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Abstract: Set classification aims to classify a set of observations as a whole, as opposed to classify-

ing individual observations separately. To formally understand the unfamiliar concept of binary set

classification, we first investigate the optimal decision rule under the normal distribution, which uses

the empirical covariance of the set to be classified. We show that the number of observations in the

set plays a critical role in bounding the Bayes risk. Under this framework, we further propose new

methods of set classification. For the case where only a few parameters of the model drive the difference

between two classes, we propose a computationally efficient approach to parameter estimation using

linear programming, leading to the Covariance-engaged LInear Programming Set (CLIPS) classifier.

Its theoretical properties are investigated for both the independent case and various (short-range and

long-range dependent) time series structures among the observations within each set. The convergence

rates of the estimation errors and the risk of the CLIPS classifier are established to show that having

multiple observations in a set leads to faster convergence rates than in the standard classification sit-

uation in which there is only one observation in the set. The applicable domains in which the CLIPS

classifier outperforms its competitors are highlighted in a comprehensive simulation study. Finally, we

illustrate the usefulness of the proposed methods in classifying real image data in histopathology.

Key words and phrases: Bayes risk, `1-minimization, Quadratic discriminant analysis, Set classification,

Sparsity.
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1. Introduction

Classification is a useful tool in statistical learning, with applications in many important

fields. A classification method aims to train a classification rule based on training data to

classify future observations. Some popular classification methods include linear discriminant

analyses, quadratic discriminant analyses, logistic regressions, support vector machines, neu-

ral nets, and classification trees. Traditionally, the task at hand is to classify an observation

into a class label.

Advances in technology have enabled the production of large amounts of data in areas

such as the healthcare and manufacturing industries. Oftentimes, multiple samples collected

from the same object are available. For example, it has become cheaper to obtain multiple

tissue samples from a single patient in cancer prognosis (Miedema et al., 2012). Specifically,

Miedema et al. (2012) collected 348 independent cells, each containing observations of varying

numbers (tens to hundreds) of nuclei. Here, each cell, rather than each nucleus, is labeled as

either normal or cancerous. Each observation of nuclei contains 51 measurements of shape

and texture features. A statistical task herein is to classify the whole set of observations from

a single set (or all nuclei in a single cell) as normal or cancerous. This problem was referred to

as set classification by Ning and Karypis (2009) and studied by Wang et al. (2012) and Jung

and Qiao (2014). The problem appears in the image-based pathology literature (Samsudin

and Bradley, 2010; Wang et al., 2010; Cheplygina et al., 2015; Shifat-E-Rabbi et al., 2020)

and in face recognition, based on pictures obtained from multiple cameras, sometimes called

image set classification (Arandjelovic and Cipolla, 2006; Wang et al., 2012). The approaches

to set classification in the literature are combinations of feature engineering, off-the-shelf
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Covariance-engaged Classification of Sets

classifiers (mostly the support vector machine), and consensus learning (either majority or

weighted voting). To the best of the authors’ knowledge, there is no theoretical justification

for set classification. Set classification is not identical to multiple-instance learning (MIL)

(Maron and Lozano-Pérez, 1998; Chen et al., 2006; Ali and Shah, 2010; Carbonneau et al.,

2018), as shown by Kuncheva (2010). A key difference is that in set classification, a label is

given to sets, whereas observations in a set have different labels in the MIL setting.

While conventional classification methods predict a class label for each observation, care

is needed in generalizing the methods for set classification. In principle, more observations

should ease the task at hand. Moreover, higher-order statistics, such as variances and co-

variances, can now be exploited to help classification. Our approach to set classification

is to use the extra information available to us only when there are multiple observations.

To elucidate this idea, we illustrate samples from three classes in Fig. 1. All three classes

have the same mean, and Classes 1 and 2 have the same marginal variances. Classifying

a single observation near the mean to any of these distributions seems difficult. On the

other hand, classifying several independent observations from the same class should be much

easier. In particular, a set-classification method needs to incorporate the difference between

the covariances in order to differentiate these classes.

In this work, we study a binary set-classification framework, where a set of observations

X “ tX1, . . . , XMu is classified as either Y “ 1 or Y “ 2. In particular, we propose

set classifiers that extend a quadratic discriminant analysis to the set-classification setting,

and that are designed to work well in the set classification of high-dimensional data with

distributions similar to those in Fig. 1.
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Figure 1: A two-dimensional toy example showing classes with no difference in the mean or

marginal variance.

To provide a fundamental understanding of the set-classification problem, we establish a

Bayesian optimal decision rule under normality and homogeneity (independent and identi-

cally distributed; i.i.d.) assumptions. This Bayes rule uses the covariance structure of the

testing set of future observations. We show in Section 2 that it becomes much easier to

accurately classify a set when the set size, m0, increases. In particular, we demonstrate that

the Bayes risk can be reduced exponentially in the set size m0. To the best of our knowledge,

this is the first formal theoretical framework for set-classification problems in the literature.

Based on the Bayesian optimal decision rule, we propose new methods of set classification

in Section 3. For the situation where the dimension p of the feature vectors is much smaller

than the total number of training samples, we demonstrate that a simple plug-in classifier

leads to satisfactory risk bounds similar to the Bayes risk. Again, a large set size plays a key

role in significantly reducing the risk. In high-dimensional situations, where the number of
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Covariance-engaged Classification of Sets

parameters to be estimated (« p2) is large, we assume that only a few parameters drive the

difference between the two classes. With this sparsity assumption, we propose estimating

the parameters in the classifier using linear programming, referring to the resulting classi-

fiers as Covariance-engaged LInear Programming Set (CLIPS) classifiers. Specifically, the

quadratic and linear parameters in the Bayes rule can be estimated efficiently under the

sparse structure, owing to the extra observations in the training set resulting from having

sets of observations. Our estimation approaches are closely related to and built upon the

successful estimation strategies of Cai et al. (2011) and Cai and Liu (2011). To estimate

the constant parameter, we perform a logistic regression with only one unknown, given the

estimates of the quadratic and linear parameters. This allows us to implement the CLIPS

classifier with high computation efficiency.

In Section 4, we provide a thorough study of the theoretical properties of CLIPS classi-

fiers and establish an oracle inequality in terms of the excess risk. In particular, the CLIPS

estimates are shown to be consistent, and strong signals are always selected with high prob-

ability in high dimensions. Moreover, in contrast to naively using pooled observations, the

excess risk can be reduced by having more observations in a set, a new phenomenon related

to set classification.

In the conventional classification problem where m0 “ 1, a special case of the proposed

CLIPS classifier becomes a new sparse quadratic discriminant analysis (QDA) method (cf.,

Fan et al., 2015, 2013; Li and Shao, 2015; Jiang et al., 2018; Qin, 2018; Zou, 2019; Gaynanova

and Wang, 2019; Cai and Zhang, 2019; Pan and Mai, 2020). As a byproduct of our theoretical

study, we show that the new QDA method enjoys better theoretical properties than those
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of some state-of-the-art sparse QDA methods, such as that of Fan et al. (2015).

The advantages of our set classifiers are demonstrated in comprehensive simulation stud-

ies. Moreover, in Section 5, we provide an application to histopathology where we classify

sets of nucleus images as normal or cancerous tissue. The proofs of the main results and the

technical lemmas can be found in the Supplementary Material, as well as a study on the case

where the observations in a set demonstrate certain spatial and temporal dependent struc-

tures. There, we use various (both short- and long-range) dependent time series structures

within each set by considering a very general vector linear process model.

2. Set Classification

We consider a binary set-classification problem. The training sample tpXi,YiquNi“1 contains

N sets of observations. Each set, Xi “ tXi1, Xi2, . . . , XiMi
u Ă Rp, corresponds to one object,

and is assumed to be from one of the two classes. The corresponding class label is denoted

by Yi P t1, 2u. The number of observations within the ith set is denoted by Mi and can

vary between sets. Given a new set of observations pX :,Y:q, the goal of set classification is

to predict Y: accurately based on X : using a classification rule φp¨q P t1, 2u trained on the

training sample.

To formally introduce the set-classification problem and study its fundamental properties,

we start with a setting in which the sets in each class are homogeneous in the sense that all

the observations in a class, regardless of the set membership, follow the same distribution

independently. Specifically, we assume both the N sets tpXi,YiquNi“1 and the new set pX :,Y:q

are generated independently in the same way as pX ,Yq. To describe the generating process

6
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Covariance-engaged Classification of Sets

of pX ,Yq, we assume that the random variables M and Y are independent, denote the

marginal class probabilities by π1 “ prpY “ 1q and π2 “ prpY “ 2q, and denote the

marginal distribution of the set size M by pM . In other words, the class membership Y

cannot be predicted based only on the set size M . Conditioned on M “ m and Y “ y, the

observations X1, X2, . . . , XM in the set X are independent, and each is distributed as fy.

2.1 Covariance-engaged Set Classifiers

Suppose there are M : “ m observations in the set X : “ tX:

1, . . . , X
:
mu that is to be classified

(called the testing set), and its true class label is Y:. The Bayes optimal decision rule classifies

the set X : “ tx1, . . . , xmu as Class 1 if the conditional class probability of Class 1 is greater

than that of Class 2; that is, prpY: “ 1 | M : “ m, X:

j “ xj, j “ 1, . . . ,mq ą 1{2. This is

equivalent to π1pMpmq
śm

j“1 f1pxjq ą π2pMpmq
śm

j“1 f2pxjq, owing to the Bayes theorem and

the independence assumption among Y: and M :. Let us now assume that the conditional

distributions are both normal; that is, f1 „ Npµ1,Σ1q and f2 „ Npµ2,Σ2q. Then, the Bayes

optimal decision rule depends on the quantity

gpx1, . . . , xmq “
1

m
log

#

π1pMpmq
śm

j“1 f1pxjq

π2pMpmq
śm

j“1 f2pxjq

+

“
1

m
logpπ1{π2q ´

1

2
logp|Σ1|{|Σ2|q ´

1

2
µT1 Σ´1

1 µ1 `
1

2
µT2 Σ´1

2 µ2

` pΣ´1
1 µ1 ´ Σ´1

2 µ2q
T x̄`

1

2
x̄T pΣ´1

2 ´ Σ´1
1 qx̄`

1

2
trtpΣ´1

2 ´ Σ´1
1 qSu. (2.1)

Here, |Σk| denotes the determinant of the matrix Σk, for k “ 1, 2, and x̄ “
řm
j“1 xj{m and

S “
řm
j“1pxj ´ x̄qpxj ´ x̄qT {m are the sample mean and sample covariance, respectively, of

the testing set. Note that the realization X : “ tx1, x2, . . . , xmu implies both the number
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of observations m and the i.i.d. observations xj, for j “ 1, . . . ,m. The Bayes rule can be

expressed as

φBpX :
q “ 2´ 1tgpx1, . . . , xmq ą 0u, where (2.2)

gpx1, . . . , xmq “
1

m
logpπ1{π2q ` β0 ` β

T x̄` x̄T∇x̄{2` trp∇Sq{2,

in which the constant coefficient β0 “ t´ logp|Σ1|{|Σ2|q ´ µT1 Σ´1
1 µ1 ` µT2 Σ´1

2 µ2u{2 P R, the

linear coefficient vector β “ Σ´1
1 µ1 ´ Σ´1

2 µ2 P Rp, and the quadratic coefficient matrix

∇ “ Σ´1
2 ´ Σ´1

1 P Rpˆp. The Bayes rule φB under the normal assumption in (2.2) uses the

summary statistics m, x̄, and S of X :.

We refer to (2.2) and any estimated version of it as a covariance-engaged set classifier.

In Section 3, several estimation approaches for β0, β, and ∇ are proposed. In this section,

we discuss a rationale for considering (2.2).

The covariance-engaged set classifier (2.2) resembles the conventional QDA classifier. As

a natural alternative to (2.2), one may consider the sample mean x̄ as a representative of the

testing set, and apply the QDA to x̄ directly to make a prediction. In other words, we classify

this single observation x̄ to one of the two normal distributions, that is, f 11 „ Npµ1,Σ1{mq

and f 12 „ Npµ2,Σ2{mq. This simple idea leads to

φB,x̄pX :
q “ 2´ 1tgQDApx̄q ą 0u, where (2.3)

gQDApx̄q “
1

m
logpπ1{π2q ` β

1
0 ` β

T x̄` x̄T∇x̄{2,

in which β10 “ t´
1
m

logp|Σ1|{|Σ2|q ´ µT1 Σ´1
1 µ1 ` µT2 Σ´1

2 µ2u{2. One major difference between

(2.2) and (2.3) is that the term trp∇Sq{2 is absent from (2.3). Indeed, the advantage of

(2.2) over (2.3) comes from the extra information in the sample covariance S of X :. In the

8
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Covariance-engaged Classification of Sets

regular classification setting, (2.2) coincides with (2.3), because trp∇Sq{2 vanishes when X :

is a singleton.

Given multiple observations in the testing set, another natural approach is a majority

vote applied to the QDA decisions of individual observations:

φMV pX :
q “ 2´ 1

#

1

m

m
ÿ

j“1

signrgQDApxjqs ą 0

+

, (2.4)

where signptq “ 1, 0,´1 for t ą 0, t “ 0, and t ă 0 respectively, and gQDApxjq is given in

(2.3) with x̄ replaced by xj (and m by one). In contrast, because gpX :q “ 1
m

řm
j“1 gQDApxjq,

our classifier (2.2) predicts the class label using a weighted vote of individual QDA decisions.

In this sense, the majority voting scheme (2.4) can be viewed as a discretized version of (2.2).

In Section 5, we demonstrate that our set classifier (2.2) performs significantly better than

(2.4).

Remark 1. We have assumed that M and Y are independent in this setting. In fact, this

assumption is not essential, and can be relaxed. In a more general setting, there can be

two different distributions of M , pM1pmq and pM2pmq, conditional on Y “ 1 and Y “ 2,

respectively. Our analysis throughout remains the same, except that these distributions

replace two identical factors pMpmq in the first equality of (2.1). If pM1pmq and pM2pmq are

significantly different, then the classification is easier, because one can make a decision based

on the observed value of m. Here, we consider only the more difficult setting where Y and

M are independent.
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2.2 Bayes Risk

In this section, we describe an advantage of having a set of observations for prediction, rather

than o having a single observation. For this, we suppose for now that the parameters µk

and Σk, for k “ 1, 2, are known and make the following assumptions. Denote λmaxpAq and

λminpAq as the greatest and smallest eigenvalues, respectively, of a symmetric matrix A.

Condition 1. The spectrum of Σk is bounded below and above: there exists some universal

constant Ce ą 0 such that C´1
e ď λminpΣkq ď λmaxpΣkq ď Ce, for k “ 1, 2.

Condition 2. The support of pM is bounded between cmm0 and Cmm0, where cm and

Cm are universal constants and m0 “ EpMq. In other words, pMpaq “ 0 for any integer

a ă cmm0 or ą Cmm0. The set size m0 can be large or growing when a sequence of models

is considered.

Condition 3. The prior class probability is bounded away from zero and one: there exists

a universal constant 0 ă Cπ ă 1{2 such that Cπ ď π1, π2 ď 1´ Cπ.

We denote RBk “ prpφBpX :q ‰ k | Y: “ kq as the risk of the Bayes classifier (2.2), given

Y: “ k. Let δ “ µ2 ´ µ1. For a matrix B P Rpˆp, we denote }B}F “ p
řp
i“1

řp
j“1 B

2
ijq

1{2

as its Frobenius norm, where Bij is its ijth element. For a vector a P Rp, we denote

}a} “ p
řp
i“1 a

2
i q

1{2 as its `2 norm. The quantity Dp “ p}∇}2F ` }δ}2q1{2 plays an important

role in deriving a convergence rate of the Bayes risk RB “ π1RB1 ` π2RB2. Although the

Bayes risk does not have a closed form, we show that under mild assumptions, it converges

to zero at a rate on the exponent.
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Covariance-engaged Classification of Sets

Theorem 1. Suppose that Conditions 1–3 hold. If D2
pm0 is sufficiently large, then RB ď

4 exp
`

´c1m0D
2
p

˘

, for some small constant c1 ą 0 depending on Ce, cm, and Cπ only. In

particular, as D2
pm0 Ñ 8, we have RB Ñ 0.

The significance of having a set of observations is illustrated by this fundamental theorem.

When pMp1q “ 1, which implies M : ” 1 and m0 “ 1, Theorem 1 provides a Bayes risk bound

RB ď 4 exp
`

´c1D2
p

˘

for the theoretical QDA classifier in the regular classification setting.

To guarantee a small Bayes risk for the QDA, it is clear that D2
p must be sufficiently large.

In comparison, for the set classification to be successful, we may allow D2
p to be very close to

zero, as long as m0D
2
p is sufficiently large. The Bayes risk of φB can be reduced exponentially

in m0 because of the extra information from the set.

We have discussed an alternative classifier using the sample mean x̄ as a representative

of the testing set, leading to φB,x̄ (2.3). The following proposition quantifies its risk, which

has a slower rate than that of the Bayes classifier RB.

Proposition 1. Suppose that Conditions 1–3 hold. Denote the risk of classifier φB,x̄ in (2.3)

as Rx̄. Assume }∇}2F `m0}δ}
2 is sufficiently large. Then, Rx̄ ď 4 exp p´c1p}∇}2F `m0}δ}

2qq,

for some small constant c1 ą 0 depending on Ce, cm, and Cπ only. In addition, the rate on

the exponent cannot be improved in general, that is, Rx̄ ě exp p´c2p}∇}2F `m0}δ}
2qq, for

some small constant c2 ą 0.

Remark 2. Compared with the result in Theorem 1, the above proposition implies that

the classifier φB,x̄ needs a stronger assumption, but has a slower rate of convergence when

the mean difference m0}δ}
2 is dominated by the covariance difference }∇}2F . After all, this
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natural x̄-based classification rule relies only on the first moment of the data set X :, while the

sufficient statistics, the first two moments, are used fully by the covariance-engaged classifier

in (2.2).

3. Methodologies

We now consider estimation procedures for φB based on N training sets tpXi,YiquNi“1. In

Section 3.1, we first consider a moderate-dimensional setting where p ď c0m0N , with a suffi-

ciently small constant c0 ą 0. In this case, we apply a naive plug-in approach using natural

estimators of the parameters πk, µk, and Σk. A direct estimation approach using linear

programming, suitable for high-dimensional data, is introduced in Section 3.2. Hereafter,

p “ ppNq and m0 “ m0pNq are considered as functions of N as N grows.

3.1 Naive Estimation Approaches

The prior class probabilities π1 and π2 can be estimated consistently using the class propor-

tions in the training data, π̂1 “ N1{N and π̂2 “ N2{N , where Nk “
řN
i“1 1tYi “ ku. Let

nk “
řN
i“1 Mi1tYi “ ku denote the total sample size for Class k “ 1, 2. The set member-

ship is ignored at the training stage, owing to the homogeneity assumption. Note that nk,

n1`n2, and Nk are random, while N is deterministic. One can obtain consistent estimators

of µk and Σk based on the training data and plug them into (2.2). It is natural to use the

maximum likelihood estimators, given nk,

µ̂k “
ÿ

pi,jq:Yi“k

Xij{nk and Σ̂k “
ÿ

pi,jq:Yi“k

tpXij ´ µ̂kqpXij ´ µ̂kq
T
u{nk. (3.1)

12

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0253



Covariance-engaged Classification of Sets

For the classification of X : “ tX:

1, . . . , X
:

M:u, with M : “ m and X:

i “ xi, the set classifier

(2.2) is estimated as

φ̂pX :
q “ 2´ 1

"

1

m
logpπ̂1{π̂2q ` β̂0 ` β̂

T x̄` x̄T ∇̂x̄{2` trp∇̂Sq{2 ą 0

*

, (3.2)

where β̂0 “ ´1
2

!

logp|Σ̂1|{|Σ̂2|q ´ µ̂
T
1 Σ̂´1

1 µ̂1 ` µ̂
T
2 Σ̂´1

2 µ̂2

)

, β̂ “ Σ̂´1
1 µ̂1 ´ Σ̂´1

2 µ̂2, and ∇̂ “

Σ̂´1
2 ´ Σ̂´1

1 . In (3.2), we have assumed p ă nk, so that Σ̂k is invertible.

The generalization error of the set classifier (3.2) is R̂ “ π1R̂1` π2R̂2, where R̂k “

prpφ̂pX :q ‰ k | Y: “ kq. The classifier itself depends on the training data tpXi,YiquNi“1, and

hence is random. In the equation above, pr is understood as the conditional probability given

the training data. Theorem 2 reveals a theoretical property of R̂ in a moderate-dimensional

setting that allows p,N , and m0 to grow jointly. This includes the traditional setting in

which p is fixed.

Theorem 2. Suppose that Conditions 1–3 hold. For any fixed L ą 0, if D2
pm0 ě C0 for

some sufficiently large C0 ą 0 and p ď c0Nm0, p2{pNm0D
2
pq ď c0, and log p ď c0N for

some sufficiently small constant c0 ą 0, then with probability at least 1 ´ Opp´Lq, we have

R̂ ď 4 exp
`

´c1m0D
2
p

˘

for some small constant c1 ą 0 depending on Cπ, cm, L, and Ce.

In Theorem 2, large values of m0 not only relax the assumption on Dp, but also reduce

the Bayes risk exponentially in m0 with high probability. A similar result for the QDA,

where Mi “ M : ” 1 and m0 “ 1, was obtained in Li and Shao (2015) under a stronger

assumption p2{pND2
pq Ñ 0.

For high-dimensional data where p “ ppNq " Nm0, and hence p ą nk with probability

one for k “ 1, 2, by Condition 2, it is problematic to plug in the estimators (3.1) because Σ̂k
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is rank deficient with probability one. A simple remedy is to use a diagonalized or enriched

version of Σ̂k, defined by Σ̂kpdq “ diagtpσ̂k,iiqi“1,...,pu or Σ̂kpeq “ Σ̂k ` δIp, where δ ą 0 and Ip

is a p ˆ p identity matrix. Both Σ̂kpdq and Σ̂kpeq are invertible. However, to the best of our

knowledge, no theoretical guarantee has been obtained without some structural assumptions.

3.2 A Direct Approach using Linear Programming

To have reasonable classification performance in high-dimensional data analysis, one usually

has to take advantage of certain extra information of the data or model. There are often

cases where only a few elements in ∇ “ Σ´1
2 ´ Σ´1

1 and β “ Σ´1
1 µ1 ´ Σ´1

2 µ2 truly drive the

difference between the two classes. The naive plug-in method proposed in Section 3.1 ignores

this potential structure of the data. We assume that both ∇ and β are known to be sparse,

such that only a few elements of those are nonzero. In light of this, the Bayes decision rule

(2.2) implies that the dimension of the problem can be significantly reduced, which makes

consistency possible, even in a high-dimensional setting.

We propose directly estimating the quadratic term ∇, the linear term β, and the con-

stant β0 coefficients, taking advantage of the assumed sparsity. Because the estimates are

calculated efficiently using linear programming, the resulting classifiers are called CLIPS

classifiers.

We first deal with the estimation of the quadratic term ∇ “ Σ´1
2 ´ Σ´1

1 , which is the

difference between the two precision matrices. We use techniques developed in the literature

on precision matrix estimation (cf., Meinshausen and Bühlmann, 2006; Bickel and Levina,

2008; Friedman et al., 2008; Yuan, 2010; Cai et al., 2011; Ren et al., 2015). These methods
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Covariance-engaged Classification of Sets

estimate a single precision matrix with a common assumption that the underlying true

precision matrix is sparse, in some sense. For the estimation of the difference, we propose

using a two-step thresholded estimator.

As the first step, we adopt the CLIME estimator (Cai et al., 2011) to obtain the initial

estimators Ω̃1 and Ω̃2 of the precision matrices Σ´1
1 and Σ´1

2 , respectively. Let }B}1 “

ř

i,j |Bij| and }B}8 “ maxi,j |Bij| be the vector `1 norm and vector supnorm, respectively,

of a pˆ p matrix B. The CLIME estimators are defined as

Ω̃k “ argmin
ΩPRpˆp

}Ω}1 subject to }Σ̂kΩ´ I}8 ă λ1,N , k “ 1, 2, (3.3)

for some λ1,N ą 0.

Having obtained Ω̃1 and Ω̃2, in the second step, we take a thresholding procedure on their

difference, followed by a symmetrization to obtain our final estimator ∇̃ “ p∇̃ijq, where

∇̃ij “ mint∇̆ij, ∇̆jiu, ∇̆ij “ pΩ̃2,ij ´ Ω̃1,ijq1

!ˇ

ˇ

ˇ
Ω̃2,ij ´ Ω̃1,ij

ˇ

ˇ

ˇ
ą λ11,N

)

, (3.4)

for some thresholding level λ11,N ą 0.

Although this thresholded CLIME difference estimator is obtained by first individually

estimating Σ´1
k , note that the estimation accuracy depends only on the sparsity of their

difference ∇, rather than on the sparsity of either Σ´1
1 or Σ´1

2 , under a relatively mild

sparsity condition in terms of their matrix `1 norms. We show in Theorem 3 in Section 4

that if the true precision matrix difference ∇ is negligible, ∇̃ “ 0 with high probability.

When ∇̃ “ 0, our method described in (3.8) becomes a linear classifier adaptively. The

computation of ∇̃ (3.4) is fast, because the first step (CLIME) can be recast as a linear

program, and the second step is a simple thresholding procedure.
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Remark 3. As an alternative, one can also consider a direct estimation of ∇ that does

not rely on individual estimates of Σ´1
k . For example, by allowing some deviations from the

identity Σ1∇Σ2´Σ1`Σ2 “ 0, Zhao et al. (2014) proposed minimizing the vector `1 norm of

∇. Specifically, they proposed ∇̃ZCL P argminB }B}1, subject to }Σ̂1BΣ̂2´Σ̂1`Σ̂2}8 ď λ21,n,

where λ21,n is some thresholding level. This method, however, is computationally expensive

(because it has Opp2q number of linear constraints when cast to linear programming) and

can only handle a relatively small size of p. Cai and Zhang (2019) further considered a

symmetric version of the above direct estimation, and solved it using a primal-dual interior

point method. See also Jiang et al. (2018). We chose to use (3.4), mainly because of the fast

computation.

Next we estimate the linear coefficient vector β “ β1´β2, where βk “ Σ´1
k µk, for k “ 1, 2.

In the literature on sparse QDA and sparse LDA, typical sparsity assumptions are placed

on µ1 ´ µ2 and Σ1 ´ Σ2 (see Li and Shao, 2015), or are placed on both β1 and β2 (see, e.g.,

Cai and Liu, 2011; Fan et al., 2015). In the latter case, β is also sparse because it is the

difference between two sparse vectors. For the estimation of β, we propose a new method

that directly imposes sparsity on β, without specifying the sparsity for µk, Σk, or βk, except

for some relatively mild conditions (see Theorem 4 for details.)

The true parameter βk satisfies Σkβk ´ µk “ 0. However, owing to the rank-deficiency of

Σ̂k, there are either none or infinitely many θk that satisfy an empirical equation Σ̂kθk´ µ̂k “

0. Here, µ̂k and Σ̂k are defined in (3.1). We relax this constraint and seek a possibly

nonsparse pair pθ1, θ2q with the smallest `1 norm difference. We estimate the coefficients β
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Covariance-engaged Classification of Sets

by β̃ “ β̃1 ´ β̃2, where

pβ̃1, β̃2q “ argmin
pθ1,θ2q:}θk}1ďL1

}θ1 ´ θ2}1 subject to }Σ̂kθk ´ µ̂k}8 ă λ2,N , k “ 1, 2, (3.5)

where L1 is some sufficiently large constant, introduced only to ease the theoretical evalua-

tions. In practice, the constraint }θk}1 ď L1 can be removed without affecting the solution.

Our procedure (3.5) can be recast as a linear programming problem (see, e.g., Candes and

Tao, 2007; Cai and Liu, 2011) and is computationally efficient.

The direct estimation approach for β “ Σ´1
1 µ1 ´ Σ´1

2 µ2 above is a natural extension of

Cai and Liu (2011), in which a direct estimation of Σ´1pµ1´µ2q for the LDA (Σ “ Σ1 “ Σ2)

was considered. Note that by centering the quadratic Bayes discriminant function gQDAp¨q,

alternative sparse linear coefficient vectors have been considered in the literature on QDA.

For example, Jiang et al. (2018) proposed estimating pΣ´1
1 ` Σ´1

2 qpµ1 ´ µ2q, while Li and

Shao (2015), Fan et al. (2015), and Cai and Zhang (2019) proposed estimating Σ´1
2 pµ1´µ2q,

both of which are location-invariant. Although β considered in our approach is not location-

invariant, we emphasize that the sparsity conditions for the three different linear coefficient

vectors are not comparable, because their interpretations differ. Other direct estimation

approaches of the linear coefficient vector have also been considered in related discriminant

analyses, see, for example, Clemmensen et al. (2011), Witten and Tibshirani (2011) and ,Mai

et al. (2012, 2019).

Finally, we consider the estimation of the constant coefficient β0. The conditional class

probability ηpx1, . . . , xmq “ prpY “ 1 | M “ m, Xi “ xi, i “ 1, . . . ,mq that a set belongs
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to Class 1 given X “ tx1, . . . , xmu can be evaluated by the following logit function:

log

"

ηpx1, . . . , xmq

1´ ηpx1, . . . , xmq

*

“ log
π1

π2

` log

"śm
i“1 f1pxiq

śm
i“1 f2pxiq

*

“ logpπ1{π2q `mpβ0 ` x̄
Tβ `

1

2
x̄T∇x̄` 1

2
trp∇Sqq,

where x̄ and S are the sample mean and thecovariance of the set tx1, . . . , xmu, respectively.

Having obtained our estimators ∇̃ and β̃ from (3.4) and (3.5), respectively, and estimated

π̂1 and π̂2 by N1{N and N2{N , respectively, from the training data, only the scalar β0 is

undecided. We may estimate β̃0 by conducting a simple logistic regression with a dummy

independent variable Mi, and offset logpπ̂1{π̂2q`Mi

´

X̄T
i β̃ ` X̄

T
i ∇̃X̄i{2` trp∇̃Siq{2

¯

for the

ith set of observations in the training data, where Mi, X̄i, and Si are the sample size, sample

mean, and sample covariance, respectively, of the ith set. In particular, we solve

β̃0 “ argmin
θ0PR

`pθ0 | tpXi,YiquNi“1, β̃, ∇̃q,where the negative log-likelihood is (3.6)

`pθ0 | tpXi,YiquNi“1, β̃, ∇̃q (3.7)

“
1

N

N
ÿ

i“1

´

pYi ´ 2qMi

ˆ

θ0 `
logpπ̂1{π̂2q

Mi

` X̄T
i β̃ ` X̄

T
i ∇̃X̄i{2` trp∇̃Siq{2

˙

` log

„

1` exp

"

Mi

ˆ

θ0 `
logpπ̂1{π̂2q

Mi

` X̄T
i β̃ ` X̄

T
i ∇̃X̄i{2` trp∇̃Siq{2

˙*

¯

Because there is only one independent variable in the logistic regression above, the opti-

mization can be easily and efficiently solved. Alternative ways of estimating the constant

coefficient in the literature on QDA include a simple plug-in estimator (Cai and Zhang, 2019)

and using the idea of cross-validation (Jiang et al., 2018).

For the purpose of evaluating theoretical properties, we apply the sample splitting tech-

nique (Wasserman and Roeder, 2009; Meinshausen and Bühlmann, 2010). Specifically, we
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randomly choose the first batch of N1{2 and N2{2 sets from two classes in the training data

to obtain the estimators ∇̃ and β̃ using (3.4) and (3.5), respectively. Then, β̃0 is estimated

based on the second batch, along with ∇̃ and β̃, using (3.6). We plug all estimators in (3.4),

(3.5), and (3.6) into the Bayes decision rule (2.2) and obtain the CLIPS classifier,

φ̃pX :
q “ 2´ 1

"

logpπ̂1{π̂2q

m
` β̃0 ` β̃

T x̄` x̄T ∇̃x̄{2` trp∇̃Sq{2 ą 0

*

, (3.8)

where x̄ and S are the sample mean and the covariance, respectively, of X :, and M : “ m is

its size.

4. Theoretical Properties of the CLIPS classifier

In this section, we derive the theoretical properties of the estimators from (3.4)–(3.6), as

well as generalization errors for the CLIPS classifier (3.8). In particular, we demonstrate

the advantages of having sets of independent observations, in contrast to the classical QDA

setting with individual observations under the homogeneity assumption of Section 2. Parallel

results under various time series structures can be found in the Supplementary Material.

To establish the statistical properties of the thresholded CLIME difference estimator ∇̃

defined in (3.4), we assume that the true quadratic parameter ∇ “ Σ´1
2 ´ Σ´1

1 has no more

than sq nonzero entries,

∇ P FM0psqq “ tA “ paijq P Rpˆp, symmetric :
p
ÿ

i,j“1

1taij ‰ 0u ď squ. (4.1)

Denote supppAq as the support of the matrix A. We summarize the estimation error and a

subset selection result in the following theorem.
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Theorem 3. Suppose Conditions 1–3 hold. Moreover, assume ∇ P FM0psqq, and }Σ´1
k }`1 ď

C`1, with some constant C`1 ą 0, for k “ 1, 2, and log p ď c0N , with some sufficiently small

constant c0 ą 0. Then, for any fixed L ą 0, with probability at least 1 ´ Opp´Lq, we have

that

}∇̃´∇}8 ď 2λ11,N ,

}∇̃´∇}F ď 2
?
sqλ

1
1,N ,

}∇̃´∇}1 ď 2sqλ
1
1,N ,

as long as λ1,N ě CC`1

b

log p
Nm0

and λ11,N ě 8C`1λ1,N in (3.4), where C depends on L,Ce, Cπ,

and cm only. Moreover, we have prpsuppp∇̃q Ă suppp∇qq “ 1´Opp´Lq.

Remark 4. The parameter space FM0psqq can be extended easily to an entry-wise `q ball

or weak `q ball, with 0 ă q ă 1 (Abramovich et al., 2006) and the estimation results in

Theorem 3 remain valid with appropriate sparsity parameters. The subset selection result

also remains true, and the support of ∇̃ contains those important signals of ∇ above the

noise level
a

plog pq{Nm0. To simplify the analysis, we consider only `0 balls in this work.

Remark 5. Theorem 3 implies that the error bounds of estimating ∇ under the vector `1

norm and the Frobenius norm both rely on the sparsity sq imposed on ∇, rather than those

imposed on Σ´1
2 or Σ´1

1 . Therefore, even if both Σ´1
2 and Σ´1

1 are relatively dense, we still

have an accurate estimate of ∇, as long as ∇ is very sparse and C`1 is not large.

The proof of Theorem 3, provided in the Supplementary Material, partially follows from

Cai et al. (2011).
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Next, we assume β “ β1 ´ β2 is sparse in the sense that it belongs to the sl-sparse ball,

β P F0pslq “ tα “ pajq P Rp :
p
ÿ

j“1

1tαj ‰ 0u ď slu. (4.2)

Theorem 4 gives the rates of convergence of the linear coefficient estimator β̃ in (3.5) under

the `1 and `2 norms. Both depend on the sparsity of β only, rather than that of β1 or β2.

Theorem 4. Suppose Conditions 1–3 hold. Moreover, assume that β P F0pslq, log p ď c0N ,

}βk}1 ď Cβ, and }µk} ď Cµ, with some constants Cβ, Cµ ą 0, for k “ 1, 2, and some

sufficiently small constant c0 ą 0. Then, for any fixed L ą 0, with probability at least

1´Opp´Lq, we have that

}β̃ ´ β}1 ď C2C`1slλ2,N ,

}β̃ ´ β} ď C2C`1
?
slλ2,N ,

as long as λ2,N ě C 1
b

log p
Nm0

in (3.5), where maxt}Σ´1
1 }`1 , }Σ

´1
2 }`1u ď C`1 and C2, C 1 depend

on L,Ce, cm, Cπ, Cβ, and Cµ only.

Remark 6. The parameter space F0psq can be extended easily into an `q ball or weak `q

ball with 0 ă q ă 1 as well, and the results in Theorem 4 remain valid with appropriate

sparsity parameters. We focus on F0psq to ease the analysis.

Lastly, we derive the rate of convergence for estimating the constant coefficient β0. Be-

cause β̃0 is obtained by maximizing the log-likelihood function after plugging β̃ and ∇̃ into

(3.6), the behavior of our estimator β̃0 critically depends on the accuracy of estimating β

and ∇. Theorem 5 provides the result for β̃0 based on certain general initial estimators β̃

and ∇̃, with the following mild condition.
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Condition 4. The expectation of the conditional variance of the class label Y given X is

bounded below; that is, E pVarpY | X qq ą Clog ą 0, where Clog is some universal constant.

Theorem 5. Suppose Conditions 1–4 hold, log p ď c0N with some sufficiently small constant

c0 ą 0, and }µk} ď Cµ with some constant Cµ ą 0, for k “ 1, 2. In addition, we have

some initial estimators β̃, ∇̃, π̂1, and π̂2 such that m0p1 `
a

plog pq{m0q}β̃ ´ β} `m0p1 `

plog pq{m0q}∇̃ ´∇}1 `maxk“1,2 |πk ´ π̂k| ď Cp for some sufficiently small constant Cp ą 0

with probability at least 1´Opp´Lq. Then, with probability at least 1´Opp´Lq, we have

ˇ

ˇ

ˇ
β̃0 ´ β0

ˇ

ˇ

ˇ
ď Cδ

˜

p1`

c

log p

m0

q}β̃ ´ β} ` p1`
log p

m0

q}∇̃´∇}1 `max
k“1,2

|πk ´ π̂k|

m0

`

d

log p

Nm2
0

¸

,

where the constant Cδ depends on L,Ce, Cπ, Clog, Cµ, Cm, and cm.

Remark 7. Condition 4 is determined by our data-generating process stated in Section

2.1. It is satisfied when the classification problem is nontrivial. For example, it is valid if

prtC 1 ă prpY “ 1 | X q ă 1 ´ C 1u ą C with some constants C and C 1 P p0, 1q. As a matter

of fact, Condition 4 is weaker than the typical assumption Clog ă prpY “ 1 | X q ă 1 ´ Clog

with probability one for X , which is often seen in the literature on logistic regression. See,

for example, Fan and Lv (2013) and Fan et al. (2015).

Theorems 3, 4, and 5 demonstrate the estimation accuracy for the quadratic, linear, and

constant coefficients, respectively, in our CLIPS classifier (3.8). We conclude this section by

establishing an oracle inequality for its generalization error by providing a rate of convergence

of the excess risk. To this end, we define the generalization error of the CLIPS classifier as

R̃ “ π1R̃1 ` π2R̃2, where R̃k “ prpφ̃pX :q ‰ k | Y: “ kq is the probability that a new set
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observation from Class k is misclassified by the CLIPS classifier φ̃pX :q. Again, pr is the

conditional probability given the training data tpXi,YiquNi“1 which φ̃pX :q depends on.

We first introduce some notation related to the Bayes decision rule in (2.2). Recall that

given M : “ m, the Bayes decision rule φBpX :q depends solely on the sign of the function

gpX :q “ 1
m

logpπ1{π2q ` β0 ` β
T x̄` x̄T∇x̄{2` trp∇Sq{2. We define by Fk,m the conditional

cumulative distribution function of the oracle statistic gpX :q, given that M : “ m and Y: “ k.

The upper bound of the first derivatives of F1,m and F2,m, for all possible m near zero is

denoted by dN ,

dN “ max
mPrcmm0,Cmm0s, k“1,2

#

sup
tPr´δ0,δ0s

ˇ

ˇF 1k,mptq
ˇ

ˇ

+

,

where δ0 is any sufficiently small constant. The value of dN is determined by the generating

process, and is usually small whenever the Bayes rule performs reasonably well. According

to Theorems 3, 4, and 5, with probability at least 1´Opp´Lq, our estimators satisfy that

ΞN :“ p1`

c

log p

m0

q}β̃ ´ β} ` p1`
log p

m0

q}∇̃´∇}1 `max
k“1,2

|π̂k ´ πk|

m0

`

ˇ

ˇ

ˇ
β̃0 ´ β0

ˇ

ˇ

ˇ
“ OpκNq,

where κN :“ p1` plog pq{m0qsqλ
1
1,N ` p1`

a

plog pq{m0qC`1
?
slλ2,N `

a

plog pq{pNm2
0q. The

quantity κNdN is the key to obtaining the oracle inequality. Condition 5 guarantees that the

assumptions of Theorem 5 are satisfied with high probability in our settings.

Condition 5. Suppose κNm0 ď c0 and κNdN ď c0, with some sufficiently small constant

c0 ą 0.

Theorem 6 reveals the oracle property of the CLIPS classifier, and provides a rate of

convergence of the excess risk, that is, the generalization error of the CLIPS classifier less

the Bayes risk RB defined in Section 2.2.
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Theorem 6. Suppose that the assumptions of Theorems 3 and 4 hold, and that Conditions

4–5 also hold. Then, with probability at least 1´Opp´Lq, we have the oracle inequality

R̃ ď RB ` CgpκNdN ` p
´L
q,

where the constant Cg depends on L,Ce, Cπ, Clog, Cβ, Cm, cm, and Cµ only. In particular, R̃

converges to the Bayes risk RB in probability as N goes to infinity.

Theorem 6 implies that, with high probability, the generalization error of the CLIPS

classifier is close to the Bayes risk with a rate of convergence no slower than κNdN . In

particular, whenever the quantities dN and C`1 are bounded by some universal constant, the

thresholding levels λ11,N “ Op
a

log p{pm0Nqq and λ2,N “ Op
a

log p{pm0Nqq yield the rate of

convergence κNdN in the order of

p1`
a

plog pq{m0q
a

log p{pm0Nq
?
sl ` p1` plog pq{m0q

a

log p{pm0Nqsq. (4.3)

The advantage of having large m0 can be understood by investigating (4.3) as a function

of m0. Indeed, the leading term of (4.3) is

log p

m
3{2
0

c

log p

N
sq, if m0 ď log p ¨mint1,

s2
q

sl
u;

?
log p

m0

c

log p

N

?
sl, if log p ¨

s2
q

sl
ď m0 ď log p;

c

1

m0

c

log p

N
p
?
sl ` sqq, if log p ď m0.

To illustrate the decay rate, we assume sl ě s2
q. Then, as m0 increases, the error decreases

at the order of m
3{2
0 up to a certain point log p ¨

s2q
sl

, and then decreases at the order of m0 up

to another point log p. When m0 is large enough that m0 ě log p, the error decreases at the

order of
?
m0.
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To further emphasize the advantage of having sets of observations, we compare a general

case m0 “ m˚, where log p ď m˚, with the special case that m0 “ 1, that is, the regular

QDA situation. Then, the quantity κN with m˚ has a faster decay rate, with a factor of

order between
?
m˚ log p and

?
m˚ log p (depending on the relationship between sl and sq),

compared to the m0 “ 1 case, owing to the extra observations within each set.

The above discussion reveals that in a high-dimensional setting, the benefit of the set

classification cannot be simply explained by having N˚ “ Nm0 independent observations

instead of having only N individual observations, as in the classical QDA setting. Indeed,

if we have N˚ individual observations in the classical QDA setting, then the implied rate of

convergence would be either log p
b

log p
Nm0

sq (if log p ¨ s2
q ě sl) or

?
log p

b

log p
Nm0

?
sl (otherwise),

which is slower than that provided in equation (4.3).

Remark 8. Note that even in the special QDA situation where m0 “ 1, owing to the sharper

analysis, our result is still new, and the established rate of convergence plog pq{N1{2?sl `

plog pq3{2{N1{2sq in Theorem 6 is at least as good as the plog pq3{2{N1{2psq ` slq derived in

the oracle inequality of Fan et al. (2015) under similar assumptions. Whenever sl ą sq, our

rate is even faster, with a factor of order
?
sl log p, than that in Fan et al. (2015).

Remark 9. The results in this section, including Theorem 6, demonstrate the advantages of

the set-classification setting in contrast to the classical QDA setting. When multiple obser-

vations within each set have short-range dependence, the rates of convergence for estimating

the key parameters and the oracle inequality resemble the results under the independent as-

sumption. However, the results change significantly when there is a long-range dependence

structure among multiple observations.
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Remark 10. Cai and Zhang (2019) considered a sparse QDA using a constrained convex

optimization approach, establishing a minimax rate of convergence psl`sqqplog p ¨ log2Nq{N

on the excess risk up to a logarithmic factor under similar sparsity assumptions. In contrast,

our result in the special QDA situation has the rate of convergence discussed in Remark

8, which is slower for most scenarios under different assumptions. It would be interesting

to investigate the optimal convergence rates for set classification under both short-range

(including i.i.d.) and long-range dependence structures in future studies.

5. Numerical Studies

In this section, we compare various versions of covariance-engaged set classifiers with other set

classifiers adapted from traditional methods. In addition to the CLIPS classifier, we use the

diagonalized and enriched versions of Σ̂k (labeled as Plugin(d) and Plugin(e), respectively)

introduced at the end of Section 3.1, and plug them into the Bayes rule (2.2), as done in (3.2).

For comparison, we also supply the estimated β0, β, and ∇ from the CLIPS procedure to a

QDA classifier, which is applied to all the observations in a testing set, followed by a majority

voting scheme (labeled as QDA-MV). Lastly, we calculate the sample mean and variance of

each variable in an observation set to form a new feature vector, as in Miedema et al. (2012).

Then a support vector machine (SVM; Cortes and Vapnik, 1995) and a distance-weighted

discrimination (DWD; Marron et al., 2007; Wang and Zou, 2018) are applied to the features

to make predictions (labeled SVM and DWD, respectively). We use the R library clime to

calculate the CLIME estimates, the R library e1071 to calculate the SVM classifier, and the

R library sdwd (Wang and Zou, 2016) to calculate the DWD classifier.
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5.1 Simulations

Three scenarios are considered for the simulations. In each scenario, we consider a binary

setting with N “ 7 sets in a class and M “ 10 observations from the normal distribution in

each set.

Scenario 1 We set the precision matrix for Class 1 to Σ´1
1 “ p1 `

?
pqIp. For Class 2, we

set Σ´1
2 “ Σ´1

1 ` ∇̃, where ∇̃ is a pˆ p symmetric matrix with 10 elements randomly

selected from the upper-triangular part with values equal to ζ, and all other elements

being zeros. For the mean vectors, we set µ1 “ Σ1pu, u, 0, . . . , 0q
T and µ2 “ p0, . . . , 0q

T .

Note that this makes the true value of β “ Σ´1
1 µ1 ´ Σ´1

2 µ2 “ pu, u, 0, . . . , 0qT ; that

is, only the first two covariates have linear impacts on the discriminant function if

u ‰ 0. In this scenario, the true difference in the precision matrices has some sparse

and large nonzero entries, the magnitudes of which are controlled by ζ. Note that while

the diagonals of the precision matrices are the same, the diagonals of the covariance

matrices are different between the two classes.

Scenario 2 We set the covariance matrices for both classes to be the identity matrix, except

that for Class 1, the leading five-by-five submatrix of Σ1 has its off-diagonal elements

set to ρ. The rest of the setting is the same as that in Scenario 1. In this scenario, both

the difference in the covariance and the difference in the precision matrix are confined

in the leading five-by-five submatrix, so that the majority of the matrix entries are the

same between the two classes. The level of difference is controlled by ρ: when ρ “ 0,

the two classes have the same covariance matrix.
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Scenario 3 We set the precision matrix Σ1 for Class 1 to be a Toeplitz matrix with the

first row p1 ´ ρ2q´1pρ0, ρ1, ρ2, . . . , ρp´1q. The covariance for Class 2, Σ2, is a diagonal

matrix with the same diagonals as those of Σ1. It can be shown that the precision

matrix for Class 1 is a band matrix with degree one, that is, a matrix with nonzero

entries that are confined to the main diagonal and one more diagonal on both sides.

Because the precision matrix for Class 2 is a diagonal matrix, the difference between

the precision matrix has up to p ` 2pp ´ 1q nonzero entries. The magnitude of the

difference is controlled by the parameter ρ. The rest of the setting is the same as that

in Scenario 1.

We consider different comparisons where we vary the magnitude of the difference in the

precision matrices (ζ or ρ), the magnitude of the difference in the mean vectors (u), and the

dimensionality (p) when the other parameters are fixed.

Comparison 1 (varying ζ or ρ) We vary ζ or ρ, but fix p “ 100 and u “ 0, which means

that the mean vectors have no discriminant power because the true value of β is a

zero vector. This shows the performance with different potentials in the covariance

structure.

Comparison 2 (varying u) We vary u, while fixing p “ 100 and ζ “ 0.55 in Scenario 1 or

ρ “ 0.5 and 0.3 in Scenarios 2 and 3. This case illustrates the potentials of the mean

difference when there is some useful discriminative power in the covariance matrices.

Comparison 3 (varying p) We let p “ 80, 100, 120, 140, 160, while fixing ζ or ρ in the

same way as in Comparison 2, and fixing u “ 0.05, 0.025, and 0.025 in Scenarios 1, 2,
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and 3, respectively.
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Figure 2: Set classification for Scenario 1. The three panels correspond to varying ζ, varying u, and varying

p, respectively. The CLIPS classifier performs very well when the effect of the covariance dominates that of

the mean difference.

Figure 2 shows the performance for Scenario 1. In the left panel, as ζ increases, the differ-

ence between the true precision matrices increases. The proposed CLIPS classifier performs

the best among all methods under consideration. It may be surprising that the Plugin(d)

method, which does not consider the off-diagonal elements in the sample covariance, works

reasonably well in this setting in which the major mode of variation is in the off-diagonal

of the precision matrices. However, because large values in the off-diagonal of the precision

matrix can lead to large values of some diagonal entries of the covariance matrix, the good

performance of Plugin(d) has some partial justification.

In the middle panel of Figure 2, the mean difference starts to increase. While every

method more or less improves, the DWD method gains the most (it is even the best per-

forming classifier when the mean difference u is as large as one). This may be because the
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Figure 3: Set classification for Scenario 2. The three panels correspond to varying ρ, varying u, and

varying p, respectively. The classifiers that do not engage the covariance perform poorly when there is no

mean difference signal.

mean difference on which DWD relies, instead of the difference in the precision matrix, is

sufficiently large to secure good performance in separating sets between two classes.
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Figure 4: Set classification for Scenario 3. The three panels correspond to varying ρ, varying u, and varying

p, respectively. As in Scenario 2, the classifiers that do not engage the covariance perform poorly when there

is no mean difference signal.
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Figure 3 shows the results for Scenario 2. In contrast to Scenario 1, there is no difference

in the diagonals of the covariances between the two classes (the precision matrices are still

different). When there is no mean difference (see the left panel), it is clear that the DWD,

SVM, and Plugin(d) method fail, for obvious reasons (note that the Plugin(d) method does

not read the off-diagonal of the sample covariances, and hence both classes have the same

precision matrices from its viewpoint.) As a matter of fact, these methods all perform as

badly as a random guess. The CLIPS classifier always performs best in this scenario in the

left panel. Similarly to the case in Scenario 1, as the mean difference increases (see the

middle panel), the DWD method starts to improve.

The results for Scenario 3 (Figure 4) are similar to those of Scenario 2, except that,

this time, the advantage of the two covariance-engaged set classification methods, CLIPS

and Plugin(e), seems to be more obvious when the mean difference is zero (see left panel).

Moreover, the QDA-MV method enjoys some good performance, although not as good as

the CLIPS classifier.

In all three scenarios, it seems that the test classification error is linearly increasing in

the dimension p, except for Scenario 3, in which the signal level also depends on p (greater

dimensions lead to greater signals).

5.2 Data Example

One of the common procedures used to diagnose hepatoblastoma (a rare malignant liver

cancer) is a biopsy, in which the sample tissue of a tumor is removed and examined under a

microscope. A tissue sample contains a number of nuclei, a subset of which is then processed
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to obtain segmented images of nuclei. The data we analyzed contain five sets of nuclei from

normal liver tissues and five sets of nuclei from cancerous tissues. Each set contains 50

images. The data set is publicly available (https://faculty.virginia.edu/rohde/segmented-

nuclei.zip) and was introduced in Wang et al. (2011, 2010).

We tested the performance of the proposed method on the liver cell nuclei image data set.

First, the dimension was reduced from 36,864 to 30 using a principal component analysis.

Then, among the 50 images of each set, 16 images are retained as a training set, 16 are a

tuning set, and another 16 are the test set. In other words, for each of the training, tuning,

and testing data sets, there are 10 sets of images, five from each class, with 16 images in

each set.

Table 1 summarizes the comparison between the methods under consideration. All

three covariance-engaged set classifiers (CLIPS, Plugin(d) and Plugin(e)) and the QDA-

MV method perform better than those methods that do not take the covariance matrices

Method number of misclassified sets standard error

CLIPS 0.01/10 0.0104

Plugin(d) 0.74/10 0.0450

Plugin(e) 0.97/10 0.0178

QDA-MV 0.08/10 0.0284

DWD 3.24/10 0.1164

SVM 3.13/10 0.1130

Table 1: Classification performance for the liver cell nucleus image data.
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into account, such as the DWD and SVM (note that they do consider the diagonal of the

covariance matrix.)

To gain some insight into why the covariance-engaged set classifiers work and traditional

−400 −200 0 200 400

−
40

0
−

20
0

0
20

0
40

0

(1) Raw space

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●●●●
●

●●●
●
●
●●

●

●

●

430000 435000 440000 445000

10
00

20
00

30
00

40
00

50
00

(2) Training data in augmented space

P
C

2

●

●●●●

430000 435000 440000 445000

10
00

20
00

30
00

40
00

50
00

(3) Test data in augmented space

●

●

●

●

447090 447110 447130 447150

57
00

57
20

57
40

57
60

57
80

(4) Zoomed−in version of (3)

P
C

2

Figure 5: PCA scatter plots for the liver cell nucleus image data. Both classes are shown in different colors

(blue and purple, or lighter and darker gray). (1): the elementary observations in the raw space; different

sets are shown in different symbols. (2) and (3): the augmented space seen by the DWD and SVM methods.

(4) is a zoomed-in version of (3). It is shown that traditional multivariate methods have a fundamental

difficulty with this data set.
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methods fail, we visualize the data set in Figure 5. Subfigure (1) shows a scatter plot

of the first two principal components of all the elementary observations (ignoring the set

memberships) in the data sets, in which blue (light gray) and violet (dark gray) depict the

two different classes. Observations in the same set are shown using the same symbol. The

first strong impression is that there is no mean difference between the two classes on the

observation level. In contrast, it seems the second moment, such as the variance, distinguishes

the two classes.

One may argue that the DWD and SVM should theoretically work here, because they

work on the augmented space where the mean and variance of each variable are calculated

for each observation set, leading to a 2p-dimensional feature vector for each set. However,

Subfigures (2)–(4) invalidate this argument. We plot the augmented training data in the

space formed by the first two principal components (Subfigure (2)). The augmented test

data are shown in the same space in Subfigure (3), with a zoomed-in version in Subfigure

(4). Note that the scales for Subfigures (2) and (3) are the same. These figures show that

more than just the marginal mean and variance are useful here, and our covariance-engaged

set classification methods have used the information in the right way.

Supplementary Material

The online Supplementary Material contains additional theoretical arguments, proofs of

all results, and an additional data analysis.
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