
MATH 448, MATHEMATICAL STATISTICS

Textbook: Mathematical statistics with applications (7th Ed.),

by Dennis D. Wackerly, W. Mendenhall III, R. L. Scheaffer

Chapters to be covered: 8-10, 16.
Classroom CW 213 MWF 10:20am-11:50am
Office: WH 132

Office hours: 7:00-8:00pm Monday and Tuesday through zoom
https://binghamton.zoom.us/j/8265526594?pwd=d3l6OGx1cmZ4M3cxZEJwVGd1RGcrUT09

Meeting ID: 826 552 6594

Passcode: 031320

Exams: 3 tests + final,

Feb 19 (M), Mar 18 (M), Apr. 15. (M)

Final: May 6 (M) 8:05pm-10:05pm LH 009 closed book

Homework: Due Wednesday in class, no late homework.

HW Solution: https://usermanual.wiki/Document/SolutionManualMathematicalStatistics
WithApplications7thEditionWackerly.313163145/help

Homework assigned during last week is due each Wednesday.
It is on my website: http://www.math.binghamton.edu/qyu
Remind me if you do not see it by Saturday morning !

Homework due this Friday is on my website !!! It is a final exam for math
447. It is the format of the exams for Math 448. First do the exam, then grade it yourself
carefully and hand in. The solution is on my website below. https://brainly.com/textbook-
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Chapter 0. Introduction

Question: What is Statistics ?

One can use the following example to explain in short.

Example (capture-recapture problem).

In a pond, there are N fishes.

Catch m, say m = 10,

tag them and put them back.

Re-catch k fish, say k = 10,

X of them are tagged, say X = 3.

Question:

{

P (X = x) =? probability problem
N = ? statistic problem.

Answer: 1. f(x;N) = P (X = x) =
(mx)(

N−m
k−x )

(Nk)
, x ∈ {0, 1, ..., k ∧m}, k ∨m ≤ N .

2. Many methods to estimate N : MME, MLE, Bayes estimator, etc. e.g.

MME: Solve X = E(X) = km/N => N̂ = km/X = 33 1
3 .

MLE: Ň = 33 (from google).

Or use R: (in a department computer, type)

R

> m=10 # of tagged fishes

> k=10 # recaptured fishes

> n=0:29 # untagged fishes in the pond

> (a=dhyper(3, m, n, k, log = FALSE)) phyper() qhyper() rhyper()

[1] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

[7] 0.00000000 0.00617030 0.02193885 0.04676438 0.07794064 0.11227163

[13] 0.14697377 0.17998962 0.20998789 0.23623637 0.25844663 0.27663361

[19] 0.29100419 0.30187504 0.30961542 0.31460922 0.31723096 0.31783178

[25] 0.31673201 0.31421827 0.31054320 0.30592702 0.30055988 0.29460473

> n[a==max(a)]+10

[1] 33 # MLE

> n=0:10000

> a=dhyper(3, m, n, k, log = FALSE)

> n[a==max(a)]+10

[1] 33

Q: Properties of these estimators ?

What is the good (or possibly best) estimator ?

What is the meaning of a good or best estimator ?

Typically, statistics deals with such problems:

Suppose that X1, ..., Xn are i.i.d. from X, with cdf F (x; θ), where θ is unknown in Θ,
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try to find out:

1. θ = ? or P (X ≤ x) = ? (this is called point estimation).

What is θ in the capture-recapture problem ?

2. (a, b) = ? such that it is likely that a ≤ θ ≤ b (this is called interval estimation);

3. θ = θo ? where θo is given. (This is called hypothesis testing).

In 448, we shall learn these concepts.

Chapter 8. Estimation

§8.1. Introduction.

Def. Denote X = (X1, ..., Xn), where X1, ..., Xn, i.i.d. from X ∼ F (x; θ) (= P (X ≤ x|θ)).
θ is called the parameter of the distribution.

We call X a data set or observations from X.

The sample mean is X = 1
n

∑n
i=1Xi.

One can use R to generate data set in simulation:

> (x=rnorm(3,0,1))

[1] 0.3163466 0.4865695 -0.2163855

> x=rexp(30,3) # 3=E(X) or 1/E(X) ? ( f(x) ∝ e−x/µ = e−ρx, x > 0).

> mean(x)

[1] 0.3559676

Remark. In the example, we observe X1 = 0.3163466, X2 = 0.4865695, X3 = −0.2163855.

We can say X1, X2 and X3 are r.v.s,

but cannot say 0.3163466, 0.4865695, -0.2163855 are r.v.s.

They are numbers.

Def. A statistic is a function (or a formula) of a random vector or random variable, say X,

but does not depend on the parameter θ.

An estimator is a statistic used to guess the parameter θ.

An estimate is a value of the estimator.

Remark. Most of the time we let X (or Y , or Z) be r.v., x or y or t be value of X, say

X = x or X = y or X = t. e.g.,

> (x=rnorm(3,0,1))

[1] 0.3163466 0.4865695 -0.2163855

we observe X1 = 0.3163466 (or X1 = x), X2 = 0.4865695 (or X2 = y),

then x and y are numbers, not r.v.s.

E(X1) = 0 ? E(0.3163466) =0 ? E(x) =0 ?

Ex 1. Suppose that X1, ..., Xn are i.i.d. from N(µ, 1). Let

(a) X1 +X2, (b) X1 + µ, (c) 2, (d) X, (e) X2 +X2
3 + 5.

Which of them is a statistic ?

Ex. 2. Suppose that X1, ..., Xn are i.i.d. from bin(1,p).
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An estimator of p is X, denoted by p̂ = X.

If (X1, X2, X3) = (1, 0, 1), n = 3, then 2
3 is an estimate of p, denoted by p̂ = 2/3.

Is X an estimator, or an estimate ?

Is 2/3 an estimator, or an estimate ?

Is p̂ an estimator, or an estimate ?

Remark. 1. Given a parameter θ, one can use θ̂ or θ̃ or θ̌ to denote its estimator.

2. An estimator θ̂ is a r.v. e.g. µ̂ = X, where X1, ..., Xn are i.i.d..

Q: (1) E(µ̂) = ? (2) V (µ̂) = ? (3) P (2 ≤ µ̂ ≤ 5) = ? or P (a ≤ µ̂ ≤ b) = ?

Possible Ans:

(1) E(µ̂) = E(X) = E(X) or = µX ? Yes, No, DNK.

How about X ∼ Cauchy distribution ?

E(X) = E(X) if it exists.

(2) V (µ̂) = V (
∑n
i=1Xi/n) =

∑n
i=1 V (Xi)/n

2 = σ2
X/n ? Yes, No, DNK.

(3) P (a ≤ µ̂ ≤ b) =

(a) Fµ̂(b)− Fµ̂(a) ?
(b) Fµ̂(b−)− Fµ̂(a) ?
(c) Fµ̂(b)− Fµ̂(a−) ?
(c) Fµ̂(b−)− Fµ̂(a−) ?

Formula 17. A cdf F (t) (= P (X ≤ t),) satisfying

(1) F (−∞) = 0, and F (∞) = 1, (2) F (x+) = F (x), (3) F (x) ↑.
Moreover, F (b)− F (a) = P(a < X ≤ b)

Remark. Recall X = 1
n

∑n
i=1Xi. X2 = ? 1/X = ?

§8.2. The Bias and mean square error of point estimators

Def. Let θ̂ be a point estimator of a parameter θ.

If E(θ̂) = θ, θ̂ is unbiased.

O.W. θ̂ is called a biased estimator, and

the bias of θ̂ is denoted by B(θ̂), B(θ̂) = E(θ̂)− θ.

The mean square error of θ̂ is MSE(θ̂) = E((θ̂ − θ)2)

Formula: MSE(θ̂) = (B(θ̂))2 + V (θ̂).

Proof. ⊢: MSE(θ̂)(= E((θ̂ − θ)2)) = (B(θ̂))2 + V (θ̂).

MSE(θ̂)

=E((θ̂ − θ)2)

=E((θ̂ − E(θ̂) + E(θ̂)− θ)2)

=E[(θ̂ − E(θ̂))2 + 2(θ̂ − E(θ̂))(E(θ̂)− θ) + (E(θ̂)− θ)2] (a+ b)2 = a2 + 2ab+ b2

=E(θ̂ − E(θ̂))2 + 2E((θ̂ − E(θ̂))(E(θ̂)− θ)) + (E((θ̂)− θ)2) E(aX + bY ) = aE(X) + bE(Y )

=E(θ̂ − E(θ̂))2 + 2(E(θ̂)− E(θ̂))(E(θ̂)− θ) + (E(θ̂)− θ)2 Why ?
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=E((θ̂ − E(θ̂))2)+ ? + (E(θ̂)− θ)2

=V (θ̂) + (B(θ̂))2

Ex. 1. Suppose that X1, X2 and X3 are i.i.d. from N(µ, σ2),

and their observations are 1.408, 0.015, 0.050, thus X = 0.491.

Let T1 = X1 = 1.408, T2 = X, T3 = µ, T4 = X + 2 = 2.491.

(A) Which of them is an estimate of µ ?

(B) Are those estimators unbiased ?

(C) MSE of those estimators = ?

Sol. (a) T1 = X1 is an estimator, 1.408 is an estimate.

E(T1) = E(X1) = µ, thus T1 is an unbiased estimator. E(1.408) = ?

bias= B(T1) = 0,

MSE(T1) = V (X1) = σ2.

(b) T2 = X is an estimator,

E(T2) = E(X) = µ. thus T2 is an unbiased estimator.

bias= B(T2) = 0,

MSE(T2) = V (X1) = σ2/3.

(c) T3 is not an estimator.

E(T3) = µ ??

bias= B(T3) = ??

(d) T4 is an estimator,

E(T4) = E(X) + 2 = µ+ 2, thus T4 is an biased estimator.

bias= B(T4) = 2,

MSE(T4) = V (T4) + (B(T4))
2 = V (X + 2) + (B(T4))

2 = V (X) + (B(T4))
2???

= σ2/3 + 22.

Q: In Ex.1 above, do we know µ ?

Quiz this Friday: 447: 16-42. 448: [1].

Ex.2. Suppose that X1, ..., Xn are i.i.d. from N(µ, σ2) and S2 = 1
n−1

∑n
i=1(Xi −X)2.

a. Is S an unbiased estimator of σ ?

b. Find an unbiased estimator of σ.

Sol. Recall 447 formulae [23], [24] and [41]:

[23] X ∼ G(α, β). f(x) = xα−1e−x/β

Γ(α)βα , if x > 0, µ = αβ, σ2 = αβ2, Γ(α+ 1) = αΓ(α)

[24] Exp(λ) = G(1, λ), χ2(ν) = G( ν2 , 2)

[41] If Y ∼ N(µ, σ2),
Y−µ

Y

σ
Y

∼ N(0, 1), (n−1)S2

σ2 ∼ χ2(n− 1),
√
nY−µ

S ∼ tn−1,

where µY = µ, σ2
Y
= σ2/n

[41]=> (n−1)S2

σ2 ∼ χ2(n− 1); => 1
σ2

∑n
i=1(Xi −X)2 ∼ χ2(n− 1).
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[23]=> density of G(α, β) is f(x) = xα−1e−x/β

Γ(α)βα , x > 0.

[24]=> fχ2(n−1)(x) =
x

n−1
2

−1e−x/β

Γ(n−1
2 )β

n−1
2

, x > 0.

E(S) =E(

√
√
√
√

1

n− 1

n∑

i=1

(Xi −X)2) = E(
√

σ2

n−1
1
σ2

∑n
i=1(Xi −X)2)

=

√

1

n− 1
σE(

√
√
√
√

1

σ2

n∑

i=1

(Xi −X)2)

=

√

1

n− 1
σE(

√
Y ) Y ∼ χ2(n− 1) = G(n−1

2 , 2)

=

√

1

n− 1
σ

∫ ∞

0

√
y
yα−1e−y/β

Γ(α)βα
dy (α, β) =?

=

√

1

n− 1
σ

∫ ∞

0

√
y
y

n−1
2 −1e−y/2

Γ(n−1
2 )2

n−1
2

dy

=

√

1

n− 1
σ

∫ ∞

0

y
n
2 −1e−y/2

Γ(n−1
2 )2

n−1
2

dy why ?

=

√

1

n− 1
σ

∫ ∞

0

y
n
2 −1e−y/2

Γ(n2 )2
n
2

dy
Γ(n2 )2

n
2

Γ(n−1
2 )2

n−1
2

why do this ??

=

√

1

n− 1
σ

Γ(n2 )2
n
2

Γ(n−1
2 )2

n−1
2

[23] Γ(α+ 1) = αΓ(?)

=σ

√

1

n− 1

Γ(n2 )

Γ(n−1
2 )

21/2 = σ ? Is S unbiased ?

Let σ̃ =
1

√
2

n−1

Γ(n
2 )

Γ(n−1
2 )

S. Then σ̃ is unbiased.

Let σ =
1

√
2

n−1

Γ(n
2 )

Γ(n−1
2 )

S. Is it unbiased ???

Remark. The above statement may not be true if Xi’s are not normal.

§8.3 Some common unbiased point estimators.

Ex.1. Suppose that X1, ..., Xn are i.i.d. from X with mean µX ,

and Y1, ..., Yn are i.i.d. from Y with mean µY .

Unbiased estimators of µX , µY and µX − µY ?

Sol. The unbiased estimator of µX is µ̂X = X,

The unbiased estimator of µY is µ̂Y = Y ,
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The unbiased estimator of µX − µY is X − Y .

Reason: E(X) = E(X)

E(Y ) = E(Y )

E(X − Y ) = E(X)− E(Y ) = E(X)− E(Y ).

Ex.2. Let X ∼ bin(n, p) and Y ∼ bin(m, θ). Find the unbiased estimators of p, θ and p− θ.

Sol. The unbiased estimators are p̂ = X/n, θ̂ = Y/m and p̂− θ̂ = X/n+ Y/m.

Reason: E(p̂) = E(X/n) = np/n = p.

E(θ̂) = E(Y/m) = mθ/m = θ.

E(p̂− θ̂) = E(p̂)− E(θ̂) = p− θ.

Ex.3. Let X1, ..., Xn be i.i.d. from X, with mean µ and variance σ2.

Let σ̂2 = 1
n

∑n
i=1(Xi −X)2 and let S2 = 1

n−1

∑n
i=1(Xi −X)2 (σ̂2 = n−1

n S2).

Is σ̂2 unbiased estimator of σ2 ? Is S2 unbiased estimator of σ2 ?

Sol. σ̂2 is biased but S2 is unbiased. The reason is as follows.

σ̂2 =
1

n

n∑

i=1

(Xi −X)2

=
1

n

n∑

i=1

(X2
i − 2XiX + (X)2)

=
1

n

n∑

i=1

X2
i −

2

n

n∑

i=1

XiX + (X)2 ???

=
1

n

n∑

i=1

X2
i − 2X ·X + (X)2

=X2 − (X)2.

E(σ̂2) =E(X2)− E((X)2)

=E(Y )− E(Z2) (Y, Z) =?

=E(Y )− (σ2
Z + (µZ)

2) [15] : σ2
Y = E(Y 2)− µ2

Y

=E(X2)− (σ2
X
+ (µX)2)

=E(X2)− σ2
X
− (µX)2

=E(X2)− (µX)2 − σ2
X

=σ2
X − σ2

X/n

=(1− 1

n
)σ2
X

=
n− 1

n
σ2 Thus σ̂2 is a biased estimator of σ2.

S2 =
n

n− 1

1

n

n∑

i=1

(Xi −X)2.
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=
n

n− 1
(X2 − (X)2)

=
n

n− 1
σ̂2

E(S2) =E(
n

n− 1
σ̂2)

=
n

n− 1
E(σ̂2)

=
n

n− 1

n− 1

n
σ2 = σ2 Thus S2 is an unbiased estimator of σ2.

Remark. Since E(σ̂2) = n−1
n σ2, thus S2 = n

n−1 σ̂
2 is unbiased estimator of σ2. Recall in §8.2.

E(S) =E(

√
√
√
√

1

n− 1

n∑

i=1

(Xi −X)2) =

√

1

n− 1
σE(

√
√
√
√

1

σ2

n∑

i=1

(Xi −X)2)

=

√

1

n− 1
σE(

√
Y ) Y ∼ χ2(n− 1) = G(n−1

2 , 2)

=

√

1

n− 1
σ

∫ ∞

0

√
y
y

n−1
2 −1e−y/2

Γ(n−1
2 )2

n−1
2

dy

=

√

1

n− 1
σ

∫ ∞

0

y
n
2 −1e−y/2

Γ(n2 )2
n
2

dy
Γ(n2 )2

n
2

Γ(n−1
2 )2

n−1
2

why do this ??

=

√

1

n− 1
σ

Γ(n2 )2
n
2

Γ(n−1
2 )2

n−1
2

=σ

√

2

n− 1

Γ(n2 )

Γ(n−1
2 )

Let σ̃ =
1

√
2

n−1

Γ(n
2 )

Γ(n−1
2 )

S. Then σ̃ is unbiased.

Q: Since σ̃ is unbiased estimator of σ, is (σ̃)2 an unbiased estimator of σ2 ??

E(Y 2) = σ2
Y + µ2

Y .

Formulae

1. Estimator of µ is X where X = , Estimator of σ2 is S2,

where S2 = , key:
∑

iXi/n,
1

n−1

∑n
i=1(Xi −X)2.

2. An estimator θ̂ is unbiased if , bias B(θ̂) = ,

MSE = , (key: E(θ̂) = θ , E(θ̂)− θ , V (θ̂) + (B(θ̂))2 ,

§8.4. Evaluating the goodness of a point estimator.

Let X be a r.v. X ∼ f(x; θ). Let θ̂ be an estimator of θ.

θ̂ − θ = error of the estimator.

8



P (|θ̂ − θ| = 0) = 0 most of the time.

Thus it is often to consider error bound b = 2σθ̂. That is,

|θ̂ − θ| < b = 2σθ̂.

Ideally, if θ is the mean, θ̂ = X and σθ̂ is known, then

P (|θ̂ − θ| < 2σθ̂) =







0.9544 if X ∼ N(µ, σ2) (from the normal table)
1 if X ∼ U(0, 2θ)
0.9502 if X ∼ Exp(θ).

Reason: (1) If X ∼ N(µ, σ2) and σθ̂ = σX = σ is known, then

P (|θ̂ − θ| < 2σθ̂))

= P (|θ̂ − µ| < 2σ)

= P (| θ̂−µσ | < 2) (see [22])

= 1− 2× 0.0228 from the table in P.848

= 1− 0.0456 = 0.9544.

(2) If X ∼ U(0, 2θ), (see [21]). E(X) = 0+2θ
2 = θ, σ2 = (2θ+0)2

12 = θ2/3

2σ = 2√
3
θ > 1

P (|θ̂ − θ| < 2σθ̂))

= P (|θ̂ − θ| < 2θ/
√
3)

= P (θ − 2θ/
√
3 < θ̂ < θ + 2θ/

√
3)

≥ P (0 ≤ θ̂ ≤ 2θ) = 1.

(3) If X ∼ Exp(θ) with E(X) = θ, then X ∼ Γ(1, θ), σ = θ. (see [23]. [24]).

P (|X − θ| < 2σ) = P (X < 3θ) = 1− exp(−3) = 1− 0.04978707 ≈ 0.95.

In general, by Tchebysheff’s inequality, P (|X − θ| > 2σ) ≤ 1/22. (see [14]).

Thus P (|X − θ| < 2σ) ≥ 0.75.

But σθ̂ is often unknown.

Thus estimate it by σ̂θ̂, and b = 2σ̂θ̂ called the 2-standard error (bound) (SE).

Ex. 1. A sample of n = 1000 voters showed Y = 560 in favor of A. Estimate p, the fraction of

voters in the population favouring A and give a 2-standard-error bound to the estimate.

Sol. p̂ = Y/n = 560/1000 = 0.56. σ2
p̂ = pq/n.

2σ̂p̂ = 2
√

p̂q̂/n = 2
√

0.56× 0.44/1000 ≈ 0.03.

Ex. 2. A comparison of durability of 2 types of car tires was obtained by road-testing samples

of n1 = n2 = 100 tires of each type.

Y 1 = 26400 miles, Y 2 = 25100 miles,

S2
1 = 1, 440, 000 and S2

2 = 1, 960, 000.

Estimate the difference in mean mileage to wear-out and place a 2-SE bound on the error.

Sol. θ = µ1 − µ2, θ̂ = Y 1 − Y 2 = 1300.

2SD = 2σθ̂ = ?

σ2
θ̂
=σ2

Y 1−Y 2
= V (Y 1 − Y 2) = V (Y 1) + V (Y 2) [34]
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=V (Y1)/n1 + V (Y2)/n2.

2SD =2
√

V (Y1)/n1 + V (Y2)/n2

2SE =2
√

S2
1/n1 + S2

2/n2

=2

√

1440000 + 1960000

100
=368.8

§8.5. Confidence interval (CI).

Def. Suppose P (θ̂L ≤ θ ≤ θ̂U ) = 1− α. Then

[θ̂L, θ̂U ] is called a 100(1− α)% (2-sided) confidence interval (CI) of θ;

[0, θ̂U ] is called a 100(1− α)% lower one-sided confidence interval (CI) of θ;

[θ̂L,∞] is called a 100(1− α)% upper one-sided confidence interval (CI) of θ;

Meaning of the 95% CI for θ:

If one repeats 100 times, to construct the the 95% CI for θ, then about 95% of the times,

[θ̂L, θ̂U ] will contain θ.

Ex. 1. If X1, ...., X100 are i.i.d. from N(µ, 1), find a 95% CI for µ.

Sol. [X − 1.96/
√
n,X + 1.96/

√
n] or written as X ± 1.96/

√
n.

Reason: P (X − 1.96/
√
n < µ < X + 1.96/

√
n)

=P (−1.96/
√
n < µ−X < 1.96/

√
n)

=P (|µ−X| < 1.96× 1/
√
n)

=P (|X − µ

1/
√
n
| ≤ 1.96)

=0.95

Quiz on Friday. 447: 1-20. 448: 1-3.

Ex. 2. Suppose that we are to obtain a single observation Y from an exponential distribution

with mean θ, say Y ∼ Exp(θ). Use Y to construct a 90% CI for θ.

Sol. Try to obtain P (a < θ < b) = 0.9 or to obtain P (a ≤ θ ≤ b) = 0.9.

Idea: use a pivotal method:

(1) Find a pivotal function Z = g(Y, θ), such that Z is independent of θ;

(2) Solve P (a < g(Y, θ) < b) = 0.9.

Let Z = Y/θ (= g(Y, θ)). Then Z ∼ Exp(1) (to be proved later).

0.9 =P (a ≤ Z ≤ b) = P (−ln0.95 ≤ Z ≤ −ln0.05)

=P (a ≤ Y/θ ≤ b) [17] in 447
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=P (1/a ≥ θ/Y ≥ 1/b)

=P (Y/a ≥ θ ≥ Y/b)

then a 90% CI for θ is [Y/b, Y/a], where a = −ln0.95 = 0.05129 and b = −ln0.05 = 2.995732.

Why ? [23], [24] => f = 1
θ e

−x/θ, x > 0. => g(Y, θ) = Y
θ is a pivatol function.

P (Z > t) =P (Y/θ > t) t > 0

=P (Y > θt)

=

∫ ∞

θt

1

θ
e−y/θdy

=

∫ ∞

θt

e−y/θd
y

θ

=

∫ ∞

t

e−udu u =?

=− e−u
∣
∣
∣
∣

∞

t

=e−t

P (−ln0.95 ≤ Z ≤ −ln0.05) =P (−ln0.95 < Z < −ln0.05)
=FZ(b)− FZ(a−) [17] in 447

=1− e−b − (1− e−a)

=e−a − e−b

=e−(−ln0.95) − e−(−ln0.05)

=eln0.95 − eln0.05

=0.95− 0.05

=0.9

Thus a 90% CI for θ is [Y/b, Y/a] = [ Y
−ln0.95 ,

Y
−ln0.05 ].

> a=−log(0.95)

> b=−log(0.05)

> 1/a−1/b

[1] 19.16192

The length of the 1st CI is Y/a− Y/b = 19.16Y .

Another way: P (0 ≤ Z ≤ −ln0.1) =P (−ln1 ≤ Z ≤ −ln0.1)
=FZ(−ln0.1)− FZ(−ln1)

=1− e−(−ln0.1) − (1− e−(−ln1))

=1− eln0.1 − (1− eln1)

=1− 0.1 = 0.9

11



Thus [ Y
−ln0.1 ,

Y
0 ] is another 90% CI for θ, with a length ∞.

Q: Which of these two CIs is better ?

The 3rd way: P (−ln0.9 ≤ Z ≤ ∞) =P (−ln0.9 ≤ Z ≤ −ln0) ln0 =?

=FZ(−ln0)− FZ(−ln0.9)
=1− e−(−ln0) − (1− e−(−ln0.9))

=1− eln0 − (1− eln0.9)

=0.9

Thus [ Y∞ , Y
−ln0.9 ) (= [0, Y

−ln0.9 ] is a third 90% CI for θ, with a length 9.491222Y.

> c=-log(0.9)

> 1/c

[1] 9.491222






a < Z < b [Y/b, Y/a] length
−ln0.95 < Z < −ln0.05 [ Y

−ln0.05 ,
Y

−ln0.95 ] 19.2

−ln1 < Z < −ln0.1 [ Y
−ln0.1 ,

Y
−ln1 ] ∞

−ln0.9 < Z < −ln0 [ Y
−ln0 ,

Y
−ln0.9 ] 9.49







Q: Which of these 3 CIs is better ?

Comments.

Ex. 3. Suppose that X ∼ U(θ, θ + 1). Construct a 95% CI for θ.

Sol. Let Z = g(X, θ) = X − θ. Then Z ∼ U(0, 1).

Reason: FX(t) = (t− θ) if t ∈ (θ, θ + 1).

P (Z ≤ t) (if 0 < t < 1)

= P (X − θ ≤ t)

= P (X ≤ θ + t)

=
∫ θ+t

−∞ I(x ∈ (θ, θ + 1))dx I(x ∈ B) =
{
1 if x ∈ B
0 otherwise

= [
∫ θ

−∞ +
∫ θ+t

θ
]I(x ∈ (θ, θ + 1))dx

=
∫ θ+t

θ
I(x ∈ (θ, θ + 1))dx

=
∫ θ+t

θ
1dxI(t ∈ (0, 1)

=

{
? if t ≤ 0
t if t ∈ (0, 1)
? if t ≥ 1
<=> FX(t) = (t−θ)I(0 < t−θ < 1)+I(t−θ ≥ 1). <=> FZ(x) = xI(0 < x < 1)+I(x ≥ 1).

P (a < X − θ < b) = 0.95

=P( 0.025 < X − θ < 0.975)

12



=P( 0.025−X < −θ < −X + 0.975)

=P( X − 0.025 > θ > X − 0.975)

=P( X − 0.975 ≤ θ ≤ X − 0.025)

[X − 0.975, X − 0.025] is a 95% CI for θ.

Q: How about [X − 1, X − 0.05] due to P (0.05 < X − θ < 1) = 0.95 ?

How about [X − 0.95, X] due to P (0 < X − θ < 0.95) = 0.95 ?





a < Z = Y − θ < b [X − b,X − a] length
0.025 < Z < 0.975 [X − 0.975, X − 0.025] 0.95

0 < Z < 0.95 [X − 0.95, X] 0.95
0.05 < Z < 1 [X − 1, X − 0.05] 0.95






Summary. There are 3 typical pivotal functions Z = g(X, θ):

Ex.1. X ∼ N(µ, σ2), Z = X − µ ∼ N(0, σ2) or Z = X−µ
σ ∼ N(0, 1).

Ex.2. X ∼ Exp(θ) (E(X) = θ), Z = g(X, θ) = X
θ ∼ Exp(1).

Ex.3. X ∼ U(θ, θ + b), Z = g(X, θ) = X−θ
b ∼ U(0, 1).

§8.6. Large sample CI for θ: [θ̂L, θ̂U ].

Exact CI P (θ̂L ≤ θ ≤ θ̂U ) = 1− α.

Large sample approximate CI P (θ̂L ≤ θ ≤ θ̂U ) ≈ 1− α.

Most of the time (due to the CLT),

Z = θ̂−θ
σθ̂

∼ N(0, 1) approximately,

or Z = θ̂−θ
σ̂θ̂

∼ N(0, 1) approximately, What is their difference ?

then

P (|Z| ≤ zα/2) ≈ 1− α

=P (−zα/2 ≤ Z ≤ zα/2)

=P (−zα/2 ≤ θ̂ − θ

σθ̂
≤ zα/2)

=P (−zα/2σθ̂ ≤ θ̂ − θ ≤ zα/2σθ̂)

=P (zα/2σθ̂ ≥ −θ̂ + θ ≥ −zα/2σθ̂)
=P (θ̂ + zα/2σθ̂ ≥ θ ≥ θ̂ − zα/2σθ̂)

=P (θ̂ − zα/2σθ̂ ≤ θ ≤ θ̂ + zα/2σθ̂)

≈P (θ̂ − zα/2σ̂θ̂ ≤ θ ≤ θ̂ + zα/2σ̂θ̂).

Thus an approximate CI for θ is θ̂ ± zα/2σ̂θ̂. In particular by Table 4 (p.848) about N(0, 1),

an approximate 90% CI is θ̂ ± 1.645σ̂θ̂;

an approximate 95% CI is θ̂±????σ̂θ̂;

an approximate 99% CI is θ̂ ± 2.57σ̂θ̂.

An approximate one-sided CI for θ is
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[0, θ̂ + zασ̂θ̂] (upper bounded);

[θ̂ − zασ̂θ̂,∞) (lower bounded). Need to find θ̂= ? σθ̂= ? or σ̂θ̂= ?

Recall Table 8.1 (p.397):

θ sample size(s) θ̂ E(θ̂) σθ̂ σ̂θ̂
µ n Y µ σ/

√
n S/

√
n

p n p̂ p
√

pq/n
√

p̂(1− p̂)/n

p1 − p2 n1 and n2 p̂1 − p̂2 p1 − p2
√

p1q1/n1 + p2q2/n2 ??

µ1 − µ2 n1 and n2 Y 1 − Y 2 µ1 − µ2

√

σ2
1/n1 + σ2

2/n2 ??

Answer to the last question:

If σ1 = σ2 is assumed, ??=
√

S2/n1 + S2/n2, where

S2 =
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
=

∑n1

i=1(Y1i − Y 1)
2 +

∑n2

j=1(Y2j − Y 2)
2

n1 + n2 − 2
.

Otherwise, ??=
√

S2
1/n1 + S2

2/n2.

Ex. 8.7. The shopping times of n = 64 randomly selected customers at a local market were

recorded. The mean and variance of the 64 shopping times were 33 minutes and 256 minutes2,

respectively. Find a 90% CI for the true average shopping time per customer.

Sol. Formula: θ̂ ± zα/2σ̂θ̂ has the form: Y ± zα/2S/
√
n,

Y = ? S = 256 ? α/2 = 0.45 or 0.05 ? zα/2 = ?

Y ± 1.645S/
√
n

33± 1.645
√

256/n

33− 1.645
√

256/n = 29.71

33 + 1.645
√

256/n = 36.29

Thus a 90% CI for the true average shopping time per customer is [29.71, 36.29] or 33± 3.29.

> 1.645*sqrt(256/64)

[1] 3.29

Q: Does the true average shopping time per customer µ ∈ [29.71, 36.29] ? Yes, No, DNK.

90 percents of the time, µ will be contained by a CI.

Ex. 8.8. Two brands of refrigerators, denoted by A and B, are each guaranteed for 1 year.

In a random sample of 50 refrigerators of brand A, 12 were observed to fail before 1 year. In

a random sample of 60 refrigerators of brand B, 12 were also observed to fail before 1 year.

Estimate the true difference (p1 − p2) between proportions of failures during the guarantee

period, with confidence coefficient approximately 0.98.

Sol. Formula: θ̂ ± zα/2σ̂θ̂ has the form: (p̂1 − p̂2)± zα/2
√

p1q1/n1 + p2q2/n2

Or (p̂1 − p̂2)± zα/2
√

p̂1q̂1/n1 + p̂2q̂2/n2 Q: Which is the formula to choose ?

> qnorm(0.98) Φ−1(0.98), pnorm(2.05) = Φ(2.05) = 0.98, Φ(x) is the cdf of N(0, 1).
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[1] 2.053749

> qnorm(0.99)

[1] 2.326348 Which is correct one ?

p̂1 = 12/50,

p̂2 = 12/60,

zα/2 = z0.01 = 2.33.

(0.24− 0.2)± 2.33
√

0.24∗0.76
50 + 0.2∗0.8

60

0.04± 0.1851.

Ans: The true difference (p1 − p2) between proportions of failures during the guarantee period,

with confidence coefficient approximately 0.98 is

0.04± 0.1851?

Or [−.1451, 0.2251] ?

Ex. 3. A simulation study. Suppose n = 100 observations Xi’s from bin(1, p), where p = 0.5.

Let Y =
∑n
i=1Xi. A 80% approximate CI is Y/n± 1.28

√
Y
n (1−Y/n)

n . Note Y ∼ bin(100, 0.5).

> n=100

> Y=rbinom(1,100,0.5)

> p=Y/n

> c(Y/n-1.28*sqrt(p*(1-p)/n), Y/n+1.28*sqrt(p*(1-p)/n))

[1] [0.4863208, 0.6136792] # Does it contain p ?

> Y=rbinom(1,100,0.5)

> p=Y/n

> c(Y/n-1.28*sqrt(p*(1-p)/n), Y/n+1.28*sqrt(p*(1-p)/n))

[1] [0.4160512, 0.5439488] # Does it contain p ?

> Y=rbinom(1,100,0.5)

> p=Y/n

> c(Y/n-1.28*sqrt(p*(1-p)/n), Y/n+1.28*sqrt(p*(1-p)/n))

[1] [0.327568, 0.452432] # Does it contain p ?

> Y=rbinom(1,100,0.5)

> p=Y/n

> c(Y/n-1.28*sqrt(p*(1-p)/n), Y/n+1.28*sqrt(p*(1-p)/n))

[1] [0.3764625, 0.5035375] # Does it contain p ?

Summary: The simulation study shows that an 80% CI interval for p may or may not contain

the true value of p (which is p = 0.5 in this example). However, if we repeat this procedure

100 times, roughly 80% of the time, the true value of p will be contained in the CIs.

Q: Suppose that 100 CIs were constructed.
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1. Is it possible that the true value of p will be contained in the CIs all time ? Yes, Unlikely.

2. Is it possible that the true value of p will be contained in the CIs half of the time ? Y, U

3. Is it possible that the true value of p will be contained in the CIs 82% of the time ? Y, U

Q: How can we tell ?

> sqrt(0.8*0.2/100)

[1] 0.04

> pnorm(3)

[1] 0.9986501

> 3*sqrt(0.8*0.2/100)

[1] 0.12

1− 0.8 = 0.2 > 0.12

0.8− 0.5 = 0.3 > 0.12

§8.7. Selecting the sample size.

By the CLT

P ( θ̂−θσ̂θ̂
≤ t) ≈ Φ(t) if n is large.

447 [42] FY (t) ≈ Φ(
t−µ

Y

σ
Y

), where Φ(t) is the cdf of N(0, 1)

It leads to CI θ̂ ± zα/2σ̂θ̂.

Then L =length of the CI = 2zα/2σ̂θ̂.

error=zα/2σ̂θ̂.

Q: How to determine n for a given L or error.

Ideally, n is as large as possible due to [42] in 447.

Practically, n should not be so large, as it costs time and money.

Example 8.9. The reaction of an individual to a stimulus in a psychological experiment may

take one of two forms: A & B. If an experimenter wishes to estimate the probability p that a

person will react in manner A, how many people must be included in the experiment ? Here,

we assume

1. the error =0.04,

2. p ≈ 0.6,

3. error of estimate is less than 0.04 w.p. 0.9.

Sol.

error =0.04

=zα/2σθ̂

=1.645
√

p(1− p)/n or = 1.645
√

p̂(1− p̂)/n ??
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≈1.645
√

0.6(0.4)/n

≈1.645
√

0.6(0.4)√
n

= 0.04

(1.645/0.04)2 × 0.24 ≈ n

n ≈405.9. Is it the final answer ?

Ans. 406 people must be included in the experiment.

Ex. 8.10. An experimenter wishes to compare the effectiveness of 2 methods of training

industrial employees to perform an assembly operation. The selected employees are to be

divided into two groups of equal size. The 1st receives training method 1, and the 2nd receives

training method 2. After training, each employee will perform the assembly operation and the

length of assembly time will be recorded.

It is expected the measurements for both groups to have a range of approximately 8 minutes.

How many workers must be selected in each group,

if the difference in mean assembly times is to be correct within 1 minute with prob. 0.95 ?

Sol. Let θ = µ1 − µ2.

Let Z = θ̂ = X − Y , the difference in mean assembly time.

Z is to be correct within 1 minute

=>

{

|Z − θ| = |X − Y − θ| = |θ̂ − θ| = 1 = zα/2σ̂θ̂ ?

|Z − θ| = |X − Y − θ| = |θ̂ − θ| ≤ 1 = zα/2σ̂θ̂ ?
(1)

σθ̂ =
√

σ2
X/n+ σ2

Y /n

=
1√
n

√

σ2
X + σ2

Y

=
1√
n

√

2σ2
X assuming σ2

X = σ2
Y , (2)

as “It is expected the measurements for both groups to have a range of approximately 8 min.”

=>

8 ≈ 2× 1.96σX = 2× 1.96σY => σX = σY ≈ 2. (3)

(1), (2) and (3) => 1 = 1.96
1√
n

√

σ2
X + σ2

X .

=> 1 = 1.96 1√
n

√
22 + 22

n ≈ 30.73.

Ans: Each group needs 31 workers.

§8.8. Small-sample CI for µ and µ1 − µ2.

We have learned several types of CIs:

§8.5. A 95% CI for µX is

{
X ± 1.96/

√
n if Xi’s are i.i.d. ∼ N(µX , 1)

[ X
−ln0.975 ,

X
−ln0.025 ] if X ∼ Exp(µX);
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for θ is [X − 0.975, X − 0.025] if X ∼ U(θ, θ + 1);

§8.6. If n and m are large, given X1, ..., Xn, Y1, .., Ym, and X ′
is ⊥ Y ′

j s, then

a (1− α)% CI for µX is X ± zα/2σ̂/
√
n,

for µX − µY is X − Y ± zα/2
√

S2
X/n+ S2

Y /m, (provided n, or n and m ≥ 20.)

Q: How about n or m < 20 ?

Need stronger assumptions:

Case 1. X1, ..., Xn are i.i.d. ∼ N(µX , σ
2),

CI for µX : X ± tα/2,n−1SX/
√
n,

Case 2. X1, ..., Xn are i.i.d. ∼ N(µX , σ
2), Y1, ..., Ym are i.i.d. ∼ N(µY , σ

2) and Xi ⊥ Yj ,

CI for µX − µY : X − Y ± tα/2,n+m−2Sp

√
1
n + 1

m , where S2
p =

S2
X(n−1)+S2

Y (m−1)
n+m−2 .

Ex. 8.11. Suppose that 8 independent observations are obtained from N(µ, σ2).

3005, 2925, 2935, 2965, 2995, 3005, 2937, 2905.

Construct a 95% CI for µ.

Sol. The 95% CI is X ± tα/2,n−1S/
√
n.

n = 8. X =

∑n

i=1
Xi

n = 2959, S2 = 1
n−1

∑n
i=1(Xi −X)2, and S = 39.1, t0.025,7 = 2.365.

2959± 2.365 ∗ 39.1/
√
8

A 95% CI for µ is 2959± 32.7

Ex. 8.12. Suppose that 2 sets of independent samples are obtained from N(µX , σ
2) and

N(µY , σ
2).

32, 37, 35, 28, 41, 44, 35, 31, 34,

35, 31, 29, 25, 34, 40, 27, 32, 31,

Construct a 95% CI for µ1 − µ2.

Sol. X − Y ± tα/2,n+m−2Sp

√
1
n + 1

m , where S2
p =

S2
X(n−1)+S2

Y (m−1)
n+m−2 .

X = 35.22, Y = 31.56,

S2
X = 24.445, S2

Y = 20.027,

S2
p = 24.445×(9−1)+20.027×(9−1)

16 = 22.236

Sp = 4.716,

t0.025,n+m−2 = tα/2,16 = 2.12,

35.22− 31.56± 2.12 ∗ 4.716
√

1/9 + 1/9

The 95% CI is 3.66± 4.71

How to remember the formula and derive it ?

⊢: CI for µX : X ± tα/2,n−1SX/
√
n.

448. Formula [5]

If (1) X1, ..., Xn
i.i.d.∼ N(µ, σ2).
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(2) Y1, ..., Ym are i.i.d. from N(µ2, σ
2), (3) Xi’s ⊥ Yj ’s,

then T = X−µo

Sx/
√
n
, ∼ tn−1, ...

Thus P (| X−µx

SX/
√
n
| ≤ tα/2,n−1) = 1− α as tn−1 is symmetric,

=P (|X − µx| ≤ tα/2,n−1SX/
√
n)

=P (−tα/2,n−1SX/
√
n ≤ X − µx ≤ tα/2,n−1SX/

√
n)

=P (tα/2,n−1SX/
√
n ≥ −X + µx ≥ −tα/2,n−1SX/

√
n)

=P (X + tα/2,n−1SX/
√
n ≥ µx ≥ X − tα/2,n−1SX/

√
n)

=P (X − tα/2,n−1SX/
√
n ≤ µx ≤ X + tα/2,n−1SX/

√
n).

=> a 100(1− α)% CI for µX is X ± tα/2,n−1SX/
√
n.

Or P (| X−µx

SX/
√
n
| ≤ tα/2,n−1) = 1− α

=> | X−µx

SX/
√
n
| ≤ tα/2,n−1

=> |X − µx| ≤ tα/2,n−1SX/
√
n

=> |µX −X| ≤ tα/2,n−1SX/
√
n

=> X − tα/2,n−1SX/
√
n ≤ µx ≤ X + tα/2,n−1SX/

√
n.

⊢: CI for µx − µy: X − Y ± tα/2,n+m−2Sp

√
1
n + 1

m , where S2
p =

S2
X(n−1)+S2

Y (m−1)
n+m−2 .

448. Formula [5]

If (1) X1, ..., Xn
i.i.d.∼ N(µ, σ2).

(2) Y1, ..., Ym are i.i.d. from N(µ2, σ
2), (3) Xi’s ⊥ Yj ’s,

then T = X−µo

Sx/
√
n
, ∼ tn−1,

T =
X−Y−(µx−µy)

σ̂p

√
1/nx+1/ny

∼ tn+m−2, where σ̂ =

√
(n−1)S2

x+(m−1)S2
y

n+m−2 ,

W = (nx − 1)S2
x/σ

2 ∼ χ2
n−1,

F = S2
x/S

2
y ∼ Fn−1,m−1.

Thus
X−Y−(µx−µy)

Sp

√
1
n+ 1

m

∼ tn+m−2

P (|X−Y−(µx−µy)

Sp

√
1
n+ 1

m

| ≤ tα/2,n+m−2) = 1− α

= P (−tα/2,n+m−2 ≤ X−Y−(µx−µy)

Sp

√
1
n+ 1

m

≤ tα/2,n+m−2)

= P (−tα/2,n+m−2Sp

√
1
n + 1

m ≤ X − Y − (µx − µy) ≤ tα/2,n+m−2Sp

√
1
n + 1

m )

= P (tα/2,n+m−2Sp

√
1
n + 1

m ≥ −(X − Y ) + (µx − µy) ≥ −tα/2,n+m−2Sp

√
1
n + 1

m )

= P
(
(X − Y ) + tα/2,n+m−2Sp

√
1
n + 1

m ≥ (µx − µy) ≥ (X − Y )− tα/2,n+m−2Sp

√
1
n + 1

m

)

= P
(
(X − Y )− tα/2,n+m−2Sp

√
1
n + 1

m ≤ (µx − µy) ≤ (X − Y ) + tα/2,n+m−2Sp

√
1
n + 1

m

)

|X−Y−(µx−µy)

Sp

√
1
n+ 1

m

| ≤ tα/2,n+m−2

| (µx−µy)−(X−Y )

Sp

√
1
n+ 1

m

| ≤ tα/2,n+m−2

|(µx − µy)− (X − Y )| ≤ tα/2,n+m−2 Sp

√
1
n + 1

m
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(X − Y )− tα/2,n+m−2 Sp

√
1
n + 1

m ≤ µx − µy ≤ (X − Y ) + tα/2,n+m−2 Sp

√
1
n + 1

m

448. Formula [5] is due to 447 Formulae:

[42] FY (t) ≈ Φ(
t−µ

Y

σ
Y

), where Φ(t) is the cdf of N(0, 1)

X − µx
SX/

√
n
∼ tn−1

[41] If Y ∼ N(µ, σ2),
Y−µ

Y

σ
Y

∼ N(0, 1), (n−1)S2

σ2 ∼ χ2(n− 1), Y ⊥ S2,
√
nY−µ

S ∼ tn−1, where

µY = µ, σ2
Y
= σ2/n

Thus (1) Zy =
(m−1)S2

Y

σ2
Y

∼ χ2(m− 1) and Zx =
(n−1)S2

X

σ2
X

∼ χ2(n− 1),

[44] If X1 X2.

Xi’s ∼: X1 +X2 ∼:
G(αi, β)
χ2(vi)
Pois(λi)
N(µi, σ

2
i )

bin(ni, p)

key: ⊥,

G(α1 + α2, β)

χ2(v1 + v2)
Pois(λ1 + λ2)

N(µ1 + µ2, σ
2
1 + σ2

2)
bin(n1 + n2, p)

Since Xi ⊥ Yj , we have Zx ⊥ Zy. By [44], Zx + Zy ∼ χ2(n− 1 +m− 1).

Moreoer, since σx = σy,

Zx + Zy =
(n− 1)S2

x + (m− 1)S2
y

σ2
x

∼ χ2(n− 1 +m− 1).

Furthermore,
X−Y−(µx−µy)

σX
∼ N(0, 1) and X − Y ⊥ (n− 1)S2

x + (m− 1)S2
y .

[20] Suppose that Z ∼ N(0, 1), X ∼ χ2(u), Y ∼ χ2(v). If Z⊥X, T = Z/
√

X/u, then T ∼ tu;

If X⊥Y , F = X/u
Y/v , then F ∼ Fu,v and X + Y ∼ χ2(u+ v),

§8.9. CI for σ2.

In §8.8, we need that σX = σY = σ for the CI of µx−µy, assumingX1, ...., Xn
i.i.d.∼ N(µ, σ2).

Thus we need to estimate σ2 and to construct the CI for σ2. It is given by

[
(n− 1)S2

χ2
α/2,n−1

,
(n− 1)S2

χ2
1−α/2,n−1

].

How to derive it ? A class exercie based on The 447 formulae:

[40] Let Y1, ..., Yn be a random sample of Y . Y = 1
n

∑n
i=1 Yi, S

2 = S2
Y = 1

n−1

∑n
i=1(Yi − Y )2

[41] If Y ∼ N(µ, σ2), then
Y−µ

Y

σ
Y

∼ N(0, 1), (n−1)S2

σ2 ∼ χ2(n− 1), Y ⊥ S2,
√
nY−µ

S ∼ tn−1,

where µY = µ, σ2
Y
= σ2/n

Thus W = (n− 1)S2
x/σ

2 ∼ χ2
n−1 ,

P (χ2
α/2,n−1 ≥W ≥ χ2

1−α/2,n−1) = 1− α
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= P (χ2
α/2,n−1 ≥ (n−1)S2

x

σ2 ≥ χ2
1−α/2,n−1)

= P (1/χ2
α/2,n−1 ≤ σ2

(n−1)S2
x
≤ 1/χ2

1−α/2,n−1)

= P ((n− 1)S2
x/χ

2
α/2,n−1 ≤ σ2 ≤ (n− 1)S2

x/χ
2
1−α/2,n−1)

(1− α)(100%) CI of σ2 is [
(n− 1)S2

χ2
α/2,n−1

,
(n− 1)S2

χ2
1−α/2,n−1

].

How about (1− α)100% CI of σ ?

P ((n− 1)S2
x/χ

2
α/2,n−1 ≤ σ2 ≤ (n− 1)S2

x/χ
2
1−α/2,n−1)

= P (

√
(n−1)S2

χ2
α/2,n−1

≤ σ ≤
√

(n−1)S2

χ2
1−α/2,n−1

).

=> CI for σ is [

√
(n−1)

χ2
α/2,n−1

,

√
(n−1)

χ2
1−α/2,n−1

)].

Ex. 8.13. An experimenter wanted to check the variability of measurements obtained by using

equipment designed to measure the volume of an audio source. 3 independent measurements

recorded by it for the same sound were 4.1, 5.2 and 10.2. Estimate σ2 with confidence coefficient

0.9.

Sol. S2 = 1
n−1

∑n
i=1(Xi −X)2, n = ?

Xi’s: 4.1, 5.2 and 10.2.

S2 = 10.57,

χ2
0.95,2 = 0.103

χ2
0.05,2 = 5.991.

> qchisq(c(0.05,0.95),2)

[1] 0.1025866, 5.991465

An unbiased estimate of σ2 is S2 = 10.57,

A 90% CI for σ2 is [(n− 1)S2
x/χ

2
0.05,2, (n− 1)S2

x/χ
2
0.95,2] = [3.53, 205.24],

or [0, (n− 1)S2
x/χ

2
0.10,2] = [0, 100.3222]. Which is better ?

Chapter 9. Properties of the point estimators and methods of estimation

§9.2. Relative efficiency. It is often that there can be many estimators of a parameter θ,

say θ̂1, ..., θ̂k.

One property we like is the unbiasedness. It is possible that θ̂1,..., θ̂k are all unbiased.

Then it is natural to select the one with smaller variance.

Def. 9.1. Given two unbiased estimators θ̂1 and θ̂2 of a parameter θ, with variances V (θ̂1)

and V (θ̂2), the efficiency of θ̂2 relative to θ̂1, is defined to be the ratio

eff(θ̂1, θ̂2) =
V (θ̂2)

V (θ̂1)
.
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If eff(θ̂1, θ̂2) = 1.8, which is better ? θ̂1 or θ̂2 ?

If eff(θ̂1, θ̂2) = 0.73, which is better ? θ̂1 or θ̂2 ?

Def. Given X1 ≤ ... ≤ Xn, the median is

{
the middle one if n is odd
the average of the middle two if n is even

For example, case A: 1, 3, 8, 4, 5. The median is ?

Case B: 1, 3, 8, 8. The median is ?

Formula: if n is large and θ̃ is the median of i.i.d. observations X1, ..., Xn, then

V (θ̃) ≈ 1.25332σ2/n.

Thus eff(X, θ̃) = 1.2533, which is better ? median or X ?

Ex. 9.1. Suppose that Y1, ..., Yn
i.i.d.∼ U(0, θ). Two unbiased estimators are θ̂1 = 2Y and

θ̂2 = n+1
n Y(n), where Y(n) = max{Y1, ..., Yn}. Find the efficiency of θ̂1 relative to θ̂2.

Sol. 3 steps:

(1) Show both estimators are unbiased;

(2) Compute their variances;

(3) Find the efficiency of θ̂1 relative to θ̂2: eff(θ̂1, θ̂2) =
V (θ̂2)

V (θ̂1)
.

Step 1. ⊢: both estimators are unbiased.

E(θ̂2) =
n+1
n E(Y(n)).

447 [6] fY(j)
(t) =

(
n

j−1,1,n−j
)

key: (F (t))j−1(f(t))1(1− F (t))n−j .

(
n

j − 1, 1, n− j

)

=?

(
n

k,m, h

)

=
n!

k!m!h!
.

fY(n)
(t) =

(
n

n− 1, 1, n− n

)

(F (t))n−1(f(t))1(1− F (t))n−n

=

(
n

n− 1, 1, n− n

)

(F (t))n−1(f(t))

=

(
n

n− 1, 1, 0

)

︸ ︷︷ ︸

=??

tn−1

θn
.

(
n

n− 1, 1, n− n

)

=
n!

(n− 1)!1!0!
n! =?, 1! =? 0! =?

E(Y(n)) =

∫

tfY(n)
(t)dt
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=

∫ θ

0

t

(
n

n− 1, 1, 0

)
tn−1

θn
dt

=

∫ θ

0

n!

(n− 1)!1!0!

tn

θn
dt

=

∫ θ

0

n!

(n− 1)!

tn

θn
dt

=

∫ θ

0

n
tn

θn
dt

=(n/(n+ 1))tn+1

∣
∣
∣
∣

θ

0

/θn

=(n/(n+ 1))θn+1/θn.

=(n/(n+ 1))θ.

E(θ̂2) =((n+ 1)/n)(n/(n+ 1))θ = θ.

E(θ̂1) =E(2Y ) = 2E(Y ) = 2
0 + θ

2
= θ.

Thus both estimators are unbiased.

Step 2. V (2Y ) = 4V (Y ) = 4σ2/n = 4 θ2

12n

V (θ̂2) = E(θ̂22)− θ2 = (
n+ 1

n
)2E(Y 2

(n))
︸ ︷︷ ︸

=??

−θ2 θ̂2 = n+1
n Y(n)

E(Y 2
(n)) =

∫

t2fY(n)
(t)dt

=

∫ θ

0

t2
(

n

n− 1, 1, 0

)
tn−1

θn
dt

=

∫ θ

0

n!

(n− 1)!1!0!

tn+1

θn
dt

=

∫ θ

0

n
tn+1

θn
dt

=(n/(n+ 2))tn+2

∣
∣
∣
∣

θ

0

/θn

=(n/(n+ 2))θn+2/θn

=(n/(n+ 2))θ2

V (θ̂2) = E(θ̂22)− θ2 = (
n+ 1

n
)2(n/(n+ 2))θ2 − θ2 = θ2(

(n+ 1)2

n(n+ 2)
− 1) =

θ2

n(n+ 2)
.

Step 3.

eff(θ̂1, θ̂2) =
V (θ̂2)

V (θ̂1)
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=

θ2

n(n+2)

θ2

3n

=3/(n+ 2)

{

> 1 ??
≤ 1 ??

Q: Which is better ?

§9.3. Consistency. Let θ̂n be an estimator of θ based on i.i.d. observations X1, ..., Xn.

Ideally, we like

lim
n→∞

P (|θ̂n − θ| > ǫ) = 0 or lim
n→∞

P (|θ̂n − θ| ≤ ǫ) = 1 ∀ ǫ > 0. (1)

Def. 9.2. An estimator θ̂n is said to be consistent if Eq.(1) holds. It is also said that

θ̂ converges to θ in probability, denoted by θ̂n
P→θ.

Remark: The difference between θ̂ → θ and θ̂n
P→θ can be seen from the next example:

Suppose that X has a uniform distribution on the interval [1, 2]. Let

θ = 0,

θo = 1(X = 1) and

θ̂n = 1(X ∈ [1, 1 + 1
n ]).

Q: θo = θ ?

P (θo = θ) = 0 ?

P (θo = θ) = 1 ?

θ̂n → θ ?

θ̂n → θo ?

θ̂n
P→θo ?

θ̂n
P→θ ?

Abusing notations, write θ̂n = θ̂.

Th. 9.1. An unbiased estimator θ̂n for θ is consistent if limn→∞ V (θ̂n) = 0.

Proof. [14] Tchebysheff’s Inequality:

P (|X − µ| > kσ) ≤ 1/k2.

For each k > 0, letting ǫ = kσθ̂, then σ
2
θ̂
→ 0 why ?

σθ̂ → 0 and ǫ =kσθ̂ → 0, as n→ ∞,

P (|θ̂ − θ| > ǫ) =P (|θ̂ − θ| > kσθ̂)

≤1/k2 ∀ k > 0

=> limn→∞ P (|θ̂ − θ| > ǫ) ≤ 1/k2 ∀ k > 0 and ∀ ǫ > 0.
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=> limn→∞ P (|θ̂ − θ| > ǫ) = 0 ∀ ǫ > 0.

Theorem 9.2. If θ̂1 and θ̂2 are two estimators. θ̂i
P→θi, i = 1, 2, then

(1) θ̂1 + θ̂2
P→θ1 + θ2

(2) θ̂1θ̂2
P→θ1θ2

(3) θ̂1/θ̂2
P→θ1/θ2 if θ2 6= 0;

(4) g(θ̂1)
P→g(θ1) if g is continuous at θ1.

Q: Can we add in Th.9.2 θ̂1 − θ̂2
P→θ1 − θ2 ?? why ?

Ex. 9.2. Show that Y n =
∑n
i=1 Yi/n is a consistent estimator of µy if Y1,..., Yn are i.i.d. and

σY is finite.

Proof. Since V (µ̂) = V (Y ) = σ2
Y /n→ 0, and E(Y ) = µY (Y is unbiased),

by Th9̇.1, µ̂ = Y n is consistent.

Ex. 9.3. Suppose that Y1, ..., Yn
i.i.d.∼ Y , E(Y ki ) = mk’s are finite for k = 1, 2, 4. Show that

S2
n = 1

n−1

∑n
i=1(Yi − Y )2 is a consistent estimator of σ2.

Proof. S2
n = 1

n−1

∑n
i=1(Yi − Y )2

= n
n−1

1
n

∑n
i=1(Yi − Y )2

= n
n−1 [

1
n

∑n
i=1 Y

2
i − (Y )2]

= n
n−1 [Y

2
i − (Y )2]

Y
P→E(Y ) by Ex.9.2.

Y 2 P→E(Y 2) by Ex.9.2.

(Y )2
P→(E(Y ))2, by (???) of Th.9.2.

n
n−1 → 1 or n

n−1

P→1 ??

So S2 = n
n−1 [Y

2 − (Y )2]
P→E(Y 2)− (E(Y ))2 = σ2 by (???) of Thereom 9.2

That is, S2 is a consistent estimator of σ2.

Th. 9.3. If P (Un ≤ t) → Φ(t), the cdf of (N(0, 1)), and Wn
P→1, then P (Un/Wn ≤ t) → Φ(t).

Example 9.4. Let Y1, ..., Yn be a random sample from a distribution with E(Yi) = µ and

V (Yi) = σ2. Let S2
n = 1

n−1

∑n
i=1(Yi − Y )2. Show that the cdf of

√
nY−µY

Sn
converges to Φ(t),

the cdf of N(0,1).

Sol. By the CLT, P (
√
nY−µY

σY
≤ t) → Φ(t).

S2
n
P→σ2.

S2
n/σ

2 P→1

P (
√
nY−µY

Sn
≤ t) = P (

√
nY−µY

σ
σ
Sn

≤ t) → Φ(t) by Theorem 9.3.

As applications, if n is large, an approximate CI for µ is X ± zα/2Sn/
√
n,

an approximate CI for p is p̂± zα/2
√

p̂q̂/n.
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§9.4. Sufficiency.

Data are often quite large and not convenient to handle. There is a way to simplify it

without losing information about the parameter θ.

Def. 9.3. Let Y1, ..., Yn denote a random sample from a distribution with unknown parameter

θ. Then the statistic U = g(Y1, ..., Yn) is said to be sufficient for θ if the conditional distribution

of Y1, ..., Yn given U , does not depend on θ, i.e., fY1,...,Yn|U (y1, ..., yn|u) does not depend on θ.

Ex. 1. Suppose that X1, ..., Xn are i.i.d. from bin(1,p). Then Xi ∈ {0, 1}. Let Y =
∑n
i=1Xi.

The distribution of Y is ?

The conditional distribution of X = (X1, ..., Xn) for given Y , say fX|Y (x1, ..., xn|y) is

fX|Y (x1, ..., xn|y) =P (X1 = x1, ..., Xn = xn)|Y = y)

=
P (X1 = x1, ..., Xn = xn, Y = y)

P (Y = y)

=

∏n
i=1 p

x
i (1− p)1−xi1(

∑n
i=1 xi = y)

(
n
y

)
py(1− p)n−y

=

{
py(1−p)n−y

(ny)py(1−p)n−y
= 1

(ny)
if
∑n
i=1 xi = y, xi ∈ {0, 1}

0 otherwise,

which is independent of the parameter p.

The advantage of the sufficient statistic Y (such as in the above example) is that it simplifies

the data if one just wants to make inference about θ. In Ex. 1 above, the original data is

(X1, ..., Xn), and Y is a sufficient statistic. Y is much simpler than (X1, ..., Xn), in terms of

recording and manuscripting (in particular if n ≥ 103).

Def. 9.4. Let y1, ..., yn be the sample observations taken on corresponding r.v.s Y1, ..., Yn

whose distribution depends on a parameter θ. Then the likelihood of the sample, denoted by

L(y1, ..., yn|θ) def=
{
the joint probability of y1, ..., yn if Yis are discrete.
the joint density of y1, ..., yn if Yis are continuous r.v.s

For simplification, we write L(θ) = L(y1, ..., yn|θ) = L(~y|θ).
Ex.1 (continued). The likelihood function of (X1, ..., Xn) for given observations (x1, ..., xn),

is L(p) =
∏n
i=1 p

xi(1− p)1−xi .

It is OK to write L(p) =
∏n
i=1 p

Xiq1−Xi
i .

Th. 9.4. Let U be a statistic based on the random sample Y1, ..., Yn. Then U is a sufficient

statistic for the estimation of θ iff L(θ) can be factored into two nonnegative functions

L(θ) = g(u, θ)h(y1, ..., yn)
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where g(u, θ) is only the function of (u, θ) and h() does not depend on θ.

Ex.1 (continued).

L(p) =
n∏

i=1

pxi(1− p)1−xi

=p
∑n

i=1
xi(1− p)n−

∑n

i=1
xi

=py(1− p)n−y

= py(1− p)n−y
︸ ︷︷ ︸

g(y,p)

×1(y =

n∑

i=1

xi)

︸ ︷︷ ︸

h(x1,...,xn)

.

(a) Thus Y =
∑n
i=1Xi is sufficient. (b) Thus y =

∑n
i=1 xi is sufficient.

Which of (a) and (b) is a correct answer ?

Ex. 9.5. Let Y1, ..., Yn be i.i.d from the density function f(y|θ) =
{

1
θ e

−y/θ if y ≥ 0
0 otherwise

, where

θ > 0. Show that Y is a sufficient statistic for θ.

Sol. Two approaches:

L(θ) =

n∏

i=1

f(yi|θ)

=
e−y1/θ

θ
× e−y2/θ

θ
× · · · × e−yn/θ

θ
(1)

=
e−
∑n

i=1
yi/θ

θn

=
e−ny/θ

θn

=
e−ny/θ

θn
︸ ︷︷ ︸

=g(y,θ)

×1
︸︷︷︸

=h(y1,...,yn)

Thus Y (? or y ?) is a sufficient statistic.

L(θ) =

n∏

i=1

f(yi|θ) =
e−y1/θ

θ
1(y1 ≥ 0)× e−y2/θ

θ
1(y2 ≥ 0)× · · · × e−yn/θ

θ
1(yn ≥ 0)(2)

=
e−
∑n

i=1
yi/θ

θn
1(y(1) ≥ 0) (y(1) = y1??)

=
e−ny/θ

θn
︸ ︷︷ ︸

=g(y,θ)

1(y(1) ≥ 0)
︸ ︷︷ ︸

=h(y1,...,yn)

.

Thus Y is a sufficient statistic.

Q: Are these two approaches both correct ?
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Ex.3. Suppose that X1, ..., Xn are i.i.d. from U(a, b), find a sufficient statistic.

Sol. Xi ∼ f(x) = 1
b−a1(x ∈ [a, b]).

L(a, b) =

n∏

i=1

1

b− a
1(xi ∈ [a, b])

=
1

(b− a)n
1(x(1) ≥ a)1(x(n) ≤ b)

=
1

(b− a)n
1(x(1) ≥ a)1(x(n) ≤ b)

︸ ︷︷ ︸

g(x(1),x(n),a,b)

h(x1, ..., xn) =?

A sufficient statistic is

(x(1), x(n)) ?
~Y = (X(1), X(n)) ?

~y = (x(1), x(n)) ?

Class exercies.

Ex.4. Suppose that X1, ..., Xn are i.i.d. from U(0, b), find a sufficient statistic.

Sol. Xi ∼ f(x) = 1
b1(x ∈ [0, b]).

L(a, b) =
n∏

i=1

1

b
1(xi ∈ [0, b])

=
1

(b)n
1(x(1) ≥ 0)1(x(n) ≤ b)

=
1

(b)n
1(x(1) ≥ 0)1(x(n) ≤ b). h(x1, ..., xn) =? sufficient statistic =?

Review

The practice test is in “homework solution (pdf file)”.

Ex. R1. Suppose that X1, ..., Xn
i.i.d.∼ U(0, θ).

1. Show that θ̃ = 2X is an unbiased estimator of θ.

2. Show that θ̃ is a consistent estimator of θ.

3. Show that θ̂ = n+1
n X(n) is an unbiased estimator of θ.

4. Show that θ̂ is a consistent estimator of θ.

5. Compute eff(θ̂, θ̃).

Sol. 1. ⊢: θ̃ = 2X is an unbiased estimator of θ. Class exercise. Hint: a+b
2 by 447 [21]

E(θ̃) =E(2X)

=2E(X)
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=2× 0 + θ

2
a+b
2 by 447 [21]

=θ.

That is,θ̃ = 2X is an unbiased estimator of θ.

2. ⊢: θ̃ = 2X is a consistent estimator of θ.

By Tchebysheffs Inequality (447 [14]), it suffices to show V (θ̃) → 0 as n→ ∞. Class exercise.

V (θ̃) =V (2X) (b−a)2
12 by 447 [21]

=4V (X)

=4V (X)/n

=4θ2/(12n) (b−a)2
12 by 447 [21]

=θ2/(3n) → 0 as n→ ∞,

Thus θ̃ is consistent by Tchebysheffs Inequality (447 [14]).

3. ⊢: θ̂ = n+1
n X(n) is an unbiased estimator of θ.

By 448 [6], f(x) = n!
(n−1)!1!(n−n)! (

x
θ )
n−1 1

θ (1− x
θ )
n−n. Class exercise:

Thus E(X(n)) =
∫ θ

0
x n!
(n−1)!1!(n−n)! (

x
θ )
n−1 1

θ (1− x
θ )
n−ndx

E(X(n)) =

∫ θ

0

xn(
x

θ
)n−1 1

θ
dx

=n

∫ θ

0

(
x

θ
)ndx

=nθ

∫ θ

0

(
x

θ
)ndx/θ

=nθ

∫ 1

0

yndy

E(X(n)) =
nθ

n+ 1
yn+1

∣
∣
∣
∣

1

0

=
n

n+ 1
θ

Then E(θ̂) = E(
n+ 1

n
X(n)) =

n+ 1

n
E(X(n)) =

n+ 1

n

n

n+ 1
θ = θ.

Thus θ̂ = n+1
n X(n) is an unbiased estimator of θ.

4. ⊢: V (θ̂) → 0 and θ̂ is a consistent estimator of θ.

E(X2
(n)) =

∫ θ

0

x2n(
x

θ
)n−1 1

θ
dx

=n

∫ θ

0

(
xn+1

θn
)dx

29



=nθ2
∫ 1

0

yn+1dy

=
nθ2

n+ 2
yn+2

∣
∣
∣
∣

1

0

=
n

(n+ 2
θ2

V (X(n)) =E(X2
(n))− (E(X(n))

2

=
n

n+ 2
θ2 − (

n

n+ 1
θ)2

=[
n(n+ 1)2 − n2(n+ 2)

(n+ 2)(n+ 1)2
]θ2

=[
n

(n+ 2)(n+ 1)2
]θ2

V (θ̂) =V (
n+ 1

n
X(n))

=(
n+ 1

n
)2V (X(n))

=(
n+ 1

n
)2[

n

(n+ 2)(n+ 1)2
]θ2

=([
1

n(n+ 2)
]θ2 → 0 as n→ ∞

Thus θ̂ is consistent by Tchebysheffs Inequality (447 [14]).

5. Compute eff(θ̂, θ̃).

eff(θ̂, θ̃) =
V (θ̃)

V (θ̂)
=

θ2/(3n)

θ2/(n(n+ 2)
=
n+ 2

3
.

Ex. R2. Suppose that Y1, ..., Yn
i.i.d.∼ N(µ, σ2) (see 447 [22]). Let n = 2k for k = 1, 2, ...,

θ = σ2, and

θ̂ =
1

2k

k∑

i=1

(Y2i − Y2i−1)
2

1. Show that θ̂ is unbiased estimator of σ2.

2. Show that θ̂ is a consistent estimator of σ2.

3. Compute eff(θ̂, S2).

Sol. 1. Show that θ̂ is unbiased estimator of σ2.

θ̂ =
1

2k

k∑

i=1

(Y2i − Y2i−1)
2
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=
1

2
[
k∑

i=1

Y 2
2i

k
+

k∑

i=1

Y 2
2i−1

k
− 2

1

k

k∑

i=1

(Y2iY2i−1)]

E(θ̂) =
1

2
[E(Y 2) + E(Y 2)− 2E(Y1Y2)]

=
1

2
[E(Y 2) + E(Y 2)− 2E(Y1)E(Y2)]

=
1

2
[E(Y 2) + E(Y 2)− 2(E(Y ))2]

=E(Y 2)− (E(Y ))2

=σ2.

Thus θ̂ is unbiased estimator of σ2.

2. Show that θ̂ is a consistent estimator of σ2.

Since Y2i and Y2i−1 are i.i.d., Y2i − Y2i−1 ∼ N(µ− µ, σ2 + σ2) by 447 [44].

44. If X1 X2.

Xi’s ∼: X1 +X2 ∼:
G(αi, β)
χ2(vi)
Pois(λi)
N(µi, σ

2
i )

bin(ni, p)

key: ⊥,

G(α1 + α2, β)

χ2(v1 + v2)
Pois(λ1 + λ2)

N(µx + µy, σ
2
1 + σ2

2)

bin(n1 + n2, p)

That is, Y2i − Y2i−1 ∼ N(0, 2σ2) and Y2i−Y2i−1√
2σ

∼ N(0, 1).

⊢: If X ∼ N(0, 1), then X2 ∼ χ2.

P (X2 ≤ t) =P (−
√
t ≤ X ≤

√
t)

=

∫ √
t

−
√
t

1√
2π
e−x

2/2dx by 447 [22]

=2

∫ √
t

0

1√
2π
e−x

2/2dx

=2

∫ √
t

0

1

x
√
2π
e−x

2/2dx2/2

=2

∫ t/2

0

1√
2y

√
2π
e−ydy where y = x2/2

=

∫ t/2

0

1√
2y

√
2π
e−2y/2d(2y)

=

∫ t

0

1√
u
√
2π
e−u/2du where u = 2y

=

∫ t

0

u0.5−1

√
2π

e−u/2du see 447 [23] [24]
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Thus it is the χ2(1) or Gamma(1/2, 2). Then

θ̂ =
1

2k

k∑

i=1

(Y2i − Y2i−1)
2

=
σ2

k

k∑

i=1

(Y2i − Y2i−1)
2

2σ2

=
σ2

k
Z (Z

def
=
∑k
i=1

(Y2i−Y2i−1)
2

2σ2 ∼ χ2(k))

where Z =
∑k
i=1

(Y2i−Y2i−1)
2

2σ2 ∼ χ2(k), the χ2 with k degree freedoms, or Gamma(k/2, 2), with

the mean (k/2)2 = k and the variance (k/2)22. Then θ̂ is an unbiased estimator of θ and

V (θ̂) = (σ
2

k )2(2k) → 0 if k → ∞. Thus θ̂ is consistent.

3. Compute eff(θ̂, S2) Class execise Hint: (n−1)S2

σ2 ∼ χ2(n− 1) 447 [41].

Ex. R3. Suppose that X1, ..., Xn
i.i.d.∼ U(θ, 1).

1. Show that θ̃ = 2X − 1 is an unbiased estimator of θ.

2. Show that θ̃ is a consistent estimator of θ.

3. Show that θ̂ =
(n+1)X(1)−1

n is an unbiase estimator of θ.

4. Show that θ̂ is a consistent estimator of θ.

5. Compute eff(θ̂, θ̃).

Sol. 1. ⊢: θ̃ = 2X − 1 is an unbiased estimator of θ. Class exercise. Hint: a+b
2 by 447 [21]

E(θ̃) =E(2X − 1)

=2E(X)− 1

=2× θ + 1

2
− 1 a+b

2 by 447 [21]

=θ.

That is,θ̃ = 2X − 1 is an unbiased estimator of θ.

2. ⊢: θ̃ = 2X − 1 is a consistent estimator of θ.

By Tchebysheffs Inequality (447 [14]), it suffices to show V (θ̃) → 0 as n→ ∞. Class exercise.

V (θ̃) =V (2X) (b−a)2
12 by 447 [21]

=4V (X)

=4V (X)/n

=4(1− θ)2/(12n) (b−a)2
12 by 447 [21]

=(1− θ)2/(3n) → 0 as n→ ∞,

Thus θ̃ is consistent by Tchebysheffs Inequality (447 [14]).
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3. ⊢: θ̂ = (n+1)X(1)−1

n is an unbiased estimator of θ.

By 448 [6], f(x) = n!
(1−1)!1!(n−1)! (

x−θ
1−θ )

1−1 1
1−θ (1− x−θ

1−θ )
n−1. Class exercise:

Thus E(X(1)) =
∫ 1

θ
x n!
(1−1)!1!(n−1)! (

x−θ
1−θ )

1−1 1
1−θ (1− x−θ

1−θ )
n−1dx

E(X(1)) =

∫ 1

θ

xn(
x− θ

1− θ
)1−1 1

1− θ
(1− x− θ

1− θ
)n−1dx

=n

∫ 1

θ

x
1

1− θ
(
1− θ − (x− θ)

1− θ
)n−1dx

=n

∫ 1

θ

x
1

1− θ
(
1− x

1− θ
)n−1dx

=n(1− θ)−n
∫ 1

θ

x(1− x)n−1dx (1)

=n(1− θ)−n
∫ 1−θ

0

(1− y)(y)n−1dy y = 1− x

=n(1− θ)−n(
yn

n
− yn+1

n+ 1
)

∣
∣
∣
∣

1−θ

0

=n(1− θ)−n(
(1− θ)n

n
− (1− θ)n+1

n+ 1
)

=n(
1

n
− (1− θ)

n+ 1
)

E(X(1)) =
nθ + 1

n+ 1
(n+ 1)E(X(1))− 1

n
=θ

Thus θ̂ =
(n+1)X(1)−1

n is an unbiased estimator of θ.

4. Show that θ̂ is a consistent estimator of θ. Need to find V (θ̂) (V (X) = E(X2)− (E(X))2).

E(X2
(1)) =

∫ 1

θ

x2n(
x− θ

1− θ
)1−1 1

1− θ
(1− x− θ

1− θ
)n−1dx

=n(1− θ)−n
∫ 1

θ

x2(1− x)n−1dx by Eq.(1)

=n(1− θ)−n
∫ 1−θ

0

(1− y)2(y)n−1dy y = 1− x

=n(1− θ)−n
∫ 1−θ

0

(1− 2y + y2)(y)n−1dy

=n(1− θ)−n(
yn

n
− 2

yn+1

n+ 1
+
yn+2

n+ 2
)

∣
∣
∣
∣

1−θ

0

=n(1− θ)−n[
(1− θ)n

n
− 2

(1− θ)n+1

n+ 1
+

(1− θ)n+2

n+ 2
]

E(X2
(1)) =n(

1

n
− 2

(1− θ)

n+ 1
+

(1− θ)2

n+ 2
)
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0 ≤ V (θ̂) =V (
(n+ 1)X(1) − 1

n
)

=(
(n+ 1)

n
)2V (X(1))

=(
(n+ 1)

n
)2[E(X2

(1))− (E(X(1)))
2]

=(
(n+ 1)

n
)2[n(

1

n
− 2

(1− θ)

n+ 1
+

(1− θ)2

n+ 2
)− (

nθ + 1

n+ 1
)2]

=(
(n+ 1)

n
)2[(

n

n
− 2

(1− θ)n

n+ 1
+

(1− θ)2n

n+ 2
)− (

nθ + 1

n+ 1
)2]

=(
(n+ 1)

n
)2[(

n

n
− 2

(1− θ)(n+ 1− 1)

n+ 1
+

(1− θ)2(n+ 2− 2)

n+ 2
)− (

(n+ 1− 1)θ + 1

n+ 1
)2]

=(
(n+ 1)

n
)2[(1− 2(1− θ) + 2

(1− θ)

n+ 1
+ (1− θ)2 − (1− θ)22

n+ 2
− (θ +

1− θ

n+ 1
)2]

=(
(n+ 1)

n
)2[(1− 2(1− θ) + (1− θ)2 + 2

(1− θ)

n+ 1
− (1− θ)22

n+ 2
− (θ +

1− θ

n+ 1
)2]

=(
(n+ 1)

n
)2[(1− (1− θ))2 + 2

(1− θ)

n+ 1
− (1− θ)22

n+ 2
− (θ +

1− θ

n+ 1
)2]

=(
(n+ 1)

n
)2[(θ)2 + 2

(1− θ)

n+ 1
− (1− θ)22

n+ 2
− θ2 + 2θ(

1− θ

n+ 1
)− (

1− θ

n+ 1
)2]

=(
(n+ 1)

n
)2[2

(1− θ)

n+ 1
− (1− θ)22

n+ 2
+ 2θ(

1− θ

n+ 1
)− (

1− θ

n+ 1
)2] → 0

=(
(n+ 1)

n
)2[2

(1− θ)

n+ 1
+ 2θ(

1− θ

n+ 1
)− (1− θ)22

n+ 2
− (

1− θ

n+ 1
)2]

=(
(n+ 1)

n
)2[2(1 + θ)

(1− θ)

n+ 1
− (

1− θ

n+ 1
)2 − (1− θ)22

n+ 2
]

=(
(n+ 1)

n
)2[2

(1− θ2)

n+ 1
− (1− θ)2[(

1

n+ 1
)2 +

2

n+ 2
]]

→0 as n→ ∞.

Thus θ̂ is consistent by Tchebysheff’s inequality.

5. Compute eff(θ̂, θ̃).

eff(θ̂, θ̃) =
(1− θ)2/(3n)

( (n+1)
n )2[2 (1−θ2)

n+1 − (1− θ)2[( 1
n+1 )

2 + 2
n+2 ]]

.

Review on consistency: Suppose that X has a uniform distribution on the interval [1, 2].

Let

θ = 0,

θo = 1(X = 1) and

θ̂n = 1(X ∈ [1, 1 + 1
n ]).

Q: θo = θ ? Yes, No, DNK
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P (θo = θ) = 0 ? Yes, No, DNK

P (θo = θ) = 1 ? Yes, No, DNK

P (θ̂n = θ) = 1/n ? Yes, No, DNK

θ̂n → θ ? Yes, No, DNK

θ̂n → θo ? Yes, No, DNK

θ̂n
P→θo ? Yes, No, DNK

θ̂n
P→θ ? Yes, No, DNK

Summary on CI:

Large sample CI: for θ: [θ̂L, θ̂U ] based on Z = θ̂−θ
σ̂θ̂

∼ N(0, 1) approximately. class exercise

1− α ≈P (−zα/2 ≤ Z ≤ zα/2)

=P (−zα/2 ≤ θ̂ − θ

σ̂θ̂
≤ zα/2)

=P (θ̂ − zα/2σ̂θ̂ ≤ θ ≤ θ̂ + zα/2σ̂θ̂)

Small sample CI:

There are 4 typical pivotal functions Z = g(X, θ):

1. X ∼ N(µ, σ2), Z = X − µ ∼ N(0, σ2) or Z = X−µ
σ ∼ N(0, 1).

2. X ∼ Exp(θ) (E(X) = θ), Z = g(X, θ) = X
θ ∼ Exp(1).

3. X ∼ U(θ, θ + b), Z = g(X, θ) = X−θ
b ∼ U(0, 1).

4. For σ under i.i.d. N(µ, σ2): : W = (n− 1)S2
x/σ

2 ∼ χ2
n−1 ,

R.4. Suppose that X1,..., Xn are i.i.d. from N(µ, σ2),

find an unbiased estimator of σ based on S (need to prove it).

Recall that S2 = 1
n−1

∑n
i=1(Xi −X)2 is an unbased estimator of σ2.

Sol. Recall 447 [41], [23], [24]. If Y ∼ N(µ, σ2),
Y−µ

Y

σ
Y

∼ N(0, 1), (n−1)S2

σ2 ∼ χ2(n− 1),
√
nY−µ

S ∼ tn−1, where µY = µ, σ2
Y
= σ2/n

Sol. E(S) =E(

√
√
√
√

1

n− 1

n∑

i=1

(Xi −X)2)

=

√

1

n− 1
σE(

√
√
√
√

1

σ2

n∑

i=1

(Xi −X)2)

=

√

1

n− 1
σE(

√
Y ) Y ∼ χ2(n− 1) = G(n−1

2 , 2)

=

√

1

n− 1
σ

∫ ∞

0

√
y
y

n−1
2 −1e−y/2

Γ(n−1
2 )2

n−1
2

dy

35



=

√

1

n− 1
σ

∫ ∞

0

y
n
2 −1e−y/2

Γ(n2 )2
n
2

dy
Γ(n2 )2

n
2

Γ(n−1
2 )2

n−1
2

why do this ??

=

√

1

n− 1
σ

Γ(n2 )2
n
2

Γ(n−1
2 )2

n−1
2

=σ

√

2

n− 1

Γ(n2 )

Γ(n−1
2 )

Let σ̃ =
1

√
2

n−1

Γ(n
2 )

Γ(n−1
2 )

S. Then σ̃ is unbiased.

§9.5. The Rao-Blackwell Th. and Minimum-Variance Unbiased Estimator

Let θ̂ be an estimator of θ.

It is desirable that an estimator satisfies:

1. It is unbiased: E(θ̂) = θ;

2. It is consistent: limn→∞ P (|θ̂ − θ| > ǫ) = 0 ∀ ǫ > 0;

3. eff(θ̂, θ̂2) =
V (θ̂2)

V (θ̂)
≥ 1 ∀ unbiased estimator θ̂2.

Def. An estimator satisfying the above 3 properties is called the minimum variance unbiased

estimator (MVUE).

Q: How to find an MVUE of θ ?

Ans: [11] If X1, ..., Xn are i.i.d. from f(x; θ) = exp{ + g(θ)+h(x)}, γ̂ = G( )

and = γ(θ), then γ̂ is the MVUE of γ.

key: T (x)ψ(θ),
∑

i T (Xi)), E(γ̂),

This is due to

Theorem 9.5. (The Rao-Blackwell Th.) Let θ̂ be an unbiased estimator for θ such that

V (θ̂) <∞. If U is a sufficient statistic for θ. Define θ̂∗ = E(θ̂|U), then for all θ,

E(θ̂∗) = θ and V (θ̂∗) ≤ V (θ̂).

Recall the sufficiency:

Def. 9.3. Let Y1, ..., Yn denote a random sample from a distribution with unknown parameter

θ. Then the statistic U = g(Y1, ..., Yn) is said to be sufficient for θ if the conditional distribution

of Y1, ..., Yn given U , does not depend on θ, i.e., fY1,...,Yn|U (y1, ..., yn|u) does not depend on θ.

The advantage of the sufficient statistic Y (such as in the above example) is that it simplifies

the data if one just wants to make inference about θ.

Def. 9.4. Let y1, ..., yn be the sample observations taken on corresponding r.v.s Y1, ..., Yn

whose distribution depends on a parameter θ. Then the likelihood of the sample, denoted by

L(y1, ..., yn|θ) def=
{
the joint probability of y1, ..., yn if Yis are discrete.
the joint density of y1, ..., yn if Yis are continuous r.v.s

For simplification, we write L(θ) = L(y1, ..., yn|θ) = L(~y|θ).
Th. 9.4. Let U be a statistic based on the random sample Y1, ..., Yn. Then U is a sufficient
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statistic for the estimation of θ iff L(θ) can be factored into two nonnegative functions

L(θ) = g(u, θ)h(y1, ..., yn)

where g(u, θ) is only the function of (u, θ) and h() does not depend on θ.

Ex. 9.6 Let Y ∼ bin(m, p). Is p̂ = Y/m an MVUE of p ?

Sol. n = 1. fY (y; p) =
(
m
y

)
py(1− p)m−y.

fY (y; p) =exp(ylnp+ (m− y)ln(1− p) + ln

(
m

y

)

)

=exp( y
︸︷︷︸

T (y)

ln
p

1− p
︸ ︷︷ ︸

ψ(y)

+mln(1− p)
︸ ︷︷ ︸

g(p)

+ ln

(
m

y

)

︸ ︷︷ ︸

h(y)

) Is Y a sufficient statistic?

=exp(T (y)ψ(p) + g(p) + h(y))

T (Y ) = Y , E(T ) = E(Y ) = mp, p̂ = T/m = Y/m. E(p̂) = p. Thus p̂ is MVUE of p.

Ex. 9.7. Suppose that Y1, ..., Yn
i.i.d.∼ f = 2y

θ e
−y2/θ, y > 0. MVUE of θ ?

n ≥ 1, f =
2y

θ
e−y

2/θ1(y > 0)Sol.

=exp( y2
︸︷︷︸

T (y)

−1

θ
︸︷︷︸

ψ(θ)

+ ln(2y)
︸ ︷︷ ︸

h(y)

+−lnθ
︸ ︷︷ ︸

g(θ)

) Is Y 2 a sufficient statistic?

E(
∑n
i=1 T (Yi)) = E(

∑

i Y
2
i ) = nE(Y 2)= ?

E(Y 2) =

∫ ∞

0

y2
2y

θ
e−y

2/θdy

=

∫ ∞

0

2y2

θ
e−y

2/θdy2/2 dy2 = 2ydy

=

∫ ∞

0

y2

θ
e−y

2/θdy2

=

∫ ∞

0

u

θ
e−u/θdu u =?

=Γ(2)θ

∫ ∞

0

u2−1

Γ(2)θ2
e−u/θdu

︸ ︷︷ ︸

why do this?

=θ
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γ̂ = G(
∑n
i=1 T (Yi)) =

∑n
i Y

2
i /n.

E(γ̂) = θ.

γ̂ =
∑n
i=1 Y

2
i /n = Y 2 is a MVUE of θ.

Ex. 9.9. Suppose that Y1, ..., Yn
i.i.d.∼ N(µ, σ2). Find the MVUE of (µ, σ2).

f =
1√
2πσ2

e−
(x−µ)2

σ2Sol.

=
1√
2πσ2

e−
x2

−2µx+µ2

σ2

=exp(−x
2 − x(2µ) + µ2

σ2
+ ln

1√
2πσ2

)

=exp(−x
2

σ2
+
x(2µ)

σ2
− µ2

σ2
+ ln

1√
2πσ2

)

=exp(− (x2, x)
︸ ︷︷ ︸

T (x)

(
−1

σ2
,
µ

σ2
)′

︸ ︷︷ ︸

ψ(θ)

−µ
2

σ2
+ ln

1√
2πσ2

)

T (x) = (x2, x), ψ(θ) = (−1
σ2 ,

µ2

σ2 ). Is T (X) a sufficient statistic ?

γ̂ = ( n
n−1 (X

2 − (X)2), X)) = ( 1
n−1 (

∑n
i=1(Xi −X)2), X),

γ(θ) = (µ, σ2),

E(
∑

i T (Xi)) = n(σ2 + µ2, µ),

MVUE of µ is X.

MVUE of σ2 is 1
n−1

∑n
i=1(Xi −X)2.

Ex. 9.10. Suppose that Y1, ..., Yn
i.i.d.∼ f = 1

θ e
−y/θ, y > 0. MVUE of V (X) ?

Sol. σ2 = θ2

f =
1

θ
e−

x
θ 1(x > 0)

T (x) = x, E(X) = θ,

Y =
∑n
i=1Xi ∼ G(n, θ).

E(Y 2) = σ2
Y 2 + µ2

Y 2 = nθ2 + (nθ)2 = (n+ n2)θ2.

E(Y 2/(n+ n2) = θ2.

Y 2/(n+ n2) = (
∑n
i=1Xi)

2/(n+ n2) = n
n+1 (X)2.

γ̂ = n
n+1 (X)2 is the MVUE of θ2.

§9.6. The method of moments.

Q: How to construct an estimator in general.

Ans. Two common methods:
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(1) Method of Moments estimator (MME);

(2) Maximum likelihood estimator (MLE).

[12] An MME of θ, is the solution of θ to µ′
i(θ) = for k i’s, where µ′

i(θ) = ,

and k is the dimension of θ. key: Xi, E(Xi),

Ex. 9.11 Assuming X1, ...., Xn
i.i.d.∼ U(0, θ), find an MME of θ.

Sol. Since E(X) = θ/2,

set X = θ̂/2 => θ̂ = 2X.

Q: Can we derive an MME of θ as follows ?

Set X = E(X) = θ/2 => θ̂ = 2X.

Q: Is θ̂ unbiased ?

E(θ̂) = E(2X) = 2 θ−0
2 = θ. Answer ?

Q: Is θ̂ consistent ?

V (θ̂) = V (2X) = 4V (X)/n = 4 θ
2

12/n→ 0, by Tchebysheff’s Inequality.

Actually letting ǫ = k σ√
3n

, P (|θ̂ − θ| > k σ√
3n

) ≤ 1/k2

Thus it is consistent.

Another proof: X
P→E(X) = θ/2 by the law of large numbers (provided V (X) exists).

2X
P→2θ/2 = θ.

Q: Can we derive an MME of θ as follows ?

(1) Since

E(X2) =

∫ θ

0

x2
1

θ
dx

=
x3

3

θ

∣
∣
∣
∣

θ

0

=θ2/3,

set X2 =θ̃2/3 => θ̃ =
√

3X2.

Or (2) Set X2 = E(X2) =
∫ θ

0
x2 1

θdx =
x3

3

θ

∣
∣
θ

0
= θ2/3 => θ̃ =

√

3X2.

Is θ̃ unbiased ?

E(θ̃) =
∫ θ

0

√
3tf

X2(t)dt is difficult to solve for us, so we ignore the answer.

Is θ̃ consistent ?

Need to check whether V (X2) exists.

It suffices to show E(X4) exists, as V (X2) = E(X4)− (E(X2))2 and E(X2) exists.

E(X4) =
∫ θ

0
x4/θdx = x5

5θ

∣
∣
θ

0
= θ4/5.

Thus V (X2) exists.

Then θ̃ →
√

3θ2/3 = θ ?
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or θ̃
P→
√

3θ2/3 = θ ?

Ex. 9.12. Assuming X1, ...., Xn
i.i.d.∼ Beta(α, β), find an MME of (α, β).

Sol. 447. [25.] X ∼ beta(α, β). f(x) = xα−1(1−x)β−1

B(α,β) , if x ∈ (0, 1), µ = α
α+β , where

B(α, β) = Γ(α)Γ(β)
Γ(α+β)

Thus E(X) =
α

α+ β

E(X2) =

∫ 1

0

x2
xα−1(1− x)β−1

B(α, β)
dx

=

∫ 1

0

xα+2−1(1− x)β−1

B(α, β)
dx

=
B(α+ 2, β)

B(α, β)
?? Why

=
Γ(α+ 2)Γ(β)

Γ(α+ β + 2)
/
Γ(α)Γ(β)

Γ(α+ β)

=
(α+ 1)αΓ(α)Γ(β)

(α+ β + 1)(α+ β)Γ(α+ β)
/
Γ(α)Γ(β)

Γ(α+ β)

=
α(α+ 1)

(α+ β)(α+ β + 1)

Sketch hereafter: Set

{

X2 = α
α+β

α+1
α+β+1

X = α
α+β

What to do next ?

=>

{

X = α
α+β

X2/X = α+1
α+β+1

=>

{

X(α+ β)− α = 0
X2(α+ β + 1) = X(α+ 1)

=>







(X − 1)α+ βX = 0 => β = α(1−X)/X
(X2 −X)α+X2β = X −X2 => (X2 −X)α+X2α(1−X)/X = X −X2

A

(
α
β

)

=

(
0

X −X2

)

A=??
(2)

One way: A

(
α
β

)

=

(
0

X −X2

)

=>

(
a
β

)

= (A′A)−1A′
(

0
X −X2

)

2nd way from Eq. (2): α[(X2 −X) + (X2−X2X)

X
] = X −X2

α̂ = X−X2

X2−(X)2
X

β̂ = (X−X2)(1−X)

X2−(X)2

Remark. The MME of (α, β) is consistent, based on Theorems 9.1 and 9.2.
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Th. 9.1. An unbiased estimator θ̂n for θ is consistent if limn→∞ V (θ̂n) = 0.

Theorem 9.2. If θ̂1 and θ̂2 are two estimators. θ̂i
P→θi, i = 1, 2, then

θ̂1 + θ̂2
P→θ1 + θ2

θ̂1θ̂2
P→θ1θ2

θ̂1/θ̂2
P→θ1/θ2 if θ2 6= 0;

g(θ̂1)
P→g(θ1) if g is continuous at θ1.

Is MME always unbiased ?

An unbiased estimator of σ2 is S2 = 1
n−1

∑n
i=1(Xi −X)2

The MME of σ2 is X2 − (X)2 (= 1
n

∑n
i=1(Xi −X)2). Is it unbiased ?

Is S2 the MVUE of σ2 ?

Yes, if under N(µ, σ2).

No, if under Exp(θ), then the MVUE of σ2 is n
n+1 (X)2.

Class exercise (count half of the quiz today).

Q: Derive an MME of θ based on X0.5 if X1, ..., Xn are i.i.d from U(0, θ).

Quiz on Friday: 447: [9]–[25], 448: [1]-[13]

Ex. 9.13. Assuming X1, ...., Xn
i.i.d.∼ Gamma(α, β), find an MME of (α, β).

Sol. Note that E(X) = αβ and V (X) = αβ2.

Sketch: X = αβ and X2 = αβ2 + (αβ)2

=> X2 = Xβ + (X)2.

=> β̂ = X2−(X)2

X

and α̂ = (X)2

X2−(X)2
.

§9.7. The Method of Maximum Likelihood.

[13] Given a random sample X1, ..., Xn from f(x; θ), their likelihood is L(θ) = ,

the MLE θ̂ of θ maximizes . If g(θ) is a function of θ, the MLE of g(θ)

is .

key:
∏

i f(Xi; θ), L(θ). 1− 1, g(θ̂),

Ex. 9.14. Given a random sample X1, ..., Xn from bin(1, p), find the MLE of p.

Sol. Two usual steps.

(1) solve ∂lnL
∂p = 0 to get p̂;

(2) either check (2a) ∂2lnL
∂p2 < 0 ? or check

41



(2b) lnL at the boundary points: 0 and 1: whether lnL(a) < lnL(p̂) and lnL(b) < lnL(p̂).

L(θ) =

n∏

i=1

f(Xi; p)

=

n∏

i=1

(pXi(1− p)1−Xi)

=p
∑n

i=1
Xi(1− p)n−

∑n

i=1
Xi

=pY (1− p)n−Y where Y =
∑n
i=1Xi ∼ bin(?, ?)

lnL =Y lnp+ (n− Y )ln(1− p)

(lnL)′p =Y/p− (n− Y )/(1− p) = 0

=> Y (1− p)− (n− Y )p = 0

=> Y (1− p)− np+ Y p = 0

=> Y = np =>

{

p = Y/n = X ?
p̂ = Y/n = X ?

which is correct ?

(lnL)′′p = −Y/p2 − (n− Y )/(1− p)2 < 0. Thus p̂ = X is the MLE of p.

lnL(a) < lnL(p̂) ?

lnL(b) < lnL(p̂). ?

Ex. 9.15. Given a random sample Y1, ..., Yn from N(µ, σ2), find the MLE of (µ, σ2).

L =
n∏

i=1

f(Yi;µ, σ
2)Sol.

=
1√
2πσ2

e−
Y1−µ

2σ2 × · · · × 1√
2πσ2

e−
Yn−µ

2σ2

=(
1√
2πσ2

)ne−
∑n

i=1

Yi−µ

2σ2

lnL =− n

2
lnσ2 − n

2
ln(2π)− 1

2σ2

n∑

i=1

(Yi − µ)2

∂lnL

∂µ
=

1

σ2

n∑

i=1

(Yi − µ) = 0 => µ̂ = Y

∂lnL

∂σ2
=− n

2
/σ2 +

1

2σ4

n∑

i=1

(Yi − µ)2 = 0

=> σ2 =
1

n

n∑

i=1

(Yi − µ)2

=> σ2 =
1

n

n∑

i=1

(Yi − Y )2
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=
1

n

n∑

i=1

(Y 2
i − 2Y Yi + (Y )2)

= Can it be simplified ?Y 2 − (Y )2

Need to check whether (µ, σ2) = (Y , σ̂2) is indeed the MLE:

(1) ∂2lnL
∂µ2 , ∂2lnL

∂(σ2)2 lnL, ... or

(2) lnL at µ = ±∞ and σ2 = 0 and ∞.

It is more convenienct to check (2) here:

lnL =− n

2
lnσ2 − n

2
ln(2π)− 1

2σ2

n∑

i=1

(Yi − µ)2

=







−∞ if σ2 = ∞
−n

2 ln0− n
2 ln(2π)− 1

0+ = ∞−∞ ?? if σ2 = 0+
−∞ if µ = ±∞.

(ln0+,
1

0+
) = lim

x↓0
(lnx,

1

x
) = (−∞,∞)

Since limx↓0
lnx
x−1 = limx↓0

(lnx)′

(x−1)′ = limx↓0
(1/x)

−(x−2) = 0,

−ln(0+)− 1

0+
= −∞.

Thus the MLE of (µ, σ2) is (Y , σ̂2), where σ̂2 = Y 2 − (Y )2.

Ex. 9.16. Given a random sample Y1, ..., Yn from U(0, θ), find the MLE of θ.

L =

n∏

i=1

f(Yi; θ)Sol.

=

{
1
θ × · · · × 1

θ if 0 ≤ Yi ≤ θ, i = 1, ..., n
0 otherwise.

=

{
1
θn if 0 ≤ Y(1) ≤ Y(n) ≤ θ
0 otherwise

≤ 1

(Y(n))n
.

Thus the MLE of θ is θ̂ = Y(n).

Remark. The usual approach of taking dlnL
dθ = 0 solve for the MLE does not work,

as d
dθ lnL = d

dθ (−nlnθ) = −n
θ 6= 0

Invariance principle of the MLE: If g is a 1-1 function of θ and θ̂ is the MLE of θ then the

MLE of g(θ) is g(θ̂).

Example 9.16 (continued) Find the MLE of V (Y ).
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Sol. V (Y ) = σ2
Y = θ2/12. Thus σ̂2

Y = Y 2
(n)/12.

Example 9.15 (continued) Find the MLE of σ.

Sol. V (Y ) = σ̂2
Y = Y 2 − (Y )2. Then the MLE of σ is σ̂ =

√

Y 2 − (Y )2.

§9.8. Some large sample properties of the MLE.

Recall the CLT. P (X ≤ t) ≈ Φ(
t−µ

X

σ
X

) = Φ( t−µX

σX/
√
n
)

Assuming X1, ...., Xn
i.i.d.∼ f(x; θ), θ ∈ R, if g′(θ) is continuous, and θ̂ is the MLE of θ, then

P (g(θ̂) ≤ t) ≈ Φ(
t− g(θ)

σ̂g(θ̂)
), where σ̂2

g(θ̂)
=

( ∂∂θg(θ))
2

E(− ∂2

∂θ2 lnL(θ))

∣
∣
∣
∣
θ=θ̂

.

An approximate CI for g(θ) is g(θ̂)± zα/2σ̂g(θ̂).

Ex. Let X1, ...., Xn be
i.i.d.∼ bin(1, p). Construct an approximate 100(1− α)% CI for σ2

X .

Sol. The MLE of p is p̂ = X (as derived before).

the MLE of σ2 (= g(p) = p(1−p)) is g(p̂) = X(1−X) by the invariance principle of the MLE.

To solve σ̂2
g(p̂), need to find

∂
∂θg(θ) ? L(θ) ?

∂2

∂θ2 lnL(θ)) ? E(− ∂2

∂θ2 lnL(θ)) ? θ = ?

L =
n∏

i=1

pXi(1− p)1−Xi

=p
∑n

i=1
Xi(1− p)n−

∑n

i=1
Xi

=pnp̂(1− p)n(1−p̂)

lnL =np̂lnp+ n(1− p̂)ln(1− p)

∂

∂p
lnL =

np̂

p
− n− np̂

1− p

∂2

∂p2
lnL =− np̂

p2
− n− np̂

(1− p)2

E(− ∂2

∂p2
lnL) =

np

p2
+

n− np

(1− p)2

=
n

p(1− p)

σ̂2
g(p̂) =

( ∂∂θg(θ))
2

E(− ∂2

∂θ2 lnL(θ))

∣
∣
∣
∣
θ=θ̂

g(p) = p(1− p)

=
(g′(θ))2

E(− ∂2

∂θ2 lnL(θ))

∣
∣
∣
∣
θ=θ̂

g′ = 1− 2p
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=(1− 2p̂)2/
n

p̂(1− p̂)

=(1− 2p̂)2p̂(1− p̂)/n

The approximate 95% CI for g(p̂) is p̂(1− p̂)± 1.96
√

(1− 2p̂)2p̂(1− p̂)/n

Example 9.19. Assuming X1, ...., Xn
i.i.d.∼ Poisson P (λ) with f(x) = e−λ λ

x

x! , x = 0, 1, 2, ....

Derive the MME of λ and e−λ (= P (X = 0)), and the MLE of λ and e−λ.

Is the MLE of λ MVUE ?

Construct an approximate 100(1− α)% CI for the MLE of λ.

Sol. To solve the MME: Since µ = λ, an MME of λ is λ̂ = X.

Since σ2 = λ = E(X2)− (E(X))2, another MME is λ̃ = X2 − (X)2.

The MME of e−λ is ??

To solve the MLE:

L =

n∏

i=1

e−λ
λXi

Xi!

lnL =ln

n∏

i=1

e−λ
λXi

Xi!

=ln
n∏

i=1

e−λ + ln
n∏

i=1

λXi − ln
n∏

i=1

Xi!

=lne−nλ + lnλ
∑n

i=1
Xi − ln

n∏

i=1

Xi!

=− nλ+
n∑

i=1

Xilnλ− ln
n∏

i=1

Xi!

d

dλ
lnL =− n+

n∑

i=1

Xi/λ (= 0) => λ̂ = x

d2

dλ2
lnL =−

n∑

i=1

Xi/λ
2 < 0,

or check L(0) =
n∏

i=1

e−λ
λXi

Xi!

∣
∣
λ=0

=? and check L(∞) =
n∏

i=1

e−λ
λXi

Xi!

∣
∣
λ=∞ =?

Thus the MLE of λ is λ̂ = X.

The MLE of eλ is eX by the invariance principle.

Q: Is λ̂ = X the MVUE of λ ?

E(λ̂) = E(X) = µ = λ. Thus it is unbiased.
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Need to show that λ̂ is based on the sufficient statistic.

L =
n∏

i=1

e−λ
λXi

Xi!

=
n∏

i=1

e−λ

︸ ︷︷ ︸

h(λ)

n∏

i=1

λXi

︸ ︷︷ ︸

g( ~X,λ)

1
∏n
i=1Xi!

︸ ︷︷ ︸

T ( ~X)

=

n∏

i=1

e−λ

︸ ︷︷ ︸

h(λ)

λ
∑n

i=1
Xi

︸ ︷︷ ︸

g( ~X,λ)

1
∏n
i=1Xi!

︸ ︷︷ ︸

T ( ~X)

=
n∏

i=1

e−λ

︸ ︷︷ ︸

h(λ)

λnX
︸︷︷︸

g( ~X,λ)

1
∏n
i=1Xi!

︸ ︷︷ ︸

T ( ~X)

Thus X is sufficient for λ and is unbiased. Thus it is the MVUE of λ.

Is λ̂ consistent ?

Is e−X MVUE ?

447 [44]: If X1 X2.

Xi’s ∼: X1 +X2 ∼:
G(αi, β)
χ2(vi)
Pois(λi)
N(µi, σ

2
i )

bin(ni, p)

key: ⊥,

G(α1 + α2, β)

χ2(v1 + v2)
Pois(λ1 + λ2)

N(µ1 + µ2, σ
2
1 + σ2

2)
bin(n1 + n2, p)

Thus
∑n
i=1Xi ∼ Poisson(nλ) is a sufficient statistic for λ.

E(e−λ̂) = e−λ ?

It suffices to check E(e−X) = e−λ first

E(e−X) =

∞∑

i=0

e−ie−λλi/i!

=
∞∑

i=0

e−λ(λ/e)i/i!

=
e−λ

e−λ/e

∞∑

i=0

e−λ/e(λ/e)i/i!

=
e−λ

e−λ/e

=e−λ(1−1/e)

E(e−λ̂) =E(e−
∑n

i=1
Xi/n)

=
∞∑

i=0

e−i/ne−nλ(nλ)i/i!
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=

∞∑

i=0

e−nλ(e−1/nnλ)i/i!

=
e−nλ

e−e1/nnλ

∞∑

i=0

e−e
−1/nnλ(e−1/nnλ)i/i! =

e−nλ

e−e1/nnλ

∞∑

i=0

e−λ
∗

(λ∗)i/i!

=e−(1−e−1/n)nλ = eλ ??

ex =

∞∑

i=0

xi/i! = 1 + x+ x2/2! + ...

Is e−X consistent ?

A CI for λ is

X ± zα/2σ̂X ,

X ± zα/2σ̂X/
√
n.

Notice that σ2
X = λ

X ± zα/2
√
X/

√
n.

Review Problem 1. Suppose that X1, ..., Xn are i.i.d. from G(α, β), the gamma distribution,

(a) Find the MME of (α, β).

(b) Is it consistent ?

Sol. Since E(X) = αβ and V (X) = αβ2 = E(X2)− (E(X))2,

Setting X = α̂β̂ and X2 − (X)2 = α̂(β̂)2 yields

β̂ = X2−(X)2

X
,

α̂ = X/β̂ = (X)2

X2−(X)2

Review Problem 2. Suppose that X1, ..., Xn are i.i.d. from Poisson distribution with mean

λ.

Find the MLE of P (X = 1) = e−λλ.

P̂ (X = 1) = e−λ̂λ̂.

E(P̂ (X = 1) = P (X = 1) ?

E(e−λ̂λ̂) =E(e−
∑n

i=1
Xi/n

n∑

i=1

Xi/n)

=
∞∑

i=0

e−i/ne−nλ
i

n
(nλ)i/i!

=
∞∑

i=0

i

n
e−nλ(e−1/nnλ)i/i!
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=
e−nλ

e−e1/nnλ

∞∑

i=0

i

n
e−e

−1/nnλ(e−1/nnλ)i/i! =
e−nλ

ne−e1/nnλ

∞∑

i=0

ie−λ
∗

(λ∗)i/i!

=e−(1−e−1/n)nλ 1

n
e1/nnλ E(X∗)

=e−(1−e−1/n)nλe1/nλ

ex =

∞∑

i=0

xi/i! = 1 + x+ x2/2! + ...

Ans: E(P̂ (X = 1) 6= P (X = 1). Thus the MLE is not unbiased.

Class exercise. Suppose that X1, ..., Xn are i.i.d. from Poisson distribution with mean

λ. Find the MLE of P (X ≤ 3) and check whether it is unbiased.

Quiz on Friday: 447 9-42, 448: 1-17.

Chapter 10. Hypothesis Testing

§10.1. Introduction.

3 typical statistical inferences:

(1) estimation: θ = ?

(2) Confidence interval: I = [a, b] =? such that it is likely that θ ∈ I.

(3) Hypothesis testing: θ = θo ?

§10.2. Elements of a statistical test.

448 [15] The 5 elements of a test are (1) , (2) , (3) test statistic (4)

, (5) , key: Ho, Ha, RR, Conclusion,

Remark. It is often to write H1 instead of Ha.

Def. 10.1. Probability of type I error is the probability rejecting correct Ho, denoted by

α = P (Ha|Ho). α is call the level of the test. Probability of type II error is the probability not

rejecting incorrect Ho, denoted by β = P (Ho|Ha),

448 [16] Probability of type I error is , Probability of type II error is , key:

P (Ha|Ho), P (Ho|Ha).

Ex. 10.1. John claims that he will gain 50% of more of the voters in a city election. A random

sample of n = 15 was taken, resulting Y people favor Jone. Describe the 5 elements of a test.

Sol. Let p =proportion of voters who likes John.

Ho: p = 0.5 (or p ≥ 0.5) which one ?

Ha: p < 0.5.

Test statistic: Y=# of people who like John in a random sample of size n.

RR: Y ≤ yo, where yo needs to be computed.

Conclusion: reject Ho or not. Choose one ! And write down what it means.

Remark. What is the intepretation of Ho: p = 0.5 v.s. H1: p < 0.5 ?

It is to find out whether voters dislike John, as p ≥ 0.5 is a question mark.
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We need to learn how to determine yo.

Q: If yo = 10 people favor John, do you believe Ho ?

If yo = 0 person favors John, do you believe Ho ?

If yo = 7 < n/2 people favor John, do you believe Ho ?

If yo = 6 < n/2 people favor John, do you believe Ho ?

Remark. The statistical issue is how to select yo.

Ex. 10.1b. Under the set-up in Ex. 10.1,

(1) if we select yo = 15, P (Ha|Ho)=? and P (Ho|Ha)=?

(2) if we select yo = 0, P (Ha|Ho)=? and P (Ho|Ha)=?

(3) if we select yo = 2, P (Ha|Ho)=? and P (Ho|Ha)=?

Sol. (1) α = 1 and β = 0. Why ?

447 [2]. Axioms of probability: (1) P (A) ≥ 0, (2) P (S) = 1. S=?

447 [7]. P ( A) =1− P (A).

α = P (Ha|Ho) = P (Y ≤ 15|p = 0.5)) = P (S) = 1.

β = P (Ho|H1) = P (Y > 15|p < 0.5) = P (∅) = 0.

(2) α ≈ 0 and β ≈ 1− 0 = 1 ?

α ≈ 0 and β = 1− (1− p)15
{
≈ 1 if p 6= 0
0 if p = 0

. Why ?

α = P (Ha|Ho)

= P (Y ≤ 0|p = 0.5))

= P (Y = 0)

=

(
n

0

)

p0(1− p)n−0

= 0.515

≈ 0.0003 ≈ 0.

β = P (Ho|H1)

= P (Y > 0|p < 0.5)

= 1− P (Y = 0|p < 0.5) =? P (Y = 0|p < 0.5) = p0(1− p)15 = 0??

Ans : β

{

≈ 1− 0 = 1 if p ∈ (0, 0.5)
= 1− 1 = 0 if p=0

(3) P (Ha|Ho) = P (Y ≤ 2|Ho) = [
∑2
i=0

(
n
i

)
pi(1− p)15−i]

∣
∣
∣
∣
p=0.5

= 0.004.
(
n
i

)
= n!

i!(n−i)!

[

2∑

i=0

(
n

i

)

pi(1− p)15−i]

∣
∣
∣
∣
p=0.5

=[

(
n

0

)

p0(1− p)15−0 +

(
n

1

)

p1(1− p)15−1 +

(
n

2

)

p2(1− p)15−2]

∣
∣
∣
∣
p=0.5
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=0.004

P (Ho|Ha) =1− 0.004 = 0.996 ???

P (Ho|Ha) =P (Y > 2|Ha)

=
15∑

i=3

(
n

i

)

pi(1− p)15−i] is a function of p < 0.5, which can be anything < 0.996, e.g.

> 1-round(pbinom(3,15,0.1),2)

[1] 0.06

> 1-round(pbinom(3,15,0.2),2)

[1] 0.35

> 1-round(pbinom(3,15,0.3),2)

[1] 0.7

> 1-round(pbinom(3,15,0.4),2)

[1] 0.91

Ex. 10.1c. Under the set-up in Ex. 10.1, if one tries to select α ≈ 0.05,

what are yo ? P (Ha|Ho) and P (Ho|Ha) ? α ?

Sol. Use R program:

> round(pbinom(0:14,15,0.5),2)

[1] 0.00 0.00 0.00 0.02 0.06 0.15 0.30 0.50 0.70 0.85 0.94 0.98 1.00 1.00 1.00

Ans: Select yo = 3, that is, reject Ho if 3 or less out of 15 do not favor John.

P (Ha|Ho) = P (Y ≤ yo|Ho) = [
∑yo
i=0

(
15
i

)
pi(1− p)15−i]

∣
∣
∣
∣
p=0.5

= 0.02 ≤ 0.05.

P (Ho|Ha) = 2% ?

α = ?

Ex. 10.1d. Under the set-up in Ex. 10.1, if 30% of people likes John and one sets yo = 5,

what are P (Ha|Ho) and P (Ho|Ha) ?

Sol. α = P (Ha|Ho) =
∑5
i=0

(
15
i

)
pi(1− p)15−i

∣
∣
∣
∣
p=0.5

≈ 0.15 (see pbinom() above),

P (Ho|Ha) = P (Y > 5|Ha) =
∑15
i=6

(
n
i

)
pi(1− p)15−i]

∣
∣
∣
∣
p=0.3

Can we use pbinom above ?

= 1−∑5
i=0

(
n
i

)
pi(1− p)15−i]

∣
∣
∣
∣
p=0.3

= 0.278 Which you prefer in exams ?

Ex. 10.2. Under the set-up in Ex. 10.1, if 20% of people likes John and one still sets yo = 2,

what are P (Ha|Ho) and P (Ho|Ha) ?

Sol. α = P (Ha|Ho) =
∑2
i=0

(
15
i

)
pi(1− p)15−i

∣
∣
∣
∣
p=0.5

= 0.004

and P (Ho|Ha) = P (Y > 2|Ha) =
∑15
i=3

(
n
i

)
pi(1− p)15−i]

∣
∣
p=0.2

= 0.60

Ex. 10.3. Under the set-up in Ex. 10.1, if 10% of people likes John and one still sets yo = 2,

what are P (Ha|Ho) and P (Ho|Ha) ?
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Sol. α = P (Ha|Ho) =
∑2
i=0

(
15
i

)
pi(1− p)15−i

∣
∣
∣
∣
p=0.5

= 0.004

and P (Ho|Ha) = P (Y > 2|Ha) =
∑15
i=3

(
n
i

)
pi(1− p)15−i]

∣
∣
p=0.1

= 0.18

> round(pbinom(2,15,0.5),4)

[1] 0.004

> 1-round(pbinom(2,15,0.1),2)

[1] 0.18

> 1-round(pbinom(2,15,0.2),2)

[1] 0.6

> 1-round(pbinom(2,15,0.3),2)

[1] 0.87

> 1-round(pbinom(2,15,0.4),2)

[1] 0.97

> round(pbinom(3,15,0.5),2)

[1] 0.02

Remark.






RR Y ≤ 0 Y ≤ 2 Y ≤ 3 Y ≤ 15
α 0 0.004 0.02 1

β

{
≈ 1 if p > 0
0 if p=0

(0, 0.996) 1−∑3
i=0

(
15
i

)
piq15−i 0






α ↑ <=>β ↓ but α 6= 1− β in general.

Quiz on Friday: 447 9-42, 448: 1-17.

§10.3. Common large sample tests.

A large sample test for testing θ based on observation X is as follows.
Case : (1) (2) (3)
Ho : θ = θo
Ha : θ > θo θ < θo θ 6= θo

test statistic θ̂
Reject region {X : θ̂ > θo + zασ̂θ̂} {X : θ̂ < θo − zασ̂θ̂} {X : |θ̂ − θo| > zα/2σ̂θ̂}
Conclusion :
Reason: Under certain assumptions,

P (H1|Ho) =







P (θ̂ > θo + zασ̂θ̂) ≈ P ( θ̂−θσθ̂
> zα) in case (1)

P (θ̂ < θo − zασ̂θ̂) ≈ P ( θ̂−θσθ̂
< −zα) in case (2)

P (|θ̂ − θo| > zα/2σ̂θ̂) ≈ P ( |θ̂−θ|σθ̂
> zα/2) in case (3)

≈ α

448 [17] For a large sample test for Ho: θ = θo, a test statistic is Z = , a RR

is Z if θ > θo; and a RR is if θ 6= θo; key: θ̂−θo
σ̂θ̂

, > zα,

|Z| > zα/2,

Remark. Test statistic can be either θ̂ or θ̂−θo
σ̂θ̂

.

Ex. 10.5. A vice president in charge of sales for a large corporation claims that salespeople

are averaging no more than 15 sales contracts per week. As a check on his claim, n = 36
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salespersons are selected at random, resulting X = 17 (> 15) and S2 = 9. Does the evidence

contradicts the vice president’s claim with α = 0.05 ? What is your instinct answer, as

X = 17 > 15 ?

Sol. The 5 components of a test:

1: Ho: µ = 15 v.s.

2: Ha: µ 6= 15

or Ha: µ > 15,

or Ha: µ < 15,

Which one ?

3. Test statistic: which of the next 3 ?

θ̂ = X ?

or µ̂ = X ?

or Z = µ̂−µ
σ̂µ̂

?

4. RR : µ̂ > µ+ zασ̂µ̂.

X > 15 + 1.645S/
√
n

≈ 15 + 1.645 ∗ 3/
√
36

= 15.82

17 > 15.82?

Or µ̂−µ
σ̂µ̂

> 1.645.

µ̂− µ

σ̂µ̂
=

17− 15√
9/
√
36

= 4 > 1.645

5. Conclusion:

(1) Reject Ho.

(2) The VP’s claim is not correct. Done ?

(3) It seems that salespeople are averaging more than 15 sales contracts per week.

Comments: (2) may be ignored, but not (3).

Ex. 10.6. A machine in a factory must be repaired if it produces more than 10% defec-

tives a day. A random sample of 100 items from the day’s production contains 15 defectives

and the supervisor says that the machine must be repaired as 15% > 10%. Does the sample

evidence support his decision ? Use a test with level 0.01.

What is your instinct answer, as 15% > 10% ?

Sol. 1. Ho: p = 0.1 = po v.s.
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2. Ha: p > 0.1 or p 6= 0.1 or p < 0.1 which one ?

3. Test statistic: 3 possible ways:

p̂ = X, X =?

Z =
p̂− po

√
p̂o(1−p̂o)

n

Z =
p̂− po

√
po(1−po)

n

Which is better ?

4. RR : p̂ > po + zασ̂p̂

z0.01 ≈ 2.32

σ̂p̂ =
√

p̂(1−p̂)
n

RR: Z = p̂−po√
po(1−po)

n

> zα = 2.32

Z = 1.667

5. Conclusion: do not reject Ho ??

p = 0.1 that day, no need to repair the machine.

Ex. 10.7. A psychological study was conducted to compare the reaction times of men and

women to a stimulus. Independent random samples of 50 men nd 50 women were employed in

the experiment. The results are
men n1 = 50 Y 1 = 3.6 S2

1 = 0.18
women n2 = 50 Y 2 = 3.8 S2

2 = 0.14
Do the data suggest

a difference between the true mean reaction between men and women with α = 0.05 ?

Sol. 1: Ho: µ1 = µ2

Ho: µ1 − µ2 = 0

2: v.s. Ha: µ1 − µ2 6= 0.

Ha: µ1 − µ2 > 0.

Ha: µ1 − µ2 < 0.

3. Test statistic: Z = Y 1 − Y 2 = −0.2 ? or

Z = Y 1−Y 2√
S2
1/n1+S2

2/n2

= −2.5 ?

4. RR: |Z| > 1.96

5. Conclusion: Reject Ho, done ?

there is a difference in the reaction between men and women.

In the next exam, formulas are 447 9-42 and 44; 448: 1-17. This week’s

homework due on Monday
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In particular, [44] If X1 X2.

Xi’s ∼: X1 +X2 ∼:
G(αi, β)
χ2(vi)
Pois(λi)
N(µi, σ

2
i )

bin(ni, p)

key: ⊥,

G(α1 + α2, β)

χ2(v1 + v2)
Pois(λ1 + λ2)

N(µ1 + µ2, σ
2
1 + σ2

2)
bin(n1 + n2, p)

§10.4. Calculating P (Ho|H1) and finding the sample size for Z tests.

Given a test, say I(Z ∈ RR), α = P (Z ∈ RR|Ho is true)=P (H1|Ho) = E(I(Z ∈ RR))Ho)

and β = P (Z /∈ RR|H1 is true)=P (Ho|H1).

In this section, we shall study how to compute β for a given test and how to choose the

sample size n in order to achieve given α and β, if the sample size n is large. n ≥ ??

Ex. 10.8. Recall the assumption in Ex.10.5: A vice president in charge of sales for a large

corporation claims that salespeople are averaging no more than 15 sales contracts per week. As

a check on his claim, n = 36 salespersons are selected at random, resulting X = 17 and S2 = 9.

Suppose now Ho: µ = 15 = µo v.s. Ha: µ = 16 rather than µ > 15. α = 0.05. β = ?

Sol. Now Ho: µ = 15, v.s. Ha: µ = 16.

The test statistic is Z = X−µo

σ̂/
√
n

or X.

RR is Z = X−µo

σ̂/
√
n
> 1.645, or X > 15 + zαs/

√
n.

β =1− P (RR) for µ = 16

=P (X ≤ 15 + zαs/
√
n)

=P (X ≤ 15 + 1.645 ∗ 3/
√
36)

=P (X ≤ 15.82)

≈Φ(
15.82− 16

s/
√
n

)

=Φ(
−0.18

3/6
)

=Φ(−0.36)

=0.3594

> pnorm(-0.36) R-code

[1] 0.3594236

Or check the normal table......
z .00 · · · 0.05 0.06 0.07 · · ·
0.1 · · ·
...
0.3 .3821 · · · .3632 .3594 .3557 · · ·
In general, H1: µ > 15, then

β = P (X ≤ 15.82) = Φ(
15.82− µ

s/
√
n

) = Φ(
15.82− µ

3/6
) (µ > 15). (1)
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Recall Ex. 10.1b. If Y ∼ bin(15, p), Ho: p = 0.5 v.s. H1: p < 0.5.

P (Ha|Ho) = P (Y ≤ 2|Ho) = [
∑2
i=0

(
n
i

)
pi(1− p)15−i]

∣
∣
∣
∣
p=0.5

= 0.004.

P (Ho|Ha) =P (Y > 2|Ha)

=
15∑

i=3

(
n

i

)

pi(1− p)15−i] is a function of p < 0.5, different from Eq.(1)

> 1-round(pbinom(3,15,0.1),2)

[1] 0.06

> 1-round(pbinom(3,15,0.2),2)

[1] 0.35

> 1-round(pbinom(3,15,0.3),2)

[1] 0.7

> 1-round(pbinom(3,15,0.4),2)

[1] 0.91

For a test with given α and β, one needs to find out n before carrying out data sample

and doing the test. The formula is

n =
(zα+zβ)

2σ2

(µa−µo)2
, provided that σ2 is given.

Reason: Write Ho: µ = µo v.s. Ha: µ = µa < µo.

α =P (X ≥ µo + zασ/
√
n|Ho)

β =P (X < µo + zασ/
√
n|Ha)

=P (X − µa < µo + zασ/
√
n− µa|Ha)

=P (
X − µa
σ/

√
n

≤ µo + zασ/
√
n− µa

σ/
√
n

|Ha)

=Φ(
µo + zασ/

√
n− µa

σ/
√
n

)

=Φ(−zβ)
µo + zασ/

√
n− µa

σ/
√
n

= −zβ
µo − µa
σ/

√
n

+ zα = −zβ
µo − µa
σ/

√
n

= −zα − zβ

√
n =

zα + zβ
µa − µo

σ

n = (
zα + zβ
µa − µo

σ)2

55



Ex. 10.5 (continued. If β = 0.05 when µa = 16, v.s. µo = 15, what is n ?

Sol. n = [ 1.645+1.645)
(16−15) σ]2 = 3.292 ∗ 9 = 97.4. Thus n ≥ 98.

§10.5. Relation between hypothesis testing procedure and CI

Consider large sample case (i.e. n ≥ 20), with θ̂ is an estimator of θ. Under proper

assumptions,

P (θ̂ ≤ t) ≈ Φ(
t− θo
σ̂θ̂

)

Ho: θ = θo v.s. Ha: θ 6= θo

Accept Ho if | θ̂ − θo
σ̂θ̂

| ≤ zα/2

<=>|θ̂ − θo| ≤ zα/2σ̂θ̂

<=>− zα/2σ̂θ̂ ≤ θ̂ − θo ≤ zα/2σ̂θ̂

<=>θ̂ − zα/2σ̂θ̂ ≤ θo ≤ θ̂ + zα/2σ̂θ̂

<=>θo ∈ [θ̂ − zα/2σ̂θ̂, θ̂ + zα/2σ̂θ̂] 2− sided CI

Ho: θ = θo v.s. Ha: θ > θo

Accept Ho if
θ̂ − θo
σ̂θ̂

≤ zα

<=>θ̂ − θo ≤ zασ̂θ̂

<=>θ̂ − zασ̂θ̂ ≤ θo

<=>θo ∈ [θ̂ − zασ̂θ̂,∞) upper − tail − CI

Ho: θ = θo v.s. Ha: θ < θo

Accept Ho if
θ̂ − θo
σ̂θ̂

≥ zα

<=>θ̂ − θo ≥ zασ̂θ̂

<=>θ̂ − zασ̂θ̂ ≥ θo

<=>θo ∈ (−∞, θ̂ − zασ̂θ̂] lower − tail − CI

Thus in some sense, the hypothesis test procedure and CI are equivalent.

Quiz on Friday: 447: 1-25, 448: 1-20.

§10.6. Another way to report the result of a statistical test:

Significance levels or p-values.
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Def. 10.2. If W is a test statistic, the p-value or attained significant level, is the smallest level

of significant α for which the observed data indicate that Ho should be rejected.

448 [19] The P-value is







P (W w)|Ho is correct) if Ha : θ > θo
P (W w)|Ho is correct) if Ha : θ < θo

P (W |w|)|Ho is correct) if Ha : θ 6= θo
where W is the (Z or T ) test statistic and w is the observed value of W . key: >, <, 2, >.

Remark. Reject Ho if p−values ≤ α.

Ex.10.10. Suppose that Y ∼ bin(15, p). Ho: p = 0.5 v.s. Ha: p < 0.5 with α = 0.05. Suppose

that Y = 3 is observed. (I) Do the usual test, (II) Find the p-value.

Sol. (1) Ho: p = 0.5 v.s.

(2) Ha: p < 0.5 with α = 0.05.

(3) Test statistic Y = 3.

(4) RR Y ≤ 3 as

P (Y ≤ 4) ≈ 0.059 and P (Y ≤ 3) < 0.05

> round( pbinom(0:14,15,0.5),3)

[1] 0.000 0.000 0.004 0.018 0.059 0.151 0.304 0.500 0.696 0.849 0.941 0.982

[13] 0.996 1.000 1.000

> round( pbinom(0:14,15,0.5),2)

[1] 0.00 0.00 0.00 0.02 0.06 0.15 0.30 0.50 0.70 0.85 0.94 0.98 1.00 1.00

(5) reject Ho, that is, we conclude that p < 0.5.

(II) p-value=P (Y ≤ 3) ≈ 0.018.

Remark. In both ways, we reject Ho, but the p-value provides more information and we are

more confident that Ho should be rejected, namely, p < 0.5.

Remark. P (Ho|H1) is called the probability of type II error;

P (H1|Ho) is called the probability of type I error;

α is called the level of the test Ho v.s. H1.

It is often that α = P (H1|Ho), such as under N(0, 1).

But in this example, the level α = 0.05 > 0.018 = P (H1|Ho) the probability of type I error.

Class exercise. Under the assumptions in Ex.10.10.

If Y = 2, what is the p-value ? Do we reject Ho ?

If Y = 8, what is the p-value ? Do we reject Ho ?

Ex.10.11. A psychological study was conducted to compare the reaction times of men and

women to a stimulus. Independent random samples of 50 men and 50 women were employed

in the experiment. The results are
men n1 = 50 Y 1 = 3.6 S2

1 = 0.18
women n2 = 50 Y 2 = 3.8 S2

2 = 0.14
Let α = 0.05.

For testing Ho: µ1 − µ2 = 0 v.s. Ha: µ1 − µ2 6= 0.
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Z = Y 1−Y 2√
S2
1/n1+S2

2/n2

= −2.5

RR: |Z| > 1.96

Since |Z| = 2.5 > 1.96, reject Ho.

Then p-value= ?

448 [19] The P-value is







P (W>w)|Ho is correct) if Ha : θ > θo
P (W<w)|Ho is correct) if Ha : θ < θo
2P (W>|w|)|Ho is correct) if Ha : θ 6= θo

where W is the (Z or T ) test statistic and w is the observed value of W .

Which of the 3 is right choice here ?

p− value =P (|Z| > | − 2.5|)Sol.

=2P (Z > 2.5)> 1− pnorm(2.5)

=2× 0.0062 = 0.0124[1]0.006209665

z .00 .01 .02
...

...
2.5 .0062 .0060
Thus we reject Ho too. However, we are more confident to reject Ho and believe µ1 6= µ2.

Ex. 3. Suppose that a Z-test for Ho: µ = 1 v.s. Ha: µ < 1 yields Z = −1.5. p-value=?

448 [19] The P-value is







P (W>w)|Ho is correct) if Ha : θ > θo
P (W<w)|Ho is correct) if Ha : θ < θo
2P (W>|w|)|Ho is correct) if Ha : θ 6= θo

where W is the (Z or T ) test statistic and w is the observed value of W .

Which of the 3 is right choice here ?

Sol. p-value= P (Z < −1.5) = 0.0668 from the normal table.
z .00 · · · 0.05 0.06 0.07 · · ·
1.4 · · ·
...
1.5 .0668 · · · · · ·

. Or

> pnorm(-1.5)

[1] 0.0668072

Remark. Given p-value 0.0668,

we do not reject Ho at level α = 0.05, but reject Ho at level α = 0.1.

This is the advantage of reporting the p-value.

That is, if we reject Ho at level 0.1, we are risking the 10% probability to make wrong decision.

If we reject Ho at level 0.05 , we are risking the 5% probability to reject correct Ho.
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§10.7. Some comments on the theory of hypothesis testing.

1. We consider 3 possible ways for Ho v.s. Ha.

For example, regarding the difference between means µ1 and µ2.

(1) Ho: µ1 − µ2 = 0 v.s. Ha: µ1 − µ2 6= 0.

(2) Ho: µ1 − µ2 = 0 v.s. Ha: µ1 − µ2 > 0.

(3) Ho: µ1 − µ2 = 0 v.s. Ha: µ1 − µ2 < 0.

Since naming µ1 and µ2 is somewhat arbitrary, we can ignore the 3rd way above.

How to choose between first two ways ? It depends on the practical situations.

If µ1 > µ2 suggests a large financial loss for us, then it is Ha. Otherwise, Ha is µ1−µ2 < 0.

2. Why set Ho: µ1 − µ2 = 0 v.s. Ha: µ1 − µ2 > 0; not

Ho: µ1 − µ2 ≤ 0 v.s. Ha: µ1 − µ2 > 0 ?

The answer is that either ways works. They leads to the same RR and conclusion.

However, the second way is more complicated to compute α, thus at this course

we choose the simple way.

3. If the test suggests Ha is false, we report that

“do not reject Ho”, rather than saying that we accept Ho,

as Ho may still be wrong. We just do not have evidence to say that it is wrong.

4. Is it possible to set Ho: µ1 − µ2 = 0 v.s. Ha: µ1 − µ2 = 3 ?

Ans: Yes, we can, if in the practical situation, we are comparing µ1−µ2 = 0 v.s. µ1−µ2 = 3.

However, in most situation, we do not have 3 in mind.

5. Given α, say 0.05 for testing Ho: µ = 0 v.s. H1: µ > 0.

with Z test statistic where Z ∼ N(0, 1),

Both φ1 = I(Z > 1.645) and φ2 = I(|Z| > 1.96) have α = 0.05.

But their β values are different, i.e., their P (Ho|H1) are different.

Thus how to find a good level-α test is a theoretical issue.

It is related to the most powerful test, in the sense to have the smallest P (Ho|H1).

Comments on the correction of the 2nd test:

Typos in the 2nd test.

5. If (1) X1, ..., Xn are i.i.d. from N(µ1, ), (2) Y1, ..., Ym are i.i.d. from N(µ2, ), and

(3) Xi’s Yj ’s, then

5.1. 100(1− α)% CI for µ1 is ,

5.2. 100(1− α)% CI for µ1 − µ2 is σ̂p

√
1
n + 1

m , where σ̂p =

5.3. 100(1− α)% CI for σ2
x is

5. If (1) X1, ..., Xn are i.i.d. from N(µx, ), (2) Y1, ..., Ym are i.i.d. from N(µy, ), and

(3) Xi’s Yj ’s, then T = X−µx

Sx/
√
n
, ∼ ,

T =
X−Y−(µx−µy)

σ̂p

√
1/nx+1/ny

∼ , where σ̂ = ,
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W = (nx − 1)S2
x/σ

2 ∼ , F = S2
x/S

2
y ∼ ,

B.1. Two steps in finding the MLE:

(1) dlnL(θ)
dθ = 0 yields θ̂

(2) Check. Either check whether (lnL(θ)′′ < 0 ??

Or check L(θ) at the boundary and θ̂ and compare them.

2. The MLE of θ is

θ̂ =
4

X
=

4n
∑n
i=1Xi

=
4n

T

T =
∑

iXi is G(α, β). Thus fT is known !!

E(1/T ) = ?

E(X) = µ

E(g(X)) = g(µ) ???

E(1/X) = 1/µ ??? (g(x) = 1/x)

E(X2) = µ2 ??? (g(x) = x2)

447. [15] E(g(X)) =
{
... if discrete
... if cts

V (1/T ) = ??

Need to compute E( 1
T 2 ) and (E( 1

T ))
2, ...

∫ ∞

0

tk
tα−1e−t/β

βαΓ(α)
dt =

∫ ∞

0

t(α+k)−1e−t/β

βαΓ(α)
dt and Γ(α+ 1) = αΓ(α)

B.2. 3 H1s: p1 − p2 6= 0, p1 − p2 > 0, p1 − p2 < 0.

Only one is correct. Often the data suggest the H1.

σ̂p̂1−p̂2 :
√

p̂1q̂1/n1 + p̂2q̂2/n2,
√

pq/n1 + pq/n2, where p =
34+98

112+260 , as p1 = p2 under Ho.

§10.8. Small sample tests for µ and µ1 − µ2.

For large sample test about µ or µ1 − µ2, we use test statistic

Z = X−µo

σ̂
X

or

Z =
X − Y − (µ1 − µ2)

σ̂X−Y
=
X − Y − (µ1 − µ2)

√
S2
X

n1
+

S2
Y

n2

as σ2
X ≈ S2

X and σ2
X−Y ≈ S2

X

n1
+

S2
Y

n2

In particular, for testing Ho: µ = µo, v.s. Ha: µ > µo,
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RR: Z > zα.

Q: What is the meaning of large sample size ?

For one sample test, n ≥ 20;

For two sample test, n1 ≥ 20 and n2 ≥ 20.

Q: What to do if n < 20 ?

Recall that the CI for µ is X ± tα/2,n−1S/
√
n, based on T = X−µo

S/
√
n
∼ tn−1 distribution.

The CI for µ1 − µ2 is X − Y ± tα/2,n1+n2−2σ̂p

√
1
n1

+ 1
n2

where σ̂2
p =

(n1−1)S2
X+(n2−1)S2

Y

n1+n2−2 based on T = X−Y−(µX−µY )

σ̂p

√
1
n1

+ 1
n2

∼ tn1+n2−2,

under the assumption that







1. X1, ..., Xn1

i.i.d.∼ N(µX , σ
2)

2. Y1, ..., Yn2

i.i.d.∼ N(µY , σ
2)

3. Xi ⊥ Yj ∀ i, j
Small sample size test for µ under the assumption that X1, ..., Xn

i.i.d.∼ N(µ, σ):
Case : (1) (2) (3)
Ho : µ = µo
Ha : µ < µo µ > µo µ 6= µo

test statistic T = X−µo

S/
√
n

Reject region T < −tα,n−1 T > tα,n−1 |T | > tα/2,n−1

Conclusion :
Ex.10.12. Suppose that muzzle velocities of eight shells tested with a new gunpowder, and

yields Y = 2959 and S = 39.1. The manufactory claims that the new gunpowder produces an

average velocity of no less that 3000 feet/second. (A) Do the sample data provide sufficient

evidence to contradict the claim at α = 0.025 ? (B) Compute the p-value too.

Sol. (A) 1. and 2.: Ho: θ = 3000, v.s. H1: θ < 3000 or H1: θ > 3000 ?

3. Test statistic: T = X−µo

S/
√
n
= 2959−3000

39.1/
√
8

= −2.966

4. RR: T < −2.365, as t0.025,8−1 = 2.365.

t.100 t.050 t.025 t.010 · · · df
3.078 · · · 1
...

2.365 2.998 · · · 7
5 Conclusion: Since T = −2.966 < −2.365, reject Ho Done ?

There is evidence that the velocity is less than 3000 feet/second.

Or the data do provide sufficient evidence to contradict the claim that

the velocity of no less that 3000 feet/second.

(B) 448 [19] The P-value is







P (W>w)|Ho is correct) if Ha : θ > θo
P (W<w)|Ho is correct) if Ha : θ < θo
2P (W>|w|)|Ho is correct) if Ha : θ 6= θo

where W is the (Z or T ) test statistic and w is the observed value of W .

The p-value using R-code is

> pt(2.996,7)

> 1- pt(2.996,7)
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> pt(-2.996,7)

Which one is correct ?

[1] 0.01002765

Ex.10.12(c). For the same data above, if an independent agent is asked to check whether the

new gunpowder produces an average velocity of 3000 feet/second at α = 0.025, what is the

answer ?

Sol. 1 and 2: Ho: θ = 3000, v.s. H1: θ 6= 3000.

3. Test statistic: T = X−µo

S/
√
n
= 2959−3000

39.1/
√
8

= −2.966

4. RR: |T | > t0.0125,7 = ???

t.100 t.050 t.025 t.010 · · · df
3.078 · · · 1
...

1.895 2.365 2.998 · · · 7
How to continue ?

Since it is a 2-sided test, use R-codes to find out P-value of 2.996:

> 2*pt(-2.996,7)

The P-value is 2 ∗ 0.01 = 0.02.

5. Conclusion: Since P-value = 0.02 < α = 0.025 reject Ho.

There is some evidence that the velocity is not 3000 feet/second.

Small sample test for comparing two population means:
Case : (1) (2) (3)
Ho : µ1 − µ2 = Do

Ha : µ1 − µ2 < Do µ1 − µ2 > Do µ1 − µ2 6= Do

test statistic T = X−Y−Do

Sp

√
1
n1

+ 1
n2

Reject region T < −tα,n−1 T > tα,n−1 |T | > tα/2,n−1

Conclusion :
Ex.10.14. The workers on the assembling lines were trained using two different methods.

Suppose that 2 sets of independent samples are obtained from N(µX , σ
2) and N(µY , σ

2).

32, 37, 35, 28, 41, 44, 35, 31, 34,

35, 31, 29, 25, 34, 40, 27, 32, 31.

(A) Do the sample data provide sufficient evidence to indicate that there is a difference in true

mean assembly times for those trained using these two methods at α = 0.05 ?

(B) Compute the p-value too.

Sol. (A) From the given conditions, we have n1 = 9 = n2,

X = 35.22,

Y = 31.56,
∑n1

i=1(Xi −X)2 = 195.56,
∑n2

i=1(Yi − Y )2 = 160.22.

Sp =

√∑n1

i=1
(Xi−X)2+

∑n2

i=1
(Yi−Y )2

n1+n2
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1. Ho: µ1 = µ2 v.s.

2. Ha: µ1 − µ2 6= 0

3. Test statistic: T = X−Y
Sp

√
1
n1

+ 1
n2

= 35.22−31.56√
195.56+160.22

9+9−2

√
1/9+1/9

= 1.65

4. Reject region :|T | > tα/2,n−2 = 2.12

5. Conclusion: Since |T | = 1.65 < 2.12, do not reject Ho, there is no evidence to suggest that

there is a difference in the two assembly times for those trained using the two methods.

(B) 448 [19] The P-value is







P (W>w)|Ho is correct) if Ha : θ > θo
P (W<w)|Ho is correct) if Ha : θ < θo
2P (W>|w|)|Ho is correct) if Ha : θ 6= θo

where W is the (Z or T ) test statistic and w is the observed value of W .

The p-value is

> 2*pt(1.65,16)

> 2*(1-pt(1.65,16))

> 2*pt(-1.65,16)

[1] 0.1184333

Ex.10.14 (c). Given the data as in Ex. 10.14, do the sample data provide sufficient evidence

to indicate that the true mean assembly times for those trained using the first method is longer

than the other one at α = 0.1 ? Class exercise.

1. Ho: µ1 = µ2 v.s.

2. Ha: µ1 − µ2 > 0

3. Test statistic: T = X−Y
Sp

√
1
n1

+ 1
n2

= 35.22−31.56√
195.56+160.22

9+9−2

√
1/9+1/9

= 1.65

4. Reject region :T > tα,n−1 = 1.746

t.100 t.050 t.025 t.010 · · · df
3.078 · · · 1
...

2.365 2.998 · · · 7
...

1.337 1.746 2.120 · · · 16
5. Conclusion: Since T = 1.65 < 1.746, reject Ho, there is some evidence to suggest that the

true mean assembly times for those trained using the first method is longer than the other one

at α = 0.1.

447. [44] If X1 X2.

Xi’s ∼: X1 +X2 ∼:
G(αi, β)
χ2(vi)
Pois(λi)
N(µi, σ

2
i )

bin(ni, p)

key: ⊥,

G(α1 + α2, β)

χ2(v1 + v2)
Pois(λ1 + λ2)

N(µx + µy, σ
2
1 + σ2

2)

bin(n1 + n2, p)

These distributions are really from 4 distributions.

G(α, β), with df f(x) = xα−1e−x/β

βαΓ(α) ∝ xαe−x/β , x > 0,

Pois(λ), with df f(x) = e−λλx/x! ∝ λx, x = 0, 1, 2, ...
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N(µ, σ2), f(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 ∝ e−
x2

−2µx

2σ2 ,

and bin(n, p), with df f(x) =
(
n
x

)
px(1− p)n−x ∝ ( p

1−p )
x, x = 0, 1, ..., n.

They belong to the exponential family.

Def. A family of distributions {f(x|θ) : θ ∈ A} (A ⊂ Rp) belongs to the exponential family if

f(x|θ) = h(x)c(θ) exp(

k∑

i=1

wi(θ)ti(x)). (k, θ, h, c, wi, ti)

bin(n, p).

f(x|p) =
(
n
x

)
px(1− p)n−x, x ∈ {0, 1, ..., n}

f(x|p) =
(
n

x

)

1(x∈{0,1,...,n})
︸ ︷︷ ︸

h(x)

(1− p)n
︸ ︷︷ ︸

c(θ)

exp(xln(
p

1− p
))

k = ? θ = ? ti(x) = ? wi(θ) = ?

N(µ, σ2).

f(x|µ, σ) = 1√
2πσ2

exp(− (x−µ)2
2σ2 )

= exp(−x2−2µx+µ2

2σ2 ) 1√
2πσ2

= exp(− µ2

2σ2
)

1√
2πσ2

︸ ︷︷ ︸

c(θ)

· 1
︸︷︷︸

h(x)

exp(− 1

2σ2
︸ ︷︷ ︸

w1(θ)

x2
︸︷︷︸

t1(x)

+
µ

σ2
︸︷︷︸

w2(θ)

x
︸︷︷︸

t2(x)

).

k = ? θ = ? ti(x) = ? wi(θ) = ?

G(α, β), with df

f(x) = xα−1e−x/β

βαΓ(α) I(x > 0)

=
1

βαΓ(α)
︸ ︷︷ ︸

c(θ)

I(x > 0)
︸ ︷︷ ︸

h(x)

e(α−1)lnx− 1
β x

=
1

βαΓ(α)
︸ ︷︷ ︸

c(θ)

I(x > 0)/x
︸ ︷︷ ︸

h(x)

eαlnx−
1
β x Which is correct ?

k = ? θ = ? ti(x) = ? wi(θ) = ?

Pois(λ), with df

f(x) = e−λλx/x!I(x = 0, 1, 2, ...)

= e−λ
︸︷︷︸

c(θ)

(1/x!)I(x = 0, 1, 2, ...)
︸ ︷︷ ︸

h(x)

exlnλ

k = ? θ = ? ti(x) = ? wi(θ) = ?

The above expressions present sufficient statistic, which lead to MVUE.
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For Pois(λ), t(X) = X leads to
∑

iXi or X. Why ??

∏

i

f(xi) = e−nλ
︸ ︷︷ ︸

c(θ)

∏

i

(1/xi!)I(xi = 0, 1, 2, ...)

︸ ︷︷ ︸

h(~x)

e
∑

i
xilnλ

=> X is sufficient, and E(X) = λ.

Thus X is MVUE of λ.

For bin(n,p),

f(x|p) =
(
n

x

)

1(x∈{0,1,...,n})
︸ ︷︷ ︸

h(x)

(1− p)n
︸ ︷︷ ︸

c(θ)

exp( x
︸︷︷︸

t(x)

ln(
p

1− p
))

the sufficient statistic is
∑

iXi due to t(x) = x =>
∑

i xi or x.

T = X. E(T ) = p, thus T = X is a MVUE of p

For N(µ, σ2),

f(x) = exp(− µ2

2σ2
)

1√
2πσ2

︸ ︷︷ ︸

c(θ)

· 1
︸︷︷︸

h(x)

exp(− 1

2σ2
︸ ︷︷ ︸

w1(θ)

x2
︸︷︷︸

t1(x)

+
µ

σ2
︸︷︷︸

w2(θ)

x
︸︷︷︸

t2(x)

)

(X,X2) is a sufficient statistic, it yields (
∑n
i=1Xi,

∑n
i=1X

2
i ) or (X,X

2).

Thus (X,S2) is the MVUE of (µ, σ2), where S2 = n
n−1 (X

2 − (X)2)

For G(α, β),

f(x) =
1

βαΓ(α)
︸ ︷︷ ︸

c(θ)

I(x > 0)/x
︸ ︷︷ ︸

h(x)

eαlnx−
1
β x

(X, lnX) leads to (
∑

iXi,
∑

i lnXi) or (X, lnX). Thus (X, lnX) is sufficent.

Since E(lnX) ∝
∫∞
0

lnxxα−1e−x/βdx no simple expression,

for simplicity in 448, set α as a constant such as α = 4 in the 2nd test.

Example 1. Let f(x|µ, λ) = 1
λe

− x−µ
λ , x > µ, λ > 0.

Does {f(·|µ, λ) : µ ∈ (−∞,∞), λ > 0} belong to the exponential family?

Sol. Yes, as f(x|µ, λ) = 1
︸︷︷︸

h(x)

1

λ
eµ/λ

︸ ︷︷ ︸

c(θ)

exp(− 1

λ
︸︷︷︸

w1(θ)

x
︸︷︷︸

t1(x)

).

Q: Is it correct ?

Ans: No, as f(x|µ, λ) = 1(x>µ)
1
λe

µ/λe−
1
λx 6= h(x)c(θ) exp(

∑k
j=1 wj(θ)tj(x)).

It suffices to show that log 1(x > µ) 6=∑2
i=2 wi(θ)ti(x).

If x > µ, 0 =
∑2
i=2 wi(θ)ti(x) = w2(θ)t2(x).

Thus w2(·) = 0 or t2(·) = 0.

If x < µ, −∞ =
∑2
i=2 wi(θ)ti(x) = w2(θ)t2(x) = 0. A contradiction.
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Example 2. Let f(x|θ) =
{
p1 if x = 1
p2 if x = 2
p3 if x = 3,

where θ = (p1, p2), pi ≥ 0 and p1 + p2 + p3 = 1.

Does it belong to the exponential family ?

Sol. Yes. Let yi = 1(x=i), i = 1, 2, 3. Then

f(x|θ) = py11 p
y2
2 p

y3
3 if x ∈ {1, 2, 3}.

f(x|θ) = 1(x∈{1,2,3}) exp(y1lnp1 + y2lnp2 + y3lnp3) (k = 3??)

Why do not set θ = (p1, p2, p3) ?

y3 = 1− y1 − y2.

f = 1(x∈{1,2,3}) exp(y1ln(p1/p3) + y2ln(p2/p3)) exp(lnp3)

h = ? c = ? wi= ? ti = ?

Example 1. Given data of size n = 100, solve the following problems related the data below.

> (Y=sort(X))

[1] 2.05 2.09 2.24 2.25 2.28 2.34 2.40 2.43 2.49 2.50 2.57 2.71 2.74 2.81 2.81

[16] 2.82 2.85 2.96 2.98 2.98 3.03 3.06 3.07 3.17 3.27 3.30 3.33 3.34 3.36 3.36

[31] 3.39 3.49 3.52 3.53 3.54 3.54 3.56 3.60 3.63 3.64 3.65 3.74 3.75 3.82 3.84

[46] 3.91 3.91 3.91 3.91 3.93 3.97 3.99 4.07 4.12 4.21 4.29 4.40 4.52 4.57 4.59

[61] 4.60 4.61 4.64 4.65 4.67 4.75 4.77 4.84 4.85 4.87 4.89 4.93 5.03 5.07 5.08

[76] 5.11 5.11 5.12 5.13 5.16 5.18 5.19 5.24 5.28 5.31 5.36 5.44 5.46 5.48 5.50

[91] 5.51 5.57 5.59 5.59 5.63 5.65 5.74 5.78 5.84 5.97

> mean(X)

[1] 4.0832

Assume X ∼ U(a, 6). Let P = P (X > 3). Derive

(1) the MLE of a and the MLE P̂ ,

(2) the density of X(1),

(3) σP̂ as a function of a.

(4) Compute the MLE estimate of P . and SEP̂ based on the above data.

Sol. (1) Maximizing likelihood function over a < b = 6 yields the MLE is â = X(1). Proof:

L =
∏n
i=1

I(a≤Xi≤b)
b−a

=
I(a≤X(1)≤6)

(6−a)n ≤ I(a=X(1)≤6)

(6−X(1))n . â = X(1).

Range of a: 2.05 ? 2 ? (−∞, 3) ?). (−∞, 6) ?) data independent.

Difference between the maximum likelihood estimator and the maximum likelihood esti-

mate.

Estimator = estimate ?

X(1) is the estimator of a, and 2.05 is the MLE estimate of a based on the given data.
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Since P = 6−3∨a
6−a =

{
6−3
6−a if a < 3
1 if a ∈ [3, 6]

, by invariance principle of MLE, we have

MLE P̂ =
6− 3 ∨ â
6− â

=

{
6−3
6−â if â < 3
1 if â ∈ [3, 6]

v.s. estimate of P̂ is 0.7594. (1)

(2) fX(1)
(t) = n!

1!(n−1)!f(t)S
n−1(t), t ∈ (X(1), 6).

(3) σ2
P̂
= E((P̂ )2)− (E(P̂ ))2 (see Eq.(1)).

σ2
P̂
= σ2

0.7594 =??

If â ∈ [3, 6], then P̂ = 1, then σ2
P̂
= 0. right ? wrong ? DNK

If a ∈ [3, 6], then â ≥ 3 and P̂ = 1, thus σ2
P̂
= 0.

Hence, σP̂ =

{
0 if a ∈ [3, 6]
√

E(P̂ 2)− (E(P̂ ))2 if a < 3
, where

E(P̂ ) =

∫ 3

a

3

6− x
× n!

1!(n− 1)!

1

6− a
(
6− x

6− a
)n−1dxfor a < 3,

+

∫ 6

3

1× n!

1!(n− 1)!

1

6− a
(
6− x

6− a
)n−1dx

=
3n

(6− a)n

∫ 3

a

(6− x)n−2dx+
n

(6− a)n

∫ 6

3

(6− x)n−1dx

=
−3n

(n− 1)(6− a)n
(6− x)n−1

∣
∣
3

a
− 1

(6− a)n
(6− x)n

∣
∣
6

3

=
3n

(n− 1)(6− a)n
[(6− a)n−1 − (6− 3)n−1] +

3n

(6− a)n

E((P̂ )2) =

∫ 3

a

(
3

6− x
)2 × n!

1!(n− 1)!

1

6− a
(
6− x

6− a
)n−1dx

+

∫ 6

3

12 × n!

1!(n− 1)!

1

6− a
(
6− x

6− a
)n−1dx

=
32n

(6− a)n

∫ 3

a

(6− x)n−3dx+
n

(6− a)n

∫ 6

3

(6− x)n−1dx

=
−32n

(n− 2)(6− a)n
(6− x)n−2

∣
∣
3

a
− 1

(6− a)n
(6− x)n

∣
∣
6

3

=
32n

(n− 2)(6− a)n
[(6− a)n−2 − (6− 3)n−2] +

3n

(6− a)n

n=100

a=2.05

(A=3*n/((n-1)*(6-a)**n)*( (6-a)**(n-1)- (6-3)**(n-1))+(3/(6-a))**n)

[1] 0.7671653
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(B=3*3*n/((n-2)*(6-a)**n)*( (6-a)**(n-2)- (6-3)**(n-2))+(3/(6-a))**n)

[1] 0.5886027

(s=sqrt(B-A*A))

[1] 0.00774954 => 2σ̂P̂ = 0.015 for the given data.

(4) Compute the MLE estimate of P and SEP̂ based on the above data.

Sol. 0.76± 0.015,

(6-3)/(6-a) [1] 0.7594937

2 ∗ 0.0077 = 0.015

§10.9. Testing hypotheses concerning variances

So far, the tests are about means. For large sample test about µ1 − µ2, we use Z-test statistic

Z =
X − Y − (µ1 − µ2)

σ̂X−Y
=
X − Y − (µ1 − µ2)

√
σ̂2
X

n1
+

σ̂2
Y

n2

=
X − Y − (µ1 − µ2)

√
S2
X

n1
+

S2
Y

n2

as σ2
X ≈ S2

X , σ2
Y ≈ S2

Y and σ2
X−Y ≈ S2

X

n1
+

S2
Y

n2
.

On the otherhand, based on T = X−Y−(µX−µY )

σ̂p

√
1
n1

+ 1
n2

∼ tn1+n2−2,

under the assumption that







1. X1, ..., Xn1

i.i.d.∼ N(µX , σ
2)

2. Y1, ..., Yn2

i.i.d.∼ N(µY , σ
2)

3. Xi ⊥ Yj ∀ i, j
and

σ̂2
p =

(n1−1)S2
X+(n2−1)S2

Y

n1+n2−2 ,

the small sample t-test for comparing two population means is
Case : (1) (2) (3)
Ho : µ1 − µ2 = Do

Ha : µ1 − µ2 < Do µ1 − µ2 > Do µ1 − µ2 6= Do

test statistic T = X−Y−Do

Sp

√
1
n1

+ 1
n2

Reject region T < −tα,n−1 T > tα,n−1 |T | > tα/2,n−1

Conclusion :
An important assumption for the t-test is σX = σY .

Thus one may need to test whether σ2
X = σ2

Y .

This is the first testing problem about σ2.

For this problem, the assumption is that







1. X1, ..., Xn1

i.i.d.∼ N(µ1, σ
2
1)

2. Y1, ..., Yn2

i.i.d.∼ N(µ2, σ
2
2)

3. Xi ⊥ Yj ∀ i, j
Then (n1 − 1)S2

X/σ
2
1 ∼ χ2(n1 − 1),

(n2 − 1)S2
Y /σ

2
2 ∼ χ2(n2 − 1),

F =
χ2(n1)

n1

/
χ2(n2)

n2
∼ Fn1,n2 , (peak of its density at 1). (10.9.1)
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448. [20] Suppose that Z ∼ N(0, 1), X ∼ χ2(u), Y ∼ χ2(v). If Z X, T = , then

T ∼ tu; If X Y , F = , then F ∼ Fu,v and X + Y ∼ .

key: ⊥, Z/
√

X/u, ⊥, X/uY/v , χ
2(u+ v),

Ho : σ2
1 = σ2

2

Ha : σ1 > σ2 σ1 < σ2 σ1 6= σ2
Case : (1) (2) (3)

Test statistic F see Eq.(10.9.1)
RR : F > Fn1,n2,α 1/F > Fn2,n1,α F > Fn1,n2,α/2 or F < Fn1,n2,1−α/2

Conclusion :
Another type of problem is: σ2 = σ2

o ?

Ho : σ2 = σ2
o

Ha : σ > σo σ < σo σ 6= σo
Case : (1) (2) (3)

Test statistic χ2 =
(n1−1)S2

X

σ2
o

RR : χ2 > χ2
α,n1−1 χ2 < χ2

1−α,n1−1 χ2 < χ2
1−α/2,n1−1 or χ

2 > χ2
α/2,n1−1

Ex. 10.16. A company produces machined engine parts that are supposed to have

a diameter variance no larger than 0.0002 (diameter in inches).

A random sample of 10 parts gave a sample variance of 0.0003. Conduct a test at α = 0.05.

Sol. (1) Ho: σ
2 = 0.0002,

(2) Ha: σ
2 6= 0.0002 ? Ha: σ

2 > 0.0002 ? Ha: σ
2 < 0.0002 ?

Key words: no larger than 0.0002, i.e., σ2 ≤ 0.0002. Its opposite: σ2 > 0.0002.

Moreover, 0.0002 < 0.0003 = S2, it is likely σ2 > 0.0002.

(3) Test statistic: χ2 =
(n−1)S2

X

σ2
o

= (10− 1)0.0003/0.0002 = 13.5

(4) RR χ2 > χ2
α,n−1 = χ2

0.05,9 = 16.919

Display χ2 table.

χ2
0.1 χ2

0.05 χ2
0.025 · · · d.f.

...
16.919 9

> qchisq(.05,9) ?

> qchisq(.95,9) ?

[1] 16.91898

(5) Conclusion: Since χ2 = 13.5 < 16.919, do not reject Ho,

no evidence to believe σ2 > 0.0002.

Ex. 10.17. Under previous assumptions, find the P-value.

Sol. P-value = P (RR), where RR= χ2 > 16.919.

> 1-pchisq(13.5,9)

[1] 0.1412558 P-value =0.1412558

Quiz on Friday: 447: 9-44, 448: 1-20.

Ex.10.18. An experimenter was convinced that the variability in his measuring equipment
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results in a standard deviation of 2. 16 measurements yielded s2 = 6.1. Do the data disgree

with his claim ? Determine the P-value for the test. What would you conclude if α = 0.05.

Sol. (1) Ho: σ = 2,

(2) H1: σ 6= 2 ? σ > 2 ? σ < 2 ?

Key words: results in a standard deviation of 2.

(3) Test statistic: χ2 =
(n−1)S2

X

σ2
o

= (16− 1)6.1/22 = 22.875

(4) RR: χ2 < χ2
1−α/2,n−1 or χ2 > χ2

α/2,n−1.

> qchisq(0.025,15) [1] 6.262138

> qchisq(0.975,15) [1] 27.48839

Or get from χ2 table...

(5) Conlusion ?

Do not reject Ho. The variability in the measuring equipment results in an SD of 2.

Remark. The meaning of the critical points:

For χ2 distribution with degree of freedom ν
(
critical pts x =: 0 χ2

1−α,ν ν χ2
α,ν ∞

P (χ2 > x) 1 1− α ↓ 0.5 α 0

)

For F with degrees of freedom n1 and n2(
critical pts x =: 0 Fn1,n2,1−α = 1/Fn2,n1,α 1 Fn1,n2,α ∞

P (F > x) 1 1− α 0.5± ǫ α 0

)

Since F = χ2(u)/u
χ2(v)/v ∼ Fu,v, 1/F = χ2(v)/v

χ2(u)/u ∼ Fv,u,

Ex.10.18(c) Compute the P-value in the example.

χ2(ν) ∼ G( ν2 , 2) with mean ν, the degree of freedom,

> 2*(1-pchisq(22.875,15)) as 22.875 > ν = 15

[1] 0.17366028

The P-value= 0.173

(5) Conclusion: Do not reject Ho even if α = 10% or 15%, let along α = 0.05.

Comments. For the χ2 test with degree of freedom ν and with the test statistic χ2 = y,

the P-value is obtained by the R codes







1− pchisq(y, ν) if H1: σ > σo
pchisq(y, ν) if H1: σ < σo
2 ∗ pchisq(y, ν) if H1: σ 6= σo and y < ν
2 ∗ (1− pchisq(y, ν)) if H1: σ 6= σo and y > ν

(1)

448. [20] Suppose that Z ∼ N(0, 1), X ∼ χ2(u), Y ∼ χ2(v). If Z X, T = , then

T ∼ tu; If X Y , F = , then F ∼ Fu,v and X + Y ∼ .

key: ⊥, Z/
√

X/u, ⊥, X/uY/v , χ
2(u+ v),

Ex. 10.14 (continued) Suppose that 2 sets of independent samples are obtained from

N(µX , σ
2) and N(µY , σ

2), respectively.

32, 37, 35, 28, 41, 44, 35, 31, 34,
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35, 31, 29, 25, 34, 40, 27, 32, 31,

Do the sample data provide sufficient evidence to indicate that there is difference in true SD

for those trained using the two methods at α = 0.05 ? Compute the p-value too.

Ho : σ2
1 = σ2

2

Ha : σ1 > σ2 σ1 < σ2 σ1 6= σ2
Case : (1) (2) (3)

Test statistic F (see Eq.10.9.1)
RR : F > Fn1,n2,α 1/F > Fn2,n1,α F < Fn1,n2,1−α/2 or F > Fn1,n2,α/2

Conclusion :
Sol. n1 = 9 = n2,

X = 35.22, Y = 31.56,

∑n1

i=1(Xi −X)2 = 195.56,

∑n2

i=1(Yi − Y )2 = 160.22.

Ho: σ1 = σ2 v.s.

Ha: σ1 6= σ2 ? Ha: σ1 > σ2 ? Ha: σ1 < σ2 ?

Key words: “difference in true SD”

Test statistic: F = S2
X/S

2
Y = 195.56

160.22 = 1.22

RR: F > F0.025,8,8 or F < F1−0.025,8,8 E(F ) ≈ 1

Which one to find ?

F > F0.025,8,8 ≈ 4.433 or F < F1−0.025,8,8 = 1/4.433 = 0.2256

> qf(0.95,8,8)

[1] 3.438101

> qf(0.975,8,8)

[1] 4.43326

Use F-table ......

Conclusion: Do not reject Ho, there is no evidence to suspect that there is a difference in the

SD’s for those trained using the two methods

Ex. 10.14(c). Compute the P-value in the example.

> pf(1.22,8,8)

[1] 0.6073314

p-value= 2 ∗ (1− 0.607) ≈ 0.8.
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Remark. For test statistic value F = χ2(u)/u
χ2(v)/v = y,

P-value=







pf(y, u, v) if Ha: σ1 < σ2
1− pf(y, u, v) if Ha: σ1 > σ2
2pf(y, u, v)?
2(1− pf(1/y, v, u))?
pf(y, u, v) + (1− pf(1/y, v, u))? if Ha: σ1 6= σ2 and y < 1
2(1− pf(y, u, v))?
2pf(1/y, v, u)
1− pf(y, u, v) + pf(1/y, v, u) if Ha: σ1 6= σ2 and y > 1.

(2)

Ex. 10.19. Suppose that we wish to compare the variation in diameters of parts produced by

the company with that produced by a competitor. Our company results in S2 = 0.0003 with

n = 10, and the competitor yielded s22 = 0.0001 with n = 20. Do the data provide sufficient

information to indicate a smaller variation in diameters for the competitor ? Test with α = 0.05

and compute the P-value.

Sol: Ho: σ1 = σ2 v.s.

Ha: σ1 6= σ2 ? Ha: σ1 > σ2 ? Ha: σ1 < σ2 ?

Key words: a smaller variation in diameters for the competitor

Test statistic: F =
S2
X

S2
Y

= 3

RR: F > F9,19,0.05 = 2.42

Conclusion: Reject Ho, the data provide sufficient information to indicate a smaller variation

in diameters for the competitor.

P-value: use which formulat in Eq. (2) ?

> 1-pf(3,9,19)

[1] 0.02096038 P-value

Remark. Reconsider the problem of testing Ho: µX = µY , we need to check

1. Xi’s and Yi’ are indeed i.i.d.;

2. Xi and Yi are indeed from N(µ, σ2
i );

3. σX = σY ,

due to the assumption:

T = X−Y−(µX−µY )

σ̂p

√
1
n1

+ 1
n2

∼ tn1+n2−2,

under the assumption that







1. X1, ..., Xn1

i.i.d.∼ N(µX , σ
2)

2. Y1, ..., Yn2

i.i.d.∼ N(µY , σ
2)

3. Xi ⊥ Yj ∀ i, j
In the future, we may learn how to check assumptions 1 and 2.
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§10.10. Power of tests and the Neyman-Pearson Lemma.

A test consists of 5 elements:

Ho, say θ = θo or θ ∈ Θo; Θo = ?

Ha, say θ 6= θo, or θ ∈ Θa;

Test statistic;

RR;

Conclusion.

So far, Θo consists of only one element, e.g., θ = θo, or θ = 0 etc.

In such case, Ho is called a simple hypothesis.

In some examples, we have, e.g., Ho: p ≥ 0.5, then Θo is a composite hypothesis.

On the other hand, most of the time, we have Ha: p < 0.5 or µ 6= 0 etc., then Ha is a composite

hypothesis. However there are cases that Ha is a simple hypothesis. Notice that Θa and Θo

are two sets for the two hypotheses.

Def. 10.3. Let W be the test statistic and RR the rejection region. For a test of a hypothesis

involving the value of the parameter θ, the power of the test, denoted by P(θ), is

P(θ) = P (W ∈ RR when the parameter value is θ).

For simple hypotheses, P(θo) = α = P (H1|Ho) and P(θa) = 1− β = 1− P (Ho|H1).

Theorem 10.1. The Neyman-Pearson Lemma. Suppose that we wish to test the simple

hypothesesHo: θ = θo v.s. Ha: θ = θa, based on a random sample Y1, ..., Yn from a distribution

with parameter θ. Let L(θ) =
∏n
i=1 f(Yi; θ). For a given α, the test that maximizes the power

at θo has a RR determined by L(θo)
L(θa)

≤ k, the value k is chosen so that the test has the desired

value of α. Such a test is called the most powerful test (MP test) for Ho versus Ha.

Ex. 10.22. Suppose that the observation is Y ∼ f(y|θ) = θyθ−1, 0 < y < 1.

Find the MP test with α = 0.05 to test Ho: θ = 2 v.s. Ha: θ = 1.

Sol. Is Ho simple hypothesis ?

Is Ha simple hypothesis ?

Test statistic is Y .

RR :
L(θo)

L(θa)
=f(y|θo)/f(y|θa)

=
θoy

θo−1

θayθa−1

=2y ≤ k where y ∈ (0, 1).

RR : Y ≤k/2 = yo.

Need to find k = ? or yo = ?
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α =0.05

=P (H1|Ho)

=P (RR, θ = 2)

=P (Y ≤ yo, θ = 2)

=

∫ yo

0

2y2−1dy f = θyθ−1

=y2
∣
∣
∣
∣

yo

0

=y2o

=> yo =
√
0.05 = 0.2236.

RR: Y ≤ 0.2236.

P(2) = ? Ho: θ = 2

P (H1|Ho) =Probability of type I error = ?

P(1) = P (Y < yo if θ = 1)

=
∫ yo
0

1y1−1dy f = θyθ−1

= yo = 0.2236. v.s. P(2) = 0.22362 = 0.05.

β(1) =probability of type II error

= P (Ho|H1)

= 1− P(1)

= 1− yo = 1− 0.2236 = 0.7764.

Q: What happen if RR is Y >
√
0.95 ?

α2 = P (Y >
√
0.95|θ = 2)

=
∫ 1√

0.95
2y2−1dy

= y2
∣
∣
1√
0.95

= 1− 0.95

= 0.05

P2(1) =
∫ 1√

0.95
y1−1dy

= 1−
√
0.95

= 1− 0.975 = 0.025 = P (Y <
√
0.95 if θ = 1) < P (Y < 0.2236 if θ = 1)

β2(1) =probability of type II error

= 1− P2(1)

= 0.975

> 0.7764

= β(1)
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That is, the test with RR Y ≤ 0.2236 is more powerful than the test with RR Y ≥ 0.975.

Or the test with RR Y ≤ 0.2236 has smaller P (Ho|H1) than the test with RR Y ≥ 0.975.

Q: How about MP test for a composite hypothesis test ?

Ans. N-P Lemma works if RR is the same for each pair of θo and θa, where θo is under Ho

and θa is under Ha.

Ex. 10.23. Suppose that X1, ..., Xn are i.i.d. from N(µ, σ2), where σ2 is known. Find the

uniformly MP test of level α for testing Ho: µ = µo v.s. Ha: µ > µo.

Sol. Let µ > µo.

L(µ) =

n∏

i=1

1√
2πσ2

e−
(xi−µ)2

2σ2

=(
1√
2πσ2

)ne−
∑n

i=1

(xi−µ)2

2σ2

k ≥ L(µo)

L(µ)
=
( 1√

2πσ2
)ne−

∑n

i=1

(xi−µo)2

2σ2

( 1√
2πσ2

)ne−
∑n

i=1

(xi−µ)2

2σ2

=e−
∑n

i=1

(xi−µo)2

2σ2 +
∑n

i=1

(xi−µ)2

2σ2

=e
∑n

i=1

2xi(µo−µ)−µ2
o+µ2

2σ2

lnk ≥
n∑

i=1

2xi(µo − µ)− µ2
o + µ2

2σ2

2σ2lnk ≥
n∑

i=1

(2xi(µo − µ)− µ2
o + µ2)

=2nx(µo − µ)− n(µ2
o − µ2)

x ≥−2σ2lnk − n(µ2
o − µ2)

2n(−µo + µ)

x ≥c
α =P (X ≥ c, µ = µo) = Φ(

c− µo
σ/

√
n
)

Thus the UMP test has a RR X ≥ c, where c−µo

σ/
√
n
= zα, i.e. c = µo + zασ/

√
n.

448 [21] The MP test for Ho: θ = θo v.s. Ha: θ = θa, the MP test has the RR satisfying:
L(θo)
L(θa)

k and Pθ(RR) = α if θ = . key: <, θo,
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Def. For composite hypothesis Ho, the size α of the test is

α = sup
θ∈Ho

Pθ = P (RR|θ ∈ Ho)

The test is a level α1 test if α ≤ α1.

Ex. 10.22(c): Suppose that the observation is Y ∼ f(y|θ) = θyθ−1, 0 < y < 1. Find the size

α = 0.05 MP test for Ho: θ ≥ 2 v.s. Ha: θ < 2.

Sol. There are two types of problem for testing hypothesis.

(1) Data are given, carry out the test by presenting the 5 elements of a test.

(2) Data are not given, present the first 4 elements of a test.

This example belongs to the 2nd case.

The RR is the same as the case Ho: θ = 2 v.s. Ha: θ = 1,

i.e. RR: Y ≤ yo =
√
0.05 = 0.2236.

The proof is as follows. P (H1|Ho) is not uniquely defined in this case. Let Pθ = P (RR|θ), then

Pθ =
∫ yo

0

θyθ−1dy θ > 0

=yθo decreases from 1 to 0, as θ increases from 0 to ∞.

Pθ = yθo ↓10 as θ → ∞ from 0, and Pθ
{

↓0.050 if θ ↑∞2
↑10.05 if θ ↓20

P (H1|θ ∈ Ho) = 0.05θ/2, where θ ≥ 2.

The size of the test is

α =sup
θ≥2

Pθ(RR)

=yθo

∣
∣
∣
∣
θ=2

=y2o

=0.05 => yo =
√
0.05

The level of the test is 0.05 ? or 0.1 ?

P (Ho|θ ∈ H1) = 1− 0.05θ/2, where θ ∈ [0, 2).

Note that it is reasonable that RR is Y < yo, as

E(Y ) =
∫ 1

0
yf(y|θ)dy

=
∫ 1

0
yθyθ−1dy

=
∫ 1

0
θyθdy

= θ
θ+1 .

θ

θ + 1

∣
∣
∣
∣
θ≥2

≥2

3
>

θ

θ + 1

∣
∣
∣
∣
θ<2

. Y ≈ 0 <=> θ ≈ 0

E(Y |Ho) = E(Y |θ ≥ 2) ≥E(Y |θ = 2) > E(Y |θ < 2) = E(Y |H1).
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Remark. Let X ∼ U(−0.5 + p, 0.5 + p). Ho: p = 0, v.s. Ha: p 6= 0. α = 0.05. There is no

UMP test. This can be shown as follows.

Notice that E(X) = 0.5+p+(−0.5+p)
2 = p.

If X = 0 or X is close to 0, we will believe that p = 0, i.e.,

a reasonable test for Ho: p = 0 is the one to reject p = 0 if X is far away from 0.

If we set α = 0.05, then it is φ1 = I(|X| > 0.475) = I(RR1), as

E(φ1|p = 0) =P (|X| > 0.475|p = 0)

=

∫ −0.475

−∞
1dx+

∫ ∞

0.475

1dx?
∫ −0.475

−0.5
1dx+

∫ 0.5

0.475
1dx?

=0.025 + 0.025

=0.05.

Consider another two tests: (φ1 = I(|X| > 0.475) = I(RR1))

2. φ2 = I(X > 0.45) = I(RR2),

3. φ3 = I(X < −0.45) = I(RR3).

The size of the 3 tests are all α = 0.05.

If p = 0.1, the powers







P1(0.1) =? = P (X ∈ RR1 if p = 0.1) = P (X ∈ (0.475, 0.6) = 0.125
P2(0.1) =? = P (X ∈ RR2 if p = 0.1) = P (X ∈ (0.45, 0.6) = 0.15
P3(0.1) =? = P (X ∈ RR3 if p = 0.1) = 0

thus φ2 is more powerful than φ1 and φ3, and φ1 is more powerful than φ3,

If p = −0.1, the powers







P1(−0.1) = P (X ∈ RR1 if p = −0.1) = 0.125
P2(−0.1) = P (X ∈ RR2 if p = −0.1) = 0
P3(−0.1) = P (X ∈ RR3 if p = −0.1) = 0.15

thus φ3 is more powerful than φ1 and φ2, and φ2 is more powerful than φ1,

φ1 is the most reasonable test for Ho v.s. H1 in this example, but no MP test!

Example 3. Suppose X1, ..., Xn are i.i.d. from f(x|θ) = θe−xθ, x > 0. Find the MP test for

testing Ho: θ ≤ 1 with α = 0.1.

Sol. Ho: θ ≤ 1,

H1: θ > 1.

To find the RR, the NP lemma needs to compute L(θ).

L(θ) =

n∏

i=1

θexp(−Xiθ)

= θnexp(−
n∑

i=1

Xiθ)

One may consider the sufficient statistic Y =
∑n
i=1Xi, instead of X1, ..., Xn.

Distribution of Y ?
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1. Moment generating function method.

MY (t) =E(exp(

n∑

i=1

Xit))

=E(

n∏

i=1

exp(Xit))

=(E(exp(X1t)))
n

=(

∫ ∞

0

extθe−θxdx)n

=(

∫ ∞

0

θe−(θ−t)xdx)n

=(
θ

θ − t
)n

Recall Gamma distribution W has mgf

MW (t) =E(eWt)

=

∫ ∞

0

ext
xα−1e−x/β

βαΓ(α)
dx

=

∫ ∞

0

xα−1e−x(1/β−t)

βαΓ(α)
dx

=
1

(1/β − t)αβα

=(
θ

θ − t
)α if θ = 1/β

=

{
θ
θ−t if α = 1

( θ
θ−t )

n if α = n

X1 ∼ G(1, 1/θ). Y =
∑n
i=1Xi ∼ G(n, 1/θ).

2. 447 [44] => G(α, β) +G(α, β) = G(2α, β).

3. Test statistic: Y =
∑n
i=1Xi.

4. RR: L(θ) =
∏n
i=1 θe

−xiθ.

L(θo)

L(θ1)
=
θno t

n−1e−θot

θn1 t
n−1e−θ1t

f(t) = θntn−1e−θt

Γ(n)

=
e(θ1−θo)t

(θ1/θo)n
≤ k θ1 > θo

t ≤ c

RR : Y =
n∑

i=1

Xi ≤ c, where c satisfies

0.05 =

∫ c

0

θntn−1e−θt

Γ(n)
dt =

∫ c

0

tn−1e−t

Γ(n)
dt at θ = 1
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Quiz on Friday: 448 1-22, 447: 1-16.

§10.11. Likelihood Ratio test (LRT)

We shall introduce a test method called the Likelihood Ratio test (LRT). We first define

some notiatons. So far, most of the time, we denote

Ho: θ = θo v.s. H1: θ 6= θo, or H1: θ < θo, or H1: θ > θo.

These can be written as

Ho: θ ∈ Θo v.s. Ha: θ /∈ Θo. where Θo ⊂ Θ.

Ex. 1. (a) Ho: θ = θo, v.s. Ha: θ 6= θo.

=> Θo = {θo} and Θ = R.

(b) Ho: θ = θo, v.s. Ha: θ > θo.

=> Θo = {θo} and Θ = [θo,∞).

448 [22] The Likelihood ratio test for Ho: θ ∈ Θo v.s. Ha: θ /∈ Θo has a RR: {λ k}, where
λ = ; θ̂o is the MLE under ; θ̂ is the MLE under ;

k satisfies max{P (RR) : θ ∈ Θo} = ;

if n is large, then −2lnλ is approximated ;

where v = ; r and ro = # of free parameters in Θ and in Θo, respectively.

key: ≤, L(θ̂o)
L(θ̂)

, Θo, Θ, α, χ2(v), r − ro

Ex. 10.24. Assume that X1, ...., Xn
i.i.d.∼ N(µ, σ2), θ = (µ, σ2), Ho: µ = 0 v.s. Ha: µ 6= 0.

LRT of size 0.05 ?

Sol. Nee to solve λ = L(θ̂o)

L(θ̂)
.

Θo = {(µ, σ2) : µ = 0, σ > 0},
Θ = {(µ, σ2) : µ ∈ R, σ > 0},

Step 1. Under Θo, MLE θ̂o: µ̂o = 0, σ̂2
o = X2 because

L(θ) =
∏n
i=1

1√
2πσ2

e−
(Xi−µ)2

2σ2 .

lnL(θo) = −n
2 ln(2πσ

2)−
∑n

i=1
X2

i

2σ2 .

(lnL)′σ2 = − n
2σ2 +

∑n

i=1
X2

i

2σ4 = 0

=> σ̂2 = X2

Check:
θ : σ2 = 0 σ2 = ∞ σ̂2

o

L(θ) =
∏n
i=1

1√
2πσ2

e−
(Xi)

2

2σ2 : 0 0 > 0

Step 2. Under Θ, MLE θ̂: µ̂ = X, σ̂2 = 1
n

∑n
i=1(Xi −X)2 because

L(θ) =
∏n
i=1

1√
2πσ2

e−
(Xi−µ)2

2σ2 .

lnL = −n
2 ln(2πσ

2)− n
∑

i
(Xi−µ)2

2σ2 .

(lnL)′σ2 = 0 => σ̂2 = 1
n

∑n
i=1(Xi −X)2

(lnL)′µ = 0 => µ̂ = X. a—arbitrary

Check:
θ = (µ, σ) : (a, 0) (a,∞) (X, σ̂2

o) (−∞, a) (∞, a)

L(θ) =
∏n
i=1

1√
2πσ2

e−
(Xi−µ)2

2σ2 : 0 0 > 0 0 0

79



By Steps 1 and 2,

λ =L(θ̂o)/L(θ̂)

=

∏n
i=1

1√
2πσ̂2

o

e
−

X2
i

2σ̂2
o

∏n
i=1

1√
2πσ̂2

e−
(Xi−µ̂)2

2σ̂2

=(
σ̂2

σ̂2
o

)n/2
e−n/2

e−n/2

=(
X2 − (X)2

X2
)n/2

RR: λ ≤ k

<=> (X
2−(X)2

X2
)n/2 ≤ k (< 1)

<=> X2−(X)2

X2
≤ k2 (< 1)

<=> 1− (X)2

X2
≤ k2 (< 1)

<=> (X)2

X2
≥ k2

<=> X2

(X)2
≤ k3

<=> X2

(X)2
− 1 ≤ k4

<=> X2−(X)2

(X)2
≤ k4

<=>
n−1
n (X2−(X)2)

(X)2
≤ k5

<=> (X)2

n−1
n (X2−(X)2)

≥ 1/k5 v.s. (X
2−(X)2

X2
)n/2 ≤ k

<=> |X|
S/

√
n
≥ tα/2,n−1 RR for the LRT test.

Remark. In this example, we have the exact distribution of the LRT, not an approximate

one. Thus no need to use approximated χ2 distribution.

If we do use approximation, then ro = 1 and r = 2. −2ln(X
2−(X)2

X2
)n/2 ≈ χ2(1), but n

should be large.

Ex. 24(c). Assume that X1, ...., Xn
i.i.d.∼ N(µ, σ2), θ = (µ, σ2), Ho: µ = 0 v.s. Ha: µ > 0.

LRT of size 0.05 ?

Sol. Solve λ = L(θ̂o)/L(θ̂) ≤ k.

Θo = {(µ, σ2) : µ = 0, σ > 0},
Θ = {(µ, σ2) : µ ≥ 0, σ > 0},

Under Θo, MLE θ̂o: µ̂o = 0, σ̂2
o = X2 for the same reason as Ex.10.24.

Under Θ,

L(θ) =
n∏

i=1

1√
2πσ2

e−
(Xi−µ)2

2σ2
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lnL =
n

2
ln(2πσ2)−

∑n
i=1(Xi − µ)2

2σ2

(lnL)′µ =
n∑

i=1

(Xi − µ)/σ2 = 0 => µ̂ = X

Check (lnL)′′µ =−
n∑

i=1

1/σ2 < 0 lnL is concave down

=> µ̂ = X ? or µ̂ = X ∨ 0 = max{X, 0} ? Why ?




Cases : 0 ≤ X | X < 0
µ : 0 X ∞ | −∞ X 0 ∞

L(θ) : + < L(X) 0 | ignore ignore > 0 0





(lnL)′σ2 = 0 => σ2 = 1
n

∑n
i=1(Xi − µ)2

=> σ̂2 = 1
n

∑n
i=1(Xi − µ̂)2

Check:

(

σ : σ2 = 0 σ2 = ∞ σ̂2

L(θ) =
∏n
i=1

1√
2πσ2

e−
(Xi−µ)2

2σ2 : 0 0 > 0

)

Thus under Θ, MLE θ̂: µ̂ = X ∨ 0, and σ̂2 = 1
n

∑n
i=1(Xi − (X ∨ 0))2

λ =

∏n
i=1

1√
2πσ̂2

o

e
− (Xi−µ̂o)2

2σ̂2
o

∏n
i=1

1√
2πσ̂2

e−
(Xi−µ̂)2

2σ̂2

µ̂o = 0

=(
σ̂2

σ̂2
o

)n/2
exp(

−
∑n

i=1
x2
i

2
∑n

i=1
x2
i
/n

)

exp(−
∑n

i=1
(xi−µ̂)2

2
∑n

i=1
(xi−µ̂)2/n

)

=
(
∏n
i=1

1√
2πσ̂2

o

)e−n/2

(
∏n
i=1

1√
2πσ̂2

)e−n/2
= (

σ̂2

σ̂2
o

)n/2 (1)

−2lnλ =− 2ln(
σ̂2

σ̂2
o

)n/2 ≈ χ2(r − ro) if n is large. (r, ro) = ??

If n < 20, then we can derive the exact distribution of λ as follows.

σ̂2 = 1
n

∑n
i=1(Xi − (X ∨ 0))2

= 1
n

∑n
i=1[X

2
i − 2(X ∨ 0)Xi + (X ∨ 0)2]

= 1
n

∑n
i=1X

2
i − 2 1

n

∑n
i=1(X ∨ 0)Xi +

1
n

∑n
i=1(X ∨ 0)2

= 1
n

∑n
i=1X

2
i − 2(X ∨ 0)X + (X ∨ 0)2

= 1
n

∑n
i=1X

2
i − 2(X ∨ 0)2 + (X ∨ 0)2

= X2 − (X ∨ 0)2

λ =L(θ̂o)/L(θ̂)
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=(
σ̂2

σ̂2
o

)n/2 by Eq. (1) in last page

=(
X2 − (X ∨ 0)2

X2
)n/2 σ2

o = X2

λ =

{

(X
2−(X∨0)2

X2
)n/2 if X > 0

1 otherwise
≤ k for RR, v.s. λ =

X2 − (X)2

X2
≤ k for H1 : µ 6= 0

Notice that P (λ = 1) = 0.5 = P (λ < 1) under Ho.

RR: λ ≤ k < 1

<=> (X
2−(X∨0)2

X2
)n/2 ≤ k (< 1)

<=> X2−(X∨0)2

X2
≤ k1 (< 1)

<=> 1− (X∨0)2

X2
≤ k1 (< 1)

<=> (X∨0)2

X2
≥ k2 (∈ (0, 1))

<=> X2

(X∨0)2
≤ k3 (∈ (1,∞))

<=> X2

(X∨0)2
− 1 ≤ k4 (∈ (0,∞))

<=> X2−(X∨0)2

(X∨0)2
≤ k4

<=> (X∨0)2

n
n−1 (X

2−(X∨0)2)
≥ k5 (∈ (0,∞))

<=> X∨0
S/

√
n
≥

√
k5 For H1: µ 6= 0, the RR is |X|

S/
√
n
≥ tα/2,n−1.

<=> X∨0
S/

√
n
≥ tα,n−1 ?? or X∨0

S/
√
n
≥ tα/2,n−1 ??

<=> X
S/

√
n
≥ tα,n−1 RR for the LRT test.

Remark. In this example, we also have the exact distribution of the LRT, not an approximate

one. Thus no need to use approximated χ2 distribution.

Ex.10.25. Suppose that an engineer wishes to compare the number of complaints per week

filed by union stewards for two different shifts at a plant. 100 independent observations yield

x = 20 for shift 1 and y = 22 for shift 2. Suppose that the number of complaints per week on

the ith shift has the Poisson distribution with mean θi, for i = 1, 2. Use the LRT method to

test Ho: θ1 = θ2 v.s. H1: θ1 6= θ2 with α ≈ 0.01.

Sol. Under Θ, the MLE of θ1 = x, the MLE of θ2 = y. # of parameters r = ??

Under Ho, the MLE of θ1 = θ2, thus θ̂o = (x+ y)/2. # of parameters ro = ?? The likelihood

L(θ) = L(θ1, θ2) =

100∏

i=1

e−θ1
θxi
1

xi!

100∏

i=1

e−θ2
θyi2
yi!

∝
100∏

i=1

e−θ1θxi
1

100∏

i=1

e−θ2θyi2

=e−100θ1θ

∑100

i=1
xi

1 e−100θ2θ

∑100

i=1
yi

2

82



=e−nθ1θnx1 e−nθ2θny2 n = 100

L(θ̂o) =e
−2nθ̂o θ̂n(x+y)o

=e−
∑

i
(xi+yi)(

∑

i(xi + yi)

2n
)
∑

i
(xi+yi)

L(θ̂) =e−
∑

i
xi(

∑

i xi
n

)nxe−
∑

i
yi(

∑

i yi
n

)ny

λ =
L(θ̂o)

L(θ̂)
=

(

∑

i
(xi+yi)

2n )nx+ny

(

∑

i
xi

n )nx(

∑

i
yi

n )ny
x = 20 & y = 22

=
21100(20+22)

20100(20)22100(22)

−2lnλ =9.53

Ho: θ1 = θ2 v.s.

H1: θ1 6= θ2

Test statistic: −2lnλ.

RR: λ ≤ k,

−2lnλ ≥ χ2
0.1,1 = g, v = r − ro. (ro, r) = ??

g = 6.635.

> qchisq(0.99,1)

[1] 6.634897

> 1-pchisq(9.53,1)

[1] 0.002021401

k = 6.635. −2lnλ = 9.53 > k = 6.635

Conclusion: Do reject Ho. There is a difference in the number of complaints per week filed by

union stewards for two different shifts at a plant.

Remark. In this example, we can only use the approximate distribution of −2lnλ. Also

n = 100.

Quiz on Friday: 448: [1]-[22] all 447

15. Y = g(X). E(g(X)) =

{∑

y yfY (y) dis
∫
yfY (y)dy cts

=







∑

x g(x)fX(x) dis

∫
g(x)fX(x)dx cts

,

16. The mgf of X is M(t) = E(eXt), d
kM(t)
dtk

∣
∣
t=0

= E(Xk)

23. X ∼ G(α, β). f(x) = xα−1e−x/β

Γ(α)βα , if x > 0, µ = αβ, σ2 = αβ2, Γ(α+ 1) = αΓ(α)

24. Exp(λ) = G(1, λ), χ2(ν) = G( ν2 , 2)
40. Let Y1, ..., Yn be a random sample of Y . Y = 1

n

∑n
i=1 Yi, S

2 = S2
Y = 1

n−1

∑n
i=1(Yi − Y )2

1. Estimator of µ is X where X = , Estimator of σ2 is S2,

where S2 = , key:
∑

iXi/n,
1

n−1

∑n
i=1(Xi −X)2.
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17. For a large sample test for Ho: θ = θo, a test statistic is Z = , a RR

is Z if θ > θo; and a RR is if θ 6= θo; key: θ̂−θo
σ̂θ̂

, > zα,

|Z| > zα/2,

18. Sample size for an upper-tail α-level test is n = ( )2 key:
(zα+zβ)σ
µa−µo

,

20. Suppose that Z ∼ N(0, 1), X ∼ χ2(u), Y ∼ χ2(v). If Z X, T = , then

T ∼ tu; If X Y , F = , then F ∼ Fu,v and X + Y ∼ . key: ⊥,

Z/
√

X/u, ⊥, X/uY/v , χ
2(u+ v),

21. The MP test for Ho: θ = θo v.s. Ha: θ = θa, the MP test has the RR satisfying:
L(θo)
L(θa)

k and Pθ(RR) = α if θ = . key: <, θo,

44. If X1 X2.

Xi’s ∼: X1 +X2 ∼:
G(αi, β)
χ2(vi)
Pois(λi)
N(µi, σ

2
i )

bin(ni, p)

key: ⊥,

G(α1 + α2, β)

χ2(v1 + v2)
Pois(λ1 + λ2)

N(µx + µy, σ
2
1 + σ2

2)

bin(n1 + n2, p)
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Chapter 16. Introduction to Bayesian Methods for Inference

16.1. Under the assumption that X1, ..., Xn are i.i.d. from f(x; θ), θ ∈ Θ, where θ is an

unknown parameter, constant (not random),

we have learned 3 methods to estimate unknown parameter, say θ:

unbiased estimator,

MME,

MLE.

In this section, we study a new estimator: Bayes estimator, under

the Bayesian approach:

Conditional on θ, X1, ..., Xn are i.i.d. from f(x|θ),
θ is a random variable with df π(θ),

f(x|θ) is a conditional df of X|θ.
Bayes estimator of θ is θ̂ = E(θ|X).

Recall the formula

fX|Y (x|y) =
f(x, y)

fY (y)
. (1)

Now

f(x, θ) is the joint df of (X, θ),

fX(x) is the marginal df of X,

π(θ) is the marginal df of θ, called prior df now,

f(x|θ) is the conditional df of X|θ,
π(θ|x) is the conditional df of θ|X, called the posterior df now,

fX(x) =

{∫
f(x, θ)dθ if θ is continuous

∑

θ f(x, θ) if θ is discrete.

π(θ) =

{∫
f(x, θ)dx if X is continuous

∑

x f(x, θ) if X is discrete.

f(x|θ) = f(x,θ)
π(θ) by Eq. (1),

π(θ|x) = f(x,θ)
fX(x) by Eq. (1),

E(θ|X = x) =

{∫
θπ(θ|x)dθ if θ is continuous

∑
θπ(θ|x) if θ is discrete.

Homework 16.1.1. Recall the Bayes set-up:

conditional on θ, X1, ..., Xn are i.i.d. from f(x|θ).
Are Xi’s i.i.d. from fX ? Prove or disprove it through the assumption as follows.

f(x|θ) is the density of bin(1, p), and p ∼ U(0, 1).

Remark 16.1. Two ways to compute the Bayes estimator:

1. E(θ|X),

2. E(θ|T (X)) where T is a sufficient statistic.

They lead to the same estimator.

The second method is often simpler in derivation.
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Example 16.1. Let X1, ..., Xn be a random sample from bin(k, θ),

θ ∼ beta(α, β) with π(θ) = θα−1(1−θ)β−1

B(α,β) , θ ∈ [0, 1], where (k, α, β) is known.

Bayes estimator of θ ?

25. X ∼ beta(α, β). f(x) = xα−1(1−x)β−1

B(α,β) , if x ∈ (0, 1), µ = α
α+β , where B(α, β) = Γ(α)Γ(β)

Γ(α+β)

Sol. Recall T (X) =
∑n
i=1Xi is a sufficient statistic if θ is a parameter.

Two ways: (1) E(θ|X) (2) E(θ|T (X)).

Method 1. Based on X.

f(x|θ) =∏n
i=1

(
k
xi

)
θxi(1− θ)k−xi

= (
∏n
i=1

(
k
xi

)
)θ
∑

i
xi(1− θ)nk−

∑

i
xi .

π(θ|x) = f(x, θ)

fX(x)

=
f(x|θ)π(θ)
fX(x)

∝ f(x|θ)π(θ) as fX does not depend on θ

=

n∏

i=1

(
k

xi

)

θ
∑

i
xi(1− θ)nk−

∑

i
xi
θα−1(1− θ)β−1

B(α, β)

∝ θ
∑

i
xi(1− θ)nk−

∑

i
xiθα−1(1− θ)β−1(main trick!!)

= θ
∑

i
xi+α−1(1− θ)kn−

∑

i
xi+β−1 (1)

Thus θ|(X = x) ∼ beta(
∑

i

xi + α, nk −
∑

i

xi + β) (2)

θ|(X = x) ∼ beta(a, b).

Q: What is the meaning of Eq. (2) if n = 0 ?

The Bayes estimator is

θ̂ = E(θ|X)

=
a

a+ b
why?

=

∑

iXi + α

nk + α+ β

=
1

nk + α+ β

nk
∑

iXi

nk
+

1

nk + α+ β
(α+ β)

α

α+ β

=
nk

nk + α+ β

∑

iXi

nk
+

α+ β

nk + α+ β

α

α+ β

= r

∑n
i=1Xi

nk
+ (1− r)

α

α+ β
≈
{
MLE if r ≈ 1 or n ≈ ∞
E(θ) if r ≈ 0 or n = 0,

(3)

a weighted average of the MLE

∑n

i=1
Xi

nk and the prior mean α
α+β .
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Method 2. Based on the sufficient statistic T =
∑

iXi.

T |θ ∼ bin(nk, θ) ? Yes, No, DNK

or T ∼ bin(nk, θ) ? Yes, No, DNK

fT |θ(t|θ) =
(
nk

t

)

θt(1− θ)nk−t,

π(θ|t) = fT,θ(t, θ)

fT (t)

=
fT |θ(t|θ)π(θ)

fT (t)

=

(
nk
t

)
θt(1− θ)nk−tθα−1(1− θ)β−1/B(α, β)

fT (t)

= θt(1− θ)nk−tθα−1(1− θ)β−1

(
nk
t

)

B(α, β)fT (t)

∝ θt+α−1(1− θ)kn−t+β−1 same as (1), why ?

...

Additional HW:

448 [22] The Likelihood ratio test for Ho: θ ∈ Θo v.s. Ha: θ /∈ Θo has a RR: {λ k}, where
λ = ; θ̂o is the MLE under ; θ̂ is the MLE under ;

k satisfies max{P (RR) : θ ∈ Θo} = ;

if n is large, then −2lnλ is approximated ;

where v = ; r and ro = # of free parameters in Θ and in Θo, respectively.

key: ≤, L(θ̂o)
L(θ̂)

, Θo, Θ, α, χ2(v),

24(c).

λ =
L(θ̂o)

L(θ̂)
=

(

∑

i
(xi+yi)

2n )nx+ny

(

∑

i
xi

n )nx(

∑

i
yi

n )ny
x = 20 & y = 22

=
21100(20+22)

20100(20)22100(22)
≤ k =? by 448[22]

−2lnλ ∼χ2(2− 1)

−2lnλ =9.53

Ho: θ1 = θ2 v.s.

H1: θ1 6= θ2

Test statistic: λ or −2lnλ.

RR: λ ≤ k ? Yes, No, DNK

−2lnλ ≤ χ2
0.1,1 ? Yes, No, DNK

−2lnλ ≥ χ2
0.1,1 ? Yes, No, DNK
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Remark 16.2. The tricks ∝ are only applied to typical density functions. It does not apply

non-standard cases as follows.

Example 16.2. Suppose that X|θ ∼ bin(2, θ) and θ has prior π(p) = p, p ∈ {0.2, 0.8}. Find

the Bayes estimator of θ.

Sol. The Bayes estimator is E(θ|X). In particular

θ̂ = E(θ|X = x) =
∑

θ θπ(θ|x)
= 0.2π(0.2|x) + 0.8π(0.8|x), x ∈ {0, 1, 2}

Need to find out π(·|x) (= f(x,θ)
fX(x) ), given

{

f(x|θ) =
(
2
x

)
θx(1− θ)2−x, x ∈ {0, 1, 2}

π(θ) = θ, θ ∈ {0.2, 0.8}

f(x, θ) =

(
2

x

)

θx(1− θ)2−xθ = f(x|θ)π(θ)

=

(
2

x

)

θx+1(1− θ)2−x, x = ?? θ = ??

fX(x) =
∑

θ

f(x, θ)

=f(x, 0.2) + f(x, 0.8)

=

(
2

x

)

0.2x+1(1− 0.2)2−x +

(
2

x

)

0.8x+1(1− 0.8)2−x, x ∈ {0, 1, 2}.

π(θ|x) =f(x, θ)/fX(x)

=

(
2
x

)
θx+1(1− θ)2−x

(
2
x

)
0.2x+10.82−x +

(
2
x

)
0.8x+10.22−x

fX is needed !

=
θx+1(1− θ)2−x

0.2x+10.82−x + 0.8x+10.22−x
, x ∈ {0, 1, 2}, θ ∈ {0.2, 0.8}.

θ̂ =0.2π(0.2|x) + 0.8π(0.8|x)

=0.2 ∗ 0.2x+1(1− 0.2)2−x

0.2x+10.82−x +
(
2
x

)
0.8x+10.22−x

+ 0.8 ∗ 0.8x+1(1− 0.8)2−x

0.2x+10.82−x + 0.8x+10.22−x

=
0.2x+2(0.8)2−x

0.2x+10.82−x + 0.8x+10.22−x
+

0.8x+2(0.2)2−x

0.2x+10.82−x + 0.8x+10.22−x

=







0.22(0.8)2

0.210.82+0.810.22 + (0.8)2(0.2)2

0.210.82+0.810.22 if x = 0
2∗0.23(0.8)1

2∗0.220.81+2∗0.820.21 + 2∗0.83(0.2)1
2∗0.220.81+2∗0.820.21 if x = 1

0.24

0.23+0.83 + 0.84

0.23+0.83 if x = 2

=







2(0.8)(0.2) if x = 0
0.22 + 0.82 if x = 1
0.24+0.84

0.23+0.83 if x = 2

θ̂ = E(θ|X = x) =

{
0.32 if x = 0
0.68 if x = 1
0.192782 if x = 2
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448 [24] Under the Bayes model, conditional on θ, Y1, ..., Yn are i.i.d. with f(y|θ), and
θ ∼ g(θ). The posterior df is g(θ|y) =

∏n

i=1
f(yi|θ)g(θ)
fY (y) , where y = (y1, ..., yn), the Bayes

estimator of h(θ) is ĥ = E(h(θ)|y)),
Example 16.3. Suppose that X1, ..., Xn are a random sample from N(θ, σ2), θ ∼ N(µ, τ2),

where (σ, µ, τ) is known. Bayes estimator of θ ?

Sol. In [24], h(θ) = θ in Ex. 16.3 here. Let X = (X1, .., Xn).

447 [22]. X ∼ N(µ, σ2). f(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 , X−µ
σ ∼ N(0, 1)

Two ways: (1) E(θ|X) and (2) E(θ|T (X)), where T (X) is a sufficient statistic.

Which to choose ?

A sufficient statistic is Y =
∑n
i=1Xi. Y |θ ∼ N(nθ, nσ2).

Another sufficient statistic is T = X. T |θ ∼ N(θ, σ2/n). Which is more convenient ?

E(θ|T = t) =

∫

θ π(θ|t)
︸ ︷︷ ︸

dθ. Method (2)

π(θ|t) = f(t|θ)π(θ)
fT (t)

= ??

∝ f(t|θ)π(θ) (main trick)

∝ exp
(
− 1

2

(t− θ)2

σ2/n

)
exp

(
− 1

2

(θ − µ)2

τ2
)

= exp
(
− 1

2

(t− θ)2

σ2/n
− 1

2

(θ − µ)2

τ2
)

∝ exp
(
− 1

2

−2tθ + θ2

σ2/n
− 1

2

θ2 − 2θµ

τ2
)

= exp
(
− 1

2

θ2

σ2/n
− 1

2

θ2

τ2
+

1

2

2tθ

σ2/n
+

1

2

2θµ

τ2
)

= e−aθ
2+bθ (4)

= exp
(
− 1

2

{
θ2 [

1

σ2/n
+

1

τ2
]

︸ ︷︷ ︸
1

σ2
∗

+(−2θ) [
t

σ2/n
+

µ

τ2
]

︸ ︷︷ ︸
µ∗

σ2
∗

})
∝ e−( θ−µ∗

σ∗
)2/2
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