipeline produced significantly larger means than the
univariate analysis and simple LR classification model; the uni-
variate analysis produced significantly larger means than the sim-
ple LR classification model; and the proposed LR classification
pipeline produced significantly smaller standard deviation than
the univariate analysis (see chart in Fig. 2a). The statistical

FIGURE 2: (a) (top) Average test accuracy, AUC, and PPV over 100 iterations of 10-fold cross-validation for simple logistic regression (LR),
proposed LR, and univariate analysis. The error bars stand for standard errors. For test accuracy, AUC, and PPV, logistic regression
produces significantly higher values than univariate analysis; (bottom) mean and standard deviation of test accuracy, AUC, and PPV for
logistic regression and univariate analysis. (b) T2DM-related perfusion network pattern (shown as red-yellow color overlaid on brain axial
slices) identified using machine-learning methods (principal component analysis, logistic regression classification, and backward stepwise
feature selection).
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difference of the three performances between the three methods
can also be observed in Fig. 2a. Specifically, the proposed LR
pipeline outperformed the univariate analysis in accuracy, AUC,
and PPV measures by 4%, 12%, and 7%, respectively, and the
univariate analysis outperformed the simple LR method in accu-
racy, AUC, and PPV measures by 22%, 15%, and 22%,
respectively.

Adjusted McFadden’s R square for the proposed LR
classification pipeline was 0.315, which was an increase of
24% from the R square of 0.254 for the univariate analysis.
The proposed LR classification pipeline can predict a much
higher proportion of variability than the univariate analysis.
This indicates that the features from the proposed LR pipe-
line can better explain the difference between T2DM patients
and controls.

A T2DM-related covariance pattern was derived
using bootstrap estimation procedure to show the effect of
T2DM on perfusion. Figure 2b displays the T2DM perfu-
sion pattern overlaid on brain axial slices. The T2DM-
related perfusion covariance pattern appears in regions
including basal ganglia, insula, limbic, temporal lobes, and
regions of prefrontal cortex (Table 2). We found that these
individual covariance pattern scores were significantly cor-
related with demographic and clinical characteristics,
including insulin, HbA1c, fasting glucose, HOMA-IR,
BMI, and systolic blood pressure (SBP) (Table 1). In addi-
tion, the individual pattern scores were also significantly
correlated with mobility and cognitive functions: gait
speed, HVLT: total recall, HVLT: delayed recall, and VF:
animals. Even after removing outliers from our correlation
calculations, the results remained significant (P < 0.05,
jrj > 0.3) (Fig. 3). The significance and correlation coeffi-
cients are listed in Table 1. Only subjects whose demo-
graphic and clinical characteristic, mobility, and cognitive
variables occurred less frequently (at large values or small
values) were considered outliers. Subjects with abnormal
pattern scores (eg, one subject had abnormally high pattern
scores) were not considered as outliers initially. However,
the association remained significant after removing the sub-
ject with the abnormal high pattern score. For the group of
T2DM only, the covariance pattern scores were not associ-
ated with any of the above-mentioned variables.

For all subjects, the longitudinal covariance pattern score
change was marginally associated with change of HbA1c between
baseline visit and 2-year follow-up (P = 0.067, r = 0.30), and
not associated with baseline cholesterol (P = 0.19, r = 0.22). In
T2DM subjects only, the longitudinal covariance pattern score
change was correlated with the change of HbA1c between base-
line and 2-year follow-up (P = 0.0053, r = 0.64) (Fig. 4a). The
association remained significant after excluding the subject with
an abnormally high pattern score (P = 0.011, r = 0.62) and after
excluding the subject with extremely large change (almost 4%) of
HbA1c value (P = 0.023, r = 0.56). In T2DM subjects only, we
also found an association between the longitudinal covariance
pattern score change and baseline cholesterol level (P = 0.037,
r = 0.51) (Fig. 4b). This result remained significant after exclud-
ing the subject with an abnormal high pattern score
(P = 0.049, r = 0.50).

Discussion
The individual perfusion pattern score is a highly promising
perfusion imaging biomarker for tracing the disease progres-
sion of subjects with T2DM. We have shown that the pro-
posed LR discrimination pipeline increased test accuracy, test
AUC, and test PPV by 4%, 12%, and 7%, compared to the
traditional univariate method. From the proposed method,
we have derived a T2DM-related perfusion covariance pat-
tern, including basal ganglia, insula, limbic, temporal lobes
and regions of prefrontal cortex, and perfusion covariance pat-
tern score for each individual subject. The perfusion pattern
scores were associated with disease severity, mobility, and cog-
nitive functions in the entire cohort at baseline. The change
of the pattern scores at the follow-up was associated with the
HbA1c change and the baseline cholesterol level within
T2DM patients.

The proposed LR classification pipeline improved the
performance measures dramatically compared to the simple
LR method. Specifically, the accuracy rate of the simple LR
method was only around random chance (0.51 ± 0.10),
whereas the accuracy rate of the proposed LR classification
pipeline was 0.77 ± 0.15, indicating that PCA feature reduc-
tion and LR feature selection are crucial steps for improved
performance. Compared to the performance measures from

TABLE 1. Significance and Correlation Coefficients for Association of Individual T2DM-Related Network Pattern
Scores With Basic Disease Variables, Mobility Function, and Cognitive Functions

Insulin HbA1c
Fasting
glucose HOMA-IR BMI SBP

Gait
speed

HVLT:
total
recall

HVLT:
delayed
recall VF: animal

P value 0.0015 0.00077 0.0053 0.00026 0.00021 0.0055 0.0031 0.00099 0.0051 0.0000076

r value 0.38 0.39 0.33 0.43 0.43 0.35 –0.36 –0.38 –0.33 –0.50
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the univariate analysis, the performance measures from the
proposed LR classification pipeline were not only significantly
improved, but also were more consistent even with different
training samples (shown as significantly reduced standard
deviation). This suggests that the proposed LR classification
pipeline is more generalizable and captures more disease-
related information.

The association between T2DM and changes in perfusion
pattern in the insula region is consistent with a previous 15O
PET longitudinal study that reported perfusion changes in the
same area.32 Additionally, T2DM has been associated with
changes in perfusion patterns in the basal ganglia,17 and the
changes of perfusion in limbic, temporal lobes, and prefrontal
regions have been linked to the changes of cerebral glucose
metabolism in prediabetes and T2DM with the use of 18F fluor-
odeoxyglucose PET.33 The decreased perfusion in temporal
lobes, medial frontal, and inferior frontal regions are also in
accordance with reduced functional connectivity or fluctuation
amplitude using resting-state fMRI.34,35

The change of the pattern scores between baseline
and follow-up was significantly associated with the HbA1c
change even for the T2DM subjects only. It is worth not-
ing that the follow-up subjects were completely indepen-
dent samples, which was not involved in the LR
discrimination model-building process. Therefore, in some
extent, the longitudinal study can validate the performance
of the pattern scores that were derived from the LR model
using only the subjects at baseline. The association result
between HbA1c change and the change of pattern scores
indicates that T2DM affects the brain perfusion with a
fixed spatial pattern. Resting-state fluctuation amplitude in
the middle temporal gyrus has been reported to inversely
correlate with HbA1c.35 Our longitudinal study adds to

TABLE 2. Anatomical Regions of T2DM-Related
Perfusion Network Pattern

Anatomical locationsa %Cluster %Region

Basal Ganglia

Caudate_R 0.54 53.12

Putamen_R 1.10 100.00

Putamen_L 0.89 85.63

Pallidum_R 0.29 100.00

Pallidum_L 0.26 87.37

Frontal Lobe

Frontal_Inf_Orb_R 1.42 80.67

Frontal_Inf_Orb_L 1.22 70.12

Frontal_Inf_Oper_R 0.96 66.69

Frontal_Inf_Oper_L 0.41 38.15

Frontal_Inf_Tri_R 1.37 61.83

Frontal_Inf_Tri_L 1.31 50.34

Frontal_Med_Orb_R 0.50 56.78

Frontal_Mid_Orb_R 0.58 55.76

Frontal_Mid_Orb_L 0.50 54.28

Frontal_Sup_Orb_R 0.48 47.14

Frontal_Sup_Orb_L 0.56 56.70

Precentral_R 1.72 49.30

Rectus_R 0.33 43.36

Rectus_L 0.39 44.13

Rolandic_Oper_R 1.29 94.21

Rolandic_Oper_L 0.88 86.46

Insula

Insula_R 1.71 93.67

Insula_L 1.02 53.44

Limbic

Amygdala_R 0.25 95.97

Amygdala_L 0.12 52.27

Cingulum_Ant_R 0.66 48.82

Cingulum_Ant_L 0.47 32.79

Hippocampus_R 0.83 84.78

Hippocampus_L 0.51 53.22

Cingulum_Mid_R 1.01 44.62

ParaHippocampus_R 0.84 71.73

Cingulum_Post_R 0.14 41.49

Cingulum_Post_L 0.17 36.29

Temporal Lobe

Temporal_Inf_R 2.69 73.24

Temporal_Inf_L 1.78 53.84

TABLE 2. Continued

Anatomical locationsa %Cluster %Region

Temporal_Mid_R 4.47 98.39

Temporal_Mid_L 4.72 92.65

Temporal_pole_Mid_R 0.61 50.13

Temporal_pole_Mid_L 0.36 45.96

Temporal_Sup_R 3.19 98.56

Temporal_Sup_L 1.99 84.02

Temporal_Pole_Sup_R 0.81 59.04

Temporal_Pole_Sup_L 0.43 32.61

aLabeling of the anatomical regions are based on the Auto-
mated Anatomical Labeling (AAL) atlas. %Cluster indicates
the percentage of each cluster that falls within the defined
region, %Region indicates the percentage of each defined
region that falls within the cluster. The listed anatomical
regions are either “%Cluster” > 1% or “%Region” > 30%.
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the literature that the change of longitudinal perfusion pat-
tern score closely follows the change of HbA1c in T2DM
subjects. This finding also reinforces the importance of
HbA1c as a significant predictor of brain function, which
extends to the literature that glycemic control may poten-
tially prevent a decline of brain function.

We found that the baseline cholesterol level was a signifi-
cant predictor of the longitudinal change of perfusion pattern
scores. Our study confirms that a very high cholesterol level is
detrimental to brain function, which lends a potential

intervention point for T2DM. Previous cross-sectional studies
have supported high cholesterol level as a risk factor to T2DM.
An earlier structural study has linked T2DM to reduced hippo-
campal and prefrontal volumes and established a negative associ-
ation between obesity and hippocampal volume.36 BMI has
been associated with T2DM.37 Considering the positive correla-
tion between BMI, obesity, and cholesterol level,38,39 the litera-
ture is joining together to support the benefit of maintaining a
right level of cholesterol for reduced risk for T2DM. We did
not observe the association between longitudinal perfusion

FIGURE 3: Significant association (P < 0.05, jrj > 0.3) of perfusion covariance pattern scores with (a) insulin level, (b) HbA1c, (c) fasting
glucose, (d) HOMA-IR, (e) BMI, and (f ) SBP, (g) gait speed, (h) HVLT: total recall, (i) HVLT: delayed recall, (j) VF: animals, even after
removing the outliers.

FIGURE 4: Greater longitudinal increase in T2DM-related pattern scores at the 2-year follow-up is associated with (a) more increase in
HbA1c and (b) higher baseline cholesterol. T2DM = type 2 diabetes mellitus; HbA1c = glycated hemoglobin A1c.
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change and change of HbA1c, and between longitudinal perfu-
sion change and baseline variables using the traditional univariate
method.40 Our results highlight that the advanced machine-
learning-based methods on brain perfusion images can improve
sensitivity for characterization of disease status and detection of
risk factors for T2DM.

The study is not without limitations. The machine-
learning-based pipeline was applied to a not-so-large sam-
ple size. However, we strived to reduce the potential over-
fitting problems in the dataset with k-fold cross-validation
and feature selection. We applied the derived model to a
completely independent dataset to assess the ability of our
model for detecting the association of longitudinal change
and change of disease-related variables. We expect that
the model will lose the capability to track the longitudinal
change if the model overfits the baseline data to a large
extent. However, we found significant correlation between
longitudinal change of perfusion scores and disease sever-
ity with an even smaller sample size at the follow-up.
These longitudinal results indicate that the individual
covariance pattern scores may serve as a T2DM bio-
marker, and that maintenance of blood sugar and reduc-
tion of cholesterol may mitigate cognitive decline and
mobility impairment of T2DM. The covariance pattern
scores hold great potential to monitor the longitudinal
disease progress of T2DM. Our T2DM subjects were ran-
domly drawn from those diagnosed with T2DM and trea-
ted with oral agents and/or insulin for more than 5 years
and had similar MMSE, HVLT: Retention, TM com-
pared to controls. The derived model should only reflect
the variability of the T2DM subjects within the range of
cognitive states and may not represent the global patterns
of T2DM in a wide range of cognitive states. A study
with larger sample size is warranted to validate the gener-
alizability of the derived LR model and clinical signifi-
cance of the promising biomarker.

In conclusion, we developed a machine-learning-based
method for discriminating T2DM from controls and identifying
a T2DM-related pattern using perfusion images measured with
the ASL technique. The developed discrimination method
increased test accuracy, test AUC, and test PPV by 4%, 12%,
and 7%, compared to the traditional univariate method. We also
derived a T2DM-related perfusion pattern. More important, the
T2DM-related individual perfusion pattern scores were signifi-
cantly associated with disease severity, as well as with mobility
and cognitive function. The T2DM-related pattern scores hold
great promise to become a biomarker to trace the progression of
T2DM at the individual level.
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APPENDIX
Subject Inclusion and Exclusion Criteria at Baseline
Subjects with T2DM were treated for diabetes for more than
5 years. Nondiabetic controls were age- and sex-matched with
normal fasting glucose and HbA1c. Inclusion criteria were: age
50–85, diagnosis of T2DM and treated for more than
5 years, nondiabetic controls, hypertensive (BP > 140/90
mmHg and/or treated for hypertension) and normotensive
(BP < 140/90 mmHg and no medical history of hypertension).
Exclusion criteria were type 1 diabetes, heart disease, major sur-
gery in the previous 6 months, stroke, carotid artery stenosis,
liver or renal insufficiency, severe hypertension
(SBP > 200 mm Hg or diastolic blood pressure [DBP] > 10
mm Hg or taking three or more antihypertensive medica-
tions), seizures, malignant tumors, recreational drug or alcohol
abuse, BMI >40 kg/m2, dementia, or subthreshold MMSE
score (≤24). MRI exclusion criteria included incompatible
metal implants, pacemakers, and claustrophobia. T2DM and
control subjects were consecutively recruited from advertise-
ment in the community. We used frequency quota sampling to
match age (±5 years) and sex distribution between the groups.

Subjects were excluded from the baseline analyses based on
the following reasons: consent withdrawal (n = 11), lost to
follow-up (n = 10), MMSE ≤ 24 (n = 3), stroke/TIA (n = 2),
arrhythmia (n = 4), active cancer (n = 2), smoking (n = 1), heart
failure (n = 1), MRI exclusion (n = 1), renal insufficiency
(n = 1), T2DM < 5 years (n = 3), uncontrolled hypertension
(n = 3), unidentified neurological disorders (n = 2), poorly con-
trolled glycemia (n = 4), adverse events (n = 1), and incomplete
datasets (n = 9). For the 2-year follow-up analyses, subjects were
excluded for: consent withdrawal (n = 5), lost to follow-up
(n = 25), and dementia (n = 1).

Rationale for Sample Size
Sample size was calculated based on our preliminary data that
indicated that with 60 subjects (30 T2DM patients and 30 con-
trols) we will have 87% power to detect differences of
10.8 mL/100 mg/min in global perfusion measured by PCASL
between T2DM patients (41.8 ± 12.8 mL/100 mg/min,
HbA1c > 7%) and controls (52.6 ± 14.2 mL/100 mg/min,
HbA1c < 7%) based on two-sided t-test and alpha = 0.05.

Experimental Protocol
Subjects were screened using a medical history questionnaire,
autonomic function questionnaires, ECG, and laboratory
measures (blood, glucose, and renal panels). After enrollment,
subjects came for their 2-day inpatient visit at the Beth Israel
Deaconess Medical Center (BIDMC) clinical research center
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(CRC). On Day 1 patients had vital signs measured including
SBP and DBP, and anthropometric measurements including
height, weight, BMI, and a cognitive assessment battery test-
ing. On Day 2, subjects had a fasting blood draw for hemato-
crit, glucose, insulin, and HbA1c, cognitive assessment,
walking test, and MRI scans. Two years later, subjects came
for a follow-up visit including the exact same measurements
and tests. Cognitive and functional assessments were done by
the research fellows trained in these procedures and by the
study Principal Investigator (V.N.). This was an observational
study and there was no blinding to the study procedures.

Walking Test/Gait Assessment
Subjects completed two 6-min walking tests on a 75-m course of
an 80 x 4 m indoor hallway. Subjects were instructed to walk at
their natural and comfortable pace. The time taken to complete
each 75-m-length course as well as the total distance walked were
recorded. No assistant devices were used for ambulation. Gait
speed was calculated by dividing distance (m) by time (s).
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