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Abstract
In the transfer learning problem, the target and
the source data domains are typically known. In
this article, we study a new paradigm called mu-
tual transfer learning where among many hetero-
geneous data domains, every data domain could
potentially be the target of interest, and it could
also be a useful source to help the learning in
other data domains. However, it is important to
note that given a target not every data domain
can be a successful source; only data sets that are
similar enough to be thought as from the same
population can be useful sources for each other.
Under this mutual learnability assumption, a con-
fidence distribution fusion approach is proposed
to recover the mutual learnability relation in the
transfer learning regime. Our proposed method
achieves the same oracle statistical inferential ac-
curacy as if the true learnability structure were
known. It can be implemented in an efficient
parallel fashion to deal with large-scale data. Sim-
ulated and real examples are analyzed to illustrate
the usefulness of the proposed method.

1. Introduction
Transfer Learning (TL) aims to leverage knowledge from
a related domain (called source domain) to improve the
predictive and inferential performance in a target domain,
on which the availability of the training data is limited.
Source data are drawn from a source distribution P on SP ,
and a relatively small quantity of labeled or unlabeled data
are from the target distribution Q on SQ. We focus on the
homogeneous TL setting with SP = SQ, on which P and
Q are different but related distributions. See surveys of TL
in Pan & Yang (2009); Zhuang et al. (2019).

In the TL problem, it is typically known a priori which
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data domain is the target and which data will be used as
the source. However, this is not necessarily the case in
many contemporary applications. For example, one of the
4V’s for Big Data is variety. Big Data are often collections
of multiple data sets (called “data units” hereafter) from
different data domains. These data units are of the same
nature but are distributed differently, due to, for example,
that they are collected in different time periods, at different
locations, or possibly using different data collection devices.
It hence may be desirable to leverage TL techniques to trans-
fer knowledge between these related data domains so as to
improve the predictive performance or statistical inference
in a target domain. However, in the applications we consider
in this article and many other cases, literally, every data do-
main could potentially be a target of interest, and every data
domain could potentially be useful as a source to help the
learning performance in other domains. In other words, the
target and source domains are not known a priori.

Moreover, due to the variety among the data units, it is quite
possible that given a target domain, although all data units
could be useful for transferring knowledge to some extent,
some data units are less useful as source data than the others.
Hence, a second feature of the problem considered here is
that one must identify source data units that are more useful
for each possible target. While the existing TL literature is
fairly diverse and extensive, fewer efforts have been made
to make successful transfers in this setting.

In this article, we consider a mutual transfer learning (MTL)
framework in which every data unit could potentially be
the target. The goal of MTL is to simultaneously identify
useful source data units for each target domain and use such
information to improve learning performance. We propose
a mutual learnability assumption, which suggests that only
data sets that are similar enough to be thought as from
the same population can be useful sources for each other.
Under this assumption, we propose a confidence distribution
fusion approach to recover the mutual learnability structure
in the transfer learning regime, using regression problem as
a working example. Incorporating the recovered learnability
structure, we fit a statistical model for both predictive and
inferential purposes. Our proposed method achieves the
same oracle statistical inferential accuracy as if the true
learnability structure were known.
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Figure 1. Illustration of the two-layer learnability. The data units
from the same subgroup have more learnability between them.

Suppose there are M data units from M related domains.
For each potential target domain, there exist M − 1 source
data units to transfer from. We consider a regression prob-
lem with two sets of features: the global features and the
heterogeneous features. While all the data units could be
useful to learn the role of the global features in explaining
the response variable, it is unreasonable to assume that all
the M − 1 source data units are equally useful to learn the
heterogeneous features. Specifically, given the target, there
may be a subgroup of data units that are more useful than
the others. This could be explained by a two-layer learnabil-
ity model, shown in Figure 1, in which different behaviors
for data units are coded by colors. The data units bounded
together are assumed from the same subgroup, within which
it is easier to transfer useful information to learn the het-
erogeneous features, hence more learnability. Data from
different groups are significantly different, and the learnabil-
ity between groups are limited to only the global features.

To motivate our statistical model, we analyzed NOAA’s
nClimDiv database. It consists of monthly temperature, pre-
cipitation, and several indices for drought severity, and con-
tains a total of N = 503,616 observations from M = 344
climate divisions. Each climate division is viewed as a data
domain. The monthly average temperature is the response
of interest, and there are 8 features within which we have
designated 5 as global features and 3 heterogeneous features.
Our proposed method has identified 5 subgroups shown in
different colors in Figure 2. Knowledge about the global
features can be learned from all climate divisions, while that
about heterogeneous features can only be learned from iden-
tified source data in the same subgroup. Whether a given
feature is global or heterogeneous is typically suggested by
domain knowledge or preliminary inspection of the data.
In this real data example, we checked if the kernel density
for the coefficient estimates of a feature have a multimodal
distribution to determine whether it is global.

We use the following statistical model to characterize this
two-layer structure. Suppose that M data units come from
S exclusive subgroups, and that the i-th data unit consists of

Figure 2. Learnability recovered for the 344 climate divisions.

ni observations. Response Yi from the ith data domain is

Yi = X>β0 + Z>ϑi + ε

= X>β0 + Z>θi0 + Z>ui + ε, i = 1, . . . ,M, (1)

where the global features X ∈ Rp and the heterogeneous
features Z ∈ Rq correspond to coefficients β0 and ϑi,
which have different learnability. β0 is the same among
all data domains and all data units can be used to learn it.
ϑi = θi0 + ui ∈ Rq represents a unit-specific effect. Its
first component θi0 is equal among data units in the same
subgroup as the ith data unit. That is, θi0 = θj0, if and only
if the i-th and j-th data units are from the same subgroup.
Knowledge about θi0 can only be transferred between data
units in the same subgroup. The second term ui explains the
subtle difference between data units in the same subgroup,
as seen from Figure 1. This random effect ui cannot be
transferred. We assume that {ui}Mi=1 are independent and
identically distributed with E(ui) = 0 and Var(ui) = Ψ
with the minimum eigenvalue τ = λmin(Ψ) > 0. Distinct
values of {θi0}Mi=1 are denoted as {αs0}Ss=1. With a mem-
bership label Li ∈ {1, . . . , S}, indicating which subgroup
unit i belongs to, i.e., θi0 = αLi0, (1) is re-formulated as

Yi = X>β0 + Z>αLi0 + Z>ui + ε, i = 1, . . . ,M. (2)

Our goal in this article is two-fold. First, we aim to recover
the learnability structure, that is, the subgroup membership
for each data unit. Second, we aim to transfer knowledge
to improve learning performance for all the data domains
by incorporating this revealed structure. We develop a confi-
dence distribution (CD) fusion approach. Specifically, we
first obtain individual unit estimates, and then combine their
CD densities, as defined in Liu et al. (2015), using a pair-
wise concave fusion penalty for θi’s. We prove that the
resulting estimate is exactly the same as that based on the
full-data method, which is often considered as gold standard
in the meta-analysis (e.g. Debray et al., 2015). However,
the full-data method has much larger computational costs
as discussed in Section 3.2.
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The proposed estimator is proven to asymptotically achieve
the highest statistical inferential accuracy as if the true learn-
ability structure were known. Such an oracle result holds
when the minimum subsample size diverges fast enough and
a minimal signal condition is met. The above learnability
recovery issue was not considered in Liu et al. (2015).

An alternating direction method of multipliers (ADMM,
Boyd et al., 2010) algorithm was established for the pro-
posed method. The derived algorithm is particularly suitable
for large-scale data based on parallel computing. The em-
pirical performance of the proposed approach is examined
through simulation studies, demonstrating that the most
reliable results are produced under the minimax concave
penalty (MCP, Zhang, 2010).

The rest of the article is organized as follows. In Section 2,
we formalize the proposed statistical model (2) and develop
a CD fusion-based MTL approach to recovery the learnabil-
ity structure and mutually transfer knowledge to estimate the
coefficients. We derive an ADMM algorithm to implement
the proposed MTL approach and then analyze some compu-
tational considerations in Section 3. Theoretical properties
of the proposed estimator are established in Section 4. The
finite-sample properties of the proposed approach are eval-
uated in Section 5 via simulation experiments. Section 6
investigates the nClimDiv database to illustrate the prac-
tical usefulness of the proposed method. Detailed proofs
to all theoretical results are provided in the supplementary
material.

Notations. Let ‖v‖ ,
√
v>v and ‖v‖∞ , max1≤l≤r |vl|

be the L2 and L∞ norms of a vector v = (v1, . . . , vr)
>.

For a symmetric matrix M , let λmin(M) and λmax(M)
denote its minimum and maximum eigenvalues. For
a matrix M ∈ Rr×d, let [M ]jk be its (j, k)-th ele-
ment, [M ]j. be its j-th row vector, and [M ].k be its k-
th column vectors. Let ‖M‖ , maxv∈Rd,‖v‖=1 ‖Mv‖,
‖M‖∞ , max1≤j≤r

∑d
k=1

∣∣[M ]jk
∣∣, and ‖M‖max ,

max1≤j≤r,1≤k≤d |[M ]jk|. IfM has full column rank, de-
fine PM ,M(M>M)−1M> and P⊥M , I − PM . For
positive sequences {an} and {bn}, we write an � bn if
a−1n bn = o(1). Let a ∧ b , min(a, b) for any a, b ∈ R.

2. Methodology
We formalize the two-layer learnability framework, and in-
troduce a confidence distribution fusion approach for learn-
ability recovery and mutual transfer learning.

2.1. Two-Layer Learnability Structure

The ni data points in the ith unit can be expressed as

yi = xiβ0 + ziθi0 + ziui + εi, i = 1, . . . ,M, (3)

where yi = (yi1, . . . , yini
)>, xi (zi) is an ni × p (ni × q)

data matrix for the global (heterogeneous) features, and εi
is the vector of noises with zero mean and covariance σ2

εIni .
Let N =

∑M
i=1 ni be the total sample size of the full data,

which can be expressed as

Y = Xβ0 +ZΘ0 +ZU + E, (4)

where Y = (y>i )>i=1,...,M ∈ RN is the stacked response,
E = (ε>i )>i=1,...,M ∈ RN is the stacked error, X =

(x>i )>i=1,...,M and Z = diag
[
(zi)i=1,...,M

]
are stacked

N ×p and N ×Mq data matrices, and Θ0 = (θ>i0)>i=1,...,M

and U = (u>i )>i=1,...,M are Mq-dimensional vectors of co-
efficients for the heterogeneous features and random effects.
Recall that β0 is a global coefficient vector shared by all
data units. Ignoring the mutual learnability assumption, the
above model is a linear mixed-effects model, which can
be estimated by the generalized least square method (GLS
Rothenberg, 1984; Anh & Chelliah, 1999), which amounts
to minimize

LGLS
N (β,Θ)

,
1

2N

M∑

i=1

(yi − xiβ − ziθi)>Wi(yi − xiβ − ziθi)

where Wi , Cov(yi|xi, zi)−1 = (σ2
εIni + ziΨz

>
i )−1.

For simplicity, we assume that Ψ and σ2
ε are known. Oth-

erwise, these variance components can be consistently esti-
mated through the restricted maximum likelihood (REML)
method (Richardson & Welsh, 1994; Jiang, 1996). How-
ever, the standard GLS approach does not take into account
the different learnability and does not conduct learnability
recovery. To fuse together θi’s, we may add a pairwise
concave fusion penalty to the objective function:

QN (β,Θ) , LGLS
N (β,Θ) +

∑

1≤i<j≤M

pγ(‖θi − θj‖;λ), (5)

where pγ(t;λ) is a concave penalty function with a tuning
parameter λ > 0 and a concavity parameter γ > 0. A
natural estimate is thus defined as

(
β̂(λ)

Θ̂(λ)

)
= arg min
β∈Rp,Θ∈RMq

QN (β,Θ). (6)

The above full-data estimation is referred as the individual
participant data (IPD) method, the “gold standard” in the
meta-analysis context (e.g. Debray et al., 2015). However,
for large-scale data, the IPD method requires very expensive
computation; see Section 3.2 for the comparisons. This
motivates the proposed CD fusion approach below.

In this article, we consider four popular concave fusion
penalty functions: L1 or the Lasso penalty (Tibshirani,
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1996), minimax concave penalty (MCP, Zhang (2010)),
smoothly clipped absolute deviation penalty (SCAD, Fan
& Li (2001)) and truncated Lasso penalty (TLP, Shen et al.
(2012)). The L1 penalty is known to produce biased esti-
mates (Zhao & Yu, 2006). In our simulations, it tends to
produce either many subgroups or no subgroup. Instead,
MCP, SCAD and TLP are more appropriate for recovering
the learnability structure since they enjoy selection consis-
tency. See Section S.1 for definitions of these penalties.

2.2. MTL Estimator using Confidence Distribution
Fusion

We propose a CD fusion approach which produces the MTL
estimator

(
β̂(λ)>, Θ̂(λ)>

)>
with much less computational

costs than the IPD method, while obtaining the same result
(see Theorem 2.1.) We start with obtaining individual unit
estimates, and then merge them through their CD densities
as defined in Liu et al. (2015). Given data in each unit, the
first step is to obtain individual unit estimates for (β>,θ>i )>

via the GLS method, for each i, as
(̂
βî
θi

)
=
[
(xi, zi)

>Wi(xi, zi)
]−1

(xi, zi)
>Wiyi. (7)

Recall that Ψ and σ2
ε are assumed known. Let Vi denote

the squared root matrix of Wi such that Wi = V 2
i , and

then (7) is equivalent to the ordinary least square solution
of the unit data Viyi = Vixiβ + Viziθi + Viεi such that
Var(Viyi) = Ini

. According to He & Shao (2000), as ni
grows, we have, conditional on (xi, zi),

[
(xi, zi)

>Wi(xi, zi)
] 1

2

[(̂
βî
θi

)
−
(
β0

θi0

)]
D

=⇒ N (0, I) .

Following Liu et al. (2015), we define the combined CD
density as h(β,Θ) =

∏M
i=1 hi(β,θi), where hi(β,θi) is

the CD density for the ith unit. We then define an objective
function which consists of− log h(β,Θ) (with additive con-
stant terms omitted) and a pairwise concave fusion penalty,
i.e., QCD

N (β,Θ)

,
1

2N

M∑

i=1

(̂
βi − β̂
θi − θi

)>
(xi, zi)

>Wi(xi, zi)

(̂
βi − β̂
θi − θi

)

+
∑

1≤i<j≤M

pγ (‖θi − θj‖ ;λ) . (8)

The following theorem validates that the CD-based objective
function QCD

N (β,Θ) produces exactly the same minimizer,(
β̂(λ)>, Θ̂(λ)>

)>
, as QN (β,Θ) does.

Theorem 2.1. QCD
N (β,Θ) differs from QN (β,Θ) only by

a constant.

Remarkably, our CD fusion approach does not require the
statistical model in each data unit to be the same. This
allows our method to be generalized to other learning tasks.
For example, consider a generalized linear model for the
i-th unit

φi
(
E [Y|X,Z]

)
= X>β0 + Z>θi0 + Z>ui,

where the link function φi(·) may differ between units (e.g.,
identity link for linear model with continuous response, logit
link for logistic model with binary response, log link for
Poisson regression with count data, etc.) Given the individ-
ual unit estimates (

̂
βi,

̂
θi)’s and their limit distributions, a

modified CD fusion MTL approach can still be applied with
Theorem 2.1 holds in an asymptotic way.

3. Computation
We discuss the derived ADMM algorithm, analyze its con-
vergence property, and compare our MTL method with the
IPD method in terms of various computational considera-
tions.

3.1. An ADMM Algorithm

We note that the fusion penalty function cannot be written as
the sum of individual functions for θi. Hence, we introduce
a new set of parameter δij = θi−θj and rewriteQCD

N (β,Θ)
as the following constrained optimization problem:

L0(β,Θ, δ)

,
1

2N

M∑

i=1

(̂
βi − β̂
θi − θi

)>
(xi, zi)

>Wi(xi, zi)

(̂
βi − β̂
θi − θi

)

+
∑

1≤i<j≤M

pγ (‖δij‖ ;λ) ,

subject to θi − θj − δij = 0, 1 ≤ i < j ≤M, (9)

where δ = (δ>ij)
>
i<j . This reformulation allows the adoption

of the ADMM algorithm. See the details of the derivation
in the supplementary material.

For regularization parameters (γ, λ), the best pair could
be searched over a two-dimensional grid using some crite-
ria, such as Bayesian Information Criterion (BIC, Schwarz
(1978)) and generalized cross-validation (GCV Craven &
Wahba, 1978). To avoid this computationally expensive
search, we simply fix γ = 3.7 for MCP and SCAD as sug-
gested in Fan & Li (2001), and choose γ = 1.85 for TLP
to mimic the degree of penalization in MCP under γ = 3.7.
These choices of the penalty parameters have been shown
to be practically useful in many statistical applications. For
λ, we employ the modified BIC (Wang et al., 2009) that is
defined in high-dimensional data setting:

BIC , log-likelihood +
CN logN

N

(
p+ Ŝ(λ)q

)
, (10)
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where CN is a positive number which can depend on N ,
and Ŝ(λ) is the estimated number of subgroups using the
CD fusion approach. Following Wang et al. (2009), we use
CN = log log

(
p+ Ŝ(λ)q

)
for implementation.

In the following proposition, we study the convergence
property of the ADMM algorithm by examining whether
the primal residual vanishes. We choose to stop the updates
when ‖r[k+1]‖2 < 10−6 in our study.

Proposition 3.1 (Convergence). The primal residual r[k] =
B>Θ[k] − δ[k] of the proposed ADMM, where B is a
matrix such that B>Θ = (θ>i − θ>j )>i<j , satisfies that

limk→∞
∥∥r[k]

∥∥2 = 0 for MCP, SCAD and TLP.

3.2. Computational Considerations

COMMUNICATION COST

We compare the communication costs of the proposed MTL
approach and the IPD method. For the former, each unit

only needs to pass a (p+ q)-dimensional vector (

̂
β
>
i ,

̂
θ
>
i )>

and a (p+q)×(p+q) precision matrix (xi, zi)
>Wi(xi, zi)

to a central computer node, leading to a communication cost
O
[
(p+ q)2

]
. On the other hand, the latter requires each

unit to pass a ni × (p+ q + 1) data matrix (yi,xi, zi), re-
sulting in a communication cost O [ni(p+ q)]. Since the
unit GLS estimates require that (xi, zi)

>Wi(xi, zi) are in-
vertible, we must have p + q < ni for all i = 1, . . . ,M .
Accordingly, the communication cost has been much re-
duced in the proposed MTL approach.

COMPUTATION TIME AND PEAK MEMORY

For computation time and peak memory used during the
implementations of both approaches, we provide empirical
evaluation using the simulation cases considered in Sec-
tion 5. We only present the results obtained on the first
generated dataset of each simulation cases; see Section 5.1
for details about the simulation settings. L1 penalty is ex-
cluded due to its poor performance to be shown in Section 5.

Figure 3 displays the computation time (upper panel) and the
maximum memory used (lower panel). It can be seen that
the CD-based MTL approach outperforms the IPD method
in terms of computation speed and memory usage in all
cases, especially when M is large (e.g., Cases 5–9). Specif-
ically, compared to IPD, MTL generally takes about 3/4
to 4/5 of the computation time, and requires roughly just
a half of the memory usage. In addition, the three types of
penalties result in similar performance. We note that the
computational performance under different S values is not
comparable because different ranges of λ were used. In
summary, the proposed approach provides significant sav-
ings on computational resources. Next, we will show it also
offers the best possible statistical inferential performance.

4. Theoretical Guarantees
We show that the proposed estimator has the same limit-
ing distribution as the oracle estimator, which transfers the
knowledge as if the true learnability structure were known.

4.1. Oracle Estimator

Consider an Mq×Sq label matrixA such that Θ0 = Aα0,
where α0 = (α>s0)>s=1,...,S . The oracle model Y = Xβ0 +
ZAα0 +ZU +E is defined assumingA were known. The
resulting oracle estimator for (β>,α>)> is
(
β̂OR

α̂OR

)
=
[
(X,ZA)>W (X,ZA)

]−1
(X,ZA)>WY ,

whereW = diag [(Wi)i=1,...,M ] is aN×N block diagonal
matrix. Below we present a concrete example forA.
Example 4.1. SupposeM = 5, S = 2, θ1,0 = θ2,0 = α1,0

and θ3,0 = θ4,0 = θ5,0 = α2,0. Then we have



θ1,0
θ2,0
θ3,0
θ4,0
θ5,0




=




α1,0

α1,0

α2,0

α2,0

α2,0




=




Iq
Iq

Iq
Iq
Iq



5q×2q︸ ︷︷ ︸

A

(
α1,0

α2,0

)

2q×1︸ ︷︷ ︸
α0

.

The following regularity conditions on the design matrices,
U and noise E are needed.
Assumption 4.1 (Design Matrix). (i) The rows of the de-

sign matrices fi = (xi, zi)’s have sub-Gaussian tails
in the sense that, for any a ∈ Rp+q, P (|a>[fi]k.| >
‖a‖t) ≤ 2 exp(−cf t2) for all i = 1, . . . ,M, k =
1, . . . , ni, and some absolute constant cf > 0.

(ii) Let F = (X>,Z>)>. There exists some absolute con-
stant 0 < Cf < 1 such that

Cf ≤ λmin

(
E
[
FF>

])
≤ λmax

(
E
[
FF>

])
≤ C−1f .
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Figure 3. Computation time (upper panel) and peak memory usage
(lower panel) for the CD-based MTL and the IPD methods.
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Assumption 4.2 (U and E). The coefficient U and the
noise vectors E have sub-Gaussian tails in the sense that
P (|a>U | > ‖a‖t) ≤ 2 exp(−cet2) and P (|b>E| >
‖b‖t) ≤ 2 exp(−cet2) for any vectors a ∈ RMq, b ∈ RN
and t, ce > 0.

Let nmin , min1≤i≤M ni, gmin , min1≤s≤S
∑
i:Li=s

ni,
and gmax , max1≤s≤S

∑
i:Li=s

ni be the minimum unit
size, and the minimum and maximum total sample size in a
subgroup. Theorem 4.1 gives a non-asymptotic upper bound
and the limiting distribution for the oracle estimator.
Theorem 4.1 (Properties of the Oracle Estimator). Given
Assumptions 4.1 and 4.2, suppose gmin � (p+Sq)1/2N3/4,
M = o(exp(nmin)) and p+ Sq = o

(
exp(gmax)

)
.

(i). With probability at least 1−(p+Sq)(4N−1 +e−gmax)
−2Me−nmin , we have,

∥∥∥∥
(
β̂OR − β0

α̂OR −α0

)∥∥∥∥ ≤ φN , (11)

where φN =
√

5c
−1/2
e c

1/2
f C−1f

(
τ ∧ σ2

ε

)−1/2
σεg
−1
min×√

(p+ Sq)N logN , and τ = λmin(Ψ).

(ii). For any sequence of (p + Sq)-vectors {aN} with
‖aN‖ = 1, we have as N →∞,

σ−1N (aN )a>N

(
β̂OR − β0

α̂OR −α0

)
D

=⇒ N (0, 1), (12)

with σN (aN ) ,
√
a>N [(X,ZA)>W (X,ZA)]

−1
aN .

It is important to note that gmin → ∞. Since gmin ≤
N/S, the condition gmin � N3/4(p+ Sq)1/2 implies that
S
√
p+ Sq = o(N1/4). This imposes an upper bound on

how fast (S, p, q) can grow with N . In particular, if p and q
are assumed to be fixed, we have S = o(N1/6).

To appreciate the upper bound (11), we make the following
assumptions: ni ≡ n (thus N = Mn), gmin � gmax �
N/S and fixed (p, q). In this case, the upper bound in (11)
admits the rate S3/2

√
(logM + log n)/(Mn). It becomes

oP (1) if S3 = o
[
Mn/(logM + log n)

]
, which suggests S

cannot grow faster than M1/3.

4.2. Theoretical Properties of the MTL Estimator

We prove that the proposed MTL estimator is asymptoti-
cally equivalent to the oracle estimator, and hence achieves
the highest level of statistical inferential accuracy. More
importantly, we also show that through MTL, the proposed
estimator is asymptotically more efficient than the IPD es-
timated in (7) that is based on the full data. These results
require two additional conditions: one is on the minimal
signal defined as ∆N , mins6=s′ ‖αs −αs′‖; the other is
on the penalty function pγ(t;λ).

Assumption 4.3 (Penalty Function). pγ(t;λ) is symmetric
with pγ(0;λ) = 0, and is non-decreasing and concave for
t ∈ [0,∞). There exists a constant a > 0 such that pγ(t;λ)
is a constant for all t ≥ aλ. ∂

∂tpγ(0;λ) exists and is contin-
uous except for a finite number of t and ∂

∂tpγ(0+;λ) = λ.

This assumption is satisfied by such non-convex penalties as
MCP, SCAD and TLP with a = γ and is considered in Ma
& Huang (2017; 2016) as well. Along with proper minimal
signal condition, it ensures that the penalty term does not
push θi and θj from different subgroups toward each other.
Theorem 4.2 (Oracle Property). Suppose the conditions
in Theorem 4.1 and Assumption 4.3 hold and S ≥ 2. If
φN � λ� a−1∆N , where a is defined in Assumption 4.3
and φN is given in Theorem 4.1, then there exists a local
minimizer

(
β̂(λ)>, Θ̂>(λ)

)>
of (8) satisfying

P

((
β̂(λ)

Θ̂(λ)

)
=

(
β̂OR

Θ̂OR

))
→ 1.

Let α̂(λ) and α̂OR be the distinct values of Θ̂(λ) and Θ̂OR,
respectively. Theorem 4.2 implies that the proposed estima-
tor has the same limiting distribution as the oracle estimator
given in (12). Moreover, an interesting efficiency boosting
phenomenon is discovered in (ii) of Corollary 4.1 below
Corollary 4.1. Suppose the conditions in Theorem 4.2 hold.

(i) (Asymptotic Normality) For any sequence of (p+ Sq)-
vectors {aN} with ‖aN‖ = 1, we have as N →∞,

σ−1N (aN )a>N

(
β̂(λ)− β0

α̂(λ)−α0

)
D

=⇒ N (0, 1),

where σN (aN ) is given in Theorem 4.1.

(ii) (Efficiency Boosting) For any p-vector vp and q-vector
vq , we have for all i = 1, . . . ,M ,

v>p Cov
(
β̂(λ)

)
vp ≤ v>p Cov

(̂
βi
)
vp and

v>q Cov
(
θ̂i(λ)

)
vq ≤ v>q Cov

(̂
θi
)
vq.

To estimate the limit covariance matrix σN (aN ), we need
to replace the unknown label matrixA (under which Θ0 =
Aα0) by its estimate Â. This can be trivially done after
α̂(λ) and Θ̂(λ) are computed. Another challenge is that
the direct computation of (X,ZÂ)>W (X,ZÂ), which
requires O

[
N2(p+ Ŝ(λ)q)

]
operations, is infeasible when

N is large. A more efficient way is to take the multivariate
GLS approach of Becker & Wu (2007) as follows. Let
Ĝs, s = 1, . . . , Ŝ(λ) be (p + q) × (p + Ŝ(λ)q) matrices
based on the estimated label matrix Â such that
(
β̂(λ)

θ̂i(λ)

)
=

(
β̂(λ)
α̂L̂i

(λ)

)
= ĜLi

(
β̂(λ)
α̂(λ)

)
, i = 1, . . . ,M.



Mutual Transfer Learning for Massive Data

After straightforward algebra, we have

(
X,ZÂ

)>
W
(
X,ZÂ

)
=

M∑

i=1

Ĝ>
L̂i
Wi(xi, zi)ĜL̂i

.

Note that (xi, zi)
>Wi(xi, zi)’s are (p+ q)× (p+ q) preci-

sion matrices given by data units under the MTL approach.
Hence, the right-hand-side in the equation above only re-
quires O

[
M(p+ Ŝ(λ)q)2(p+ q)

]
operations.

5. Simulation Experiments
We now evaluate the MTL method using simulations.

5.1. Simulation Setup

Table 1. Simulation Settings.

Simulation case n M S SNR
Case 1 1024 50 2 4.399
Case 2 1024 50 3 8.838
Case 3 2048 50 2 4.399
Case 4 2048 50 3 8.838
Case 5 2048 100 2 4.399
Case 6 2048 100 3 8.838
Case 7 2048 100 5 8.734
Case 8 2048 150 5 8.734
Case 9 2048 150 7 9.260

Table 1 summarizes nine simulation settings (with p = 5
global features and q = 3 heterogeneous features), and
each has 100 replications, where the signal-to-noise ratio
(SNR) is defined in Section S.10. The largest total sam-
ple size is 307,200. For simplicity, we consider equal
unit sizes ni ≡ n for i = 1, . . . ,M . We let the num-
ber of units in each subgroup to be (M1, . . . ,MS) =
1S + Multinomial(M − S,1S/S). The coordinates of β0

were generated from Uniform(−2, 2) independently. To
mimic the different coefficient values for the heteroge-
neous features between subgroups, we generated α0 =
(α>1,0, . . . ,α

>
S,0)>, where αs,0 = (αs,0,1, αs,0,2, αs,0,3)>,

in a way to guarantee the minimal signal condition. The
values of (α1,0,1, . . . , αS,0,1) were assigned to evenly
spaced grid points over [−S1.4/2, S1.4/2], denoted as
(α∗1, . . . , α

∗
S), and then α0 was generated by

vec



α∗1 α∗2 α∗3 . . . α∗S−1 α∗S
α∗S α∗1 α∗2 . . . α∗S−2 α∗S−1
α∗S−1 α∗S α∗1 . . . α∗S−3 α∗S−2


 ,

where vec(·) denotes the vectorization operator. If S is
odd, we further add 1 to all coordinates of α0 to avoid
subgroup effect coordinates being 0. The data matrices
fi = (xi, zi) consist of independent rows with each gener-
ated from 8-dimensional normal N (0,ΣF), where the diag-
onal elements of ΣF are 1 and off-diagonal elements are 0.3.
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Figure 4. Solution paths of (θ1,1, . . . , θM,1) for the first dataset
in Case 5 (n = 256,M = 100, S = 2). Colors stand for true
subgroups, horizontal dashed lines represent true values of the first
coordinate of αs’s, and vertical line displays best λ selected by
modified BIC, whose values are displayed by gray bars.

Moreover, ui and εi follows N (0, 0.3I) and N (0, I), re-
spectively. Finally, Y was generated from the oracle model.

Figure 4 shows the solution paths of (θ1,1, . . . , θM,1), the
first coordinate of θi’s. It can be seen that, under MCP,
SCAD and TLP, the learnability structure can be well re-
covered using the modified BIC given in (10) to choose the
tuning parameter λ, denoted as λ̂. On the other hand, al-
though the L1 penalty gets the correct number of subgroups,
the coefficient estimates are far away from the truth.

5.2. Learnability Structure Recovery

We use the Normalized Mutual Information (NMI; Fred
& Jain, 2003) as the performance measure for learnabil-
ity structure recovery. NMI∈ [0, 1] and larger values im-
ply more similar groupings. Let C = {C1, C2, . . .} and
D = {D1,D2, . . .} denote two partitions of {1, . . . ,M}.
NMI is defined as NMI(C,D) ,

2I(C;D)

H(C) +H(D)
, where

I(C;D) ,
∑
k,l

(
|Ck ∩Dl|/M

)
log(M |Ck ∩Dl|/|Ck||Dl|)

is the mutual information between C and D, and H(C) ,
−∑k(|Ck|/M) log(|Ck|/M) is the entropy of C. The per-
centage of perfect recoveries among the 100 replications is
also reported.

We also consider an ad hoc approach based on perform-
ing K-means on the unit estimates θ̂i with modified BIC
to select the optimal subgroup size, to compare with our
method. Specifically, for any given number of subgroup size
S = K, the K-means algorithm is performed to obtain an
estimated subgroup labels, and then the oracle estimation
can be computed using the estimated label and variance
components. Subsequently, the modified BIC values are
calculated by plugging in these K-means-based estimates.
In our analysis, we run through K = 1, . . . , 10 and choose
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Table 2. Learnability structure recovery. Short version of Table
S.1.

Mean, Median Perfect
Method (Min,Max) of Ŝ NMI Recover

Case 1 MCP 2, 2 (2, 2) 0.998 0.99
S = 2 SCAD 2, 2 (2, 2) 0.998 0.99

TLP 2, 2 (2, 2) 0.998 0.99
L1 2, 2 (1, 4) 0.947 0.62

K-Mns 2, 2 (2, 3) 0.989 0.95
Case 7 MCP 5, 5 (5, 6) 0.999 0.98
S = 5 SCAD 5, 5 (5, 5) 0.999 0.99

TLP 5, 5 (5, 6) 0.999 0.99
L1 63.2, 100 (1, 100) 0.587 0.00

K-Mns 5, 5 (5, 5) 0.976 0.37
Case 9 MCP 7, 7 (7, 7) 0.999 0.99
S = 7 SCAD 7.3, 7 (7, 9) 0.998 0.77

TLP 7.2, 7 (7, 9) 0.998 0.81
L1 150, 150 (150, 150) 0.620 0.00

K-Mns 7, 7 (7, 7) 0.978 0.20

the K value such that the modified BIC is minimized.

Table 2 includes results for select cases (Cases 2, 5, 7; see
the full table in the supplementary material). It can be
seen that MCP, SCAD and TLP result in desirable recovery
performance, while L1 penalty does not. MCP works very
well in all cases. Although the high NMI values suggest
that SCAD and TLP still capture the true subgroup structure
well, their performance gets worse when S is large (e.g.,
Case 7) in terms of the standard deviation of Ŝ and perfect
recovery rate. This echoes with the discussion following
Theorem 4.1 that the theoretical properties hold only when
S does not grow too fast. Due to the poor performance, L1

penalty is no longer considered in the subsequent analysis.
K-means performs well for small M = 50, but poorly
for larger M = 100 and 150, even though the number of
subgroups are correctly obtained (e.g., Case 7).

5.3. Parameter Estimation

To evaluate the parameter estimation, we define the root
mean squared error (RMSE) between two vectors v1,v2 ∈
Rd as RMSE

(
v1,v2

)
= 1√

d

∥∥v1 − v2
∥∥. In Figure 5, we

empirically examine how close the proposed estimate is to
both true value and oracle estimate. Memory outage oc-
curred in some cases when computing oracle estimates. To
resolve this issue, the multivariate GLS approach of Becker
& Wu (2007) is applied to compute the oracle estimates.

Firstly, from the top panel in Figure 5, we can easily see
RMSE(α̂,α0) reasonably increases (decreases) with S
(M ). This confirms the intuition that more S suggests more
challenges in mutual transfer. On the other hand, increas-
ing M allows to estimate the heterogeneous features using
more data units, which improves their estimation accuracy.
The third panel in Figure 5 indicates that RMSE(β̂,β0) de-
pends on N = Mn but is independent of S. Note that β is
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Figure 5. Evaluation of parameter estimation.

the global parameter shared over all data units. This result
numerically verifies that the proposed method effectively
merges the common information provided from data units,
regardless of how many different subgroups they come from.

The results in Theorem 4.2 and (ii) in Corollary 4.1
can be verified as well. Firstly, the smaller values of
RMSE(α̂, α̂OR) (the second panel) and RMSE(β̂, β̂OR)
(which are all close to 0 and omitted here) imply that
(β̂>, α̂>)> is fairly close to their oracle counterpart
(β̂>OR, α̂

>
OR)>. The third panel in Figure 5 indicates that

the estimation accuracy of β̂ is better than the best unit esti-
mate for common effect. Similar observation applies to the
estimation of θi’s as demonstrated in the bottom panel in
Figure 5. Both panels support the efficiency boosting result
shown in Corollary 4.1. We also studied the asymptotic
covariance approximation and the inferential accuracy. See
Section S.11.

6. Real Data Example
NOAA’s nClimDiv database1 were analyzed to demonstrate
MTL method’s practical usefulness. The monthly average
temperature is the response of interest. We categorize the 8
features to global ones and heterogeneous ones by inspect-
ing the kernel densities. Intuitively, the distribution of the
unit-level coefficient estimate for a heterogeneous feature
is more likely to be multimodal or widespread (as opposed
to unimodal or concentrated) across units. In this way we
have chosen intercept, PCPN and ZNDX as the heteroge-
neous features (i.e., q = 3 and p = 5) and the rest as global

1Available at ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv/.

ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv/
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features; see details in Section S.11.2. Figure 2 displays the
recovered learnability structure, where the five resulting sub-
groups generally follow a geographical pattern, although we
do not use any spatial information of the climate divisions. It
may appear strange that northeastern parts of New England
are in the same subgroup as Texas and Southern California.
However, this pattern actually coincides with NOAA’s out-
look for temperature, precipitation, and drought: blue and
red groups together follow the temperature outlook2, and
red subgroup stands out due to severe drought conditions3.

Table 3. The parameter estimates using the proposed MTL method
with MCP. The average asymptotic standard deviation (ASD), after
multiplied by 100, is shown in the parenthesis.

Color Heterogeneous Features (ASD×100)
[#(units)] α̂Intercept α̂PCPN α̂ZNDX

Red [41] 64.97 (13.2) −0.37 (9.5) −0.07 (9.5)
Blue [132] 49.53 (7.1) 0.85 (5.3) −1.51 (5.3)
Green [79] 35.32 (8.9) 5.44 (6.9) −4.05 (6.8)
Purple [81] 24.74 (9.2) 7.28 (6.8) −5.16 (6.7)
Orange [11] 9.90 (32.3) 9.14 (19.3) −6.54 (18.6)

Coef. for Global Features (ASD×100)
β̂Summer β̂Fall β̂Winter β̂PDSI β̂PHDI

18.26 (2) 4.06 (2) −15.12 (2) 0.18 (1) 0.20 (1)

From the parameter estimates tabulated in Table 3, we can
see the general pattern that the average temperature tends to
drop from southwestern areas to northeastern areas. ZNDX
has the similar tendency as the intercept does, but PCPN
behaves in an opposite direction. For the global feature
estimates, there is no surprise to see the seasonal effects, and
PDSI and PHDI have positive but relatively small (compared
to the heterogeneous features) influence on the temperature.

Additional prediction-driven analysis was conducted by par-
titioning the nClimDiv dataset into two parts: data in 1895-
2000 was used for training and 2001-2016 for testing. Our
model did not perform as well as the baseline unit-level re-
gression model in terms of the RMSE for the test data. This
may be caused by a sub-optimal choice of the tuning param-
eter λ which leads to fewer subgroups than what would be
needed for better prediction performance. Recall that we
did not choose λ to minimize the cross-validation prediction
error, but used BIC in order to get a parsimonious model.
On the other hand, with the simulation results and optimality
theory presented in the paper, our model dominates the base-
line model in terms of statistical inference accuracy. This
may suggest a fundamental difference between inferential
analysis and predictive analysis.

2E.g., see the first figure in https://www.climate.gov/news-
features/videos/noaas-2019-20-winter-outlook-temperature-
precipitation-and-drought.

3See the United States Drought Monitor Animation at
https://droughtmonitor.unl.edu/Maps/Animations.aspx
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