Towards Run Time Estimation
of the Gaussian Chemistry Code for SEAGrid Science Gateway

Angel Beltre
Department of Computer Science
Binghamton University SUNY
Binghamton, New York, U.S.A.
abeltrel@binghamton.edu

Sudhakar Pamidighantam
Science Gateways Research
Center, Pervasive technology Institute
and Department of Chemistry
Indiana University
Bloomington, Indiana, U.S.A.
pamidigs@iu.edu

ABSTRACT

Accurate estimation of the run time of computational codes has a
number of significant advantages for scientific computing. It is re-
quired information for optimal resource allocation, improving turn-
around times and utilization of science gateways. Furthermore, it
allows users to better plan and schedule their research, streamlining
workflows and improving the overall productivity of cyberinfras-
tructure. Predicting run time is challenging, however. The inputs to
scientific codes can be complex and high dimensional. Their rela-
tionship to the run time may be highly non-linear, and, in the most
general case is completely arbitrary and thus unpredictable (i.e., sim-
ply a random mapping from inputs to run time). Most codes are not
so arbitrary, however, and there has been significant prior research
on predicting the run time of applications and workloads. Such pre-
dictions are generally application-specific, however. In this paper,
we focus on the Gaussian computational chemistry code. We char-
acterize a data set of runs from the SEAGrid science gateway with a
number of different studies. We also explore a number of different po-
tential regression methods and present promising future directions.

CCS CONCEPTS

« Applied computing — Chemistry; « Computing methodolo-
gies — Feature selection; Cross-validation.

KEYWORDS

Science Gateways, SEAGrid, Gaussian, Runtime Prediction, Machine
Learning

ACM Reference Format:

Angel Beltre, Shehtab Zaman, Kenneth Chiu, Sudhakar Pamidighantam,
Xingye Qiao, and Madhusudhan Govindaraju. 2019. Towards Run Time Es-
timation of the Gaussian Chemistry Code for SEAGrid Science Gateway.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

PEARC 19, July 28-August 1, 2019, Chicago, IL, USA

© 2019 Association for Computing Machinery.

ACMISBN 978-1-4503-7227-5/19/07...$15.00

https://doi.org/10.1145/3332186.3338101

Shehtab Zaman
Department of Computer Science
Binghamton University SUNY
Binghamton, New York, U.S.A.
szaman5@binghamton.edu

Xingye Qiao
Department of Mathematical Sciences
Binghamton University SUNY
Binghamton, New York, U.S.A.
qiao@math.binghamton.edu

Kenneth Chiu
Department of Computer Science
Binghamton University SUNY
Binghamton, New York, U.S.A.
kchiu@binghamton.edu

Madhusudhan Govindaraju
Department of Computer Science
Binghamton University SUNY
Binghamton, New York, U.S.A.
mgovinda@binghamton.edu

In Practice and Experience in Advanced Research Computing (PEARC ’19),
FJuly 28-August 1, 2019, Chicago, IL, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3332186.3338101

1 INTRODUCTION

One of the main challenges in HPC environments, accessed via
science gateways, is determining the amount of computational re-
sources needed for the cost-efficient execution of scientific work-
flows. This particular challenge takes the form of minimizing the
makespan of the current job set. Such minimization requires the
ability to accurately estimate how long jobs will run. In addition to
overall system optimization, accurate run time estimation benefits
individual users in a number of ways. For example, a user may want
to allocate more resources for a job that will run longer, perhaps at a
higher cost. Likewise, in some instances, alonger execution time may
be tolerable, in which case the user may wish to reduce resources,
which may also reduce the cost. In order to decide, however, the user
needs an accurate estimate of the run time. Execution time estimation
is a well studied problem for various scientific and large scale soft-
ware similar to Gaussian [9] [11] [12] [20]. Execution time research
has been done using hardware performance counters, statistical and
algorithmic analysis, and more recently various machine learning
approaches. For example, some research seeks to investigate how
a particular code will execute on different hardware. Increased use
of shared HPC and cloud [23] [24] computational services has led to
higher availability of data, suggesting machine learning approaches
as a viable option for execution time prediction.

In this paper, we explore learning models based on Gaussian ap-
plication input parameters to derive the run time prediction. We
assume that the architectural variations will also affect run time, but
are left for the models to recognize this natively from the dataset.
We used a data set of runs available from the SEAGrid science gate-
way [8]. There are about 783 registered users in the gateway and for
the period 2016-2018, the gateway served 94,868,631 XSEDE services
units (26,091,516 CPU hrs) running 77,464 jobs. During this period
the community published 52 peer reviewed publications citing the
gateway for resources and services. Our study of the input route
keywords, system, and derived features shows that a full assessment
of such input features is critical to enable the best way to answer
fundamental questions when predicting run times. This paper is or-
ganized as follows. In section 2 we provide a high level background

https://doi.org/10.1145/3332186.3338101
https://doi.org/10.1145/3332186.3338101

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

of the science and the software and its input features. The data used
in the learning and its processing is described in section 3. In section
4 a statistical analysis of data is provided to explore the component
representations. Regression based learning is presented in section
5. Section 6 provides related work and a discussion of current and
remaining challenges is presented in 7. The the paper is concluded
in section 8 with a conclusion and outlook.

2 BACKGROUND
2.1 High level background

Quantum chemistry (QC) techniques provide a way to compute the
energetics of molecular systems at unit kcal/mole accuracy, which
is critical in applications such as drug design, material design and
discriminating analysis of natural phenomena at the molecular level.
Such computations are also embedded as part of a workflow that
provides parameters for lower level empirical force field (FF) models
or integrated into complex layered models that combine QC models
with parameterized QC or empirical FF models to either speedup
the runs or address larger systems. The requirement to estimate
run time for such scenarios is absolutely essential to ensure that the
compute allocations are efficiently used by the individual researcher
and by the community in a community oriented infrastructure such
as a science gateway. For the workflow a sum total run time (over
all tasks) needs to be requested and an estimate for individual tasks
is needed for both validation of the resource availability as well as
efficient processing. The usual gross over-estimation is detrimental
in these scenarios as the execution may fail to be launched due to
larger than needed request or delayed due to the time needed for
reserving resources that are at the end may not be needed/used.

2.2 Description of Gaussian Software [10]

Here we provide only a very brief introductory description of the
algorithmic operation of the Gaussian software just to provide a
glimpse of the complexity as an elaborate one is out of scope. Gauss-
ian software provides two ways to describe molecular systems and
compute their properties. 1. It solves Schrodinger’s equation (SE)
for molecular systems for an optimized electronic wavefunction and
the total energy of the system. 2. Alternatively, it optimizes electron
density by solving the Kohn-Sham equations. The density can be
constructed from wavefunctions to start the initial guess density.
Various methods provide approximations to this calculation as the
analytical solutions for SE do not exist beyond the simplest of sys-
tems such as dihydrogen molecule. An iterative approach is adopted
to self consistently update a guess wavefunction (one electron in
a field of others) using approximations in both constructing the
wavefunctions as well as the Hamiltonian, the energy operator. The
guess wavefunction is constructed as a linear combination of atomic
basis functions and optimized using empirical approximate methods
such as Huckel [13] or Zero Differential Overlap (ZDO) [14] between
atomic functions. This results in an conditional eigenvalue problem,
which requires orthonormalization of the wavefunction, and the
diagonalization of the Fock (energy operator) matrix, which consists
of integro-differential terms from the Hamiltonian due to the inclu-
sion of one and two electron interaction terms and the differentials
with respect to spatial coordinates. The diagonalization results in the
eigenvalues (energies) and eigenvectors (the molecular orbitals) that
describe the molecular system. The scaling of these algorithms varies
as NlogN to N7 depending on how many electronic configurations
(required for excited states) are considered, where N is the number

Beltre et al.

of basis functions. The improvements of the wavefunction results
in lower energy and the iterations continue until the energy can not
be reduced further. This procedure occurs at a given molecular ge-
ometry (3D configuration of atoms) and can be repeated at modified
geometric configurations and the energy (and the wavefunction)
can be further optimized with respect to the geometry. Broadly, the
approximations include those in the construction of initial wave-
function in terms of number and types of Gaussian functions to be
used to describe the systems and in constructing the Hamiltonian
in terms of number and type of operators used.

2.2.1 Gaussian Input. A Gaussian input file consists of a Route

section containing keywords that describes the computation, Title

section, and the Molecule specification that defines the molecular
configuration. In addition, a system specification section (aka link

0 section) that may describe computer parameters such as memory,

processors and a checkpoint file for data reuse with route options for

restart or data reuse. The Route section specifies the desired calcula-
tionorjob type suchas energy at the given configuration (single point
or SP), geometry optimization (Opt), reaction path (IRC), harmponic
normal mode analysis and thermochemical analysis (Frequency),
and the model chemistry (for exampe G1-G4 etc). Different job types
can be linked using link keywords or multiple route keywords to cre-

ate a chain of executions, for example, calculating frequency after a

geometry optimization run or frequency analysis after SP calculation.

These chained and multistep runs specified in the input file lead to

successive computations. We plan to address the advanced execution

cases in future work. The following are some of the route keywords
we extracted from the Gaussian input files for our calculations:

o Basis sets. These are mathematical functions that describe the
atomic electronic wavefunctions that are combined to form molec-
ular orbitals. There are many approximations of these Gaussian
functions that represent an exponential function called Slater type
orbital that come in many variations: Double-Zeta, Triple-Zeta,
Quadruple-Zeta, Polarized Sets, Split-Valence, and Diffuse Sets
etc., that differ in the number of exponents and corresponding

coefficients of a Gaussian function of the form e=¢°" for the com-
binations needed to provide the approximations.

Methods. Quantum chemical calculations are conducted under
various theoretical models such as Molecular Orbital Theory, Den-
sity Functional Theory, Perturbation Theory, Coupled Cluster
theory, and provide different levels of accommodating electron
correlation and inclusion of excited electronic states.

Solvents. Molecular systems can be studied in gas phase or in a
solvent again using various models to represent the solvent.
Time-dependent. The fundamental solution for these systems comes
from solving the Schrodinger’s or Kohn-Sham’s equation which
has two forms — a time independent and a time dependent form.
The default form is time independent. However, an input meth-
ods keyword to specify time dependent model can be set with
variations and additional options.

o Intrinsic Reaction Coordinate. It is a calculation that enables the
computation of a chemical reaction that connects the transition
state geometries of the reaction and ground state geometries of
the reactant and product using a normal mode following intrinsic
reaction coordinate (IRC) calculation.

Optimize. The program can optimize the geometry of a molecule
(3D configuration) for which the molecular configuration can
be defined in three different types of coordinate systems: (1) a z-
matrix, which provides a internal coordinate system starting with

Towards Run Time Estimation of the Gaussian Chemistry Code for SEAGrid

areference atom (2) redundant or mixed system, and (3) Cartesian
system with various constraints.

3 SIMULATION DATASET

3.1 DataOrigin

3.1.1 Input Data Collection: SEAGrid [8] is a science gateway built
to execute experiments such as computational chemistry, molecular
dynamics, and fluid dynamics. Some of the XSEDE HPC systems
used by SEAGrid include the following: Bridges, Comet, Wrangler,
Stampeed2 (current), and Blacklight, Trestles, Gordon, and Stampede
(past). Gaussian jobs run through the SEAGrid gateway are logged
with the input along with the job metadata files. For this analysis
we used the Gaussian dataset collected based on runs performed
on SEAGrid Gateway from 2005 to 2015 under GridChem middle-
ware [21],[18]. We will consider the data collection that changed
under newly deployed Apache Airavata middleware after 2015 in
the future.

In Table 1, we present the route keywords, system, and derived
features as the independent variables used in our learning models. As
discussed previously in the Background section, route keywords are
Gaussian input file instructions that specify the job type on Gaussian.
In addition to the route keywords, we also obtain system features of
the cluster running Gaussian application. Also, we include derived
features computed from the molecular specification section of the
Gaussian input file.

The system and derived features are the following:

o Normal Termination. It is the status message in the output (log) of
an an experiment and is used to validate the successful completion
of a Gaussian run. If it is not found in the log, a restart run with
reuse of data from the first could have been executed to complete
the run and a combined run time from both runs is considered.

Keywords/
Features Name Type
normal
.. Boolean
termination
System -
system Categorical
Features -
run time Float
numprocs Numeric
basis set Categorical
method Categorical
restricted
Route . Boolean
Kevwords unrestricted
Y solvent Categorical
time dependent Integer
Intrinsic reaction
. Boolean
coordinate
optimize Boolean
charge Numeric
Derived multiplicity Numeric
Features atoms Numeric
Electrons Numeric

Table 1: Keywords and Features: A subset of keywords use in
the dataset. Most of the keywords are extracted from the input file
provided by the user for the Gaussian execution. Route Keywords are
the actual inputs that Gaussian needs for execution. Derived features
are not explicitly in the Gaussian input or SEAGrid database, but were
computed from those to provide minimal information about the initial
molecular structure.

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

o System. It represents the hardware system, typically identified by
aname, in which the execution of the experiment was carried out.
The hardware systems change as the resource providers retire and
introduce new systems for service.

o Charge. The software can treat neutral or charged molecular sys-
tems, or radical ions and species, with different total electronic
spin.

o Atoms. Molecules consist of atoms and the number and type of
atoms critically influence the run time.

e Electrons. The number of electrons is dependent on the atoms and
their atomic number and the overall charge.

e Run Time. The run time is the independent variable, which is the
property to be estimated and is influenced by many parameters
described above as well as the hardware and network properties
and the environment in which the Gaussian software is executed.

3.2 Pre-processing

3.2.1 Missing values. Due to the wide-ranging capabilities of Gauss-
ian, our collected data has different route keyword specifications
requiring extensive pre-processing. In order to use the data in our dif-
ferent machine learning models, our data pre-processing techniques
include filling missing data with default values for categorical, and
binary or boolean variables. We set their respective default values
as described in the Gaussian user manual [71.

0 200 400 600 800 1000 1200 1400

Run Time (Mins)
Figure 1: Box plot of run times.
3.2.2 Remove Erroneous Data. In Figure 1, we show a box plot of
the run times. It highlights three cases that are highly unusual with
run times between 1 month and up to 571 days. These values could
be from compounded runs with multiple restarts or suffering con-
vergence errors due to the user misconfiguration or inherent in the
system itself. These data points are omitted and will be reconsidered
in future.

3.2.3 Data Coding. Various route and system keywords are cat-
egorical in nature, which poses a significant issue when we wish
to compare runs with different categorical inputs. In order to be
consistent throughout our regression models, we encoded our cate-
gorical route keywords in one-hot vector [36]. We used the one-hot
encoding technique to create a binary column for all our categorical
values or a binary representation of their different options. In Table 1,
we list all the categorical and Boolean route keywords (i.e., basis sets,
methods, and solvents) as well as the system keywords for which
we used one-hot encoding.

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

4 EXPLORATORY DATA ANALYSIS (EDA)

——- Log-Normal
——- Weibull
0.04 1
0.03 1
2
‘a
f=
@
[a]
0.02
#
1
i
i
i\
0.014 |u
i
['y
Ul
[HIN
1 S
.
0.00 L ; e . : ; ;
0 100 200 300 400 500 600 700

Run Times
Figure 2: Run Time: Histogram of the density of run times for 700
minutes with the Log-Normal and Weibull distributions after MLE.
The univariate analysis shows the majority of the run times are below
700 minutes. Hence, we truncate the histogram and distributions to
better illustrate the trends.

We initially performed some exploratory data analysis and sta-
tistics to extract information on the characteristics of the dataset.
In Table 2, we show the standard central tendency measures, and
generated the run time histogram in Figure 2. We notice that even
though most of the run times between 2 to 200 minutes, the mean
is 270.2 minutes. The standard deviation of 606.54 minutes also sug-
gests that the run time is heavily tailed distribution in our current
dataset. We also see that the change in range increases by only 134
minutes from 25 % to 75% of the data, furthering corroborating that,
a small number of high time consuming runs make up the majority
of the run time in the dataset.

We performed maximum likelihood estimation (MLE) on the run
times with Weibull [5]and Log-Norm [29] distributions to further
analyze the run time trends in our dataset. Following the MLE, we
obtain the log-normal distribution,

k —log2 (—x;xo)
= exp) >
s(x—xo)V2mr 2s

with s = 2.06, xo = 1.95, and k = 55.19. We also obtain the Weibull
distribution,

fx) (1)

(52 Cel-(2) e

with s = 0.54, xo = 2, and k = 152.49. We also performed the
Kolmogorov-Smirnov (KS) [16] Test to judge the goodness of fit
of these distributions. The KS Statistic for the run times with the
above Log-Norm distribution is 0.033 with a p value of 5.67x1073¢.
The KS statistic for the run times and the Weibull distribution given
is 0.051 with a p-value of 9.72 x 1078, Both distributions fit well
to the run time data. Both the MLE and KS Test were performed
using the SciPy library [15]. As we use the route keywords from the
Gaussian input files as independent variables, we run some statistics
on the basis sets and methods used in our dataset to understand

Beltre et al.

their distribution. The basis sets and methods are integral to the
description of the job type in Gaussian. Hence, we generated the
histograms for the basis sets and methods in our data. In Figure 3a,
we can observe that the top 5 most frequent basis sets contain more
than 70% of the data. Similarly, in Figure 3b, we show that the default
method b3lyp makes up 43% of the dataset.

5 REGRESSION METHODS

The Gaussian route keywords determine the type and number of
calculations being performed by the software. Therefore, we can map
our run time prediction problem as a canonical regression problem,
using the route keywords, derived keywords and system keywords
as the input features. Since, we assume no prior knowledge as to the
correlation of the input features, we tried a number of different re-
gression models, results from which are presented in the Table 3. We
used 10-fold cross-validation. All the experiments in Section 5.1 and
5.2 were performed using using scikit-learn [19] and TensorFlow [3].
Default values were used for any configuration of hyper-parameters.

5.1 Linear Methods

We initially performed linear regression on the entire dataset and
used the results as the baseline. As can be seen in Table 3, the er-
ror was generally high. The initial linear models achieved over 530
minutes of Root Mean Square Error (RMSE). To identify other linear
models that can fit the data, we also tried Ridge Regression (RR) [33]
and LASSO regression (LLR) [32] both yielded a RMSE of 532.19
minutes and 541.68 minutes respectively. RR calculates error with
the sum-square of residuals where as, LLR calculates it with the sum
of absolute values of the residuals. Both RR and LLR perform within
similar bounds as to those of LR. Given that we obtain similar results
for the previous linear regression models, we execute Elastic-Net
Regression (ENR) [31] model, which combines both minimization
techniques from RR and LLR. In Table 3, ENR performance degraded
from 28 to 40 minutes above the other linear regression models. Since,
there was not any improvements in the linear models, the linear com-
bination of route keywords, system and derived features as presented
is not able to predict the run time. We observe that there is no sig-
nificant improvements in any of the linear models, and an average
performance degradation of about 21 minutes for LLR and ENR.

5.2 Nonlinear Methods

Given the high RMSE of the linear methods, we next tried a num-
ber of nonlinear methods. The nonlinear models include K-Nearest
Neighbors (k-NN) [35], Regression Tree (RT) [37], and a Deep Neural
Network (DNN) [1]. DNNs are able to model complex non-linear rela-
tionships and the layered structure is able to compose features from
alower hidden layer. Our DNN was created using the Tensorflow
Estimator API [2], had 3 hidden layers, with 1024, 64, and 32 nodes
respectively. We used the Sigmoid activation function per layer to in-
troduce non-linearity and batch normalization per layer to improve
training efficiency. We used a 32-element mini batch technique dur-
ing training alongside the Adam Optimizer and a learning rate of
€=1073. We also used dropout regularization of 0.7 per layer as well.

The k-NN method identifies k number of instances in the dataset
for a particular new data instance. The respective mean is taken and
used as a prediction from the k neighbors identified. In the particular
k-NN implementation we use the default metric where k=5 and the
distance measurement of neighbors used is Minkowski distance [34],
which is a generalization of both Euclidean distance and Manhattan

Towards Run Time Estimation of the Gaussian Chemistry Code for SEAGrid

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

Features Data Points | Mean | STD | Minimum | 25% | 50% 75% | Maximum
Electrons 37,034 195.45 | 184.64 0 104 168 238 10,877
Atoms 37,034 37.13 24.06 0 19 36 49 315
Run Time (Minutes) 37,034 277.21 | 606.54 2.00 14.90 | 64.90 | 270.79 24,804.28

Table 2: Statistics of current dataset for 2 independent variables (i.e., atoms and electrons) and the dependent variable (i.e., run
time). This graphs only shows a subset of parameters as the other parameters did not provide any statistical significance.

12000 A
10000 A
g 8000 1
f =4
0)
=
86000‘
&
4000 A
2000 A
04
2283333355223 ¢888823¢8
m - 903 oco NS oodsLZN3ZIadN 2
LM S5 d ENaz &S Y o
oY g ool t o+t o« ¢ OOt m o
© o+ 5+ F= T8 Y9 ™2 00 + o
=+ 4+ 2% oo d o o
o L0+ 0 = T o5 2 > 0
0 o m + Mmoo+ o ©
sgég e
o —
© o
©
(a) Basis Set

Frequency

16000 -
14000 A
12000 A
10000 A
8000 -
6000 -
4000 -
2000 A
0<
QW o N XX O0CW0WanNooWOUanXxa
SEEFRdaSG8 8 842802
5]
845183 22 g g $m a8 5%
2 € E T a 25 €
S € IS a
©
o
(b) Method

Figure 3: Histograms of the top 20 most frequent items (a) basis sets and (b) methods. (a) presents the frequency of basis sets from 106 for
6-31+g(2d.p) to 13163 for 6-31g. In (b), we have the smallest methods ranging from 190 (x3lyp) to 16200 (b3lyp) instances.

Type Model RMSE(Min)
Linear Regression (LR) 533.06
Linear Ridge Regression (RR) 532.19
LASSO Linear Regression (LLR) 541.68
Elastic Net Regression (ENR) 567.35
K-Nearest Neighbors (KNN) 494.09
Non-Linear | Regression Tree or CART (RT) 540.16
Deep Neural Network (DNN) 482.85
Ensemble Random Forest (RF) 478.24

Table 3: Linear, Non-Linear, and Ensemble RMSE.

distance. In Table 3, we show that among the nonlinear subset of
models, DNN outperforms k-NN by 12 minutes. However, there was
a performance improvement of over 40 minutes for both k-NN and
DNN when compared to linear regression models. The regression
tree model selects the best points to split the data to minimize the
cost function. The default cost metric for RT is the mean squared
error. Moreover, the results shown in Table 3 point to the RT model
under-fitting the data.

The different hyper-parameters in the non-linear model did not
have a large impact when fitting the data. We tuned the topology of
DNN to identify if deep, wide, or a combination of both topologies
will yield better results. Our results show that changing the topology
of DNN does not yield better results.

Finally, we performed regression evaluations with Random Forest
(RF) [30]. RF is a set of decision trees. Each decision tree considers a
random subset of route keywords and features. In Table 3, RF outper-
forms all the chosen models. However, since its performance is fairly
close to the performance of the DNN, we make use DNN for all the ex-
periments in section 5.3. Unlike linear and non-linear models, RF was
able to make a slightly better generalization over the entire dataset.

5.3 Data Subsetting

Regression over the entire data set performed unsatisfactorily. In
order to better understand why this was the case, we decided to focus
on specific subsets of the data. Some of the subsets are based on the
dependent variable (run time), and thus could not be used in actual
prediction; since the run time is not available beforehand. Thus, we
present those results solely as an exploratory result. Other subsets
are based on the input features, and thus could be used in practice.

5.3.1 Run Time Percentiles. In this analysis, we attempt to ascertain
whether or not it was a particular subset of the jobs, based on run
times, that was particularly hard to predict, resulting in high RMSE.
So, we ran regression on runs in the 25th (below 14.9 minutes), 50th
(below 64.9 minutes), and 75th (below 270.75 minutes) percentiles as
shown in Table 4. When including only runs in the 25th percentile,
we achieved RMSEs of 4 minutes for LR and DNN respectively. For
runs in the 50th percentile, we achieved RMSEs of 17 minutes and 16
minutes for LR and DNN respectively. For runs in the 75th percentile,
we achieved RMSEs of 63 minutes and 90 minutes for LR and DNN
respectively.

5.3.2 Mode of Atoms. In order classify the importance of the differ-
ence class of inputs, we created a new subset by holding the number
of atoms constant in the data set. We computed the mode of the
number of atoms of the runs in the data set, and ran regression on
those runs separately. We observed that there was no significant
improvement. In Table 4, we show that the standard deviation, for
the subset based on the mode of the number of atoms, is 9% higher
than the whole dataset (see Table 2). The subset of mode of the atoms
represented only 3% of the dataset, which shows that the values
have a high variation over a small subset of the data. Moreover, the
mode presented an RMSE increase of 10% and 20% in comparison

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

Beltre et al.

. Run Time (Minutes) RMSE (Minutes)
Dataset Datapoints Median | Mean | STD | LR DNN
25th Percentile 9259 6.45 7.2 3.64 4 4
50th Percentile 18518 14.9 20.26 | 16.99 17 16
75th Percentile 27777 30.12 60.43 66.99 63 90
Atoms Mode 1290 16.21 229.15 662 591 583
Electrons Mode 1071 13.57 39.62 | 70.26 | 73 77
Atoms and Electrons Mode 354 7.87 12.02 12.72 13 15
Constant Route Keywords 548 81.16 130.55 | 146.06 | 106 109

Table 4: Data Sub-setting: A summary of data subsets based on percentiles, mode of derived features, and Route keywords.

to the entire dataset for LR and DNN respectively. We were unable
to reduce the prediction error compared to the standard derivation.
Since the molecular specification may provide more quantitative
information for certain categorical features, further specialization
of our input features may be required to improve the prediction.

5.3.3 Mode of Electrons. We also tried holding the number of elec-
trons constant. We used the subset where the number of electrons
equalled the mode of the number of electrons over the entire data
set, in order to maximize the number of data points in our subset. We
obtained 1071 records, which is 17% fewer records than the mode
of Atoms. In Table 5.3, we present that the standard deviation for a
constant number of Electrons is 70.26 minutes. Also, we present that
the RMSE is 73 minutes and 77 minutes for LR and DNN respectively.
For both linear and non-linear models, we were able to improve
over RMSE. The mean for Electrons subletting is 39.62, which is
substantially lower than the mean yielded by subletting Atoms. As
a result, we observe that holding Electrons constant based on the
mode improves the overall accuracy of the model slightly, indicating
possible predictive power for the derived keywords in our input.
This is also in line with theorist’s intuition that electrons are more
fundamental and influence the runtime more directly.

5.3.4 Mode of Atoms and Electrons. Finally, we held both the num-
ber of atoms and the number of electrons constant. Using the mode
of the combination of both, in Table 4, we show that a small subset
of 354 records were captured when keeping both derived features
constant. The overall RMSE time was reduced to 13 minutes and 15
minutes for LR and DNN respectively. These RMSEs are lower than
previous results presented, but given that it is not below the standard
deviation of about 12.72 minutes, it shows that both models cannot
demonstrate the ability to learn.

5.3.5 Constant Route Keywords. The results shown by the preced-
ing experiments were not sufficient to enable the models to learn.
Next, we performed regression by keeping the route keywords con-
stant and allowed derived keywords to change. By keeping the route
keywords constant, we extracted a data subset of 548 records. In
Table 4, we show that the RMSE is 106 minutes and 109 minutes for
LR and DNN respectively. The standard deviation for the data subset
demonstrates the ability to learn. However, as we carried out further
explorations to overfit the model with the training set, both models
were unable to improve learning.

5.4 Feature Specification

The preceding results suggest that the input features taken directly
lack predictive power. In other words, there is simply not enough
discriminating information for the machine/algorithm to learn from
our set of independent variables. Further investigation showed that,
indeed, using the route keywords, job meta data, and derived features
by themselves do not provide sufficient explanatory information. For

example, the mode of all the input features combined appeared 300
times in the dataset and the run times of varied from 4.83 to 125.4 min-
utes with a variance of 619.38. Thus, regardless of the run time pre-
dicted for that run using our current features, the error will be high.

This implies that additional quantitative description of the actual
molecular and other feature specifications are important. This is not
surprising, but our exploratory results confirm this. Future work will
examine the molecular specification in terms of adjacency matrices
and quantitative description of features such as basis functions in
terms of primitives and method in terms of algorithm complexities
as independent variables.

6 RELATED WORK

Predicting the execution time of large scale programs has been an
longstanding area of computer science research. Our investigation
aims to identify useful subset of input parameters to estimate run
time of such applications. Various statistical and machine learning
methods have been proposed to model execution time and under-
stand the features contributing to run times. Huang et al. [12] intro-
duced a Sparse POlynomial REgression (SPORE) methodology, to
build accurate prediction models and select the most relevant subset
among a few hundred input features using a sparse and non-linear
model by determining input features that dominate the execution
time. The model was tested with image data with highly varying run
time, but seemingly homogeneous inputs and was able to achieve
state of the art accuracy.

The underlying architecture of the system can have a significant
effect on execution time of programs. Finkler and Mehlhorn [9] ana-
lyzed the problem of predicting the run time of the same program on
varying micro-architectures. The two main methods discussed for
analysis are regression analysis and operation counting. Regression
analysis of programs required obtaining the constant values of the
asymptotic behavior of the algorithms involved. Even for simple
cases, the architecture, caches, and pipelines caused a large variance
in run time. The systematic errors inherent in the model are diffi-
cult to overcome. Operation counting is a technique that counts the
number operations and by proxy the number of cycles a program
requires. This method requires low-level access to the programs and
involved overloading various CPU operations in order to track and
predict run time.

In recent years machine learning approaches to run time calcu-
lations for large programs have been proposed. Gupta et al. [11] [6]
used a variant of decision trees named Predicting Query Runtime
(PQR) tree to predict the execution time of database queries. The
author predicted the execution time of database queries with vari-
ous load conditions and differing input features of the queries that
have a simplistic relation with execution time. For coarse-grained
approximations of run time, decision trees have been shown to per-
form well, if the relation between the inputs to the PQR and the

Towards Run Time Estimation of the Gaussian Chemistry Code for SEAGrid

run-time is sufficiently simple. Matsunaga and Fortes [17] build on
top of the PQR tree proposed by Gupta et al. to predict the run time
of bioinformatics applications BLAST and RAXML using machine
learning techniques. They also explored the use of two other learning
algorithms, support vector machines (SVM) and k-nearest neighbor,
to predict execution time. They proposed the Predicting Query Run
time Regression (PQR2) algorithm, a generalization of the classifi-
cation of tree approach of PQR, to produce fine-grained predictions.
PQR2 consists of a tree with each leaf containing a regression that is
chosen from a pool. The linear and SVM regressions provided good
results as a result of the linear relationship between the length of
the input sequence and execution time.

Modelling execution time of disparate programs in varying sys-
tems and architectures is a difficult task due to the multiplicity of
factors that may affect running time. Yet, as many large scale pro-
grams share similar underlying algorithms, they lend themselves
to a similar course of study. Popescu et al. [20] proposed a method-
ology to predict the run time of a class of large scale iterative al-
gorithms. Predicting the execution time for Gaussian calculations
have thus far depended on the algorithm and CPU performance
counters and not the input parameters. Anthony et al. [4] proposed a
linear performance model (LPM) to model the run time of the Gauss-
ian Computational Chemistry Software for Hartree-Fock (HF) and
hybrid Hartree-Fock for Density Functional Theory methods. The
number of computation cycles is calculated using the instruction
count and L1 and L2 cache misses for varying architecture. The cy-
cle count of HF and hybrid HF/DFT calculations primarily depend
on the computation of two-electron repulsion integral (ERI) and
the PRISM algorithm used to compute the integral. Two basis sets
are used for bench-marking. Gaussian contains more sophisticated
computational methods based on HF with varying computational
complexity. The model relies on hardware performance counters and
costly cache simulation mechanism to model run time. As computa-
tion based research is driving scientific discoveries, robust, efficient
and easy to use infrastructure is getting significant attention from
the community. Estimating run time of scientific experiments is
important to utilize the cluster resources better in a multi-tenant
setup. Cloud computing research [25] [26] [27] [28] has shown how
modern cloud technologies can be useful in setting up multi-tenant
cloud environment to host scientific computing workloads [22].

7 CHALLENGES

Based on our experience of conducting this research study, we
present the challenges in predicting the run time of Gaussian Chem-
istry code.

(1) Challenges with the dataset. The current state of dataset extrac-
tion process can be tuned to enable a seamless data extraction
ecosystem. One of the main challenges faced by the current data
extraction process is the number of heterogeneous systems in
which the data is generated. In order to enhance the platform
and create new results, storing the input file directly in the data-
base will enable the users to extract more data and re-engineer
features from the large sets.

Challenges in distributed systems and shared clusters. The data
represented here spans a decade or longer and during this time
many HPC systems that were in production have been retired.
So, the results need to be mapped to the current systems in op-
eration to be useful. The same application is also deployed in
different systems and the recommendation is different for each.
Users may want a total time to solution, wherein run time is

—
)
~

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

only one component. We have other solutions, such as queue
wait time prediction for a HPC systems that need to be combined
and presented for all possible systems to the users. Software
upgrades and new revisions can also change the performance,
run times, and also introduce novel functionality. Prediction
networks trained previously may not provide accurate estima-
tions of run times for the current state of the software and target
infrastructure.

8 CONCLUSION AND OUTLOOK

This paper offers insights based on statistical analyses to aid the
understanding of Gaussian input parameters. We use domain spe-
cific knowledge to characterize the Gaussian’s specific tasks. We
were able to reduce the feature space by using traditional statisti-
cal methods. We show that the qualitative feature representation
is insufficient to provide reliable learning by the models we used.
Different regression models were not effective in developing insight
on the data. In addition, the results show that models that are used to
extract higher order embedded features from the dataset performed
worse than the models that do not use any hyper-parameters, except
RF. As our findings led us to the exploration of basis sets, the number
basis-functions may need to be utilized for a better estimation of run
time along with the detailed description of the molecular structure.
The different RMSE computed for the various models highlights the
need for better extraction of derived features from input parameters,
and the optimization of the different hyper-parameters.

This work was primarily focused on the exploration of the Gauss-
ian input file parameters directly. Our future work will investigate
the runtime prediction using quantitative molecular structure in
terms of adjacency matrices, basis sets as primitive functions and
other derived quantitative data based on the input route keywords
as well as system parameters such as processed instructions per unit
time, memory bandwidth and I/O performance for more comprehen-
sive learning.

REFERENCES

[1] 2015. TensorFlow:DNN Regressor. (2015). https://www.tensorflow.org/versions/
r1.9/api_docs/python/tf/estimator/DNNRegressor ~ Software available from
tensorflow.org.

[2] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, and Andy Davis year=2015. [n. d.]. TensorFlow:
DNNRegressor. ([n. d.]). https://www.tensorflow.org/versions/r1.9/api_docs/
python/tf/estimator/DNNRegressor Software available from tensorflow.org.

[3] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th { USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16). 265-283.

[4] Joseph Antony, Alistair P Rendell, Rui Yang, Gary Trucks, and Michael J Frisch.
2011. Modelling the runtime of the gaussian computational chemistry application
and assessing the impacts of microarchitectural variations. Procedia Computer
Science 4 (2011), 281-291.

[5] QuangV Cao. 2004. Predicting parameters of a Weibull function for modeling
diameter distribution. Forest science 50, 5 (2004), 682—685.

[6] Dheeraj Chahal, Benny Mathew, and Manoj Nambiar. 2018. Predicting the
Runtime of Memory Intensive Batch Workloads. In Proceedings of the 47th
International Conference on Parallel Processing Companion (ICPP ’18). ACM, New
York, NY, USA, Article 45, 8 pages. https://doi.org/10.1145/3229710.3229756

[7] Roy Dennington, Todd A. Keith, and John M. Millam. 2016. GaussView Version
6. (2016). Semichem Inc. Shawnee Mission KS.

[8] Ye Fan, Sudhakar Pamidighantam, and Warren Smith. 2014. Incorporating job
predictions into the SEAGrid science gateway. In Proceedings of the 2014 Annual
Conference on Extreme Science and Engineering Discovery Environment. ACM, 57.

[9] Ulrich Finkler and Kurt Mehlhorn. 1996. Runtime prediction of real programs
on real machines. (1996).

[10] M.J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, and M. A. Robb et al. 2016.
Gaussian 16 Revision B.01. (2016). Gaussian Inc. Wallingford CT.

https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/estimator/DNNRegressor
https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/estimator/DNNRegressor
https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/estimator/DNNRegressor
https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/estimator/DNNRegressor
https://doi.org/10.1145/3229710.3229756

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

Chetan Gupta, Abhay Mehta, and Umeshwar Dayal. 2008. PQR: Predicting query
execution times for autonomous workload management. In 2008 International
Conference on Autonomic Computing. IEEE, 13-22.

Ling Huang, Jinzhu Jia, Bin Yu, Byung-Gon Chun, Petros Maniatis, and Mayur Naik.
2010. Predicting execution time of computer programs using sparse polynomial
regression. In Advances in neural information processing systems. 883891.

E. Hiickel. 1931. Zeitschrift fiir Physik 70 (1931).

Frank Jensen. 1999. Introduction to Computational Chemistry. Chichester: John
Wiley and Sons.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001-. SciPy: Open source scien-
tific tools for Python. (2001-). http://www.scipy.org/ [Online; accessed <today>].
Frank J Massey Jr. 1951. The Kolmogorov-Smirnov test for goodness of fit. Journal
of the American statistical Association 46, 253 (1951), 68-78.

Andréa Matsunaga and José AB Fortes. 2010. On the use of machine learning
to predict the time and resources consumed by applications. In Proceedings of
the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing. IEEE Computer Society, 495-504.

Ye Fan Ning Shen and Sudhakar Pamidighantam. 2014. E-Science infrastructures
for Molecular Modeling and Parametrization. Journal of Computational Science
5(2014), 576-589. Issue 4. https://doi.org/10.1016/j.jocs.2014.01.005

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python . Journal of Machine Learning Research 12 (2011), 2825-2830.
Adrian Daniel Popescu, Andrey Balmin, Vuk Ercegovac, and Anastasia Ailamaki.
2013. PREDICcT: towards predicting the runtime of large scale iterative analytics.
Proceedings of the VLDB Endowment 6, 14 (2013), 1678-1689.

Chona Guiang Sudhakar Pamidighantam Rion Dooley, Kent Milfeld and Gabrielle
Allen. 2006. From Proposal to Production: Lessons Learned Developing the
Computational Chemistry Grid Cyberinfrastructure. Journal of Grid Computing
4(2006), 195 4AS208.

Pankaj Saha. 2018. Exploring Resource Fairness and Container Orchestration in
a Cloud Environment for Scientific Computing Workloads. Ph.D. Dissertation. State
University of New York at Binghamton.

P. Saha, A. Beltre, and M. Govindaraju. 2018. Exploring the Fairness and
Resource Distribution in an Apache Mesos Environment. In 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD), Vol. 00. 434-441.

Beltre et al.

https://doi.org/10.1109/CLOUD.2018.00061

Pankaj Saha, Angel Beltre, and Madhusudhan Govindaraju. 2018. Tromino:
Demand and DRF Aware Multi-Tenant Queue Manager for Apache Mesos Cluster.
In 2018 IEEE/ACM 11th International Conference on Utility and Cloud Computing
(UCC). IEEE, 63-72.

Pankaj Saha, Angel Beltre, and Madhusudhan Govindaraju. 2019.
Scylla: A Mesos Framework for Container Based MPI Jobs. (5 2019).
https://doi.org/10.6084/m9.figshare.8156468.v1

Pankaj Saha, Angel Beltre, Piotr Uminski, and Madhusudhan Govindaraju. 2018.
Evaluation of Docker Containers for Scientific Workloads in the Cloud. In Proceed-
ings of the Practice and Experience on Advanced Research Computing. ACM, 11.
Pankaj Saha, Madhusudhan Govindaraju, Suresh Marru, and Marlon Pierce. 2016.
Integrating Apache Airavata with Docker, Marathon, and Mesos. Concurr. Comput.
: Pract. Exper. 28, 7 (May 2016), 1952-1959. https://doi.org/10.1002/cpe.3708
Pankaj Saha, Madhusudhan Govindaraju, Suresh Marru, and Marlon Pierce. 2017.
MultiCloud Resource Management using Apache Mesos with Apache Airavata.
(12017). https://doi.org/10.6084/m9.figshare.4491629.v2

S. C. Schwartz and Y. S. Yeh. 1982. On the distribution function and moments
of power sums with log-normal components. The Bell System Technical Journal
61,7 (Sep. 1982), 1441-1462. https://doi.org/10.1002/j.1538-7305.1982.tb04353.x
Scikit-learn. 2007. "3.2.4.3.1. - sklearn.ensemble.RandomForestRegressor —
scikit-learn 0.20.3 documentation”. (2007). "Accessed: 2019-4-10".

Scikit-learn. 2007. sklearn.linear_model ElasticNet — scikit-learn 0.20.3
documentation. (2007). Accessed: 2019-4-10.

Scikit-learn. 2007. sklearn.linear_model.Lasso — scikit-learn 0.20.3 documentation.
(2007). Accessed: 2019-4-10.

Scikit-learn. 2007. sklearn.linear_model.Ridge — scikit-learn 0.20.3 documentation.
(2007). Accessed: 2019-4-10.

Scikit-learn. 2007. sklearn.neighbors.DistanceMetric — scikit-learn 0.20.3
documentation. (2007). Accessed: 2019-4-10.

Scikit-learn. 2007. sklearn.neighbors.KNeighborsRegressor — scikit-learn 0.20.3
documentation. https://scikit-learn.org/stable/modules/generated/sklearn.
neighbors KNeighborsRegressor.html. (2007). Accessed: 2019-4-10.

Scikit-learn. 2007. sklearn.preprocessing.OneHotEncoder — scikit-learn 0.20.3
documentation. https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.OneHotEncoder.html. (2007). Accessed: 2019-4-10.

Scikit-learn. 2007. sklearn.tree.DecisionTreeRegressor — scikit-learn 0.20.3
documentation. (2007). Accessed: 2019-4-10.

http://www.scipy.org/
https://doi.org/10.1016/j.jocs.2014.01.005
https://doi.org/10.1109/CLOUD.2018.00061
https://doi.org/10.6084/m9.figshare.8156468.v1
https://doi.org/10.1002/cpe.3708
https://doi.org/10.6084/m9.figshare.4491629.v2
https://doi.org/10.1002/j.1538-7305.1982.tb04353.x
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

	Abstract
	1 Introduction
	2 Background
	2.1 High level background
	2.2 Description of Gaussian Software g16
	2.2.1 Gaussian Input

	3 Simulation Dataset
	3.1 Data Origin
	3.1.1 Input Data Collection:

	3.2 Pre-processing
	3.2.1 Missing values.
	3.2.2 Remove Erroneous Data
	3.2.3 Data Coding

	4 Exploratory Data Analysis (EDA)
	5 Regression Methods
	5.1 Linear Methods
	5.2 Nonlinear Methods
	5.3 Data Subsetting
	5.3.1 Run Time Percentiles
	5.3.2 Mode of Atoms
	5.3.3 Mode of Electrons
	5.3.4 Mode of Atoms and Electrons
	5.3.5 Constant Route Keywords

	5.4 Feature Specification

	6 Related Work
	7 Challenges
	8 Conclusion and Outlook
	References

