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14 CHAPTER 1. MATH 450, SYLLABUS

MATH 450, Life Contingency Models I
The course is a preparation for Advanced Long-Term Actuarial Mathematics Exam.
MWEF 2:20 - 3:50 FA 209
No class on 9/2 M. 10/2-4(MF), 10/11(F), 11/27-29(WF).
Class on 10/8 (Tu), 11/26(Tu)
Professor: Qiging Yu giyu@binghamton.edu
Office hours: M 4:05pm-5:05pm in my office WH132; T 7-8pm, through zoom.
https://binghamton.zoom.us/j/82655265947pwd=d3160Gx1cmZ4M3cxZEJwVGd1RGerUT09
Meeting ID: 826 552 6594
Passcode: 031320
Textbook: Arcones’” Manual For SOA Exam MLC (First Volumn).
(Chapters to be covered: 2-6)
It is in my website
http://www2.math.binghamton.edu/p/people/qyu/qyu_personal
Course materials for 450, lecture note 1. It will dispear 9/1!

A pdf file with some tables needed in the homework can be downloaded from my website.
http://www.math.binghamton.edu/qyu/qyu_personal
e.g, the Illustrative Life Table needed in some of the homework problems.

The lecture notes will be posted on my website.

Exams: (closed book) 3 tests + final, Sept. 23 (M), Oct. 21 (M) Nov 25 (M), Final Fri. Dec
13, 12:50 — 02:50 PM FA 209
You can bring a calculator without the function of installing formulas. I will check !!

Quizzes: once a week, on Friday;
this week on Friday, Formulas #1-10 for 447 in page 1 (keys are in my website).

Homework: Due Wednesday in class, late homework will be taken 3 points off (out of 10).
Homework due this Friday: Do the final exam of 447 in my website including Part A !
Grading Policy:

1. 10% hw +10% quiz +45% tests +35% final

2. Correction: If you make correction and hand in with the old exam, the next class after

I return the test in class, you can get 40% of the missing grades back. No partial credit for
correction. Cannot ask me to help you in correction.

3. A— =85 4+ and C = 60 +.
10+10+45%(0.34-0.4*0.7)+35*0.3=56
Student Attendance in Class:

The Bulletin states, “Students are expected to attend all scheduled classes, laboratories
and discussions. Instructors may establish their own attendance criteria for a course. They
may establish both the number of absences permitted to receive credit ....

If you miss a test or quiz, and have a decent reason with a proof, then I will
give the lowest grade of the class.



CHAPTER 2

Survival models

2.1 Survival models.

2.1.1 A short probability review.

Definition 2.1. Given a set 2, a probability IP on € is a function defined on the collection
of all events (subsets) of Q such that

(i) P(0) = 0;
(i) P(Q) = 1;
(iii) If {Ap}o0 | are disjoint events, then P(USC Ap) = > 7 | P(4,).

Q) is called the sample space.
Definition 2.2. A random variable (r.v.) X is a function from Q into R.

Definition 2.3. The cumulative distribution function (cdf) of the r.v. X is
Fx(z)=P{X <z}, z e R.

If X is the age at the death (or failure) of a life, then X > 0.

Theorem 2.1. Fx is a cdf iff
(i) Fx T, i.e., for each v1 < xa, Fx(z1) < Fx(x3).
(it) Fx is right continuous (cts) (lfﬁlol Fx(x+h)=Fx(z)V x)
(or F(z+) = F(z) V z).
(iii)
xT

For the c.d.f. of an age—at—failure, we only need to define it for x > 0 Why ??

lim Fy(x)=0 and lim Fy(x)=1.
——00 T—00

Theorem 2.2.

Definition 2.4. A r.v. X is called discrete
if there is a countable set C' C R such that P{X € C'} = 1.

Meaning of countable set C ?
Ans. C is either a finite set or C' = {¢; : i =1,...,00}.

Definition 2.5. The probability mass function (or frequency function) (pmf) of the discrete
r.v. X is the function p : R — R defined by
plx) =P{X =z}, x e R.

If X is a discrete r.v. with pmf p and A C R, then
P{XeA} =3 cJP{X=a}=3% c4p(@)

Theorem 2.3. p(z) >0V z and ) p(z) = 1.
15
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Definition 2.6. A r.v. X is called cts if there exists a nonnegative function f called the
probability density function (pdf) of X such thatV A C R,
P{X e A} = [, f(x)dz (= fmeAf(x)dx = [I(z € A)f(z)dz), where I(x € A) =1 if x € A.

Theorem 2.4. f(z) >0V z and [ f(z)dz =1 ([ f(z)dx = ffooo f(z)dz).

Q: If arv. X is positive and cts, and z < 0, then fx(z) = 7?
Theorem 2.5.

Definition 2.7. A r.v. X has a mixed distribution if there are functions f(-) and p(-),
and a countable set D such that
Jor each ACR, P{X € A} = [, f(z)dzx+ >, 4npP().

Remark. For convenience, we call both the pmf and pdf the density function (df) hereafter.

A mixed distribution X has two parts: a cts part and a discrete part (together with D).
The function f in the previous definition is the cts part of df and the function p is the discrete
part of df. Note that

[ f@)yde+3 cpple) =1, f(x) >0 and p(z) >0V .
Abusing notations, we may use f(z) rather than f(z) and p(x).
For the mixed distribution, one can let f(z) = p(x) if x € D, then

]P){XGA}—IA d$+ZmGAﬁDf(>

f f dl’ + ZxGD f ) -
Why ?
if A={0,1,2} then [, zdx =

/ xdx # xdx 777
(0,1) [0,1]

Theorem 2.6. Let X be a r.v. with a mized distribution. Then

p(z) = FX(x) —FX( —) and

f(z) = F5 () if F5 () exists. What to do OW ?

Example 2.1. Examples of F'(z) does not exit ?
Example 2.2.

Example 2.3. G(x) = |z|

Example 2.4.
0 if <0,
o2 ifo<z<1
Example 2.5. Find D, f and p if F(z) = { .2 - ’
p fand p if F(x) ied i< gco,

1 if 2<ux.
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Solution: How to find D ?

F(x) — F(z—) = 0 except, perhaps at {0,1,2} Why ?
p(0) = F(0) = F(0-) = %7— N 1’1
p(1) = F(1) = (1) = 5~ 3 =
p(2)=F(2)-F(2-)=1-1=0.
. %1 if x =0,
One solution: p(z) =94 . D ={0,1,2} or {0,1} 7
g ifz=1
1 .
3 if0<z<l,
flx) =F'(x) = {% $1lcpe? What happens OW ?
Why not 1 <2 <27
Is p a pmf ?
Is fadf?
: if 0 <z <1,
Can we write f(z) = F'(z) = ¢ 3 ifl<z <2, ?
0  otherwise
3 if 0 < <1,
How about f(z) % if 1<z <2, ?
0 ifx<Oorxz>2
: if 0 <z <1,
How about f(z) = ‘%x ifl<z<2 777
0  otherwise
T ifz=0
Iif 1
Another solution: f(z) =< 8 ! D<z< and D = {0,1}.
g ifzrz=1
Eoifl<z<?2
f(z) =7 otherwise.
Example 2.5 (continued). P(0 < X <1) =7
Sol. Two ways:
(1) Pla< X <b) =F(b) — F(a—), Pla < X <b)=F(b) — F(a).
b
(2) Pla< X <b) = [, f@)de+ 3 ocupnp f(@)-

Answer: (1) PO0< X <1)= F(b)—F(a—):%—Oor?’ligl— ?orgli(f—%?

(2) PO<X <1)= fo Tda+ 77

2.1.2 Survival function.

Definition 2.8. The survival function of a r.v. X is Sxy =1 — Fyx.

Sx(z) =P{X >z}, v € R. Sometimes denote Sx(z) by s(z).
Most of time, we only consider Sx of an age-at-death X. Then P(X > 0) = 1,
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Sx(—1)=7?
In this course we often suppress the phrase “Sx(t) =1 for ¢t < 0”
and only define Sx on [0, c0).

Theorem 2.7. A function Sx : (—o00,00) — R is the survival function of a positive r.v. X

(1) Sx(x) ? Fx(z) 1,
. (2) Sx is 77 _ . Fx is right cts,
@ 3) 5x(0) = 77 Exisacdfdf § o Fy(e) =0,
(4) lim Sx(z) =77 lim Fx(z)=1.
T—00 T—00

Example 2.6. Determine which of the following functions is a survival function of a non-
negative r.v.:

(i) s(x) = x+2, for z > 0.

(ii) s(z) = (1 —Qx) % for x > 0.
(iii) s(z) = s , for z > 0.
(iv) s
(

2
iv) s(z) = (1+) 7 for z > 0.
1-— 10000 for 0 <z < 90,
0 for z > 90.

Solution: (i) s is a survival function why ?7

(1) (5%) =2((z+2)71) = =2(x+2)"2 <0 on [0,00) =>?

(2) %H is continuos except at x = —2 => 7 +2 is continuos on [0, 00) => 7
(3) s(0) =7
(4) s(00) =7
(ii) s(x) = (1 — x)e™? is not a survival function because
(1) 5(2) = —e2 < 0 = s(c0) => s(t) is not |. Can we say s(t) instead of s(z) ?
or (1) s'(x)=—e " —(1—x)e®=e%(—2+2)>0if z > 3; => s(x) is not |.

S =
Do we need to point out both 7
1+

(iii) s(z) = —5** is not a survival function because

(4) limy o 2222 = 1 20
(iv) sis a survival functlon (why ?)
(v) s is a survival function (why ?)

Example 2.7. Find the density function for the following survival functions:
(1) s(x) = (1 +x)e™™, for x > 0.
1 for 0 <z < 90,

1'2
i) s(x) = ~ 10,000
(i6) 5(x) {O for 90 < z.

(iii) s(x) = I(x < 1) + 22U 5 <8,
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o eoQf :
Solution: The df is f(@) ==5'(x) i 5 (x) exlsts Why ?
p(x) = S(z—) — S(x) otherwise.

(i) fx(z) =xe ", for z > 0.

2z
T for 0 <z <90

ii) The df is f(z) = { 10:000 ith D = {90}.

( ) f( ) {1_8110(210 =90 w { }
—2(2(3)12) if 7 € (1,8)

(iii) s(x) =I(x < 1) + 2{3’31), x <8, then fx(z)=4¢1-— 1_%_2 ifr=1 ,Done?
0.2 ifx =38

with D = {1,8}.

Does it matter to write f(z) v.s. fx(x) ?

Does it matter to write f(x) v.s. f(t) ?

Example 2.8. Let the survival function of a person be Sx(x) = Q%Bm, for 0 < x <90.

(i) Find the probability that a person dies before reaching 20 years old.
(i1) Find the probability that a person lives more than 60 years.
(111) Find the probability that a 20-year-old lives more than 60 years.

Solution: P(a < X <b) = F(b) — F(a) = S(a) = S(®) = [} f()dz + e pryasy [ ().

(i) P{X <20} =1 - Sx(20—) =1 220 =2

(ii) P{X > 60} = Sx(60) = L0 = 1.

(i) P{X > 60|X = 20} or P{X > 60|X > 20} ?

= P(A|B) = P(AN B)/P(B) = pix2s) = oo = &

2.1.3 Expectation.
Definition 2.9. If X is discrete r.v. then E[X] =" xpx(x) (if the series converges).
Definition 2.10. If X is cts r.v. then E[X] = [xfx(z)dz (if the integral exists).

Definition 2.11. If X s a mized r.v. then
EX]=>, zpx(z)+ facfX(:U) dx (if the series and the integral are finite).

E[X] is called the expectation of the r.v. X, or the expected value, or the mean.
Definition 2.12.

Given ar.v. X and a function g : R — R, Y = ¢g(X) is another r.v., i.e. by composing the
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functions X : Q@ —» R and g : R — R, we get the r.v. g(X) : Q2 — R. Examples of g(X) ?

> 9(@)px (x) if X is discrete
J 9(x) fx(x)dx if X is cts
Formula: E(Y) = E(g(X)) =4 >, 9(x)px(x)+ fg if X is mixed (1)
(D rep 9(z) fx(z) + fg‘ if X is mixed)
’Z py (x) if Y is discrete
) [ zfy(z)dz if Y is cts 2)
ooy () + [ xfy(z)ds if Y is mixed
O sep rfy(z) + [ zfy(x)dz if Y is mixed)

Q: What is the difference between (1) and (2) ? between black and red ?
Ans. (1) g(z) vs z; (2) fx vs fy. Can we say f(x) vs f(y) instead 7
Are the D the same in (1) and (2) ?
0 for px or fx
{1}  for py or fy.

Often, to find expectations, instead of the density we will use the survival function. We
will often use the following theorem:

Let X ~U(0,2) and Y = X A1l (= min{X,1}). Then D = {

Theorem 2.8. Let (1) X be a nonnegative r.v. with survival function s;

(2) h: [ ) [O o0) be a function which is integrable in bounded intervals;
(5)H (x fo t)dt, © > 0
Then, E f()

4 fox h(t)dt = h(x) if ... 7277 In some sense Theorem 2.8 says

E[H(X)] = [,° s(t)H'(t)dt, where H' >0 and H(0) = 0.

Actually, Th 2.8 applies to functions H where H’ exists on [0,00) \ D and D is countable.
4 corollaries to be proved later, assuming P(X > 0) = 1, letting X A a = min{X, a}:

where H' >0 and H(0) =0

1. B(X?P) = fo ptP~1Sx (t)dt, where p > 0. H(z) =aP, (aP) = peP~! and "Ep|x:0 =0
2. B(X) = [, Sx(t)dt. p=1. H(zr) =z, (v)=1landz'| _ =0
3. B(X?) = [ 2tSx(t)dt. p=2. H(z) =a?, (2% = 22! and 2*| _ =0
4. E(X Na) = foa Sx (t)dt, where a > 0. H(z)=xANa, (xAa) =? and (2’ Nd') =777

(xAa) =2" Nd??

P :
(A a)f x/ %fxe((),a) _J1 %fxe(O,a) and (/A d') = 0,
a if z € (a,00) 0 ifz € (a,00),

Proof of Th 2.8. E[H(X)] = [;* s(t)H'(t) dt.
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Recall Y ~ bin(n,p) => E(Y)= 77 Y ~bin(1,p) => E(Y)= 77

= E | [ h(t) dt]

=E| f0°° > t)h(t) dt] I(X >t) ~?77
= JsT E[I(X > t)]h(t) dt

=I5 P X>t Yh(t)dt Why?

= fo t)dt. o

Example 2.9. Let Sx(z) =s(x) =e ¥ (x+1),2>0. (a) E(X)=? (b)) E(X N10) = ¢

Solution: (a) Compute E(X) (= E(H(X))). 3 approaches for E(H (X)) for a cts r.v. H(X):

fH(x)fX method (1)
fo s(z)h(x) method (ii)

/ ny(X)(y)dy method (i) @ =7 h="7 H(@=z= [l (1)

A g

(| =E(Y), Y=??

The 2nd needs s(x) and h(z), the others need fx(x) or fg(x). Which is most convenient ?

How many approaches for F(X) based on Eq. (1) ?  2o0r37
(i) f(z) = fx(x) = —=8'(x) = —e *(—=1)(x + 1) — e (1) = e %, is it done ?

E[X] :ffo(x)dx:fOOO$26_”dx:2f e dr=2.
why do it 7
il et —t et 0 21t
(i) BIX] = [, s(t)dt = [;" e t(t+1)dt = [~ te™ di+ [~ et dt = T #ti=2

(b) Compute E(X A10) (= B(H(X)), Hz) =7 h=7  2A10= fO (t € (0,10))dt

Three approaches for E(H (X)) for a discontinuous H(X):

(fH(x)fX method (1)
fo s(z)h(x) method (ii)
E(H(X)) = /?JfH(X) y)dy + nyH(X)(y) method (iii) (2)
yeD
\ —E(Y), Y=17

How many approaches for E(X A 10) based on Eq. (2) 7 h(z) =7 frx)="7 fx(z) =7

fx(z) if z € (0,10)

210) if o=10 with D = {10}.

W) = Iz € (0,10)),  frn(@) = {
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00 10
(77) E[min(X,10)] :/ s(t)h(t) dt = / e tt+1)dt can we use G(«, 3) trick ?
0 0
10 b
= — / (t+1)de”? integration by parts fa udv = ..
0

10
= —[(t+ 1)e*f|(1)O —/O e td(t+1)]

=10~ 14t =2 - 1267

/OO
0
0
0

J
J

(i) E[min(X,10)]

(t A10)£(t) dt

tf(t)dt + /OO 10f(t)dt
1

0

o0
te ttdt + / 10e~tdt =
1

10
10

0
10

teD

10
- / te tdt +10e 10 = ...
0

Announcement:
1. Quiz on Friday: 447 6-22, 44. and 1-2 in 450. (See page 1, 2, 3.)

Corollary 2.1. Let X be a nonnegative r.v. with survival function s. Let o > 0. Then,
Ele=%X] fo SeOts(t) dt.

Proof. Q: Can we try E[e %] = fooo(e*&)’s(t) dt (by E(H(X)) = fooo s(t)H'(t)dt) 77
H'(z) = (e7%%) = =g <0 !
We shall show E[1 — e 9X] = fooo SeOs(t) dt Why ??
Let H(t) =1 — e 0 then (1) H(0) =0 and (2) h(t) = H'(t) = de*" > 0. By Th 2.8,
E[l - —5X] = [y h(t)s(t)dt = [ 6e%s(t) dt.
=> Ele 9] fo 6@“” (t)dt. o

The special case of Th. 2.8 for discrete X (E(H(X)) = fooo s(t)H'(t)dt):

Theorem 2.9. Let X be a discrete r.v. whose possz’ble values are non — negative integers.
Let h : [0,00) — [0,00) be a function. Let H(x fO t)dt, x > 0. Then,

E[H(X)] =320 P{X = k}(H (k) — H(k - 1)).
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Corollaries:

(2.1) ZIP’{X > kMk ZIP’{X > k) by Th 2.9, s(t) = P(X > t)

=2 e 8(k)?? or =377 s(k—)?? or =377 s(k)??
If X ~ bin(1,p), then E(X)
E(X)= [, s(t)ydt="? (():pl(tG[O,l)),tZO).
E(X)=> 1 1]P’{sz:}:?

If X ~ U(0,1), then E(X) = [["s(t)dt ? BE(X) =3 | P{X >k} = P(X > 1) 7?7
(2.2) E[X?% = iIP’{X > kYK — (k—1)%) = iIP’{X > k}(2k — 1),
k=1 k=1

(2.3) E[min(X, n)] ZP{X>k}k/\n—( —1) Z]P’{X>k} n>1.

o0
Proof of Th 2.9. EF[H(X)] = / s(t)h(t) dt (by Theorem 2.8 in page 20)
0

00 k
:kz::/“ s(t)h(t) dt

:i/k P{X > k}h(t)dt  (s(t) =P{X >t} =P{X >k}, for k—1<t<k)
k-1

(s(k) = P(X > k) 77 s(k—) = P(X > k) 77?)
[ee) k T
— P ) =
;_:1 (X >k} /k_1 h(t) dt H(x) O h(t)dt
=§:P{X > k}(H(k) — H(k = 1))
k=1

Example 2.10. Find E[X] and E[X?] if

k o 1 2
P{X=k}[02 05 05

Solution: (a) E(X): H(x) = z; (b) B(X?): H(z) = 2°.
Which two are convement approaches among 4 below ?
(i) using that EF[H Zk o H(k)P{X = k}.

(a) E(X) = Z wfx( )=

(b) B(X?) =32, 2% fx(2) =
(i) using (2.1) E[X] = o | P{X >k},
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(2.2) B Zk  PAX > k(2R = 1).

(iii) E(H(X)) = fo H’ )s(x)dx.

(a) BE(X) = f s(z)dz= ...

(b) B(X?) = fo 2xs(x)dx= ...
(iv) E(H(X)) = >, 2 fu(x)(@).

(a) B(X) =3, xfx(x)= ..

(b) B(X?) =3, afxz(x )=
Answer to the question above: The first 2.

(i) E[X] = (0)(0.2) + (1)(0.3) + (2)(0.5) = 1.3

E[X? = (0)%(0.2) + (1)2(0.3) + (2)%(0.5) = 2.3.
(ii) We have that P{X > 1} = 0.8, P{X > 2} = 0.5, and P{X > k} = 0, for each k > 3.

—>  B[X]=P{X > 1} +P{X > 2} by (2.1)
~0.8+05=13
E[X?) =P{X > 1}((2)(1) — 1) + P{X > 2}((2)(2) - 1) by (2.2)

=0.84+0.5(3) = 2.3.
Skip the next page.

Corollary 2.2. Let X be a nonnegative r.v. and a > 0. Then, Emin(X,a)] = foa Sx(t)dt
Proof. Let H(t) = min{t,a} for each ¢t > 0.
h(t) = H = I(t € (0,a)) if t € (0,00) \ {a}. H' does not exist at {0,a}. Notice that
r ifr<a
H(z) = min(x,a) = {T s

but not at a and 0.
Check the condition in Th 2.8 directly. For z > 0,

(1) h(x) = I(z € (0, a)) >0 and

. is cts in [0, 00) and ctsly differentiable in (0,a) U (a, o),
a fa<uz

T) = fOT h(t)d f() (t €10,a])dt = mm( D1 gt = min(z, a).
By Theorem 2.8,
E[min(X,a)] = E(H(X)) = [;° h(t)s(t)dt = [[°I(t € (0,a))s(t)dt = [} s(t) dt. m

Corollary 2.3.

Corollary 2.4. Let X be a nonnegative r.v.. Then, E[XP] = fooo Sx (t)ptP~Ldt if p > 0.
Proof. Let H(t) = t?, for each t > 0. Hence, h(t) = H' = ptP~! >0, and H(0) = 0. By
B(X?) =2

Theorem 2.8, E[XP] = fooo s(t)pt?~ ! dt, and {E(X) _9 "

Theorem 2.10.

Theorem 2.11.
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Theorem 2.12.
Theorem 2.13.
Theorem 2.14.
Theorem 2.15.
Theorem 2.16.
Theorem 2.17.
Theorem 2.18.
Theorem 2.19.
Theorem 2.20.
Theorem 2.21.
Theorem 2.22.
Example 2.11.
Example 2.12.

Example 2.13.

2.1.4 Quantiles

Definition 2.13. Given 0 < p < 1, the 100p—th percentile (or p—th quantile) of a r.v.
X is a value &, such that
P{X <&} <p<P{X <&}

Definition 2.14. median = 0.50-th quantile.

Definition 2.15. The first quartile Q1 of a r.v. X is the 25-th percentile of the r.v. X.
The third quartile Q3 of a r.v. X is the T5-th percentile of the r.v. X.
The second quartile Q2 = median.

3 ways to find ¢&,.
1. If X has a cts strictly increasing (11) cdf, then solve F'(§,) = p.
2. Theorem 2.17.

3. Definition. &, = {5 = inf{z : Fx(v) > p} = min{z : Fx(z) > p} ?
or § =& =sup{z: Fx(v—) < p} = max{z : Fx(z) > p} ?
inf{z:x € (0,1)} =0, but min{x : = € (0,1)} does not exist.
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sup{z : z € (0,1)} = 1, but max{z : z € (0,1)} does not exist.
inf{z:z €[0,1]} =0 = min{z : 2 € [0,1]}
sup{z : x € [0,1]} = 1 = max{x : x € [0,1]}
What is the difference between them ?
Theorem 2.17. Let X be a cts r.v. with range (a,b). Let 0 < p < 1.
Let h: (a,b) — (¢,d) be a one-to—one and onto function and Y = h(X).
Let &, be a p-th quantile of X.
A p-th quantile of Y is () = h(&p) if b 1.
A p-th quantile of Y is () = h(&1—p) if A {.
Theorem 2.18. The p-th quantile §, of a normal r.v. with mean p and variance o? is
w4 d (p)o. (n+zp0, X +£1.646, p+1.640, &oos).
Proof. (i) Let Z ~ N(0,1), then X =+ 0Z ~ N(u,c?).
The cdf ® of N(0,1) satisfies ®(¢) 11 in ¢t. So
®~1(p) is p-th quantile of N(0,1) (method 1).
& = h(®"(p)), where h(z) = u+ oz (method 3) (where does h() come from ?) [

Theorem 2.23.
Theorem 2.24.

Example 2.14. Let Z ~ U(0,1), X =2Z +1 and Y = X? + X. Find the 70th percentile
of Z, X andY .

Solution: Use Th2.17: h is 1-1 and onto function and

X = Nh(Z). Let &, be a p-th quantile of Z.

A p-th quantile of X is (, = h(&p) if A 1.

A p-th quantile of X is () = h(&1—p) if b {.

Fz(t) =tV te (0,1). The 70th percentile of Z is 0.7.
Since ¢g(z) = 2z + 1 11 in z, the 70th percentile of X is ¢(0.7) =2 0.7+ 1 = 2.4.
Since h(x) = 22 4 = 11, the 70th percentile ¢ of Y is h(2.4) = (2.4)% + 2.4 = 8.16.

Example 2.15.

Often, we will assume that the individuals do not live more than a certain age. This age w
is called the terminal age or limiting age of the population. So, S(t) = 0, for each t > w.

Example 2.16. Suppose that the age—at—failure r.v. X has density

fx(x) =52k 751(0 < & < k) and the expected age—at—failure is 70 years.
Find the 4 intervals determined by the 3 quartiles and the terminal age.

Solution: Let §, be p-th quantile of the age-at-failure.

p =7 for p=10.25, 0.5, and 0.75.

ﬁp_ 515))

T 5
0o K

13 4 5
P Bx x
p:F(gp):IP’{ngp}:/O 5 =13
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& = kpl/5 = ? k= ? Need to solve k using 70 = E[X].

kop 4 6 |k
S S 5k (70)(6) 1
70 = E[X] = —dr=—5| =— => k= =84. => =84
= /Oxk5 TTER |, 6 5 = 847
84p% lp=1/4 1st quartile 63.66 1st quartile

&p = 84p% = 84p% lp=2/4 2nd quartile = ¢ 73.13  2nd quartile
84p% |p=3/4 3nd quartile 79.30 3nd quartile

The 4 intervals determined by the 3 quartiles and the terminal age are
[0, 63.66], (63.66, 73.13], (73.13, 79.30], (79.30, 84].

Example 2.17.

Definition 2.16.

Definition 2.17.

Definition 2.18.

Definition 2.19.

Definition 2.20.

Example 2.18. Let X be a r.v such P{X = 1} = 3 and P{X =2} =

quartile Q1 and median of X, say m.

Solution. 3 ways to find &, (F(§—) <p < F(§)).
1. If X has a cts strictly increasing cdf, then solve F'(&p) = p.
2. Definition. &, = & = sup{z : Fx(z—) < p},
or § =& =1inf{z: Fx(v) > p}.
3. Theorem 2.17. Relation of the quantiles of g(X) and X.
Does Method 1 work here ?

Does Method 2 work here ?
Does Method 3 work here ?

N[

Find the first

Fla—) (=P{X <a}) | F(z) (=P{X <z}
z € (—o0,1) 0 0
rz=1 0 %
z € (1,2) 3 !
x =2 3 1
x € (2,00) 1 1
 =sup{z: F(z—) <p} | & =inf{z: F( ) > p}

Q1= fik/z; =1 51/4

m = 5T/z =7 £1/2

Q1=1
m: The values of x that satisfy P{X <m} < 3 <P{X <m} ??
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Ans: m € [1,2].
Thus m is a median of X if and only if m € [1,2].

Remark. A quantile may not be unique.

2.2 Actuarial notation for survival analysis.

Def. In Actuary, denote (z) a life that survives to age x
(x) is called a life-age-x or a life aged x.
Let X be the lifetime of the person.
T(x)or Ty (= (X —z)|{X > x}) — the future lifetime of (z).
Notice that T'(z) is a conditional random variable.
tpz = ST, (t) — probability that (z) survives ¢ years.
+qz = P, (t) — probability that (z) dies within ¢ years.
pr = 1pz = P(T(x) > 1).
sltqe = P(s < T(x) < s—+1).
tIQx = tth-
@z = ol1¢e = 1¢z = P(T'(z) < 1).

Q: tPx + tdz = 27
Pet+qe =77

Remark. p, = P(T(x) > t) = P(X — 2 > #|X > z) = ZHZ20 = Sx (0 +1)/Sx(x).
pe = P(T(x) >1) = Sx(z+1)/Sx(z).
Q: How about the other notations 7

slttz =P(s <T(z) <s+t)=P(s< X —x <s+1t|X >x)

Plxz+s<X<z+s+t) Sx(z+s)—Sx(x+s+t)

P(X > x) - S)((SL’) = sPx —s+t Pzx-

qw:P(T(gﬁ)§1)=P(X§x+1]X>g;):%W.

Theorem 2.25. For each t,s > 0, +spr = Dz * sPx+t-

Sx (z+t+ Sx(24t) Sx(zttt
Proof. t+sPx = X,éi(x) . .)S'(;(jx)) g)(:zx-kt)S) = tPz * sPx+t
-1
Theorem 2.26. ,p, = PuPoril.. . Prin_1 = H?:o Patj-
Foreachty, ... .ty 20, ty4tt Do = 1. * taPa+ts * tsPattr+ts " b Dattrbotton -

Q: Relation between Theorems 2.25 and 2.26 77
Def. X ~Y means X and Y have the same distribution.
Question. Let X ~ N(0,1),then X = —-X 7 or X ~ —-X 77

Theorem 2.27. (T'(z) —t){T(z) >t} ~T(x+1t). (Denoted byU ~W (=T (x+1))).

Proof. It suffices to show either their F’s, or S’s or f’s are the same.
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Use S’s here. Recall that Vy >0, P(T(z) >y) =P(X —x > y|lX >y) = Sg)(:z-;)y);
Sx (z+t+y)
P(T(x)—t) >y P(T(x)>y+t ~ Sx(@)
Su(y) = P((T(z) —t) > y|T(z) > t) = ((P((T()x >) t) - (P((T()x) > 1) - sx(£+)t>
Sx (x)

= ST — P(T(a +1) > y) = Sw(y).

Example 2.19. Let s(t) = 85 , 0 <t <85, where s = Sx. What distribution is X ?

(i) Calculate ¢pyp.
(ii) Calculate the density function of T'(40).

85—(40+1) 45—t
Solution: (i) jpsg = P(X >t +40]X > 40) = 2170 — i = w = Y5t 7777
t € ]0,45].
tpao =0 if t > 457 a0 =0ift<07?
(ii) The density function of 7°(40) is
d d (45—t 1
t)=—— —— (=) ==, te(0,45).
Jrao(t) = = gpepio = dt( 15 ) 5 L€ 04)

Notice the difference between the domains of Sx () and fx(t).

Example 2.20. Ifp, =1 — ,0<t<90— =z, find the probability that a 25-year—old
reaches age 80 and the density of T( )

Solution: The probability that a 25—year-old reaches age 80 is gop25 or go—25p25 7
55 2

80—25P25 = 55025 = 1 — go=95 = 13-
The density of T'(z) is —(1 — 90t—a,')/.r or —(1— 9o—t_a;)§e X

d 1
fT(x)(t):_atpngo— 0<t<90—2?? or 0 <t<90—z?

Example 2.21.

Example 2.22. Suppose that probability that a 30-year—old reaches age 40 is 0.95, the
probability that a 40-year—old reaches age 50 is 0.99, and the probability that a 50-year—old
reaches age 60 1s 0.95. Find the probability that a 30-year—old reaches age 60.

Solution: 60P30 = ? or 60—30P30 = ?

Given conditions:
40—30P30 = 10p30 = 0.95 — probability that a 30—year—old reaches age 40,
50—40P40 = 1040 = 0.99 — the probability that a 40-year—old reaches age 50,
60—50P50 = 1050 = 0.95 — the probability that a 50—year—old reaches age 60.
Formula: ¢, 1..q¢,, Pz = ;P2 * taPot+ts * tsPattstts  * * Ly Patts+tt,,_,- (Formula 4).
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The probability that a 30-year—old reaches age 60 is
30P30 = 10P30 © 10P40 * 10P50 — (0.95)(0.99)(0.95) = 0.893475.

Definition 2.21.
Example 2.23.
Example 2.24.
Example 2.25.

Theorem 2.28.
Quiz on Friday: 450: 1-5; 447: 10-22, 44

Example 2.26. Suppose that the survival function of a person is given by
Sx(z) = 9%6“:, for 0 < x <90.

Given a married couple with husband aged 40 and wife aged 35,

what s the probability that
the husband will die before age 60 and the wife will survive to age 757

Here, we assume that their times of death are independent r.v.’s.

Solution: y_40q40 X 75-35p35 = 7 Formula #3: ¢p, = Sigi;)t) and ¢q; = 8(x);(§)917+t_)
Why??
) S(40) — s(60) 909—040 B 90&)60 20 2
60—40440 = 20440 = 5(40) = % 50 5

s(75) BB 15

75—35P35 = 8(35) — 90—35 % - ﬁ

90
A 7 qa0 X7 = =X —3 = —
nswer . _ — p .
60—40440 5—35 M35 5 11 55

Example 2.27.

Example 2.28. Suppose that s(t) = %, 0 <t < 85, find the probability that a 40-year—
old will die in less than one year

Solution: g49 =7
s( () —s(z+t)

Formula: (¢, =1 —¢p, and ¢p, = f(—;r)t) or #3 gy = ° s(x)
85—41
s(41) 1 55 1

qo=1- -5 =1- 05 = —.
5(40) 510 ~ 15

Example 2.29. Suppose that:
(i) The probability that a 30-year—old will die in less than one year is 0.012
(i) The probability that a 31-year—old will die in less than one year is 0.013
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(iii) The probability that a 32-year—old will die in less than one year is 0.014.
Find the probability that a 30-year—old will die in less than three years.

Solution: 3g39 = 7
Given conditions: (i) g30, (i) g31, (iii) ¢32. thus know: p, =1 —1qy, t =7
Formula #4: ¢, 4.1, D0 = 1.0 * t2Pa+t1 * tsPottr+ts """ b Prttrotto -

3p30 = p3opsips2 = (1 — 0.012)(1 — 0.013)(1 — 0.014) ~ 0.9615.

3q30 = 1 —3p30 =~ 1 — 0.9615 = 0.038.

Theorem 2.29. s|th = sPx = s+tPzx = s+tdx — sdz = sPz " tdz+s- Formula #3.
Proof. We have that

sltqe =P{s < T(z) < s+ 1t} Pla<Y <)
=57(2)(8) = S7(2) (8 + 1) = sPx — s+tPa, Sy (a) — Sy (b)
=P (s +1) = Fr)(s) = s+t@e — sz, Fy (b) — Fy(a)

sPz * tquts =sPx (1 = tDuts) = sPx — sDa * tDats
=Dz — s+tDx = s|tQa- last one

Example 2.30. Let Sx(x) = (9%6””)2, z € (0,90).

(i) Find s|tqz, where 0 < x,s,t and x + s+t < 90.
(ii) Find the probability that a 30-year—old dies between ages 55 and 60.
Solution: (1) s’th =7 (ii) 55,30|5Q30 =7

sltge =Pz +s< X <z+s+t)|X >x) Pla<X <b)=F(0b)— F(a) = S(a) — S(b) which ?
(90—(3:—|—s) )2 (90—(:E+s—|—t) )2

(9(2%)2 — (g(zgm)z ( Recall a® — b*> = (a + b)(a — b))
= (180322 —2s - )t done ?
(90 — x)?

x,s,t>0and s+1t+ 2z <90.

i — _ (180-2(30)=2(25)=5)5 _ 65x5 __ 13
(i) 55-30/60—55930 = 25/5¢30 = (90-30)2 =% = 15z ~ 0.09.

Theorem 2.30. For x > 0, and each positive integer n,

n n

ndx = Zj—1|(h = Zj—lpx%c—kj—l-
j=1 j=1
Proof. ,,g, = P{T(z) <n} = Z?:l P{j—1<T(x)<j}= Z?Zl j—11qz
= 2?21 j—1Pxqz+j—1- u

Theorem 2.31. Z]O-ilj_1|q1; = Z;ioj—lpx%c—i-j—l =1
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Theorem 2.32. Hsluqx = Pz - s|uq:r+t-

Theorem 2.33. n—|—m|%€ = npPx * m|%:+w

Whenn =1and m =35 —1 2> 0, we get that
ilgr = P - j-1lgrsr,

Example 2.31.

Definition 2.22.

Definition 2.23.

Example 2.32.

Example 2.33.

Example 2.34.

Definition 2.24.

Example 2.35.

Example 2.36.

2.3 Force of mortality

Definition. The hazard function of the survival function Sx (z) or the force of mortality
(denoted by pux(x), p(z), py and Ax(x)), is defined as

where fx is the pdf or pmf of the r.v. X.
Denote jua(t) = pr (t) (# px (t) as T = X — 2|(X > 2)).
pa = po(x) = pz(0) (# () = pr, ().
Theorem 2.28. If X > 0 is cts and has the force of mortality u(+), then,
(i) —LISx(t) = g’;—((t)):u()andSX —eXp( f() ),tz().
(i) fx(t) = Sx(Ou(t) = exp (= fy u(s)ds ) u(t). ¢ > 0.
(iil) S7(e)(t) = tpx = exp (— fO () ds> ,t>0.
(w) (t = p(z +1)
(v Pafie(t) = ex fo (z + s)ds)u(z +t),t > 0.

¢
Proof. (1), (i), (iii) and (v ) are obvious from the definition.
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(iv) The survival function of T'(x) is Sp(y(t) = SX(JEH), t>0.,

Sx(x)
d d Sx(x T
palt) = =2 ISy (1) = —2In ( );i(Z)ﬂ) ?;((xj—?) p(x+t)s

Remark. The distribution can be specified by either of F'(-), S(-), f(-) and pu(-) if f exists.
e.g., if X is continuous, then F'(z) yields S(z) yields f(x) yields p(z) yields F(x).

F=>S=1-F

=> f(z )= —5’( )
=> H’ x
/ s
=6
t
=> F(x) = f_xoo u(t) exp(—/ p(y)dy) dt (see (i) of the next theorem),
N 0 7
=5(1)
=10

as ju(x) = £, f(2) = p()S(x) and S(z) = f(x)/p(x).
Hereafter, when we consider the force of mortality, we assume that X is cts.
The force of mortality of a life at time z, > 0, satisfies that u(x) = }iH(l) %, as
—
x)—s(z+t
sl sl s(x +t) — s(x) s'(z)  f(x)

s(x) .
9.4) lim%® — im0 _ S _ fl=) _ |
(24) t1—>0 t — 20 t £50 ts(x) s(x)  s(x) ple), >0

If ¢ is small, the proportion of people aged x who will die within ¢ years is W =ty

For example, if u(x) = 0. 06 and ¢ is 1/12 (a month), we expect that from each 1,000 individuals
with age x, tu(2)10% = Y2 = 5 individuals will die within a month.

The force of mortahty is the rate of death for lives aged x. For a life aged x, the force of
mortality ¢ years later is the force of mortality for a (x 4 t)—year old.

Theorem 2.34. Let i : [0,00] — R be a function which is cts everywhere except at finitely
many points. Then, u is the force of mortality of an age—at—death T.v.

iff (1) p(x) >0V  and (2) [;° p(t)dt =

Example 2.37. Suppose that the survival function of a new born is
Sx(t) = 8= for 0 < t < 85.

(i) Find the force of mortality of a new born.

(i) Find the force of mortality of a life aged 20.

Solution: (i) pu(t) = —4InSx(t) = —4In (858“54#) = —dn(85* — t4) — In(85%)] = Gila,
0<t<85

3
(i) pa0(t) = (20 + ) = goripmage: 0 <t < ??
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Definition 2.25.

Example 2.38.

Example 2.39. If u(z) = 7 for >0, find Sx, fx, pir@), e and fr()

Solution: Note: Sx, fx, fir(z), tPx and fr(y) are functions, e.g., we can write Sx () or Sx ().
Do we write jir(y) (@), firga(t). s (x) or jis(t) ?

s(x) =exp (—/0 p(t )dt> = exp(— / ——dt) =exp(—In(1+1z)) = ! x>0,

t+1 r+1
asf ~du =Ilnu + ¢, u=77? Sx(z) =77
1
fx (@) =p(z)s(z—) = aroz 20 (n(x) = f(x)/s(x=))
1
t 1
tpx:s(er ) _ THIT _ t+1l s
s(x) Pm) r+t+1
r+1 1 ozt

t) = t) = t) = = t>
Jr@)(8) =wepta(t) = papv +1) = Tmmmg Tmm (r+t+1)2  ~

2.4 Expectation of life

Definition 2.26. ¢, = E[T(z)] is called the expected future lifetime at age = or
the complete expectation of a life at age x.

20 15 also called the complete expectation of life at birth.

Definition 2.27. The n—year temporary complete life expectancy is gmtﬁl = E(T(z)An),

the expected number of years lived between ages x and x+n by a survivor aged x. 0 < g:c:ﬁl <n.

Example 2.40. An actuary models the lifetime in years of a random selected person as a
r.v. X with Sx(z) = 906 , for O < x < 90. Find:

(i) eo and Var(X); (i1) €30; (111) 630:ﬁ|. E(X), V(X), E(X|X >=x), E(T(X) A10)

Solution: Formulae: ¢y = E(X) and Var(X) = E[X2] — (E[X])2.
Two ways for taking expectation.
(1) €x = J5° ipadt, where 1p, = 250 (1) = popia (1)
. fooo i) (t)dt if Xiscts  ( fre)(t) = tpapa(t)), f=5
(2) ez = Do tfre)(t) if X is discrete,
I @ @ dt+ 3 e p tfre)(t)  if X is mixed.
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Which way is more convenient here, (1) or (2) ?

o 9 o o0 %0 906 — 1’6 LL’7 %0
(i) eo and o%. Method 1: ey = /o Sx(z)dx = /o de =[x — W] ) = 77.142857,
00 90 6 6 8 90
90° — x T
E[X?] = 2xSx (x)dx = 2 —dr = [2> — ——] | =6075
d d 906 — 2% 627
Method 2 needs fT(O)(x) = fX(I‘) = —ESX(Z‘) = _%W = W,O < x < 90.

90

o > W 6y 627
= dr = ——dr = ——— | ~ 77.142857
€0 /0 zfx(x)dx /0 508 9% (700" |, :

00 90 5 8

6x 6x
E[X2]=/ fczfx(x)dfr:/ 2P dr = ———
0 0 906 (8)906

0% =E[X? — (E[X])? = 6075 — (77.143)% ~ 1123.980.

90

= 6075,
0

(i) Method 1 for &30: Sy(s0(t) = rpgo = BT — SBOT 4 < 4 < 27 (Check Sy)

5x(30) — (90)°—(30)°
. > 0906 — (30440 905 — (30 +)7/7|™
€30 :/ P30 dt = / 5 5 dt = 5 G =47.21.
0 0 905 — (30) 906 — (30) 0
o 6(30+t)° 5
(i) Method 2 for e50: frao)(t) = —hpao = L = ot = oy 0 <t <77,
90
) 60 5
o 6(30 +¢ 6 .6
€30 :\/0v th(go) (t) dt = A tw dt (SX(Z') = 9090633 s for0<x< 90)
90 655
:/ (s — 30)m ds  (change of variables s = 30 +¢), Why change 77
30
657 30)s6 |
~[7)(005 — (30)%)  (90)6 — 3oy5 |, 2t
(7)(90° = (30)°)  (90)° = (30)° |5,

(iii) The two methods for gw:ﬁl are stated as follows.

Theorem 2.35. (1) ¢ = [0 tP2dt; (2) pm = [o tfr(ay(t) dt +n - npa.

X < o< 0, 50

10 10 506 6
° 90° — (30 + t)

10

= 9.975520756.
0

Method 1. p3p =

(909 (30 +1)7
906 — 306 (7)(906 — 306)
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t if ¢ 0
Method 2. Y = T'(z) An has a mixed distribution with df. fy () = Jr@)(?) 1 €(O0n)
nPz lftED:{n}.
o 10, 6(30+¢)°
€30:10| = Jo tﬁ dt +1010p30 =+ .
Theorem 2.36. For 0 < m < n, éﬁm = Emm + mpxgx+m;m
Letting n — co=> gm = gx:m + mpxngrm.
Example 2.41. You are given that:
The expected # of years lived between ages 40 € 50 by a 40-year old is 9.7. ‘0340:T0|
The probability that a 40-year old survives to age 50 is 0.98. 10P40
The expected # of years lived between ages 50 € 70 by a 50-year old is 19.5. 250:%|

Find the expected # of years lived between ages 40 and 70 by a 40-year old. 24O;%|
Solution: Given (i) €,01g =7 (i) 10pa0 =7 (iii) €505 =7 Find 035 =7 #6
€40:30| = Ca010) + 10P40€50.90 = 9.7+ (0.98)(19.5) = 28.81.

Example 2.42. Assume that
(i) The expected future lifetime of a 40-year old is 45 years.
(ii) The expected future lifetime of a 50-year old is 36 years.

(111) The probability that a 40-year old survives to age 50 is 0.98.
The expected number of years lived between ages 40 and 50 by a 40-year old ?

Solution: Given: 240 = 45; 250 = 36; 50_40p40 = 0.98. 24():@:?

[e] [¢]

Formula 6: €o = Coim| + mPaCaim,  => Cy0.q5 = 45 — (0.98)(36) = 9.72.

-~~~

45=¢ 40,75, +(0.98)(36)

T+n
Definition 2.28. ,m, = f1fz+ixéj3&);gidt (= f;+n fﬂfg—%ux(t) dt) is called

the central death rate or the central rate of failure over the age interval x and x + n.

nMmy is the weighted average of the force mortality on the interval [z, x + n] using the survival
_ Sx() _ _ @)
T Sx O Denote m, = 1m,. Recall pu(z) = and

s(z—)
p(x)t is the proportion of people die within ¢ year for people of age = (t ~ 0).

function as a weight i.e.,

Example 2.43.
Example 2.44.

Theorem 2.37. ,m, = 2x@-Sx@tn) _ Jo popra (B dlt g,

[ty di o pedt G
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P L Sxpx®ydt [
roof. ,m, = f”" Sx( )du = T S as Sy (t),uX(t) = fX<t>> (1>
_ LT xmde [y Ix (et ) fO Do () dt
By Eq (1)7 nmx - fz&H—nS ( fo SX( ) — fo e dt
o Sx(@)=Sx(wtn) _ Sx(@)-Sx(rtn) _ US| lewpe e .
e [5F Sx(t) dt Iy Sx (z+u) du M‘qu((iw Iy wp du Coin
X x

Definition 2.29. The median future lifetime of () is m(z) (=median of T'(z)).
P{T(z) < m(z)} < & <P{T(z) < m(z)}.

Definition 2.30. ,a(x) = E(T(z)|T(z) < n), the average future lifetime of those who
survive to age x, but die within the next n years. a(x) = 1a(x).

x + pa(z) is the mean age at death of those who survive to age z, but die in the next n years.

Theorem 2.38. ,a(z) = W-

Formulas:
3. T(x) =Ty = (X —2)|(X > ),

wr = S1(0)(1) = 57 e = Frn(t) = *E555,

sltge = P{s < T(2) < s+1} = spo - tqa+s 5|0 = sl1qes Pz = 1Pz, @z = 14a,
4. minPz = mPz " nPr+m, nPx = PxPx+1 - - - Pz4+n—1;
25:1 n].pas = Pz * noPx+n1 * ngPzx+ni4nz * - nkpm+zzg:11 n;"

5. The force of mortality is #X( ) = w(x) = py = fX(fEE) () (1) = pa(t). If X is cts,

p(z) = —LnSx(v), Sx(x) = exp ( fO ) )(t) = prp(x+1). pa(t) = plz +t).
6. ez = E[T(2)] = epn| + nPuCotns xm = E[T(x) A n] = €x-m| + mPaCo gl

fO tPz dt gac:ﬁ| ’

My = 1My, na(x) = E(T(2)[T(x) <n) = % a(z) = 1a(x).

7. The central rate of failure on (z,z +n} is yms =

Example 2.45. (=FEz.2.40). For the survival function Sx(x) =
Find (1) the median future lifetime of (30), (2) 10ms30, (3) 10a(30).

(906 ,for0<x<90

Solution: (1) Formula: p = F(§,) = S(1—p), as F is continuous and 1 7. We have that

Sx (30 905 — (30 6
0.5 =P{T(30) > &5} = Xéx(;0§0.5) — 9053 _20%0.5)

—> £o5 = (906 — (90° — 30%) + 0.5)/® = 30 ~ 50.19920541.

d tlPxfMx o)
(2) Formulas [7]: ,my ey ff ;z(di L é"?f‘- Try the 2nd  10m30 = 10¢30/€30,15), Where

(a) 10930 = 1 —10p30 = 1 — % ~ 0.006344,
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o

(D) Cam| = egoitn = Jy 1pwdt = [3 255 dt % 9.976 (see Ex. 2.40).

Thus 19mao = %% ~ 000634 ~ 0. 000636
30:10|

(3) Formula [7): wa(x) = B(T(2)|T(x) < n)) = Smere,

€300, — 10~ 10030 9.9755 — (10)(0.9937)

30) = ~
10a(30) 0050 0.00634430727

~ 6.1415.

Example 2.46.

Example 2.47.
Quiz on Friday: 447: 19-22, 44. 450: 1-9.

2.5 Future curtate lifetime.
Definition 2.31. Let K, = [T(x)], where [t] is called the ceiling of t, that is,
(

if —1<t<0,
if 0<t<1,
if 1<t<2,
if 2<t<3,

] =kI(k—1<t<k)="{ (t] = (k= DIk —1<t<k)).

W N = O

Definition 2.32. K(z) = [T(x)] — 1 is the future curtate lifetime of a life aged z.
ey = E[K(x)] is the curtate life expectation of a life aged z.
exm| = E(K(x) An), the expected number of whole years lived in the interval (z,z +n] by ().

0 f0<T(z)<1 1 if0<T(zx) <1
1 fl1<T(x)<2 2 ifl<T(x)<2
K(z) = K, = ' <Tlw) < " # |z] and K, = ' <Tlw) <2,
2 if2<T(x)<3 if2<T(x)<3
Q: Which of e, ¢,, E(K,) is larger ? K(z) (= K, — 1), T(z), Ky (= [T(x)
t—1 ? E(K( ?
Class Exercise Q: fx, (t) = P(K, =t) = T @) ) (z)
fK(x)(t + 1) ? E K l’
Remark. Recall K, = [T(z)] and K(z) = [T(z)] — 1.
What is the meaning of 7'(30) = 0.5 ?
What is the meaning of 7°(30) > 0.5 ?
Q: If T(30) = 0.5, K30 = ? K(30) =

k=2 k—1)—s(a+k
Theorem 2.39. P{K; =k} = p-1ps - dorh1 = (Hj—o Px+3‘) Goho1 = 22 51()36)5(x+ :
=k1lge =P{k—1<T(z) <k} =P{k-1< X—2 <k|X >2} = 1ps—kPr = ke — k-1
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Example 2.48. Suppose pgy = 0.05, pg; = 0.01, pga = 0.001, pg3 = 0 (Sx(94) = ?)
Calculate the probability mass function of Kog.

Solution: Which formula to use in Th 2.39 ?? How about the formulas sheet ?

Th.2.39 P{Kgy =1} = qgo =1 — pgo = (1 — 0.05) = 0.95, sheet
2nd : P{Kgp = 2} = poogo1 = (0.05)(1 — 0.01) = 0.0495, [8]3rd
3rd : P{Kgy = 3} = poopo1go2 = (0.05)(0.01)(1 — 0.001) = 0.0004995, [8]4th

P{Kgo = 4} = P90P91P92493 = (005)(001)(0001)(1 - 0) = 0.0000005,
P{Kgy =k} =0, for k=5,6,7,..., as pg3 = P(X > 94|X >93) =0

Example 2.49. Calculate the probability mass function of Ko for given

poo = 0.2, opgo = 0.1, 3pgp = 0.01, 4pgo = 0.005, 5pgp = 0.

Sol: gpgp = 7 1pgo = 7 P{Kgo = k} = x_19:="7 Which formula in Th 2.39 to use ??

P{Kgp=1}=1—pgo=1—02=0.8,

Tth : P{Kgo = 2} = P90 — 2P90 — 0.2-0.1= 0.1, [8] : K(:L‘) = (T(.I)—I -1
P{Kgo = 3} = apgo — 3poo = 0.1 — 0.01 = 0.09, K, = [T(z)]
P{Kgo = 4} = 3P90 — 4P90 = 0.01 —0.005 = 0.005, P{Kgo = k} = fKI(k> = k_lqu
P{Kg9y =5} = 4pgo — 5p90 = 0.005 — 0 = 0.005,

P{Kgy =k} =0, for k=6,7,..., Why ??

Definition 2.33.

Definition 2.34.

Definition 2.35.

Theorem 2.40.

Theorem 2.41.

Theorem 2.42. e, = E[K(z)] = > 0 1k klde = Y pey kPz and
E[<K<$>>2] - ZZL k2 Kz = ZZL(% —1) - jPpa-

x | 90 91 92 98 Y4
pe || 0.2 0.1 0.05 0.01 0

Example 2.50. Suppose that .ego= ?

Solution: Theorem 2.42: e, = F(K = o1k klaz =D 0~ kpe (formula [9]).
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Formula [4]: pnpz = pe - Detn—1,

€90 Zkago = P90 + P90 - P91 + P90 * P91 - P92 + P90 - P91 - P92 - P93 + - -
k=1
—(0.2) + (0.2)(0.1) 4 (0.2)(0.1)(0.05) + (0.2)(0.1)(0.05)(0.01) 4 0 ~ 0.22.

Example 2.51. Suppose s(t) = 100t

and ey, where x 1s an integer.

Solution: Formulas:
[e} o0
[1] ex = E(T(x)) = [, tpodt,

[3] tPx = SE—'—)t) and

[9] €x = E Zk 1 kPz-
Dy = g;)t) 1?%0%7:7 0<z+t<100.

=u
=Uu

o 100z dt 10072900 — 2 — ¢ u 1002 750~ 7 7 BT —
€Cr = = _— = — _— —xr —
== ), P ; 100 — z ; 100 — «

100—=x

2
. (100—z—1) g l0-e
20100 —2) |, 2
e’ 100—=z 100—=z
100 — z — k
=D = Y o= a 10—z Z 100 =2
k=1 k=1
1 (100—1:)(100—:6—1—1) n+1
100 — 2 —
YT 10—2 2 kz:
100—2z+1 99—
—100 — 2 — T T 10,99] or x € [0,100) or z € {0,1,..., 99} ?

2 2

Theorem 2.43. (Iterative formula for ez ) ez = pr(1 + ex41).

Theorem 2.44. If p, 1 = psx, for each integer k > 1. Then, ey = pg + 2Py + -+ = T—ps -
Remark:
1=p)A+p)=1-p* A=p)A+p+---+p")=1-p" k=123, (1)
-1
Theorem 2.45. e, = > k- klge + 1 npr = D p_y kP

Theorem 2.47. If p, i = p, for each integer k > 0. Then, e, = p?j:l.

Theorem 2.48. ¢,.5 = ps (1 + €x+1:n_1) .
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Theorems 2.44-2.49 above are summarized as formulas as follows.
9] e = BIK(@)] = poll+ eo1) = eqin + nPseasn = Sy ipe K(@)
e = E(K(z) An) = ZZ—l kD -
def S v =l S ok =15 nv+1. [16] yields Th.2.44 and Eq.(1).

I
-
~
~—~
=
=
|
—_

e

Example 2.52. Suppose that e; = 30, p, = 0.97 and py11 = 0.95. ez40 =7
Solution: [9] e, = E[K (2)] = pu(1+ez41) = epm +nPrCotn = gy kPz- Which to use ?

=7 =7
Method 1. =Py (1 +epq1) => €p41 = & — 1 and epq9 = ;””’: — 1. Then
€rtl = 097 -1 N299<3O—em and
Cpro = S — 1 =553 — 12305 >29.9 = epp1.
> e,?
Question: Should e, { Co
< ep?

> (x=30/0.97-1) [1] 29.92784

> x/0.95-1

> x/0.99-1 [1] 29.23014 # if most people survival after 1 year, 29.2 < 29.9.
> x/0.40-1 [1] 73.81959 # if most people died before 1 year, 73.8 > 29.9.
In the other cases, it fluctuates around 29.9.

Method 2. e, = €p:3) T 2P2Cot2 =>

€z 7ez:§| .

2
by [9] e,.9) = D k=1 KDz
by [4], 2Dz = Dz - Pa+1,
€p3) = P + 202 = 0.97 + (0.97)(0.95) = 1.8915.

€z —€,9 30 —1.8915

= = 30.50298426.
e (0.97)(0.95)

Cr42 =

x || 90 91 92 98 94

Example 2.53. Suppose that oo 102 01 0.05 0.0 0

cegoz =7 E(K(2)A2)

Solution: By [9] or Th2.46, €, = > p 1 kpe- D=7
1Pz =7 By [4] ope = 1Pz - 1P241,

€90:2| = P90 + P90P91 = (0.2) 4+ (0.2)(0.1) = 0.22.

Definition 2.36. Let S, = T'(x) — K (x), the period of time lived through the death interval
of an entity aged x.

S, is a r.v. taking values in the interval (0, 1]. Notice that E[S,] = €, — €. E(Sx) =7

2.6 Selected survival models.

A select table is a mortality table for a group of people subject to a special circumstance
(disability, retirement, etc). The variable in common of this group of people is called the
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concomitant variable. The probability of surviving from time z, to time x + ¢ for an entity
selected at time z is ¢pf,). Here, the age at selection is denoted by [z]. The select survival

function is denoted by S(x;t) = tpp). The force of mortality is p4; = —%lnS(x;t). The

expected future life is g[w} = fooo S(z;t)dt. Here,

], S(z;t), tP[a)s B+ are all special notations.

Example 2.54.

2.7 Common analytical survival models

2.7.1 De Moivre model. Ignore this section.

Definition 2.37. The age—at—death X follows De Moivre mortality law with terminal
age w, if the distribution of X ~ U(0,w).

Definition 2.38.
Definition 2.39.
Example 2.55.
Example 2.56.
Example 2.57.
Example 2.58.
Example 2.59.
Example 2.60.
Example 2.61.
Example 2.62.
Theorem 2.49.
Theorem 2.50.
Theorem 2.51.
Theorem 2.52.
Theorem 2.53.

Theorem 2.54.
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Theorem 2.55.
Theorem 2.56.
Theorem 2.57.

Theorem 2.58.

2.7.2 Generalized De Moivre model.

Definition O[2.40. The age—at—death X follows a generalized De Moivre mortality if
s(x) = (1 — %) , for 0 <x <w, where a > 0. Ifa =1, it is U(0,w), called De Moivre law.

Example 2.63. The future lifetime of a new born has survival function s(x) = (1 — %)a,

for 0 < x <w, where a,w > 0. Suppose that 240 =8 and 260 = 4. Calculate o and w.

. . o 8 x =40
Solution: Given e, = fth(m) (t)dt = fooo 1Py dt = {4 = 60’
t _ _t [0 «
tpx:S(x+):(w x a>,0§t§? S<x)_<1_£) 7f0/r- Ogmgw
@) @9 -
=u
o > T (- — 1) —(w—z =)t T 8 =40
€r = tpxdt: dt = = 4 =
0 0 (w—x) (a+1)(w—2)* |, a+1 4 =060
] — o _ w—40 — 40
0T Tl o 2= s (2)(w - 60) = w — 40 => w = 80.
42660: o1 w — 60
Hence, 8 = 82:%0 =>a = —80540 —1=4

2.7.3 Exponential model.

Theorem 2.59. An exponential r.v. X with E(X) =6 >0 (letting p = 1/6) satisfies, for
x>0, f(x) = %e*x/g = pe M s(x) = e @/0 = g=nz h(z) = p, E[X] =6 and Var(X) = 6.

We write X ~ Exp(1/p) or Exp(f) and X has constant force of mortality h(x) = p. The
exponential model is also called the constant force model. By 447, Fzp(a) =T'(1, ). a=?

Theorem 2.60.

Theorem 2.61. (Memoryless property of the exponential distribution) Let X have
an exponential distribution. Then, for each s,t > 0,

P{T(s) >t} =P{X > s+t| X > st =P{X > ¢t}. E(T(z)) = E(X)—?

Definition 2.41. A r.v. X has a geometric distribution with parameter p, if
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P{X=k}=(01—-p)rp, k=0,1,2... where0 <p<1
(X=# of failures until the 1st success).

Remark. The geometric distribution in Math 447 Y ~ G(p) ([10]) is
Y = X + 1 (=# of trials until the 1st success).

Theorem 2.62. (Memoryless property of the geometric distribution) Let X be a
r.v. with a geometric distribution (X ~ G(p)). Then, for each integers k,n > 1,

P{T(k)>n} =P{X >k+n|X >k} = P{X >n}.

Proof. H P{X >n}=1—-p)"=P{X>k+n|X >k}, k=0,1,2...
P{X >n}
=YX PX =} =% (1-pp (Cgr =15E)  (see formula[17)).
pZZOo (1-pk  (k=j7)
= (1- > Py = (=)

)
P{X>k+n|X >k} P(A|B) = P(AB)/P(B) = P(A)/P(B) 7?
_ P{X>k+n} _ (1-p*T" (1—p) o
P{X >k} T-p)* p)

Theorem 2.63. Let X ~ G(p). Then, E[X] =1 and Var(X) = .

Proof. (Math 447) [10]: E(Y) = 1/p and V(Y) = ¢/p?, where Y = X + 1.
Y = # of trials to have a success.

X = # of trials before a success.
EX)=EY -1)=Q1/p)—1=1-p)/p=q/p. V(X)=V( -1)=V(Y)=q/p*.

Theorem 2.64. Suppose that for each k =1,2,..., pyyr = pz. Then, the curtate lifetime
K(x) follows a geometric distribution with parameter p=1— p,.

Proof: : P{K(z) =k} = pk(1 — p.).

P{K(z) > k} = kps = DaDat1 " Poth—1 = pfz (by 450 [4]) and

P{K(x) = k} = P{K(x) > k} =P{K(2) > k+ 1} = pff ="' = pp(1 — pa).

Example 2.64. (is Example 2.67 in the textbook). Suppose that:
(a) the force of mortality is constant.
(b) the probability that a 30-year—old will survive to age 40 is 0.95.

(i) the expected future lifetime of a 40-year—old=? e40 = E(T(40))=
(i) the curtate life expectation of a 40-year—old=? ex=E(K(x))=?
Q: X ~ Fxp(f) with E(X) =6, p=10 or % ?

S(x) = e=; f(x) = e, h(x) = ngf_’) = 1, B(X) =

S
Solution: (i) eqg = E(T'(40)) = E(X) =
Condition (a) => T'(z) ~ Exzp(1/p). =>

€40 = E(T(40)) =1/p = E(X), g unkonwn.
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Condition (b) => 19p30 = ¢ 1% =0.95. => p = —lng(()).95)’ thus 240 = ;% = W ~ 195 7
(il) ey = Zk | kPz, formula [9]

kp:v =e€ —H ) n

S k= x% (see formula [16]).

ex =D (e =577 2P = e M1t T ~ 1045,

x="7

Example 2.65.

Example 2.66.

Example 2.67.

Theorem 2.65. Suppose that for each k =1,2,..., pryr = pz. Then, e,z = ]%.

x 1- ;:L .

Proof. [ enm = Ljoispe = Tk opp = Lioarh = B by # (16

k terms by [4]

n

n kE_  1-p
Dok P =D T—p -

2.7.4 Gompertz model. (1825) u(z) = Be*, where B > 0 and ¢ > 1. Hence,
Sx(x) = exp(— f Bctdt) = e=™" =) for & > 0, where m = lfc

2.7.5 Makeham model. Makehan (1860) introduced the model p(z) = A + Bc®, where
A>—-B,B>0andc> 1. What model is it if A=07?

2.7.6 Weibull model. (1939). u(z) = ka", for x > 0, where k¥ > 0 and n > —1. Then,

kent1

Sx(z)=e 1z >0. What distribution is it if n =0 ?

«

2.7.7 Pareto model with parameters o (> 0) and 6 (> 0). Sx(z) = (x;ie) , x> 0.

Theorem 2.66.

2.8 Mixture distributions

Math 447: fx\y(zly) = fx v (z,y)/fy(y) and fxy (2, y) = fxy(@|y) fr ().
frlz) = {f fxy(z,y)dy ifYiscts. {f fxyy (@|y) fy(y)dy if Y is cts.
XA Zy fxy(zy) Y isdis N Zy fxyy(@ly)fy(y) if Y is dis
Fx is called the marginal cdf of X in 447, and is called the mixture distribution here.
flzy) o fly) o f(22) ?

W fel) =Ty * T
Can we define two distributions by that

X has df f(z) =e ™™, x>0and Y hasdf f(y) =1,y € (0,1) 7?7
How about : X has df fx(x) =e¢ ™, > 0and Y has df fy(z) =1,z € (0,1) ?

Question. Can we write f(x|y) =
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Theorem 2.67. ( Double expectation theorem for expectations) E[E[X|Y]] = E[X].

Theorem 2.68. ( Double expectation theorem for variances) o3 = UJQ'E(XIY) + E(quy).
Var(X) = Var(E[X|Y]) + E[Var(X|Y)].

Example 2.68. You are given that:
(a) Men follow a de Moivre model with terminal age 100.
(b) Women follow a de Moivre model with terminal age 110.
(c) 55% of births are male.
(i) Calculate the expectated life of a randomly chosen life.
(ii) Calculate the probability that a newborn survives 80 years.
(i1i) Calculate the density of the future lifetime T of a randomly chosen life.

Solution: Let X be the lifetime of a newborn and Y = I(a birth is a male).
(a) => X|Y =1 follows U(0,100), So, E[X|Y = 1] =7
(b) => X|Y = 0 follows a U(0,110). So, E[X|Y = 0] =7
(c) P(Y =1) ="

=7

()  EX]=E[EX]Y] = E((V)) = / o)y ()dy? or ST E(XIY = i)fy (i)

—E[X|Y =1|P{Y =1} + E[X|Y = 0]P{Y =0}
=(50)(0.55) + (55)(0.45) = 52.25.

(i1) P{X >80} =7 = FE(Z), where Z = I(X > 80) ~ bin(n,p) ?

P{X >80} = E(Z) = E(E(Z]Y))
—E(Z|Y = )P(Y = 1) + E(Z|]Y = 0)P(Y = 0)
“P{X > 80|Y = }P{Y = 1} + P{X > 80]Y = 0}P{Y =0} Z|Y ~ bin(L,py)

100 4 10 4
= —dtP(Y =1 —dtP(Y =0
/80 100 ( )+ /80 110 ( )

100 — 80 110 — 80
100 (0.55) + 110

(0.45) ~ 0.23.
(i) fx(z) =, fxy(z.3) =D, fr(§) fxy(zli) = (0.55) fx)y (z]1) +(0.45) fx)y (2|0)
——— S——
U(0,100) U(0,110)
0.557%5 + 045715 if 0 < = < 100,

= ¢ 0.55%0+ 045775 if 100 < 2 < 110,
0 OW.

Example 2.69. The future lifetime T(x) of (x) has constant force of mortality p.
1~ U(0.01,0.05). (i) Calculate ey. (ii) Calculate Var(T(z)).
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Solution: (i) ¢, = E(T(z))="
Given conditions: T'(z)|u ~ Exp(B), B = 1/p, and p ~ U(0.01,0.05).

E[E[X|Y] = E[X]. Var(X) = Var(E[X|Y]) + E[Var(X|Y)].
E[E[T(z)|p]] = E[T'(2)). Var(T'(z)) = Var(E[T'(z)|u]) + E[Var(T'(z)|p)].
Formula 447 23] or [12): X ~ G(a, 8), f(2) = L, > 0,

E(X) = ap, 0 = af?, Exp(B) = G(L,f).
Thus fr()u(t) = %exp(—t/ﬁ) = pe M and St(a)|u(t) = exp(—t/B) = e Mt > 0.

E[T ()|M]—0éﬁ i and Var(T'(z)|p) = af® = 5% = 5. So,

0.05
() EIT()) =ElET))l] = [ ] [t /0 s

() ™™ m(0.05) - In(0.01)
T0.05-0.01 |, 0.05-0.01

(17) Var(T(x)) =Var(E[T(x)|u]) + E[Var(T(z)|pn)] = Var (%) +FE l%}
El |-(=3]) +#[z]
112
%1 (E[ D =2F U} — (40.2)* =77
1 0.05
l7]:/001 0.05 — 001d“

+1 ]0.05 1 1 1
( — ) = 2000.
T0.05-0.01—2+1 0.01 ~0.05-0.01 \0.0l 0.05

=>  Var(T(x)) =2 % 2000 — (40.2)% ~ 2381.1.

~ 40.2.

tw| —

Theorem 2.69.

Theorem 2.70.

2.9 Estimation of the survival function

Given a distribution of ar.v. X, we may either know the parametric form of the distribution,
say X ~ U(a,b), or Exp(0), or G(a, ) etc., or do not know the form of the distribution. In the
last case, we say Sx is a non-parametric form, and the first case Sy is of a parametric form
with parameter, say 6 (= (a,b), or 6, or («,3)). To compute P(X > 2) or E(X), we need to
know the value of Sx. e.g.,

Q: What is the life expectancy of American ? Ans: E(X) or 79, which makes sense ?

79 is called an estimate. E(X)=797 E(X)~T797
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There are two typical types of estimators of the distribution or survival functions:
(1) Parametric estimators such as

the maximum likelihood estimator (MLE),

the method of moment estimator (MME), etc..
(2) Non-parametric estimators such as

the non-parametric maximum likelihood estimator (NPMLE) and

the Nelson-Aalen estimator etc.

Given a parametric distribution form, say Sy (z;6), such as U(a,b), or Exp(f), or G(«, 5)
etc., where = 77 is the parameter, the MLE of # maximizes
L(9) = [T~ fx(X;;0) over 6 € O, the parameter space.
Let 0 be the MLE, then the MLE of Sy is Sx (x; ).
An MME 6 satifies gl(§~) = X7, where g;(0) = E(X?) for i € {1,...,p}, and 6 € RP.
The MME of Sy is Sx(x;0).
Example 1. If X, ...., X, are i.i.d. from Exp(f) find the MLE and MME of # and Sx.
Sol. f(z;0) =0e ™ 2,0 >0. BE(X) =7
The MLE of Exp(f): L(0) =[]}, 0e %% = 0" exp(—0> 1 | X;) = 0" exp(—nbX).
InL(A) = nlnf — nhX.
(InL(6)), =n/0 —nX =0 => 0 =1/X.
(InL(0))j = —n/6* < 0 => 6 = 1/X maximizes L(6).
The MLE of 6 is 1/X; the MLE of Sx(t) is Sx(t) = exp(—tI(t > 0)/X),
or Sx(t) =e /X, t>0,as Sx(t) = e, t >0 Which of Sy or Sy is better ?
MME of §: E(X)=1/=X =>60=1/X. So MME § = S.
Example 2. If X, ..., X, are i.i.d. from U(0, ), the MLE and MME of Sx(t) ?

Sol. MLE: L() = [T, 180 7 o — T, L 27 = L0250 999
dlnd—LH(e) = -—n/0 =07 Solution ? What to do next ?
I0< Xy <0)
L(6) = o } in 0 € [X(y,,00).

=> 0= X(n) maximizes L(0).
Since Sx (t) = I(t < 0) + %51(t € [0,6)), the MLE of Sx is

Sx(t)=I(t<0)+ (") t[(t € [0, X())). Or just write Sx(t) = , t €0, X))
MME: Since E(X) = 0/2, lettmg 0/2 = X yields § = 2X. Thus the MME of Sx(t) is

X(m -t

Sx(t)=1I(t<0)+ ___ tl(t € [0,2X)).

If we know nothing about F(t), we make use of the NPMLE of F(¢):

where t] < t9 < --- < t;, are all the distinct points of X;’s and n; = Z?:1 I(Xj =t),

F'is also called the empirical distribution function (EDF), and the estimator of Sx is
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SHy=1-F@t)=23" I(X;>t)?77 or 230 I(X; > ) 7?

T n

Notice that the EDF is a discrete cdf with the d.f.

) 1 n m .
foy=—3 1Xi=t)=3 ~It=t). (see Eq. (1))
i=1 j=1
Remark. It is interesting to notice the following facts: o
Yoprflr) =X, = FEX) 7 X is an estimator of E(X).
——
=, tfx(x)

6r=> (zv— X)2f(z)=X2— (X)2 = %Zn (X — X)), 62 is an estimator of V(X).

(
%= LS5 (X - X)% another estimator of V(X).

A modification of F'is to smooth it.
then F'(t) is a continuous piecewise linear function:

0 if t <0=tp,

- B (t;) t € {to,....,tm},

Fy=4 " o |
SF(ti) + (1 — S)F(ti+1) if t = st; + (1 — S)ti+1, s € (O, 1), 1€ {O, ey M — 1},
1 if t > t,,.

with d.f. f(t) = miy it € (ti,tig), 1 € {0,...,m — 1} and

the survival function S(t) = 1 — F(t).

Example 2.68 Derive the MLE of F and S(2.5) under Exzp(f) and U(0,6), and F and F,
with the data Xj’s: 1,1,2,2,3, 4,4, 5, 5,8, 8, 8 8, 11, 11, 12, 12, 15, 17, 22, 23 (n=21).

Sol. Under Ezp(f) the MLE of § is @ = 1/X ~ 1/8.7, or use the R codes as follows:
x=c(1, 1,2, 2, 3,4,4,5,5, 8,8, 8,8, 11, 11, 12, 12, 15, 17, 22, 23)

mean(x) ) 8.7 )
The MLE of Fx (t) under Exp(0) is F(t) = 1 — e~ /8DI0 §(2.5) = ¢=25/87 ~ 0.7502.
Under U(0,0) the MLE of 8 is ¢ = X,,) = 23.
t/23 t € (0,23)

1 >3
5 1(t€(0,2X]) <) -
The MME of F(t) under U(0,6) is F(t) = {1 2X i i(z();X ) §(2.5) ~ 0.86.

w2 [(X <) 5(2.5) ~ 0.81.

The MLE of Fx(t) under U(0,60) is U(0,23), F(t) = S(2.5) ~ 0.891.

Use the EDF  F(t
t: 1
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( .
(0 fr < 0 ift<0
i
9 (1—s)2/21 ift=1—sand s€l0,1)
) s5p+(1—8)5y ift=s+2(1—5)andsc|0,1)
5 ssr+(1—8)5y ift=2s4+3(1—s)andse|0,1)
21 ift e [3,4) 5 B 7 . B B
T ifte4s) ssT+(1—8)5p ift=3s+4(1—-s)andse|0,1)
21 1“6[5, ] s+ (1—s)% ift=4s+5(1—s)andse0,1)
= i
- 2l ’ . sor+(1—s)32 ift=>5s+8(1—s)ands€[0,1)
Ft)=q71 ifte811) Fi)=1q i3 15 g
1 s57+ (1 —s)57 ift=8s+11(1—-s)and s € [0,1)
15 e [11,12) e B
e ft € [12,15) s57+ (L—s)5 ift=11s4+12(1 —s) and s € [0,1)
A : ’ st +(1—s)P  ift=125+15(1 —s) and s € [0,1)
5 sy + (L—s)57 ift=155+17(1 —s) and s € [0,1)
50 ss7+(1—s)57 ift=175+22(1 —s)and s € [0,1)
o e [22’23) s 4 (1—-s)2  ift =225 +23(1 —s) and s € [0,1)
|1 ift>23 21 21

\

ift > 23

The curve of F(t) is a step function with jumps at {1,2,3,4,5,8,11,12,15,17,22,23}.

The curve of F(t) is a piecewise linear curve of F.

X =¢(0,1,2,3,4,5,8,11,12, 15,17, 22,23, 24)

y=c(0,2,4,5,7,9,13,15,17, 18,19, 20, 21, 21) /21

plot( X, y, type = 78" Ity = 3, xlab ="y ,ylab =" F(y)”)
lines(X,y, type ="1",lty = 1)
S(2.5) ~ 0.8, §(2.5) ~ 0.78, 5(2.5) ~ 0.75, $(2.5) ~ 0.89.

Right censored data.
If one observed X1, ...,

X,,, which are i.i.d. from FY, it is called a complete data set.

Sometimes, one cannot observed each Xj, e.g., in life expectancy survey for E(7'(0)).

Recall T'(z). T(0) = ?
Ideally, we collect T7(0), ...

In a survey, we try to record T7(0), ....

What do they mean ?

, T,(0), then E(T(0)) can be estimated by 7'(0) (its meaning ?)

, T,(0), but end up with e.g., 2+, 10+, 70+, 89, 95, 70.

Sometimes, one cannot observed each X;. Instead, one observed data as above, or

(Zla 51)7

, (Zn,0p), where Z; = min{X;, C;}, (X1,C1),

, (Xpn,Cy) are iid. from Fxc
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(= FxF¢), and 9; = I(X; < ),
it is called a right censored (RC) data set.
The RC data are often recorded as Z; (if exact) or Z;+ (if right-censored).

What are (Z;,0;)’s corresponding to 24, 10+, 70+, 89, 95, 70 ?

For complete data, the common non-parametric estimator of S is the NPMLE, i.e.,

S=L15" I(X;>t),as S(t) = P(X > t). B(X) =X =Y_,tf(t), where f() = I(X = t).

For RC data, can we use S and E(T(0)) =~ T(0) ? e.g., can we say

E(T(O))z2+10+70289+95+7O:56‘?

Thus we need a new estimator of S as well. There are two common non-parametric esti-
mators of a survival function with RC data. One is the NPMLE, which is also called

the Kaplan-Meier estimator (KME) or the product-limit-estimator (PLE):

Sult) = T = %) and fu(t) = Spt—) — Su(0)

,
th<t k

where t| < --- < t,,, are distinct values of Z;’s with §; = 1,
dy. is the number of person died (or event happened) at time t;, and
) is the number of person at risk at time t; (= Z (Zi > ty).

k- 1 2 3
ty : 70 89 95
. dy. 1 1 1
How about given 2+, 104, 70+, 89, 95, 70 ? e A 9
St 1-1 -hHa-b
fte) s 3 ? 13

E(T(0)) = 70/4 + (89 + 95)3/8 = 86.5 v.s. 56 treating T(0)+ as T(0).

An estimator of ngl 0 is

gpl(t))2 Z - fpl(tg) 3 where Sy(t) = ! ZI(Zi > ).

A 95% confidence interval (CI) of Sx(t) is Sy (t) & 19664 ;-

P(Sx(t) € [Sp(t) — 1.9665 ,(1ySp(t) + 1966, (1)]) ~ 0.95.

What does CI mean 7

Another estimator is the Nelson-Aalen estimator:

SNA( ) Ztk<t 'rk
- : ~2 _ 2.2
Its variance can be estimated by O ntt) = (Sna(t)) Tty where
Zt]<t ,«j_1

Questions: S,;(0) = ? why ? Sy4(0) = ? why ?
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The PLE can be derived by the Redistribution to the right method too (in 3 steps):
(1) Order the observations Z(;) < -+ < Z,.
(2) Initially, each observation has equal weight;
(3) Iteratively from Z1y to Z(;,_1), each RC observation assigns its up-dated weight equally
to the Z;’s to its right.
See the next example.

Example 2.70. PLE of S(t) based on simple data: 60+, 70+, 70, 32, 62, 95.

Ordered : 32 60+ 62 70 70+ 95
¢ . 1 51 _ 5 51 _ 5 52 _ 5 2
A A IORE ; 0 6131 617 21 0 §i=12 E(X)=7?
Spi(t) = Zx>t folx) g 7 24 ? ? ?

How about 24, 10+, 70+, 89, 95, 70 ?

Example 2.71. A follow-up study on a five-year insurance policies is summarized in the

7 €Ty U; 7 €Ty U;
1 - 01 16 4.8 —
2 — 05 17 — 4.8
3 — 08 18 — 4.8
4 08 — 19-30 — 5
5 — 1.8 31 - 5
6 — 1.8 32 — 5
7T = 21 33 41 -
the next table: 8 _ 95 34 3] _- where
9 — 28 35 - 39
10 29 — 36 - 5
11 29 - 37 — 4.8
12 — 3.9 38 40 -
13 40 — 39 - 5
14 — 4.0 40 - 5
15 — 4.1

(1) i is the policy number, 1-40;

(2) x; is the duration at which the insured was observed to die.
Those who didn’t die has “-” in that column;

(8) w; is the last duration at which those who did not die were observed.
Compute the KME and the Nelson-Aalen estimator of the survival function, as well as the

estimators of their variances.

Solution. First try to understand the data, in terms of (Z;, d;).

i 1 2 3 4 5 6

Z; 01 05 08 08 18 18

In terms of (Z;,d;):  d0; 0 0 0 1 0 0
In terms of Z; or Z;+: Z; 0.1+ 0.57 0.8+ 0.87 1.87 1.87

Then rearrange the data according to time Z;’s (x; or w;):
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1 — 0.1 37 — 4.8
— . - 2 — 05 17— 48
Lot ! Lot 4?7 0.8 — 18 — 48
1 — 0.1 16 4.8 —
37 — 08 19-30 — 5
2 — 0.5 17 — 4.8
5 — 1.8 31 - 5
3 — 08 18 — 4.8 6 — 18 29 _ 5
4 08 — 19-30 — 5 . 2'1
5 — 1.8 31 - 5 g _ 2'5
6 — 18 32 — 5 '
7 - 21 33 41 - O
old table ' ' is ordered as 10 2.9 — 36 - 5
8 — 2.5 34 3.1 — 11 29 —
9 — 28 35 — 3.9 34 3'1 B
10 29 — 36 - 5 19 B 39
11 29 - 37 — 48 35 _ 3'9
12 — 39 38 40 — '
38 4.0 —
13 4.0 - 39 - 5
14 — 40 40 _ 5 13 4.0 — 39 — 5
15 — 4'1 14 — 40 40 — 5
' 33 41 —
15 — 4.1
16 4.8 —
. - dy, 5 dy,
The two estimators of S(t) are Sp(t) = H(l — —) and Sya(t) = exp(— Z —),
Tk Tk
1<t <t
where t] < --- < t,,, are distinct values of Z;’s with §; = 1,
dj, is the number of person died at time t;, and
r), is the number of person at risk at time ¢ (=Y ., I(Z; > ty)).
To find t;, d; and r;, two steps:
time 01105081821 (25128129(131(139]401(4.1]4.81]5.0
1 # of events | 1 1 2 2 1 1 2 2 3 2 4 |17
"| # of deaths | 0 0 1 0 0 0 0 2 0 2 1 1 0 |d;?
# in risk 40 |39 | 38 | 36 | 34 | 33 |32 |31 | — |« |26 |23 |21 |17 | r?
1 2 3 4 5 6
o | t; 08 29 31 40 41 48
2. (t;,d;,r;) are given as folllows. d; 5 1 2 1 1
r 38 31 29 26 23 21
1 2 3 4 5) 6
o . t; 0.8 29 3.1 40 41 48
2. (t;,d;, ;) are given as folllows. d; 5 1 2 1 1
r, 38 31 29 26 23 21
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The following table calculates the KME. Spl Htk <1 = rk
Table 1. Calculation of PLE or KME
- d
Survival (1-— ﬁ) Ht <t - rk
Time
0.8 37/38 37/38~ 0.97
2.9 20/31  |(37/38)(29/31)~ 0.91
3.1 28/29  |(37/38)(29/31)(28/29)
4 24/26  |(37/38)(29/31)(28,/29)(24/26)
4.1 22/23  |(37/38)(29/31)(28/29)(24,/26)(22/23)
48 20/21  |(37/38)(29/31)(28,/29)(24/26)(22/23)(20/21)
(1 ift <08, (1 ift <08,
097 ift=0., 0.97 ift€0.8,2.9),
091 ift=29 091 ifte[2.9,3.1)
— Gk ~ ’ ?2? ~ ’ > 97
“Iue =5~ Y oss e 510 %" ®Noss ifte[31,4),
- if t > 4.8. - if t > 4.8.
(1 ift<0.8,
0.97 ift €[0.8,2.9),
. 0.91 ifte([2.9,3.1) .
Spi(t) = 1— &)y e 2 =77
) =1l =50~ V058 irse [3.1,4), 7Su(t)
- if t > 4.8.
. 1,4 For(ts) (see (2) below)
Ot~ (@) > = : )
e . Sz (=) Spi(tr)
see (3)
(7 if t < 0.8
1/3 2 fpl(0~8) ;
_, 15 (Sp(0.8)) 52 (0.8-)5,(08) A if t €10.8,2.9) L
1/a 2 fp1(0.8) fr(2.9) : '
1(551(2:9)) [S’Z(O.S—)SPZ(OB) S2(2.9-)5,1(2.9) if ¢ €[2.9,3.1)

1-0.97=0.03 if t = 0.8,
.o A A 0.97—0.91=0.06 ift=2.9,
need to derive fp(t) = Sp(t—) — Spi(t) = 001 — 0.88 — 0.03  iff—31 (2)

N

Sz(tr) Z[Z >tk)andSZtk

Z[Z > 1) = (3)
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16(0-97)% 2 ift €[0.8,2.9)  (0.0007657895 if ¢ € [0.8,2.9)

2 _ 1 27 0.03 0.06 : _ :
Sy = W09 (w205 + ] it €[29,3.1) = £ 0.002435273  if ¢ € [2.9,3.1)

i 1 2 3 4 5 6
t 0.8 29 3.1 40 4.1 4.8
g 1 2 1 2 1 1
i 38 31 29 26 23 21

R codes:
> (1/40)*0.97**2%0.03*40/38/0.97

[1] 0.0007657895
> (1/40)*0.91F*2%(0.03*40/38/0.97-+0.06%40/31/0.91)

[1] 0.002435273

The Nelson-Aalen estimator.

(1 if £ < 0.8,

exp(—1/38) iftel08,29, 4 1 2 3 4 5 6
) exp(—(x + £)) ift€(29,31), t; 08 29 31 40 41 48

exp(—(m+ & +) iftedl4), & 1 2 1 2 1 1

ri 38 31 29 26 23 21

lexp(—(g5 + -+ 57)) ift€[48,00).

Sn4(100) =0 ?77?

a-%NA(t) (SNA( ))%6 ?{(t)’ where a Zt < Tj_l'
(1 or 07 if ¢ < 0.8
exp(—2/38) 5 1)282 if t € [0.8,2.9)
0% 0= (25 + F)) e + pimign) it €[29,31) =
.. if ¢ € [4.8,00)
Announcement.

Exam on coming Monday.
First midterm exam Formulae: 447: 6-20, and 44. 450: 1-10 and 16
The blank quiz pages for 447 and 450 are on my website: 450 lecture notes 2.
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0 if <0,
242 ifo<z<l1
Class exercise. (1) Find D, f, p, S(x) and h(x) if F'(x) = 8 - ’
() fip () () () 33;18_4 fl<z<2,

1 if 2<ux.

(2) Compute E(X) using two formulae: F(X) = fooo S(t)dt = [tf(t)dt+ >, ptp(t)

Solution: How to find D ?

F(z) — F(z—) = 0 except, perhaps at {0,1,2} Why ?
p(0) = F(0) - (—)2-7—03— 1
p(1) = F(1) - F(1 )=r6—6§:_6
p(2)=F(2) - F(2-)=1- 15 =0.
) %1 fa:zO
Onme solution: p(x) = { 4 D ={0,1,2} or {0,1} 7
1
5 1f0<x<17
flz)=F'(z) = {% $1l<pe? What happens OW ?
Why not 1 <2 <27
Is p a pmf ?
Is fadf?
: if 0 <z <1,
Can we write f(z) = F/(z) =4 3% ifl<z<2, ?
0  otherwise
: if 0 <z <1,
How about f(z) = F'(z) = ¢ 32 ifl<z<2, ?
0 ifz<Oorax>2
% if0<z <1,
How about f(z) = ¢ 32 if 1<z <2, 277

0 otherwise

%1 ifx=0
1 if 0 <x<1
Another solution: f(z) =< 8 ! v and D = {0,1}.
g ifz=1
oifl<z<?2
1 if <0,
1 —z2_be fo<az<l1
S(x)=1-F(z) = 8 8 - ’
(SL’) (I) 1— 3@128—4 _ 12;5)562 ifl1<z< 27

0 if 2<uz.
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/1 if =0,
- aTT na
16/ 8 —. 10 =41
3%/12#2 = pZs ifl<z<2
:foo :ftf Jdt + 3 e ptf ()
:fOOS dx*fg 62y +f1 12— 3x de — %%= m/2’0 12%:53
= [af(x)dz+ Y ,cpaf(z) =01+ 2/2‘0+16 1—|—3‘” |1

!
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CHAPTER 3
Life Tables

3.1 Life tables

Definition 3.1.

l, denotes the number of individuals alive at age x, where x > 0.

Uy is also called the number living or the number of lives at age x.

by is called the radix of a life table.

A life table (see Example 3.1) is a display of Ly, for each k =0,1,2,...

tdy denotes the number of people which died between ages in [z, z +t). dy = 1d;.

Based on life table, one can estimate Fx(t) by the EDF
F(t) = %Z?:l I(X;<t)=1—%att=0,1,2,..., any problem ?

lo

main formula: Sx(z) = i—x, and 1pg = EJEH, (in [11])
0 T
secondary: Qe = M = @, tdy = Uy — Uy,
ly ly
. Eﬂc—&—l . by — Ex—i—l . % ‘ . ga:—&—n - Em—i—n—i—m o mda‘—|—n
Px = 0 Qz——gx = 0 nlm4z = ‘. = 0.
Age | Uy dy pz @
0 | 100000
1 97523
Example 3.1. Complete the entries in the table: 2 94123
3 91174
4 87234 . ) .
5 85938 — — -
Age z Uy de =ly —lpp1 Do = ngrl/g:Jc e =1—p; = dx/gx
0 100000 2477 0.97523 0.02477
1 97523 3400 0.96514 0.03486
Solution: 2 94123 2949 0.96867 0.03133
3 91174 3940 0.95679 0.04321
4 87234 ? ? ?
5 85938 — — —
777077 1290 0.98514 0.01486

By Eq.(3.1) and Formula [1]-[9], we can compute E(Ky) (= E([T(z)])), €z, €xnl, -
e.g. €13 =7 (see [9]).
Uy 3 l3

n
k=1 by by 0y

{1 — {3
0y

=0.96514 4 0.96514 * 0.96867 = 1.900042.
59
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x| 80| 81 | 82 | 83 | 84| 85| 86
Uy || 250 | 217 | 161 | 107 | 62| 28| 0O

Example 3.2. Consider the life table

(i) Calculate d, for x =80,81,...,86.
(ii) Calculate the d.f. of the curtate life K(80) and the time interval of death Kgo. (fx,)
(ii) Calculate ego, Var(K(80)), and egy3

x 80 | 81 | 82 | 83 |84 |8 | 86
Solution: (i) dy = 7 Try ! Uy 250 | 217 | 161 | 107 | 62 | 28
dpy =0y —Vlpy1 || 33 | 56 | D4 | 45 |34 28| 0O
(i) fr@) =7 K(z) = Ky — 1, Ky = [T()] (see [8]). which do you prefer ?

fr@oy(k) = P{k <T(x) <k+1} = pr — pr1Px = e”'“_gi”k“ = dﬂk (see [11]).
L) — dosi k 0 1 2 3 4 5 6
T (k) =5 fr@) (k) || 33/250 | 56/250 | 54/250 | 45/250 | 34/250 | 28/250 | 0
k 112134567
fo(k+1):fo(k) Tx (k‘) ? ? 21212172710
(iii) ego = E[K(80)] =7 (K(
Two Ways for E(K(x)) and E((
) a

e}

(1) E =2 YTk
(2) B = o kpz [2] and E((K(l“))Q) Yoo 2k = Dkps  (kpa = ZZ’“ (see [11])).
(1)  ego =E[K(80)] = Z kfr () (k)
k
() + (1) + (2) ‘ (3) o ‘ W + 15)22580 —33
BIR(80)) =0 oo + (1 o + (255 4+ (3 + (4 2 + () oo = 7684

o0
¢ 217 161 107 62 28
es0 :Z 80+k

2 =t —+—F+—+—=23
2 — 30 250+250+250+250+ 250 ’
- (
E[(K(80))%] =) (2k — 1)
(REOF] =2 k- D72
217 161 107 62 28
=1 3 5 7 9 = 7.684,
( >250+( )250+( )250+( )250+( >250

Var(K (80)) =7.684 — (2.3)? = 2.394.

Note: Without (ii), method (2) is faster.
Two Ways for Crm| = E(K(m) An):
(1) E(g(X Z g(z Q: X =7 g(X) ??
2) E<K Zk mm = X
E =2 b0 Kx (B) + 3 nfx (B) = 34 ki) (k) + s () (R).

o fsorr _ 217 | 161 | 107
€80:3) = Zk:l T — 250 T 250 T 250 ~ 194,

Example 3.3. Using the life table (Table D.1) in the end of the textbook find:
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(i) 410.

(i) dss.

(iii) 5dss.

(iv) P(a newborn will die before reaching 50 years).

(v) P(a newborn will live more than 60 years).

(vi) P(a newborn will die when his age is between 45 and 65 years old).

(vii) P(a 25-year old will die before reaching 50 years).

(viii) P(a 25-year old will live more than 60 years).

(iz) The probability that a 25-year old will die when his age is between 50 and 65 years old.

Solution: (i) {19 = 99129.

ii) dss = f35 — £36 = 97250 — 97126 = 124.

iii) 5dss = 35 — L40 = 97250 — 96517 = 733.

iv) P(T(0) <50) =1 —s(50) = 1 — %2 = 1 — {385 — 0.06265.

v) P(T(0) > 60) = s(60) = 42 = 288 — 0.88038.

vi) P(45 < T(0) < 65) = s(45) — 5(65) = faates — 968 — () 19992,

0

Vi) 95q25 = 1 — g5pas = 1 — 42 = 2098135 — 0.04591535533.

viii) g5pos = 722 = 53098 — 0.896097551.
iX) 9515925 = 2525 — 40P25 = 55%;665 = 23130-83111 — (0.1081061824.
One may skip to section 3.4.

~—~~ N N N N

Theorem 3.1.
Example 3.4.
Definition 3.2.
Definition 3.3.

Definition 3.4.

3.2 Mathematical models

3.3 Deterministic survivorship group and stochastic survivorship
group
There are two interpretation about what a life table is.
deterministic survivorship group assumes

(1) The initial group consists of ¢y lives at zero.

(ii) The group is closed. We are able to track all the initial lives and we do not add any
individuals to the group.

(iii) ¢, denotes the number of individuals alive at time z.
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According to the deterministic model, the proportion of people who die at a certain age is
given by a life table.

Usually, it is very difficult to track an initial group of lives for a long time. We should
expect life expectancies to change over time. A life table using data from people born 100
years ago is not very useful to determine the death rates of the current population.

Often life tables are constructed first estimating the survival function s(-) and assuming
that the number of alive individuals follow the same survival function. If this happen, we have
a random survivorship group, which assumes:

1. {p individuals alive at time zero. Let X1,..., X/, be the age-at-death random variables
of these individuals.
2. Xi,..., Xy, are i.i.d. r.v. with survival function s(-) (s(t) = P(X; > t)).

3. The number of individuals alive at time z is the r.v. L(x).
Lx) =30 I(X; > x). L(x) ~ bin(l, 5(x)).
E[L(x)] = los(z) and Var(L(x)) = los(z)(1 — s(x)).

In a life table ¢, is {ys(z) rounded up.

Both the deterministic survivorship group and the random survivorship group allow to use
past data to predict future lifetimes of a group of individuals.

Some of the previous formulas have an intuitive interpretation using the group determinist
approach to life tables.

Consider e, = 220:1 kPz-

The number of survivors at time x is £;,. The average complete years lived by the ¢, survivors
at time x is e;. So, the total number of complete future years lived by the ¢, survivors at time
x is lgeg. iy is the number of the ¢, survivors at time x who live the k-th year, i.e. the
period of time (z + k — 1,z + k]. Hence, 220:1 lyyy is the total number of complete future
years lived by the £, survivors at time x. Hence,

00
lpeq =) 1 loyr and

J— oo gz«l»k; _ oo
€x = E k=10, — E :kzl kDx-

Consider e; = pz(1 + ez+1). The number of lives aged z is ¢;. The complete number of
years lived by all lives aged x is £ e,. From these £, lives, during the first year ¢, — £,41 lives
die and do not live a complete year. From these £, lives, ¢, lives survive one year and live
one year plus some complete of years after time x + 1. The complete number of years lived
by all lives aged x + 1 is €y11e,41. Hence, lpey = lyy1 + lpp1€41 = Lot1(1 + ex41), which
implies that e; = py(1 4 €z41)-

Consider e, = €|t nPrCatn. The number of lives aged x is £,,. We have that the complete
number of years lived by all lives aged x is lye,. fre, is the complete number of years lived
by all lives aged = between times z and x + n plus the complete number of years lived by all
lives aged x after time x 4+ n. The complete number of years lived by all lives aged x between
times z and = + n is {ze,5). The lives aged x who live complete years after time @ + n are the
ones that survive time x + n. The average complete years lived by each of the ¢, survivors
at time x +n is ;4. Hence, the complete number of years lived by all lives aged x after time
x +nis lyinerin. Therefore, (e, = Exex:m + ly+n€rin, which implies e, = €| T nPr€rn-

The rest of the section can be ignored!!
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Theorem 3.2.
Theorem 3.3.
Theorem 3.4.
Corollary 3.1.
Theorem 3.5.
Example 3.5.
Theorem 3.6.
Corollary 3.2.
Theorem 3.7.
Example 3.6.
Example 3.7.
3.4 Continuous computations.
Assuming X is cts, knowing ¢, for each real number x > 0, we can get the following:
main secondary
ly d Uy d 4
= = ——— =——(In(l,)) =— =
R e N __dy layt
tPx 0, tqx ‘s » JT(x) dt 0, M+t at
o o n
o l o 14 o l
ey = / Ldr, e, = / m—Hdt, €xm| = / "tht,
0 to 0 Uy 0 Uy
_— o Cagenia(t) dt
However, from the life table, we only know ¢, at x =0, 1, 2, 3, ...
Q: How to get ¢, for x € [0,00) 7
Ans: linear interpolation or non-linear interpolation.
Linear interpolation of F(z) is just
0 ift <O,
_ 2 (1) i=te{0,..,n},
Fit)=4 2/ 5 . . . .
sF())+(1—s)F(i+1) ift=si+(1—-s)(i+1),s€(0,1), i €{0,...n—1},

1 ift > n.
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Using linear interpolation, Figure 3.1-3.5 show the graphs of the survival function of the
age—at—death using Table D.1 (see page 602 (textbook)) as well as the density, d, and p(x).

3.5 Interpolating life tables

Life tables only show the values of ¢, whenever z is a nonnegative integer. In many
computations, we need to know ¢, for each z > 0.

Let f(x) = {,. Suppose that z; < x9 < --- < x, and f(x;)’s are known but not other f(x).
We can estimate the values of f(x) for z € (x1,zy) by linear function or nonlinear function:

(1) Linear interpolation. Straight line equation: =% = £2=% or y = y; + 22 (v — 1)
Fl@) = fog) + HE2ERE @ — )

Tj+1—Tj5
(U ) fla) + 2 fwg), @ € ().
Ifxj11 —2;=1and z = x; —|—t then
flej+t) =1 —t)f(xj) +tf(zj1), t € (0,1).
(2) Nonlinear interpolation. f(z) is a curve passing through z;’s.

3.5.1 Uniform distribution of deaths is to assume

(3.1) ligg=1—=t)j+tlj1=0;—t-dj, 0<t<1, j€{0,1,2,..}.
imp;;tant

We say that X is uniform on (j,j+ 1) or say a uniform distribution of deaths (UDD)
or say linear interpolation for the number of living.

Q: How to compute the following quantities under UDD ?
tPx = ST(x) (t)
Pz = 1Pz = ST(ac)(l)
sltqe = P(s <T(x) < s+1)

t‘(bc = t‘l(hca
tdr = FT( )( )
(3.2) Ans: Key formula: ¢p; = . (3.1).
impg?:tant
Theorem 3.8. Under form (3.1), Ya=0,1,2 .. andVte 0, 1T:
(i) tpe = 1 — tqs. (11) +qz = tq,. Notice the difference !
(i) friay(t) = - (i0) ot = 15

Remark. No need to memorize Th. 3.8, they can be derived easily by (3.2).

Proof. Notice the assumption: ¢ € [0,1]. By (3.2) and (3.1),

(i) Sppey(t) = 1pp = Bt = bl =1 4% =1 —4q,, as e =llnt =1 yp, =g,
(ii) Fr)(t) = s = 1 —4pz = tqz (by (i)).
(i) fr(z)
(

iii) (1) = —Etpa: =gz (by (1)).

fray(t) g
IV) Hae+t = Sty (@) — T—tqz- u
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Q: Sp()(t) =1 — tq, for each t and each z ?

Example 3.8. Using the life table D.1 p. 602-605 and assuming UDD, find:
(i) 0.1p35 and (1) 1.4p35.3.

Solution: Formulas: ¢p, = % = ”t y12] by = (L= t)ly + tlyyr, t € 0,1, 2= 1,2, ...

(i) 0apss = Bt = 585 351 = fa:+t, (z,1) =

Ans: U351 = {35401 = (1 - 0.1)635 + (0.1)f (0.9)(97250) + (0.1)(97126) = 97237.6

0.1p35 = 431 = BT ~ 0.9998725.

14 =l = (1 =)0, + 10,
(ii) 1.4p35.3 = 23672 77 { 367 + = ) w1
U353 =Llprt = (1 =t)lp + o1 (x
Ans: U367 = {36407 = (1 — 0.7)l36 + (0.7)¢37 = (0.3)(97126) + (0
(353 = 35103 = (1 — 0.3)l35 + (0.3)¢36 = (0.7)(97250) + (0.3)

_ f367 _ 970329
1. 4p35 3 = £353 97212.8 ~ 0 9981

xz,

Y

t) =
t) =
7)(96993) = 97032.9,
(97126) = 97212.8,

x| 80| 81 | 82 | 83 | 84| 85| 86

Example 3.9. Consider the life table 0. 250 [ 217 | 161 107 62 28| 0

Assume linear interpolation.
(A) Calculate the complete expected life at 80.

(B) Calculate 2803‘.
(C) Calculate 3mgy (central death rate).
Solution: (A) [1] E(T(z)) = [tfre)(t)dt = [ ipadt =7

(B) [6] égm = E(T(x) A3) = [(t An) fr()dt = [} pedt= "

T SxOux ) dt [ Srw Oprw (B dE g sase
(C) [7] 3mso = AT IR e T G _ suw _ o

gz:WI €80.3]
(a) based on tp, (= é}:t); why?

(b) based on fpy (fre(t) = (—ipz)}), why?
which way is preferred here ?

Two usual ways for A, B: {

Moreover, both (a) and (b) need formula [11] {;4¢ = {2 : ?52;- tlyt1 0<t<1.
So approach (a) has 2 preliminary steps: step (i) €y++="7 step (ii) ¢pr="
Approach (a): (i) lgo4t = ? for all ¢
Try Formula: (1 =40, —t-d;, 0 <t <1, as we had d, in Ex. 3.2:

x || 80 | 81 | 82 | 83 | 84 | 8 | 86

ly || 250 | 217 | 161 | 107 | 62 | 28 | O

de || 33 | 56 | 54 | 45 |34 28| 0

Can we say that the answer is /(g9 = {39 — dgot = f39 — 33t ?
Try t € (1,2) first to avoid mistake !! then try ¢t > 2.
g0+t =Lkt (t—k) = Lok — (t — k) -dsoyk, l=kFk<t<k+1!
——

€(0,1)

Class exercise !
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4
250 — 33t ifo<t<1 250—33 :
e B if 0<t<1,
217 -56(t—1) f1<t<?2 27-56(t-1) 1 <4 o9
161 — 54(t —2) if2<t<3 61 BME-2) oo
o . . 680_” . — 980 if 2 S t < 3,
68()4_15 = < 107 — 45(t — 3) if 3 S t<4 => (11) tPR0 = Teo = { 107—45(t—3) .
_ WEB=s) g <t <4,
62—34(t—4) f4<t<5 — 20
G810 fa<i<5b
28 - 28(t—5) if5<t<6 By
\
o0 2 6
/ tpgodt = / tpgodt + / tpgodt + -+ + / tpgodt + -+ 77
0 1 5
! 250 33t 2917 — 56(t — 1) 161 — 54(t — 2)
= dt + dt + dt
A ! 250 ) 250
107 — 45(t — 3) 62 — 34(t — 4) 098 — 28(t — 5)
dt + dt dt =t—k
+ / 550 / 550 + /5 use u
250t 33152 27t 56 t—1)2\ |? - 161t 54(t—2)2\ |°
250  (2)(250) 250 (2)(250) 250 (2)(250)
. (10775 45(t — 3 2) 4+ (62t 34(t — 4)? ) 5+ (2&: 28(t—5)2>
250 (2)(250) ) |, \250  (2)(250) ) |, \250 (2)(250)
3 1 2 3
o 250 — 33t 217 — 56(t — 1) 161 — 54(t — 2)
B 3 = dt = —dt dt dt
(B) s /0 1ps0 /0 50 T /1 250 * /2 250
=2.226.
380 1 —3pso bl 200107
(C) 318y = = or = 80 = 250 = (0.257.
S ° _ o _ 2.226
€80:3] €80:3] €803
Another way for (A) and (B):
Using that fr(so)(t) = —@ if the derivative exists,
(20 if0<t<1, (3 ifo<t<1
AL p 1 <t < 2, 6if1<t<2
_<%40<t—2) if2§t<3,_>f (t)_<% if2<t<3
WO WD) gp3 oy g~ TTEOW T A pg <y g
304 p4<t <, o HAST<5
3 if0<t<l
. d( .
Can we write fr(gg)(t) = —% = % if1<t<27??

Notice that the derivative of ;pgg does not exist at 1,2, ...,

arbitrarily at finitely many points.

5. But, the density can be defined
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(b) eso= / tf1(s0)(t)dt
0

[ B [ [ [ [
o 250 )y 250, 250  J; 250 J, 250 /5 250
(133 356 554 745 934 118 o
2250 2250 2250 2250 2250 2 250

o'} 3 00 3
€80:3] :/0 (t A3)fro)(t)dt = [/0 +/3 [t A 3) fr(soy(t)dt = /0 tf(t)dt + 33pso

b dgo 2 dg S dg
:/ t—dt+/ t—dt+/ 82 0t 1 33pgo A 2.2
o Iso 1 g0 5 8o

Example 3.10.

Announcement: 1. Hw for last week due tomorrow. Hw for this week due Wednesday.
2. Quiz tomorrow 450: # 1-11, 16

Theorem 3.9. Given t € [k, k+ 1), where k > 0, under UDD,

(i) s(t) = & — (t — k) o

(i) fx()(= klqo) = %.

(iii) frin(t) (= klaa) = 2.

(i) p(t) = gk_(f—fkmk-

Notice that the theorem expresses the notations in terms of 7, or d,. Instead of using them
directly, you should derive them yourself in doing the homework, based on [11] and [12]:

s(t) =4 and by =l =l — (t = k) - dy, t — k € (0, 1).

Proof. (i) s(t) = 5—(’; = % —(t— k)(é—’g

(il) fx(t) = —gs(t) = .

(i) fri(t) = 2850 ot € (bt o,k + 2+ 1); thus fr(p)(t) = K = Ll — dons

s(x) Lz/lo by
. _ fx(@) di /0 —
(iv) p(t) = sé)) = Ek/éof(ljf/fl?:)dk/fo = .

Example 3.11. Under the assumption of uniform distribution of deaths, find the average
number of years lived between x and x + 1 by those who die between those ages.

Solution: The average number of years lived between x and x+1 by those who die in (z, z+1]
E(X —z|X € (z,z+1]) = E(T(x)|T(x) € (0,1]). (X =17(0))
Is it 0.5 under UDD ?
E(X —z|X € (z,2+1])

oty fx (1)
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+1 dy [l ..
= fx mdt (by (ii) of Theorem 3.9)

z+1 T
= [ =i = () = g

Insurance companies need to know the total years for all their clients.

Definition 3.5. Denote T, = Emgm, the expected number of years lived beyond age x by the
cohort group with /) members (different from Txdng (x) in Chapter 2).

Definition 3.6. Denote L, = Exgx:m, the expected number of years lived between age x
and age r +n by the /, survivors at age x. Denote L, = 1 L,. (Ty = ooLyz).

Formula [11]: ¢, = # of individuals alive at age @, 1Ly = Ly. ¢dy = Uy — loqy, dp = 1dg,
tPx = HmSk<x+t(1 - dk/lk)' & = E$gl’ - fOOO oy dt = Zzozac Ly,
= E(# of years lived beyong age = by the cohort group with /o members),

Ly = loCpm| = To — Toin. s(x) = 51 Dy = ‘;:t, (not the T}, in #3).

Theorem 3. 10 Under a lmear form for the number of living,
(i) Lo = o — % = loyr + % = Lt

% 1+ps
(ZZ) em:ﬂ = 2p :

(iti) To = 5 + 370 41 b
() my = 725 (central death rate over (z,z + 1]).
2

o)
(v) €z =€z + 5.
L+t
o -1 kit
(UZ) Corm| = zzz sz

One needs to learn how to derive these formulas rather memorize the theorem.

. ) o o n tPx = ngrt/ga:a t..7
Proof. (i) Formulas [11]: nLy = oo, Coim = [y tpadlt, {[12] Coit =Ly — tdy, 1.7
1y 1y
Ly = fo o pedt = [ layedt = [ (L Dt =l — G =S =+ b
(ii) €3 = 2= (Why ??) = L5251 (check (i )).) = Lpe Why 7
(iii) Formulas. Ty = lyoy = Zkzx Ly, ey = fooo tP2dt, 1Pz = Lott/ Uy
(e.9] o0
_ _ Cp+ Ll | Ao+ Loy | Loy + €x+2 B
Sy [l | et e G S
k=x k=x Tz()—’ k=x+1
y (¢

(iv) F: my = 13’”%. Formula [7]: ,m, = f;Hn f“"—(()) x(t)dt = nqm/ém;m

My = Qo)1) = iy (see (i) = <1+1 2
(v) b er = ey + % Formula[11]: T, = (e, and Tx = 7““ + Zziw—i—l .
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° T, _ Lovi _ _
efE:E_%+Z§.;x+1£z_2+ZOO T %+Ziimpx—%+€xbﬂ9]-

ek+ek+1
. .o . z+n—1 —5—— . a0 . T+n—1
(Vi) F epm| = D jma +—. Formula[11]: Ly = lpepm = ) p—, Lk
° atn—1 1 k+£k+1
Epom| = ngl;-r = —Ek:zr b — ;:FZ by (i) in the Th. u

o

[11] £ = # of individuals alive at age x, Ly = ly€pm = To — Tyin, 1La = L,

Ty =loey = [ losedt =3 g Ly (not Ty in #3),
= E(# of years lived beyong age = by the cohort group with /g members),

tPx = Hx§k<x+t(1 —di/lg), s(z)= g—z, tPx = &Zta tdy = Ly — lyyt, dy = &a
UDD: ém—i—t = (]_ - t)gm + t£m+1-
Under UDD, we should know how to derive 1py, fra), pa(t), ex, gx:m, L, (= Ex((—jzx:ﬂ),

T, (= E(# of years lived beyong age = by the cohort group with [y members)),
my (the central death rate over (x,x+1]).
Theorem 3.10 is actually one of such exercise.

Recall S; = T'(x) — K(x) (§2.5), where K(x) = [T(z)] is the curtate duration. S; = Sx 7

Theorem 3.11. Under UDD, for each x, K(x) and Sy are independent r.v.’s and
Sy has a distribution uniform on (0,1) (Sy ~ U(0,1)).

Corollary 3.3. Under the assumption of uniform distribution of deaths:
(i) ex = ex + 5. (i) Var(T(z)) = Var(K (z)) + 5.

Proof (i) Since T'(z) = K () + S, €; = E[T(z)] = B[K(z)] + E[Sy] = ez + 3.
(ii) Since T'(z) = K(x) + Sz and K (z) and S, are independent,

(
Var(T'(z)) = Var(K(z)) + Var(S;) = Var(K(z)) + 1—12 (as Sy ~ U(0,1) and (bI;) ).

Theorem 3.12.

3.5.2 Exponential interpolation. Exponential interpolation is a non-linear interpolation:

ll'lfx_H = (]. — t)lnfx + tln&c_H ( V.S. gm—!—t = (]_ — t)gx + tgx-i—l')

t

l

(3.2) Covy = Lopl = L, ( 71) = (L) ()t for t €]0,1) and z = 0,1, ...
x

o

We should know how to derive 1py, fra), pa(t), gx, egm)s Lay T, my , etc.

Example 3.12. Using the life table in page 602 and exponential interpolation, find:
(i) 0.75P80 (i) 2.25P80-
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Solution: (i) Formulas: p, = % = &Zt, (3.2) or [12] => lyqt = {4

ZCL‘
Ly

L)t e (0,1).

S

Thus tp, = —7+— = (&Zl)t, t € (0,1]. 0.75p80 = ZH.
N
t="7
0.75
s 50087 V-7°
0.75P80 = (@) = (m) = 0.958852885.

~

(ii) Two ways for 2.25p80° 1P = “7-%, OF 144Dz = kD - tDa+k-

Ly l 0 £0.75¢9:25 47940)°-75 (44803
[11] => g95pgp = 5 = Fp28 = =il = =28 = — (arod0) 7~ 0.8450.

’ 045702 0750025
[4] => 2.25p80 = 2Ps0 - 0.25P82 = 22 - ()02 = S~ 0.8450

|| 80 | 81 | 82| 83 | 84| 85| 80
Uy || 250 217 | 161 | 107 | 62| 28| 0

Example 3.13. Consider the life table Using

exponential interpolation, calculate
(i) the complete expected life at 80;
(1) €80:3|7
(111) the density function of the future life T'(80);
(v) p(80+1¢), 0 <t <6.

Solution: Formulas: (i) 21, = fth = fooo tpxdt, Py = e””:t.

(ii) gl’iﬁ\ = f()n Pz dt = fo (t An) fr) fO tfr@)t)dt + npps),

(it) freo)() =252 () < > = jr(so) <t> = —dalpm)) _ Jreold),
Thekeylstpx—e o+t = Uy ( l)t,OStgl.

t
Can we say /lgp1++ = {30 (%) ,t>07

t—k
For k = 0,1,2,... if ¢ € [k, k + 1), then fors = Csopns(1—r) = Cs0s (“—H) t—kel01].

480+k

t—k
80+t = l30+# (gg Zf:l) ,t—kel0,1].
( 217\t -
250 (55) ~ Hf0<t<1, (204D rp<t<1
217 (161)t—1 f1<t<? 250 \250/ > )
217 < ) 2T (1) <<
161 (10) 7% ifa<i<3 202 =TT e =t
fagss — 4 161 (61 SESS =l = JIGL 02 gy oy g P
80+t 07 (82)3 g cpog POT L 250 \T61 ez 1Py =7
(167) I3<t<4 W07 (62)75 g <y <y,
62(3) " ir4<t<s, o (it o
| 355 (33) if 4 <t <5,
\

(i) Two ways: €5 = fth(x) (t)dt = fooo tpzdt. Which is prefer here 7
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. e’ 1 2 5 e’}
(Z) em:/ tpxdt:/ tpmdt+/ tpxdt+"'+/ tpxdt+/ tpxdt
0 0 1 4 5
1 t 2 -1 t
9250 /21 217 /161 161
:/ 20 (207) dH/ 2T (101 (1) iy 2
o 250 \250 . 250 \217 217
3161 107\ 2 /107\? Y107 762\ 73 /62 \¢ > 62 £28\ 4 /2811
+ 55 (1) (—) i+ | () (@) o ) s (@) @
, 250 \161 161 , 250 \107 107 , 250 \62 62

(notice / abldt = abt

Y’
o as (b°)" = b'lnb)

[ 250 (217)t 1 ! L2 (161)1 (161)t 1

-\ 250 \250/ In (1) ) |, \ 250 \217 217/ In &7 .

. 161(107)t_2 1 3+ 107(62 62 S)t_4 RNE
250 \161/  In (¥7) /[, | 250 107 (£2) 250 62 n (%)) |,

_217-250 161-217 107161 62107 28 —62
2502 250Ini8l  250Ind8T 2502 2502 ~

(ii) There are two ways: (1) 280:§| = fon P dt.
0 3 . .
(2) esom = Jo (@A) freso)(@)de = [ = frso)(z)dz + 3 - 3ps0 Which way you like ?

g = [t B0 (BDY gy [PHTASTE L [HGL A0,
80:3] — 0 tDzal = 0 250 \ 250 1 250 \ 217 9 250 \ 161

217 — 250 161 — 217 107 — 161

+ + ~ 2.21. (see (1))
" 250In (335)  250In (1) 250In (137)
(i) freso)(t) = — 222 (a%) = a®Ina), —(a'~) = —a~(a") = "~ (~Ina).
(20 (A1) (~In (&) ifo<t<1
t—1 .
() () <o
Fro(® = 4 8 (1) (-0 (1)) ir2<i<s
5 (%) (- () i3<i<a
62 (28)t—4 28 -
(25 (52)  (In(§)) if4<t<s
(iv) (80 4+ 1) = pp(so)(t) = —d(ln(jfso)) = fo;ZL(t)>
(0 (29) ifo<t<1 n(2Y) ifo<t<l
In(347) ifl1<t<2 In(3) ifl<t<2
p(80+1) =< In (1) if2<t<3 orpu(80+t)=<{In(1#) if2<t<3 Whichone?
In (W) if3<t<4 In () if3<t<4
62 : 62 .
\ln(%) if4<t<5, ln<%) if 4 <t<h.

Notice that the derivative of In(¢pgg) does not exist at 1,2, ...,5. But, the density and force
of mortality can be defined arbitrarily at finitely many points. So both are right.
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Theorem 3.13.
Example 3.14.

Theorem 3.14. Under an exponential form for yi4,

(Z) L$ = _ldrfp (Lx = gxe:c:ﬂ)
(”) ex 1| - —lnpz
(iii) T, = Zk:m _ﬁf‘pk. (= E(# of years lived beyong age x by the cohort group with ly
members))
(iv) my = —Inp,. (the central death rate over (z,x+1])
(U) ew Zk x —l Inpy, lnp;C
. r+n—1 d
(’UZ) em:ﬁ| = k=x —Zzlknpk'

Proof. Need to learn how to derive them based on ¢;, p, and d;. Formulas:
[11] €, = # of individuals alive at age =, 1Ly = Ly, nLy = Exgx:m =T, — Tran,

Ty = loey = [} logedt =3 5o Ly, (not T, in #3),
= E(# of years lived beyong age x by the cohort group with /[y members),

Zz«&»t

tPx = Hm<k<m+t(1 - dk/lk) S(:L‘) ﬁj tPx = A tdy =Ly — Lyyt, dp = &a

o o r ¢
LLL‘ = Emex;ﬂ) zm| — fO tp$dt7 tPx = +t ék-‘y—t =/ ( k+1) ) t?
1

() Lo = ta fy epedt = o ) ol = 25 | = Sfpemt) = Lo —

~ Inpy Inp, —Inp, —Inp, *
0

(11) ex'7| — 1, — —Inp.l, _()O—lnpézll. - —lnz;)w - —1qnpz'
(i) Ty = Zk L=, “hpr by (i)
. Trsu)dt g, . ..
(IV) [7]: nMy = fzfol'+"(s()u)(du = é::]ﬁ\, => Mg = gjﬂ = —Inp, by (11)'

o T, d
(V) €x = E - leix —Ewlknpk by (111)

M ° nL Tz_Tz n ZOOIL Z x+n ‘L+7L 1L + -1 d :

(Vl) ex:m = ka = y tn _ Lk k™2 ik=a+ Z Ez E_ z:Z ——leknpk by (1) u

Theorem 3.15. Given t > 0, let k be the nonnegative integer such that k <t < k + 1.
Under exponential interpolation:

(i) s(t) = kpo - Py " (i) fx(t) = ppo - P} " (—Inpy). (i) frie)(t) = epe - P (—Inpgi).-
Proof. (i) By Formula [12] for each integer z and each 0 <t <1,

t
ly ly [y

Hence, for t > 0 and k <t <k +1, s(t) =s(k+ (t —k)) = xpo ~p§;k
~——
€(0,1)
The proofs for (ii) and (iii) can be skipped. [
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3.5.3 Harmonic interpolation assumes

Loty ! telo,1]
gm—&—t gw gw—i—l ’
(recall linear : lyyy = (1 — t)ly + tlyy, t €[0,1],
4
Ezp: Inlyys = (1 —)Inly +tInlyy1 or e = Cx( :Zﬂ)t, t €10,1]).
T
Interpolation | £,¢ Da
UDD (1 —t)ly +tlyyy or by —tdy | 1 —tgy
[12] exponential | (£;) 1, 1)t or £,p!, P ,te[0,1].

] 1 Pz

Balducci = ) - t+(1—t)pa

A function of the form +b is called a hyperbolic function.
Harmonic interpolation of the number of living is also called the
hyperbolic form of the number of living or
it satisfies the Balducci assumption.

Example 3.15. Using the life table in page 602 and harmonic interpolation, find:
(i) 0.75P80 (1) 2.25P80-

Solution: (i) Formulas: 1p,; = st and lpyy =

1
—— (|12
l; (1—15)E+t,_,;r1 ([12])
€m+t 1
=> Py = = (3.5)
bz (1—1) +t€fil
1 L ~ 0.95857
75P80 = : :
TP T 05 4 (075 ) 1= 075 + (0.75) B0
(ii) Formulas: t4spy = tPs - sPett and ¢py = 1,t+t%z/gz+l ot (1 5y (see (3.5)),
Or Py = K‘Zj*‘ and [12]: ((y4t = W) which do you prefer ?
@41
1 1
¢ 1-0.25) ;- +0.25 .1 1
225050 =~ = 10 e /53925 ~ 0.8737.
80 80 (1-o. 25) 715 + 0-25 1503

Example 3.16.

. : x| 80 | 81 | 82 | 83 | 84| 85| 86
Example 3.17. Consider the life table 0. 250 [ 217 161 107162 28| 0
Assuming harmonic interpolation calculate 280:§|.

Solution: Two ways:
(1) egoz) = J (t An) ey (B)dt. (2) ego3 = [y ipedt Which is better here ?

Formulas for 8803| = fon (pdt: 1pgy = Ezrt and by = ~—p——a, 0 <t < 1,

(-t g+t
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= — 1
fk<t<k+l thent—kel01]and lps = €m+k+(t—k) o (1*(tfk))e;uk (t*k)eﬁlkﬂ
( 1 :
Tz if 0<t<1,
= if 1 <t<2,
g0+t = 4 (1_(,:_1))%1#(,5_1)% if 1<
i <
[ (1=(t=2)) 77 +(t—2) 157 if 2<t<3,
’ﬁ if0<t<l e fo<t<l1
R N L
0= TR DR stz = T f1<e<
[ (1-(t-2)) B +(t-2) T2 if 2 <t <3, L e if2<t<3,

n 1
o 1
€80:3] = / tpzdt = / 250 550 250, 4
0 0 330 U5 — 350

2 3
+/ ! dt—l—/ ! dt
VB 0E -, Bre-a@-E T

1 1 u
— at= | =Y u=m
(/a—l—(t—c)b /u b
t

1 —c)b 1
n(a + g) c)b) as ~dz = Inz or (Inz) = 1/x).
x
0 2501 |1
°o In (_0 +75(217 m))
€80:3] = @ — 250
217 250 0
In (537 + (0~ DG —519) 7 In (61 + ¢~ 2 — ) |
161 — 217 1 107 ~ 161 2

Theorem 3.16. Under the Balducci assumption for yoy with 0 <t <1,

(i) Pz = 1 t)pz = 1 qz (56@ [12]). (1) gz = fi—t)qz
1—ps _ pe(l=ps) ge(1—Ga)
(10) Mot = PR, = 000 (i) fr) () = Gy = T e
Loyt 1 1 1
Proof. p, == = GO0/ttt — A0+l /oy (-0 +/ps
_ Pz _ 1— dx _ 1— dx _ 1— qx
I=tpe+t t+A-t)1—-q) t+0—-t)=(1-1)g 1-(1-1)q
a _ _ 1— x _ 17(1716) z7(17 Z) _ t x
(11) tx = 11— tPx = 1 - 1,(1:]75)% - 1,({],0% ) = 1,(1(1,15)%
d d D d d
ot = — —lmypy = ——In—————— = —In(t —t)py) = —In(pg + t(1 — py
(122)  pate e i Tt n(t + (1= )pe) = —n(ps + (1 = ps))

d qx qdx dz
=—1In(p; + tq,) = = = .
A B Ry PRl Sy s o

. L (1—pe (1=
(iv) fr@) () = thzptatt = (tf—((l—t])ijP = (13((1—&135)2‘

Skip the proofs of the rest theorems in this section.
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Theorem 3.17. Under the Balducci assumption, 1—tqz+t = (1 — t)q, t € [0, 1].
Under UDD ¢, = tq., t € [0,1];

€ [0,1].

Remark.

and under Exponentail interpolation, ¢p, = p., ¢

Theorem 3.18. Given t > 0, let k be the nonnegative integer such that k <t < k+ 1.
Under the Balducci assumption,

. _ k — 1—qk
(i) s(t) = E o = S(k)1—(1—(tq— E)ar
=to€(0,1)
.. ¢ k(1—pr
(i6) fx(t) = & ==
otk = 1=pz z 1—pa
(111) JT@) (t) = g: (1_(117_&11(;6))1()111%))2 = kDPzx - (1—(1p—(+tk—(k))](31i};>)z+k))2'

Theorem 3.19. Under the Balducci assumption for €y,

(Z) Lm = $lnpz (: gﬂ?éxjp

(i) &3 = 22l

(iii) Ty = Zk:f—l (= bués)

(iv) my = _pjnpl. (central death rate over (x,x + 1])
0 lpi]

(0) & = 350, =

z4+n—1 —Zk+1lnpk

(Ui) ea::ﬁ| = k=1 [

Skip §3.5.4.

3.5.4 Review of interpolations. For the previous interpolations, typically, we have

Interpolation | €,4¢ Dz Ly ;x;ﬂ

linear lp — dgt 1 —tq: ém+§w+l Hépz
(1 - t)&c + tgx—!—l

exponential 0y pfn pé 71%;;1 - 1?)2 Da
Inlyis = (1 —t)lnly + tinlyq

. 1 Pz —lot1lnp, —Pa 108 Pa

Balducci (1 t) o+t ZIH t+(1-t)pa 0z e

Zz-}—t (1 - t) + te el
From +p,, we can get
d
10 = 1= 1Pe, fr@)(l) = = 2o, pore = =2 Inps,  0<t< 1L

For the exponential and Balducci assumptions, it is more convenient to know how to derive
L, and gx:ﬂ than to trying remember the corresponding formulas.
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3.6 Select and ultimate tables

A select table is a mortality table for a group of people subject to a special circumstance
(disability, retirement, etc.). Usually, the cohort of people is given by a certain age.
Suppose that we start with £, lives of a certain cohort at time x.
The number of survivors at time ¢ is denoted by £,
llz44 1 # of lives at x + ¢ for _another cohort.

é[z]+t+n

Notations: npp4¢ = “layee 0 Y]+t

=1 = nPl]+ts Plaj+t = 1Pa)+t> Q)+t = 14[a]+¢ and

i , _ Ml beve b Gaen _
Pt Pt ba) Lo o Cla]4n—1 Ula] e
T | ) | et | Cae2 , . . ,
(4377958 823 | 768 | lugo="7 luaa=7? Llus="
A select table of three cohorts: A4 | 854 | 738 701 They all related to age 45.
45 | 723 | 687 667

A select and ultimate table displays the number of living using a select table for a
certain number of years and a standard life table when the elapsed time is bigger than this
number of years. The number of years such that the select table is used is called the select
period. A life table which does not use the select period is called an ultimate table, e.g.,

x | 80 | 81 | 82 | 83 | 84 | 85| 86 . C
7. 250 (207 (161 [ 107 |62 28 | 0 Suppose that the selection period is m.
ly) — # of living of a certain cohort selected at time x.
Uig]+¢ — #F of their survivors at time z + ¢.

U, — # of living at time z for the ultimate table.
In a select and ultimate table, {[;);x = ly4, for each & > m.
Suppose that select period is three years. Then, a select and ultimate life table has the form

2] | lap | Caj1 | Caja | bots | ©+3

Ll | et | Lpgee | 4

2 ﬁu XHL féiz U5 5 (e =67 s =61 lye=>7
3 | b1 | sler | fsie2 | b6 | 6

Example 3.18. Complete the following 2 tables using the select table:

T | la] | bafar | bolr2 | | 2 | Pla] | Pl ¢ [ 4 | dan
731958 823 | 768 | [43 73 |
il 8541 738 701 W and 1 Try yourselves now !

45| 723 | 687 667 45 49
Solution: Formulas: pp,; = z[g[]:]: and qz)4¢ = 1 — Pla)4e

AR R oty T

43 o= 43 | 1 —g&2 | 1 — &2

% ﬁ and B @ B} ﬁ

MR- R

5 | 703 637 O |1—%2 | 1— &7
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Example 3.19. Complete the table using the following select table: Skip Example 3.19!

T | G | Qa1 | Qe | ] | a1 | Gage2 | fages
351 0.013 | 0.012 | 0.011 35 | 1000
36 | 0.010 | 0.011 | 0.009 36 | 950
ion: S1— — loprenr
Solution: Formulas: 1 — g4 = Pla)+s Toree Hence
f[:v]+t+1 = f[x]+tp[x}+t - E[rHt(l q[x]+t)
x | L 14 14 14
T Pla] Plz]+1 Plz]+2 2] [ai:rl [x_]>+2 [gi:r?)
‘32 118 8115’ 11%%1121 11‘_8'(?01; 351000 | 987 | 975.156 | 964.429284
' ' ' 36 | 950 | 940.5 | 930.1545 | 921.7831095
14 35]+1 =/ 35]]9[35 (1000)(1 - 00].3) = 987,

Example 3.20.

U35)42 = {[35)41P[35)+

S

14
14

[ [
[ [
35]+3 = {[35]
[ [
[ [
[ [

36)+1 = {[36]P[36] = ( 50
36]+2 = £[36]+1P[36] +

1=

[
+2P[35]+

]

[

[

36]+3 — l 36]+2P[36]+

= (987)(1 — 0.012) = 975.156,
975.156)(1 — 0.011) = 964.429284,

= (

)(1 = 0.01) = 940.5,

= (940.5)(1 — 0.011) = 930.1545,
= (

930.1545)(1 — 0.009) = 921.7831095.

You are given the following entries extracted from a 2-year select-and-

2] | gy | Cagar | bat2 | T+ 2
. . |45 11235 | 1124 | 1039 | 47
ultimate mortality table: 46 | 1135 | 1025 | 978 48
47 | 1012 | 996 | 965 49
] | ) | Q)1 | Gor2 | T +2
. 45 47
(i) Complete the table 16 48
A7 — 49
(ii) Find 2])[47], Qp[46]+1 and 2047 -
Solution: (i) Formula: gz =1— &Zl
] | 4] | Qpejs1 | Qo2 | @ +2 [z] Uol | Gaier | Ges2 | T 2
46| - | — | | | 48 16| 1- g |1 | 1-5R | 48
47| = | — — 49 47 |1 - 35 | 1 — 58 - 49

(i) Find 2ppr), 2pue+1 and 2paz. Formula: 4p, =

fractions.

Ll

7. Exercise, just write down the
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_ Alag _ 965
Qp[47} = Tun — 1012 ~ 0.954
_ _flag 965
Z[46]+1 1025

_ Ly _ 965 .
2Pa7 = 7,2 = 1039 ~ 0.929

2D[46]+1 ~ 0.941 Check yourself and hand in after class.

Example 3.21. You are given the following entries extracted from a 2-year
2] | qe] | Qs | et | T +2
45 1 0.009 | 0.008 | 0.007 | 47
46 | 0.008 | 0.006 | 0.005 | 48

select—and—ultimate mortality table:

47 1 0.004 | 0.003 — 49
[z] E[m] g[x]—&-l lpyo | © 42
45 | 10000 47
Complete the table A6 48
47 49

Solution: Relation between ¢, and ¢, ?
Formula: 1 — g, = py = loq1/le => lop1 =Lz(1 —qz) (=) or by =Lopp1/(1—qz) ().

2] | ) | a1 | lav2 |2+ 2
45 | 10000 — — 47
? .
Why need 2 ? Flow: A6 - - ! A8
47 — — d 49

a7 = gz 1(1 = qus)1) = 9910(1 — 0.008) = 9830.72,
Lag = Ly7(1 — qa7) = 9830.72(1 — 0.007) = 9761.90496,
m 9761.90496
0 = = = 0820.82994,
LT (L = qug) (1 0.006)
Ca6)41 9820.82994
b = — = 9900.030181,
U (1~ qug) (1 —0.008)
a9 = Lag(1 — qug) = 9761.90496(1 — 0.005) = 9713.095435,
oy B {49 _ 9713.095435
W (U= qur) (11— 0.003)

lum1 9742.322402

= 9742.322402,

Uy = = = 9781.448195.
T T gun) — (1—0.004)
[Z‘] f[x] g[m]—kl lyqio x4+ 2
45 10000 9910 9830.72 47

Henee: 46 1 9900.030181 | 9820.82004 | 976190496 | 48

47 | 9781.448195 | 9742.322402 | 9713.095435 | 49
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Example 3.22. You are given the following entries extracted from a 3—year select mortality

@ |l | lagr | lagae | lovs | T+3
40 | 96489 | 96319 | 96084 | 95906 43

41 | 96312 | 96164 | 95998 | 95667 | 44 (@) e
table: | 42 | 96157 | 95954 | 95265 | 95406 | 45 | Compute (b) €[42] 24|
43 | 95895 | 95480 | 95243 | 95122 | 46 (©)  eua

44 | 98743 | 96812 | 95012 | 94813 | 47
45 | 97239 | 95123 | 94753 | 94479 | 48

Solution: Formulas: €. = Zzzl kP[z] and Pz = E[g[%]k

Liygipr | Lagr2 | Laags | laaga
aq) Claq) aq) lagy

(8) €(gq):2) = Paa) + 2P[a4) + 3P[aa] + 4P[aa] =

] |l | gt | Cage2 | Lot |7 +3
44 | 98743 | 96812 | 95012 | 94813 47

45 94479 | 48
96812 4 95012 + 94813 + 94479
Claq)d) = 08743 = 3.859676129.
Lo ly2+4 Ly2 Ly
(b) Claz1+2:4 = Pl2)+2 t 2P[42])+2 - 3P[42)+2 + 4Pj2)+2 = 5[42]?2 4[12]12 6[42?;52 5[12]162'

2] | g | lpagr | Cpage2 | lows |2 +3
42 95265 | 95406 45
43 95122 | 46
44 94813 47
45 94479 48

95406 95122 94813 94479

o — 3.986983677.
€laz+2:4] 95265+ 95265+ 05265 | 95265

£44+1 + £44+2 + e44+3 + E44+4

(¢) €qsq) = Paa + 2Pa4 + 3Da4 + 4paa =

La4 La4 las las °
Zx—|—3 T+ 3
95667 44
95406 45 95406+95122+4+94813-+94479
95122 46 44 = +951224 91813+ — 3.9702300609.
94813 47
94479 48

Quiz on Friday of next week: 450: [1]-[12], [16]
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Skip the rest ! /, = # of individuals alive at age z.
tdy = Uy — Uyyy = # of individuals which died in (z,z + t].
dy = 1dy = Ly — Lyy1.
T, = Emgx = fooo ly1¢dt (# Ty in other sections)
= E(# of years lived beyong age x by the cohort group with ly members).

Ly = loeym) = Ty — Toin-

s(x) = (é—z,
Estimators based on life table:
b — ¢
Fx(e) = ==,
_ gaz—i—t td_x % | _ mdcc—i—n
tPx ‘. , tdx ‘. y Qx az7 n|mdzx ‘.
d
pla) = = log((a),
0 n
o gx-i-t o / gm—&—t
€r = dt, e, = dt,
x /0 ‘. x:7| ; (s
0 n
gw—f—k g:c—i—k
€x = Z , €x ﬁ‘ -
k=1 b k=1 b
o T, 2 [*T,dy
e = BIT@)] = 75 Bl(T())] = ===
o o

d d
T — L m.. = nwr m.. — _x
T kz:; ks nilty an, x Lx,
0 z+n—1
2 = k:mLk o — k=x Lk
: o ly
Interpolation | €1+ Da L.
UbD by + t(le1 — C) 1—tg, | Gl
exponential | £,pt = (€)' (Cpi1)t | DL _lggpz
Balducci 1 Px —l, 41108 ps
(1—t) g+t t+(1—t)ps &

L Zz+1

where t € [0, 1]

dx

. — G _ o 1
UDD.p%th—m,,mx—@,ex—eiji.

exponential : py ¢y = —log py, my = —log py.
Bald . (t — Pz (1—p2) — %
alducci @ fr(y) ) Tra—Dp? e = polegpe
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#5 (#35, Exam M, Fall 2005) An actuary for a medical device manufacturer initially models
the failure time for a particular device with an exponential distribution with mean 4 years.
This distribution is replaced with a spliced model whose density function:

(i) is uniform over [0, 3]

(ii) is proportional to the initial modeled density function after 3 years

(iii) is continuous

Calculate the probability of failure in the first 3 years under the revised distribution.
(A)0.43 (B)0.45 (C)047 (D)0.49 (E)0.51

—x/4

Solution. (A) Since the density of the exponential with mean four is 4e~*/%, the density has

the form
f() = ae~*/* if 3 <z (from (ii)),
YT \ae it o <z <3 (from (i) and (ii7)),

where we have used that f is continuous. Since

o0 3 0o
1= / fx)de = / ae™?/* dx +/ ae”* dx = 3ae™3/* + ade 3/ = Tae 3/,
3/

e 4
= S—. Hence,

f(x){% ito<aw<3,

3/4 .
eTe_“”/‘l if 3 < x,

and P{X <3} = 2 = 0.4285714286.
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CHAPTER 4

Life Insurance

4.1 Introduction to life insurance.

We will consider a cashflow of contingent payments, i.e. the payments depend on uncer-
tain events modeled as a random variable. We call such cashflow the contingent cashflow.

Definition 4.1. The mean of the present value at the time of purchase of a cashflow is
called its actuarial present value (APV) of the cashflow of payments,
its expected present value, or
its net single premium.

Recall that under compound interest: v = (144)"' =1 —d = e,

7 is the annual effective rate of interest,

v is the annual discount factor,

d is the annual discount rate,

0 is the force of interest.
In general, for ¢t > 0, let v; be the t—year discount factor,

the force of interest is d; = —%lnvt (similar to pu(t) = —%lnSx(t))

vy = e~ Jo s ds (similar to Sx(t) = e~ Jo plx)dzy
Under compound interest, v; = v* = (1 +1)7%, and § = 6 = In(1 + i) = —Inv.
Otherwise, v; can be different.

Example 4.1. On January 1, 2000, John entered a whole life insurance contract.
This contract pays a death benefit of $50,000 at the end of the year of death.
On June 13, 2009, John died. The annual effective rate of interest is 6%.
Calculate the present value of the benefit payment at the time of the issue of this contract.

Solution: Time of death: 6/13/2009. Time of payment: 12/21/2009, treated as 1/1/2010.
Present value= bv'. Time of present value: 1/1/2000.

The present value is bv! = (50, OOO)(m)lo ~ 27,919.79.

Example 4.2. John pays for its electric bill at the end of each month. John estimates that
its electric bill X; ~ U[100,300]. Assume that John is going to pay his bill precisely at the
end of each month. Find the APV of the total amount which John will pay in electricity in the
next 12 months if i = 6%.

Solution: X1,..., X9 are the amounts in John’s electric bill for the next 12 months. So
the total amount is Z]lil X,
but their present values is Z = Zjlil Xt = Z;il X012 where v = 1/(1 +1i) = 1/1.06.

The APV of Z is E(Z) = E {Z}il Xjuj/m] - {Z;il E(Xj)vj/lz] = BX Y2, p =2
Thus B(Z) = 1004300, 102 ~ 2325.76 as Y1) pl = piL.

n=12,p=0v1/12
83
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Example 4.3.

In this chapter, we consider an insurance policy on a certain entity.
Most of the times, the considered entity is (x), a live aged .
Let T be the age-at—death of this entity.
The policyholder receives a payment at a certain time in the future.
Both the amount of the payment and the payment date depend on T
Let b; be the benefit payment made when failure happens at time t.
Let v¢ be the discount factor when failure happens at time t.
The present value of the benefit payment is bpvp and is denoted by {Z = bror %f r %s ct's,
Z = bpvp if T is discrete.

vy = v! if the benefit payment is made at the time of death and compound interest is assumed.

In this section, we will see different insurance policies. Each policy has a different (b, vy),
t > 0. The theory in this section applies to life insurance as well as insurance related with the
time at failure of inanimate objects.

Example 4.4. An insurance guarantees a payment at the time of failure of a machine.
(i) The age—at—failure T of this machine satisfies T ~ U(0,40).
(ii) i = 7%.
(iii) The payment is by = (20000)(1.04)%.
Find the mean and the SD of the present value random variable for this insurance.

Solution: The present value random variable of the payment benefit is

_ 1.04
Z = brop = (20000)(1.04)7(1.07)~7 = (20000) (1 07) “f (7).
Possible formulas: E(Z f t fZ f S( f g(t dt Which to choose ?
E[Z)=E(g(T)) = [g(t fT dt wherefT()—%,OgtSZLO.
40 40 t t
_ 1.04\* 1 20000 1.04 a
E[Z] = 2 —dt = —— —— ) dt tdt = — =7
2] /0 (20000) (1 07) 0", (57) (/a g T ¢
40In(a) |, 40111(1.04/1.07) 0 o

40 2 40 2 2 t
2 5 1.04) 1 20000 (1.04) : : a
ElZ| = 2 — —dt= — dt dt = — =7
7] /0 (20000) (1 07/) 40 o 40 \107)) (] a g T

20000 (%) |*
T 40In((1.04/1.07)2) 0

=1/ Var(Z) = \/157748208.7 — (11945.07)2 ~ 3881.19.

Example 4.5. A four—year warranty on a digital television will
pay $400(5 — k) if the television breaks during the k—th year, k =1,... 4.
The payment will be paid at the end of the year.

~ 157748208.7,
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The effective annual discount rate is d = 4%.

The survival function s(x) = %, x> 0.

Find the actuarial present value of this warranty benefit.

Solution: 7' is the time to break of the TV. The present value of the benefit payment is
(4.1) Z = bpop = 400(5 — [Tl = 400(5 — K)v¥, where K = [T, i.e.,
(b, v) = (400(5 — k), v*) = (400(5— k), (1 —d)*) if k = [t] (i.e., t € (k—1,k]), k € {1,2,3,4}.

APV = B(2) = "k k) = [ Satt)ir= [ o(o) frlaar = 3 a0 g
B S~~~ S~~~ S~ ; SN~~~

=7 (1) =7 (2) =7 (3) =7 (4)

Given Sp(z) = s(z) = %, x > 0, which among the four to choose?

Methods (1) and (2): not convenient.

4 k

(3) E(Z) = E(400(5 — [T])v/T1) = / 4005 — [t))o! fr(t)dt = / 400(5 — k)o® fp(t)dt
k=1 k—1
4 4
(4) B(Z) =) _glk) fr(k) =Y bpo"P{k— 1< T <k}
k=1 k=1
. . 103
=) 400(5 — k)o*(s(k — 1) = s(k)) s(z) = EESTOL
k=1
! 1 |
:Z;4m®_kwﬁwuk—l+mﬁ_Kk+mﬁ] (v=1-d)
—400(5 — 1)(0.96) ((110(%2 - (11+001%)3) +400(5 — 2)(0.96)° ( (11+001%)3 - (Qlf(i%)?))

1000 1000 1000 1000
_+mm5_$m9®3(@+1m3_(&+mﬁ)_“mm5_®w9®4(@+¢m3_(¢+mﬁ)

~712.14.

4.2 Payments paid at the end of the year of death.
4.2.1 Whole life insurance.

Definition 4.2. A policy is called a whole life policy if it pays a fized amount, called the
face value or death benefit, after the death of the policyholder.

Theorem 4.1.

The payment in a whole life insurance can be paid at different times. In this section, we
consider the situation when the face value is paid at the end of the year of death.



86 CHAPTER 4. LIFE INSURANCE

An insurer offering life insurance takes a liability. It is of interest to know the amount of
this liability.

Definition 4.3. The present value at time of issue of the death benefit payment of a unit
whole life insurance payable at the end of the year of the death is denoted by Z,. Its APV is
denoted by A, also called the premium. The APV of a contingent contract is called the net
single premium (# A;).

[14] Z, = v& where K, = [T(x)]. Ay = E[Z,] = E[v’~]

and v“~* < A, <wv, where w is the terminal age of the population.

The insurer would like that a policy holder will die as late as possible. In this way, the
present value of the death benefit is low. The whole life insurance Z = bpvp is ar.v..
An insurer may estimate Z, using its APV (= E(Z)).

If 2 and w are integers, Z, is a discrete random variable taking the values v, v?, ..., v* 7.
The model Z = bpvp applies with by = b and vy = oltl,
Or use the model Z = bgvg = bypjvp) with by = b and vy, = vF, where k =1,2, ...

. k 1 2 3
Example 4.6. Let i = 5% and P{K, —F | 02| 0.5 0.5

(2) Find Ay (i.e., E(Zm)) and (3) Var(Zy).
) fz, = K

(1) Find fz, and Sz,

Solution:

(1 =
If 7, = g(K,), P(Z :Z (Kp=k). Qig=77
k 1 2 3
P{K, = k} 0.2 0.3 0.5 t 1.05° 1 [ 1.0572[1.0573 | < 1.0573
Zy=0v8=t| ol v? v3 fz. @) [ 0.2 0.3 0.5 0
t 1.0571 | 1.0572 | 1.0573 Sz ()| 0.8 0.5 0.0 0 ?
fz.(t) ? ? ? Sz (t) 0.0 0.2 0.5 1 ?
Sz (t) ? ? ?

(2) Formula: 3 methods: A, = >, v*fx, (k) = E(Z;) =Y, 2fz.(2) = f Sy, (t)dt.
Which method is better to compute both E(Z;) and V(Z;) ?

Ay = (1.05)71(0.2) + (1.05)>(0.3) +(1.05)7(0.5) = 0.8945038333 i it Method 1 or 2 ?

1.057 1.05™ 1.05™
=/ 1dt+f 055 o5dt+f o5 0.2dt (Method 3).

=1-(1.0573—0)+0.5(1.0572 — 1.0573) + 0.2(1.05" — 1.0572).
(3) E[Z2] = >, 2 f2,(t) = (1.05)7%(0.2) + (1.05)74(0.3) + (1.05)5(0.5) = 0.8013243364,

Var(Z,) = E[Z?%] — (E[Z,])? = 0.8013243364 — (0.8945038333)2 = 0.001187228612.
Example 4.7.

Example 4.8.
Quiz on Friday : 447: [6]-20], 450: [1]-[12], [14](first 2 lines), [16]
Notations: Z, = v, A, = Ay(v) = BE(vfe).

MAy = B(Z) (= B() = 30 0" fie, (K)).
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Formula: 24, = E(Z2) (= E(v*=) =Y, v®F fi, (k) = Az (v?)).

Recall under compound interest:
7 is the annual effective rate of interest,
=(1+i)"'=1—-d=e is the annual discount factor and
d is the annual discount rate.
0 =In(1 + i) = —Inw, the force of interest.

Remark If 2A, (= E(Z2)) is written as a function of notations 6, i or d, then
Ay = Az(6) and 24, = A,(20).
11) Ay = A (i) and 24, = A (i(2 4 14)).
i) Ay = Ay(d) and 24, = A, (d(2 — d)).
Ay = A(v) and 24, = A(v?) (which of them is easier to remember ?)

x| 80| 81 | 82 | 83 | 84| 85| 86
Cp || 250 | 217 | 161 | 107 | 62| 28| 0O
An 80-year old buys a whole life policy insurance which will pay $50000 at the end of the year
of his death. Suppose that i = 6.5%.

(i) Find the actuarial present value of this life insurance.

(71) Skip (ii).

(7i) Find the probability that the APV of the life insurance is adequate to cover this insurance.
(iv) An insurance company offers this life insurance to 250 80-year old individuals. How much
should each policyholder pay so that the insurer has a probability of 1% that the present value
of these 250 policies exceed the total premiums received?

Solution: (i) Letting Z = bZ (b=7), find A = E( ).

Example 4.9. Consider the life table

Formula: Z, = v+ A, = E(v Zk 1kaK Zk: 1” k—1|qz-
(w+hk—1)—sz+k) ¢ ¢ 2
s(x —1) —s(x i1 — Lotk
k:—l‘qg: = — kol 2tE — k—1Px " dx+k—1 = Hpm+j Qe+k—1 [8]
s(x) Cy -
Jj=0
=k 1Pz — kPz = kGz — k—1G=- [3] Which to choose ?
x 80 | 81 | 82 | 83 | 84 | 85| &6
potlge = fhless o oot [ 250 | 217 | 161 | 107 | 62 | 28 | 0
by —lpy1=dy || 33 | 56 | 54 | 45 |34 28| O

dgo+k—1 _  1ds0 cdss  7dsg
Ago = F =v' =4 0 = 40240
Z Clso (3o (30 (30

28

+ (1.065)7° 50

—(1.065) "1 + (1.065) 6

~0.8162.

56
+ (1.065)’2250 (1.065) 73— + (1.065) 4

250 250 250 250

Hence, the APV for this insurance is A = bAgg =~ (50000)(0.8162) == 40810.
(iii) P(A is adequate to cover the insurance)="7

P(A > 500007,) A ~ 40810 in (i) is adequate if
A > 500002,
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<=> 40810 > (50000)(1.065) %
<=> 1n(40810/50000) > —K,In(1.065)

1n(40810/50000)
>K >Ww3225? OI‘K < 3.225 7

The probablhty that the APV is adequate is
P(A > 500007,) = P{K, > 3.225} — (P{K >4} IP’{K >3} P{T(x ) >3} P{T(x ) > 3}>

= 5p, = 2 = 10T — 0,428, What is its implication ?

P(Z < E(Z)) < 0.5, mean<median, A is far from enough.
(iv) The insurer offers a whole life insurance to n lives aged x (= 80) with a benefit payment
of b paid at the end of the year of death and a price P (for purchasing the insurance).
Let Z;1,...,Zzn be the present values per unit of their benefit payments.

Let W = b3 ") Z,j/n. By the CLT or formulac [22] in 447 (Fy(t) ~ ®(Z4))

P(W < P)=~ @(%ﬂgw)) = 0.99 = ®(20.01) where & is the cdf of N(0,1),

P—E(W) — 2001

ow

—~ P — E(W)+ 2010, where E(W) = E [b S Zuy/n| =bA,  (E(Y) = E(Y)), and

=>

n
0%, =Var(W) = Var (bz Z%j/n) = b’V (Z,)/n 027 =o?/n
j=1

=b*(*A, — A2)/n
d 33 56
2 2 2k 80+k 1 -2 —4
A, =E(Z2?) = (1.065 1.065) "4 —
v ( Z (30 = ) 250 +( ) 250
28
1.065 1.065 1.065) 10— 1 (1.065) 12— ~ 0.672
+ )™ 250 + ) 250 + ) 550 ( ) 250

Hence, 03, = 50000%(0.6723 — 0.8162%)/250. Each policyholder should pay
P = BE(W)+ 200w = 40809.50 +2.326,/500002(0.6723 — 0.81622) /250 ~ 41388 v.s. 50000.

20.05 20.025 20.01 20.005
1.64 1.96 233 258

Ifi>0,0< A; <1. The following is the table of Ayg, using the life table in page 604.
i 2% 3% 4% 5% 6% ™% 8%
Aygo || 0.4658 0.3286 0.2373 0.1754 0.1326 0.1026 0.0812

Table D.2 (see page 605) shows A, and 2A, using the life table for the total population of
United States in 2004 and i = 6%.

Common critical values:

Az lina.

Example 4.10. An insurer issues a whole life insurance to 100 lives age 40 which pays
$20000 at the end of the year of their death. i = 0.06. Mortality follows the life table for
the USA population in 2004 (see pages 602-605). The insurer has a fund with an amount of
$300,000 of dollars to paid for these 100 life insurances. Calculate the probability that this
fund is not enough to cover the payments of these 100 life insurances.

100

Solution: Let Z = Z 1(20000) Z40,j. Zao,j’s are ii.d. from Zy = v B(Zy) = Ago
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P{Z > 300000} =
R P72 0) 2 8(5E) > PUT <00~ BP538) = P07 2 0 920

noy 0z
[ ] b A40 and UZ = b2 (2A40 — (A40) )
=7 =7 =2

From the life table D.2 (p.603), A4 = 0.13264232 and 2449 = E(Z3,) = 0.03648695. Then

E[Z] = nbE(Z4) = (100)(20000)(0.13264232) = 265284.64,
Var(Zy) = 0 03648695 — (0.13264232) = 0.01889296495,
Var(Z) = nb*V (Zso) = 100(20000)(0.01889296495) = 755718598,

The probability that the fund is not enough to cover the payments is
300000 — 265284.64
V755718598

Example 4.11. If the mortality of (x) is given by

k 0 1 2 3 |4
Pz+k || 0.05 | 0.01 | 0.005 | 0.001 | O

P{Z > 300000} ~ 1 — ®(

)~ 1 — ®(1.26) ~ 0.1038.

calculate Ay if i = 7.5%.

Solution: A, = E(v Zk 1 kaK (k), where v = %ﬂ fr, (k) = k—19z =
k-1 k by ly k=2 i
s(z+ S()x) s@@+k) _ Lotr Zz 1 Dr Qo1 = (szo px+j) Jz+k—1 which to choose?

o0 k—2
Ap = ka <H px+j> ¢r+k—1 (what happens to k=1 7)

k=1 §>0
=Uqy + UQPxQx—l-l + ngmpm+IQx+2 + U4pmpm+1p:c+2%c+3 + U5pxp:c+1pm+2pw+3(h+4
+ Uﬁpxpz+1px+2p1:+3 Pr+a Qs+ prsare dif ferent
=0
=(1.075)71(0.95) + (1.075)72(0.05)(0.99) + (1.075)3(0.05)(0.01)(0.995)
+ (1.075)74(0.05)(0.01)(0.005)(0.999) + (1.075)>(0.05)(0.01)(0.005)(0.001)(1) ~ 0.9270.

Theorem 4.2.

Example 4.12. Rose is 40 years old. She buys a whole life policy insurance which will
pay $200000 at the end of the year of her death. Suppose that the de Moivre model holds with
terminal age 120. Find the mean and the standard deviation of the present value of this life
insurance under the annual effective rate of interest of 10%.

Solution: Z = bZ,, Z, = vi b= 200,000 E(Z) 7oy ="
O’Z:bUZz. O’% 2A —A2 Ax(’lj): Zk 11) fK Zk 1U k— 1]qx

k—2
sfe+k—1)—s(z+k lovi1— Uy
fre, (k) = ( 5()33> ek _ L 16 e 1Pe ok = (pr—l—j) Qoth-1
’ >0
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Which to choose for fx (k) ?

w—T w—x
ps(x+k—1)—s(z+k) po 1 1 — v
Aw(v)zzv S(J}) e v w_x:U 1_U w—x' (J}7w7’l]):?
k=1 ~~ k=1
=(w—z)/w
1 _ (,UQ)IU—I‘ 1
2 2
Ay = . Why??
o =) 1—(?) w-—=x Y
S B | B
Ay = v-75 w*$|v:%7 w=120, 1=40 — 0.12 and
2 o 1—p®~% 1 B
Ao = vﬁmh:(i)i w=120, z=10 — 000

1.1

The actuarial present value of this life insurance is E(Z) = bAyp ~ 24987.80 (b = 200000).
oz =b(2A, — (A,)?)Y/? ~ 41911.36.

Theorem 4.3. (Iterative formula for the APV of a discrete whole life insurance) For each
v >0, Ay = vqz + vprApi1.

Proof. (Skip the proof). A, =37, v* 11|
= UGz + 220:2 'Ukkfl‘%c

= Uqz + 22022 Ukpm : k—2|qgc+1 Formula [8]3 leac = Pz - k—1|Qm+1
_ 0 k—1

= Vqy + UDy Zk—lzl v (k—l)—1|%c+1

= Vqy + UDy Z;X;l U]j—1|%c+1 Jj=k—-1

= vqy + vpr Azt (which is Theorem 4.3 or formula [14]).

(1—ps) G
S—p.  GHi(2+

it, as it is valid only for p,4r = p.

In particular, 24, = 7 It is better to derive Eq.(1) rather than memorizing

Theorem 4.4. Skip! Suppose that for each k =1,2,..., ppir = pz. Then,

1—ps qx 1 —ps qx
A, = = - and A, = = , 1
Tl i foE e et(+gm-1 @

Example 4.13. Jess and Jane buy a whole life policy insurance on the day of their birth-
days. Both policies will pay $50000 at the end of the year of death. Jess is 45 years old and
the net single premium of her insurance is $25000. Jane is 44 years old and the net single
premium of her insurance is $23702. Suppose that i = 0.06. Find the probability that a 44—year
old will die within one year.

Solution: Given bA4y and bAys, quqa = 7

Ay = vqy + vprApia (which is formula [14] or Theorem 4.3).

bAys = 25000, bAgy = 23702, b = 50000. Agq = 23505, Ags = 25008, v = 1% and i = 0.06.
Ay = vqy + U(l - Qx>Ax+1 = %:U(l - Aaz+1) +vAgp =>

qug = ﬁ ~ 0.0049648
v 1 A44~N.«0.47,A45=0.5

~1.06°

Example 4.14. Jane is 30 years old. She buys a whole life policy insurance which will pay
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$20000 at the end of the year of her death. Suppose that p, = 0.9, for each x > 0, and i = 5%.

Find the APV of this life insurance and its variance.

Solution: Z =0Z,. The APV A = 200004,
Key is A;(v) =?  Formula: A, = > 7, kaK

x

+k—1 +k L —s k
fo(k:) = dt: s()a:) 2(ztk) = = (} = k—1Pz " Qz+k—-1 = <Hj>0 px+j) z+k—1

) gz why ?

Which to choose ?

00 k—2 00 k—2
:ka (sz+j> Qr+k—1 = ka (Hp:c

k=1 7>0 k=1 §>0

V(Z) =

V(bZy) = b*V(Zy) ?

Zk 127 k— 1’(1:67 and

— kaplé 2411 —p)? or = kap§_2(1 — p2)?

o0

k=1

_l—pe i@px)kl —Pr i(t)k _1ope, 1= ()

2

_ 1 — pz vpz(1 — (vpz)™)

Dz 1 Px 1 Pz 1—t t=vps Px I —vpy
1-— 1— 1-—
YR b O el = Pr _ % _ A, (whichis Th 4.4)
1 —wpy %—pay 14+1—pg Qe + 1
Q: Which of 4, = (=2 — 1_1;1 = % do you prefer ?
1 —
2143: :Am(UQ) = Pz
22 Pz
Since b = 20000, the actuarial present value is
APV =bA (20000) L Pa ~ 13333
30 = I Ip=09.0=1/105 ~ :
l—p
24 2y _ x ~
Ag() = Am(v ) == Tpx pz:0.9,v:1/1.052 ~~ 0.493827.
v

0% = b (2A, — (Ap)?) = 20000%(2A,) —

Example 4.15.
Example 4.16.

Definition 4.4.

(bA;)? = 19761991.

Example 4.17. An actuary models the future lifetime of (30) as follows. The actuary clas-
sifies lives according with health into 3 groups: good, average and poor health. The probabilities
of belonging to a given group are given by the following table. Individuals for the same group
have the same constant force of mortality. The force of mortality for each group is given in

the following table The annual effective rate of interest is i = 7.5%. Find Ay and Var(Zy).

Group in health | good | average | poor
Probability 0.1 0.3 0.6
Force of mortality | 0.01 0.05 0.1
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1
Solution: [5]: For constant force of mortality u, = ¢, py = e~ Jo made — o—c. fhy =7

[14] Ay = E<UKx) = 220:1 Ukk—l\%ta Ay = Agr1 Why 7 tPx+1 = tPzx-
vqy _ 1—pg

[14] Ay = vqy + VprAst1 = Vg + VP Ay yields Ay = Tops = Tops O

m m 1—p, 1—e# N

Ay = Ap(v™) = T = 0 (Can we use it directly here ?)(3)
o px om — €

We introduce a new r.v. Y to denote the health status of an insuree.

2 if an insuree is in good health, 2 1 0
Y =<1 if an insuree is in average health, fy(j) 0.1 | 0.3 |0.6

0 if an insuree is in poor health, Hj 0.01 ]0.05] 0.1

Using the double expectation theorem,
2 . .
MAy = EZ) = E[E[Z])Y)) = i fy(DEZPY =4, m=7?

good 1— Dz,2 1—e 001
E[Zy|Y = 2] = A8 — PRy = 0.11712945 by (3),
“pes L
E[Z2]Y = 2] = 24800 — Lopep | 1-e®0 ) eooass601
ElZ,| I= L —peo (1075)2 — =001 '
. 1 o px,l 1 — 6_0'05
E[Z,]Y = 1] = Auverage _ T = T 0.3940401449,
v 5
E[Z2|Y = 1] = 2Average _ 1~ 9386087633
- (1.075)2 — ¢—005 — ‘
1 — —0.1
E[Zy|Y = 0] = APoor = er_m — 0.5592450518,
2 2 gpoor __ 11— 670.1 o
E[Z2]Y = 0] = 2APoor — oy — oot = 03794549205
. — € .

Ay = E[Zy] =E[E[Z;|Y]]
=E[Z,|Y = 2]P{Y =2} + E[Z,|Y = 1|P{Y = 1} + E[Z,]Y = 0]P{Y = 0}
~(0.1)(0.1171) 4 (0.3)(0.3940) + (0.6)(0.5592) ~ 0.3053,
A, = E[Z7) =E[E[Z7|Y)]
EB[Z2|Y = 2]P{Y =2} + E[Z2|Y = 1]P{Y =1} + E[Z%]Y = 0|P{Y = 0}
~(0.1)(0.0601) 4 (0.3)(0.2386) + (0.6)(0.3795) ~ 0.4480,
) =

Var(Z,) = 2A, — (A)? =~ 0.448 — (0.3053)? ~ 0.0886.

4.2.2 n—year term life insurance.

Definition 4.5. The n—th term life insurance policy (or n—year term life insurance):
It pays a face value b if T'(x) < n (the insured dies within n years of the issue of the policy).

Definition 4.6. The present value and the APV of an n-year term life insurance policy
which pays a unit face value at the end of the year of the death is denoted by Z;:j and AL _

x:m)’
respectively (Al |—A ‘( v) = E[Z;;m])
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v if K, <,

Definition 4.7. Z!_ = v [(K, <n) = .
| 0 if K, > n.

The model Z = byvy, applies with b, = bl (K, < n) and v, = o*, k> 1.

3 types of problems
(1) A=bAL, =7
(2) 0% =b?V (Z;:m) =7
(3) p, or n, or P(Z < p) ? (such that P(Z < p) = @(%) > 0.99 or 0.95.)
Theorem 4.5. ™AL l = = Al (™) = E[( xn| =S (W™E g
Example 4.18. Let i = 0.05, ¢, = 0.05 and gz41 = 0.02. Find A;m and Var(Z;é').

Solution: Formulas: Ai:m = B I(K, <n))=>0_ % fr (k) = vfk, (1)+0? fk,(2).

fr, (k) = s(z—|—k—81()m—)s(oc+k) = €z+k7[};€z+k = k—1Pz "Qo+k-1 = (Hfzg px—f—j) qz+k—1 Which one?
Ai 2‘( v) =vfg, (1) +v fK (2) = vgs +02p1:%c+1 why ?
(1 05) (0. 05) (1. 05)—2(1 —0.05)(0.02) = 0.06485260771,
2Ai 3| ~ 2‘('02) =02 4z +v prm+1
=(1.05)72(0.05) + (1.05)~*(1 — 0.05)(0.02) = 0.06098282094,

2
Var(Z! ) =2AL, (A1 |> ~ 0.06098 — (0.06485)2 ~ 0.0568.

x || 80| 81| 82 | 83 | 84| 85| 86
Uy || 250 | 217 | 161 | 107 | 62| 28| 0

An 80-year old buys a three—year term life policy insurance which will pay $50000 at the end
of the year of his death. Suppose that i = 6.5%.

Example 4.19. Consider the life table

(i) Find the APV and the standard deviation of the present value of this life insurance.
(i1) Find the probability that the APV of this life insurance is adequate to cover it.

(11i) Find the probability that the present value of this life insurance exceeds one standard
deviation to its APV.

Solution: (i) The APV of this life insurance Z = o+ I(K, <n)is A = (50000)14;;0 3
Formula: Ai’:m v) =Y % fr (k), 07 = 50000\/2A80:§| — A30:§| and

+k—1 +k lptro—1—Vy k—2 .
fr, (k) = s(z ()x)s(a: ) — Lutk D Qb1 = (szo px_|_j) Gr+k—1 which one?

T
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3
I Z o l304k—1 — l80+k
80:3] —
k=1

{0
250 — 217 217 — 161 161 — 107
-1 —2 -3
=(1. LG 4+ — = 0.5002507
(1.065) 5g T (1.065) 5g— + (1.065) o
250 — 217 217 — 161 161 — 107
2 41 1 2 -2 —4 —6
o =AL (v?) = (1. (. (1L — —10.4385316
Agg =Agoz (%) = (1.065) 50— T (1.065) 5sg— T (1.065) o :
_ 1 _
A =(50000)Ag, 5 = 25012.53726.
o7 =500001/0.4385316 — 0.50025072 = 21695.66542.
(ii) The probability that 25012.53726 is adequate is
P(B) :IP’{(50000)Z§O;§| < 25012.53726}
_ 1
=P{Zy)3 < 25012.53726/50000}
=IP{(1.065) =1 (K, < 3) < 25012.53726/50000} = P(B)
=P{B, K, <3} +P{B, K, > 3} B = {(1.065) %= I(K, < 3) < 25012.5/50000}

=P{(1.065) %= < 25012.53726/50000, K, < 3} + P{0 < 25012.53726,/50000, K, > 3}??
—P{—K,In(1.065) < In(25012.53726/50000), K, < 3} + P{K, > 3}
In(25012.53726,/50000)

=P{K, > — K, < P{K, >3
Ko = In(1.065) Ko <3)+ PG > 3)
=P{K, >10.999, K, < 3} + P{K, > 3}
lars 107
=P{T: > 3} = spa = == | os0 = 555 = 0428

(iit) P(U) = P(Z > A+ 07) = P{(50000)Z4 5 > 25012.53726 + 21695.66542}

—=IP{(50000)(1.065) "% I(K, < 3) > 46708.20268}

=P{U, K, < 3)+P{(U,K; > 3)

—=P{(50000)(1.065) "%+ > 46708.20268, K, < 3} + P{0 > 46708.20268, K, > 3}
In(46708.20268,/50000)

B In(1.065)

—P{K, < 1.081435921, K, < 3}

=P{K, <1} = 7?

=P(T(z) <1) =gz =1-ps

lrpiq 217
=1 - == _¢qg=1——"=0.132.
0, o= 250
Theorem 4.6.

Corollary 4.1.
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Example 4.20. If§ = 0.04 and (x) has force of mortality i = 0.03, (A Var(Z 10|)) =7

Sk

Solution: Formulae: Z;:m = vl (K, <n), AL (v) =370 o7 f,(k), and
s(x+k—1)—s(x+k bosk—1—Vz k .

fr, (k) = (ot S()m)S( th) _ Lo [}x =k 1Dr Qrrk—1 = <H]’>0 pm+j> qz+k—1 Which one?

S(t) = py =€~ Jo pWdu — o=pt —~ p — =1 which one?

10 10
k k—
Aclc 1o|(U) Z” [, (k) = ZU (Pz) Yge (Why ?7)
k=1 k=1
10 n -
:px (1 —pz) vam [16] : Uk:vl_y’ v =7
k=1 k=1
e Gl (0 ) AP
_ U(l - (pr)lo)
_(1 _pm) 1
— VUPg Py = 6_0'03 and v = 6_5 _ 6_0'04
=0.2114417945,
2 2,110
ve(1 = (vpa) ™)
a1 1 (0) =AL g () = (1= p)
U Pz pr=e 09 and v = 0N

=0.1747285636,

241 1 2 2
10‘) Ax10| Ax:ﬂ = 0.1747285636 — (0.2114417945)* = 0.1300209311.

Var(Z
Midterm formulae : 447: [6]-[22], 450: [1]-[12], [14](first 2 lines), [16]

Theorem 4.7. Under the de Moivre model, if n < w — x, Al ]

xn\ — w—zx’

Theorem 4.8. Aals 7 = ”ngl_;f;” ) = ql(lq;%g if fre, (k) =pi ' (1= pa) b =1,2,...

Theorem 4.9. Forn > 1, A1 7 = Uz + prAxH =Tk [14]

Proof. Formula: Aalc:m =3 1l

= Uqz + ZZ:2 vkk_l\qm (notice

s(z+1) s(x+k—1)—s(z+k) s ((:c+1)+(k72)) —S ((x+1)+(k72)+1)
s(x) s(z+1) =Pz s(z+1)

e

= Dr * k—2|0z+1)

= U4z "’ ZZZQ Ukpx k—2|qzt1
= Uy + 22_1:1 UkiHlpm k11211
= Vqy + UDy Z?:_ll Ujj—l“]x—i—l

= vqs + prAglc+1;m|'



96 CHAPTER 4. LIFE INSURANCE

Example 4.21.

Example 4.22. An insurer offers a 20-year term life insurance of $10° to independent
lives age 45. i = 7.5%. Mortality follows de Moivre model with terminal age 110. The insurer
has a fund with $10° to pay for these insurances. Using the normal approzimation, calculate
the maximum number of policies the insurer can cover so that the probability that the aggregate
present value for the issued policies exceeds the amount in the fund is less than 0.01.

Solution: Let n be the number of policies that the insurer can cover. The present value for
the aggregate n insurances is Z = Z?:l 1O5Yj, where Y1, ..., Y, are i.i.d. fron Z!

45:20|"
We need to determine n so that P(Z >10% ~1— (IJ(H)_J—]ZE(Z)) =1—®(z0.01) = 0.01,
—> WBE) _ 0 =233 => 0= B(Z) + 2.330, — 105,
0= FE(Z) +233x o —105 or an+byn+c=0=>n="7
(Z) Iz, a \C 0
O am () ¢ (1092 (4! g (1) (4L (0))2) = e
k
Ay = Sl o frc (k
k—1)— k wtk—1—Cs k—2 .
me( ) = s(z+ 51(?1;) (‘H' ) = lotr 7. Lotk — k—1Pz "dz+k—1 = (Hj>0 pw—i—j) dr+k—1 which one?
s(x)=1—z/w=2"~ (k) = w_x_k_ugl_‘};m_k_l) =L 0<z<w.
20 20
1 1 v(l—=2")
1 k _ k —
Al'20| ZU kj_1|qx_sz_l'_w_x 11— ’ (1)
k=1 k=1
541 sv(1 —v*) _
E(Z) =nl0 A45 20| =nl0 m|v:1/1.075 = 1568383286”,
v(1 —v?Y) v(1 —v?Y)

—_— 2y _
(1 _ 0)65 ‘v:1/1.0752 - <m|vzl/1.075) ) = 687801161.6n.

Now solve n from equation E(Z) + zp.0107 — 10° =0
15683.83286n + (2.3263479)V/687801161.6n — 10° = 0 (1 in n) (21)
—=> 15683.83286n + 61010.71512v/n — 10° = 0.

Var(Z) = n(10°)%(

Jn o= vl oy = SbevPdac g or /a0 6.27. So, & 6.3% & 39.4.
The maximum number of pollcles that the insurer can cover is 39 or 40 ? Why 7 (see (2!)).
Example 4.23. Using i = 0.05 and a certain life table A37 0 = = 0.52.

Suppose that an actuary revises this life table and
changes ps7 from 0.95 to 0.96.
Other values in the life table are unchanged, except Al

1
Find A37 0] using the revised life table.

37:10]°

Solution: Using recursive formula [14]: A 7| = vqy + prAxH =it

. 1 _ _ 1 _ 1 _ 0.52%1.05—0.05
Old: A} = 0.52 = 15(0.05 + 0.954] | ). => AL = 052502000,
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. 1 _ 1 1 1 0.52%1.05—0.05\ ~

4.2.3 n—year deferred life insurance.

Definition 4.8. The n—year deferred life insurance: It pays a face value b if T(x) > n
(the insured dies at least (after) n years after the issue of the policy).

Definition 4.9. The present value and APV of an n—year deferred life insurance with
unit payment paid at the end of the year of death are denoted by ,|Zy and ,|A,, respectively

(n|Ax = E[n|Zw])

0 if K, <n

Definition 4.10. ,,|Z, = v5= (K, > =
nlZe = vEI(Ky > n) {UKZ if n < K.

The model Z = bpuy applies with by, = bI(K, > n) and v, = 0%, k=1,2,...
n|A1: = n|A1:<U) = E[n|Zw] = Zzozm—l UkP{K:r = k}
mn|Am = mn|Am(v) = n|Ax<Um) = Zzo:n—i—l Umk]P){KLE = k} =EB [(n|Z$)m}
and Var(p|Z,) = 2, Az — n|As>.

x| 80 | 81 | 82 | 83 | 84| 85| 86
Cy || 250 | 217 161 | 107 | 62| 28| 0
An 80-year old buys a three—year deferred policy insurance which will pay $50000 at the end
of the year of his death. Suppose that i = 6.5%.

Find the probability that APV of this life insurance is adequate to cover this insurance.

Solution: P(A>Z) =7 Z=0b(y|Z,)),b="and A=E(Z) =bY ;o v fx, (k) =7

Example 4.24. Consider the life table

k—1)— k wtk—1—Cz k—2 .
sz(k) = 5(1’4— Sl()x)su‘"’r ) — Lot 7 Lotk = k—1Pz * Qz+k—1 = (H]EO p$+]) Qrik—1 which ?
A =(50000) g o* fre (k) = (50000) g o 80%_2 80k Annual discount factor v = ?
k=4 k=4 80
107 — 62 62 — 28 28 -0
= 1. e 1. =5 1. __1=1 . .
(50000)[(1.065) === + (1.065) === + (1.065) = =] = 1579696857

—

A>2)

> 7, 3< K;) +P(A>Z, K, <3)

> b(1.065)"5=1(3 < K,), 3 < K;) +P(A>b(1.065)"51(3 < K,), K, <3)
> (50000)(1.065) K+ 3 < K,) +P(A>0, K, <3)

e, 3 < Ky) +P(K, <3)
K, >18.3, 3 < K,) +P(K, < 3)

Kgp > 18.3) +P(Kgo < 3)

Tgo > 18) +1 — P(Tgp > 3)

B sy 107 _
=B 41— =0+1—55=0572.

680 ZSO

1l
NN

I
Juegucgu-gejg-gu-gu-i
&
v

~

00

Theorem 4.10. ,,|Z, + Z;:ﬁl = Z, and ,| Az + A}U:ﬁ' = A,.
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Theorem 4.11. Under constant force of mortality y, p|Ay = e "#+9) qjj—i = (”fi);qz.

Example 4.25. Suppose that mortality of (x) is given by the table

k 0 | 1 2 3 4] L
Poir | 0.05 [ 0.01 | 0.005 | 0.001 \Calcuzate?,Aw if i =1.5%.

Solution: Formula: A, =Y~ ., v*fk, (k) and

k—1)— k lpgro—1—Vx k—2 .

x

5 k—2
2| Az = Zk:3 vt (szo px+j) Ar+k—1
= USPxpx+1QJ:+2 + U4p1:px+lpx+2(h+3 + U5pxpx+1px+2px+3Qx+4
— (1.075)~3(0.05)(0.01)(0.995)
+(1.075)~4(0.05)(0.01)(0.005)(0.999)
+ (1.075)*5(0.05)(0.01)(0.005)(0.001)(1) ~ 0.0004.

n|A:c = E |Z Zk 2aik=n+1 'kaK ( ) = Un+1sz(n‘|’ 1) +n+1|A:c = VUPx - n—1|Am+1-

Example 4.26. Rose is 40 years old. She buys a 25-year deferred life policy insurance
which will pay $200,000 at the end of the year of her death. Suppose that the de Moivre model
holds with terminal age 120. Find the mean and the standard deviation of the present value of
this life insurance under the annual effective rate of interest of i = 10%.

Solution: E(Z) =" and oz =7 where Z =b - ,|Z,.
Formula: oAy => oo, 0" fi, (k), s(t) =1—L and

—1)— e —f k—2 .
(w—z+k)—(w—z+k+1) 1 .
Some results: frc (k) = 2eHhDsth) _ e T if U(0,w)
( ) _( - )/"’ — e H— _( - )/"’(1 — 6_/"’) 1f Emp(]_/u)
Ag = Zi’inﬂ v ilee = Z;ZH =V kﬁ v” v%ﬁ
— pntl (%:z)(w—x) (X n W)— ?
1
E(Z) = b % 25| Aso(v) = b Z oF = = 2000000 2 L0 ~ 2295.20.
(1 =v)80],_y /14
k=n-+1 /
1— U55
E(Z%) = 1% 95| Aso(v?) = (2000002)1)26—‘ ~ 20281697.51.
(1 - U)(SO) v=1/(1.1)2

Oy ~ \/20281697 51 — (2295. 20)2 ~ 3874.76.
Theorem 4.12.

Example 4.27. Let 14|A35 = 0.24, 1= 8% and P35 = 0.96. 13|A36: ¢

Solution: Formula [14] ,,|Az = vpy » n—1|Azt1. (n,z) =7
Thus 0.24 = 14|A35 = (1.08)71(0.96) - 13| Aze.
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=> 13|A36 = —(0.23?5615.08) =0.27.

Example 4.28. An insurance company offers a 10—year deferred life insurance for indi-
viduals aged 25, which will pay $250000 at the end of the year of his death. Suppose that
pr = 0.95, for each x > 0, and § = 0.065. 50 lives enter this insurance contract. Calculate
the amount QQ such that the probability that the aggregate present value of these 50 lives is less
than this amount Q) is 0.95.

Solution: Z = 250000,,|Z;, m = ? annual discount factor v = e~ 9 and n = 50.

Let Z1. ..., Zyn be iid. from Z. CLT => 7‘01?;(7) — X ZU‘ZE(ZZ Z) . (0,1). ol ,=no%?
Find Q such that P(3.1, Zi < Q) ~ @(Q‘\}n—fjf)) = B(z005) = 0.95. => Q‘}n—’jf) = 20,05,

=> Q =nFE(Z)+ 2005v/noyz =7

E(Z)=1bm|A; and 0% = bQUilZw' So,

Q = b(n - ;| Ap(v) + 1.645v/1\/ 1| Az (02) — (1n|Az())2).
m|Az(v) = Z;O:mﬂ kaKz(k>'

k—1)— k lpate—1—¥y k—2
fr, (k) = b S()J;)S(QH_ ) — fosk l}z = 1Dr  Getk—1 = (sz() poH—j) z+k—1
o0 o
mlAe@) = Y i g = D (pe)rr e
k=m-+1 k=m+1
o0—Mm
:(vpx)mpgqu Z (vpz))  (j=k—mork=j+m)
j=1
_ v P )™

l—vp, L1y,

Q = 250000(” ’ mlAf(v) + 1645\/5\/7”"455(@2) - (m‘Ax(U)>2) ‘n:507’02670'065,pm:0-95,q3¢:0~05
~ 2130968.

Example 4.29. Suppose that 14| Ass = 0.24, i = 8%, 14p35 = 0.7, qa9 = 0.03. Find 15| Ass.
Solution: Formula [3]: |iq: = sps - tquts => 14]G35 = 14P35 - Q9.
[14] n-year deferred : ,|Z, = vEeI(n < K), n|Zs = viel(n < Ty), %,|Az = n]As (U_Z),
n|Aw = E[n|Zx] = Z;O:nﬂ kaKx(k) = UnJrlsz (n + 1) + n+1|A1‘
(n,z) =7

14 Ags = o1 fre (144 1) + 1441 Ass = 014 4] g35 + 1441 Ass.
Thus 0.24 = v'%4p3s5 - qug + 15| As5 = (1.08)715(0.7)(0.03) + 15| A35.
=> 15| A35 = 0.24 — (1.08)715(0.7)(0.03) ~ 0.23.

Theorem 4.13. For each > 0, p|Az = vpgy - n—1]|Azt1.

One may try to derive formula [14] directly as follows. Skip -
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Conditions:
0.24 = 14|A35 = n‘Ax = Zzo:n—H ok k—ll%&
e + Y s o il
="l n’(J:c + Zzozn—i—l—i—l ok - kfl‘qgv
="l n’Qw + n+1‘Am

5 14lgzs + 15| Ass. -

=0

Theorem 4.14. For each x > 0, ,|Az = v" " qr + na1| A ( see [14))

4.2.4 n—year pure endowment life insurance.

Definition 4.11. The n—year pure endowment life insurance: It pays a face value in
n years when T (x) > n (the insured dies at least (after) n years fmm the issue of the policy).
Its present value and APV with unit payment are denoted by Z | and Ax%', respectively.

1 1
Z:c%| = Un[(Km > n) = Un[(T(:C) > n) Zw 7)) and A 1| A o E[Z 1|] = nEy.

Z1,| = v [(K, < n),

Z g = V" I(Ky > ),

| Ze = vBe (K > n).

Withdraw deadline is approaching. 60- is an F !

The model in (4.1) applies with by = I(K; > n) and vy = 0", k = 1,2
Recall Y = I(K; > n) ~ bin(l,p) with p= P(Y = 1) = P(K; > n) = ppa.

E(Y) =P =nDz and 032/ = P4 = nPzx ' nqzx-
Formulas [14]:

ZI;%| = 0" [(Ky >n), A L =" py, 2Ax:n|( v)=A 1|( 2) and Var(Zx%‘) =02 ps - nGa-

mn|

Is it right Var(Z,.) = A, 5 (v%) = (4,5 (v)*?

Example 4.30. An insurance company has 100 clients age 30 which will receive a payment
of 50,000 at the end of 10 years if they are alive. Suppose that the probability that a life age
30 will die within 10 years is 0.02. The current annual effective rate of interest is 9%.

The insurance company sets an account to meet these payments. Calculate the deposit made
at time zero such that the probability that the insurance will have enough funds to the benefits
15 approximately 0.95.

Solution: Let W = Zwo

(Zi's areiid. from Z = bZ, 1), CLT: 220 = WoPUD N0, 1), (B(W),ow) =7

O ow
Let @ be the deposit which the insurance czompany needs to make. By the CLT,
P(W < Q) ~ &(% W)= ¢(1.645) = 0.95. Hence, TLW) = 1,645,
Q=EW )+16450W
E(W) =100bx A, |( ) b="
ol = 100b2wzm‘) ? or = 100%0*V(Z 1) ?

Z; be the total payments made to the 100 clients,
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Amz%('v):vn nPx npz =" v="7" n="7"7 b=7
V(Zx 71l|) "p - ( nnpx)Q = Uznnpm ‘ndx

Given 10g30 = 0.02 and v = 1/(1 + 0.09),

A 1| = v"pe = (1.09)710(0.98) = 0.4139626,

Var( ﬂ) 2 De - nge = (1.09)729(0.98)(1 — 0.98) = 0.003497266.
Then E[W] = 100bA_1 = (100)(50000)(0.4139626) = 2069813,

nl
o, = 100bQV(ZI:}L|) (100)(50000)2(0.003497266) = 874316500.

Q = E(W) + 1.6450 = 2069813 + (1.645)+/874316500 = 2118454

x || 80 | 81 | 82| 83 | 84| 85| 86
Cy || 250 | 217 161 | 107 | 62| 28| 0

year old buys a three year pure endowment with an amount of $50000. Suppose that i = 6.5%.
Find the APV and SD of this life insurance.

Solution: Let Z = bZ$:%| =b"I[(Ky>n). v=" b=7 n="7

E(Z) = bv™p and aQZ = b20®pq , where p= 3pso 3pso = 7
E(Z) = bu"3pgo = (50000)v 368“3 = (50000)(1.065) 3397 ~ 25850.12.

o7 = bu"\/3ps0(1 — 3pg0) = 50000(1.065) $97(1 — 325) = 20480.52

Example 4.32. An actuary models the future lifetime of (30) as follows. T'(30) has force
of mortality p, where p has pdf f,(u) = 400ue=20% w > 0. The force of interest is § = 0.1.

Calculate Var(Z_ 110‘)

An 80—

Example 4.31. Consider the life table

Solution: Let Y =7 110| The exercise assumes that

conditional on 4, fy,(t|u) = ue™"1(t > 0), where

fu( u) = a( )ﬁl;/ﬁau>0 a =" and =7
Formulas: E(Y) = [yfy(y)dy = E(E(Y|w)) from E(X) = E(E(X]Y)) (36).
Given Condltlons annual discount factor v = e=9 = ¢! and ,,p, = e ™ conditional on L4
1 17 _ 1 _ 10 —10
Am:ﬁ| _E[Z:v:TO|] - E[E[ZxﬁMMH =K [U € M}
o0 o0
=0 / e (400) pe > dpy =o' / e 1O (400)te >0 dt 7
0 0
> 400T(2) [ p2~lem/so
—v'0(400) / pe 30 dy, = 10 / —_du = 0.1635019739,
0 302 0 F(2)/302 v=e—0-1
2 1,2 10400
30 v=(e=0-1)2

Var(Z,.14) =0.06014901477 — (0.1635019739) = 0.0334161193.

Example 4.33. Assume that mortality follows the life table in page 606. i = 6%. Calculate:
240210 and 220&5 (i.e. 10F10. 15F20). Must learn how to solve it.
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Solution: (i) From the table in page 606, 19F4 = 0.542299641.
(ii) The life table only presents 5E,, 10 and 29FE,. No 15FE.
But 15FE20 = 10+5E20-
Formula: py4npe = mPz - nPrtm, and pm By = 0™ - ps.
manty = . m4nPz = V"V - panDe = V" - mDr - V" - nPrim = mPr - nFrym.
15E20 = 10E20 . 5E3() = 5E20 . 10E25. Which to choose ?
From the life table in page 606 19E29 = 0.553116815, 19F25 = 0.552733873.
From the life table in page 606 5FE39 = 0.74323819, 5F2 = 0.743753117.

15E20 = 10F20 - 5F30 = (0.553116815)(0.74323819) = 0.4110975404.
Theorem 4.15. A }L‘ = By = 0" - pps,

Theorem 4.16.

Theorem 4.17.

Theorem 4.18.

Theorem 4.19.

Theorem 4.20. ,,4nEr = nEy - nErim

Definition 4.12.

Definition 4.13.

4.2.5 n—year endowment life insurance.

Definition 4.14. The n—year endowment life insurance: [t makes a payment b at
K, An. Its present value and APV with unit payment paid at end of year of death is denoted
by Zym and A E(Zy.5)), respectively.

zm| =

)

K, : K .
L. vite if K, <n vie if K. <n
Definition 4.15. Zx:m = pHaAn — { T (= $n|+ wn| { z

v i n< K, v it n < K.

The model Z = byv; applies with by = b and vy, = v™0ER) =1 2 .

n

" Ay = Aga (V™) = E[ZI0 ] =Y 0™ P{K, = k} + 0""P{K, > n}.
k=1
Theorem 4.21. A,. n\ Zk; 1 v k— 1|Qx + 0" gy = Zz;i Ukk—l|¢]x + v 1P
The proof makes use of E(g => . 9(k) g(k) = vF" 227 fx (k) =7

_Zk<ng ) g(n )fX +Zk}>n9 )fX( )77
= Zkgn g(/f)f )+ Zk>n Zk<n kfX ) + Zk>n x (k)
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Example 4.34. Suppose that i = 0.05 and ¢, = 0.05. Ax:§| and Var(Zx:m) ¢

Solution: Am:§| = volge + v*1|qe + v%9pr = vge +v®pr why g, not glg, ?
Are both equations applicable here ?
A,5(0) = vg; + v%p, = (1.05)71(0.05) + (1.05)"*(1 - 0.05) =~ 0.9,
24,9 (v) = A,g(v?) = v*q + v'pe = (1.05)73(0.05) + (1.05)~*(1 — 0.05) ~ 0.8269188,
Var(Z,.5) = ?A,3(0) = (A,5/(v))* = 0.000097695860391.
Example 4.35. A 10-year endowment insurance pays $20,000 at the end of the year of

failure, or $20,000 for survival to time 10, whichever occurs first. Find the actuarial present

value and the variance of this endowment insurance for a 40-year old if s(x) = 101%6:”, 0<
x <100, and i = 7.5%.

Solution: Let Z = bZ,5. n=" b= "7 Find E(Z) and V(Z).
Ay = S 12; k1lqe U ppr = ZZ;% v* - _1|ge + 0" - n_1p, Which is better ?

f.(k ) o Sl()g;)s(x+k) = Lo losk ) ipy Qg1 = (Hfgé pm+j) Gz+k—1 Which ?
Agemi(v) = Yoy o ts +om(1 - 55) = UEP A H (- ). w=7 @ =7
A = (20000) A 4.1/ (v) = (20000)]v 11__1);0% 0101 — %)Hv_l 11075~ 103745,
V(Z) = bV (Zyg:10)) = (20000)* (A40.75/(v*) = (Ago1g) (U))2)|v:1/1.075 =
Definition 4.16.
Theorem 4.22. (¢z = ol1qz)

Theorem 4.23. For eachx > 0, Ay = vq+vpa A,y 17y (=3 V1@t v npa)

Theorem 4.24. A,z = A, ooy + dA, 1 al (A L =v"p, andd=1-v).

7|

x| 80 | 81 | 82| 83 | 84| 85| 86
Cp || 250 | 217 161 | 107 | 62| 28| 0
i =6.5%. An 80-year old buys a 3-year endowment policy insurance which will pay $50000.

Example 4.36. Consider the life table Let

Find the probability that APV of this life insurance is adequate to cover this insurance.
Sol: Let Z = bv™+"3 =07, 5 (b=7) and A = E(bZ,5) =bA, 3 =7 P(Z<A) =7
3 steps. (1) A, 3 =7 (2) Simplify A > Z, (3) Ans.
(1) A x§| = Zi lvkk—l‘%c + 0% ops = 34 WFitlgs + 00 spo. Qi Which ?

h— k) _ losnoa—t k-2 ,
A= (50000)A80:§| = (50000)[Zi:1 o ls0+k 6180 l80+k + 3 &ZZQ]

= (50000)[(1.065) 129217 4 (1.065) 2210461 1 (1.065) ~318L] ~ 42728.5 = A.
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(2) Simplify A > Z =bZ,.5: A =42728.50782 is adequate if A > Z = bZ,.5
<=> A > (50000)(1.065) K3,

. —In(42728.50782/50000) _
<=> min(K,3) > Tn(1.065) ~ 2.45.

(3) P{A > b3} = P{min(K,,3) > 2.45} ="classexercise.
= P{min(K,,3) > 2.45, K, > 3} + P{min(K,,3) > 2.45, K, < 3}

= P{3 > 245, K, > 3} + P{K, > 2.45, K, < 3}

=P{K, 23} + P{245 < K, <3}

~
=77

= P{T, > 2} or P{T} > 3} 727

14

00

_ 161 __
2 = 161 — 0,644,

|

[=}

8
4.2.6 m—year deferred n—year term life insurance.

Definition 4.17. The m—year deferred n—year term life insurance: It makes a pay-
ment b if T(x) € (m,m + n| (death happens during the period of n years that starts m years
from now). Its present value and APV with unit payment paid at the end of the year of death
is denoted by m|nZy and m|nAz

Definition 4.18. ,,|,Z, = v5*I(m < K, <m+n) and *,|nAz(v) = m|ndz(0F).

The model Z = byv; applies with by, = bI(m < k < m +n) and vy, = vF.

Theorem 4.25. ,,|, A, = EpI(m < K, < m 4+ n)] ZZHZZH VR 1]

Theorem 4.26. |, Z; = m|Zs — min|Ze and m|nAz = m|Az — man| Az
Theorem 4.27. Z, = Z! . +ml|Zs = - + mInZs + mian|Zz-

The proofs of the last two theorems follows from the definitions:

Lp = vK

zl ‘—v Ka[(Ky <m),

m|Zx = 0B [(K, > m).

mnZe = & I(K, € (m,m +n)).

man|Ze = 05 I (K, > m +n).
For instance,

mlnZe = v I(K, € (m,m + n)).
+) man|Ze = VB I(Ky > m 4 n).

m|Ze = 8o I(Ky > m).
That is, m|nZs + m+n|Ze = m|Za-
Thus the first theorem holds:

Theorem 4.28.
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Theorem 4.29.
Theorem 4.30.
Theorem 4.31.
Definition 4.19.

4.3 Properties of the APV for discrete insurance.

type of life insurance present value of unit payment
whole Zy = vie
n—year term Z;:m = v (K, < n)
n—year deferred nlZe = vEeI(n < K)
n-year pure endowment Z, 1| =v"I(n < Ky)
n—year endowment Zpm| = pmin(Ke,n)
m-year deferred n-year term | |, Zy = v I(m < K, <m +n)

Formula[14]: (note I(A)I (AC) =0, ](A) I(A%) =1, and I(A) x I(A) = I(A))

Zy —Z;m | Ze, m‘ | Ze =
1 1 1 1
Zw:ﬁl - Zx 7 Z:v m’ Zm 7| Z ml =0,

n|Ax = ’ILEJ,’A$+TLJ & = A;ll,:m + nExAx—l-n-
Example 4.37. Find E[,|Z;] and Var(,|Z5) if
Ay = 0.75, Var(Z,) = 045, Ay = 0.5, Var(Z,;) = 0.2.
Solution: By the given conditions, we know (A (v), Az (v?), AL, n‘( v), AL ‘( ),

n|Az(v)=7 Var(n|Zs) = n|Az(v?) — (4] Ag)?=? and ,|A;(v?)=?
Which formula in [14] above ?

Az(v) = Ag{,n'( V) + nlAp(v) => ,|Az(v) = 0.75 — 0.5 = 0.25.
Formulae: 03 = E(X?) — (E(X))? or 0% + (E(X))? = BE(X?).

x:

[14] Zy = xn‘—l—n\Z and 0 = Z! 7 X n|Zz

(Zx) (Zl |) (n|Zx) and 0 = (Zl |) (n’Zx>2

(Ap(v), Ap(v?), Ap iy (v), AL () = (0.75,0.45 4 0.75%,0.5,0.2 + 0.5%)

By Eq. (3), 045+ (0.75)% =" A, = *AL o + 25| Ay (by Eq. (2))
=((0.2+(0.5)%) + *u|Aq (by Eq. (3))
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Hence,
2| Ay = 0.45 4 (0.75)% — 0.2 — (0.5)? = 0.5625.

and
Var(,|Z,) = 0.5625 — (0.25)% = 0.5.

Proof of Eq. (1) and (2):

Zl |+7’L’ZZE = T[(K < n)+U :cI(n< K ) _UKQC . Z;p
Z;n|2+n|Zm2—U2KzI(K <n)+ v I(n < K,) = 0?5 = 72,
Example 4.38. Suppose that Al v = = 0.5 Var( |) — 0.35,0" = 0.4, ,py = 0.6. Find

ElZym)] and Var(Z,.z).

Solution: Need to know A,z (v) =7 A, n|(v )=7 Why ?
Formula[14]: Z,.5 = Zx i +Z,. T}L', Zi 7 Zx%‘ 0. In fact,
- —7
) /-/\
Ly = vminEen) = o Ka (K <n) + 0™ (n < Ky) = Z), o+, 1‘ => Apq = AL a H A =
(Zx:ﬁ|)2 — p2min(Kzn) — V(K < n) + 0 (n < Ky) = Z - 24 Z. Tll|2
Given v" = 0.4 and ,p, = 0.6 =>
A 1|—v npr = 0.4 x 0.6.

A L (%) =v?,p, =042 x 0.6.

7|

1 241 1 1y 2
(AL AL AL AL L) = (0.5,0.35 4 0.52,0.24,0.096).
Thus Aga| = Aby + Ay = 054 024 = 0.74

A = Ay + 2 Ay = 0.35 4 (0.5)% +0.096 = 0.696.
Var(Z, 1) = 0.696 — (0.74)* = 0.1484.

Theorem 4.32. Zy = Z, . +nlZx and 0= 7, X | Zs.
Theorem 4.33.

Theorem 4.34. Z,.5 = +Z Y and0 =2} ,|><Z 1

x n| 7| xm|”
Corollary 4.2.
Theorem 4.35.

Theorem 4.36.

Skip page 155

Example 4.39.
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Example 4.40.

Example 4.41.

4.4 Non-level payments paid at the end of the year

Suppose that a life insurance provides a benefit of by paid at the end of the k-th year if
death happens in this year.
The present value of this benefit is Z = b, v, The net single premium is P = E(bg, v5*).

Example 4.42. A whole life insurance on (50) pays a death benefit at the end of the year
of death. The death benefit is $50000 for the first year and it increases at annual rate of 3%
per year. The annual effective rate of interest is 6.5%. If A%, = 0.47 when the annual effective

rate of interest i* is %. Calculate the net single premium P for this insurance.

Solution: P = E(bg,v%=) =377 bpv* f, (k)=? but fg, is not given.

However, Arg =52 kaKz(k){v_& = (.47 is given.
T 1.065
Aty
bk; ’Uk Ve 7\ ~
o P A ~ /—/H oo
P = "[50000(1.03)" "] (1.065) * - frc, (k) = (1.03) 7150000 Y ~(1.065/1.03) 7% - fi, (k)

1
—=(1.03)7(50000)(0.47) = 22815.53398 (the net single premium).

Example 4.43. A whole life insurance on (50) pays 350000 plus the return of the net single
premium with interest at 6* = 0.03 at the end of the year of death. The survival function for
(50) follows the de Moivre’s law with w = 110. Calculate the net single premium for § = 0.07.

Solution: Let P = E(Z), Z = bg v%*, v = e79, b, = 50000 + Ped F.
P =30 b pi|ga="
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s(z+k—1)—s(z+k loatoe1—Vs
k71|qg": ( s(iv ( ): otk

lo

o0
P=> b" g

k=1
60 1
= (50000 4 Pe© 0k (0:07k
k=1 w—x
0 ] 60 1
— N " (50000)e—(0-07)k (0.0
k—1< : w_erkz—; ’ w—x
60 1 60
— k . k
50000y ot ——— 4+ P
k=1 k=1
1—on ) _— 1
250000u —i—PT( ™)
Lo v=e-00r W 7L 1—r r—e—00a W — T

P =11320.61245 + 0.3713406834 P.
_ _ 11320.61245
=> P = 153713106831 ~ 18007.55.

Theorem 4.37.

Theorem 4.38.

k—2 .
= k—1Pz " Qo+k—1 = (Hj>0 px—|—]) Qe+k—1 which 7

s(r+k—1)—s(x+k)

1

s(x)

w—

Definition 4.20. The increasing by one whole life insurance or annually increasing
whole life insurance pays k (units) at time k, for each k > 1, if the failure happens in the
k—th year. Its present value and APV are denoted by (1Z),, and (IA),.

Under this policy a payment of K, is made at time K.
(12), = Kvfe.

(IA), (v) = E[K o] =57 koP - _1lqy.

E[(12)%) = B2 = 500 1%y ilae = (TA), (?) 777

Example 4.44. A special whole life insurance on (40) makes non—level death benefits at
the end of the year of death. The first year death benefit is $10000. Each subsequent year death
benefit is $200 more than the previous year death benefit. i = 0.06. Mortality follows de Moivre
model with terminal age 100. Calculate the net single premium of this life insurance P.

Solution: P = F(Z), Z = 10,0000 4 200K,v%= ? or 10,0000+ + 200(K, — 1)vf= ?

Z = (10000 — 200)v%= + 200K 0% = (10000 — 200)Z, + 200(1Z),.
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P = B(Z) = (10000 — 200)Ago + (200) (TA)yy,  Ago =77 (IA) =77

[e.9]

g

—T

A= o (k) =Y o 1 R L S
x_k:1 " _k::l woe v w—a o
& w—z n
(IA)x:Zkvk'k—ﬂqgﬁ:Zkvkwix :UZkvk_lw—ix n =77
k=1 k=1 k=1
i v 1 — Un—i—l v
:<kz—%vk>2}w_$:< 1—-w );w—x [16]
_ v
== -0
==+ D)) (L)Y
(I — (1" + nu"th)
w—x
P =(10000 — 200) Ao + (200) (I4)
=19800 v 1= + 200 o — (41" + nv™ 1) 1
w—x 1—wv W= w—r=n=60,v=175
=3490.380588.

Definition 4.21. Quiz on Friday : 447: [20]- [22], 450: [1]-[12], [14], [16]
Definition 4.22.
Definition 4.23.

Example 4.45. Let Agg = 0.13, (IA)35 = 0.45, v = 0.94 and p3p = 0.99. ([A)y; =7
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Solution: Need the relation between (IA),, A, and (IA), ;.

kvk : /<:—1|QI

M2

(14), =

x>~
I
_

(14+k—10" 4_1|ge (try to get Ay)

M

=~
I
—_

M

o0
Vg + Z(k —DoF gl why k=27
k=2

=~
I
_

o0

[ee]
=A, + Z(k — 1)vk*1+1 “k-1lge  (try to get ([A)y41 = Zjvj j—1]qe+1)
k=2

Jj=1
00

=Ae+ > (M lae (G=k—1)
j=1
oo
:Ax—l—ijvJ © e ([3] - sltgz = P(s < T'(z) < s+1t) t
o ~~

need j1|qz+1

S(x+j)—Sx+j+1)

(jl%c = S(:E)
S+ +G-1)=S(z+)+(G-1D+1) S+1) | )
= S(Q? T 1) S(:c) = j—1|9z+1 * Pz
=A; + ’UZj’Uj 'j71|qgv+1 * Pz
j=1

(IA), =A; + vpy (IA)JCJrl

—> 0.45 = 0.13 + (0.94)(0.99) (IA)s, ,

— _ _0.45-0.13 __
=> (IA)y; = B35 = 0.3438641737.

Typical cases of fx, (k) in computing (I A),:
(1) Uniform —L-, (2) Exponential (e~ rk=1) _ =1k (3) life table, (4) probability table.

Basic method (IA), = >, kv* fx, (k) due to E(g(Y)) = >, 9(k) fv (k).
Theorem 4.39. Under constant force of mortality p,

(141 V(Qq
U4). = C(]qi :i)22 e —ipm)z' (e =25)

Proof 2. Since the mortality force is constant, (IA), = (IA), ;. By Eq.(1) above

dx

([A), = Ae +1E: (1A), 1y = B3 + ope (IA), and ([A), = 25- = 1—%;1% - ((]anH)ZQ)'

Definition 4.24.

=77
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Definition 4.25.

Example 4.46. Suppose that ji,.(t) = 0.03, t > 0, and 6 = 0.06. ([A), =7

Solution: Given conditions: v = e 0 = 7006 and s(t) = e Mt = 003,

(IA), = B(Kyo") = 3702 ke™®% - 1]gs.
z+k—1 z+k ZI . k—2
IK ( ) = ozt s()m) s(oth) _ fee ém = 1D Qr+k—1 = <Hj>0 px+j> Qr+k—1

1 — oot

[e.9]
(1 _ o\ k—1 k=1 _
=(1 —e H)et't x Z kt formular[16] : Z kt T

k=1
1
=(1—e Mett x
1

)i =

1
1—-t

()t

—1
1
=(1 — e Mett
( € )6 (1 _ t)Q
(- eH)er O
(1 — e (04m)2
-5 _
1 —e M
_c e S 18 actually proves in the last theorem
at ) b (Thi I in the last th
(1—edeH)? (1 — vpy)?

—0.06(1 —0.03)

(& — e

v :(1 — ¢—(0.034+0.06))2 = 3.757282156.

(14)

Example 4.47.
Example 4.48.
Definition 4.26.

Definition 4.27.
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Definition 4.28.

Definition 4.29. A decreasing by one n— year term life insurance pays n +1 — k
(units) at time k if the failure happens in the k—th interval, where 1 < k < n, that is,

(D2),

zm| =

(n+1— K)o I(K, <n). Its APV is denoted by (DA).

xm|”

Example 4.49. Suppose that p,(t) = 0.03, t > 0, and 6 = 0.06. (DA)x:ﬁ\ =7

Solution: v = e™%, and Sz, (t) = pr = tpo = e M, t > 0.

n

(DA) g5 =E((n+ 1 = K)o I(K, <)) = (0 +1— k)o* fic, (k)

k=1
10
= Z(ll — k)e 00k (em0031) =003y e (k) = p1lge = k-1Pe — kD2
k=1
10
_ (11 i k)ef0.0erf0.0S(kfl)u N 670.03)
k=1
10
:6_0‘06(1 . 6_0‘03) Z(ll . k)e—0.09(k—1)
k=1
9
2670.06(1 . 670.03) Z(lo . j)670.093 (j -k 1)
=0
9
= 0051 — 00N "(10 - j)p! v =7~ 1.196.
=0

9 9
PCUERTESY

9
1007 — Zjvj
j 7=0 7=1

7=0
9 9
:10Zvj — ijvj_l
j=0 j=1

9 9
=10 Z v — U(Z v
Jj=0 Jj=0
1 — 9+1 1 — 9+1
=10 . i}U — | i)v )i (see formula [16])
- v 9 10
=10 - 1-10 9
1—v (1_0)2( v+ (9)v)
(DA)! - =e7006(1 — 6—0‘03)[101 —vt v (1 — 100" 4 (9)0'9)]]| ~ 1.196
z:10] — 1 — v (1 — U)2 v=exp(—0.06) ~ +- :
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4.5 Life insurance paid m—thly

It is unusual that claims are paid at the end of the year. A better model uses that claims
are paid at the end of each month, or other period. In this section, we consider the case
when payments can be made at m different equally spaced times a year. Previous insurance
quantities are defined as before. To indicate that payments are made m—thly, a superindex (™)
is added to the actuarial notation of insurance variables.

Suppose that a whole life insurance is paid at the end of the m-thly time interval in which
failure occurs. Let J, (™) be the m— thly time interval of death. We have that Jgﬁm) = j if

T, € (j : m] for some positive integer j > 1. In other words, Jém) = [mT,]. The present
value of a whole life insurance paid at the end of the m—thly time interval in which failure

) (m)
occurs is Z:)(Em) =72 /M Thus

Agﬂm) :Agﬂm)(v) = E[Z(m)] = Zvj/mP{J(m) = j} = Zvj/m %’%qyj; (1)
7=1 Jj=1
QA( ) Z 2]/m]P>{J j} A(m)(UQ)

Example 4.50. Suppose that p,(t) = 0.03, t > 0, and § = 0.06. Calculate AE,;S) and
Var(Zc(f)).

Solution: A{Y = Z;i1 vj/mIP’{Ja(cm) =j}= Zoil V1M1 g

1
mm
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m=3,v=e"% yp, =" i|ig = St (52) = Sp (L) = e —etm, p="7
[e.9] oo
AP =3 IR =y = g )
j=1 j=1
[0.9]
. i1 i

S ] syl
=1
m . .

— Z VI e M e — e Hin]
=1

o0

7=1
1 1 —¢t*
(et — 1)t
(e ) -
1
— (et — 1)t ——
(e Ly
1 —
—(e“% —1) v /Te i
1— (vYme™m) | ,_ o006 ,1=0.03.m=3

—0.330005611.
240 = AP (v?) = 0.1960201321.
Var(Z%) =0.1960201321 — (0.330005611)2 ~ 0.087.

(m)

The second way to find A; " is to use the formulas for A,, by changing the parameters to take
in account that payments are m times a year, that is,

v— o™ and j_i|q, — i=1|1gz (0lgr = gv = 1qa).
e.g., under constant force of mortality u,

1 — 14z
Ay = Pr _ T Qx becomes Agm) = )
v Px 5_1+Qx m—l-i-i%c

m

However, if A, needs to be derived, then it is better to use Eq. (1) above.
Definition 4.30.
Example 4.51.

Example 4.52.
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Example 4.53.
Example 4.54.

Example 4.55.

4.6 Level benefit insurance in the continuous case.

In this section, we consider the case of benefits paid at the moment of death. This is
also called immediate payment of a claim.

4.6.1 Whole life insurance.

Definition 4.31. The present value and the APV of a unit payment whole life insurance
paid at the time of death are denoted by Z, and A,, respectively.

UT’: .

Zy
Ay = B[Z;) = EP™] = [[Z vt fr, () dt and ™A, =" A, (v) = E[Z, ] = Ag(v™)

Example 4.56. The force of interest is 0.06. (x) has a constant force of mortality of 0.05.
Consider the benefit of the whole life insurance to (x) with unity payment paid at the time of
the death. (i) Find its APV and the variance.

(ii) Find the density of its present value.
(#ii) Find the first and third quartile of the present value of the benefit of a life insurance
to () with unity payment paid at the time of the death.

Solution: (i) A, = fOOO ol fr, (t)dt =7

v=e9 =006 Constant force of mortality => fr)®) = pe H t > 0.

. o0 oo [e.9]
Ay :/ ol fr (t)dt = / e e Mdt = / pe~ 0Tt gy
0 0 0

oo

:Lé (ju+ 8)e” OFmige — L& ~ 045 = ,ul Why do it ?
pto Jy K+ 01,20.05,6—0.06 p—
24, =A, (v?) = % ~ 0.29

p— v 1=0.05,v=¢—0-06

Var(Z,) = Ax(v?) — (A, (v))? =~ 0.0875.

(i) fz (t) = for ()= 7 with fr, (t) = pe ™, t > 0.

Formula [20] for df of U = h(Y): fy(u) = fy(h_l(u))|6m;—;(u)|. (U,Y)=?h=7?h"1=7?
U=Z,=v" Y =T,and u=h(t) =vt or u=e"% t>0.
t=h"t(u) = ue (0,1)7

 Inv>
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fy(t) = fr,(t) = pe " t > 0.

dh~1 Inu, di 1
furtw) = (0 ) P pep(p) T | = pep(— ) | (o = 6)
—pexp(lnus )| ! | = iu% = %u%_l, uwe (0,1). p=? 6=17
fz,(w) = fu(w) = gu™s, 0<u<l. (1)
(iii) Quartiles of Z, ? Two ways for Z, = v’* or U = h(Y): (U,Y)="1
(1) & = F7'(p); (Fy(t) = cm(t) = Jo Fz.(2)dz = [§77d2). (see (1))
h(e* if h(t) 1 B
(2) & = {hﬁéip) ; hEt; v where U = W(Y'), {; = v (p) and Fy (t) = Pr,(t) = 1 — e H.

Method (1): Let &, be the p-th quantile of Z,.
Solve p = I (fp) for &,

p=Fy; fo f7.(2)dz = fot %z%dz =%/6 t € (0,1).

(fp) 5/6- =>§p = po/o.
The first quartlle of Z, is (0.25)%/° ~ 0.189.
The third quartile of Z, is (0.75)%/5 ~ 0.708.
hp)  ifh(e) T
Method (2): (2) &, = b ) , where u = h(t) = vt | L.
( ) ( ) P {h<§1_p> if h(t) l/ ( ) 0
So & = h(&f_,)- Need to solve &
Fy(t) = Fr,(t) =1—e" =p,
=>1—-p=eH
=> lngl(—p)) = —ut
— n(l—p) _ . _ ¢«
=>-———=1t=§
&p = h(fik_p) h(t) = o'
— ofir = Why 77
_ Inp Inp
=000 = W) = exp(In(p®/r)) = p/r = po/s,

Example 4.57. An actuary models the future lifetime of (15) as follows. T'(15) has force
of mortality p, where p has pdf f,,(t) = 25, 0.01 <t < 0.05. The force of interest is 6 = 0.1.
Calculate Ays.

Solution: Which ways: (1) Ajs = [v¥fr,(2)dz; (2) Ais = E[Zy] = E[E[Z4|1]]?
Which of them is correct 7 (1) T(15)( ) pe Mt > 0 (2) fras)u(tlu) = ue " t>07?
Given conditions: (1)Sps),(tlu) = e t> 0. (2) fulu) =25, u € [0.01,0.05].

A result from Ex. 4.56: E(Z,) = ﬁ =2 ’{mj under constant forces if p is given.
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A15 = E[Z,] =E|E[Z15|u]]

" 0.05 " 0'05M+01—01
=5 l_] :/ (25) dy = (25)/ —————— du Why do this ?

0.05 0.1 1
=(25 1— - d 1 I =
( >/0_01 ( HO‘I) h (G o) =

0.05

=(25) (i — (0.1)In(p + 0.1))

0.01
~0.22.

Example 4.58. A cohort of lives age x consists of 10% of smokers and 90% of non—
smokers. The force of mortality for smokers is p.(t) = 0.08, t > 0. The force of mortality for
non-smokers is pi.(t) = 0.02, t > 0. The force of interest is 0.04. Calculate A, and Var(Z,).

0.08 for 10 f k
Solution: Given condition: pu = or 10% of smokers and 6 = 0.04
O 02 for 90% of non- smokers

From Ex. 4.56, AJC:L&:

Let Y = I((x) is a smoker), that is, Y = {1 %f (z) ?s a smoker,
0 if (z) is a non — smoker.
Then the given assumption is
frpy (1) = fi(t) = 0.08¢70%% ¢ > 0;
frpy (£10) = fo(t) = 0.02¢700% ¢ > 0.
Y ~ bin(1,0.1).
Formula [19] E(X) = E(E(X|Y)) yields

A, = Ep’*] =E[E[Z,|Y]]
=E[’|Y = 1JP{Y =1} + E[’=|Y = 0]P{Y = 0}

—smoker M o . 0.08 -
(B =1] =4, (= = hw) = MJF(;’M:MW)W:O.OS T 0.08+004 2/3,
—non—smoker 0.02
By = 0] = 4, 7mu:0.02 0024004 1/3)
=(2/3)(0.1) + (1/3)(0.9) = 1.1/3 ~ 0.37
E[(v"*)?] =E[E[(v")*|Y]]
=E[(vT)YY = 1]P{Y =1} + E[(vT)}|Y = 0]P{Y = 0}

—-smoker M 0.08

(E[(vT)?)y =1] =4, (v?) = “he? 0081 2001 =0.5 (as —Inv? = 20)

E[( ) |Y _ 0] Anon smoker(vz) . 0.02 _ 0'2’)

©0.02+ (2)0.04
E[(vT)?] =(0.5)(0.1) 4 (0.2)(0.9) = 0.23,
Var(Z,) =0.23 — (1.1/3)* ~ 0.096.
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Example 4.59. A benefit of $500 is paid at the fa@lur@ time T of a home electronic product.
The pdf of the time of failure of the product is fp(t) = % if 0 <t < 10.
(i) Calculate the actuarial present value of this benefit if i = 0.075.
(ii) Find the density of present value of this benefit.
(iii) Find the 25, 50 and 75th percentiles of the present value random variable of this benefit.

Solution: (i) bA, = b [ ! fr, (t)dt = (500) [, (1.075) " dt = (500/50) [\ t-(1.075) " dt=?
f tatdt [ tda' /Ina a="?

= T fatdt

g [fa - a'/Inal

m=al[t — 1/Ina], (a = 1/1.075).

10

10 1
Nl ~ 313.39.

— _[1.075(t — ———
(—In(1.075)) | ( —In1.075

(ii) Let T = T'(x) and Z = bv? = (500)(1.075)~7 = h(T) be the present value of the insurance
benefit. Then Z/500 = 1.075~7 and

1n(Z/500)
In(1.075)

and f7(z) = fr(h™(2))| 9] (see 447 [20]).

B In(z/500) \ | d In(z) — In(500) o
f2(2) =Ir <_ 1n(1.075)> dz <_ In(1.075) )‘ why |

10
bA, :(500/50)/ t-(1.075) "t dt =
0

T=hY2)=- €[0,10] Why ? (fr(t) =t/50, t € (0,10)) (1)

—In(=2/500) 1
B 50 t)=1t/50, t € (0,10
( In(1.075) / )zln(1.075) fr(t) =t/50, t € (0,10)
—In(z/500)
502(In(L075)2" ¢
—1
if 0 < ~In(/500) < 10, or simplify it as 500(1.075) "' < z < 500.

In1.075
t (see Eq.(1))
(ili) Two ways: Let ¢, be the p-th quantile of Z.
D Cp —ln 500
(1) Solve p = [ f7(2)dz for ¢ Fz,(G) = Jo 502(111((21/.075§)2d2~
(2) Since z = h(t) = (500)(1.075) " is decreasing, we have that
G = h(§&1—p), where &1 is a (1 — p)-th quantile of T'. Fr(t) =
Use method (2). Why 77?7

T
0 50d:c

&y

=> §1—p = 10y/1 — p. Hence,
(p = h(€1-p) = h(104/1 — p) = 500(1.075)10v1~

The 25th percentile of the benefit is ¢y .25 = 500(1.075)~10V0-7™ = 290.6742245.
The 50th percentile of the benefit is (o5 = 500(1.075)10V05 = 348.2793162.
The 75th percentile of the benefit is (.75 = 500(1.075)~10V0-25 = 417.300441.
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Definition 4.32.
Example 4.60.
Theorem 4.40.
Theorem 4.41.
Theorem 4.42.
Theorem 4.43.
Theorem 4.44.
Theorem 4.45.
Theorem 4.46.
Theorem 4.47.
Theorem 4.48.
Theorem 4.49.
Corollary 4.3.
Theorem 4.50.
Theorem 4.51.
Theorem 4.52.
Theorem 4.53.
Theorem 4.54.
Theorem 4.55.

Definition 4.33.

4.6.2 n—year term life insurance.

Definition 4.34. n—year term life insurance: a payment is made if the failure happens
within the n—year term of an insurance commencing at issue. So, a payment is made only
if the failure happens before n years. Its present value and APV of a unit payment n—year

—=1
term life insurance paid at the moment of death is denoted by Zx:m and 27 respectively.
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Zy| = v (T < ) (Z1, =Y Kz [(K, <n))).
" Ay = ElZopi)™) = Ay (0™) — B I(T, < n)) = [o o™ fr, () dt

Example 4.61. Julia is 40 year old. She buys a 15—year term life policy insurance which
will pay $50,000 at the time of her death. Suppose that the survival function is s(v) = 1 — 155,
0 <z <100. Suppose that the continuously compounded force of interest is 6 = 0.05. Find the
APV and SD of the benefit of this life insurance.

Solution: Let Z = bv™01(Tyg < 15). T(40) ~ U(0,60) and v = ¢ ™0 = 7005 p =7
—1 —1 —1
B(Z) = ¥io75(0)=" and o7 = by Ajo.15(12) — A5 ()2 7

_1 T " " ot | Pl
Az =FE(w=I1(T, < = t)dt = —dt =
40:15 (U ( = n)) /0 ! fTw( ) /0 ! 60 60lnv 0 60lnv

15
1 —1 v —1

~ (0.1759.

—e—0.05

~ 0.129.

v=(e0:05)2

The actuarial present value is bZ}m:m = (50000)(0.1759) ~ 8793.9.

. . 2
(50000)\/ A jo.15) — (A}m:w) ~ 15695.96.

= bo-1
9z = Z40 :15]

Example 4.62. Consider a 15-year term life insurance to (x) with unity payment. Assume
that 6 = 0.06 and (z) has a constant force of mortality p = 0.05. Calculate the probability that
the present value random variable is smaller than or equal to twice the APYV.

Solution: P(Z xn| < 2Ax 7)="

xn‘ = [y vt fr ) dt = [ e Ppe~tdt = [ pe=OHH) 4t = 5+uf e~t0F1) dt(5+-p) why do this ?
e —t(6+u)|
IS 0

= s (—e ) 1) = 036725,

P{Z,.15 < (2)(0.36725)}
= P{e~ (00T (T, < 15) < 0.73450}
= P{e~ (0007 < 0.73450, T), < 15} + P{0 < 0.7345, T, > 15} —(0.06)T, < In0.73450
— P{- OB < 7, T, < 15} + P{T;, > 15}
= P{5.14275 < T, } + P{T, < 15} + P{15 < T,,}? or P{5.14275 < T, < 15} + P{15 < T,.}?

= P{5.14275 < T}, } = e~ (5:14275)(0.05) — () 77326,

4.6.3 n—year deferred life insurance. In the case of n—year deferred life insurance, a
payment is made only if the failure happens at least (after) n years following policy issue.

Definition 4.35. The present value and APV of a unit payment n—year deferred life in-
surance paid at the moment of death are denoted by |Z, and ,|Az, respectively.
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Definition 4.36. ,|Z, = v"=1(n < T}).
nlAy = B[] Z4] = f;o e fr (t) dt and ™, [Ay = E[(u|Z4)™] = n|Ax(v™).

09 0<k<5h0
Example 4.63. Suppose pr = -~ The force of interest is 0.05. Assume
0.6 k> 50.
uniform distribution death (UDD) within each year (or linear interpolation). 40|As0=

=7

— — 00 tr-/\
Sol. 40|A30 = 7 40| A30 = f40 vt fr (1) dt
Due to UUD, fr, (t) = r_1lgz ift € (k—1,k], k=1, ...

k
Y k t 1-1
40| Azo = f4%o v fr, (t)dt = 2?;40 fk—l V1 lgedt = 21?;40 k1102 1p = 21?;40 k71|qﬂf“kTv/U
k—1
= 10]Az0 T 401430 = Yo a0 Vi —1]g30 = 7
=nps by [4], n=k-1
——
k—1]030 =k—1P30930+k—1 = D30 - P30+k—2 (G30+k—1) 2Pz = PxPx+1, -
(0.9)%=1(0.1) k=1,..,21, (30+k—2<49or k<21)
(0.9)2271(0.4) k=22 (30+k—2=50)
(0.9)2710.6"722(0.4) k>23 (30 +k—2>51), ork>22
a0ldzo = Y oM ilgz = Y v50.9%10.6¢20.4
k>40 k>40
(0.)
=0.9%-06722.04 ) vF0.6* = (3/2)*1(0.4/0.6) Y _(0.6v)"
k>40 k=41
(o]
= (3/2)”1(0.4/0.6)(0.60)*" Y "(0.6v)7 j=k—41
7=0
= (3/2)21(0.4/0.6)(0.6v)* by [1
(3/2)7(0.4/0.6)(0.6v) T 060 y [16]
— 7.998342 x 1077
— 1—1/v
40| A30 =40[A30 1 /
nv —p—0.05
v=e
1-1
—=7.998342 x 10*7—/” ~ 8.201632
1DU —p—0.05
v=e

Remark. Quiz on Friday : 447: [20]- [22], 450: [1]-[12], [14], [16]

nte + 51, (FR2) if 0<z<e™ (")
1 otherwise.

Theorem 4.56. Fn|71(2) = {
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(2) = 0 if z <0,
Sl ifz> 1.

Proof. Since ,|Z, = v=I(n < T,) = e =I(n < Ty) € [0,1], F 7

T

Do we have F IZ(I) =17 Why ?
fz2=0,F 7 (2) =P{u|Z, <z} =P{e"1(n < T;) =0) = P(Ty <n)or =P(n<Ty)?
F z.(0) = P(T; <n) > 0.

f0<z<1,F 7 (2) =P{.|Z; < 2}
=P{,|Z, < 2,Tp <n} +P{|Z, < 2, T, >n} ,|Z= ng”](Tx > n)
=P{0 < 2, T, <n}+P{eT <2 T, >n}
=P{T, <n}+P{-In(2)/0 <Tp,n <T,} (max{—In(z2)/0,n} <T)
| P{T, <n} +P{-In(2)/0 < T} ifn< lénz
O\ P{T, <} +P{n < T}

B {an + ST, ( lnz) if0<z<e ™,

1 if 2> e M9,

Question: P(,|Z, =0) =7
Example 4.64.
Example 4.65. Under De Moivre’s model with w =100, f 7 (t)=7

Sol. Let F(t) = F 7. (t). If t € (0,e7™)], then F(t) = nqe + St (—Int/s).
1) If t ¢ [o,e—n5] then F'(t) = 0.

(
(2) If t € (0,e7), then F'(t) = S (-3 = (1— —=)} 7 (> 0at t =0+ or oo ?)
(3) Itt =0, F(O) F<O_) = F<O) = nqz = wﬁx‘
() If t = e F(t4) — F(t=) = 1 — nge — Sr, (F22) = 1 — g, — upy = 0.
. — r=1 : —nd
Thus the df f(t) = (=223 %ft €(0,e7) Is it cts 7 discrete 7
ndx ifte D= {O}

4.6.4 n—year pure endowment life insurance. In the case of an n—year pure endow-
ment life insurance, a payment at the end of n years is made if and only if the failure
happens at least n years after issuing the policy. The present value of the benefit payment is

Zpr =0"I(n < Tp) (=0"I(n < K;)=2_1)

x|
Ay = EZgm] = 0" upy and Var(Z, ) = o>
xm| — :rﬁ|] = U pPx all ar( :r:ﬁ\) =V nPx nfzx.

4.6.5 n—year endowment life insurance. In the case of an n—year endowment life insur-
ance, a payment is made at either the time of death or in n years, which ever comes first.
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Definition 4.37. The present value and APV of a unit payment n—year endowment life
insurance paid at the moment of death are denoted by Z .z and Az, respectively.

vleif T, < n,
v it n < T,.

= [ o () d — / "0 g () i + / o g (1) dt
0 0 n

_ / o™ fr, (1) dt + 0" PAT, > n} = Ay (™)
0

zm| =

Definition 4.38. 7 plehn — 9(Ty) = {

mAZE ml = [(?m

Example 4.66. Find the APV and variance of a 15—year endowment life insurance to (x)
with unity payment if 6 = 0.06 and (z) has a constant force of mortality p = 0.05.

Solution: Zw:m v z] fo fon vl fr () dt + v"P{T, > n} and v = 70,

15
Am:ﬁ| - /0 Uthm (t) dt + U1515pm

15
= / e ey dt + p1Pe— (W15
0

15
Z,U/ e~ O+t gt 4 15— ()15 set u = —(6 + p)t

0

_e—(6+p)t

_ —e 15 —(8)(15) ,—(u)(15)
U +e €

b+p 10

_ o= (0+p)15
:ulgfu + = (0)(15) ,—=(w)(15) 0 = —Inv (why put here?) (1)

—(0.11)(15
:(0.05)(1< ; ) | - 000)05) 00505 979,
0.11

V(A,15) =*A,.15 (v) - ( A,15/(v))? & 0.3492341 — 0.279% ~ 0.2713931
v) =

Note that 2_:v 15|( A, 15|( 2)
1—e —(0"4u)15

— —(67)(15) ,—(p)(15) —Inv? = _ _
=/ " +e e Inv® = (2)(—Ilnv) = 24
0% + K 0*=—Inv?
—(264+p)(15
_ _22 ji ;u)( ) + 705 = ((15) — (3492341

Theorem 4.57.

Theorem 4.58.

Theorem 4.59.
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Example 4.67.
Theorem 4.60.

Theorem 4.61.

4.6.6 m—year deferred n—year term life insurance.

Definition 4.39. In the case of m—year deferred n—year term life insurance, a payment is
made if death happens during the period of n years that starts m years from now.

Definition 4.40. The present value and APV of an m—year deferred n—year term life in-
surance with unit payment paid at time of death are denoted by m]nZ and m]n z, respectively.

Definition 4.41. |, Z, = v'=I(m < T, < m +n) = g(T, .
else.

m m-+n 0
mlnzx - E[m|n7x] - (/ +/ +/ ) / th
0 m m+n m

J— J— m+n J—
Qm‘nAx(U) = E[(m|nZ1:)2] = / v2thz (t)dt = m’nAx(UQ)

m

{ iftm< T, <m+n,

4.7 Properties of the APV for continuous insurance

The following table shows the definition of all the variables in the previous section: Level
payment paid at the time of death

type of life insurance payment
whole 7, =vle
=1
n—year term Z ym| = = I(T, < n)
n—year deferred wlZe =vleI(n < Ty)
= 1
n-year pure endowment 2y = 0" (n <Ty)
n—year endowment va = pmin(Zzn)
m-year deferred n-year term | |0 Zy = v=I(m < T, < m +n)
=1 = 1 = =1 = 1
[14] xn| 7 *‘ =0, Zx:ﬁ| - Zx 7 +7Z n|’ Zw:ﬁ| X Zx:m =07 Zx:ﬁ\ = Zx:ﬁ\ + Zm:ﬁ|
=1 = = =l
xn| n|Zy =0, Zy=2! s + n|Zz, om| nlZe =07 Zy=Zpm +nlZs 7

n|Ax = nEyAgin, & - Aglmj +nEyAgin. n|zx = nEyAzin 7 Zl’ = me +nE:ch+n?

1 1 _ 1 _ _ 4l
A Ay =07 Apm = Ay AL T ApgalAe =07 Ag = ALy 4|4
m|Zz = m|nZs+m+n|Zz, which line above does it similar to ? ™A, al = "Ay n|+mAx%|.
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Example 4.68. If E(Z,] = 0.5, Var(Zy.z)

Aym and Var(Zx:m ).

= 0.35,v" = 0.4, ,p, = 0.6, Find

Solution: _w:ﬁl = B(vT=") = E(T=1(T, < n) +v"I1(T, > n))
= BT I(T, <n)) +v"P(T, >n)) = 0.5+ (0.4)(0.6) = 0.74.

Var<?w:ﬁ|) = 2Zx:ﬁ|_(zx:ﬁ|)2

— 1 — 1
2Aaz:ﬁ| ZQAx:ﬁ\ + 2Aac:ﬁ| =?
9—1 =1 —1 \? 5
Am:ﬁ\ - Var(Zm:m) + (Am:n) =0.35+ (05) = 0'67

— 1 — 1
Ay = Ay (V1) = 0¥ py = (0.4)%(0.6) = 0.096,
A i) = A + Ay = 0.6 4 0.096 = 0.696,
Var(Z ,.z) = 0.696—(0.74)* = 0.148.
Theorem 4.62.
—=1

Theorem 4.63. |, Z, = Zi;m| — 2y

Theorem 4.64.
Skip the rest theorems.

1
x+mm|

Theorem 4.65. |, Ay = nEy - A
Theorem 4.66.

Theorem 4.67. 14|02y = m|Z2 — min|Zs.-

Theorem 4.68. 7, = Zi:m + mlnZe + man|Ze.
Theorem 4.69.
Theorem 4.70.
Theorem 4.71.
Corollary 4.4.
Theorem 4.72.
Example 4.69.

Example 4.70.
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Example 4.71.

4.8 Non-level payments paid at the time of death

In this section, we consider a life insurance with a general payment at the time of the death.
Suppose that if failure happens at time ¢, then the benefit payment is b;. The present value of
the benefit payment is denoted by B, = by, v’=. The actuarial present value of this benefit is

o 0 0
E[B;| = / beo' fr, () dt = / bev' - ipaplatt dt.
0 0

Example 4.72.

Skip the next two examples.

Example 4.73. For a whole life insurance on (60), you are given:
(i) Death benefits are paid at the moment of death.
(i1) Mortality follows a de Moivre model with terminal age 100.
(1ii) i = 7%.
(iv) by = (20000)(1.04)t, t > 0.
Calculate the mean and the standard deviation of the present value random variable for this
msurance.

Solution: The present value random variable is

Z = by, vT® = (20000)(1.04)70uT00 = (20000)(1.04v) 7.

fTGO (t) =7
40 o _
= [ oy - B
—11945.06573,
E[Z?] = - (20000)((1.0402)40 — D,

40In(1.04v?)
40
1
= / (20000)2(1.04v)%t — dt
0 40

(20000)2((1.04v)%0 — 1)
= = 157748208.7
80In(1.04v) ’

Var(Z) =157748208.7 — (11945.06573)% = 15063613.41,
\/Var(Z) =v/15063613.41 = 3881.187114.

Example 4.74.

Definition 4.42. An increasing life insurance in the continuous case (or a contin-
uously increasing life insurance) makes a payment of T, at the time of death. Its present
value and APV are denoted by (I Z)x (or by (IZ)x) and (I A)x (or by (]A)m, respectively.

(77), = T
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In this case by = ¢, t > 0 and (T E)x = fooo tol - fr (t)dt

Definition 4.43. Other increasing life insurances in the continuous case (or con-
tinuously increasing life insurances) are defined as follows.

type of life insurance payment
whole (ﬁ)m = Tl

n—year term (ﬁ)im = Tl I(T, < n)
n—year deferred W|(I2)e = Tpo=I(n < T)
n—year pure endowment (IZ)I 111| =Tu"I(n < Ty)
n-year endowment (IZ),. 7 = min{T, nyomin(Te.n)
m-—year deferred n—year term | pm|n(IZ)y = Tpv'=I(m < Ty < m +n)

w—x

Theorem 4.73. Under de Moivre’s model, (T Z)x = m{[(u} — )T — 4 )

w—x
) 1
Proof. (I A)x —E(TpvT) = /0 wtw — dt
1 w—T
- (w — z)lnw /0 tdv' (v') = v'lnv  (integration by parts)
1 w—x
=———[t' = [ v'dt
(w—x)lnv[v /U ]0
— = [t —
(w— x)lnv[ ! lnv] 0
- 1 _ P 1
= x)hw{[(w z)v —]+—}

Example 4.75. Suppose that i, (t) = 0.03, t >0, and § = 0.06.
Compute (1) 19 (I A)x, (2) (I A) (8) (IA)! 20|

Solution: (I 4) = E(Tyv") = E(Tpo™ (T, <n)) + E(Tuw" (T, > n))
|

(]A)x 10| +10] (YZ);U —0

Q1. How many integrations to do 7
Q2. Can we simplify to 2 questions ?

nl (T Z)x with n = ?
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nl (1 4),

BT I(T, > n))

oo
/ tol e Hdt

]
|
0
oo
’u/ (y+ n)e —y(0+p) fn(5+u)dy
0

8

(0.9]
= u/ (t —n + n)e” T 0+ gt a trick

8

6+u
(y 4+ n)e~Wrn0+m) gy, (y=t—nort=y+n)

e n6+n) / Je VD) 4 ey g
0

—=pe”MOFH) [/Oo ye VOt gy 4 /Oo ne VOTH) gy /OO de =? 8=
0 0 o L(a)pe

o0

_ r'2) (6 + p)? _ n _
— o n(0+R) 2—1 —y(0+pu) y(0+n)
e [(5+M)2/ Q) Y- e dy+5+u i (0+ pe dy|

1 n
—n(0+p)
[(5+u)2 i 5+u]

1 n
(5+ /,6)2 + ,u+ 5]|n:10,,u:().03,(5:0.06

_ S . 1 n
(I A)x =0 ([ A)m = pe (5+u)[(5 + )2 + 1+ 5]‘71:0,#:0.03,6:0.06

~ 2.86

10] (7 Z>x :/w—n(éw)[

~ 3.70.

(H);m ~ 0.84 why ?

Remark. (1) No need to convert to v as E((T 7)i) + (T Z)x (v2).
(2) Avoid integration by parts and making use of G(«, 3).

Definition 4.44. An increasing whole life insurance in the piecewise—continuous

case (or an annually increasing life insurance) makes a payment of [T,] at the time of
death. Its present value and APV are denoted by (I Z) and (I A)w, respectively.

(I Z)m [T, ]vTs = K v, Otherincreasing life insurances in the piecewise—continuous
case (or annually increasing life insurances) can be defined similarly.

Remember that [t] is the least integer greater than or equal to ¢.
Theorem 4.74.

Example 4.76. Suppose that p(t) = 0.03, t > 0, and § = 0.06. (I Z)m:?.



SECTION 4.8. NON-LEVEL PAYMENTS PAID AT THE TIME OF DEATH 129

Solution: (I Z)x = fo [t]ot - fr () dt and [T,] € {1,2,--- }.
(I Z)x = Z/ [t]e 0 ueH dt = Z/ ke % e M dt
k=1 k—1 k=1 k—1
0k
= Z/ kepe~ OHRE gy /eamdx =e""/a
k=1"k=1
— Z k”5[6(5+u)(k1) — e Otk om0tk — = (Ot (R-141) o= () (k1) o= (0p)
o+
k=1
:L(S[l — (4] Z foe— (0+m)(k—1) _ CZ kbl (o = 77)
a k=1 k=1
__H —(6+p) ™k _
=—_[1— e CTmI(> "ok (x = 7?)
p+o pe
1 B 1 — 1;00—1—1
:m[l — e~ OHm)( ) (by [16])
__ K —(0+p) 1 o \—1y/
= 1 e 1 T
P el .., (=2)7)

~ 3.43.

- (N + 5)(1 _ e—(d—!—u)) ‘u:0.03,5:0.06

Example 4.77. Suppose that p,(t) = 0.03, t > 0, and 6 = 0.06. (5 A) =7

1
2:10|

Solution: (EZ)I l—E(( n — T )vT=I1(T, <n)) fo (n—t)v" - fr,(t)dt.
= fon(n—t) tue=th dt = f (n—t)pe t W49 dt 2 ways: integration by parts or a trick :

e B B e IR
0 n 0 n

:/ (n _ t)ueit(“ﬂs) dt — / (n —y— n>lu€f(y+n)(u+5) dy (y —t-nort=y+ n)
0 0
0 0
:nu/ e tnt0) g M/ 2 Lot gy 4 pem0+0) / R
0 0 0

> 0 o0 po—l,—z/B
:nu/ e M) gt 4 pu[—1 4 7O / g2 ey to) gy / do =7
0 0 0

')

(0 + M)2}‘u:0.03,5:0.06,n:10 ~ 1.135.

_ _ —n(6+p)
(il e

Orders of Def. 4.45-4.51 are different from the textbook
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Definition 4.45.
Theorem 4.75.
Theorem 4.76.
Definition 4.46.
Definition 4.47.
Theorem 4.77.
Definition 4.48.
Definition 4.49.
Theorem 4.78.
Example 4.78.
Example 4.79.
Theorem 4.79.
Theorem 4.80.
Definition 4.50.
Definition 4.51.

Definition 4.52. An n—year term decreasing life insurance in the continuous case pays
n — T, at the time of death, if 0 < T, < n. Its present value and APV are denoted by

— —1 — —\ 1 — =\ 1

(D Z), and (D 4) . (D Z), . = (n =T 1(T; <n).
Definition 4.53. An n—year term decreasing life insurance in the piecewise—continuous

case pays [n — Ty | at the time of death, if T, < n. Its present value and APV are denoted by

(D ?)1 and (D Z) izﬁl, respectively. (D ?) = [n— T o= 1(T, <n).

1
7| 7|

Example 4.80. Suppose that p(t) = 0.03, t > 0, and § = 0.06. (D Z);E‘:?

Solution: (D Z);ﬁl — [T — ot fr (@) de =0 [F =10t fr (1) dt.

k= 1 2 3

te (0,1) (1,2) (2,3) (In—t1|,_y5 = [95] =10—k+1, k=1)
[10—t]= 10 9 8§ n—k+1 '
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n k
(DA, :; /k It g

10 k
= Z / (n—k + 1)e 1000 (0.03)e~4(0-09) gt
r=1 v k-1

10 k
= (0.03) / (11 — k)e 00 gt (%) = geo®
=1 k—1

(formula[16])

e (p=7)

0.03 — 0.08(k— _
=509 2 (11— k)fem 0O — m00%]
T k=1
n
_883 (11 — k>€—0.09(k—1)[1 — 7009
T k=1
0.03 — _
=09 21— k)1 —
T k=1

0.03 —0.09 - k-1 - k-1
:m[l — € ](Z 11p - Z kp )|p:efo.09
' k=1 k=1

~0.09
0.03 —0.09 -1 1 _pn 1 _anrl /
=1 —e %0911 - e
1—pntt 1
~1.23. — = 1—(n+1)p" +np

n

0.03 _ v
== e )11 Y P = (O P peom
k=1 k=0

Level payment paid at the end of the year of death

type of life insurance

present value of unit payment

whole
n—year term

n—year deferred
n—year pure endowment

n—year endowment

m~—year deferred n—year term

Z, = vl

Level payment paid at the time of death
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type of life insurance payment
whole 7, = vl
—1
n—year term Zym = UTII(Tx n)
n—year deferred wlZe = v I(n < Tp)
1
n-year pure endowment 2y = 0" (n <Ty)
n—year endowment Zﬂ.m = pmin(ZTe.n)
m-year deferred n-year term | |, Z, = v II(m <T, <m-+n)

Increasing by one life insurance in discrete case

type of life insurance

payment

whole
n—year term

n—year deferred
n—year pure endowment

n—year endowment

m~—year deferred n—year term

mln (]Z)x—Kv II(m<K <m-+n

(]Z)x—Kv

(12)L, |:Kv I(K, <n)
nl(I2)y = KpoBel(n < K,)
(JZ)x}I‘ = K,o"I(n < K)
)

)

(12) 4 = min{ Ky, nJomin(Ken

Increasing life insurance in continuous case

type of life insurance

payment

whole
n—year term

n—year deferred
n—year pure endowment

n—year endowment

m~—year deferred n—year term

(ﬁ)w—<77)m—TU
(TZ)} oy = Tot™I(T; < n)
W|(I2)y = TpoTeI(n < Ty)
(12), l‘_TU”[(n<T)
(1Z)ym = min{T}, n}v™n=mn)
mln (IZ)x—Tv Lal(m < Ty <m+n)

Increasing life insurance in piece-wise continuous case

type of life insurance

payment

whole
n—year term

n—year deferred
n—year pure endowment

n—year endowment

m~year deferred n—year term

([7>m = (TIWUTI

(I'Z):m| = [T 0= I(T, < n)
(IZ)y = [T, 10710 < T,)
(IZ)xl‘ = [T, v"I(n < Ty)
_(1'7) ‘ = min{[7}], n}o™in(Ten)

vlel(m < Ty <m+n

Skip the rest of this section.

4.9 Computing APV’s from a life table

To calculate the actuarial present values of some life insurance products we need to know

fr,(t) for each t > 0, as

E(br,vr,) = /btvthz(t)dt-
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Usually, survival functions do not have an analytical form and mortality is given by a life table.
Then fr, can be estimated by UDD or exponential interpolation in Chapter 3.

This section, we discuss some tricks under UDD.

Theorem 4.81. Assume UDD, and by, t > 0, is constant in each interval (k — 1,k],
k=1,2,.... Then,

1
E[br,vT] = SE[szvK‘”].

Proof: Under UDD, fr(;)(t) = k-1lgs for k —1 <t <k (can be verified).

[ee]
=> E[bTIUTI] :/ btvth(x)(t) dt
0
© Lk
:Z/ bpv' - —1gs dt
k=17 k-1
o t
v
= Z by - k—1|qgvln
k=1
o0
= bk k—1!qx
k=1

=Ebg, v5e]

k—1

/U —
Zbk 1|y ——

_ 1—(e+1
:Zbke 6k‘k—1|%c—(_ )
k=1

J

SRS

Theorem 4.82. Assuming a uniform distribution of deaths, we have that:
(i) Ay = gA : (Note by = 1).
|

(iéé) n|zx = 3 n|A

(év) me = ZAals i +Am |
Question: (1) ﬁw:m = %Aw.m ?
— 1 i
(2) Ax:ﬁ| = A 1|

Theorem 4.81 does not apply to Ax:m as ?m:m = pmin(Ten) (4, £ t).
Theorem 4.81 does not apply to Xx:% as Ez% = v"I(T,; > n) and vy = V"™ # v'.
Ah=al e

x| — wl

Example 4.81. Assuming a uniform distribution of deaths, i = 6% and based on
Tables 7.1 (for ly (see page 77)), 17 (for Ag), 7.3 (for sEy) and 7.4 (for 10E; and 20Ey ),

Tt U _
find: Aso, Asos| (i-e., 15E50), 151450, Aso.15 and Azg1s).
Solution: a0 = 450 = 55 (0.20005756) = 02131063032,

Ao 15 = v 15ps0 = (1.06) 19782 = (1.06) P52 ~ 0.37
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(01“ = 15E5() = 5E5() 1()E5()+5 0.728 % 0.508 =~ 0. 37)
15‘145() = 515|A50 (IlOt in the table) but n’Ax = ErAvin (see [14])

0.06
In(1.06)

Zéom = As0 — 15| As0 = 0.2131063032 — 0.1432839903 = 0.0698223129,
Aso1s) = Zéom + 1550 = 0.0698223129 + 0.3699852591 = 0.439807572.

— 1
15| As0 = 515E50A65 ~ (0.37)(0.38) ~ 0.14,

Example 4.82.

x| 80| 81 | 82| 83 | 84| 85| 86
Cy || 250 | 217 | 161 | 107 | 62| 28| 0

that i = 6.5%. Assume a uniform distribution of deaths. 3|Agy=?

Example 4.83. Consider the life table

Suppose

Solution: Two ways: (1) direct, (2) Th4.82.

) ol =BT >9) = [ inoa= [ o=

= [F Coth14(t—
= Z/k v (—( +h 1Z(t b+D) )p)dt  (sothat t —k+1€ (0,1) formula[12)])
1 T

o :r—|—k 1—|—s) s —1_
Z/kl —)dt (s=t—k+1)

11,'

L80+k—1 — L80+k
_ dt (by [12
Z /k ) L (by [12))

k

_ Z l30+k—1 — lgo4k V'
U0 Inw

k-1

ko ke
B Z l304k—1 — l8o4k V" —

I3 Inv
1 107 — 62 62 — 28 28 — 0
=g (0" =] 250 [v* =] 950 T [0 =] 250
v=1/1.065
~0.326.
o= ! ¢

5 1 -1 Aoy = b 80+h—1 — {804k (306
(2)  3]Aso 3| 80 5; ™

Theorem 4.83. Assuming a uniform distribution of deaths, we have that:
(1) (I1A)s = %(IA)
(ii) (DA). ;= 4(DAYL

DA
(iii) (TA)y =%< Az +[€° (5 — 52) + ) Ae.
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(i) (DA) i = 5 (DAY + 5 (5 = 7) Apny

7|

Proof (i) (I4), = E[[T,|v""] =

By Theorem 4.81 Elbg,v’*] = LE[bg, 05| with by = [t], ¢ > 0.
=> (i).

(ii) It follows similarly from Theorem 4.81 with by = [n —t], t > 0,

(iii) Recall Sy (=Ty — K(x) =T, — Kz + 1).

Sy L Ky and S; ~ U(0,1) by Theorem 3.12, and so is 1 — S,. Thus,

Elbg v+ and (IA), = E[[T,]v"*] = E[bg,v5=].

x

(TA), =E[T,e %]

(TA)y =B[(Sy — 1+ K:v)eiéTz] = E[KxeiéTz] - E[(1- Sm>€75Tz]

—(IA,)z — E[(1 — 8, )e 0UKet51))

—(IA,)y — B[(1 — 8, )e0am1) gm0Ks]

=(IAy)s — E[(1 — 8,)e00=5)| Ble™08e]  (as S, L K,)

_: t(l_1 0Ky _ (K

_6UALp%5(5 ) 4, as E(eK+) = BE(vK+) = A, and
1

E[(1—5,)ef0=%) = [ ¢tat Yy =1-5,~U(0,1)
0

B 5 42 52

0

An insurer offers a 20-year term life insurance of $10° to independent lives age 45. i = 7.5%.
Mortality follows de Moivre model with terminal age 110. The insurer has a fund with $10° to
pay for these insurances. Using the normal approximation, calculate the maximum number of
policies the insurer can cover so that the probability that the aggregate present value for the
issued policies exceeds the amount in the fund is less than 0.01.
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Solution: Let n be the number of policies that the insurer can cover. The present value for
the aggregate n insurances is Z = 2?21 105Yj, where Y71, ..., Y, are i.i.d. fron Z!

45:20/°
We need to determine n so that P(Z >10%) ~1— @(w;—f()) =1—P(z09.01) = 0.01,
—> WBE) _ 0 =233 => 0= E(Z) + 2.330, — 105,
0= E(Z) +233x oy —10% or an+byn+c=0=>n="7
~—— ~— ~ ~ -
5 A1
10 e ) ¢ (109 (42 (62) (42 (0))2) =t

k
:r20| Zk 1UfK

Fre. (k) = Sth=l=s (m+k) i —las

k—2 .
= k—1Pz "Qz+k—1 = (Hj>0 prr]) Qr+k—1 which one?

s(x) Uy
s(x) =1 —a/w="1" (k) = eorblwmasbl) - L0 < <w.
20 20
1 1 ol ="
1 k _ k —

Ax20| kZ:U k_lqu_sz—x_w—x 1—v (1)

=1
105 AL 5”(1 —v*) _
E(Z) = n10°Aj; o = nl0 m|v /1075 = 15683.83286n,

v(1 —v?0) v(1 — v?0) 9
(1—v)65 ‘0:1/1.0752 = ( (1— )65 |v:1/1.075) ) = 687801161.6n.

Now solve n from equation E(Z) 4 zp0107 — 10° =0
15683.83286n 4 (2.3263479)v/687801161.6n — 10° = 0 (T inn) (21
=> 15683.83286n + 61010.71512y/n — 10° = 0.

Var(Z) = n(10°)%(

Vn = ——bi\ngaC, => _b_m <0, or /n ~6.27. So, n ~ 6.3% ~ 39.4.

The maximum number of pohmes that the insurer can cover is 39 or 40 7 Why 7 (see (2!)).



CHAPTER 5
Life Annuities (Exam on Nov 25 (M))

A life annuity is a financial contract according to which a seller (issuer) makes periodic
payments in the future to the buyer (annuitant). Life annuities are one of the most often used
plans to fund retirement. The payment for a life annuity can be made at the time of issue. But,
in the case of retirement, contributions are made to the retirement fund while the annuitant
works. Common retirement plans are 401(k) plans and (individual retirement accounts) IRA’s.
At the time of retirement, the insurance company uses the accumulated deposit to issue a life
annuity. Contributions to this retirement fund can be made by either the employer and/or the
employee. Contributions made by the employee can be tax free. Another way to get retirement
funds is done by the Social Security. So, Social Security is some how similar to an insurance
company issuing life annuities being funded while an individual works.

5.1 Whole life annuities
A whole life annuity is a series of payments made while (x) is alive.
5.1.1 Whole life due annuity

Definition 5.1. A whole life due annuity is a series payments made at the beginning
of each year while an individual is alive. Its present value and APV with unit payment are
denoted by Y, and d,.

Definition 5.2. Y, = 25;”0_1 b (= g, where ) = dg); = ZZ;& o*).
Definition 5.3. i, = E(Y " o) (= B(ig)).

Theorem 5.1. (1) Ifv =1, }“/m = ZkKigl vk = K,
o - " o B ) )
[17] (i) ifv #1, Yy = St ok = 15200 = 1oZe and i, = SO0 obyp, = Ae

k 12731, .. .
P{K, =} [ 0.2] 0.3 0.5 mdda and Var(Yz).

Example 5.1. Suppose thati = 5% and

Solution: 4 ways for d,:

k 1 2 3
(1) B(Yz) = Y2, ufy. (y) (from 447[6], needs fy 7 [P{K, =k} | 0.2| 0.3 0.5 )
Y. 1 [1+40v|1+0v+02
. Ky 00 —’Uk
(2) B(Y:) = BE(}557) = 2555, (55 ) fk. (k) (from 447[6]) v=1/1.05
(3) B(Y,) = 1= (Ap = 7),
(4) E(Yy) = > pr o v kpa (kpz= " 1pz= 7). Which you like the best here ?

137
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(g = nyikw (y) =1%02+ (14+v)0.3+ (1 +v+2%)0.5 often not convenient (1)
y
o0
k=0
1-A
Ay = T ;... need to first derive A, (= E(v%*)) (3)

1 — ol 1—1.057"%
iy = B(— )= o fr, (k) = 1% 0.2+ 1.9524 % 0.3 + 2.8594 0.5 = 2.2154, (2)

I—v’ ~ Z1-105
-2 " 1105 2 2 2 2
B[] = Y (=) F (k) = (1)%(0.2) + (1.9524)(0.3) + (2:8594)(0.5) = 5.4317,

k=1

Var(Yy) = 54317 — (2.2154)” = 0.5236 or = Var(72) = 5155 (A(v?) — (A(v)?) = -+

Example 5.2. Suppose that p,;; = 0.97, for k >0 and i = 6.5%. Find i, and Var(Yy).

Solution: Which of the methods (2), (3) and (4) is better here ?
Most of the time, method (3) is more convement
Formula: Y, = 11 ZU Uy = 11__‘21;”:? Ay =E@E)y =377 v ki (k)=?

k—1)— k lptro—1—Vy k .
fr, (k) = s(z+ S(L)s(m+ ) — Lavtk . D Qa1 = <Hj>0 pm—j) Qzik—1 Which ?

- . Qe 1 —(vps)™ q
k k, k—1 k T B T T
:E:“ E:Up =qz/P E Upy)” = —vp = .
1 f v o :r/ ’ k—l( x) Dz - VP (1/U - px)
003 1—A, 1—0.3157894737
Ap= 1B — — 0.315789, = —2 = 20— 11.2105.
I pr 1o +0.97 1—w 1 — (1.065)

Formulas: Y, = 11__25. V(aX +b) = a?V(X), and V(Y,) = ‘?‘fi(jﬁ) = 2(‘%“”:1)‘;23.

24, = A, (v%) = — L — 0.1827
vz Pz

2A; — A2 0.1827 — (0.3158)?
(1—-v)2  (1—(1.065)"1)2

Var(Y,) = ~ 22.269.

Example 5.3. Assume i = 6% and the de Moivre model with terminal age 100. Find dsg.

Solution: Method (3) is better here. Formula: Y, = =2z §, = 1=4«

1—v 1—v °

1 1— o)1
Ay = B ) =3 ok GO = 0.2340649124.
e Y7 L=v nl11.06m=w—a=10

Hence, iigy = LA — ID2800121 — 13 53151988,
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Example 5.4. John, age 65, has $750,000 in his retirement account. An insurance com-
pany offers a whole life due annuity to John which pays $P at the beginning of the year while
(65) is alive for $750,000. The annuity is priced assuming that i = 6% and the life table for
the USA population in 2004 (see pages 605). The insurance company charges John 30% more
of the APV of the annuity. Calculate P.

Solution: 750000 = (1.3) Péi, = 1.3P17de = 1310376 (from the life table)

_ _ _ 750000 ~

Denote ™, = dz(v™). Notice that, 2d, = 11__2;}421 £ E((Y,)?).

Example 5.5. Suppose that i = 0.075, G, = 8.6 and %i, = 5.6. Var(Y,)=2

Solution: Formula: Y, = 111202. Var(Y,) = 64 ‘)% ? or %y — (dg)* ?

: . " _ . Ay

Given conditions: (1) d, = 11_‘1’“ =8.6. (2) %4, = 11—752) =5.6.
Eq.(1) => A, =1— (1 — v)8.6‘1}:1/1.075 = 0.4.
Eq.(2) => 24, = A,(v®) =1— (1 — v2)5.6‘7j:1/1.075 = 0.246. Hence,

A, — A2 0.246 — (0.4)
(1—v)2 ~ (1—(1.075)"1)2

Var(Y,) = ~ 17.640.

x| 80 | 81| 82 | 83 | 84| 85| 86
Oy || 250 | 217 161 | 107 | 62| 28| 0
year old buys a due life annuity which will pay $50000 at the beginning of the year. Let
i = 6.5%. The single benefit premium for this annuity = ?

Example 5.6. Consider the life table An 80—

Solution: 50000% =7

Formula: Yx—zk =Lk — 11_ZUI. Zy = vie,

3 ways:
(i) e = BCTE) = Yoney 25 i (k) = 000 Ao =t (as fi, (k) = %22 )
(ii) do = l_dAI-

(iii) G, = Zk 07) KDz (kPz = 2+k>
Either way is fine, most of the time, use the last two ways.

(i) e = L5, Ay = 300 fic, (k) = 307 o et
By prev1ous example, Agg = O 816

1—Asp _ 1—(0.816)
d "~ 1-1/1.065

(iii) G, = S50 v
4107 4 62 5 28

=1+ (1. 1. 1. 1. 1.
+ (1.065) ™ oo+ (1.065) 72 o+ (1.065) 7%+ ( 065) 5ng T (1:065)
~3.012. Hence, (50000)iigy ~ (50000)(3.01165) ~ 150582.71.

aso = ~ 3.012. Hence, (50000)dgo ~ (50000)(3.01165) ~ 150582.71.

x

Example 5.7. An insurance company issues 800 identical due annuities to independent
lives aged 65. FEach of this annuities provides an annual payment of 30000. Suppose that
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Pk = 0.95 for each integer k > 0, and i = 7.5%. Using the central limit theorem, estimate
the initial fund needed at time zero in order that the probability that the present value of the
random loss for this block of policies exceeds this fund is 1%.

Solution: Let Y, Ay Yy 800 be the present value per unit face value for 800 due annuities.
The present value of total payment is Y = ZSOO 30000Yy ;.
The fund needed is Q@ = E(Y) + 20010y, Where ®(z0.01) = 0.99, why 7

P(Y <t) ~ O(520)) = (z) = 1 - a by [22] =

t = E(Y) + zq0y and 2001 = 2.326 or 2.33.

Formulas: Y, = LZe (1) b4, = 11__‘3]’”. (2) iy =D poo V" kpz, which one ?

Since we need to compute V(Yx), first way is simpler, then need [8]:
k—2 .
le(k) = k71|qgc = k—1Pz " Qz4k-1 = (szo px—kj)Qerk—l which 7

[ee] 0
k k, k—1 k ke _ 4z UPx Qm
=§vak=§vp q—gvp =

k= - Pz v Pz
Iz 0.05 5 G 0.05

Ay = = =04, %A, = = — (0.2444988,

Col oy, 1.075-095 YL, 10752 - 095
L 1A o 6,
Ay = =

v 1—-v

. 2A; — A2 0.2444988 — (0.4)?

Var(Y,) = ———% = = 17.35981.

ar(Ye) = T2 (1—1/1.075)2

E(Y)=E 800 %0 300005 | = (30000)(800)(8.6) = 206400000,
J

o2 =V (ZSOO 30000V J) = 1300002V (¥;;) = (800)(30000)2(17.3598) = 12499063200000.
Q = E(Y) + 2.3260y = 206400000 + (2.326)+/12499063200000 = 214623343.70.

Theorem 5.2. (Iterative formula for the APV of a due annuity) i, = 1 + vpgigy1. [18]

Example 5.8. Suppose that d, = dz1+1 = 10 and g, = 0.01. Find 7.
Solution: Formula [17]: Gz = 1 + vpgly+1 and v = Lo

1+i
10 =1+ 15(0.99)(10) => i = C2D 4 — 109,

Theorem 5.3. For the constant force of mortality model,
1 14i 1

Uy = [0y, = fig, = Toe-wrm Where g =1—e7.
) _1-A, N0k

Proof. 3 ways: a, = Zk 1Z] oV fK 10 — Zkzgv kP

0o 00 [ee} oco+1

I —pnk T el _ 1
v = e "t ="% (e )= ¥ = = .
1—=x s 1—e 4
k=0 k=0 k=0 k=0 T=e

Theorem 5.4.
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Theorem 5.5.
Theorem 5.6.
Theorem 5.7.
Example 5.9.
Example 5.10.
Example 5.11.
Theorem 5.8.
Example 5.12.
Theorem 5.9.
Theorem 5.10.
Theorem 5.11.
Example 5.13.
Theorem 5.12.
Example 5.14.

Example 5.15.

5.1.2 Whole life immediate annuity

Definition 5.4. A whole life discrete immediate annuity is a series payments made

at the end of each year, while an individual is alive. Its present value and APV with unit

payment are denoted by Y, and a,, respectively. Y, = Zfﬁfl ok,

If T, = 0.5 then Y, = Z,ﬁ”al vF= 7Y, = 7 Class exercise.

If T, = 1.1 then YV, = Sopetob= 2 v, = 7

Theorem 5.13. Y, =Y, — 1, ay = iy — 1 and Var(Yy) = Var(Yy).

I
BN

Example 5.16. Suppose that pyyp =097,V k>0, and i = 6.5%. a, = ? Var(Yy)

Solution: By Ex 5.2, i, ~ 11.21 and Var(Y,) ~ 22.27 => Answers ?

ag = dy — 1 =10.21 and Var(Y;) = Var(Yy) = 22.27.
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Definition 5.5. Y, = ag— = Zf;;l vF, where (| = gl = 2 pey vk,
Definition 5.6. dm = >, _,v".
Theorem 5.14. a; = vpylzt1 = vpz (1 + az4+1).

5.1.3 Whole life continuous annuity Recall az); = fon vtdt

Definition 5.7. A whole life continuous annuity is a continuous flow of payments with
constant rate made while an individual is alive. Its present value and APV with unit rate are

denoted by Y, and @, respectively. Y , = fOTm vldt (= Eﬁ|) and "a; = a;(v™)

Vo= Sope b Yo = Stk — Land Vi, = [ oldr.
Like Z,, Z, etc., they are all of the form ¢(T}) or g(K).

Theorem 5.15. (i) If § =0 (i.e., v—l) then Yy =Ty and Gy = ey
(i3) If § # 0 then Y, = A, ay = 1 Az — fo vhpedt and Var(Y,) = QAI(;;A“.

Do we have Var(Y,) = E((Y,)?) — (63;)2 ?

Example 5.17. Let v = 0.92, and the force of mortality be pyi¢ = 0.02, for t > 0. Find
(i) the density of Y, (i) the first quartile of Y, (iii) @ and Var(Y ).

Solution: (i) Given fr, (t) = 0.02¢709% t >0, => fy, (y) = Ir, (hil(y)) ‘d%hl(y)’, where

v o 1= _ 1-(092)™ _
Yi= "= "hpey = MTx) and

In(1 + yIn0.92)

W) == ¥E(0.1/9] ( by [20] in 447)
a5y = 15 = hlt) => ot =1 - g8 => £ = P o) as s = e, (1)
t Ty e (0,00) and y — Yy = 5” c (O,Tv). 2)

d In(1 + yIn(0.92)) In(1—dy),, In(1 —oy)

I

fy. ) =fr. (1“(1 ;;ggg‘;””)

dy  In(0.92)
In(1 4 yIn(0.92)) 1 1
002 (0.02 . - 1n0.92
(0.02) exp ( (0.02) == 092 00.92 1+ yn(0.02) "0

1
1+ yIn(0.92)

:(0.02)(1 + (1n0.92)y) 7057 ! done ?
(093 92) Why 77 (see Eq.(1) and Eq.(2))
(ii) Two ways for finding 7,, the 100p—th percentile of Y

—(0.02) exp <ln[(1 + yIn(0.92)) 05 33?])

0<y<jy
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(1) to solve p = P(Y, < n,) with p = 0.25.

(2) np = {Zggp) ) li Z I, where &, is the 100p—th percentile of T;,. Now h(t) 1 in ¢.
1-p 1

Second way is easier here : First solve p = P{T, < &} = 1 — e 00%,

So, & =~ We have that ¥, = 5G9 = (1),
. » B 7111(1—217)
So, the 100pth percentile of Y, is h(&p) = __1510('3?;) =1 (2?580_92050 ,p="

_ ~ In(1-0.25)
The first quartile of ¥, is =22 (0 920)'02 = 8.378536891.
First way: P(Y, <1) fo fY

= 0.02 fo (1+ (In0.92)y)~ .57 dy

= 0.02 fo (1 + ay)bdy ((a,b) =7)
=0.02 fHat ubdu/a (u=7)
= 0.2 |, = = 1= (1+ (n0.92)t) w09 = p = 0.25.
Solving 1 — (1 + (1 0.92)mp. 2g,)*ilnoff’gm — 0.25. yields 795 = 8.378536891.
(iii) EY,) =? Y fOI vidt = =4 (5 = —lnv)

= ftfyz ffoy vtdt fr ( dy = fo vlpedt. Are they feasible ?

The last two are sunpler for E(Yx), and the 3rd is better for 07 .

A, = B! z/ ot tdt:/ e 0 e—“tdtZL/ §+p)eOrmtgy — _H
(v'") i fr. (1) i 0 u+50( D) 51

why?
— W W 0.02
A, = = = = (0.1934580068
R —Iny  +p —In(0.92) 4 0.02 ’
——~
why do this ?
_ 0.02
2 2
A, =A = = 0.1070874674
e = A:(V) = E 9 T o0 ’
1—A, 1-—0.1934580068 —
Ty = = = 9.672900337, Var(Y,) =2
Y= —In(0.92) ’ ar(Ye)
— — —2
— Var(Z,) 24, — A, 0.1070874674 — (0.1934580068)>
Var(Y.) = — z _ ~ 10.02.
ar(Ys) 52 (—Inv)? (—In(0.92))2
1— Zw 1 - 51-:/1 _ 1

A by-product: @, = 5= 5 ="
1

Example 5.18.

Example 5.19. Let § = 0.05 and ;p, = (0.01)te %1, t > 0. Calculate @,.
Solution: Formulas: a, = 1—5E = [Tt Pz dt and v = e~

1)
0 )
Which is better here ?
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o 0.9]
Uy = / e~ 0090t (0.01)te " dt = 0.01 / te™ 015t g
0 0

OOta—le—t/ﬁ
=0.010(a)B* |~ dt (see[23
()8 /0 (o) (see[23])
o) 242—1_,—0.15¢
_0.011(2) (0.15)**"e dt = OO o
0152 J, r(2) (0.15)2

Skip to Ex. 5.23.
Definition 5.8.
Definition 5.9.
Theorem 5.16.
Theorem 5.17.
Theorem 5.18. a, = fooo vl pe dt = fooo B dt.
Theorem 5.19.
Theorem 5.20.
Corollary 5.1.
Corollary 5.2.
Theorem 5.21.
Example 5.20.

Example 5.21.

Skip to next section.

Theorem 5.22. If &, is a p-th quantile of T, then given b,0 > 0, the p-th quantile of
pl=e ™ g ploe
0 0 ’

Theorem 5.23.

Example 5.22. Assume i = 6%_cmd de Mowvre model with w = 100.
(i) Calculate the 30th percentile of Y'30.
(ii) Calculate the APV and variance of Y 3g.

Solution: (i) Two ways since Y3y = %(: hMTy)):
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(1) based on Fy (1), (2) based on Fr,(t).
(2) is easier, as it is U(a,b).
~1—(1.06)~
h(t) m T n t.
Let £p.30 the 30th percentile of T3g.
0.3 = Fry,(bo30) = %5

So, £0.30 = 21. The 30th percentile of Vg is h(21) = % — 12.11357171.

(ii) agp = 1_Z3° = fvttpxdt Which equation is better here 7
(Since we need to compute af , the first one is better).

th1 t w-z _ 1-(y)™ _1(106)_70N
A = [ 7= o o —70)In(o) — (70)n(1.06) ~= 0-2410
27 1f(v2)7° _
— _ 1—As _ 1-0.2410186701
aszp = —5 30— Tn(1.06) = 13.02549429.
Var(?;),o) _ V(I’l”(l_(szgo) _ 214130—(Sg14130)2 _ O.12254924((1)2(_1Fgé§;1210186701)2 907 8908307,

Skip ends here

Example 5.23. An actuary models the future lifetime T, of a life age x as follows. T,
giwen i has constant of mortality . p has a density function f,(t) = 1250(¢t — 0.01), for
0.01 <t <0.05. 6§ =0.06. Calculate a,.

Solution: Q: fr, (t) = ue ", t >0 or fru(tlpn) = pe Mt >0 ??

iy = BE(Yy) = [ (V| ]
and EY ;|u] = f vie Hdt = f —Otmt gy = %

1 0.05
Gp=FE|———| = 1250(t — 0.01) dt
o [u+o.06] /0,01 006 20 )

0.05
:1250/ t+0.06 —0.07 dt
0

o1 t +0.06
0.05 0.05 0.05
0.07 0.07
:1250/ 1— dt:1250[/ 1dt—/ dt}
0.01 t+0.06 0.01 001 t+0.06
0.05
—=1250 (t — (0.07)In(t + 0.06))
0.01

=10.45130167.

Example 5.24.

Skip to next section

5.2 Deferred annuities.

(Quiz this week: 450 [1]-[12], [14]-[16], [17] Yz)
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5.2.1 Due n—year deferred annuity.
Definition 5.10. A due n—year deferred annuity guarantees payments made at the

beginning of the year while an indwidual is alive starting in n years. Its present value and
APV for (x) with unit payment are denoted by ,|Yy and ,|d,, respectively.

Definition 5.11. [V, = 3,5 oF.

Theorem 5.24. ,|Y, = v" Zk el

Z i —n|Ze

Theorem 5.25. Ifi # 0, ,|V, = & — r](K >n) (= =HG——)

Example 5.25.

Theorem 5.26.
n k
5 ways for E(,|Y.): n|d. = dotf v, () = > i1 oL [, (k) and

Am n| n|A

Theorem 5.27. ,|d, = Zk — o V" kPz = nFEylgin. All in formulas sheet.

(The last three are more useful, the third is from the definitions in [14], and the last one is
included in the formula sheet [18].

Example 5.26. An insurer offers a 10-year deferred life annuity—due to a (55) with an
annual payment of $30000. Mortality follows the life table for the US population in 2004 (see
pages 605). The annual effective rate of interest is 6%. Find the APV of this life annuity.

Solution: (30000)9|dss = ? life table gives ,, F, and a1y,
00 o A 1‘ 00
=n—+ =N

Which way ? n=7 x =7
(30000)10|ds5 = (30000)10E55d65 = (30000)(0.508011685)(11.022302) ~ 167983.75

Theorem 5.28.

Example 5.27. Let A - = 0.3, Ay, = 0.6 and i = 0.05. ,|d, = ¢

nEy = A 1| 03,
1-0.6

nlie = nEolpin = (0.3) 755 = 2.52.

Theorem 5.29. E {(n|Yx)2] =2F,-E {(ijLn)Q] Ignore it.
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o\ 2 Qigin—(2—d)-2d 02 P — 20" | A Az (v?
_ 2 g = (Qod) sy _ 0 apa=20" | Asta| s (0?)
E [(n|Ym> :| =v nrx d - (1—v)2

. 2n n 2 2
v ‘an'an*2U 'nqz‘n Az+ Azfn A
V(n|Ye) = (1—v)2| oA —n|A;

Example 5.28. Let v = 0.91 and p,y; = 0.97 for k > 0. Find 4li, and Var(s|Yy).

. . o
Solution: ,|iy = nEy - dyin, T

?pm = pa:p:voqgl : '];p:ernfl = pgo o . (due to p,.x = 0.97, k > 0),
Ag4n = Zk:() VY kDr+n = Zkzo U'Pe = Toupy»

1
= 0.05797317039. (0)

40|dnc =L dx—i—n = Unp;;ll s
Pz | y—0.91,p,=0.97,n=40

Q: Note V(,|Y2) = E((n|Y2)?) — (n]dz)?. How to compute E((,|Y3)?) ?
Ans: (1) Th. 5.29, or (2) the simple and recommended way:

n K.

(% (%

E((n|yx)2) :E<(1__—UI(K90 > n))Q) (1)
2 — e 2K
=F I(K.
( (1 o U)2 ( Tz > n))
1
=l e = BRI > ) + B > )
. 1
E((n|Yx)2) —(1 — )2 [U%npm — 20" | Ay + n|Aw(U2)] nlAs = nEzApin (2)
1 .
= 1 5 [U2nnpm - 2Unvnnpx14x+n + U2nnpmAx+n<v2>] (nomng
(1-v) v=0.91,p,=0.97
o0 o0
_ v
Ao = 3o ) = Dbtk = 0 (e (1) and e =)
=0.01275747

Var(40]Vs) =0.01275747 — (0.05797317)2 = 0.009396582

Neither Eq.(2) nor Th 5.29 is easy to memorize.
Just learn to expand Eq.(1).

Theorem 5.30.
Theorem 5.31.
Example 5.29.
Example 5.30.

Theorem 5.32. |4, = vps - n—1|dgt1- [18]
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Example 5.31. Using i = 0.05 and a certain life table 19|dso = 7.48. Suppose that an
actuary revises this life table and changes p3o from 0.95 to 0.96. Other values in the life table
are unchanged. Find 10|dsy using the revised life table.

Solution: Formula: ,|d, = Zzozn oF - kps and
changed unchanged

[18]: n|ax = VPx - n—1|daz+1 =V Dz Z;in—l vl - iDz+1
known
N
e - - 1.05)(7.48
10ldgyt = vp%’ -10-1ldzo 11 = T.48. => oliig1 = % = 8.267368421.

10/a55" = vpss? - 10-1ldso+1 =7

10]d30 = vpe - 9]dz1 = (1.05)71(0.96)(8.267368421) = 7.558736842.
Skip to next section
Example 5.32.
Theorem 5.33.

Theorem 5.34.

5.2.2 Immediate n—year deferred annuity.

Example 5.33.

Theorem 5.35.

Theorem 5.36.

Definition 5.12. An immediate n—year deferred annuity guarantees payments made
at the end of each year, while an individual is alive starting n years from now. The present

value and APV of an immediate n—year deferred annuity for (x) with unit payment are denoted
by n|Ye and ,|as, respectively.

Definition 5.13. Immediate n—year deferred annuity ,|Y, = Zli(;;il a
Theorem 5.37. |V, = ,11|Yz (v.8. n|Ye = Zan o).

5.2.3 Continuous n—year deferred annuity.

Definition 5.14. An n—year deferred continuous annuity guarantees a continuous
flow of payments while the individual is alive starting in n years. Its present value and APV

with unit payment are denoted by ,|Y » and ,|a,, respectively. Y, = fnTI v3dsl(Ty > n).
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n|?m:szUSdS[(Tm>n): U?SU I(T > n) if v # 1.
! (Tm_ )I<Tx>n) ifv=1.

If v # 1, 4 ways for computing ,|@, = E(,|Y) :
_ n__,t Ax% —n Zw
nlde = [tf v, (t)dt = [0S fr () dt = —llnvl = [ vl padt.
Most of the time, it is simpler to just make use of ,|Y, = =% - (T, > n) for V(,]Y2).

—Inv

Example 5.34. Assume v = 0.91 and de Moivre’s model with terminal age 100. 20|aso=7

Solution : 9|V 40 = L5 —— I(T >n) (=9(Ty). (v="w—x="n=7)

(vt — o™ I(t > n) I(t — Ut — 1
20|540:/ (v =™ I(t >n)I(t e (0,w x))dt:/ vt — " @t
0 n

lnv w—x Inv w—=
1 1 Ut w—x

Example 5.35. Suppose that v = 0.92, and the force of mortality is jiz+¢ = 0.02, fort > 0.
Find 29|ay and Var(oo]Y ).

Az e I "‘A

Solution: Formula: (Th 5.43.) ,|a, = = —— = f vhypadt
00 00 00 —(u+o)n
nlas :/ vhpedt = / vle Mt = / P M — ~ 1.22
n n n o n=20,6=—1n0.92,:=0.02
= 9 oo o — Ut
E((nY2)%)) =/ (———1(t> n))? fr, (t)dt (= E(g(Ty))) next step??
0

OOU”—’U o0 ,UQn_ Unt U2t
_/< 2 i (8t /( ) e

B 00(672115 _ 9e—(n+t)5 4 —20t
=/ =

:6_/~;[6—Zn6/ e—utdt_Qe—na/ e—(6+u)tdt+/ 6—(26+u)tdt]

at
—2.472240188 (as / edt = < + ).
a

Yue Pt

Var(g|Y,) = 2.472240188 — (1.223476036)? = 0.9753465773.
Theorem 5.38.
Theorem 5.39.
Theorem 5.40.

Theorem 5.41.
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Theorem 5.42.
Theorem 5.43.
Theorem 5.44.
Theorem 5.45.
Theorem 5.46.
Theorem 5.47.
Theorem 5.48.
Theorem 5.49.
Theorem 5.50.
Definition 5.15.
Definition 5.16.

5.3 Temporary annuities.
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5.3.1 Due n—year temporary annuity.

Definition 5.17. A due n—year temporary annuity guarantees payments made at the

beginning of the year while an individual is alive for at most n payments. Y, zA| = f 6\ nelok,

Its present value and APV for (x) with unit payment are denoted by Yx:m and G5, respectively.
Theorem 5.51. (i) Yx:m = fé\n Lok =i

1 ’l}KIAn 1-— Zx 7|

(Z’L) [fZ 7é 07 Ya::ﬁ\ = _1—1} (: d A )
(iii) If i = 0, Y, = min(Kz,n).

min(K,,n)|’

Theorem 5.52. i, = ZZ:l % k—1]Gx + % - nPz (easy to get right)

= Zzzl 1171; “ko1lge + % “n—1pz (faster sometimes).

1-A

. . 7| C 2Az:ﬁ\_(Az:ﬁ|)2
Theorem 5.53. If i # 0, . = —5 and Var(Yyp) = —"F5—"~.
The last formula is due to V(a + bX) = b*V(X) = V(iﬁ:m) as Yfﬂtﬁl = 1_?:%'

But n|Yx _ v”I(Kz>n)—dnyI(K1>n)’ ie 7 — Y.gX
Thus V(Z) = YEHV)L2000(XY) Apa (V) = (Ag ()"0 | As (v°) ~(n| Ao (v))*

d? d?
Example 5.36. Assumev = 0.91 and de Mowre’s model with w = 100. d,j. 20 =%0 Y =7
40:20|
Solution: 3 common ways for APV:
. ok —™ 1714‘,3% 1
aﬂTIﬁ' - Z’Z:l 11,1-; ' k‘—1|QI + 1171),0 *nPxr = d ‘ — Z 0 Ukkpm
It is better to use }"/40:@ = 1_”;(Mn = 17?%‘, d=1-w.
n n
1—20"1 40
Am:ﬁ\ :ka : k—1|Qx +Un *nPxr = ka/GO + vn(l - n/60) =0 1— v 60 +v @ ~ 0-244a
k=1 k=1
) 1= Az 1-0.244
(4030 = y ~ 0.09 ~ 8.399
9 A0 (V?) = (Agoz0)(v)? Agpiag (0.91%) — 0.244
DYool 2 = _ 2 =
40:20| (1 "U) (1 0.91)
Example 5.37.
Theorem 5.54.
1
Theorem 5.55. Y. 7l = one0 Z %| and Gy = > 0” KDz

Theorem 5.56. Ifi =0, G, =1+e€

rn—1|
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Example 5.38.

Example 5.39. If p, = 0.98, py11 = 0.97 and v = 0.92, find B(Y, 3)) and Var( m3|).

Solution: Three ways to find d, 3 = B( kKé\3 1 k) = E(l_f’fiwl
1-v" 1- AM
xn| Zklllf)u k’1|q$+1v nPz = | Zkz ()U LDz
1 1.,k
(1) Ay.3] = Z:l 11_1;7 : k71|qx + ﬁ “p—1pz Is lt right 7 n=7
0/gz =7

|Q:r = Pzqx+1 and op, = pxpx—H

w3 = T 1-1lae + + 1=,
( )(0. 02) + 11 0.2 (0.98)(0.03) + 1209270 98)(0.97) ~ 2.71.
x:§| = Zk:() U kP
= (1) + (0.92)(0. 98) +(0.92)2(0.98)(0.97) ~ 2.71.
(3) Often use Y —: (G, = ] and Var(}"/ nl) = A”m(v2)_(A’“ﬁ')2)
3] T T 1—v x:3| 1—v 7| :

xZ:

K A k
Ax;g\ n g v k—1|Qx + 0" _1Ds
k=

= (0.92)(0.02) + (0. 92) (0.98)(0.03) + (0.92)%(0.98)(0.97) ~ 0.78
1-0.78
. ~ 2.71.

Y3 10,92

?A,3 = (0.92)*(0.02) + (0.92)*(0.98)(0.03) + (0.92)°(0.98)(0.97) ~ 0.61

0.61 — (0.78)?
(1—0.92)2

Var(Y, 3) ~ ~ 0.0798398

Theorem 5.57. YV, = Yw:m + n|Y,. Formula #18.

Example 5.40. An insurer offers a 20-year temporary life annuity—due to lives age (60)
with an annual payment of $40000. Mortality follows the life table for the US population in

200/ (see pages 605) The annual effective rate of interest is 6%. Calculate the APV of this
life annuity.

Solution: The tables give a, and , FE,.
Formulas #18 leads Gy = Gy + nliz = Agm| + nLolpin.
The APV of this life annuity is
(40000)&60%| = (40000) (dgo — 20Fs0ds0)
= (40000) (12.154122 — (0.190986505)(7.026210)) = 432488.4283.

Definition 5.18. The actuarial accumulated value at time n of an n—year temporary

ax |
due annuity is ;7 = —F -

84m| is the actuarial future value of an n—year due life insurance policy to (z).
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Theorem 5.58.

o 17,Unpn
IZ’I’Ll - 1- VP

Theorem 5.59. Under constant force of mortality, a . Ignore rest.

. 1 )"
Proof. d,5; = Ek 0 vFpe = Ek 0 Ukpﬂlg - 1(v—£9x)' .
Theorem 5.60. d,5 =1+ vpyd, 15— TEsTE

Definition 5.19.

5.3.2 Immediate n—year temporary annuity.

Definition 5.20. An immediate n—year temporary annuity guarantees payments made

at the end of the year, while an individual is alive for n years. Its present value and APV for
nA(Kz—1) f
v

(x) wz’th unit payment are denoted by Y.z and a,.z), respectively. Y,z = k1

Z:

Theorem 5.61. Y, 5 = —1 and Vaf(Y:c:ﬁ\) = Var(Y nT-1|)'

xn—|—l\ L, Az = Qg1

Example 5.41. Let p, = 0.98, pp+1 = 0.97, and v = 0.92. Find a,5 and Var(Yx:m).

Solution: Y,z = Y, vy — 1.

(i3 = 270618784 and Var(Y,3) ~ 0.0798398, (by Ex5.38),
2

) &~ 0.07983398.

X

a,5) = 1.70618784 and Var(Y

€

Definition 5.21.
Theorem 5.62.
Theorem 5.63.
Theorem 5.64.
Example 5.42.
Example 5.43.
Theorem 5.65.
Theorem 5.66.
Theorem 5.67.

Theorem 5.68.
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Theorem 5.69. a,.5 = vprdyy1q = vpa(l + am+1:m|).

5.3.3 Continuous n—year temporary annuity.

Definition 5.22. An n—year temporary continuous annuity guarantees a continuous
flow of payments at a constant rate for n years while the individual is alive. Its present value
and APV for (x) with unit rate are denoted by Y pm| and Gy, respectively.

Definition 5.23. Y,z = [o " vdt. If v, = !, then Vo = [ vl dt =7

min(Tz,n)|"

Theorem 5.70. If 6 # 0, then ?m‘ B 1*?%\_

—Inv

Example 5.44. Suppose that § = 6% and deaths are U(0,105). 665:%‘:?

Solution: 3 common ways for @,
1-A

= Iy L f (8 dt + S P{T, > n) = Jo v e dt = =5 0E 5 #£ 0.

Either way works, but the last one 1_1:51““%' is better here.
= T f20 vty 1 — e~ (20/006) 20)(0.06) 20
Ags.an =E@"17) = o+ 0™ a0pes = (30)(0.06) + (200 )4_0 — 0.4417661844,

1—Ags0) 11— 0.4417661843

Qg5:20) = 565'2()' = (0.06) = 9.303896928.

Jump to Example 5.47 first.

1—e—n(ntd)

Theorem 5.71. Under constant force of mortality, G,z = =,
Theorem 5.72. Gy.0) = Gpn| + mEa - Cppmam-

Theorem 5.73.

Theorem 5.74.

Theorem 5.75.

Theorem 5.76.

Theorem 5.77.

Theorem 5.78. YV, = 7$:ﬁ| +nlY e and @, = Uy + nlas = Uy + nEolyin.
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s
003 if10<e )0 0.04 if10<¢.
Calculate .75 (= E(vp,a15) why not E(v1="15) ?)

Solution: Uy = fo fo vedt fr, (y)dy = fo Vg k¢ Prdl = a, 0| T+ 10E20, 1. 5| ? [18]

01 fo<t<1 : if0<t<1
Example 5.47. If (i) p.(t) = {00 iH0 < <10, _ {006 if 0 <t <10,

~0.06(10),~0.01(10) 9
(3) Oy:75) = Gy:70| T 10820y 0.5/ 10Ez = v10 X 10Pz = {60.04(10)60.03(10) 2
_ 10
Formula [5]: Sx(z) = exp(— fO . [17] @10/ = fo vlypydt

t
exp(— [, 0.01d 1f t € (0,10
(2) tpe = exp(— fO prz(w)du). => yp, = p( fOlO v) t f ( |
exp(—( [, 0.01dy + [,,0.03dy)) if t> 10,

oy — exp(— fo 0.06dy) if t€(0,10]
exp(— fO 006dy+f10004dy)) if t> 10

0.01 exp(— fO 0.01dy) if t€(0,10]
0.03 exp(— fo 0.01dy + floo 03dy)) if t > 10,

10 15
/ Ut * tpxdt / Ut * tpxdt + / VUt * tpxdt
0 0 10

10 15
/ —O.O6t6—0.01tdt+/ ¢—0.06(10)—0.04(t-10) ,~0.01(10)~0.03(t~10) 3

0 10
10 15
:/ 0.07tdt+/ ¢ —0.2—0.04¢ ,0.2-0.03¢
0 10
10 15 o—0.07t |15
/ e V0Tt + / e 00t = — | =9.286603584
10 5
(3) ax:ﬁ\ :aw:ﬁ\ + 10E9Caa:+10:5| - / 6_0.06ttpmdt + 010 - 10]%/ 6_0'04ttpx+10dt
0 0

10 5
:/ e0.06t60.01tdt+€0.06(10)60.01(10)/ o —0:04¢ ,—0.03¢ 3y
0 0

1 ¢—10(0.01+0.06) + 100014008 1 — ¢—5(0.03+0.04)
0.01 + 0.06 0.03 + 0.04
1 — 670.7 o7 1 — 670.35
—1 0 0TI 9986603584,
007 € 0.07

The actuarial accumulated value at time n of an n—year temporary continuous annuity is

— — n t
— Qg:m| Qg fO vy di /n 1
Sem = = = P S E——

| nty v Py v P g V" t. n—tPx+t

dt
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_t}; - is the actuarial factor from time ¢ to time n for a live age .

Theorem 5.79. a, = 6%T| + VP2 Agt1-

Example 5.45. Suppose that a, = 10, ¢ = 0.02 and 6 = 0.07. Deaths are uniformly
distributed within each year of age. Find Gy 1.

. . _ _ _ 10—611* — — 1_Zz:7
Solution: Given 10 = a, = Ay 3| T VP2Cat1, => —0- | =Ty 1, where 1) = 773 o
1 t
_ —1 — 1 —1 vho1 v—1
A7 =Aq + Aga Apq = | vgdt = qo—| = qo——
a1 20 20 1| a Qei "l = 4=
| 0 Inv Inv
v—1 — 1 1
=dz + vpg and Ax:ﬂ = 0" P =V ¥ 1Ps
Inv
1-A, 1 1—(ge ¥ +vps
B 10 o 6acA1| 10 o (q hzsv +'Up )
Qypi1 = = ~ 9.897
U VP v=2,pe=2,0=",q,="

Definition 5.24. Skip next Example.

Example 5.46. Suppose that 6 = 0.08, and the force of mortality is jiz+¢ = 0.01, fort > 0.
Find @15, and Var(Y 1))

: i _yTarn 1—Z _ _o—n(ut9)
Solution: Formula: Y,z = =% — = —5" or G5 = % (by Theorem 5.78).

It is more convenience to use the first one here. From Chapter 4,

— 1 — e~ m)yn

Aeri _Mu——lnvv et 5 = —Inu.
— 0.01)(1 — —(10)(0.01+0.08)
Ao 02 g oi 008 ) | e~ 000014008) _ 4795063642

ZZ36:170| :Zx:TO| (UQ)
(0.01)(1 — e~ (10)(0.01+(2)0.08)y

— —(10)(0.01+(2)0.08) —0. 4 921
(0.01 + (2)0.08) Te 0.6634579217,

1—A. 15 1-0472 42
=10 _1-0 07 020636 — 6.593670447.

0
— Var(? :TO) Zﬁ 10| — (A 10 )2
Var(yx:m) = (5; | = r:10 52 o:10
~ 0.6634579217 — (0.4725063642)2
B (0.08)2

Gy 10|

= 68.78057148.
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Ignore this page !
Remark. fr (t) = pue # ? (I A),15 =7 (additional homework).

e 00 ift e 0,10) N 0.01e7 001 if t€10,10)
= 11
tPx 60.270.0315 Zf t>10 0‘03670.031560.2 Zf t>10

d fr,(t) =

00
(IA)M5| = E((Ty N15)vp,a15) = / (t A 15)vepts fr, (t)dt
0
why ? why ?

10 15 o
:(/ +/ +/ )(t A 15)venrs fr, (¢)dt
0 10 15
10 oo

15 P =~
_/ teo'06t0.()1@0'0”dt+/ t670.04t0.03670.03t 60'2 dt—i—/ 15670.04(15)0.03670.0315 60'2 dt
0 10 15

" J

most of you missed it

5.4 n—year certain life annuity.
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Remark: Exam 3 covers upto §5.3.
Quiz on Friday: Formulae of 450 (all except [13] and [19]).

5.4.1 n—year certain life annuity—due

Definition 5.25. An n—year certain due life annuity pays at the beginning of the year
while either the individual is alive or the number of payments does not exceed n. Its present
value and APV for (z) with unit payment are denoted by Yx:ﬁ| and a—= , respectively.

zm|

Under this annuity, the first n payments are certain to be paid.

VK;—1 . - AKz—1
Definition 5.26. Y-— i o oF (= am|). Yom) = [ ¥
Definition 5.27. 5 = Zk_é ok = 1= 117]
Theorem 5.80. V— o = Zk 0 Lok 4 Zk>n = 11:”: + n|Ym = dp) + Zk . %|
dm T "*| nqz + Zk:n_H am ) k—1|QJc = aﬁ\ + n|dx = aﬁ\ + Zkz:n U kPx;
Var( ] ) = Var(,|Yz).
Zék ifoSn Zz(llvk if K, <n
Proof. —m Lk L L
Zk if Ky >n Z U+anv if K, >n
1 — o™ !
—ka-f—[K > n) Z k— — (K > n) V% = i) + |V (2)
k=n
[0.9] n o0
E(Vym ) =E(g(K2) = Y 9 fr. () = Y 9 fr. () + Y 9(i) fxe. ()
j=1 j=1 j>n
n n—1 o Jj—1
= D Fr )+ ) (by Eq.(1))
7=1 k=0 7>n k=0
1 =" >
AR %v’“me) — iy + it (by Eq.(2).
1>n k=

Example 5.47. A special pension plan pays $30000 at the beginning of the year guaranteed
for 10 years and continuing thereafter per life. Suppose that i = 0.06 and mortality follows the
life table for the USA population in 2004. Calculate the APV of this annuity for (65).

Solution: The APV of this insurance is A = 300004— =7 (n,z) =7

x|
a—— ] = {p| + nldz, g = nliy = nEplgpin. [18]
1oléigs = 10Eesirs = (0.447480378)(8.412220) — 3.764303385.

A = (30000)(157] _, 10+ 10lis) = 346979.8698,

1

1—v
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Example 5.48. Calculate aﬁ if
(i) v =0.94; (ii) py = 0.99; (ii1) py+1 = 0.95; (iv) d; = 5.6.

known

—— =?
. . . L 1= AN
Solution: Formula [17]: iy = i) + nliy = . + pldy =7 (1)
- —v
Given 5.6 = {iy =tyq) + nlia  (as Yo = Yoz + n|Ye (by Formula #18))
=> i = 5.6 — i (2)
n—1
formula[l7]  Gpm = VP epe = 1+ vpy + 02 9ps

Ay = 1+ vpy + V2 puprr1  thus u|dg known by (2)

by (1) (v,Pz,Pat1)="
P — by (2) P A <
. 1—o" .o 1= AN 1 =" 9
e + 3ld, = T +5.6 — dy,3 = - +5.6 — (1 4+ vpy + v°peprs1) = 5.66.

5.4.2 n—year certain life annuity—immediate

Definition 5.28. An n—year certain life annuity—immediate pays at the end of the
year while either the individual is alive or the number of payments does not exceed n. Its
present value and APV for (x) with unit payment are denoted by Y?ﬁl and A » respectively.

Definition 5.29. YV-— = nV(Ke=1) ke
x| k=1

Under the n—year certain (due or immediate) life annuity, the first n payments are guaranteed.
Theorem 5.81. Y-—;

wm| rn+l]

Definition 5.30.

5.4.3 n—year certain life continuous annuity

Definition 5.31. An n—year certain continuous life annuity makes continuous pay-
ments while either an individual is alive or the # of years of payments does not exceed n. Its

present value and APV for (x) with unit rate are denoted by YTW\ and aﬁ , respectively.
Definition 5.32. Yo = [ v'dt and @ = [;" v'dt.
Definition 5.33. (i7 = Z?:_Ol vt and ay =Y . v")

Definition 5.34.
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Theorem 5.82. ?Tﬁl = Uy, = n\/TI vidt = ap| + alY s,

00 o0

Ty = Tn) * nla +/ g - fr, (t) dt = ag| + pl@z = Ty +/ v’ ipe dt,
n mn

Var(Y—— ) = Var(,|Y ).

7

Remark. E(?ﬁ ) = E(fOnVTx vtdt) = E(g(Ty) ( ) fr, (y)dy
=/ g(y)fo(y)der/ 9(y) dy—/ / vdt fr, (y dy+/ / 't fr, (y
0 n
n Ut n %) Ut
=/0 o Osz(y)dyﬂt/n o Of:rz(y)dy

oo

= E(aﬁ\ + n|7x) = Qg + nl@y = G| +/ vt ype dt,
n

5.5 Contingencies paid m times a year.

In this section, we will consider the case of life insurance paid m times a year. In the unit

case, a payment of $1 is made each year. Hence, each m—thly payment is %

For a period of length %:

(i) the discount factor is p(m) = l/m — (1+ i)_l/m V.S. #Z

.. . . N - ;(m) .
(i) the interest factor is (1 +i)Y/™ =1+ v 1+

(iii) the effective rate of interest is (1 + 1)/ — 1 = : V.S, .

. . . . (m)

(iv) the effective rate of discount is 1 — v'/™ = dT vs.d=1—w.
Remark. It suffices to remember v(™ = 1/ and ignore the rest notations. Then each of
insurance and annuity can be viewed as

(1) the time unit is a % year rather than a year,
2) the unit paid is not one but 1/m,
p

)
(3) the discount factor is not v but v!/™
(4) fr, (k) = k-1lgz is replaced by f (k) = %%qx, where
I = ki T, e (B, £,

5.5.1 Whole life due annuity paid m times a year.

Definition 5.35. A whole life due annuity with payments paid m times a year is a series
payments made at the beginning of each m~—thly time interval while an individual is alive.

Its present value and APV for (x) with unit annual payment are denoted by Yx(m) and dgm).
respectively.
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. (m)_ . _
Definition 5.36. V™ = 1 ZZZZO Lyk/m (compare to Y, = ZkK:IO Lok),

T m

(m)
P A A B LR (O B
m 1—pl/m - m(l_vl/m)f T - -

Theorem 5.83. If v # 1, then Yagm) =

o k—1

(m)
-~(m)_l§:§:j/m. _ L 1-4 _lE:ﬁ.
e _mkl,ov kmluqx_mxl—vl/m_mkov P
:]: —

Example 5.49. Let p,(t) =0.03, t >0, and 6 = 0.06. Calculate d§}2) and Var()"/x(u)).

. (m)
Solution: Var(Yx(w)) = % 77

dg;m) =1L x 1:;41%. Need to compute Agm) = E((Ul/m)Jém))'

gr = Z vk/m(e—(k—l)u/m — e—ku/m) P(ng S (CL7 b]) = aPx — Pz
k=1 k=1

— Z U(kfl)/mvl/me*(kfl)u/m(l _ e*u/m)

—pl/m(1 — e=H/m) Z v e~ (k=Dn/m

B 1 — anrl
: 11—z
7=0 k=0
— e H/
:’Ul/m(l _ e_u/m> 1 or — (1 e M m) B %Q:U

L —u/m

1
oi/m — € o %px

12  (1— e—H/m) 1 o—0.03/12 -
AL =T = o mowy — 03325003481,
v m

a2 11— A
Y m 1 —pl/m

~ 11.15282986,
m=12,v=e—096 A{™ =0.33
1 _ o—0.03/12

240 — A0 (2 — 0.1990012521,

© e0.12/12 _ ,—0.03/12

gy, 248 — a2 01990012521 — (0.3325003481)2

Vax(F ~ 24.691. (skip 1
i (m(1 —v!/12))2 (0.05985024969)2 (skip 1 page)
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k 1 2 4 o >
P{K, =%} |03 0.1]06 Find d, and Var(Y;).

Additional hw: Suppose that i = 6% and

Mimic my notes on Example 5.1, using all 4 ways.

. Kzfl

Yy =30 vk

(1) dz =D, yfy, (y) = 1% 0.3+ (1 +0)0.1 + (1 + v +v* +0%)0.6 = 2.698.

(4) dg = > e g V" kpe = 14 0.70 + 0.60% + 0.60° = 2.698

5.5.2 Whole life immediate annuity paid m times a year.

Definition 5.37. A whole life immediate annuity with payments paid m times year is a
series payments made at the end m—thly time interval while an indiwidual is alive. Its present

(m)

value and APV for (x) with unit annual payment are denoted by Ym(m) and ay ', respectively.

1 Jm 1

A whole life immediate annuity paid m times a year makes payments at times -, %, )

Definition 5.38. Y\ = — szl Lyk/m (v.s. yim = — Zi“;o 1vk/m).

Theorem 5.84. Yx(m) = Ym(m) — % (compare to Yy = Y, — 1).
Definition 5.39.

Definition 5.40.

5.5.3 Due n—year temporary annuity paid m times a year.

Definition 5.41. The present value and APV of an n—year temporary life due annuity for
(x) with unit annual payment paid m times a year is denoted by Ym(:%) and dii%)l’ respectively.

c(m) 1 min( ;m),nm)—l k Y o K;An—1 [
Ylﬂ| == o p(mk, 0.8 Yom =D g U
- (m) 1—zm
Theorem 5.85. Ifv # 1 then Yonl = m(lf—i(?”l))

Example 5.50. Let 11,(t) = 0.03, ¢t > 0, and § = 0.06. Calculate dil'%l and Var(YafthQ)).
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(m) _ =23 L) _ 1AL

7|

Solution: Formula: Y 7| = mA—etmy- Upm) = ml—vm)

need A(xn%)‘ :E((v(m))‘]’gm/\m”) =77
(’U )J ™) Amin, _ (U(m))Jggm)/\mn[(Jx(m) < mn) + (’U(m)>J£m>/\mn[(J£m) > mn)
:(v )y m)I( ™ < mn) + (U(m))m”I(Ja(;m) >mn) (oM™ = (Mmoo
)2 (" 1 > ) 4 0" 1T > mn)
1 = 1) = 1Ty € (=2 59y by definition
m m
mn+1—-1 mn+1

, ]):I(Tme[n,n%—%)

(m) _ _
I(Jy 7 =mn+1)=I1(T, € ( p-

Jé'm)

- (v(m))J“Em>I(J§m) >mn) +v"I(Ty > n)

=> A(@ _A§ZM) - n|Aa(vm) + Unnpa:

xm|
:AC(E'M) - nE;rAECT_)n + Unnpx [14] : nle = nEa:A:E—I—n
:(1 — nEx)Agi)n + Unnpm why 77 nly = Unnpx Ay = Am+n ?
1 — e—H/m
=(1— e_”(“+5))A§;m) + et Aém) = (=) by Example 5.49,
T
v m

=(1— e‘“(“)v”)Aém) + e Mmyn why do this 7

1 — e~ H/m
A2 g ey L2 € — 0.3507389233.
x:10| L o—p/m
1/m n=10,m=12,v=e-9-96 1,=0.03
1— A
..(12) 7| 1 —0.3507389233
2 _ _ — 10.84809303
Y10 T (1 — o)~ 0.05985024969 ’
_ o /m
A0 2y (g gy (=€) — 0.2110126904.
x:10| L _ o—p/m )
1/m n=10,m=12,v=e-0-06x2 ;;—0.03
~(12), AL () (Aln) ) .
V(YI(TO)') (10'(1 s = 24.56549725. (jump 10 pages to §5.7)

5.5.4 Immediate n—year temporary annuity paid m times a year.

Definition 5.42. The present value and APV of an n—year temporary life immediate an-

nuity for (x) with unit annual payment paid m times a year are denoted by Yx(?%) and a; ﬁ)l

respectively.

(m)

Definition 5.43. V™) — 1 min(Jz

xm| k=1 :

Theorem 5.86. If v # 1 then Y™ = ym 11y 1

xm| T T am| m | mTxn
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5.5.5 Due n—year deferred annuity paid m times a year.

Definition 5.44. The present value and APV of a due n—year deferred annuity for (x)
with unit annual payment paid m times a year are denoted by n|§7x(m) and n]dc(cm), respectively.

1 ZJ‘ 1 k/m

Definition 5.45. n|Yx( fe>nm

Theorem 5.87. If v # 1 then

e (1 — U( )) d(m) N m m:z|’
k=nm "
(m) 1 > n- Ax% n’AZ(Um)
N D DR
k=nm+1
1 o & .(m)
= E vm T’;px = by Ay yns
k=nm
al™ = d;’j’% +alal™ =t 4 Bl

Example 5.51. Suppose that p,(t) = 0.03, t > 0, and 6 = 0.06. 10|am

Solution: Formula [18] Y, = Yx:m + |Yz. Similarly, afﬂ 2 = fc )| + 10|a1; 2),

By Example 5.49 (see page 161)

all? = 11.15282986.

By Example 5.50(see page 162) i iT)” = 10.84809303. Hence,

10a"? = 11.15282986 — 10.84809303 = 0.30473683.

5.5.6 Immediate n—year deferred annuity paid m times a year.

Definition 5.46. The present value and APV of a immediate n—year deferred annuity
(m) (m)
and plag

for (z) with unit annual payment paid m times a year are denoted by p|Yy

. (m)_
respectively. nlem = m Z2uk>nm ok/m,

Definition 5.47.
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Theorem 5.88. If v # 1 then n|Y}C(m) = n|YI(m) — %Zx:%.

o
(m) _ 1 (m) 1 1 qpm) 1
n‘Yx _Evnajgg"w—nm—l $I(Jz >nm + 1) = E Z sz| = n‘Yx — E ok
k=nm-+1 m
1 [ee]
D DI =g P
k=nm-+2
o0
1 k 1
- Z vm ek pe =y a;r:—|—)n :n|a§cm) —nEx,
k—nm-H
agm) —a' ,)‘ +n|ax - ,)‘ + . F a;+31

5.6 Non-level payments annuities

In general, we can
discount rates.

Recall that v; is the t—

The force of interest is 6; = —%lnvt =

Utie—foté ds

consider the case of life annuities with varying payments and general

year discount factor.

d
a4t

Ut

Under compound interest: vy = vt = (144)7¢

Due life annuity present value:

Level payment with compound interest rate non — level
K, K,—1
whole Y = Zj:() Y = Zj:() CjUj
K;—1 i K;—1
defer. Y=> =, o’ Y =372, ¢
tem. Y = ZK =An=l Y = foom lcjvj
cer. Y = ZK ALY Y Z]K_za/n_l cjvj
This gives one way to compute APV by E(g Zk g(k
Another way is as follows.
Level payment with compound interest rate non — level
whole APV = Z;‘;O cv! - ipy APV = Z;’;O CjVj * D
defer. APV = an © D APV = an CjVj * iDx
tem. APV = Z] —0 cvd - Pz APV = Zj _0 CjVj " jDx
K,—1 oo k—1 [e%e)
eg. B(Y ) =Y > v fr (k) =D cjvi-jpe (= 3500 St 605 - fr. ()
j=0 k=1 j=0 =0

ZZO:J'-H fr.(k) = jps
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Summary for Non-level Annuity:

due continuous

present value APV present value APV

K,—1 o0 Ty oo
whole Zj:() Ccjuj ijocjvj-jpm fo crupdt fo Cvp - 1Pt

K,—1 T [e%e)
defer. ijn Cjv; Z;;ncjvj-jpx fn crvgdt fn Cvp - ¢podit

Ky.An—1 n—1 T \n n
tem. D050 Cup g G pe fo o cevrdt [ ervr - ipydt

_ T.Nn
cer. ijo Cjv; fo cpupdt

Example 5.52. Suppose that a special 3—year temporary life annuity due makes a payment
of 104 +103(k — 1) at the beginning of year k, k = 1,2,3. The effective annual rate of interest
earned in the first and second year are 6.5% and 6%, respectively. We have that p, = 0.98 and
pr+1 = 0.95. Let Y be the present value for this life annuity. Calculate E[Y] and Var(Y).

. KiAn—1
Solution. Y = ijon cjvj. n="

(1) Standard way: E(Y) =), g(k)fk, (k)

g(k) = ¢y or Z?ﬁg_l cju; 777

(2) B(Y) = Y217) ¢jvj(jpe), try the Ist.

E(Y) =2 9(k) fr, (k) = 9(1) fr, (1) + 9(2) fre, (2) + D525 9(K) f, (k) why k=37

co = 10000, ¢1 = 11000, ¢o = 12000,

vop = ? vy = 1.065"! and ve = (1.065 * 1.06)~! ? or v = (1.06)~1 ?

K,A3—1
K, =1,V =g(K,)= Y [10*+10%(j)]v; = 10000,
j=0

If K, =2, Y = g(K,) = (10000) + (11000)(1.065) ! = 20328.6385,
If K, >2, Y = g(K,) = (10000) + (11000)(1.065) ! + (12000)(1.065)(1.06) ! = 30958.45513,
Ir, (1) =P{K, =1} = ¢, = (0.02),
[k, (2) = P{K; = 2} = ppqp+1 = (0.98)(0.05) = 0.049,
> ing fre, (1) = P{K; > 2} = puper1 = (0.98)(0.95) = 0.931.
ElY]=E(g9(K;)) = ro 9(k) fr, (k) is simpler here due to V(Y).

E[Y] = (10000)(0.02) + (20328.6385)(0.049) + (30958.45513)(0.931) = 30018.42501,
E[Y?] = (10000)2(0.02) + (20328.6385)2(0.049) + (30958.45513)2(0.931) = 914543977.5,
Var(Y) = 914543977.5 — (30018.42501)2 = 13438137.42.

Theorem 5.89. Assume that the t—year discount factor is v¢. The actuarial present value
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of a whole life annuity due with payments co,cy, ..., is
K,—1 oo k—1 00
ECY o) = cjuy- fre. (k) =) v ipa
=0 k=1 j=0 k=0
Proof. y ;~ 12] 0 cjv]fK (k) = Z;OOZZZJ. cjvfr, (k) (as 0 < j < k < 00)
= Z] 0Civj Zk>] Jr.(k Z] 0 iV~ jPx u

Corollary 5.3. A unit annually increasing due whole life annuity has payments 1,2, ...,
at the beginning of the year and actuarial present value

K,—1 00
o\ - . k
(Ia), = B((1Y), )= E( )Y  (k+1)v E (k + 1)v" -pa.
k=0 =cpvn k=0 —c o

Example 5.53. An insurer offers a whole life annuity—due to (x) with annual payments.
The first payment is $1000. To take in account inflation, each payment is 4% higher than the
previous one. The force of mortality is p = 0.01. Calculate the APV of this annuity using the
annual effective rate of interest of 7%.

Solution: Y = Z]K:z(;l cjvj, v; = v’, and ¢; = (1000)(1.04).
Two ways: (1) Standard: E(Y) = E(g9(X)) = >, g(k) fx(k), where X = K_;
(2) BY) = 3% ey s

_ o 3(1.04)) i _ 103 | 1031C
Y = Z cjvj = ZE 103(1.04)7(1.07)~7 = 10 ZE P =10 el MY
: = J:

J
1 — B(p&e
B(Y) = 10°— (p )
E(p') = Zg ) fic, (k
oo oo
k=1 k=1 k—1=0
= 1
— (] — e M “HV — (] — e M
pl-e >_§%<pe Y =p(l =
]:
1 — E(pKe= 1—p(l—eH)—
E(Y) = 10° (") _ et =2t [Ty ~ 26519.17.
L= L=p §=0.01,p="152
oo o
(2) B(Y) =) cxvg-ppe = Y _(1000)(1.04)%(1.07)FeHOOD 10002
k=0 k=0
1 1
= 1000 - - boo = 26519.17.

1—x 1—(1.04)(1.07)"Le—001
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Q: (I) Which is simpler ?
(IT) Why the standard way ?

Example 5.54. Suppose that j1,,(t) = 0.05, t > 0, 6 = 0.07. Find (Ia),.

. . ¥ _ K,—1 k . _ ..k
Solution: (IY)I => 00 (B+1)0%), cp=k+1, v, =0"

=CrVk
1

Using that 337 ket~ = (15552 = g5, #16, and by the second way,

e%e} e%e}
(Ia)x _ Z(k, + 1)Uk Py = Z(k, + 1) —0.07k:€—0.05l€

k=0 k=0

oo+1 00
Z k—l—l —0.12(k+1-1) Z —0.12(5-1) (j:k—i-l)
k+1=1 j=1

1
— e .

The standard way works too, but little bit more complicated.

K,—1 K,
E((1Y),) =E( (k+1)0%) =E() (oo™ j =k+1touse [16]
(17) ; . Z:;
1 — pffetl
~E(———)
o) (=K, — ke — (1 — pEet1)(—
=1 —vtopf — (1 —v) K
_E( (1 —U)2 )
1

= (1= B(") — (1 —v) B(Ezv")) - e =e M, >0

Corollary 5.4. A unit annually increasing n—year temporary due life unit annuity has pay-
ments 1,2, ..., n at the beginning of the year and actuarial present value (1d) Kepn=1

= B e O (k+
Dok = S0k + D)ok - .

7|

Example 5.55. Suppose that . (t) = 0.05, t >0, § = 0.07. Find (Id)m:ﬂ'

Sol: (1Y), 15 = 720" 0+ Dl ¢j = j+1, 0 = v/,
Two ways too: (1) standard way, (2) By formula [2],
Formula [2]: E(H(X)) =Y, (H(k) — H(k — 1))P(X > k), where H(K,) = Zf;@”*l(j +
1),
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kob=1l if1<k<n

H(k) — H(k —1) = 507 G+ 1od = W04 1) = {0 if k>n

o) 10
()0 = > P(Ky > k)(H(k) = H(k = 1) = Y j_1poko®™!
k=1 k=1

10
_ Z fee—0-05(k—1) ,—0.07(k—1)
k=1

10
k=1
1 — gt ,
=g )
11— (n+1)z" + na"*!
= (1 = :C)2 g—e—0-12 p—

0o jA10—1

(D (k+ 1)) fr. ()

10 = 28.01415775.

Standardway : (/d),.75 = E(

s
&
o

INg

JA10—-1 oo jA10—1

W) fre )+ > 0D (k4 1)oM) fr, ()

j=10 k=0

I
mm
(]
=
+

<
Il
_
Bl
=l
o

U

10—1
O e+ Ry (e 070 — ey 43 (Y~ (k + 1)) £, ()
] k=0

j=1 k=0 J=10
9 Jj—-1 10—1
=) O (k+ 1) (e 0D — ey 4 (Y (k + Dok P, > 9)
j=1 k=0 k=0
’ 1—af, (i1 _ 1—219,
—;<l_x>x\x_v<e MUY — ) o (o o

Corollary 5.5. A unit annually decreasing n—year temporary due life annuity has pay-
ments n,n — 1,...,1 at the beginning of the year and actuarial present value (Da)

KiAn—1 -1
E(3 " (n=k)ok) = 323 g (n — K)ok - .

zml T
Example 5.56. Suppose that . (t) = 0.05, t >0, § = 0.07. Find (Dd)x:m.

Solution: ¢, =n—k, k=0,1, 2, ... v, = v
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Two ways too: (1) By Corollary 5.5, (2) standard way. (Da),.15 = Zk (10 —

9 9 9

9

- Z(lo _ )e 005k ,—0.0Tk _ 2(11 (k4 1))e 012k Z Lk Z(k 1t
1—20 1 —(n+1)a" +na"t!

B P =2 etz g = 39-96332152,

Theorem 5.90. Assume that the t—year discount factor is vy. The actuarial present value
of a whole life annuity immediate with annual payments of c1,co, . . .,

oo k 00
Z chvj k|G = Z CkVk * kDx-

Corollary 5.6. A unit annually increasing immediate whole life annuity has payments
1,2 , at the end of the year and actuarial present value

K;—1
(Ia), = B> 00 koP) =300 koP - pps.
Example 5.57. Suppose that j1,,(t) = 0.05, t > 0, 6 = 0.07. Find (Ia),.
Solution: Using that » o ka*™1 = ﬁ, x #1,

a)x = 220:1 kvk " kPx
—0.12

0.9
_ Z Le—0-05k ,—0.07k _ ,—0.12 Z ke 0-12(k—1) (16—_012) = 69.36117108.
—e

Corollary 5.7. A unit annually increasing n—year temporary life immediate annuity has
payments 1,2,...,n at the end of the year and actuarial present value

z—1)A
( xn\ Zk 1 "k ) = ZZ:I ko - kPz-

Corollary 5.8. A unit annually decreasing n—year temporary life immediate annuity has
payments n,n — 1,...,1 at the end of the year and actuarial present value

~1A
(Da)yzy = E Zkl “n =k 4+ 1)0h) =300 (n+ 1= k)R s
Example 5.58.
Example 5.59.

Example 5.60.

Theorem 5.91. Assume that the t—year discount factor is v;. A continuous whole life
annuity with rate of payments c(t) has an actuarial present value of fooo fot c(s)vsds fr,(t)dt =

fooo c(t) - vg « ¢y dt.
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Theorem 5.92.

Corollary 5.9. A continuously increasing whole life unit annuity paid at the time of death
has an actuarial present value of (76)30 = E(fOT” toldt) = fooot vl ypg dt.

Corollary 5.10. A continuously increasing n—year temporary life unit annuity paid at the

time of death with rate of paymentst has an actuarial present value of (7&)36.,' E( Tenmy toldt) =

font ot ypy dt.

Example 5.61. Suppose that j(t) = 0.05, ¢t >0, § = 0.07. Find (T&)x,m.
Solution : ¢; =t and v; = v’
Two ways:

(1) ( ) 3 fo Mnxvxdxue_“tdt.

(2) (Ta) 15 = J37 4 1009)~1(0.07) g4 — 37.30299396.

Example 5.62.

Corollary 5.11. A continuously decreasing n—year temporary life unit annuity paid at the

time of death has an actuarial present value of (Ea) E( AT “(n —t)vldt) = fo n—t)

x|
vl dt.

Corollary 5.12. An annually increasing whole life unit annuity paid at the time of death
has an actuarial present value of (Ia), = E( fo Jvtdt) = fooo [t] - vl - ypg dt.

Example 5.63. Suppose that ji.(t) = 0.05, t > 0, 6 = 0.07. Find (Ia),.

Solution: ¢; = [t] and v; = v'.

Ia / [t t(0.07) 7t005 dt Z/ k67t012
k—1

)(0.12) _ —k(0.12)

e 1
_ _ —(k—1)(0.12) ;1 _ —0.12
Zk 0.12 0.12;]% (I—e7)

_1 _ o012
0.12 (1—x)2 J—

= 73.69442445.

Example 5.64.
Example 5.65.

Corollary 5.13. An annually increasing n—year temporary life unit annuity paid at the
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time of death has an actuarial present value of (I&)m:ﬁ‘ = E(fon/\T vldt) = fo t] -t ypg dt.

Corollary 5.14. An annually decreasing n—year temporary life unit annuity paid at the
time of death has an actuarial present value of (Da) E( OnATI( Jotdt) = fo n—t]
vl dt.

zm| =

Example 5.66. A pension plan pays continuous payments for the remaining lifetime of a
life aged (65). The rate of payments is 50000 a year. Suppose that the force of mortality is
0.01. The force of interest is 0.08 for deposits made in the next 10 years and 0.06 for deposits
made after 10 years. Find the actuarial present value of this pension plan.

Solution : Y = fOTz cupdt, where ¢; = 50000 = ¢, and

_pteeas_ Je 0™ if 0 <t <10,
g =€ 70 ) o~ (0.08)(10)~(0.06)(t=10)  if 10 < ¢.

T, 0 t
(1) E(/O ctvtdt):/g H'(t) - pedt  (#1 H(t):/O CsVsds)

[ee]
=/ CtVt - Py dt
0

10 00
_ / (50000)670.05%670.0125 dt + / (50000)67(0.08)(10)7(0.06)@*10)670.0“ dt
0 10

10 0
B / 50000¢ -9~ (0-0N(E=10) gy
0.09 J, 0
50000)(1 — e~ 0090y 5000009 [
_ (50000)(1 —e ) | ¢ 0.07¢ =007t g
0.09 007 J,
~ (50000)(1 — e~%9) N (50000)e~99
B 0.09 0.07
=620090.4.
Direct way: E(f cudt) = fo y)dy = fo fo cvpdt0.01e 001y gy,
() = [ ce”008tqy if y € [0, 10]
9\Y) = 010 ce=008tqt 1 [V cem00800)-006(-10)gy if y > 10
o) = [ ce 008t qy if y € [0, 10]
010 ce 008t 4 fl% ce 02e=0.06t g if y > 10

0.2

o[l — e70:08y] if y € [0, 10]
ool — e O8] 1 CS 0% [e70-6 — ¢=0:06y) if 4 > 10
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Tz
E(/ cuydt)
0

-0.2

0.08

10 00 .
:/ c - eo.ogy]o.meo.myder/ { c - 670.8] i ce [670.6 _ 670.06y]}0.01670.01ydy
0 1

o 0.08 0.06

10 00
_ / ale—0.0ly + a2€—0.09ydy + / a360.01y - a4e_0'07ydy
0 10

5.7 Computing present values from a life table.

5.7.1 Whole life annuities.
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. . x| 80| 81| 82 | 83 | 84| 85| 86
Example 5.67. Consider the life table 0. 250 217 | 161 1071 62| 28| 0
(12)  (12)

that i = 6.5%. Calculate dg,’, ag,  and agy under UDD.

Suppose

Remark. Each of insurance and annuity can be viewed as
(1) the time unit is a & year rather than a year,
(2) the unit paid is not one but 1 /m,
(3) the discount factor is not v but v(™ (= 1/’”)
(4

) [k, (k) = k-1/¢x is replaced by f o (k) = where J( ™ _ if T, € (%, %]

We often linearly interpolate ¢, (UDD): Cry (1 — t)ly 4ty for t €0, 1].
I -1 (m)
’ 17 11— (ot/m)la . 1—(vF)
Solution : yim = — Umyk — — Y, = ———=
olution $ mZ(U ) m 1 _olm v 1—w
k=0
(m) -
need to know E(v’s /m) = ka/m@b% m =" (fyom (k) = 5=
k=1
6 m
m=1)+h L.
= Z Zv ™ mGoDtho1 |1y UDD within each year
j=1 h=1 "
6
o = 14 1 lyyj1—Llatj Jj— 1]z 1 dytj
_ZZU mn—-—— (m(J 1)+h1|1qx_ -
. m ly m m m
j=1 h=1
1 = 0
-1+ % lotj—1 — Loy
2.2
j=1 h=1
m

1
:m Z Z jratj—1 — taty x—|—j 1= m—|—] Z gratj—1 — tatj ;1:—|—] 1= ;t—|—] :E(UKZ))

h=1
o ( 1/m1_< 1/m) )A (A :E(UK“)QOSQ (Ez.4.9))
mu 1 —pl/m N ’ . N
oL oym 1w
mvv 1_Ul/m0'82

m 1—1}1/m
11_1 1/m1v082

pl/m

L _11- B’ Im)

~—

m 1— Ul/m !m:12,v:1/1.06

1-7Z 1-A, 1-084
aso =E( 5 %) = s L~ 508 , ~ 2.502 as
A /vtf (t)dt i/k o f, (t)dt i/k ot dott gy ivk_l —daiko1 gy
= T = T, = = ~ U.o4.
' k=17 k-1 k=17 k-1 ba k=1 —Ino ba

Skip to 5.7.4.

~ 2.54. alt? =l —1/m ~ 2.48.
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Theorem 5.93.

5.7.2 Deferred annuities

Theorem 5.94. Under a uniform distribution of deaths within each year,

E | Az id i(m) _

.(m) ntz T ? .. _
nldz" = 2 = g e Gy e
1/m
ol = et~ Lo o By — by nlAs

x n x n+--x d(m)
id dm —
= fge "l T g e
nEa: 3 n|Ax id . 0 1
n|ax = s = 52 n| z T 52 nEy

= a(00) - pldy — B(00) + pFy.

(m)

T+n

Proof. For a deferred life annuity due, using that n|d§3m) = By (see page 164),
(m)

.. 1-A ;
agﬁzl = —5 ™ (see page 161), Aggm) = iy Aa (see page ??), nEyAyin = n|As (see page 106),

and p|d, = M (see page 146), we get that
(m) _iq
.(m) .(m) 1_A+ . (m T+n
n|ax = n By, = Ewd(—mg;n — nEx’d(—m)
_TLECL‘ Z("L) ’I’L|A
N d(m)
_nEx - Z(Lm) : (nEx - d : n|am)
- d(m)
id im — g
- it B,
g e Sy b
For a deferred life annuity immediate, using that n|a§cm) = n|d§3m) - %nEm (see page 164),
n|d§3m) = Ema;+31 (see page 164), dg(cm) = %n%m (see page 161), Aém) = Z.(%Am (see page 77)
n’a;m) = n’agm) — —nly
m
) | 1—Am
:nEa:agZ)n - EnEx = nEa:d(—m?n - EnEﬂc
(m)

1 — 5 Awin b B nEa(1— dT) — nEesmy 5 Avtn
nEE q(m) m" dm)
pl/m " m_i%m).nmw
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and

] (m) _
n|a£c ™ =nky agc+31 = nbs (.(mZd ag + d d>
1

=" 'n|a1:+.m

For a deferred continuous life annuity, using that ,|a; = ,Ezay4+n (see page 150), a, =
= T :
1=4s (see page 142), A = %Ai:m (see page 133), nEyAztn = n|Az (see page 106), and

5 7|
nliz = % (see page 146), we get that
1-A
‘am = nExax+n = nEmeM
E 1 5Ax+n nEx _% nlA:v
Ey— % (WEy —d-plag)  id . 0—1
I n5x n|%x :ﬁ'n|ax+5—2’nEx'
]
5.7.3 Temporary annuities
Theorem 5.95. Under a uniform distribution of deaths within each year,
oy LB A i +ﬂm—w0_ 5
am:m = d(m) - i(m) g(m) A7) ;(m) g(m) ntvz),
(m) id o d™—d
ol anwd<>“$ml+'<wwdmw(1 nEe)
1— 1Al ;
_ T n| id o —
Qg = 5 52 :E?’L|+ 52 (1_ E)
—Alm
Proof. For a n—year temporary life annuity due, using that dg’% ! d(wf):"‘ (see page 162),
; . 1—Azﬁ
Apm) = Aals:m + nEy (see page 106), A = Az (see page 77), lym = —4~ (see page

151), we get that
o 1—Ai’%)| 1—A;n|<m> o8
Yom) T T gm) Jm)
1— B, — A Al

i) “ |
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(m)
(m) _ 1-Aym

em| = T dm™

For a n—year temporary life annuity immediate, using that a (see page 162),

Apm) = Ai:m + nEy (see page 106), A = Z.%n)Ax (see page ?7), dym = # (see page
151), we get that

(m) _.m 1 1

Up) = Oy = — + —nke
il §le(m) o) + ;((Z))d(_mz) (1= nkz) — % + inEx
i §Z<m> (I+ g = nba) + Z(i;n))d(_ml) (1—nEy) — % (1— ,E,)
— f;l(m) Qo + (1 — nEy) (Z(mlel(m) N ;((Z;d(_mz) ) % )

We have that

id M 1 dd it — g T

im)q(m) " j(m)q(m) i(m) q(m)

i (1= 42) — i1 - d)

N i(m)q(m)

impl/m gy qtm) — g

i(m)q(m) i(m)q(m)
Hence,
m ___d__ o d™—d
Coim = g %o T gm0 Pa):
For a n—year temporary life continuous annuity, using that G| = 1_225“”%‘ (see page 154),

_A;v:ﬁ\

— —1 —1 i
Apm| = Apm) + nBa (see page 106), Apm = 34
151), we get that

(see page 133), dym| = L (see page

1
x|

1 _Zx:m . 1 _Zm:m —nky - L= nby — %Al

7|




178 CHAPTER 5. LIFE ANNUITIES (EXAM ON NOV 25 (M))

Connect to §5.7.1.
(m)

It is quite tedious to compute a, ’ etc, as it depends on the assumptions on f7,. There are
two approaches to approximate it, which leads to simpler formulas.

(1) Linear interpolation of the actuarial discount factor.
(2) Woolhouse’s formula.

5.7.4 Linear interpolation of the actuarial discount factor.
v! is t-year discount factor,
1By =" pe(= A 1) is also called the actuarial (t-year) discount factor.

z:t|
lpgt = (1 —t)ly + tlyiq, t € [0,1] — — —— linear interpolation of ¢, or ST(J;) (t);
pitBr = (1 —)pEy +t- 1 1FEy, t € [0,1] —— linear interpolation of ;E
-E—(l—l)E—i—i E (—E—i—i( E,—Ez)), 7=0,1 —1. (1)
ktL = mkm mk+1x = kLl mk+1m kL)), J =Y, Lo sm .

The actuarial discount factor (£, appears in annuities computations:

1 00 1 oo m—1
i—0 ——~— =0 j:O_f—/
ﬁ x k+%Ez

Theorem 5.96. Assuming that ;. ; Ey is linear in j, then
(D al™ =4, —m=L (1) agj’% — g — L (1= By, () n|a™ = iy — DL B,

2m 7’ 2m 2m

Letting m — oo in Theorem 5.96 (see page 178), we get that:

Theorem 5.97. Assuming that ¢ FEy is linear int, 0 <t <1,

’ v ’ v 2m
— .- 1 .. .. m—1
ax:m = aa::ﬁ‘ — 5(1 — nEm), a;(lfr%)' = (lx:ﬁ — W(l — TLEJZ)
— . 1 .. .. m—1
n|ax:n|am—§‘nEm n|a/:(cm) :n|ax_W'n -

Remark. In reality, the linear assumption in the previous theorem may not be true, then
both the RHS and LHS formulas are approximations.
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5.7.5 Woolhouse’s formula The Euler-Maclaurin Formula:

b N
/a o(x)dz :h(g gla+ih) — M)

k—1
B2j 4250251 gy — o@D () — (b — q) D2k 2k (2K)
+Zl(2j)!h (9 (a) —yg (b)) — (b a)(2k,‘)!h g\“" (&), where k > 1,
j:

Nh =0b— a, Bj is the i-th Bernoulli number, i.e., By = 1/6, By = 1/30, ...

’ = 9(a) + 9(b)
/ g(@)dz =h(>_ gla +ih) - )
a ,
1=0
+ h—2(9’(a) — (b)) - h—4(g”(a) —g"(0) + -
12 720
5.7.5.1. Woolhouse’s formula:
o0 o0 2 4
- . 9(0) h* R e (k) _ _
/0 g(x)dx —h(ig g(ih) = =57) + 156/(0) = 59" () oo, if g (00) =0 for k=0, 1, ..
i
h=1/m,and m € {1, 2, 3, ...}. Its application to whole life annuity:
(1) @omip—s— @) mal™ — = — (5 p),  [13] it yield
Qg =~ Qg 12 Hx) =~ Gy om 12m2 Kz ), i yelas
2
o(m) _ . m—1 m"—1
(2) Gz’ ~dg — om  19m2 (0 + pz)-
Reason: @, = fooo vhpedt = fooo g(t)dt, where
g(t) = Uttpx = 6_5ttp:r-
g(t) = —tpebe™® — o' (1ps) = —pede™ — v ipujios
9'(0) = —(0 + piz) and
g(0) = v0p, = 1.
Letting h = 1, then
> > 1 1
n = [ gl - > 00) 5 = g0+ pe) b e = b+ )
1=
Letting h = %, then
o0
_ 1 ) 1 l/m2
T (39 5) = S0 )+
1=
1 = . 1 1
z% ZO UZ/mi/mpx 2_ - 129m2 ( + /vblr)
1=
1 1
o (0 + pa).



180 CHAPTER 5. LIFE ANNUITIES (EXAM ON NOV 25 (M))

Its application to term annuity can be simplified by

('igr% = d((,;m) — v"npmd;:n_)n.
: . x| 80| 81| 82| 83 |84 85|86 .. .
Example 5.68. Consider the life table 0. 250 217 161 1071 621 28| 0 with 1 =
6.5%. We already got igy = 3.011654244 (from Ex. 5.6).
(1) Calculate détz) assuming that the actuarial discount factor is linear.
(2) Calculate dé?) using Woolhouse’s formula assuming pi,(t) = 0.05, ¢ > 0.
Solution: Using UDD (in Ex. 5.6 and Ex. 5.67), iigo ~ 3.012, and il ~ 2544,
-1 12 -1
1) (1) in Th.5.96 => 4> ~ iy — = = 3.011654244 — ——— — 2553,
() (@) in 7 s Ml Ty 2)(12)
—1 21 —1 21
2) %P~y — e T (5 ) = g — — T (log(14+14) + jip) = 2.544

2m 12m2 om  12m2
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Bl. P(g(K.) = g(k)) = P(Ky = k)= fyr)(9(k)) = fx, (k)

B3. (25 pts) You are given:

0.01 if0<t<10;
= 0.06 and (1) = { HUSEs

004 if10 <t Calculate ]Ax:m.

Ans. Zm:ﬁ\ = E(vT=/15)
1A, = E(Tv')
TA, 5 = E((T AT5)TAS) = (L1040 [0 4 [2)( A 15)0!M5 fr (8)dt

xT:

5
St (t) = fo pz(y)dy) # exp(— t,ux( )) if px(t) is not constant.
1, (t) = —5’( )-

Jio (A1) i (t)dt = [[3(15)01 fr, (¢)dt
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CHAPTER 6

Benefit Premiums

6.1 Funding a liability.

When an insurance takes an insuree it assumes a liability. Suppose that an insurer has to
pay a liability consisting of a unique payment of L at time n and an effective annual rate of
interest of 7.

The net single premium of an insurance product is the APV of the benefit payments for
this insurance product. Usually, insurance products are funded periodically while the contract
is in hold. These payments are made while the individual is alive and the obligations of the
contract are not expired. Payments made to fund an insurance contract are called benefit
premiums, which usually are made annually. The annual premium (also called the net
annual premium and the benefit annual premium) is the amount which an insurance
company allocates to fund an insurance product. We usually consider funding as follows.

Definition 6.1. An insurance product is funded according with the equivalence principle
if the APV’s of the funding scheme and of the contingent benefits agree.

The annual premium found under the equivalence principle is the basis to asses an insurance
product. Costs and commissions have to be taken into account to determine the contract to
be offered to a customer. The value of each payment in an insurance contract is called a
contract premium (v.s. the annual benifit premium, against the net single premium).

Definition 6.2. The loss of an insurance product is the excess of the present value at issue
of benefit payments over the present value of funding.

The loss of an insurance contract is the present value at issue of the net outflow for this
contract. The loss is a random variable. It refers to either with or without face value.

6.2 Fully discrete benefit premiums.

In this section, we will consider the funding of insurance products paid at the end of the
year of death with annual benefits premiums made at the beginning of the year. The funding
is made as far as the individual is alive and the term of the insurance has not expired.

6.2.1 Whole life insurance. (for the annual benifit premium)

Definition 6.3. Let L, = v+ — PZ?Z’”O_l v* be the loss random variable (rv) for a unit
whole life insurance paid at the end of the year of death (present value= 1-v%+) funded with

an annual benefit premium (P 25:15 Lok ) at the beginning of the year while the individual is
alive. This insurance contract is called a fully discrete whole life insurance.

Remark. L, =v%—P Zf:a ! ¥ is used in definitions or theorems. In general, the payment
is not a unit but B unit, then the loss is

L, = B(v — PZ?:O_I v¥) or L, = Bv&= — P, ZkK:Igl v*, where P. = BP.
183
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Under compound interest: v = (1+i)"" = 1—d = ¢7%, i is the annual effective rate of interest,
0 is force of interest, v is the annual discount factor, d is the annual discount rate.

Ly =v8 P Zk 2o Lok L in K. (Lz=whole life insurance - Px whole life annuity) 7
To make a proﬁt an insurer would like that insurees will die as late as possible.

Theorem 6.1. For a fully discrete whole life insurance,

. .. Ky
(i) Ly =vKs = P tob =2, - PY, =2, (1+ ) - L. Ve =757
(ii) E(Ly) = Ay — Pip = Ay (1+ 5) = 4.

(i) V(L) = (1+ )% (24, — 4,2).

Example 6.1. Consider a fully discrete whole life insurance with face value $10,000. The
annual benefit premium paid at the beginning of each year which the insuree is alive is $46.
Suppose that the force of mortality is 0.005. The force of interest is 6 = 0.075

(i) John entered this contract and died 10 years, 5 months and 5 days after the issue of this
contract. Find the insurer’s loss at the time of the issue of the policy.

(ii) Peter entered this contract and died 42 years, 2 months and 20 days after the issue of
this contract. Find the insurer’s loss at the time of the issue of the policy.

(111) Calculate the probability that the loss at issue is positive.

Solution: v = e % = ¢ 007 4nd St (t) =e 00 >0, L, = Z, — PY,.

(i)Tw:? Ky =[104] =7
L,=_B Zk o vF = (1001 — (46)1580)| o = 4024.7.
=10* _46

(ii) Ky = [424] = 7
L

43
= (10%% — (46)2-) | _ o0 = —213.75.

(iii) 0 < v®e(1 + P/d) — P/d (=Ly),
P/d < vE«(1+ P/d),

P/d K P/d
Trp/a <V >ln1+P/d<Klnv
_P
K, > “‘(Ig;d) ~ 375 or K, < M) 375 9997 (1)

P(K, < 37.5) = 1 — ¢~ 00053759
P(Ly > 0) = { P(K, < 37.5) =1 — ¢-0005x3892  Class Exercise.
P(K, < 37.5) = 1 — ¢~ 0:005x3799

Example 6.2. Questions: fr, = ? fx, =7 fr,=7

Solution: J1.(1) = ~51.0) = . f () = P(T, € (K~ 1,4]) = e #=D) — emb),

f1.(y) = P(Le = y) = POS (1 +5) = 5 = ) = P(Ka = 0(0) = Jie. (o). 9(y) = 77
Class Exercise.

P+yd
P+d

Inv
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1
Theorem 6.2. The probability that the loss Ly is positive is y,qy, where kg = [ & h’;fd -‘

i.e., ko < i(75g) < ko+1, (see Eq.(1)). duetoP(Lm>O):P(UK“'(1+§)—§>0)

TInv

Definition 6.4. The benefit premium of a fully discrete whole life insurance funded under
the equivalence principle E(Ly) =0 is P, = Ay /dy from E(Ly) = Ay — Ppiy = 0.

x| 80 | 81 | 82 | 83 | 84| 85| 86
Example 6.3. Consider the life table | £, || 250 | 217 | 161 | 107 | 62| 28 | 0 | An 80—
dy || 33 | 56 | 54 | 45 | 34| 28| 0O
year old individual signs a whole life policy insurance which will pay $50000 at the end of the
year of his death. The insuree will make level benefit premiums at the beginning of the year
while he is alive. Suppose that i = 6.5%.

(i) The net single premium for this policy ?

(i) Benefit annual premium for this policy using the equivalence principle ?

(iii) Skip

(iv) Find the df fr, of the loss L when the benefit premium follows the equivalence principle.
(v) Find the probability that the loss is positive.

(vi) Find the variance of the loss.

Solution: (i) The net single premium for this policy is

(50000) Ago =~ 50000(0.81619) = 40809.5, as

Ago = BBy = 5702 oF]ge = Y pe vFdyip—1 /e ~ 0.81619 (derived before).

(ii) The benefit annual premium for this policy using the equivalence principle (P = ‘2—;) is
P = (50000) Pgo = 5000052 ~ (50000) 3515 ~ 13550.52822 as iigg ~ 3.012 derived before.

Or iso = B(Y ey o) = Ldsa — 12081619 _ 3 (11654244,
(iv) The loss is L = 50000L,, where L, = & — p, 122"
K 1 — 'UKSO K
L = (50000)0"* — (13550.58)———— = (272020.19)0"* — 222020.19 = g(K.).
— v
301 — ¢
fr. o P{L = (272020.19)v" — 222020.19} = P(K, = k) = —2t& 2 S0tk
80
250 — 217 33
{L = 33397.83} o0 o ( )
217 — 161 56
161 — 107 54
P{L = 317148} = —— = . = P(K, = 3)
107—62 45
62—-28 34
P{L = ~2347787) = = = . = P(K, = 5)
28—0 28

fr(3171.48) = fk,(7)
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(v) By (iv), P(L > 0) = 55 + 28 + 24 = 0.572.
Alternatively, formula: P(L > 0) = j_ ¢, where

ln( P ) ln( 13550.52822/50000 )
S 1 52822 ; 1.
kO _ " Pid -‘ 1= ’7 (13550.52822/50000)+ (0.065,/1.065) —‘ 1 (3.21 _1=3

Inv —In(1.065)

P(L > 0) = 3q, = 2939 = 0.572.
(vi) 3 ways for V(L) here:
(1) L=vK — PL — 7 (14 B) — L and V(L) = (4, (0?) — (A.(v))2) (1 + P/d).
(2) V(L) = E(L?) by fr, why not V(L) = E(L?) — (E(L))* ?
5 54
250
28

+ (—35595.4738)2ﬁ = 457444048,

33 56
E[L?] :(33397.8286)2ﬁ + (3171.4767)2ﬁ + (17808.9352)

45 34
+ (—10572.6158)2ﬁ + (—23477.8670)2ﬁ

(3) The third way is the next theorem, which is not important.

Theorem 6.3. If a fully discrete whole life insurance is funded using the equivalence prin-

. A,  dA, 1 A A2 2A Az
ciple, then Py = 5= = =4 = 7~ —d and V(L,) = AT = )y

About midterm B1. See Example 6.3 above.

0.01 if0<t<10—
. TA — = E(IT. A 15]pT=A15
0.04 if 10 <t »15 = E([Tp A 15]07=")

Hint: S(t) = exp(— fot p(x)dx), is not Exp(u) and fooo = 010 + 1105 +f1O;'

B3. § =0.06 and p,(t) = {

Example 6.4. Skip this example. Quiz on Dec. 4: 450: 13, 18, 19

Example 6.5. Michael is 50 years old and purchases a whole life insurance policy with
face value of $100,000 payable at the end of the year of death. This policy will be paid by level
benefit annual premiums at the beginning of each year while Michael is alive. Assume that
i = 6% and death is modeled using de Moivre’s model with terminal age 100.

(i) The net single premium for this policy ¢
(ii) The benefit annual premium for this policy ¢
(iii) The variance of the present value of the loss for this insurance contract ?

Solution: (i) The net single premium E(Z) = ? where Z = 10°Z, = 10°v%=.
E(Z) =107 32, v i, (k) = 100 A, = 10° S0 ok L = 1072 1207 ~ 0.31524 x 107,

(ii) The benefit annual premium for this policy is 10° P,

Az

1—A,
v |A,~0.32,0=1/1.06

Ay — Ppiy =0=> P, = A, /iy = ~ 0.0260581 => 10°P, ~ 2605.81.

(iii) Ly = B(Zy — Pyi=%22) = B(Z,(1 + P./d) — P,/d) and thus

T 1—wv

V(Lso) = (100000)(A4(v2) — A.)(1 + Py /d)* = 880929379.5, as A, (v) is 1=~

v

50

Theorem 6.4. Under constant force of mortality pu for life insurance funded through the
equivalence principle, Py, = vqy. (No need to remember, just derive it).
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Besides the equivalence principle, there are other ways to determine annual benefit premi-
ums. Unless said otherwise, we will assume that the equivalence principle is used. Often, the
annual benefit premium in an insurance contract is bigger than the annual benefit premium
obtained using the equivalence principle. The risk charge (or security loading) is the excess
of the benefit annual premium over the benefit annual premium found using the equivalence
principle.

3 types of problems:
(1) P, or BP, =7
(2) Variance of L, 7
(3) Percentile or probabililty related to L, or P, etc.

Definition 6.5. The 100a—th percentile annual premium for an insurance product is
the largest premium making the probability that a loss results is less than or equal to a.

The percentile annual premium can be found using either
(1) only one policy (see Example 6.6) or
(2) an aggregate of policies (see Example 6.7).

Example 6.6. Michael is 50 year old and purchases a whole life insurance policy with face
value of $100,000 payable at the end of the year of death. This policy will be paid by a level
benefit annual premium at the beginning of each year while Michael is alive. Assume that
i = 6% and death is modeled using de Moivre’s model with terminal age 100. Find
(i) the benefit annual premium if the probability of a loss is at most 0.25;

(i) the benefit annual premium using the equivalence principle;
(iii) P(a positive loss for the benefit annual premium using the equivalence principle).

Solution: (i) Solve BP,, a =025, B="7 P, ="

Solve for P = P, from v P1 i = 0, where k, satisfies
K 1 — o
P(Ly >0)=P(K; < ko) <a<P(K; <ky), and L, =v"* — P l . (1)
—v

Key steps: (a) Solve for kq from vfe — P12 v 0 and Eq. (1),

(b) Setting L, = v ko _ Pall_v = 0 yields P, = vk 1:};.
Eq. (1) yields integer kq

P(T, <kog—1)=P(K; <ky) <a<P(K, <k, =P(T, < ky). (2)

Now two possibilities: v = 0.25 = P{T59 < t} = 55 Why 7?7 =>t =125 77
Or a=0.25=P{T5 <k} = % => k., = 12.5 77 Class exercise.
Hence, by Eq. (2), P{K50 < 13} < P(T59 < 12.5) = 0.25 < P{ K50 < 13}.

ko 1
(a) ko.25 = 13 and (b) Po.os = “ U,%j’ | k1301106 = 0-04996236.

The benefit annual premium is BPy 25 = 10°(0.04996236) = 4996.236.

(ii) equivalent principle BP =7 Ay = Piy. => P = Ay /idy.
iy = Y peoVFkpe = 182 22272 and Asg = Y, vF - = vl5t L =(.315237.
P=4:s — __ A _ (0260581

Qg (1—1450)/(1—1})
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The benefit annual premium is BP = 2605.81
<< BFyo5 ~ 4996.

(iii) Find P( the loss random variable is positive) with P in (ii):

P {LI Y LT 0} — 7 (P= 4996 from (i) or 0.026 or 2605.81 77)

1 — ,UK50 ln—P/(liv)
IP’{L:U _ Ko _pt TV 0} — P Ky < — /A7) by Ex.6.1
l—w Iny =1L P=0.026

=P{K50 < 19.81210743} (=P{K50 <19} or P{K359 <20} ?7 )
19
=P{K50 < 19} = P{T59 < 19} = 0 =0.38 > 0.25.

Example 6.7. An insurance company offers a whole life insurance to lives aged 20 paying
75000 at the end of the year of death. FEach insuree will make an annual premium of P at
the beginning of year while he is alive to fund this insurance. Suppose that 1000 policyholders
enter this insurance product. Use i = 6% and the life table D.2 (p.605) to calculate P so that
the probability that the aggregate loss is positive is less than or equal to 0.01.

Solution: Solve P based on BL, = BZ, — PZkK:IO_l v*, where B=?

CLT: P(Xox < 1) = P(Z?_l\/ézzifziff) £) < 4) ~ ®(t) = 0.99, where t = 2.32, n = 10,

=t
L1, ..., Ly are iid. from £ (= BLy). ie., P00, Li <nE(L) +2.32/nV (L)) ~ 0.99.

=0
Key : Solve for P, the 99th percentile of Z?Zl L;, from
nE(L) 4+ 2.324/nV (L) =0 (1)
! 1-Z
£ = T5000L, = 75000Z, — P > v¥ = 75000Z, — P — (2)
k=0
P P
<75000+1_U> r =T aZy +b (3)
1—A
nE[L] = n[75000A, — Pm] (Table 7.2: Agy = 0.05246 and 2459 = 0.01078). by (2)
— 3934500 — 16739.87333 P,
nV(L) = na*V(Z,) by (3)
2
1.06P
— n? (A (v?) ~ (Az(v))?) @® = (8.03) (75000 + W) .
e ~7
Eq. (1) yields 0 = 3934500 — 16739.87P + (2.32)y/8.03 (75000 + LX) => P ~ 266.42.

Example 6.8. An insurer offers a fully discrete whole life insurances of $10,000 on inde-
pendent lives age 30, you are given:
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(i) i = 0.06

(ii) Mortality follows the life table C4.

(111) Annual contract premium for a policy is 1.25P,.

Calculate the minimum number of policies the insurer must issue so that the probability that
the aggregate loss for the issued policies is approrimately less than 0.05.

Solution: CLT: IP’(Y;—?“X <t)= ]ID(Z?:1 (IE(;E(ZC% £) < t) ~ ®(t) = 0.95, where

Ly, ..., Ly are i.i.d. from the loss rv £, ¢t = 1.645, n = 777 That is,
n

P() " Li <nE(L) +1y/nV (L)) ~ 0.95.
=1

Key : Solve for n through the 95th percentile of Z?:l L;, from Eq. (1).

nB(L) + 1.645y/nV (L) = 0 (1)

Now £ = BL, = 10*f — WdEP where m = 1.25P, is the annual contract premium,

E(L) =10*A4, — wll__’ix = (10" + g)Am - g
m=125P, = 1.253% P, = B%=, B = 10",
A, = 0.082295 and ;Am =0.0180 by Table7.2
iy = 11__’3}‘” = 16.213
= (1.25)(10000)% — 63.44831308

T

nE[L£] =nE[(10000)L,] = n(10000)A, — mii, ~ —205.7375n,

2
nV (L) =nV((10000)L,) = n (10000 + g) (?A, — A%) ~ n1384729.716,

Eq.(1) => —205.7375n + (1.645)/n(1384729.716) = 0,  an+by/n =0 => \/n = (—b/a)

(1.645)%(1384729.716)
_ — 88.515045497 n = 887 n = 897
" (205.7375)2 " "

Suppose that the funding scheme is limited to the first ¢ years. The present value of the
loss with unit payment (w.u.p.) is

L =% — pg

min(ic, 0| = 2o — PYoq),

and its APV is A, — de:ﬂ.

Definition 6.6. The benefit premium for a fully discrete whole life insurance funded for

the first t years that satisfies the equivalence principle is denoted by Py (= ﬁ;l ).
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Example 6.9. Ethan is 30 years old and purchases a whole life insurance policy with face
value of 350000 payable at the end of the year of death. This policy will be paid by a level
benefit annual premium at the beginning of the next 30 years while Ethan is alive. Assume that
0 = 0.05 and death is modeled using the constant force of mortality p = 0.03. Find the benefit
annual premium for this policy.

Solution' Find 50000P such that Ay = Pdw 30| => 50000P = 50000430 /d

Ay = B(wle) =50 P fe (k) = 300 vP (ST, (k — 1) — 1, (k)
S e
_ Zzil Uk(efk,uﬁu _ efk:p)
= Zzo { vke_k“(e“ - 1)

30:30]

(et — 1) > pe (1) e"—l)—zo t=77
—u
— (et — 1) ~ 0.366.
v=e-9-05 1,=0.03
(g = 1_1135‘ = évkkpx Which is better here ?
.. -1 —uk =1,k 1—(ve™H)" ~
ax:m = k— O’U kPx = Zk 0?} I k:Ot = m ~ 11.827.

v=e-9-05 1,=0.03,n=30

~ (B0000)(0.366) _ 1=1= oo

Thus 50000P = 50000A30/d30:37)| ~ 11.827

Plan Loss

Whole life insurance Z, — PY,
t—year funded whole life insurance L PY i
n—year term insurance zZl - PYI 7l
t—year funded n—year term insurance z! o n‘ PY |
n—year pure endowment insurance Z PYT 7

mn\

t-year funded n-year pure endowment insurance | Z_ 711‘ PY |

n—year endowment Ly — PYm 7
t—year funded n—year endowment insurance Ly — PY |
n-year deferred insurance n|Zz — — PY,

t—year funded n—year deferred insurance n|Zz PY i

Table 6.1: Loss in the fully discrete case

6.2.2 n—year term insurance. An n—year term insurance paid at the end of the year of
death funded at the beginning of the year while the insuree is alive is a called a fully discrete
n—year term insurance.

Definition 6.7. The loss r.v. for a fully discrete n— year term insurance w.u.p. s denoted
by Lim (: Zalazﬁ - PYx:ﬁ\ = UKZI(K[L‘ < n PZK Al

Definition 6.8. The benefit premium for a fully discrete n year term insurance obtained

using the equivalence principle is denoted by P1,| or P(A n|) (= Avml

(g 7|
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Example 6.10. Skip the example.

Example 6.11. An insurer offers a four—year life insurance of 25 years old. Mortality
x || 25 | 26 | 27 | 28

gz || 0.01 | 0.02 | 0.03 | 0.04
payments at the beginning of the year. The benefit payment is 10000. i = 5%. Calculate the
annual benefit premium using the equivalence principle.

15 given by the table:

This life insurance s funded by benefit

Solution: Solve BP! B=7

25:4|"
Equivalent principle => P25 A" T
4 4
1 K, _ k
Asq =B 1K, <n)) = o fic, (k Z prqm | by [8]
k’—l : ]>0
1-2 2—2 3—2 4-2
:Ulqgr:+1—1 Hpa:+j + U2(]m+2—1 Hpaﬁ-j + U3Qm+3—1 Hpa:+j + U4Qx+4—1 pr—i-j
Jj=0 Jj=0 Jj=0 j=0

=(1.05)71(0.01)(1) + (1.05)72(0.02)(0.99) + (1.05)3(0.03)(0.99)(0.98)
+ (1.05)7%(0.04)(0.99)(0.98)(0.97) = 0.08359546485.

Now two ways for dy, 4|'

(1) by [17] d25 A = Zk 0 vk LDz, Where 1p; =1 — @z, 2Px = PaDat1; -

1— A 1-Z
(2) dos3 = —7= L due to Yy = —5="1 [17]. Which is better ??

A25;1| :Aég) ] + vtypos by [14]
= Ay at v* paspaeparpas by [4]
= Ay + (1.05)74(0.99)(0.98)(0.97)(0.96) = 0.8268662132,

1— A, —
s g :Tm' — 3.635800523,
A, 0.08359546485
BPL . =(10000)—24 — (10000)~: — 929.9225641.
s = ) G 7] = ) 3.635809523

Theorem 6.5. L1 v ””I(K <n)-— Pdm|

e
L =7 —PY,m=(01+4)2 +

L Py 1 _P : :
v = g2~ — 9 (for computing variance)

7 w7

Example 6.12.
Example 6.13.

Example 6.14.
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Example 6.15.

Monday lecture starts from this page. Announcement:

A. Quiz on Wednesday: 450 formulae [13], [17]-[19]

B. In final, Part A is all formulae [1]-[19] for 450.

C. 2 out of 3 problems in Final will be similar to the homeworks assigned on Friday.
Example 6.12. William is 40 years old and purchases a 25-year term life insurance policy
with face value of $150000 payable at the end of the year of death. This policy will be paid by
a level benefit annual premium at the beginning of the next 25 years while William is alive.
Assume that ¢ = 6.5% and death is modeled using de Moivre’s model with terminal age 90.
(i) Calculate the benefit annual premium for this policy using the equivalence principle.

(ii) Calculate the standard deviation of the loss for this policy.

1

Solution: (i) Solve BP410 %) Bafg 2;‘ due to L = Zio 35| — PYyy35- B = ?
.. 1-A,35 1
Formula: Qy0:25| = +2| = Z 0 Ve 777 [14] A40:%| = BE(v"m). Zym| = Ly, n| +2Z,. n|
Al = B I(K, < k R e P YT 2)
40:25| (v n)) Z w—x 50 1—v ' (
Apas = E(Zjyge + Z as) = A}y ge + 0" Y n0 1 3475265400 (1)
40:25] — 40:25 2:25| 40:25| nPr = 44095 50 ’
1—Aypss 1 —0.3475265409
4055 = — = = 10.69052668
4025 d 1 — (1/1.065)
AL
The benefit annual premium for this policy is BP410 35 = 150000M = 3422.996011.
(ii) o = ? where L= BL) . [19]: Ll = Z} = PY, 5 = v**I(K,; <n) — pyHanm)=

oy, ::Zgngfw'(TLl |:3?

Ly = v I(Ky <n) — P

1— UKI/\TL

P = 3423 or 3423

150000 °
— oK (K, < n) — PO i (K’%{T Ll e
= UKII(Km <n)(1+ %) + %U”I(Km >n) — %
V(L |) V(aX +bY +c¢) = a?V(X) + b*V(Y) + 2abCov(X,Y), (X,Y,a,b,c) =
Cov(X,Y) = E(XY) - E(X)E(Y) = —E(X)E(Y), as E(Z]. 7% n|) =0 (see [14]),
P\’ pyr PP
V(Lzllo%\) <1+ d) [Aa:n|( ?) - (Axn|) ]+ ( 7 )2npa(l — nps) +0 —2(1 + d)dAl n‘Axn‘
2 41 AL oy v 10
1075 = Aoz (v) = s — — 0.1426103697, (by (2))
v=1/1.062
3423
1 _ n _ 1
Az =V"npe, P = 150000 and d =1 —1/1.065.

The standard deviation of the loss for this policy is o7, = B, /V«Lzllo 25|) = 54578.29029.
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. 2
Theorem 6.6. (skzp).V(Lglam) =(1+ %)2 : ZA;:%‘ + d2 2A L —(BILL n|] %)2_

7|

The present value of the loss for a t—year (1 < ¢ < n) funded n—year term insurance w.uw.p. is

v (K, <n)— Pi (= 2}y — PYyq, with its APV AL — Pl .

min(Ky,t) x|
1
A:c n\

The benefit premium which satisfies the equivalence principle is tP 7 = P(; Ax n‘) e

Example 6.16.

Example 6.17. A 20-year term life insurance policy to (x) with face value of $10000
payable at the end of the year of death is funded by a level benefit annual premium at the
beginning of the next 10 years while (x) is alive. Assume that 6 = 0.05 and death is modeled
using the constant force of mortality p = 0.02. Find the benefit annual premium for this policy.

Solution: Solve P, where L = 1052; i PY -
1 JR—
P = (10000)—=2 by E(L) =0
Gy 10|
n n n
Al =S o fi (k) = 3 o () e (or (= Y k(e - ooy
k=1 k=1 k=1
1 o n
- Z kq—“’ — up i P2)" e 5099030192,
1—vpy ps

S 1V . vkkpm (compare to U(0,b) !!) kPr = eTHE = pﬁ

am:l | — —
1—w - 0
pr) . 1— 67(10)(0.05+0.02) B
ZU P= s e 1 e-osrooy 446282211,
1 JR—
P =(10000)-; =20 _ 281.8908903.
aw:ﬁ|

Example 6.18.

6.3 Benefits paid annually funded continuously.
6.3.1 Whole life insurance.

Example 6.19. Rita is 52 years old and purchases a whole life insurance policy with face
value of $70000 paid at the end of the year of death. This policy will be paid with a continuous
lifetime payment. Assume that i = 0.065 and death is modeled using the de Moivre model with
terminal age 95. Find the net single premium and the benefit annual premium for this policy.
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Plan Loss

Whole life insurance Z.—PY,
t-year funded whole life insurance Zy — PY .
n—year term insurance Z ;rﬁl — P?x:m
t-year funded n—year term insurance Z;:ﬁl — P?w:ﬂ
n—year pure endowment insurance ZE%I — PY .5
t—year funded n—year pure endowment insurance ch%l — P?x:ﬂ
n—year endowment Zzm — PY pm
t-year funded n-year endowment insurance Zyq — PY .4l
n—year deferred insurance nl|Zs — PY,
t—year funded n—year deferred insurance n|Ze — PY .4

Table 6.2: Loss in the case of annually funded continuously

Solution: (1) Solve BA;, B=7"

A = BO) = 3 b () = L Sk = L
N k=1 " [

. ~ 0.3339.
—Uvower vzﬁ,w—xzéﬁ’)

The net single premuim is BA, = (70000)(0.3339) ~ 23374.85.

(2) Solve BP, through E(L,) = 0, Ly = Zy — PY, 777 Ly = Zy— PY, 777

Ap — Py =0 => P = Ay [, [17): Gy = E(XE2) = [ ohpedt = [ 0! (1 = =)t
o oo w—x 1 1 t w—x
Asy = E(vl=) = / ot fr (t)dt = ( / v'dt) = — = (.344665,
0 0 w—r w-—zlnv 0
1 —Asy 1 —0.344665
52 5 In(1.065) 0406 (9= ~lw)

The benefit annual premiums is BP = BA, /@, = (70000)5323-: = 2246.220478.

6.3.2 n—year term insurance.

Example 6.20. Angela is 47 years old and purchases a 20—year term insurance policy with
face value of $120,000 paid at the end of the year of death. This policy will be paid continuously
for the next 20 years while Angela is alive. Assume that i = 7.5% and death is modeled using
the de Moivre model with terminal age 95. Find the benefit annual premium for this policy.

Solution: Solve for BP or P 7 Need L so that E(L) = 0 to solve P.
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. _ Al
B=7 [19]: L= Zx:%| —PY, 557 or L= Zm:%| — PY g7 =>P= EI;\
= 20 1 1—021
A}N:%' =B I(K, <n)) = kafo(k) = (Z vk)% T A T 0.212385.
k=1 k=1
" 1— 27, 1— A,
2 ways Gy :/ v'pedt = B( 5 xln') = 5 T which is better?
0
_ o0 20 1 48 1
Ay =E(vT\) = / "N fr (H)dt = / vtﬁdt + / 11204—8dt easier
0 0 20
Ut 20 " 48
= 1.075)"20—| = 0.357578
48Inv 0 +( ) 48 % ’
1—Aggn 1—0.357578
T30 = = = ~ 8.882965907
A47:20| 5 o
1
BP =B Lo _ 1200002212355 9g60 11
U, 8.882965907 ~ T

Skip this page.
Example 6.21.
Example 6.22.
Example 6.23.
Theorem 6.7.
Theorem 6.8.
Corollary 6.1.
Corollary 6.2.
Theorem 6.9.

Theorem 6.10.

6.4 Benefit premiums for fully continuous insurance.
In this section, we will consider the funding of insurance products paid at the time of death

and funded continuously. This type of insurance is called fully continuous.

6.4.1 'Whole life insurance. Suppose that an insurance company funds a continuous whole
life insurance w.u.p. with payments at a continuous rate of P while the individual is alive. The
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Plan Loss
Whole life insurance Z,—PY,
t—year funded whole life insurance Zy — PY 3

. —1 _
n—year term insurance Zym| — PY uml
t—year funded n—year term insurance Zx:ﬁ\ — P?x:ﬂ

. — 1 —

n—year pure endowment insurance Zym — PYom)
t-year funded n-year pure endowment insurance 71,:5‘ — P?ac:il
n—year endowment 7:1;%\ — P?I,m
t—year funded n—year endowment insurance Zym| — PY ]
n—year deferred insurance nl|Zs— PY,
t—year funded n—year deferred insurance A PY 4

Table 6.3: Loss in the fully continuous case

loss random variable is L = vT* — Paﬁ‘ = 7, — PY ., where ap| = fon vidt and Y, = 1_52 z

Example 6.24. An insurer offers a whole life insurance of 1000 paid at the time of death.
To fund this insurance the policyholder must make continuous payments at the rate 125. The
force of interest is 0.06. The force of mortality is 0.01.
(i) Calculate the expected loss at issue.
(ii) Calculate the variance of the loss at issue random variable.
(1ii) What is the loss if (x) die at age z+50 ¢
(iv) Calculate the probability that the loss at issue is positive.

Solution: (i) Solve E(BL) with B=7?? L =72, — PY, ? or Zy — PY, ? or Zy — PY, ?
L=7,—PY, Q: P=125? or BP=1257?
Ty
vls — P2 (see [17))
(1+ £)o™ — £ Why do this ?

E(L)=aFE(Z;)+b=aA; +b (a,b)="?

- o0 o0 o0
A, = / ol fr (t)dt = / vt pe M dt = u/ e~ o)t gy
0 0 0

[0.9]

__ K —(pto)t gy M H . 9
P i (u+d)e dt PR Rl why inv ? (1)
E(BL) = B[(1+ E)L — E] — —35.71428571.
0 p+o 9 P=0.125,6=0.06,1="
(ii) Solve V(BL) = B*V (L) L=(1+%ph-L.
2
V((1000)L,) = (1000)? [ 1 + L (Az(v?) = (Az(v))?) = 82515.79 (by Eq. (1
x) = 5 x x = . Yy Lq. ( ))

(iif) The loss is 1000 = [(1000)vT> — (125)1=2]

: = —1149.826

T,=77
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(iv) The probability that the loss is positive is

_ T
P{moof:(looomﬂ—(l%)l 6” >0}
P P 125
=P((1 T — = 1257 ?
((1+ ) 5 > 0) P =1257 or 1000
:P(avT"—b>0) (a,0) =
=P(vl* > b/a)
B In(b/a)
=PI < Inv o
1 0:125/6 In(1.48)
_plr, < ST0B [ —In(148)
{ R = 7006

1 _ 0oy Fin(148) _ g _ (1.48)71/6 ~ 0.06.
Example 6.25.
Example 6.26.
Example 6.27.
Example 6.28.
Example 6.29.

Example 6.30. Kayla is 35 years old and purchases a 10-year deferred life insurance policy
with face value of $250,000 paid at the time of her death. This policy will be paid continuously
for the next 10 years while Kayla is alive. Assume that d = 6% and death is modeled using De
Moivre’s model with terminal age 95. Find (i) the benefit annual premium for this policy and
(i) the standard deviation of the loss T.v..

Solution: (i) Solve BP where B = 250,000, F(L) = 0, and
L =nZy — PY y = 0T I(T, > m) — P [, ol dt.
E(L) =0 yields P = n|2x/6x:ﬁ|, where ;.5 = fon vhipLdt = l_ézzﬁ' (latter is easier).

60 ¢ 160 10 60

— 1 v vV —w
Asz = BE(w=1(T, > n)) = vl —dt = = d=1—v=0.06 1
10ldss = BQ=I(T; > n)) /10 60"~ 60w “oomo ! ) )
foe) 10 60 10
_ 1 1 1—w 50
A — =F T \n — tA10 Hdt = t_dt 10_dt — 10
a0 = B0 /O v ) o Y)Y 60" T G0(me) 60"
10460
P= A, /d | = —60Inv ~ 0.009786197.
n| m/a;cn| 1_(68(_—1}111(:))+%U10)

)
The benefit annual premium for this policy is BP = 250000F = 2446.549.
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1— ,UTQC An

(ii) Solve V(BL) first, where L = ,|Z, — P?m:m = o= [(Ty >n)— P
— Ty n
Write I = o7 [(T}, > n) — prt <) T ITezn) 1y (14]. Note I(T, < n)I(Tx >n)=7?

LT, < P
#—gzw—i—(]jtc W=7

V(L) = V(W) + V(U) +2Cov(W,U) = V(W) + V(U) + 0 — 2E(W)E(U)

n
T ="+ P%)I(Tw >n)+ P

E(W) = ,|A; + P%P(Tx >n) (see Eq.(1)) E(W(v)) 2 = E(W(v?))??
EU) = ?ij U= ?vTII(TI <n), EU?* =77
Z;m = B I(T, <n) = /O t610dt 5(:—51; = ... (2)
" v V2"
B(W?) = B(" + PEOIT, > m)?) = B((w? + 222 4 YT, > )
— Pv P2y?n
- n’Ax<U2) + 2 n‘A + 52 — nPx =" (See Eq- (1))
2,0277, V" D
V) = oA >+2P e+ e — (a4 D12
oI (T, < 2 2 B
V() = v<P$> = Vo) = D (Al ()~ (Aly)?) = -+ (see B, (2)

V(L) =V(W)+V(U)-2EW)E(U) ~ 0.01851821.
The SD of the loss of the policy &~ B * v/0.01851821 ~ 34020.41.

6.5 Benefit premiums for semicontinuous insurance.

This section discusses the funding of insurance products paid at the time of death and
funded at the beginning of the year. This type of insurance is called semicontinuous insur-
ance. We skip this secction.

Plan Loss

Whole life insurance Z, — PY,
t—year funded whole life insurance Z, PYI i
n—year term insurance Zi:ﬁl PYw.n|
t—year funded n—year term insurance 7I:W| - PYm:ﬂ
n—year pure endowment insurance 71:n| PY,. 7
t-year funded n-year pure endowment insurance 7wm| PY |
n—year endowment Zym| — PYI.M
t—year funded n—year endowment insurance Zym| — PYw3|
n—year deferred insurance nl|Zs — PY,
t-year funded n-year deferred insurance nlZ PYm |

Table 6.4: Loss in the semicontinuous case
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6.6 Benefit premium for an n—year deferred annuity due.

6.6.1 n—year deferred annuity due funded discretely.

. (nAKaz) K 1—1}”/\[{”
k>n

1—w

(1)

Example 6.31. Jasmine is 45 years old and purchases a 20-year deferred contingent an-
nuity with a face value of $40000 paid at the beginning of year while she is alive. This policy
will be paid by level payments made at the beginning of the next 20 years while Jasmine is alive.
Assume that 6 = 0.05 and constant force of mortality is 0.02. Find the annual benefit premium
for this policy using the equivalent principle. Derive the variance of the loss (in unit payment

of insurance).

Solution: (a) Solve BP, B = 40,000 and by E(L) = 0, where

L =p|Ze— PY,7 ? L =p|Zs — PYy ? L =Yy — PY,7?

=> P = Z'—af Many formulas below, which is easier 7

liy5.50) = VFpy = E(Twm) need A,.q
k=0
)
20|d45 = Z Ukkpx = nEmdern = UPg * n71’d$+17
k=n
nlVo = ———I(Ky > n) and Vo = Vo + u[Vs [17], [18]

Due to S, ~ Exp(u), it is simpler to use

n—1 n—1 n—1
. _ _ 1 — (ve )"
(4590 = Ukk;pa: = Zyke pk Z(Ue H)k — ﬁ ~ 11.14,
k=0 k=0 k=0 =e0-05 1=0.02
. . . . 1 —(ve ™) 11— (ve )"
20|&45 = Qg — Qgq| = Agisg| — Q| = [ 1 — ven - 1 — ven ~ 3.69,
ve ve v=e—005 1,=0.02
o oo o o0
or = Z v ppe = kae*“k = Z(ve*“)k’ = (ve ™M"Y (ve ")) = 3.65, (j=k—n)
k=n k=n k=n §=0

(40000)(3.65)

BP =(40000)P ~ =

~ 13092.43.
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(2) Solve V(L)

(K.An)—1 Kz—l—n (KeAn)—1
L= Zk—P Z Zvj—P Z P j=k—n
7=0 k=0
ot — ’UK”” 1 — UKx/\n
=Ky >n) - P——
:Unl__UUKm 1Ky > ) — Pl — ol (K, gli)v— V"I (Ky > n)
_und J; ]_D)U_ ”KI[(Kx >n) + PlvfIUI(Km <n)— P/d (see [14])
V(L) =V(X)+V(Y)+2000(X,Y) (X,Y)=
—V(X)+V(Y) = 2E(X)E(Y) Cov(X,Y) = E(XY) — BE(X)E(Y)
Al
V() +V(Y) = 25, — L AP T
UK“” SN 2
V) = V(P S s ad0) — (AL
v = v i,y = O BB
E(U?) =E((v"(1 + P) — v%*)?I(K, > n))
=0 (14 P)?upe — 2(1+ PY" EQ" (K, > n)) + E@u*** (K, > n))
e WA (2)
E(U) =E((W"(1+ P) = v"*)I(K; > n)) = v"(1+ P)ap; — EQ@"* I(K, > n))
oA,
By =Y (e — k) = N b (o pe = joapepe) = Y 0" apete = > 0 phan/pe
k=1 k=1 k=1 k=1
- (Up:r)oo
B~ 2/ P
AL =B 1K, <n)) =) of (et — )
k=1
w|Ay =EWRI(K, > n)) = E(v%*) — EQ@XI(K, <n))
V(L) =V(X)+V(Y)+2Co0(X,Y) = - ~ 16.92 + 4.51 — 14.96 ~= 6.47

6.7 Premiums paid m times a year.

Example 6.32.
Example 6.33.

Example 6.34.
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Example 6.35.

Example 6.36.

6.8 Non-level premiums and/or benefits.

Insured products can be funded with non-level premiums. Premiums may increase accord-
ing to the inflation rate.

Let by, be the benefit (insurance, not annuity) paid by an insurance company at the end of
benefits ‘ 0 by by b3

year k, k = 1,2,.... The contingent cashflow of benefits is Time after ssna ‘ 01 2 3

Hence, the APV of the contingent benefit is Y - | bpo*P{K, = k}
Let m;_1 be the benefit premium received by an insurance company at the beginning of year
k, k=1,2,.... The contingent cashflow of benefit premiums is

benefit premiums ‘ Ty W T2 T3
Time after issue ‘ o 1 2 3
Hence, the APV of the contingent benefit premiums is

-1

i kaka Zwkv P{K, >k} = Zwkv

j=1 k=0

<.

>
Il

The loss is L = b, v Zk 0 7Tk’U

L = benefit of insurance — cumulative payment for buying the insurance
Under the equivalence principle E(L) =0, i.e.,

o0 00 o j—1
D bt ialge = mtipe = ) mok fie, () k-1ld = [r. (4)?
k=1 k=0 =1 k=0

Example 6.37. For a special fully discrete 15—payment whole life insurance on (20):
(i) The death benefit is 1000 for the first 10 years and is 6000 thereafter.
(ii) The benefit premium paid during each of the first 5 years is half of the benefit premium
paid during the subsequent years.
(iii) Mortality is given by the life table for the USA population in 2004 (see pages 603)
(iv) i = 0.06.
Calculate the initial annual benefit premium.
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Solution: Find 7, which is the initial annual benefit premium and sastisfies F/(L) = 0 where

(KzA5)— (KzA15)—
L = [(1000)0"= I (K, < 10)+(6000)0" = I(K, > 10)] — | Z ok + Z 27m0F)
k=0 k>5
K. A5 (KzA15)
( ﬁ:) . Az: , (Ken5)=L 1k if K, <5
o vt = (K.A15)— .
0 =5 Z o + Zk>5 Lorok if K;>5
IEKBAS)_l m)k it K, <5 (casier)
= easler
HanD=t gk SN ok if K, > 5
(KeNb)— (KzNA15)—
B(L) = 0 yields (1000) A}y, 15, + (6000) - 10| Aso =EX Z w4 Z 2mv*)
k=0 k>5
(K4A5)— (K, A15)—
= (1000)Asg + (5000) - 10| Asg =E(— Z b+ Z 270k
k=0
(by[14]) (1000)A20 + (5000) . 10E20A20+10 = — 7Td20:5| + 27ra20:ﬁ| by [17],

(1000) Az + (5000) - 10 E20 A20+10 =7 (2li90.15 — Gig.5)

_ (1000) A20 + (5000) - 10 F20A20+10 _ easy

(1)

. . . . . 15
Qg = Qo — nliz = Az — nLg * Qadn, and 15E; = v °15ps = m4nEr = mEr - nEutm

by [17] by [17]
. . . . . . 15435
Q0.5 =A20 — 15] G20 = G20 — 15F20 - G35 = G20 — v E ass
1597250

=16.739946 — (1.06)~ 98709(15 .817689) = 10.23733295,

G5 =20 — 50 + figs = 16.739946 — (0.743753117)(16.514250) = 4.457421088,
it 75 — figg5) = ((2)(10.23733295) — 4.457421088) = 16.01724481.

(1000) Agg + (5000) - 10Ea0 - Asg = 52.45587 + (5)(0.553116815)(82.29543) = 280.0508007.

280.0508007
Hence ™ = 16.01724481 — = 17.48433042.

Announcement: The homework assigned this weekend due next Wednesday.

Example 6.38. Consider a whole life insurance policy to (40) with face value of $250000
payable at the end of the year of death. This policy will be paid by benefit annual premiums paid
at the beginning of each year while (40) is alive. Suppose that the premiums increase by 6%
each year. Assume that i = 6% and death is modeled using the de Moivre model with terminal
age 100. Find the amount of the first benefit annual premium for this policy.
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Solution: Let m be the amount of the first benefit premium (in unit value).
Solve Br from E(L) =0, where B = 250000,

nglnkv andﬂk—ﬂ(lofi) k=012,
Zk 106 b = Zk 0 7T106v)
0=A wEZk oH(1.06v)k). =>

K,—-1

™ =A/E()  (1.06v)")

k=0

k k 1 1 — /Uw_x 1
Ap =) i (x)=) v = = (.2693571284.

w—x l1—v w—=z

BOST (1L060)) = B(S" 1) = Zka Z’f zn:k:n(n; 1)
k=1

~(60)(61) 1
T2 60

K;—1
T =A,/E ) (1.06v)")
—

0.2693571284
B =(250000) 55— = 2207.845

250000%0.2693571284/30.5

= 30.5.

~0.2693571284
- 30.5

Example 6.39.
Example 6.40.
Example 6.41.
Example 6.42.
Theorem 6.11.
Theorem 6.12.
Theorem 6.13.
Theorem 6.14.
Theorem 6.15.
Theorem 6.16.

Theorem 6.17.
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Theorem 6.18.
Theorem 6.19.
Theorem 6.20.
Theorem 6.21.
Theorem 6.22.
Theorem 6.23.
Theorem 6.24.

Example 6.43.

6.9 Computing benefit premiums from a life table

In this section, we disucuss how to obtain the benefit rates for different insurance products.

6.9.1 Fully discrete insurance. We assume that the death benefits are paid at the end
of the year of death. But, the benefit premiums are at the beginning of each m—thly period.
The annual benefit premium in this situation is higher than the regular situation. Benefit
premiums, instead of being received at the beginning of the year, they are received later on.
During a year when an insuree dies, benefit premiums may not be received during the whole

year. From a life table, we can find d,, then we can estimate d;m).

x 80 | 81 | 82 | 83 | 84| 85| 86
Example 6.44. Consider the life table | (, || 250 | 217 | 161 | 107 | 62| 28| 0
dy || 33 | 46 | 54 | 45 | 62| 28| 0

Assume that i = 6.5% and uniform distribution of deaths over each year of death.
Find PS%Z), using that Agg = 0.8161901166 (see Example 4.9 in page 87).

ASO

ago

Solution: There are two appoaches for Pg(én )



SECTION 6.9. COMPUTING BENEFIT PREMIUMS FROM A LIFE TABLE 205

(1) Based on basic formulas: v — v"/™ and ;_1|q; — =t 1ge = f1,(5) (0lte = ¢z = 1qx)-

oo

A;(L'm) A%Z _ Z 1/12 ]fJ
7=1

=) L (D) 4 (012 F5,(12)
+ () (124 1) 4o+ (01/12)12F12 ) (124 12)

+ ..
oo m
ZZ 1/12 km+j + 1 d:z:+k
m Ly
k=0 j=1
oo
_%Z( 1/12ykm x+kZ 112y
k=0
m
= Doty Z '“d”k
"
J:

1 U1/12( _ vm/lZ)

T 1 /2

A, = 0.8402293189,

— ; x/12 (12)
all? — B W12)) = B(A) = A = 2543720348,
(12) _ A 0.8161901166
Py~ = agﬁ% = 3513720848 — 0-3208647198,

my 11— AL

(2) Using formulas: dg,” = —m dm = m(1l—(1+ z’)f%)
Al — i(%)Ago, i = m((1+i)w — 1).
Thus
i = m((1+i)m — 1)~ 6.314% ALY = Z,(%)Ago - 0'0651'2323132 (0.8161901166) ~ 0.840,
A — (1 = (14i)" %) ~ 6.281% a2 = 2 ;(f‘z%?) _ 1= 06?81222533189 ~ 2544,
U2 _ 2?) _ 0.812.1594041166 .

For a period of length %
. . . N . ;(m)
i) the interest factor is (1 + )/ =1 + .

(

(i) the effective rate of interest is (1 + )Y/ — 1 = il
(
(

m

iii) the discount factor is (1 + i)*l/m = pl/m = (1-— d)l/m =1- %-

. . . . (m
iv) the effective rate of discount is 1 — v!/™ = %.
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Theorem 6.25. Skip the theorem.

6.9.2 Semicontinuous insurance. For a semicontinuous insurance, the death benefit is
paid at the time of the death and benefit premiums are paid at the beginning of the year.

x| 80 | 81 | 82 | 83 | 84| 85| 86
Example 6.45. Consider the life table| (; || 250 | 217 | 161 | 107 | 62 | 28 | 0 | Assume
dy || 33 | 46 | 54 | 45 | 62| 28| 0

that 1 = 6.5% and uniform distribution of deaths over each year of death. The death benefit
s paid at the time of the death and benefit premiums P are paid at the beginning of the year.
Find P using equivalent principle.

Solution: L—v sz 0 Lok =T — Pi= vt p=7A 2/y and dy = __‘%” by [17].
A, = Zk LU i (R) = S0 g 1/@; =0. 8161901166
igo = 150 = 1= 0%}‘;}9006151)66 3.011654243.
A, = %A (true only for A, Ax 7| and nlAz D), 0
Ay = 26 1 Z.i_l Lfr. (t)dt (always true). Use this approach here.
fo(t) = %tpx (by (10) of 447).
e = 7 (by (11))
gm—i—t =
(04 + t(Cpyr — L) if te(r,z+1] (& ifte(v,a+1]
Coi1 +t(lygo —loy1) ifte(z+1,2+2 fetl ifte(z+1,2+2
< b+ t(lays — loy2) if € (x+2,2+3] Fr () = —ip) = ¢ etz ifte(z+2,7+3
Covs +t(lysg —loys) ifte(x+3,0+4 7" * dZS if te (z+3,2+4]
Cord +t(lors —lora) if t € (z+4,2+5 dets ift e (z+4,7+5]
(lats + U(late — loys) if L€ (45,246 \dif’ if t€(z+51+6]
fr,(t) = [k, ()77 fr,(t) = fi, ([t])??
fr,(t) = fx,([t]) if t is not an integer 77
Ago =/ ol fr, (t)dt = Z/ td’”“ el g = Z( o[ )M = 0.8424379003.
0 lnv 4l

Ago 0.8424379003
p— — = 0.2797259686.
dso  3.011654243

Theorem 6.26.

Theorem 6.27.

6.9.3 Fully continuous insurance. For a fully continuous insurance, we need to know A,
and @,. From a life table, we can find A, and a,. Then, we need to estimate A, and @,.
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Example 6.46. Consider the life table

x| 80 | 81 | 82 | 83
Cy || 250 | 217 161 | 107

84185186
62| 28| 0

Assume that i = 6.5% and uniform distribution of deaths over each year of death.
Find P(Agp), using that Agy = 0.8161901166 (see Example 4.9 in page 87).

Solution: We have that

- A, A — i 0.065
P=2t = 2 A= -Agg = ————(0.8161901166) = 0.8424379003
G, LA 807 58 1n(1.065)( ) ’
- §Aso  In(1.065)(0.8424379003)
P(Agy) = —2 = — 0.3367076072.
(Aso) = T2 = (1= 0.5424370003)

Example 6.47.
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6.10 Premiums found including expenses.

When finding the annual premium expenses and commissions have to be taken into in
account. Possible costs are underwriting (making the policy) and maintaining the policy. The
annual premium which an insurance company charges is called the gross annual premium,
the contract premium, the loaded premium and the expense-augmented premium. It
often includes:

1. Issue cost.

Percentage of annual benefit premium.
Fixed amount per policy.

Percentage of (face value) contract amount.

Ot

Settlement cost.

Often the expenses related to the contract amount, are given as per thousand expenses,
i.e. the per thousand expenses are the expenses made for each $1,000 of the face value of the
insurance. The loss is

L. = expenses-deposit (or L. =expenses-total annual premium)

Example 6.48. A fully discrete whole life insurance policy with face value of $50,000 is
made to (x). The following costs are incurred:
(i) 3800 for making the contract.
(ii) Percent of expense—loaded premium expenses are 6% in the first year and 2% thereafter.
(#ii) Per thousand expenses are 32 per year.
Assume Py = Ag/d, = 0.11 All expenses are paid at the beginning of the year. d = 5%.
Calculate the expense—augmented annual premium G using the equivalence principle.

Solution: Solve G from E(L.) = 0, where

or 0.067

Le = (50000) Z;; 4+ 800 + (0.04) G + (0.02)GY; + (2)(50)Y; — GY .
exp;rzses deposit
E(L.) =(50000)A; + 800 + (0.04)G + (0.02)Giy + (2)(50)dy — Giiy = 0. Ayfiy =11
(50000) A, + 800 + (2)(50)éy ., .. 1A
- (1—0.02)d, — 0.04 e . 17 8o = 3=
01l=P, =4 = 1die — _4s 7 _1_ 4 =0.05

e Gz (1-A4y)/d"
0.11 = 1588 —> 0,116, = 1 — di, =>
iy = 2 /(1+%H) =1/(0.05 +0.11) = 10/16.
A, = Pyiiy = 11/16.

_ (50000) A, 4+800+(2)(50)d.
G = O o = 5883.319638.
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Example 6.49. A whole life insurance policy with face value of 340,000 payable at the end
of the year of death is made to (45). Assume that i = 4.5% and death is modeled using the de
Moivre model with terminal age 95. The annual benifit premium is paid at the beginning of the
year, and the following costs are incurred and paid at the beginning of the year:

(i) $500 for making the contract.

(i1) Percent of expense—loaded premium expenses is 5% in the first year and 1% thereafter.

(11i) Per policy expenses are $20 per year.

(iv) Per thousand expenses are $1.2 per year.

(v) 8600 for settlement.

(a) Calculate the gross annual premium G using the equivalence principle.

(b) Calculate the expense—augmented loss for an insuree that dies 7 years, 5 months and 10
days after the issue of this policy.

(c) Calculate the variance of the expense—augmented loss.

Solution: (a) Solve G from E(L.) = 0, where the loss
Le =40000Z45 4 500 + 0.04G + 0.01GY}5 4 20Y5 + (1.2)(40)Ys5 + 600245 — GYas, (1)

=> 0 =40000A45 + 500 + 0.04G + 0.01Gd45 + 20d45 + (1.2)(40)dq5 + 600A45 — Gays,
- 500 + 40600 A45 + 68dys5

a5, Ags =2 Tys ~ U(0, 50).

0.99a45 — 0.04

21l 1001

14 Ays =E(f) = § k— g~ = 0.3952401556 2
1 v=1/1.045

) 1— Ay 1—0.3952401556
1 - - —14.04
[ 7] — a4y 1—o 11— 1/1‘045 0 38675,
500 + 40600 A5 + 68
g =0t 45 T 08045 1969 430006

0.99a45 — 0.04

(b) Solve L¢(K,). Where is K, in L, 7 Insuree die between 7 and 8 years, K, =77

Le =[40000Z45 + 500 + 0.04G + 0.01GY}5 + 20Vy5 + 40 x 1.2V35 + 600245 — GYas] by (1)

=(40600) Z45 + 550.4975602 — 1181.814616Ys5

1 — fas
:(40600)UK45 + 550.4975602 — 1181.8146161—U (866 [14] and [17])
— v

— 68044360/ — 26893.86 — 18244.28524  if K5 = 8,
why do t\f:is step??

(¢) V(Le) =a*V(Zy5) = (68044.36)%(Ags(v?) — (Ags)?) (see (2))
—(68044.36)> vl_—”m — (Ags)?
( a (1= 0)30],_ /1 o452 )

—(68044.36)%(0.2146684865 — (0.3952401556)%) = 270642713.1.

Skip to Page 205 Example 6.49.
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Theorem 6.28. Suppose that we have a whole life insurance on (x), with a death benefit
of b paid at the end of the year of death. The fixed annual cost has an amount of e. In the first
year, there exists an additional cost of ej. The percentage of the expense—augmented premium
paid in expenses each year is r. During the first year, it is paid an additional percentage of
the expense—augmented premium of r;. The settlement cost is s. All cost except the settlement
cost are paid at the beginning of the year. The insurance is funded by an expense—augmented
premium of G paid at the beginning of the year while (x) is alive. If the equivalence principle
1s used, then
eq + (b+s5)Ay + edy

(1—=7r)iy —15

G:

(1)

Using that P, = L oand Pp+d=-L (easy to verify), we get that the expense-augmented

. Qg
annual benefit premium using the equivalence principle is

eq(Pr+d)+ (b+s)P, +e

A R 2

Q: Why Eq. (2) ?
Eq. (1) needs to specify fr,, but Eq. (2) does not.

The expense—augmented loss at issue random variable is the present value of expenses plus
the present value of benefit minus the present value of premiums, i.e. it is

oLe =¢f + 153G + (b+ 8)Zy + (rG + €)Y, — GYy,
1-2Z,

=es+ 710G+ (b+5)Zy — (1 —1)G —e) y

=al;+b.

Theorem 6.29. Under the conditions in the previous theorem,

(i) The expense—augmented loss at issue random variable is

oLe =(ef + 165G + b+ 5)(Zy — PpYy)
=(eg +roG + b+ s)oLy.

(i1) The variance of the expense—augmented loss is

V(oLe) = (e + 115G + b+ 5)°V(Ly)
2
* * 2 P$
=(eg+ 719G +b+s) (1 + 7) V(Zy)
22Am o Ax2
(1— A,)?
QAx . A;z:2

(diig)*

=(ep + 150G +b+ )
—(ef + 715G + b+ s)?

_When we compute the expense-augmented loss we get an expression of the type c1 +c2Z; —
c2Y,. The proof of the previous theorem gives that

oLe = 1 + 92y — 3V, = (c1 + ¢2) Ly and
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V(oLe) = (c1 + 2)?V(L,).

The loss without including expenses for a whole life insurance with death benefit b is
oL =0L, =b(Z, — P,;Y;). The variance of this loss is

P 2
V(bL,) = b¥*V(L,) = b? (1 + f) V(Z,).

Hence, if e+ r;G + s > 0 and V(Z,) > 0,
V(oLe) > V(b-oLy).
The increase in the loss by including expenses is
0Le — oL = (e + 135G + ) - 0L

Many variations of this model are possible.

In the fully continuous case, the expense—augmented loss and the expense—augmented pre-
mium have expressions similar to the fully discrete case. Let b be the death benefit death paid
at the time of the death. The fixed issue cost is ;. The percentage of the expense-augmented
premium paid in expenses at issue is ;. There is an annual rate of contract expenses of e
paid continuously while () is alive. The percentage of the expense-augmented premium paid
continuously in expenses while (x) is alive is r. The settlement cost is s.

Let G be the expense—augmented premium rate using the equivalence principle. We have
that

Gay = bA, + el + G + ety + rGa, + sA,
=ep + 150G + (b+ 8) Ay + (rG + e)a,.
So,

o e+ (b+s)Ay + ety
e

In this situation the expense—augmented loss at issue random variable is

oLe =€y + 715G+ (b+3)Z; — (1 —7)G —e)Y,.

Computations identical to the ones done in the fully discrete case give that

0Le = (e +10G + b+ 8) Ly = (ef + 175G + b+ s5)(Ay — Pray)
— P,
and V(oLe¢) =(ef + 175G 4+ b + 5)? ( T)
L,
=(ej + 715G + b+ 5)? (1_Zx)2

A, - A
=(ef +r5G +b+ 3)2””—)”“’

(6a,)?
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The loss for whole life insurance paying a death benefit of b at the time of the death without
including expenses is oL = bL; = b(Z,—P;Y ;). The increase in the loss by including expenses:

()Ze —b- ()Zm = (60 + roG + S) . ()Za; = (6() + roG + S)(?x — Fa:?a:)
Connecting Ex. 6.48.

Example 6.50. For a fully continuous whole life insurance of 350,000 on (z), suppose:
(i) The issuing expenses are $1000 and 5% of the expense—augmented annual premium rate.
(i1) The annual rate of continuous maintenance expense is $250.

(iii) There exists a continuous rate of expenses which is 10% of the benefit premium rate.
(iv) 6 = 0.06.

(v) Gy = 12.

(vi) V(Z,) = 0.15.

(a) Calculate the expense—augmented annual premium rate G using the equivalence principle.
(b) Calculate the variance of the expense-augmented loss random variable.

Solution: (a) Find G, the expense-augmented annual premium rate, such that E(L.) = 0.
What is the benefit premium rate in (iii) ?
Face value of death benefit B= 7

. J

Le = (50000)Z, + 1000 + (0.05)G + 250Y , + (0.10)GY . — GY .. .

Vv

erpenses deposit
E(Le) = 0 =(50000)A4, + 1000 + (0.05)G + 250a, + (0.10)Ga, — Gag, @z =12 (1)
(G, Ay) =7
By [17], 12 = @, = =4,

A, =1—(0.06)@, = 1 — (0.06)(12) = 0.28 and

Eq.(1) => 0 =(50000)(0.28) + 1000 + (0.05)G + (250)(12) + (0.10)(12)G — (12)G
=18000 + 1.25G — (12)G

18000
- — 1674.418605.
5105 — 1674.418605
(b) Solve V(L) with given V(Z,) = 0.15.
Le =(50000) 7, + 1000 + (0.05)G + 250Y ; + (0.10)GY , — GY
_ 1-2Z,
=(50000)Z + 1000 + (0.05)G + (250 — 0.90G) 5 (see [17])
250 — 0.9G —
=(50000 — T)ZJC +b
_ 250 — 0.
=aZ;+b (a= 50000 — WTMG).
250 — 0.9G

V(Le) =a*V(Z,) = (50000 — )2 % 0.15 = 755077125.

J
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Different types of expenses can be paid during different length of times. This happens if
benefits premiums and the policy are in hold for different periods.

Example 6.51. A 10-payment, fully discrete, 20—year term insurance policy with face
value of $90000 payable at the end of the year of death is made to (45). The costs are:
(i) 3275 at the beginning of each year which the policy is active.
(ii) Per thousand expenses are $2.5 at the beginning of each year which the policy is active.
(i11) 1% for each annual premium received.
Assume that i = 6% and death follows the life table for the USA population in 2004 (see page
602). Find the gross annual premium using the equivalence principle.

Solution: Find G, where

L = (90000)Z 5 o + 275 g5.95 + (2.5)(90)Y 55 + (0.01)GY 516 — G st
J/ V

"

Vo
erpenses deposit

Why sometime 20 and sometime 10 in }"/45:@ and Y45:ﬁ\ ?
Tables give A,, 20Az, Gz ete.

E(L)=0 => (90000)14}15:@ + 2750 45,55 + (2-5)(90)545:70| + (0-01)Gd45:17)\ — Glyg.15 =0

) L
G :90000A45270| + 500@45;20| . 1 o :7 d45 55 :7 d45 0 :??
0.9 45,15, 20 . "

Az115:%| = Ags — 20| Aas = Ags — 20B45A¢5 (see [14])

= 0.16656845 — (0.271632162)(0.37609614) = 0.06440864237,
(iy5.70) = (45 — 10|45 = dus — 10Eu5d55 (see [18])

= 14.723957 — (0.534696682)(13.160819) = 7.686910748,
(iy5.90) = (45 — 20|45 = dus — 20Easdes (see [18])

= 14.723957 — (0.271632162)(11.022302) = 11.72994528.

(90000)(0.06440864237) + (500)(11.72994528)

¢= (0.99)(7.686910748)

= 1532.416116.



214 CHAPTER 6. BENEFIT PREMIUMS

Often the first year expenses are different from the rest of the years. Usually, it is easier to
express expenses as a level expense for all years plus an extra first year expense.

Example 6.52. For a 5-payment 20-year endowment insurance of $100,000 on (25),
you are given the following:
(i) Percent of expense-loaded premium expenses are 10% in the first year and 2% thereafter.
(i) Per active policy expenses are 3200 in the first year and 380 in each year thereafter.
(iii) Expenses are paid at the beginning of each policy year.
(iv) Death benefits are payable at the end of the year of death.
(v)i=6%.
(vi) Mortality follows the life table for the USA population in 2004 (see page 603).
Calculate the expense-loaded premium using the equivalence principle.

Solution: Solve GG, where the loss is

L =(100000) Zys.35) + (0.08)G + (0.02) G55 + 120 + 80Yo5.55 — GYos5/-
E(L) = 0 =(100000) g 55/ + (0.08)G + (0.02)Giigs 5 + 120 + 80iigs50) — Gigs.5

(1OOOOO)A25:%| + 120 + 80&25:@ ) )
_ . need Aorsa1, Go=35a(, OosF
1- 0‘02)%5.5' —0.08 25:20)> @25:20)> @25:5]

We have that Ay :Aé&m +20F95 (see [14])
but A§5:%| = Aoy — 20| A2s = Aos — 20F25A45 (see [14])
= 0.065231113 — (0.302791379)(0.16656845) = 0.01479562233,
A25:%| = 0.01479562233 4 0.302791379 = 0.3175870013,

(g5.5) =25 — 5lo5 = do5 — 5E05 - dgo  (see [18])
= 16.51425 — (0.743683357)(16.212781) = 4.4570746,

Gos.:30) =025 — 20L25045
= 16.51425 — (0.302791379)(14.723957) = 12.05596276.

Hence,

(100000)(0.3175870013) + 120 + 80(12.05596276)

G = = 7659.442515.
(4.4570746)(0.98) — 0.08




