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CHAPTER 7

Benefit Reserves

7.1 Benefit reserves.

When doing the accounting of an entity, the balance sheet of this entity records its assets
and liabilities. Assets are everything of value owned by this entity, including the value of
payments to be received in the future. Liabilities include any obligation of this entity. The
entity’s equity is

equity = assets — liabilities.

When an insurer issues an insurance policy, it assumes a liability. The insurer becomes
obligated to make a net cashflow of payments depending on a contingent event. This net cash-
flow includes both benefit payments and benefit premiums. In insurance parlance, liabilities
are called reserves. The present value of an insurance liability depends on a contingent event.
The actuarial reserve of an insurance liability is the expectation of the present value of the
net cash flow generated by this insurance liability. An insurer must keep offsetting assets to
pay off actuarial reserves. In actuarial parlance, equity is called surplus.

Definition 7.1. The loss random variable (r.v.) at a certain time t for an insurance
contract, which is in effect, is the difference between the present values of future benefit pay-
ments and future benefit premiums (payments—premiums). Its APV is called the benefit
reserve at a certain time.

The loss r.v. defined in Chapter 6 corresponds to the loss r.v. at t = 0.

In application, it is more useful to consider ¢ as an integer. The actuarial reserve is further
classified as terminal ones and initial ones as follows.

Definition 7.2. The t-th terminal loss random variable is the loss r.v. for an insurance
contract, which is in effect, t years after the issue of a policy immediately before funding is
made. Its APV is called the t—th terminal benefit reserve. They are denoted by L, and
Vi, respectively.

Definition 7.3.

Definition 7.4. The (t + 1)—th initial benefit reserve of an insurance contract, which
1s in effect, is the benefit reserve t years after the issue of a policy immediately after funding
15 made. It is denoted by 1 11,.

Main interests: For various insurance products, ;Vy, 1111, Var(;L,) = 7
Theorem 7.1.

Definition 7.5.
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7.2 Fully discrete insurance.

In this section, we assume that the benefit is paid as the end of the year of death and
benefit premiums are received at the beginning of each year while the insurance is in effect.
Benefit premiums for this insurance contract were discussed in Section 6.2.

7.2.1 Whole life insurance. In this section, we discuss the benefit reserves for a fully
discrete whole life insurance. A death benefit is paid at the end of year of death. To fund a
unit whole life insurance, the insuree makes a payment of P, at the beginning of the year while
he/she is alive. t years after the issue of the contract, if the contract is in effect (i.e., K, > t),
the insurer has a liability on this contract. At this moment, the live’s age is = + t. At time t,
the future benefit payments are those of whole life insurance to (z + t). At time ¢, the future

. Kopi—1
premiums are P, Y, (= P, > 25 o).

t years after the issue of the contract, if the contract is in effect, the insurance company
will pay a benefit of 1 (unit) at time K, The insurance company will receive the following
cashflow of benefit premiums

Benefit premiums ‘ P, P, P, - P,
Time [t ot t+2 - K1

The difference between the present values at time ¢ of future benefits (payments) and future
benefit premiums is

K;U+t71
L, = vttt — P g v (= vftett — Prige— = Zoyt — P.Y,. )
k>0

oL, = Z, — Pm}”/x is the loss r.v. at issue of the policy, denoted by L, in Chapter 6. Under
equivalent principle P, = 7 Agja?
Alternatively, we may define ;L, = (v~ — dem|)|(Kx > t).
The ¢-th terminal benefit reserve Ve (= E(1Ly) = Apyy — Prlgry).
The (t + 1)-th initial benefit reserve 411, (= Vi + Py).
Definition 7.6.
Theorem 7.2.
Theorem 7.3.
Theorem 7.4.
Theorem 7.5.
Definition 7.7. The net amount at risk, or the pure amount of protection, is the

difference between the face value of a life insurance policy and its cash value. For a fully
discrete unit whole life insurance, the net amount at risk during the t—th year is 1 — V.
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Q: 11—V, =1—E@Ss - P, Y k) =7
Ift>0thenl1—,V, <17 1— I, =7
The t—th terminal loss r.v.
1Ly = 0ot — P Y Rk = Zost — PoYory = 055t — Priige—,.

Or (L, = (v anKm—t\)‘(Kx > t).
The t-th terminal benefit reserve ;V, (= E(;L;) = Azt — Prlizyy).
The (¢ + 1)-th initial benefit reserve 11, (= Vi + Py). =07 <17

Ve = Apyy — Ppidgyy, the t—th terminal benefit reserve is calculated using the APV of the
future payments of the fully discrete whole life insurance, called the prospective method.

Some life insurance allows the insuree to cancel the policy a certain number of year after
issue. The liability of having an open insurance policy is its terminal benefit reserve. If a
policy is canceled t years after issue, before the benefit premium is paid, the amount to be
returned to an insuree, before subtracting expenses, is the t—th terminal benefit reserve.

If (z) takes a whole life insurance and survives t years, (x) can cancel his policy at time ¢
and get a payment of (at most) ;V,. At time ¢, (z) has made annual payments of P, at the
beginning of the year for ¢ years. Amount: tP,, or including interests: P, 3 1t (1+4)* (> V)
During these ¢ years, (z) could have died and received a death benefit. The funding made by
(x) is used to pay for this t—year term life insurance and for the t—th terminal benefit reserve.
Hence, a t—year life annuity—due of P, funds both a t—year term unit life insurance and a t—year
pure endowment of (amount) ;V,.. We have that

Pfﬂdw:ﬂ - Al-’

deaz:ﬂ = Aalc;ﬂ + t‘/x : th => th = E il ) (tE:c = Uttp:c)
tHx

Theorem 7.6. (t—th retrospective terminal benefit reserve)

i Al Ayt -
x:t| z:t| . . z:t| x:t|

Ve =P, TR PrSpq — k., where Spq = T and ¢k, = z
tz t~x tH~x t~z

. d : : : : :
P38, “I the accumulated value of the premiums received (in unit value insurance).
d . . . :
tky “J the accumulated cost of insurance over the age interval (x,z + t| (in unit value
insurance).
Two ways to compute the terminal benefit reserve ;V:

Al
Ve =P, “‘ - tgt' the retrospective method,
Ve = AxH P,a,+, the prospective method.

Example 7.1. For a fully discrete whole life insurance of $50,000 on (40), assume:
(i) i = 0.06;
(ii) Mortality follows the life table for the US population in 2004 (p. 996-999).
The 10-th terminal loss given that (40) dies in the 20—th year from issue = ¢
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Solution: B - gLy =7 th}re B = 50,000, glven K = 20 and z = 40.
Formulas: (L, = Z,14 — P.Y, 1t = UK'T'H P, = ” ** (values of notations ?)

v—l—HaHd

P, = j =T AI by the equivalent principle.

From Table D.2 (p. 997) Ay = 0.13264232. Hence,

1—v)A
P _1=v4w — 0.008656239545.
1 — Ag v=145,A10=0.13264232
1— UK4°+1O
Bio Lo =(50000) (vFo+10 — Piy——"—) ~ 24543,
— U

K50=10,0=1/1.06

Example 7.2. Ten years ago, Joan entered a fully discrete whole life insurance contract
with face value $100,000. Joan was 40 years old when she entered this insurance. Suppose that
1 = 5%, Ay = 0.13 and Asqg = 0.20. This insurance allows the insuree to cancel this policy
any time five years after issue. If the insuree cancels her insurance at time t, the insuree will
receive the t—th terminal benefit reserve as compensation for canceling this insurance.

(i) The annual benefit premium paid by Joan in each of these 10 years ?
(i) The amount that Joan can receive if she cancels her insurance ?

Solution: (i) BP, =7 (ii) B-/V, = B=?x=7t="7"

(i) Equivalent principle: E(oL,) = 0, where OL =7, — PY, =0 — P, ZKI Lok
=> A, = P,d,, where d, = E(fo“”O ! vF) = E(ﬂ) e E( ?) = A,

T—v T—v
Puo =g = 5 = U=/LBN0IS — (.007115489874.

The annual beneﬁt premium is BP, = 105(0 007115489874) ~ 711.55.

(i) B-19Vio = ? 2 ways: {V, = P, “' - ?E:' = A, ¢ — Pyd,s, Which to choose ?

Vi = Ayt — Priigyy = Agyy — Pyt s — 0.08045977012.

—v
As50=0.2,0=1/1.05,P;0="

The amount that Joan can receive is 19V;0 = (100000)(0.08045977012) = 8045.977.
10 years payments: 10BP, = 7115.5 alone; ~ with interests 3, 711.55(1+0.05)% = 9397.29.

Example 7.3. Suppose that Ai:a = 0.28 and A,5 = 0.45. Find the accumulated cost of
insurance in the first five years of a whole life insurance to (x) with face value $10,000.

Solution: B -5k, = ? (B = 10%).

=7

b

Al e N
Formulas: thy = t;};' 1By = Ax )7 Apm = A}, a T A 7 = = A, a Tt b

sE, =0.45—-0.28 =0.17. .
Al
The accumulated cost of insurance B - 5k, = (10000)—%> = (10000) 328 = 16470.59.

Example 7.4. Suppose that P, = 0.45, le:m = 0.30, Px:ﬁﬂ = 0.2, where P,, P} _ and P 1 i
are the corresponding benefit premiums due to the equivalent principle. Find an.
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Al
Solution: Formulas: (1) ,V, = A, ., — P, 'dx+t (2) Ve = Pog fod) _ —4 Which to choose ?

Ait‘—PM| ] 1By, =P, |%t\, A, _Pax Why" and t = n.
Loss rvs: Ly = 2%y = PLVoa,  Le=Z.0 = PV, Ls=Z, — P.Y,.
Y Ko At)—1 KAt - .
Vo = S0k = S Bz, PL V) =0, B(ZY PV =0
Al
Notice - ““ =Pl; =7 and ;Ex‘ = th‘ = ? Hence, (2) leads to
AL+ BV,
1| 1 1
P = Px:ﬂ + Px:ﬂ tVa (t = TL) (3)
\:’?'/ ax:ﬂ \,?./ \,?./
: PoPra 04503
Eq. (3) yields ,V, =,V, = I L= 043503 — ().75.

7
This actually leads to the theorem as follows.

Theorem 7.7. P, = P;:ﬂ +P V.

z:t|

x| 80 | 81 | 82 | 83 | 84| 85| 86
Example 7.5. Consider the life table | £, || 250 | 217 | 161 | 107 | 62| 28 | 0 | A whole
dp | 33| 56 | 54 | 45 | 341 28| 0
life insurance to 80-year old individuals pays a death benefit of B = $50000. The insuree will
make level benefit premiums at the beginning of the year while he is alive. Let i = 6.5% and
Py = 0.2710105645. Suppose that 250 80-year old individuals enter this insurance contract
and they die according with the deterministic group interpretation.

(11i) Compute 3Vgg using the prospective method V, = Ayyy — Prligry.

() Compute sVyo using the retrospective method Pyi,z = Al - i il Ve

(v) Compute I, for k=1,2,...,6.

Solutions (i) (Ve = A — Patirsss Ay = Y570, 08 fic (k). i = Y42, frc (k) = %5522,

1—v Ly

?

d , 45 5 28
Ags = Z *frca (K Z FEE = (1063) T o (1.065) 7 T 40 = 0.891679545,

— Ags
1—vw
3Veo = Ags — Pyodgs = 0.891679545 — (0.2710105645)(1.774788994) = 0.4106929779.

= 1.774788994,

ag3 =

k10 1 2 3 4 5 16
Likewi Noti > 0.
kewise, =0 070.18044 | 0.30021 | 0.41069 | 052715 | 0.66796 | 0 || \otiee ¢z 20
a A1 .3 n . n—
(iv) sVho = Protgt — —m, ALy = Sy V¥ fi(B),  dam = s ke kP2 = Loin/las
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nE:B - Unnpr‘
)
" .d 33 56 54
kY80+k—1 v 0%
Ao = Z e = 55501 065)7! + T 065)72 + ol 065)~ = 0.5002507451,
L 217 161
.. k “80+k
- — 14+ 222(1.065)" + —(1.065) 2 = 2.382812052
683 4107
Fro = 13222 = (1.065) " —— = 0.3543194113
3Es0 = 0 ™ = (1.065)™" 5 ’
. B Al
o3 w03 2.382812052  0.5002507451
Veo = P, 51 (0.2710105645 — — 0.4106929781.
BTB0 TR0 P 3Fko = )0.3543194113 0.3543194113
(v) t11ly =V, + P, and Py = 0.2710105645.
k 1 2 3 4 5 6
WVeo | 0.18044 | 0.30021 | 0.41069 | 0.52715 | 0.66796 0
W0 || 0.27101 | 0.45146 | 0.57129 | 0.68170 | 0.79816 | 0.93897
Example 7.6.

Example 7.7. Consider a fully discrete whole life insurance policy on (35) with face value

of $50000. Assume that i = 5.5% and death is modeled using the De Moivre model with

terminal age 100.

(i) Find the benefit annual premium for this policy.

(ii) Find 10—th terminal benefit reserve using the prospective method.
(#i) Find 10—th terminal benefit reserve using the retrospective method.
(iv) Find the variance of the 10—th terminal loss random wvariable.

Solution: (i) BP, = ? B = 50000. Py = 48 = —du_
wW—T w—x 1—v" ™"
Ay =300 e, (k) = 200 kwl = (?U)wix
Ay =Wt L = 0.2711041133.

0w la=5,0=1.055" 1 w=100

Py = iy = 0.01930013521.
BP35 = 50000 55 = 969.5067605.

(ii) B1oVss = B(Aus — Pasliys) = BAys —

A45 =7
_ v(1—oW )
Ags = T/(w - m)‘90:45,1;:1.055*1,w:loo - 0'3131849179'

BioVss = BAys — BPs5 1785 = 2886.612842.

P35d35»17)\ _Aér.*
iii) B =B : 510l — 9
( ) 10‘/35 10F35

B P35

n

_ k _ v(l —")
- ZU fr. (k) = 1— o /(w— x)|n:lO,w:IOO,z:35,v:1/1‘055

k=1

ALz = B I(K, <n))

zm| —

Agsqm = 0.1159634743,
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65 — 10

—z— 10
e (1.055) 70— —— = 0.4953643364,

10Fs5 = 01010]?35 = (1-055)
1- ASS:E\
1—w
A35:T0| = Aé&ﬂ + 10F35 = 0.1159634743 + 0.4953643364 = 0.6113278107,

o L1— Ay 1-06113278107
S0 1w 0.055/1.055

.. o 1
P35a35:10\ A35@|

w—

A35.70| =

Y

= 7.455439267,

Bi1oV3; = B = 2886.612842.

10E35
(IV) Var(th) =7 1Ly = Zw-i—t - Pwa—I—t = Za:+t - P I_Zdzﬂ = Zas—i—t (1 + %) — L

Var(;L,) = (1 + &)2 (PAust — (Aare)?)

d
9 o V(1 —0v¥") 1
Ays = Ays(v?) = T — \x:35w:1_055,2 = 0.1604201,
)z 2
Var(B - 19L3s) = B? (1 + i) (PAprs — (Apie)?) = 293321000.

Theorem 7.8. (Uncovered benefit, or paid—up insurance formula),V, = A, (1 - P]: L) )

n . o . o Agyt P
Proof Agit = P:+t => t‘/;r = Az+t — an/z+t = Am+t — P:E P:+t = Ax+t 1— sz—t .

Suppose a whole life insurance contact allows the insuree to modify the policy at time
t. The insuree can stop paying annual benefit premiums and receive a whole life insurance
with a small face value of F.. The APV of a whole life insurance to (x + t) with face value F
is F'A,.4, instead of 1 unit.

Py
Az+t <1 - 2 ) = tvx = FAx+t- (1)
T+t
Thus, F =1 — Z£= (< 1). See the example as follows.

P:E+t

Example 7.8. Ten years ago, Joan entered a fully discrete whole life insurance contract
with face value $100,000. Joan was 40 years old when she entered this insurance. Suppose that
1 = 5%, Ay = 0.13 and Asq = 0.20. This insurance allows the insuree to stop paying benefit
premiums payments and receive a whole life insurance with a face value of F. Calculate F' if
Joan decides to stop paying benefit premiums.

Solution: F' = B(1 — PPi )=7 not the F in Eq. (1) above | P, = +2%—.
T+t 1w
Aso
Py 1;:“50
[ = (100000) { 1 = —= ) = (100000) | 1 — —= 40229.88503.
P50 m A40:0.13,A50:0.2,U:T105

1—v

That is, the face value is ~ 40230, instead of 10°, originally.
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Example 7.9. Suppose that G490 = 13 and ds5 = 9. Find 15V)0.

a,q  Als
(1) Vo= P T
(2) tvvr = Ax+t - deert-
tVZz = 15‘/210 = A55 — P40£5,5/ = ? Wlth (ZL’, t) = (40, 15) COHVGl”t (A55, P40) to (d40, d50).
=9

Solution: Formulas: { Which is more useful here 7

1 :>A55:1—<].—U>d55:].—dd55,d:?
— v

1— (]_ — U)d40 1

a55 =

A, = Pya, => Py = Ay/is = =——d
Q40 40
. . 1 . . ass .
10Vao = Ass — Paolss = (1 - da55) - (— - d)ass =1 —dass — — + dass
Q40 40
. 9
_ 135 2 03076923077
Q40 13

d.r+t
az

Theorem 7.9. (Ratio of annuities formula) ;V, =1 —

Example 7.10. Suppose that 19Va = 0.2 and 5V39 = 0.25. Calculate 15Vag.

Solution: In view of the previous theorem, ,V, =1 — a;—f
10‘/20:1—&257110:1—%-
15Ve0 =1 — Q20 g a3_5?
20 20!
(1= Vo) (1 = (Vi) = St faten = s — ] (V]

=>1- 15‘/20 = (1 — 10‘/20)(1 — 5‘/},0) = (1 — 02)(1 — 025) =0.6 => 15‘/20 = 0.4.
Theorem 7.10. For each s,t >0, (1 —V,)(1 — Vory) =1 — 115Vs.

Theorem 7.11. (Benefit premiums formula) We have that
P, +d

V,=1— ———.
! Py +d

Theorem 7.12. (Life insurance formula) ;,V, =1 — %ﬁ.

Theorem 7.13. (Iterative formula for the t—th reserve benefit)
Vo + Pr = 0t + 0 111 Ve - Dot

Proof. Formulas: A, = vq, + vp, A, [14] and d, = 1 + vpgd,.q [18]
Ve = Aac—i—t - dex—l-t = VQp1t + Upm+tAx+t+1 - Px(l + Up:v—i—tda:—i-t—i-l)
= — P + 0ot + VPagit(Avyerr — Prloyir1) = —Po + Vquis + VDort - 141V

The theorem then follows. [ |
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Example 7.11. Consider a fully discrete whole life insurance of 1000 on (x). Assume:
(i) quys = 0.04.
(i1) i = 0.07.
(#ii) The initial benefit reserve for policy year 6 is 540. =541 1y
Calculate the net amount at risk for policy year 6.

Solution: 1000(1 —¢V,) =7
By formula: ,V, + P, = vquiy + v - 141Vy - Pust (see Th7.13).

5+1[z = 540 = (1000) (5‘/25 + Px) = 1000(qu+5 + VUPx+5 * 6%)
Hence,

(1000) - 6V, = *0 ~ ¢x151000 _ (540)(1.07) — (0.04)(1000)
‘6Ve — =

= 560.2083333.
Da+5 1—-0.04

The net amount at risk for policy year 6 is 1000 — 560.2083333 = 439.7916667.

Example 7.12. Consider a fully discrete whole life insurance of $10,000 on (x). Assume:
(2) qzi10 = 0.04.
(ZZ) dz+11 = 0.03.
(iii) i = 0.07.
(iv) The annual net benefit premium is 450 (= BP,).
(v) The terminal benefit reserve for policy year 10 is 4000 (= B(10Vz)).
Calculate the terminal benefit reserve for policy year 11 and for policy year 12. (B(;Vy) 7).

Solution: Using that 10V, + P, = vqs110 + VPzs10 - 11V, We get that

(10Ve + Po)(1 +14) — gut10

1 - dz+10

_ (4000 + 450)(1‘379)6_ (10000)(0.04) _ =13 999167,

(104)11‘/1 :(104)

Similarly, we get that
(10000)(11Vz + P.)(1 + i) — (10000) gz 411

I —gein1

4543.229167 + 450)(1.07) — (1 -
_ (4543.229167 + 50())(9707> (10000)(0-93) _ 5195 71671,

(Iterative formula for the t—th reserve benefit for fully discrete whole life insurance)
Vo + Py = 0qurt + 0 141Ve - Dot

Theorem 7.14. P, = (U't+1vx—th)Pert‘i‘(U—th)QmH- (: U't+1‘/mpx+t+UQm+t_t‘/a:-)

Theorem 7.15. t+1Vx = (t‘/;: —|— Pz)(]_ ‘l— Z) — qx+t(1 — t+1‘/ac)-
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Theorem 7.16. For a whole life insurance which is funded for h years, "L, = vF=+t —
pPe SRt MO I (0 < t < h) and

Az+t - h‘dem—l—t:m\ ZfO <t< h,

the t-th terminal benefit reserve 'V, = { .
Aps ift > h.
Example 7.13. For a fully discrete 10-payment whole life insurance of 1000 on (x), you
are given:
(i) The annual benefit premium is 200.
(ii) The terminal reserve at the end of year 9 is 150.
Calculate 1000A, 9.

Solution: {1V, = Ayt — p oy and t =9 < 10 = h,
10004V, = 10004, —10004 Ppa, 7= 7 and Gy.m = Zk OU kD

—?

150 = (1000) A, 19 — (200)ii, .5, = (1000) A9 — 200.
So, (1000) A9 = 350.

7.2.2 n—year term insurance. L = Z;:nl Pl_Yom [19].

7|

Theorem 7.17. For an n—year term insurance, the t—th termmal loss r.v. 18
L =71 _p! Yw+tnt|—U”“I(K w<n—t)— ‘Zz+tAnt)1 j

zm| T Trdtn—t| 7|

Alternatively, (L, = [v** ' I(K, <n) - le;mdm\”([(x > t).

Theorem 7.18. The t—th terminal benefit reserve is
txg{ = [A} Pl-mdw ) (0 <t <n).

T+tn—t| T

Formula [17]: Gz = S o VFpa

Example 7.14. Consider an n—year term life insurance to (x) with face value 55,000.
Suppose i = 0.06, le:ﬁ' = 0.17, prin—2 = 0.02 and pyipn—1 = 0.03. Find the mean and the
standard deviation (SD) of the (n — 2)—th terminal loss random variable for this insurance if
K,>n—2 (ie, P(K;4p,—2>0)=1).

=7 =S r e R bt
——

Solution: Two approaches: (1) Compute [A} , — = —Pla Ooremmy |-

(2) Directly as follows. Let ,,_oL be the (n — 2)-th terminal loss r.v. for this insurance.
n—2L = B(UKZ-HL_Q](Kx—i-n—Q S 2) a: n| Z A Uj) = g(Km—i-n—Q)'

ElyoL] = E(g(Kyin—2)) =>4 g(k )fKM_Q(/f) =7 E[(2L) =7
sl = 55000((1.06) " — (0.17)(1)) = 42536.79245, if K, p_o = 1,

n_2L = 55000((1.06) 2 — (0.17)(1 + (1.06) 1)) = 30779.04948, if K.y, o =2,
n_aL = 55000(0 — (0.17)(1 4 (1.06) 1)) = —18170.75472 27 if Kyyn_o > 2.
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8] K, =[T(z)] > 1, and fx, (k) = k-1l¢x = k1P * Guik—1-

fo+n—2(1) = 0‘1q:r+n72 = (Qgi4n—2 = 098,
Fkuin—2(2) = Pran—2Gein—1 = (0.02)(0.97) = 0.0194, (14.1)
]P)<K$+n_2 > 2) =1- sz+n72(]-> - szJrn,g (2) = (0.0006.

Hence,

ElnoL] = E(g(Kyin—2)) = Zg(k)sz+n—2(k)

=9 ka1 + 92) iy 2 (2) + (18170 75472)P(Ko 2 > 2)

=(42536.79245)(0.98) + (30779.04948)(0.0194) + (—18170.75472)(0.0006) = 42272.26771,
E[(n—2L)2]

=(42536.79245)2(0.98) + (30779.04948)%(0.0194) + (—18170.75472)%(0.0006) = 1791767831.

The SD of ,, oL = \/1791767831 — (42272.26771)% = 2196.181608.

7.2.3 n—year pure endowment insurance. L = ng1| - Pz:ﬁl|Yx:ﬁ| [19].

Theorem 7.19. For an n-year pure endowment insurance, the t—th terminal loss random
variable is 1Lz = 0" I(Kppe >n —t) = Py Zﬁgm(n_t)_l vl af t<n.

Theorem 7.20. For an n—year pure endowment insurance, the t—th terminal benefit reserve

1 . 1. L .
18 tvff'ﬁl‘ = Aft+t:ml szmaﬂtm*tl if0<t<n,
' 1 if t =n.

Example 7.15. Consider an n—year pure endowment insurance to (z) with face value
55,000. Suppose i = 0.06, Px:ﬁﬂ = 0.23, pein_2 = 0.02 and pyin_1 = 0.03. Find the mean
and the standard deviation of the (n — 2)—th terminal loss random variable for this insurance
if Ky >n—2.

Solution: Assumptions are the same as Ex.7.14, except the loss r.v.. There are two approches,
we use the 2nd one. Let ,_oL be the (n — 2)—th terminal loss rv. E(,_2L), 0, ., =7

E(g(Ky) = S50 g(k) fre, (k) ... Write oL = g(Kypn-2).
n—oLl = B*I(Kyin-2>2) = P,y Zﬁ”&’”_QAQ_l v/] =7 and B=?

[en]

n-2L = (55000)[(1.06)72 - 0 — (0.23) Y v7] = ~12650, if Koo =1 (< 2),
7=0
sl = (55000)[0 — (0.23)(1 + (1.06)™")] = —24583.96226, if Kyip_o=2 (< 2),

n_2L = (55000)[(1.06) "% — (0.23)(1 + (1.06)')] = 24365.84194, if K, , o > 2,

[8] sz<k) = k71|q:): = k—1Pz * Qz+k—1 and [4] m+nPz = mPz * nPz+m-
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P{K,in—2 =1}, =2, > 2 are the same as in Eq.(14.1) in Ex.7.14.

n 2L Zg fKac-HL 2
—(—12650)(0.98) + (—24583.96226)(0.0194) + (24365.84194)(0.0006) = —12859.30936,
El(n2L)’) =Y (9(1)*ficn ) (0)
—(—12650)2(0.98) + (—24583.96226)2(0.0194) + (24365.84194)%(0.0006) = 168903067.8,
V/Var(,_oL) = /168903067.8 — (—12859.30936) = 1881.815768.

7.2.4 n—year endowment insurance. L = Z,5; — Px:ﬁ\}é:ﬁl [19].

Theorem 7.21. For an n—year endowment insurance, the t—th terminal random loss is
n— z n— 1
pEateA(n—t) _ wn‘ Z +tA(n—t)— VI (: Z it 7~ P,. n|Y+tn t‘) if t < m.

Theorem 7.22. For an n—year endowment insurance, the t—th terminal benefit reserve is
Aw+t:m\ - Px:ﬁ|&x+t;m| th <n,
1 ift =n.

th:ﬁ| = Ax+t:n7t| - thﬁ|ax+t:n7t| -

Example 7.16. Consider a 3—year endowment to (x) with face value 80,000. Suppose
1 = 0.06, p, = 0.98 and p,1 = 0.95. Find the mean and the standard deviation of the first
terminal loss random variable for this insurance.

Solution: Let 1L =B -,L, ﬁ\ (Kﬁl N2). o, =7

(L = B(pKetin2 — pS et lky (gee Th 7.21). Kppp A2 € {1,2} 1]
— Aa: n
by [19], [17) & [14] P = Pogy = 2228 = e 2y, Aw = E(0"") and

[8] fK,(k') — k—1|qgc - H1§j<kpr+] 19z+k—1-

Apz = Shoy v fre, (k) = (1.06)71(0.02)+(1.06)2(0.98)(0.05)+(1.06)~3(0.98)(0.95) = 0.8441633.

v
A,
a

\L = B(vKenA2 — p S Kenin2oloy g0000((1.06) 7! — —2l) = 50942.00556, if Kypq = 1,

z 3|
1 ,i ;

=53 (14 (1.06)71)) = 23528.80326, if K, > 2, and

A

;§
1

1L = 80000((1.06)~2

P{K,1 =1} =q1 = 0.05 and P{K,+1 > 2} = p,4y1 = 0.95. Hence,

ELL) = E(9(K.11)) = 9(1)qasr + 9(2)pasr = (50942.00)(0.05) + (23528.80)(0.95) = 24899.46,
E[(1L)?] = (50942.00556)2(0.05) + (23528.80326)%(0.95) = 655678750.2,
Var(y L) = 655678750.2 — (24899.46)% = 35695473.59,

V/Var(1L) = v/35695473.59 = 5974.568904.
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Theorem 7.23. Ift <n, (L= Zym — PomYem [19)),

i Pl — Ay
tVem = Appenzt) — Pem|pirn=y = E = (Pytea=z) — Pom))lpirm=y
Px:ﬁ| dw+t:m| 1- Aw+t:m| Px:ﬁ\ +d
B oo e e B e IR s )
z+t:n—t| Qg7 — g z+t:n—i| +

Theorem 7.24. For a h—payment n—year endowment insurance, the prospective t—th ter-
(Ax+t:m| - hPx:ﬁ\dI+t:m| if 0 <t < h<n,

minal benefit reserve is 'Vym = —— if h <t <mn, and
\ 1 th =n.
( . Alf .
WPrmSpa — tg;' if 0 <t <h<n,
; o h _ Py 5 Al . . g
the retrospective one is }Vym = " tE‘jThl . tgj ifh<t<n, (recall S = th)
1 if t =n.

\

7.2.5 n—year deferred insurance. If an n—year deferred insurance is funded during the
first n years, the benefit premium is , P(,|A4,) = Z'—Aji (L =n|Zy — PYom  [19]).

Theorem 7.25. For an n—year deferred insurance, funded during the first n years, the t—th
n7t|A:v+t — nP(n’AI)az+tm| ZfO S t < n,

terminal benefit reserve is PV (,|Ay) = .
Apts if t >n.

7.2.6 n—year deferred annuity. (L = Zf;nl F p S Eeam=lky

Theorem 7.26. The t—th terminal benefit reserve for an n—year deferred annuity—due
funded at the beginning of the year over the deferral period is
(ulie) = n—t|Gatt — P(n‘dm)dx+t:ﬂ| if 0 <t <n,
(it ift >n.

Theorem 7.27. If 0 <t <n, {V(,|ds) = P(nlte)dyi /i Ly

. . . P n dCE .
= (P(n—t|z+e) — P(n‘%))%ﬂ:m\ = (1 - ]%(#) n—tErit + Gpin.

n—t |dx+t)

The t—th terminal benefit reserve for an n—year deferred annuity—immediate funded at the
beginning of the year over the deferral period is

_tlaprs — P(hlag)i, . f0<t<n
(n|ax) = " t’ o (n’ 96) wHtn—| U ’ Apyt = da&-‘rt -1
Aptt if ¢ Z n.

KqAn) Ko—1 Ko An)
Lim = — P Tk versus  Lgye = o U — p YK

k>n
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Insurance type t—th terminal loss r.v.
Whole life insurance Ly = Zyyy — PrYotu
h—payment n[ Lytt — thYz+t:m| if0<t<h,
whole life insurance ) Zos if t > h.
n—year term insurance Ly = Ziﬂ:ﬂl — P Y, g 0 <t <n.
1 1 v/ .
- P Y — ifo<t<n
n—year pure endowment th'%l = zttn—t |t ettin—t| T ’
’ 1 if t =n.
Zz+t:m| — hpwiﬁ\Y:cht:ﬁ\ Hfo<t<h< n,
h—payment A <t
n—year endowment t Ham] = o+t:n—t| th=t<mn,
1 if t =n.
Zy — PomY 0 if0<t<n,
n—year endowment tLym) = {1 wttm=| Pl Sttt i1 B
if t =n.

ntlZost = n Pl Ze)Yy iy HfO<t<n,

n—year deferred insurance "L, Z,) =
Y ¢ (7L| x) {Zz+t if t Z n.

, . Your = P|Y)Y. ., — ifO0<t<n,
n—year deferred annuity—due | ;L(,|Y;) =< - l¥ors (nl¥e) Vo rvi=r T
Y$+t if ¢ Z n.
Insurance type t—th terminal benefit reserve
Whole life insurance Ve = Ay — Prdgay
h-payment ny = Aptt = nloly = HO0<T<h,
whole life insurance T A, i if t > h.

n—year term insurance Vi = A}thm‘ = P} i mmy 0 <t <.

A L —Pli . ,— f0<t<n
n—year pure endowment . zﬁ1| _ z+tin—t| x| Yettin—t| = ’

1 if t =n.

L payment Aert:ﬁ\ — hpz:ﬁ|&r+t:m| fo<t<h< n,
_ ——_— m .
n—year endowment ¢ Ve Ap i ifh<t<m,

1 if t =n.

A —5 — Pymia,. ., —— if0<t<n,
n—year endowment tVem) = attm=| welfertnt

1 if t =n.

A —nwP(n|Az)a,  ,—5 H0<t<n
n—year deferred insurance "V (n|Az) =" tldate = nP(alAz) ottin—t| T ’
Aa:+t if ¢ >n.

n—t|ligtt — P(n|d1)dz+t:m\ if0<t<n,

n—year deferred annuity—due | [V (,|d,) = {

Table 7.1: t—th terminal benefit reserve for some fully discrete contracts.

7.3 Fully continuous insurance

7.3.1 Whole life insurance. Recall that T, = (X — x)[(X > x) is the interval of time
when death occurs. For a whole life unity insurance paid at the time of death and funded
continuously a benefit of 1 is paid at T, and benefit premiums are paid at an annual rate of

P=P(4,) =42
L=7,—PY,=0v%-P [["vldt =0 — P = pTe(14+ L) 4 P/lnv = e e (14 2) - L

—Inv —Inv

Definition 7.8. The loss r.v. at time t for a whole life unity insurance paid at the time of
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death and funded continuously is denoted by ;L(A,).

Theorem 7.28. For a whole life unity insurance paid at the time of death and funded
continuously, the loss random variable at time t is

I P S e P,
1L(Ay) = vl — P(Ax)aml =Zp— P(A)Yori = Zoyy <1 + (5 )) _

Theorem 7.29. The t—th terminal benefit reserve of a whole life insurance paid at the time
of death and funded continuously is

tv(zm) = E[tz(zz)] = Zm—i—t - ﬁ(zm)am-ﬁ‘

For a fully continuous whole life unity insurance, the net amount at risk is 1 — V(A4,).
1—,V(A,) is the amount of the unit death benefit that cannot be paid using the ¢-th terminal
benefit reserve. Suppose that, at time ¢, an insurer has funds of ;V/(A4,) to pay future benefits,
and death happens at time #. Then, the insurer is unprotected by 1 —,V(A,).

Example 7.17. A fully cts whole life insurance to (45) provides a death benefit of 40,000.
Assume that 6 = 0.07 and death is modeled using De Moivre’s model with terminal age 100.
Calculate the 15-th terminal benefit reserve and the variance of the 15-th terminal loss random
variable.

Solution: Let 15 = B(vT+1% — P ["2vtdt) = B(vT+15 — PL=rt2) - B = 40000,
(1) E(15L) =B- 15V(A45) =7 (2) Var(15L) =7 7
15V(z45) = ZGO — ?(245)660. [17] ﬁ(zx) = 2— Ex = (1 — z45)/5

o w—x t t w—x 1 — %™ 1— _5 _
A, =E(™) = / "= ———— = z = exp(=d(w = 2)) and v =e~
0o w-—=x (w —z)nv |, —(w — z)lnw d(w — )
A= LoD os130555
007G ’
o A, Ays (0.07)(0.2542130555)
P(Ay) = 26— 265 _ — 0.02386058648
(Ass) = - (1—Ag)/6  1— 02542130555 ’
A= 2O sssa0a0776
“ = oonan " ’
11—y 1—0.3354249776
- - — 9.493928891
60 5 0.07 ’
15V (Ags) = Ago — F(Z45)a6o = 0.3354249776 — (0.02386058648)(9.493928891) = 0.1088942663.
Ans (1): E(;5L) = 15V(A45) — (40000)(0.1088942663) = 4355.770652.
Var(15L) = ( A, ) (s — (A oo gosg gy = 0.1175861125B2,

as ZAgy = A, (v?) % = 0.1779110958.

Ans (2): Var(;5L) = (40000)2(0.1175861125) = 188137780.
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Theorem 7.30.

Theorem 7.31.

The prospective method: ,V, = Z:Ht — P -a,y.
ef?(Z )a Agpg)— Ax |

The retrospective method: ,V(A,) = P33 — iky = —— . P=P,= P(A,) !
In the fully continuous case, accumulated cost of insurance over the age interval (z, z-+t]

: 1. Zalﬂ

is defined as ;k, = - E; .

Theorem 7.32. We have that

Theorem 7.32 is similar to the results in Fully discrete cases, e.g., if 0 <t < n,

.. I Aizﬂ
tVz:m = Ax+t;m| - Px:ﬁ\%+t:ﬁ| = E = (Px+t:m| — Py n\) z+tn—t|
Pm;m A :):th n—t| 1- Aa:+t:m| Px:ﬁ\ +d
=5 ) A =1 T By s yp——
ac—&-t:n—t\ aaf: nl ac:n| a;—l—t:n—t\ +

Theorem 7.33. The cdf. of (L(A,) is

1 Su+P(Az) ? . P(A) ”
Fpen = {1 P (8 (BRER)) Why T @ o - EE <us<s Wiy )
o 1 if 1 < u.
1-Fr, (t—1log( 2utlia) _
_ m liFif(f)*P‘A") ) Why ? (3) if — 24 <<,

1 if 1 <.
Reasons: — o Tutt < P(A ) . ﬁ(?z).
(1) th(u) (Z ) IP’(e*‘;Tx“a + b < u) P(eTe+t < “—_b) ((a,b) = 727)

( 5T9€+ <In a ) P( z+t = 5a ) =1- P(Tx-;-t < ——ln ) =...

(2) Tyt >0 - D == >0 =>In"> b => a<e:1:>u<a+b:1

if u<—PJ/J, then F1(u) <P(L g —P/§) = P(e Ts+tq — P/§ < —P/4) = 0.

S u
(3) 1~ Fr,,,(u) = Sr,.,(u) = 2.
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Theorem 7.34. The probability density function of ,L(A,) is

fra, () szM <_% bg_(&iuj’)f(%))) if — r

P(A
_ m(_% g<5u+5fp )) if —
(0u + P(A;))(1 = Fr,(1))

Fi(u) = Fr(=3(log(du + P) — (Ind + P))), fr(u) = Fy(u), g(h(w))" = g'(h(u))M(u).

Corollary 7.1. Under De Moivre’s model with terminal age w, ;L(A,) is a continuous r.v.
with cumulative distribution function

dw—2x—1t)+log <—6;:§(%”))>

— r —0(w—x—t DA \=
and density function
ff(z )(u) = ! — = Zf e—é(w—x—t) - F(Zx)am| <u< 1,
e (w—2x—1t)(0u+ P(Ay))
=/ I 5ozl a—
where P(A,) = AZ = 17;%‘ =—= %‘ -

w—T

Corollary 7.2. Under constant force of mortality p, (L(A,) is a continuous r.v. with
cumulative distribution function

©w
ou+p\? I
FtL(Az)<u):<5_{_pJ) , —Ss<u<l

and density function
1

(6u + )~ 0
fray () = p——""—, —F<u<l
e G+wf 9
Proof. Write tf =,L(A,) and P = P(A,). Under constant force of mortality p,

- m )
P = 1:‘?5 - u+6/ "R =y asv=e 0 and A = [ ute htpdt = [ ety dt — 4 Then

§
Tm et (14 TG T
<

= (1+£)e et — /6. Since Fr, (t) = 1—e#,if 0 < t < o0;

we have that for —% u < 1, th(gz)(u) = PGL < u) = P(Tpyy > (—%bg u;:;%/(s)) _
m
outp u &
exp (lgln (55; >) <56:M”>
_ (5u+ )% 1
fran)w) = Frg (u) = (5+l;)% , —k<u<l =

Quiz on Friday: Upto [16].
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Example 7.18. Skip it! Under the assumptions in Example 7.17,
(1) find P( the 15—th terminal loss r.v.> its mean),
(ii) find the first quartile of the 15—th terminal loss r.v..

Solution. (i) ;5L = B(vT=+ — Pl—“(f”“), B = 40000, P ~ 0.024 and 15V = E(;5L) ~
0.109B = 4356.
P(B(vT+ — P2 > E(i5L)) = 7

~ P(uTr — P22 0.109) = P(o Tm+t(1 +£)—£>0.109)
. £ 10.109) £ 0. 109) _ £10.109)
= P(vTet+t > 5(1+ 7 ) =P(Tyyelnv > In< =g ) =P(Tpie < FIn ‘5(1+§) )

= P(Toys < a) = =0 ~ 0.389

(i) P(v™+ — P% <mja) =P+t (14 P/6) — P/6 < mya) = 1/4. 1gas =7
Two ways: (1) ¢/40 = P(T4+ < ¢) = 1/4 where ¢ = 10.

ma =01+ P/§) — P/§ = 0.324.

The 1st quartile of ;L is B * 0.324 = 12960.

(2) 1/4 = P(uT+t(1 + P/8) — P/ < mijs) = P(Thyy < 11n6(1++1/;>) = P(T,4y < 10). =>

P
-1 stmya)y
In Es) ) = 10.
Solving the equation yields 7,4 = 0.324.

For a fully continuous whole life insurance which is funded for h years,

A,y if t > h.

sy 'y hﬁ(zﬂf)a’x er DA ZI
V(A = Aare = 1 P(A0), 4 a— WP(Ay) = ==
tx ax:h\
_ L P(4,) \ - — Api
= (i P(A,.,) — ,P(A =(1- L= A PA,.,) =
(h t ( x+t) h ( x+t)>%+t h—t]| ( h—tP(Aert)) x4+t h—t ( ac+t) 5x+t:h—t\

7.3.2 n—year term insurance.

Theorem 7.36. For an n—year term insurance, the t—th terminal loss r.v. is
—1 — 1 _ ]
Tt _ Z:c—i—t:n—t\ - P(A:c:m)yx—i-t:m\ Zfo <t< n,
' 0 ift=mn

-1 T A(n—t) _pTogtA(n—t)
T e vidy = 1=vt
Z =y = v (Lo < (n— 1)) and Y iy = du = 5 :
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Theorem 7.37. If0 <t <n,

— —1 —1 —1
1 —1 1 P(Ax ﬁ\)_z t| Aazﬂ -/l Aa:ﬁ|

P(A G, = ' PA._) ==
tV(Aam) = Avnmy) = P(Aom) T piiny yos () [y

— 1
- z+tn—t|) 7| z+tin—t| — T == . T+t:n—t|
P(Aac+t:nT\)
7.3.3

n—year pure endowment insurance

Theorem 7.38. For an n-year pure endowment insurance, the t—th terminal loss r.v. is

_ 1 —_
) Zac—f—tn t P(Aac ﬁ|)Ym+t:m\ =
- Tyt AN(n—t .
L(Aym) = 0" (n —t < Tpy) — P00 g <t <,
1 ift =n.

Theorem 7.39. Ift <n,

7.3.4 n—year endowment insurance

Theorem 7.40. For an n—year endowment insurance, the t—th terminal loss r.v. s

1L(Aym) = {Z““rt:n—tl = P(Aem)Y o=y

if 0 <t <mn, — "
1 ift=n (Bom = 05
Theorem 7.41. [f0<t<n
— — — _ F(zx ﬁ|)ax:ﬂ Zi t|
tV(Az:m) = Az+t n—t| — P(Ax ﬁ\)a:c+t:nT\ = E
tHx
- [ — _ ?(Zz’ n ) ax-i—t:n—t
_(P<A:B+t n7t|) - P(AJB m))am+tm\ = <1 ?( x+t.n|)> Am+t n—t| — 1- axn| |
1 - Zm+7§:n7t| —1 F(Zzﬁo +0
1- Z36n| F(Zx+t:F|) +9

Theorem 7.42. For an n—year endowment insurance funded for h years, the t—th terminal
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loss r.v. is

7gc+t:n—t| - hﬁ<z$:ﬁ|>?1+t;ﬁ| ift < h<n,

?L(AJ»‘m) Z:E+t:n7t| Zf h<t< n,

1 if t =n.
Theorem 7.43. Ift < h < n,
— —1

— — — _ hP(A$:ﬁ|>ax:t| - Az:t

?V(Aa::m) - A:c+t n—t| hP(Ax ﬁ\)am-t h—t| — B |
—_— -, _ h?<zx:ﬁ ) —

:(h—tP(Az+t n—t\) - hP(Ax ﬁ\))%ﬂh t| — 1-— | Aertnft\

7.3.5 n—year deferred insurance. If an n—year deferred insurance is funded during the
first n years, the benefit premium is ,, P(,|A4,) = nlds

Qg7

Theorem 7.44. For a fully continuous n—year deferred insurance, funded during the first
n years, the t—th terminal loss r.v. is

n—t|7m+t - nP(n|Zx)?x+t:ﬂ| if 0 <t <n,

Lot if t >n.
Insurance type t—th terminal benefit reserve
Whole life insurance V(Az) = Apyr — P(AL)Tp iy
h—payment "(A,) Apie — hP(Ar)az+t;ﬁ| if 0<t<h,
whole life insurance ¢ ) Aps ift > h.
n—year term insurance tV(ii:m) = Zi_”:n_t‘ — P(Zi:m)ax+t:ﬂ| if 0 <t<n.
— —— 1
= — A .— —PA, A,  ,— if o<t
n—year pure endowment V( I%I) _ z+t:n—t| ( 1.n|)ax+t.n—t\7 1 St<m,
' 1 if t =n.
— A, — P(A,m)a,., 7 if0<t<n,
n—year endowment V(Agm) = e+tn—t| ( 1'”|)az+t~”*t\ 1 = "
1 if t =n.
h-payment Zr+t:n7t\ - hﬁ(zm:ﬁ|)am+t:m| ift <h<n,
_ W — .
n—year endowment t V(AI‘"\) Am+t:n—t\ if h <t <n,
1 if t =n.
— = | Apit — n P(|As)ay g if0 <t <m,
n—year deferred insurance "V (n|Ay) =2 tAats = n PGl w)ax“-"*” 1 = "
Agte if t > n.
— —t|@rst — P(ul@s)@yipimgy f0<t<n
n-year deferred life annuity | (V(,|a@.) =" tfa+t = Plaf@a)To vz = ’
Agit if t > n.

Table 7.2: t—th terminal benefit reserve for some fully continuous contracts.

7.3.6 n—year deferred life annuity.
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Theorem 7.45. The t—th loss r.v. for a n—year deferred continuous annuity is

n— ?JE xT m n—t . O S t < ) Eva
Yot if t > n.

Theorem 7.46. Ift < n,

7/ |= — B/ = \— ?(n‘ax)azzf
tv(n|a’ac) = n—t|a;r+t - P(n’aar)az+t:m| = B |
tHx
- _ B/ = \\— F(n|ax)) _ am:ﬂ _ _
=(P(p—t|ty) — P(n|@s))0psri= = | 1 — =———= | ntBoitOpin = — (Gp — Qypy) -
(Plosine) = Pl esizmn = (1= 5 ) B = 20 (3. =)

7.4 Reserves for insurance paid discretely and funded continuously.

In this section, we assume that benefits are paid at the end of the year of death and the
benefit premium is continuous.

Insurance type t—th terminal loss r.v.
Whole life insurance L=Zpvy — P?H_t
h—payment N[ Zopt —PY Ly H0<t<h,
whole life insurance ¢ Zoit if t > h.
n—year term insurance L =2 i P?z+t:ﬁ| if0<t<n,
1 > .
- PY 3 Hfo<t< n,
n—year pure endowment L= x| attin—t| -
1 if t =n.
hfpayment . Z:L’+t.n T PYert:m‘ if 0 <t< h < n,
n—year endowment L= Lyt ifh<t<n,
1 if t =n.
Z  .—5 —PY . — if0<t<n,
n—year endowment L= ttin—t| ettin—t| T
1 if t =n.
4| Zpt — PY i ifO<t<m,
n—year deferred insurance nL=1" tlZosi ettin—t| T =
Zw+t if t Z n.
|Yur —PY_,— if0<t<n,
n—year deferred annuity—due | (L =< Yo ettin=t] ¥ =
Ya:—i—t if ¢ Z n.

Table 7.3: t—th terminal loss r.v. paid discretely and funded continuously.

We have study two typical types for t—th teminal beniﬁt reserves:
Fully discrete Insurance, e.g., L = vfe+t — P ZK““’“ "v
Fully continuous Insurance, e.g., L = v’#=+t — P fOT”+t vydy;
In Section 7.4 and 7.5, two more types are discussed.
Insurance paid discretely, and funded continuously e.g., L = v+t — P f Tote vYdy;

Insurance paid immediately and funded discretely e.g., L = v'e+t — P ZK’”+t Lok,
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Insurance type t—th terminal loss r.v. with unit benefit
Whole life insurance L =740 — P}"/H_t
h—payment N[ Loytt — PY;H = if0<t<h,
whole life insurance ! Zgtt if t > h.
n—year term insurance =27, 7= =il PYgH_t mmg H0<E<nm,
Z PY, if0<t
n—year pure endowment L= Tattm—t] S ettt 1 Ost<n,
1 if t =n.
N . Z it — PV 0<t<h<n,
—paymen hy _ )= .
n—year endowment 1L =9 Zasea) fh<t<m,
1 if t =n.
Z i — PY, if0<t<mn,
n—year endowment L= ttin—t| ettt T
1 if t =n.
|z PY, if0<t<n,
n—year deferred insurance nL=1" t| pht TS fettinst Y =
Zott if t > n.
Y, if0<t<n,
n—year deferred annuity—due | (L =< " Yo = PV | T
ac+t if t > n.

Table 7.4: t—th terminal loss r.v. paid immediatly and funded discretely.

7.5 Reserves for insurance paid immediately and funded discretely.

In this section, we consider the benefit reserves for the insurance paid immediately and
funded at the beginning of the year.

7.6 Benefit reserves for general fully discrete insurance.

In this subsection, we consider a general insurance contract, with non-level benefits paid
at the end of the year and non-level benefit premiums paid at the beginning of the year. This
set—up applies to all fully discrete insurances considered before that only offer death benefit.

Ko—1
L= bKIv @ P 70", where
by is the benefit pald by an insurance company at the end of year k, and m_; is the benefit
premium received by an insurance company at the beginning of year k, k =1,2,....

Hence, the APV of the contingent benefit b v is

BE(bg, v Zbkvk]P{K =k} = Zbkv et ga (222, BoF - i ilqe)

The contingent cashflow of benefit premiums is
benefit premiums ‘ Mg W Ty T3
Time after issue ‘ 0o 1 2 3

The APV of the contingent benefit premiums is

E(Y  ma*) =) m"P{K, > k= mak - ipa. (X rco PU* - 1ps)
k=0 k=0
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Under the equivalence principle,

D [oe)

k k
E brv 'k—1|%= E TV - kP
k=1 k=0

The general insurance defined above includes endowments and annuities.

Example 7.19. Let by = by(1 + )", k > 1, and 7, = mo(1 + 7,)%, k > 0. Derive a
formula for m.
Sol. S0 bi(1+ 7)o ] = D pe g mo(1l + 7r)f0R - kpy and
Doy ba(L )"y 1lg

Zk 0(1‘“"7r> LR

To =

Definition 7.9. L = by v%~ Zk 0 Lok

If a policy is in effect at time ¢, the ¢-th terminal loss random variable is

Keii—1 0o
tL = szUKI+t — Z 7Tt+kU = Z bH_k-U I T+t = k’ Zﬂ—t—i-kvk[(Kx—i-t > k’) (1)
k=0
Reason : 2nd E:Bpresszon
00 oo i—1
= Z bt+kka<Kx =k+1t, Ky = k?) - Z Z 7Tt+kUkI(Kx+t = Z)
i=1 k=0
= th+kv I(Kpyy = k) ZWHW ZI ot = 1)
= i>k
= Zkaka(Kw =k+1t) me Z (K, =i+1)
k=1 >k
= bt (K, =k +1) — Zkaf(m >k + 1)
= k=0
= Z bV I (Kpyy = k) — Z TV 1 (Kypy > k) (3rd expression)
k=1 k=0

Alternatively, ;L = (bg, vt — kK:””O_t_l V)| (K, > t). That is, if K, >t,
Ky—t—1

oL = by, v Z TeprV® = th%@ I(K, = t+k) =Y mI(K, > t+k). (2)v.s.(1)
k=0

Definition 7.10. We denote the t-th terminal benefit reserve of a general life insurance
assuming that the policy is in effect by V.

WV =E[L thﬂ A o1 Gert — ZWHJ " jDa+t-
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L=>7 b0 (K, =t+7) — > im0 TV (K, >t + j).
oL =322 b (K, = i) — 302 mpod (K, > ).
oL =Y byt (K, = j+1) = XX i (K, > ), i = j + 1.
oL =320 [0 T (K, = j + 1) — mp/ I(K, > )]
oL = S5 s 0l (K = +1) ~m (K > )], oV = EL) =0.

def

Cj

Definition 7.11. C; = vbj 1 [(K, = j+ 1) — m;I(K, > j) denotes the present value at
time j of the net cash loss during the (j + 1)-th year.
The cashflow in the reserves during the (j 4+ 1)—th year is:

(1) benefit of b;41 paid at time j + 1 if K, = j + 1.

(ii) benefit premium of 7; received at time j if K, > j.
Examples: For a fully discrete unity whole life insurance to (),

Ci=vl(K,=j+1)—PI(K, >j), if j >0vs. C—vb]HI( c =]+ ) il (K, > )
For an n—year unit endowment insurance to (z), oL_vo™""~1 — P, ZK:
oK, = 4+ 1) = Py I(K, > j) #0<j<n—1
7 1K, > n) if j=n,
Theorem 7.47. ;L = 372 v/ Cyy . (C;=vbj 1 I[(K, =7+1)—ml(K, >j))

LN g def K Kppi—1 k
Proof. I Zj:() UJCt+j = tL (Z waU z+t — Zk:to T4+ )

ZUth+j = Zvj(’l]bt+j+1[(Kx =1 +j + 1) - 7Tt+jI<Km > t+]))

= Zl)j+1bt+j+1](Kx =1 +j + 1) — Zvjﬂ-t-i-j‘[(Kl‘ >t +])
=0 =0
= Zv b [(Ky =t+7) — Zvjﬂtﬂ](Km >t+j) =L (by Eq.(1) after Def. 7.9).
7=0

Theorem 7.48. ;L =C; +v -1 L.
Proof. L =37 v/Ciy; (by Th.7.47)
= Ct + Z;il Uj0t+j = Ct + Zfio Ui+1ct+i+1 (j =17+ 1)
= Ct +v Z]Oio UjCH_j_H = Ct +v- t+1L (by Th. 747)
Theorem 7.49. L = L+ m)(1+0)I[(K, >t) — b [(K, =t+1)
=GL+m)(L+i) (K, >t+1).

Proof. Definitions for ;L and Cj:
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_ K, Kyqi—1 k.
(1) (L = by, vtett — 3020wt

(2) Cj =vbj [(Ky = j + 1) — m I (K, > j).
Using that L = LI (K, <t)+ [(K, > t)],

1 1
t+1L = EtL — ;Ot (by Th. 748 : tL = Ot +v- t+1L)
1
=L LKy > £) = b (K, = 4 1) 4 (L Dmd (Ko > 1) (by (2) 0= =)

= L+m)(1+i) (K, >1t) — b1 I(K, =t+1). Done for 1st equation.
If I(Kw =t+ 1) = 1, then tL = Ubt+1 — Tt (by (1))
=> by11 = (L +m)(1 +14). So,

(L +m)(1+ i) [(K, >t) = b [(K, =t+1)
= b [[(K, >t) — I(K, =t+1)]
= (GL+m) 1+ (K, >t+1).

Theorem 7.50. E[Cy|K, > t] = vby11qurt — T and
Var(Cy| K, > t) = UQb?+1pa;+tQm+t~
Proof. Conditional on K, > t, C; = vby 1 [(K, =t + 1) — m by (2) above. Hence,
E[CHKx > t] :Ubt—i—l]P){K:v =1+ 1|Ka; > t} — T = Ubt+IQm+t — T,
Var(Cy| K, > t) =Var(vby1 [(K, =t + 1)|K, > t)
=020} P{K, i = 1Ky > 0}(1 — P{K, 4t = 1| K,y > 0})
:U2b?+1 “Qutt " Do+t
Theorem 7.51. E[ 1 LK, > t] = 111V Deis.
Proof. Since 1L, =0if K, <t+1,
E1 LK, >t|=E[L-(I(K,=t+ 1)+ I(K, >t+1))|K, > {]

CBEa =t 1} | Bl LI, > t+ DB, > 41}
“P{K, > ) P{K, >t} = et Pt

Theorem 7.52. (Iterative formula for the terminal benefit reserve using the ini-
tial reserve)

V4T = 0b1Gays + U - 11V Par

Previous theorem states that the initial reserve is used to paid death benefit to the deceased
and to fund the benefit reserve for the survivors.

It follows from Theorem 7.52 that:

Theorem 7.53. (Iterative formula for the terminal benefit reserve using the net
amount at risk)

111V =V + 7)1+ i) = qure(br1 — 111V).
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The net amount at risk in the (¢ + 1)—th year is b1 — ;11V. The decrease in the
benefit reserves depends on the net amount at risk and the mortality during the year x + t.

It also follows from Theorem 7.52 that:

Theorem 7.54. (Iterative formula for the terminal benefit reserve using the ben-
efit premium)

T = (V- 151V — i V)Dagsr + (Vb1 — V) oyt = 0bip1quoie + (V- 151 Vpage — V). (1)

Two interpretations of Eq.(1):

Inm = (v 11V — V)pese + (Vbir1 — ¢V)qess the benefit premium is decomposed into
survivors and deceased. The terminal benefit reserve for survivors is ,V at time t and 1V
at time ¢t + 1. The present value at time t of the adjustment in the terminal benefit reserves
for survivors is (v - 4411V — V). Deceased have a terminal benefit reserve of ,V at time ¢ and
received a death benefit of b, at time ¢t + 1. The present value at time ¢ of the adjustment in
the terminal benefit reserves for deceased is vb; 1 — V.

In m = vbii1Gese + (V- 141V Pest —¢V) the benefit premium is decomposed into the part
that goes to pay benefit and the part that goes to adjust benefit reserves.

Example 7.20. A special four—year term insurance pays non level benefits to (x). Benefits
El br | qeira
1] 10000| 0.01
and annual mortality rates are given by: | 2| 5000 | 0.02 | Assume that i = 0.06.
3| 4000 | 0.01
41 1000 | 0.02
(i) Find the level net annual benefit premium which follows the equivalence principle.
(i) Calculate ,V for k =1,2,3,4.

(111) Calculate C;, j =0,1,2,3, given that (x) dies in the third year. (See Def. 7.11).

4Solution: (i) Zzozlfkvk he1]Ge = Y p TV - kpe by E(L) = 0.
S ey bkvF - jilge = > _ ™" - kpe by (i) and 4 year term insurance.

4 k—2
Z bk’Uk : k71|qgc (kfllqgﬁ = Hp:r+jq$+k71)
k=1

:(1_0000)(1.06)_1(0.01) + (5000)(1.06)_2_(0.99)(0.02) + (4000)(1.06)3(0.99)(0.98)(0.01)
+ (1000)(1.06)*(0.99)(0.98)(0.99)(0.02) = 230.2493029

4 k—1
=> m*ipe (kpe = | [ Poss)
k=0

=7+ 7(1.06)71(0.99) + 7r(1.06)_2(_0.99)(0.98) + 7(1.06)7(0.99)(0.98)(0.99)
—=3.6038894521.

Hence, m = 2302295029 — 63.88911368.
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(ii) Two ways for ;V: (1) Definition, (2) Th. 7.52.
(1) V=E(GL) = Zzozl bt+kkaKI+t(k) - ZZOZO Tik0*kPrts, due to

L= by vt — f;”é*_l Tk 0" = D g b0 I (K = k) — 3200 MgV I (Kpiy > k).
(2) oV = E(oL) = 0 and ¢,V = FbdUtboiters due t0 ,V + 7 = vbrp1Gast + Vip1VDasr.
Which to choose ?

(r+oV)(1+4) — bigy  (63.88911368)(1.06) — (10000)(0.01)

V= = = —32.60357525,
Pz 0.99
V1 +1) — by, 63.88911368 — 32.60357525)(1.06) — (5000)(0.02
o T+ b )(L06) — (5000)(0.02) _ oo
Pz+1 0.98
63.88911368 — 68.20135639)(1.06) — (4000)(0.01
sV = ( 0.09 I il I ) = —45.02118916,
(63.88911368 — 45.02118916)(1.06) — (1000)(0.02)
4 = p—
0.98

(ifi) If K, =3, Cj = vbjpi[(Ky = j + 1) — m;I(K, > j)=? for j =0,1,2,3,
Co=Cy=—m~ —639, Cy=(1.06)""(4000) — 63.88911368 = 3709.695792, (5 = 0.

Example 7.21. For a fully discrete 10~year term life insurance of 50000 on (40), you are

t 1 (50000) - ¢Vio | Gaots
N ) 1845.00 0.02 . :
given: — 7120603 | 0.025 Calculate i and the annual benefit premium P.
7 806.96 | 0.03

Solution: (i, P) =7 Th. 7.52 or formula sheet: ,V + 1, = vby 1Gurs + 0 111V Pois, v =
V= 50000, V4, by = 50000. 7, = P.
We need 2 equations. (;V + P)(i+ 1) = 50000¢,+¢ + 11V peys, t € {5,6} from above.

L
1+i°

(1) (1345 + P)(1 + i) = (50000)(0.02) + (1206.08)(1 — 0.02) = 2181.9584,
(2) (1206.08 + P)(1 +14) = (50000)(0.025) + (806.96)(1 — 0.025) = 2036.786.

Eq. (1)-Eq. (2) yields
(1345 — 1206.08)(1 + i) = 2181.9584 — 2036.786 => i = 0.045007198.
Eq. (1) yields P = % — 1345 = 742.9840868.
Example 7.22. For a fully discrete 25-payment whole life insurance of 1000 on (x), you
are given:
(i) i = 6%.
(i) The annual benefit premium is 60.
(i1i) The terminal reserve at the end of year 19 is 520.
(Z’U) dz+19 = 0.02.
Calculate the terminal reserve at the end of year 20.

Solution: 50V =7 Formula: ;V + 7 = vbi1Gess + v - 141V Pare,
t=19, 19V =520, 7 =P =60.
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That iS, 19V +P=v- 1000q$+19 +v- QOVp;,H_lg. SO,
(520 4 60)(1.06) = (1000)(0.02) + 20V (0.98) =

(520 + 60)(1.06) — (1000)(0.02)
0.98

20V = = 606.9387755.

Example 7.23. For a special fully discrete whole life insurance on (40):
(i) The death benefit for year k is 31000 plus the benefit reserve at the end of yeark, k =1,....
(ii) i = 0.08
(i1i) Mortality has constant force 0.01.
Calculate the level annual benefit premium.

Solution: 1037 = ? Formula: ;V + 7 = vbi1qust + VDurt - 141V and (i) by = 1+ ,V.

{V A+ T =0b 1 Gt + VPast 141V (bey1 =14 ¢11V)
=VQp+t + Vg1V Qapt + VPt - 141V
=UQgyt + V141V

1
=> WV v V=0vqu—m.

=> o', V=o't 1V = UHI%H — ' (1)
OV —=viV) + (11V —v%V) + -+ = vg, — o7 + 0°qpy1 — V°T + -
0=V —0v™V oV =7 v>* =7
w?z?/?
Z (v Vo=t t+1V Z g — v 7T) by Eq. (1)
t=0 =0
00 n—1
=v Z V' Qpyt — Z V' V' = gy
t=0 t=0

=>7 = %Nﬁm and ¢,y = P(Tpyy < 1) = 1—e #. Thus, the level annual benefit premium
t=0

is 1087 = 103y 2z ion — qo3iimor (e 77 _ 103 L=l (] _ ¢~001) — 991,
o) s G|

Example 7.24. For a special fully discrete n—year term life insurance on (x): (i) i = 0.08
(ii) Mortality has constant force 0.02.

(111) The death benefit for year k is $103+the benefit reserve at the end of year k, k=1,....n
Calculate the level annual benefit premium.

Solution: 1037T = 7 where tV + 7= 'Ubt—‘,—lqz—i-t + VUPx+t t+1V.
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bt = (1 + tV) if t € {1, ,TL}

V 4+ 71 =vqet(1+11V) + vppry - 121V similiar to deriving (1)

=Vqzat + 01V ift=0,...,n—1.
=> o',V =o't 11V = ’UtHQert —v'r (2)
n—1 n—1
0=V —0"-,V = Z vV =t V) = Z (V" gpyr — V') (by (2))
wz;r, t=0 t=0
n—1 n—1
=v Z V' Quit — Z v,
t=0 t=0
n—1 n—1 n—1
e oo v g Uthth _ Vi V(1 — e = (1 — ¢ 002) b — i

Zt o V' Zt o V'
10°7 = 10%0(1 — e *%%) ~ 18.68.

~+
Il
()

Theorem 7.55. A special fully discrete whole life insurance on (x) pays a unit benefit plus

the terminal benefit reserve. This insurance is funded by a level annual premium of w. Then,
Zt o'UH_l(I:c-H

a§|

™=

Theorem 7.56. A special fully discrete n—year term life insurance on (x) pays a unit death
benefit plus the terminal benefit reserve. This insurance is funded by a level annual premium

n—1 o
m. Then, m = Et:+tl+lq”t if n = oo, it becomes Th.7.55 m = —Zt:ogjlq”t.
Theorem 7.57. A special fully discrete n—year endowment insurance on (x) pays a unit

benefit plus the termmal benefit reserve. This insurance is funded by a level annual premium
Zn vl gy

Oz

w. Then, m =

Theorem 7.58. A special n—year deferred discrete life unit annuity—due on (x) makes an
extra death benefit equal to the terminal benefit reserve if death happens during the deferral
period. This insurance is funded by a level annual premium m paid at the beginning of the year

am+n dz«l»n

during the deferral period. Then, ™ = =

7 7| ('im/v”'

Proof. Assumption: b, =,V fort=1,...,n. Fort =0,...,n—1,

VAT =0b1quit + VPzst 11V =V 1V ogt + UPzse eV

=0 441 V.
(U t+1V — tV =T
vttt iV =t Vo =vir
n—1 n—1
" Vo= (th V=t tV) = E vir = (T
t=0 t=0

Hence, v" -,V = mag. By the prospective method in standard case
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nft’daﬂrt — de_,’_t:m Zf 0 S t<n

WV (standard) = _
Gpit if t>n.

n—t i . . . .
Thus the modified one is ;V = 21 bV fea () + (ntliye = Paw+t:m) if0<t<m
a'x_;'_t /Lf t Z n.

.. . .. . i def ..
S0, ,V = lgyy and 0" -,V = wiz. Hence, v"lyqyn = mig and m = 2on = 2t ]

) 0™ 3

Example 7.25. For a special fully discrete j—year endowment insurance on (50), assume:
(i) i = 6%.
(1i) The maturity value is $10* (i.e., benefit is $10* if (50) is alive at 54).
(iii) The death benefit is $10* plus the benefit reserve at the end of the year of death.
(iv) Mortality follows the life table for the USA population in 2004.

Calculate the level benefit premium for this insurance.

Solution: 10*r = ? Note that for the level-payment, the t-th terminal loss is

KepitN(n—t)—1 KyAn—1
L :104[UKI+tA(”_t) — Z mv] (L = BpS="" — Z )
k=0 k=0
n—t n—t—1
=10*) 0 I(Kpsy = j) + 0" I(Kppy > n— t) — TR I (K e > k)]
j=1 k=0

n—t n—t )
' . T ifk<n—t
:104[20]1(Ka:+t:J)_Zﬁkvk[(Kﬁt>k>] (M = {_1 @‘fk;:n—t)

Here (L =10*[bg, , v" "™ — 3" 2" (Ko py > k)]

k=0
n—t n—t
=10 " (L4 V)L (Ko = §) = > md ' I(Kyppy > k).
j=1 :b"tﬂ_ k=0

VA = b1 Gagr + VDge -1V (Le., Th. 7.54), ¢, +p, = 1 and byyq = 41V = 0 yield
V4= U(l + t+1v)(]:c+t + Vst 141V =0+ Vo it =0,...,n—1

nV —1= Ubn+1Qm+n + UPptn n—l—lv =0 ift=mn
Hence, for t =0,...,n — 1, V—v- 1V =vq — 7,

=> o' V=0 LV =0 g — i

n—1 n—1
_ n __ n _ t t+1 _ t+1 t
=> " =4V =",V = (vtV—v 't+1V)— (v qx+t—v7r)
t=0 t=0
n—1 n—1 n n—1 t+1
Z V2 im0 V' Gatt
—" — Ut+1€l;v+t o Ut => 1= tho ( — 4)
am
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Ayttt 0.8091146
Ans: 107 —(101)"F 20V et ~ 2202.86, as

iz, - 3.673011949
3
vi ) oy = (1.06) 7 + (1.06) 71 (0.00439537) + (1.06)2(0.00475767)
t=0

4 (1.06)73(0.00511418) + (1.06)~*(0.00548678) = 0.8091146,
3
i =Y 1.067 = 3.673011949.
k=0

The cash loss C; does not take in account the change in benefit reserves.

Definition 7.12. The yearly accrued loss at time j, denoted by A;, is the present value
of the net cash loss during the year [, j+1] (i.e., C;), plus the increase in the APV of liability
during the year [j,j + 1] (i.e., v- ;1 VI(K, > j+ 1) — ;VI(K, > j)).

Theorem 7.59. A,“/C; + v, \VI(K, > j+1) — ;VI(EK, > j).

Th. 7.59 is in Formulas sheet (up-dated). Quiz this week: All 450

Definition 7.13.

The sum of the present value of all accrued losses is equal to the difference of the loss
random variable and the benefit reserve. Notice that the benefit reserve goes to zero as t — oo.
Precisely, we have that:

Theorem 7.60. ;L = VI(K, >t) + 377 v/ Ay
Theorem 7.61. If j > t, E[GL — ;V)I(K, > )| = E[;L — ;V)I(K, > j)|K, > ] = 0.

Proof. (1) E[(;L = ;V)I(Ky > j)] = jp=E[GL — ;V) (K, > j)] = 0.
(2) E[GL — ;V)I(K, > §)| K, > t] = E[GL=V)I(Ke>5)] _ .

tPx

Theorem 7.62. If j > t, E[Aj|K, >t] =0. (see formulas of A;, ;V, and C;)
Theorem 7.63. Var(A;|K, > j) = v*(bj11 — j+1V)?DutjQers.  (see above and Th.7.59)
Theorem 7.64. If j > t,

Var(Aj| Ky > t) = jperVar(A Ky > 5) = 5o ipepiv®(bji1 = 511Va) PatiGars-

Theorem 7.65. If k> j >1t, Cov(Aj, Ap|K, >t)=0. (Aj and C; = g(1(A)))
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Theorem 7.66. (Hattendorf’s theorem) We have that

oo oo
Var(;L| K, > t) = ZVar(vjAm\Kx > 1) = ijertUZjH(thH — 14551V ) Dot Gartrj -
=0 =0

Example 7.26. For a fully discrete 15-year term life insurance of $1,000 on (x), let
(i) i = T%,
(ZZ) 1000 - 14V1 1023,

5|
(71) qr+13 = 0.05,

(ZU) Qr+14 = 0.06.
Calculate Var(13L| K, > 13) (or simply Var(13L)), where 131 = 10%13L}

5"
Solution: Let ,V = 10°E(,L} ) = 103tV115|
Var(;L) =7 Two ways.

Basic way: 13 ; 15 takes only 3 values. Var(,L) = E((:L)*) — (E(:L))>.

[KoreA(n—t)]—1
=0 [(Kpyy <n—t) = P107° Y~ ok, (1)

k>0

L}

m|

Formula: ;V + my = vb1Gert + v - 121V prye. (Th7.53) and formula sheet.
Assumption (ii) & above => 10.23 = 14V = vb15¢,114 + v - 15V ppy1a — P, (as 1y = P).
? ?
15V = BQ0P0Rer15[(K g5 < 15 — 15) — P Y Renst 7917k — po - 0) = 0.

That iS, 10.23 = 14V = 103(1-07)_1qgv+14 +v- Op$+14 P.

=> P = 10%(1.07)7(0.06) — 10.23 = 45.84476636. 1L = 1000,L} = g(K,413) by Eq. (1),
(1000)(1.07)"! — 45.84476636 Y1 "° 97! 07 = 8887346729 if Kyp13 = 1

13L = { (1000)(1.07)~2 — 45.84476636(1 + (1.07)"") = 784.7483859  if K, 415 = 2
—45.84476636(1 + (1.07)~1) = —88.6903424 if Koy > 2,

P{Kr+13 = 1} = sz+13<1> = (qz4+13 = 0057
]P’{Kx+13 = 2} = fK$+13<2) = Prt13Gz+14 = (O.95)(0.06) = 0.057,

P{Kys13 > 2} = > fic1s(J) = 2Prs13 = Pat1sPerra = (0.95)(0.94) = 0.893.
i>2
13V = E(i3L) = Zg sz+13
—(888.7346729)(0.05) + (784.7483859)(0.057) + (—88.690342)(0.893) = 9.966915878,
El(15L)*| K, > 13] = E[(13L)*) = Y (9(1)* frr11s (7)
—(888.7346729)2(0.05) + (784.7483859)(0.057) + (—88.690342)2(0.893) = 81619.09492,
Var(15L| K, > 13) = 81619.09492 — (9.966915878) = 81519.75551.
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2nd Way: Use Hattendorf’s theorem

00 1
Var(13L|Kx > 13) = ZV&I’(A13+j|Kx > 13) = ZV&T(A13+]'|K$ > 13) =, (2)

J=0 Jj=0

as by formulas: A15 =Cis+v- 16V](Kz > 16) — 15VI(K$ > 15) (: 015) and

015 = blGUI(Kx = 16) — 7T15I(Kx > 15) = 0.
Now compute RHS of (2):

Var(A3| Ky > 13) =13 13921130 (b1a — 14V)* Doy 130er13 (see formula sheet)
—(1.07)"2(1000 — 10.23)%(0.95)(0.05) = 40643.83004,
Var(Ap K, > 13) =14-13p+130° (bis — 15V)*Pet14Gat14 5V =0

=(0.95)(1.07)"%(1000)%(0.94)(0.06) = 46798.84706,
Var(13L| K, > 13) =Var(A3|K, > 13) + v*Var(Ay| K, > 13)
—=(40643.83004) + (1.07)72(46798.84706) = 81519.7555.

Example 7.27. For a fully discrete ten—year endowment insurance of $1,000 on (x), let
(i) i = 0.06. (i) pyr7 = 0.95. (iii) prys = 0.9. (1v) sV = 359.62455 (v) oV = 653.6745.
Calculate Var(7L).

Solution: Var(;L) = 7 where
(L = 103(pKerentn=t) _ pSEaaeA=0171ky takes 3 values, due to Kyp = 1,2 or > 2.
2 steps: (a) find P = 7/10% = 1,/10% ? (b) find ;L and fx, at Ko7 = 1,2 or > 2 for E(;L).
(a) Formula: (1) (V + 7 = vbi1Gese + v 121V Pess; (Th7.53 and formula sheet).

(2) Y, =A

Ttt:n—t|

—~ Pi

z+tn—t| z+tn—t|”

Both work. Use (2).
653.6745 = oV = 103[B(vKe+0/10-9) _ p. S U071k ) o)

=> 653.7 = 103(1.06)‘1 — 10°P.
So, 1000P = 1000(1. 06) — 653.6745 = 289.7217264.
(b) 7L(k) = 103 (Freen(n=t) — p 3 Eerhn=tl =Ly ) (t=T7 Ko = k)
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(1000)(1.06)~ — 289.7217264 = 653.675 if Kopr=k=1
= < (1000)(1.06)~2 — 289.722(1 + (1.06)~1) = 326.952 if Ko =k =2
(1000)(1.06) 3 — 289.7217264(1 4 (1.06) ! + (1.06)"2) = 18.724  if K, 7 = k > 2

fron(2) = P{K, = 9K, > 7} = 1|1qur7 = Pry1Gers = (0.95)(0.1) = 0.095,
P(Koy7 > 2) = P{K, > 9K, > T} = oppi7 = PoprPass = (0.95)(0.9) = 0.855.

WV =E(L) = rL(k) fi, 7 (k) + Y 7L(k)P(Ky i = k)

k>2
=(653.675)(0.05) + (326.952)(0.095) + (18.724)(0.855) = 79.75310364,
E[(-L)?) =(653.675)2(0.05) + (326.952)2(0.095) + (18.724)(0.855) = 31819.55976,
Var(;L) =31819.55976 — (79.75310364)2 = 25459.00222.

Condition (iv) is not needed here.

Theorem 7.67. A special fully discrete whole life insurance on (x) pays a unit benefit plus
the terminal benefit reserve. This insurance is funded by a level annual premium w. Then,

Var(,L) = Z;io jpm+tv2j +2pm+t+j%c+t+j-
Proof Hattendorf’s Th. => Var(,L|K, > t) =377, iDertV T2 (b1 — 1441V )2 Dottt Qg
= Z;io DotV (1) Dyt s jGuresjs as (b — V)2 = (1+,V —, V)2 =1

Theorem 7.68. A special fully discrete n—year endowment insurance on (x) pays a death
benefit equals to one plus the terminal benefit reserve. This insurance is funded by a level
annual premium 7. Then, Var(;L) = Z;L;é PtV 2D i Q-

Proof. It follows from Hattendorf’s theorem noting that for each 1 <t <n, by =1+ ,V
and eacht >n+1, by —;V = 0. [}

7.7 Benefit reserves for general fully cts insurances

Suppose that a life insurance policy pays to (x) bg, at the time of death, say and the benefit
premiums are paid at the continuous rate m;. Then the loss random variable

Ty
L, = bTIle‘ - / m,v°ds.
0

. . . = T
The t-th terminal loss random variable is ;L = br, +t+th$+i - fo ey v ds

T, Tyt
(= szszt—/ vt ds = bTIvT””t—/ Tope-v ds, if T, >t)..  Why by, =bp, 4 ?
t 0

If 0 <t <4 and (z) dies at the 4—the year, then T,=? T,y +t=(4—t)+t =7
PT,>0)=1? P(Ty2y >0)=17? P(T,—t>0)=17
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P(T,>0T,>t)=17 P(T,>0T,>t)=17 P(T,—t>0[T,>t)=17

Elbr,v™] = / bsv® fr,(s) ds = / bsv®14(8)spe ds  (for compute (L) = 0)
0 0

Ty o] o) [e%¢)
E [/ vom, ds} =F [/ I(s < Tp)v'msds| = / E[I(s < T,)|v’msds = / Te - V°
0 0 0 0

Under the equivalence principle E(L) = 0, so

/ bsvsﬂx(s)sp:c ds = / Ts -V« oy ds.
0 0

The t—th terminal benefit reserve assuming that the policy is in effect is

o Tott
WV =E[ L] = Elbr, , 40" — / Trt - 0 ds]
0
—/ bs-‘rtvszert(S) ds —/ To140° * sPoye ds
0 0

t t
The retrospective method, / TV’ sPp ds = / bov® fr, (8)ds + Fy -,V =>
Jo —

0

~ ~ ~~ refund
total payments insurance
t t
— [y mvipeds — [ bsv® fr,(s) ds
V=
tEJ:

Example 7.28. For a special fully continuous whole life insurance on (x):
(i) The death benefit at time t is by = 1000e%%%, ¢ > 0.
(ii) The benefit premium rate at time t is m, = 7% ¢ > 0.
(iii) pio(t) = 0.01, £ > 0
(iv) 6 = 0.06.
Calculate 1oV, the benefit reserve at the end of year 10.

Solution: Formula: ,V = E[,L] = E[bp, v+ — [ 7, - v° ds]

0
o0 o0
= [ by v® fr(5) ds — [ 05Ty - spass ds=7 where 7, = me?0%,

37

" sPx ds.

7 =7 mis from the equivalent principle E(bp,v*) = E(fOT“” mvids) and fr,(8) = p12(8)spe-

E(br,v™) :/ bsv® s (8) sPa ds:/ 1000293095 (0.01)e =001 gt
0 0

(1000)(0.01) /°° Coons .. 1000(0.01)
_COOD) [ 0 046001t gy — Z2OUDD
001 ), et 0.04 o0

Ty o) o)
= E(/ Ts0°ds) :/ T - V° - ppds = / el 02006, =001 1y — 207 => 7 =12.5.
0 0 0

At the end of year 10, ,V = fooo birsV® fr,,.(s) ds — fooo V3 Tas + sPert ds (t = 10).

/ bt+s/U sz+t / 103 003 10+8) —0. 065(0 01) —0.01s dS _ 60.3/ 106—0.045 dS ~ 33746
0 0 0

/ U Tirs  sPott ds / 12 5 0.02( 10+S) —0.06s —0 01s ds = 12.56042/ 6—04058 ds =~ 305.35
0 0



38 CHAPTER 7. BENEFIT RESERVES
Hence, 10V = 337.46 — 305.35 = 32.11.

Theorem 7.69. %tV = 7 — bty (t) + (0 + pa(t)) - V.

fot Ts0% s P ds—fot bsv®spapia(s)ds fot (s —bspa(s))v®spa ds

Proof. Formulas: ,V =

t By V1P )
W = ¢(s) and quotient rule.
4 3 _ (7 = bt ())V5pe - Ve — Jo (75 = bapta(5))0°spa ds - & (0" - 1py)
dtt ( tpac) ’
i(q}t . ) d d d
dt tPz
S di =) = ! —10g(1pa) = =6 — p1a(t).
(L dt 0g(v" - Pa) dt og(v') + at og(tpa) (1)
i V = (ﬂ-t _ bt#x(t))’l) tPz - ,Uttpx fO - sluw ))U sPx ds - (_5 - “x(t))vt *tPx
dtt ( tpx)

=1 — bepta(t) + (6 + pi(8)) V. @

Previous theorem states the rate of the —th terminal benefit reserve depends on three terms:
7, the benefit premium rate,

biji,(t), the rate of paid benefit,

(6 4+ px(t)) - /V, the rate of increase of the ¢-th terminal benefit reserve due to interest and
mortality.

7.8 Benefit reserves for m—thly payed premiums.

Here, we consider the benefit reserves for insurance contracts with benefit premiums paid
m times a year. The benefit premiums of these contracts was discussed in Section 6.7. In this
section, we suppose that the benefit premiums are level payments made at the beginning of
period of length years while the individual is alive. In this section, we give the formulas for
the t—th termlnal benefit reserve for an insurance contract, where ¢ is a nonnegative integer.

The t-th terminal benefit reserve for a whole life insurance to (z) paid at the end of the
year of death and funded m times a year is

tvx( ) = Apit — ng )a/;(zj+3f where a( ) = = X;UJ/ j/mPatt-
j:

The t—th terminal benefit reserve for a n—year term insurance to (z) paid at the end of the
year of death and funded m times a year is

m

1 (m) _ g1 1 - (m)  (m — 1
t‘/;?:m( )= Aﬂ?—i-tin—t\ - P n| ) :1:+t n—t| where ax-i—t n—t| E Z j/mpac+t-
=0

The t-th terminal benefit reserve for an n—year pure endowment to (z) and funded m times
a year is
WV 71|(m): 1 _p 1m) 4zm

Tmn T+t:n—t| T a:c—&-t:n—t\ ’
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The t-th terminal benefit reserve for an n—year endowment to (z) paid at the end of the
year of death funded m times a year is
(m) . (m)
tV \ - AxJFt” t PCL‘:ﬁ| ax+t:m|'
The t—th terminal benefit reserve for an n—year deferred insurance to (z) paid at the end
of the year of death and funded n years is
tv(m) = n—t’Az+t:m\ ( ’A )

z :E+t n—t|’

The t—th terminal benefit reserve for an n—year deferred annuity—due to (z) and funded n
years m times a year is

V) (i) = niliore — P (uliig)il™

x—l—tn n—t|’

Next, we present the formulas when the benefit is immediately paid.

The t-th terminal benefit reserve for a whole life insurance to (x) immediately paid and
funded m times a year is

tv(m) (Zx) = ZQC-Ht (A( ) 52

The t—th terminal benefit reserve for an n—year term insurance to (z) immediately paid
and funded m times a year is

_ A m (m)
tV( (Aac n|) Aac—l—t:m\ - P( )<A$ n|) T+tn—t|°
The t—th terminal benefit reserve for an n—year endowment to (z) immediately paid and

funded m times a year is

VO Ay) = Apriimn) — P ()i ey
The t-th terminal benefit reserve for an n—year deferred insurance immediately paid to (x)
and funded n years m times a year is

VIl Ar) = ndl Awss = PG A

7.9 Benefit reserves including expenses.

The benefit reserve including expenses is the excess of
the APV of future benefits and expenses over the APV of the future gross premiums;
called expense—augmented reserves and gross premium reserves.
Consider a fully discrete whole life insurance with expenses.

b — the death benefit.

e — the fixed annual cost.

e — the first year additional cost.

r — percentage of the expense—augmented premium paid in expanses each year.

r; — the 1st year additional percentage of the expense-augmented premium.
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s — the settlement cost.
G — the expense—augmented premium using the equivalence principle.
Then

0 =0bA, +ed, +e; +rGi, + ;G + sA, — Ga,
=e5+1oG+ (b+5)Ap + (rG + e)i, — Gay,. (1)
ey + (b+s)A; + ed,
(1—=r)a, —ry

The k—th terminal expense—augmented reserve (for k > 0) is

Ve =(ey +15G)1(k=0) + (b+ $)Apik + (rG + €)dpsx — Glgir (see (1))
=0+ s)Asix — (1 —7)G — €)pir + (ef +roG)L(k = 0). (1.11)
The k—th terminal benefit reserve is

The excess of the k—th terminal expense-augmented reserve over the k—th terminal benefit
reserve is called the k—th terminal expense reserve, denoted by ,V*¢. Hence,

kVe = k‘/e - kV = SAI_;,_k - (be + (1 - T‘)G - 6)5%4.]6 + (68 + T’SG)I(]C = 0)

Example 7.29. Using the information in Example 6.48, for:
(i) Calculate the 10-th terminal expense—augmented reserve.
(i1) Calculate the 10-th terminal expense reserve.

Example 6.48. A whole life insurance policy with face value of $40,000 payable at the end
of the year of death is made to (45). Assume that ¢ = 4.5% and death is modeled using the de
Moivre model with terminal age 95.

The following costs are incurred and paid at the beginning of the year:

(i) $500 for making the contract.

(ii) Percent of expense—loaded premium expenses is 5% in the first year and 1% thereafter.
(iii) Per policy expenses are $20 per year.

(iv) Per thousand expenses are $1.2 per year.

(v) $600 for settlement.

Calculate the gross annual premium G using the equivalence principle.

Results: The equivalent principle 0 = oV, i.e.,
0=4Ve=(b+5)Aprr — (1 —7r)G — €)lyir + (e + riG)1(k = 0) with k£ = 0 yields
0 = (40000 + 600) Ays — ((1 — 0.01)G — 20 — 1.2 x 40) dy5 + 500 4 0.04G
—_—

(. J

-~

b+s (1-r)G—e

95—
A, = Tt =l

—1}9571 1
t=1 95—z 1-v 95—z’

i, = 4= G = 1262.439006.

Solution: (i) xVe = (b+ s)Asrk — (1 —7)G — €)dyir = 7 (k = 10, x = 45)
The 10-th terminal expense-augmented reserve is

10Ve = 40600 * 0.4600396105 — ((1 — 0.01)1262.439006 — 68)12.53908016 ~ 3858.7.
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(ii) 10V® = 10Ve — 10V =7

10V = (40000)(A55 — P45d55) = 7 and P45 = 7

1 — 50
Ags = /50 = 0.3952401556,
— v
Ay A
Py = =2 = 0 —(.02814325581,
R

10V =(40000)(0.4600396105 — (0.02814325581)(12.53908016)) = 4285.962797.

The 10-th terminal expense reserve is 1oV ¢ = 3858.739983 — 4285.962797 = —427.222814.

Example 7.30. Find the expense—augmented reserve for the 5-th year, using the informa-
tion in Example 6.50.

Example 6.50. A 10-payment, fully discrete, 20—year term insurance policy with face value
of $90000 payable at the end of the year of death is made to (45). The costs are :

(i) 275 at the beginning of each year which the policy is active.

(ii) Per thousand expenses are $2.5 at the beginning of each year which the policy is active.
(iii) 1% for each annual premium received.

Assume that i = 6% and death follows the life table for the USA population in 2004.

Find the gross annual premium using the equivalence principle.

Copy from results: b = 90000, s =0, e = 275+ 90 % 2.5, r = 0.01.

b+s e r
e N 1 Ve -\ .. N . .
L = (90000) Z}; 5, + (275 + 90  2.5) Vys.5 + 0.01 GV 15 — GV (1)
- / W—/
exrpenses premium

Using the equivalence principle, G = 1532.416116.

Solution: Recall (1.11): WVe=(b+98)Asir — (1 =7)G — )iy + (ef + 15G)1(k = 0).
5Ve=(b+5)As5 — (1 =7)G — €)dpys + (ef + r§G)1(5 = 0), is it right ?
Eq. (1) and (1.11) lead to (no (e + r;G !)

Ve = (b+5)Ai+k;ﬂ|+€da:+k:ﬂ\+erw+k:ml_Gd:wrk:ml’ where (n, k, z, h) = (20,5, 45, 10).

5Ve =(90000) A5, + (275 + 90(2.5))dsg:15) — G(1 — 0.01)iis0.3
=(90000) A 75, + 50005015 — G(0.99)ii50;5.
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To solve Aéozﬁp G515 and dso5, make use of the Life Table and Formulas in 450 [14],
. 1— ASO:E . 1— A50:5
Aso1s = Aso — 15E50 465, liso15) = Tyla 505 = ?UI

15E50 = v 1502 = v 10PesPet10 = 10E50 - 5E60 = (0.524456813)(0.705463729) = 0.369985259,
Aso1s = Aso — 15E50Aes = 0.20695786 — (0.369985259)(0.37609614) = 0.06780783223,

A50:ﬁ| = Aéo:ﬁ\ + 1550 = 0.06780783223 + 0.369985259 = 0.4377930912,
Aso5 = Ai;a + 5B, = Ay — 5B Auys + 5By = Aso + 5 E50(1 — Ass)

= 0.20695786 + (0.728300687)(1 — 0.25504797) = 0.7495069352,
1 - A50;g\ ~ 1-0.7495069352

T - — 4.4253774
03l = Ty (0.06/1.06) S3TTATS,
N i — 0.932322055.
G0Ts T Ty, (0.06/1.06)

Hence, the 5-th year expense-augmented reserve is

5V, ~(90000)(0.0678) + (500)(9.9323) — (1532.4161)(0.99)(4.4254) ~ 4355.161359

In general, we may assume that payments depend on the year. Then notations become
bi — the benefit payable at the end of the k—th year;
G_1 — expense—augmented benefit paid at the beginning of the k—th year;
rr — the proportion of the k—th expense—augmented premium that is used to pay expenses;
er — the fixed contract expense for the k—th year.

The iterative formulas yield, for £ =0,1,2,...

WVe + Gr(1 — 1) — e = bpy1Vqus + 0 - g1 VDo, (1)
YV + G = b 1Vqesr + U ki1 Vperk, (the k—th terminal benefit reserve) (2)
(1) — (2) => kVG—Gkrk—ek :pw+kv-k+1ve, k’:O,l,Q,..., (3)

the iterative formula for k—th terminal expense—augmented reserve.

Example 7.31. A whole life insurance policy with face value of 350,000 payable at the end
of the year of death is made to (30). The cost are :
(i) Percents of expense-loaded premium expenses are 5% in Year 1 and 1% thereafter.
(ii) Per policy expenses are $700 in the first year and $1000 thereafter.
(11i) i = 6%.
(iv) Death follows the life table for the USA population in 200.
Calculate the expense—augmented reserve for the first two years.

Solution 1: Note G, = G and b, = 50000. It is not the general case emphasized above.
But Eq. (1), (2), (3) hold. Equivalent equation yields

(50000) Aso + (0.05 — 0.01)G + (0.01)Giizg + 700 — 1000 + 100050 = Giio.
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(50000) Az — 300 + 1000dis 1— A,
(1 — 0.01)éso — 0.04 1—v
(50000)(0.08229543) — 300 + 1000(16.212781)

_ — 1250.889159.
(1—0.01)(16.212781) — 0.04

oVe =0 and Eq. (1) (iterative formula) with &k =0 =>

LHS =0 + 1250.889159(1 — 0.05) — 700 = 488.344701
= RHS =(50000)(1.06)"}(0.00099206) + (1.06) "1 V,(1 — 0.00099206)
—46.79528302 + (1.06)}(1 — 0.00099206), V;,
488.344701 — 46.79528302
(1.06)~*(1 — 0.00099206)

=> V.= = 468.5071703,

Eq. (1) with k=1 yields
LHS =468.5071703 + 1250.889159(1 — 0.01) — 1000 = 706.8874377
= RHS =(50000)(1.06)"1(0.00102376) + (1.06) " - 3V.(1 — 0.00102376)
—48.29056604 + (1.06)"'(1 — 0.00102376) - 5V,
706.8874377 — 48.29056604

2 (1.06)~1(1 — 0.00102376)

Solution 2: Same as the beginning of the Solution 1, find G ~ 1251 first.
then use [V, = (b+ s) Azt — (1 = 7)G — €)dg1t, s = 0 (settlement cost).

1Ve = (50000) Az — ((1 — 0.01)G — 1000)di3;

(50000)(0.08632673) — ((1 — 0.01)G — 1000)(16.141561) = 468.5068724,
2V = (50000) Asy — ((1 — 0.01)G — 1000)disy

=(50000)(0.0905753) — ((1 — 0.01)G — 1000)(16.066503) = 698.8277185.
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The asset share at certain time is the accumulated financial value of an insurance policy, i.e.
the actuarial accumulated value of (the premiums—(benefits + expenses).
In Example 7.31 the APV of the premiums minus benefits and expenses is

xX:

co +roG + Ga,p — [bA! T SAi;H + (rG + e)dx:m] (défd, )

the asset share at the end of year £ is

Co + ToG + GCLIH — (b + 5)14;%| — (TG + e)axm

AS =
g kEx

(>dif d>0), (1)

where ¢y and r( refer to that insurance companies often put a surplus to fund a benefit reserve.
In this case ¢AS is not zero. The following recurrence relation is useful,

0AS+ G —rG — e —19G — cog = (b+ s)vg, + p,v - 1AS,
RAS + G —1rG —e = (b+ 8)0qpik + Dok - k1 AS, k=1,2,....

That is, at the beginning of the k 4+ 1-th year, we have an asset share of ;AS and G — Gr —e
(the premiums minus expenses made at the beginning of year k). The future value of this
cashflow at the end of year k+1is (tAS + G — Gr —c1)(1+414). At the end of year k, deceased
received a death benefit of b+ s and survivors have an average liability of ;1 AS.

<o + 710G + Ga,z — (rG + cl)dx:@ =(b+ )Aizﬁl—" kB AS  (compare to Eq.s (1) and (3)). (2)

N

Vv Vo
asset share

total balance insurance
k—1 k
E TV Py = E biv' fre, (1) + By - £V . (3)
— ._ —
3—0 _ i=1 refund
Vv Vv
total payments insurance

7.10 Benefit reserves at fractional durations

Recaﬂ tVI = Ax_;'_t — dex_t'_t, te {07 1, 2, }
Hereafter, let ¢ be a positive integer and let 0 < s < 1. If ¢, is given in integers assuming
UDD, how to compute 4,V by modifying the iterative formula for the fully discrete case ?

Vo =0 b1 - Got + o1V - pane], £ €40,1,2,. (formula [1.7])
=v' - b P{ Ty < 1} + 1 VP{T,yy > 1}]
sV =0 b1 P{T s <1 — s} 4 101 VP{Thiyys > 1 — s}
=0 (b1 1—sGotirs + 41V - 1 sPotits)-

1= 1—
Theorem 7.70. V=07 - by1 1 squqtrs TV ° 1-sPattrs  t41V.

Since x +t 4 s in 1_4priees 1S NOt an integer, revise Th. 7.70 as follows.

Theorem 7.71. v°,pyis - 145V = vbig1 - s|1—st+t + UPpgt 141V
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Proof. Multipying v*sp,.+ on both sides of the equation in Th. 7.70 yields

s s 1-s 1-s
UV sPr+t * t+sV =v spz+t<v bt+1 *1-sQz+t+s +v 1—sPz+t+s * t+1v)

=Ubi11 * sPrtt - 1-sQuttts T U sDott * 1—sPattts " 41V

(7.1) =0biy1  s|1-sQurt + VDzit - 141V (by Formula [4] ,n1nDPe = mPe * nDeim

and [3] s|ige = P(s <Tp < s+1) = sDs " tGuss)-

Assuming uniform distribution of deaths in [z + ¢,z + ¢ + 1),
the density of T, is fr,,,(4) = gatt, for 0 <u < 1. Hence,

1
(72) 8‘1—qu+t = ]P){S < Tx-‘,—t < 1} = / Qu+t du = (1 - S)qx-l—t?

sPx+t = 1— sQe+t = 1- / Qo+t du=1— Sqx+t and (71) =>
0

Theorem 7.72. Under uniform distribution of death between years of death,

V(1 = 5Gutt) - 145V = Vb1 (1 — 8)Qoye + VPogs - 141V

Example 7.32. For an insurance contract on (x), you are given that:
(i) +V = 450.
(1) byy1 = 1000.
(1i1) m = 250.
(iv) i = 0.06.
(v) Pyt = 0.95.
(vi) The distribution of death in the year [t,t + 1] is uniform.
Compute 4901V, for k=1,2,3,4,5.

Solution: Theorem 7.72 yields

0 b1 (1 — 8) e + 0 e eV
1 — 5G4t

t+sv =

Formula [17] tV + 7T = bt+1vqx+t -+ t+1Vpr+t leads to

450 + 250 = (1000)(1.06)"1(1 — 0.95) + ¢4V - (1.06)~1(0.95).

= t+0.2(5)v — t+1v — (450+250)(1.82;(1000)(0.05) — 798.4210526.

By Eq (1), t+0_2(1)V = 705717 t+0.2(2)V == 71142, t+o_2(3)v = 711427

, S =7 t+1V =7 (1)

t+0,2(4)V = 722.78.
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Theorem 7.73. Under the assumption in Th7.72,

S . _ s|1—sq:z+t . . s9z+t
V™ sPx+t t+sv = (tv + 7Tt) Tort + UPp+t t+1v ort

Proof. Formula: ;V + 7 = vbii1qust + 0 - 111V Prae.

VAT — Vpass eV

=> ’Ubt+1 =
-+t

U sPatt - 145V =0bi41 + s|1—sQutt + VDpit - 11V by Th. 7.71

:tV + T — VPpit -tV

“s|1=sGutt + VPptt - 141V

Qr+t
o s‘lfsng»t Qe+t — s’lfsq:t,‘«}t .
=GV +m) ———— +0pss 111V weighted average (7.3)
Qx4+t Qz+t
w 1—w

sQz+t

S —SqI
=V + 7Tt)M + VPast Vo
Ga+t G+t

as p+t — 5|1_qu+t = ]P){Tx—i-t < 1} — P{S < TJ}—H < 1} = ]P){Tx—i-t < S} = sQg+t- O
Recall Eq. (7.3) in the previous page,

s|1-s@ert = (1 — 8)quss, assuming uniform distribution of deaths in [z + ¢, x + ¢ + 1].

Hence,

1—sqz+t Qr+t
Qr+t Qr+t

It together with Eq. (7.3) yields

Theorem 7.74. Assuming uniform distribution of deaths in [z +t,x +t + 1],
O sPutt 145V = ((V 4+ ) (1= 8) + 0Pyt - 141V's.

Previous theorem states that the APV at time ¢ of the (¢ + s)-th terminal reserve is linear
interpolation of the (¢ + 1)-th initial reserve and the APV at time ¢ of the (¢ + 1)-th terminal
reserve. An approximation to the previous formula is

sV =GV 4+Hm) (1 —s)+4Vs, if sx~0+, eg,v=1/1.06~1 and p,,s =095~ 1,

which approaches the (¢ + s)-th benefit reserve by linear interpolation of the (¢ 4+ 1)-th initial
reserve and the ¢ + 1-th terminal reserve. We have that

(V4+m)(1—s)+11Vs=:V(1—35) +111Vs+m(l —s).

{V(1—5)+441V s is called the mid—terminal reserve factor. m;(1—s) is called the unearned
premium reserve. The previous formula says that the (¢ 4+ s)-th benefit reserve is the linear
combination of the terminal reserved plus a fraction of the premium benefit.
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Review: oL, = Z, — P,Y,.

[12] Ve = A:L"th - de:r+t~
[110] => ,V = Z bt+kvk : me+t (k) - Zﬂ-ﬂrkvk *kPz+t-
k=1 k=0

1.11] Ve = (b+ s)Apst — (L = 7)G — €)dgprr + 1(t = 0)(eg + c0G),
tVe + P = 0quit + 0 041 Ve - Doyre
(1.7 ¢V + 7 = 0bg1 * Qoye + 0 141V - Doy
Ve + Gl —1¢) — e = Vbpp1quye + U - 141 VePose
[12] V¢ =,V, -,V
AS+G —rG—c —1(t =0)(roG + co) = v(b+ 8)Guys + V- 111 ASPLe.
[1.4] Priigg = Ay + +Eo - Vi

t—1 t
k k
TEV kPz = bkv sz(k) +tE£E : tV

, refund

total payments msurance

Co + ’l“oG + Gaxm — (’I“G + C1)d$:m = (b + S)Aim + kASkEx .
N L N —

~~ -~

total balance insurance asset share

Formulas in chapter 7:

11 Ly = Zowy — PoYoru.

1.2, \Vy = E(Ly) (= Aggr — Prligyy).
13 t+llm - t‘/a: + &

L4 P,z = Au}c:ﬂ +. B, 4V,

1.5. F=1- L=

Pypyt”

1
Az:ﬂ

16.,V, = p =1 _

= P35 — -5 = P83 — ke (whole life insurance).
1.7. tV + T = vbt+1QI+t +v- t_HVpx_,_t. (general t‘/;)

1.8. C; = vbj 1 I(K, = j+1) — mI(K, > 7).
1.9. A, = Cj+v- 1 VI(E, > j+1) — ;VI(K, > j).

1.10. tL = szszth — Zfzzgt—l 7Tt+k/Uk = 22021 btJrk?)k[(Kert = ) — Zzozo 7Tt+k?)k[(Kx+t > k)
111 Vo= (b4 8)Asrt — (1 = 1)G — €)dgys + (ef + r5G)1(t = 0)
112 ﬂ - t‘/e - tV'
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Insurance type t—th terminal loss r.v.
Whole life insurance tLy = Zyyt — PpYoiy
h—payment W[ Zypst — n Py Y S if0<t<h,
whole life insurance r st if t > h.
Z1 - Py, if0<t<n,
n—year term insurance ‘ i_m = T+tn—i| x| L attin—t| =
’ 0 if t =n.
Z Ly if0<t<n,
n—year pure endowment o] = :”t" =~ Do Yosta=y e,
if t =n.
hfpayment T+f i — th n| o+t if 0 <t< h < n,
n—year endowment 3:+t n—t| ifh<t<n,
if t =n.
n—year endowment tLom) = Zottin=t) ~ Pa: "|Y e Ot <m,
1 if t =n.
|z Z if0<t<n,
n—year deferred insurance BL(n|Ze) =" 2ot = nPalZe)Yo i et =
Zrc+t lft Z n.
. Y V. if 0<t<n,
n—year deferred annuity—due | ;L(,|Y;) = < tYort = Pl ) e+t:n—i| =
Yz+t if t 2 n.

Table 7.5: t—th terminal loss random variables for some fully discrete contracts.



CHAPTER 8
Multiple Life Functions

In this chapter, we consider life insurance applied to several lives.

8.1 Multivariate random variables.

In this section, we need consider several random variables at the same time. Suppose that
we have a sample space €2 with a probability P defined on €. If X, ..., X are random variables
defined on Q, then, (Xi,..., Xy) is a random vector (r.v.) with values on R%. (Xy,..., Xy) is
also called a multivariate random variable.

Definition 8.1. The (joint) cdf of a R¢-valued r.v. (X1,...,Xy) is the function F from
R? into R defined by

..... Xd)(xl,...,xd) ZP{Xl le,...,XdSl‘d},l’l,...,ZEd € R.

For each 1 < j < d, the c.d.f. Fx, of Xj is called the marginal c.d.f. of X;. It is easy to
see that the marginal c.d.f. of X satisfies:

FXj( j)I lim FX1 ..... Xd(xl,...,xd),ijR.
T1yeeesTj—15Tj+415-+,Ld—>00

Definition 8.2. The survival function of a R?-valued r.v. (X1,...,Xy4) is the function
S from R? into R defined by

S(Xl ..... Xd)(l‘l,...,l‘d) :P{Xl > Il,...,Xd > Id},ZL‘l,...,(Ed € R.

In this section, we assume (X,...,X,,) is cts. If (Xy,...,X,) is cts, then the joint
density of (Xi,...,Xy) is
a1
0wy 01
For each 1 < j < d, the density fx, of Xj is called a marginal density of X;. We have that

Jfoxnox) (@1, ..o Tq) F(xy,...,2q).

fXj< j) = f(X1 ..... Xd)($1,...7$d) dﬂ?l"'diﬁj_l d.%’j+1"'d.7?d.
See also (17-32) in formulas of 447.
Example 8.1.

Definition 8.3. The r.v.’s Xy,..., X, are independent if
P{X;€A,.. . X, €A}=P{X;€A} - -P{X,€A,}VA,.. . A CR

Example 8.2.
49
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8.2 Joint life status.

In this section, we consider joint life statuses. A joint life status is obtained by combining
several individual lives and defining the status as alive if and only if all the individual lives in
the status are alive. We will mainly consider the case of two lives. The case of more than two
lives is developed similarly. Consider two lives aged x and y, a two life joint status consisting
by x and y is denoted by (zy) or (x : y) (two people whose ages are x and y).

The future lifetime random variable of (xy) is denoted by 7’ xydéf min(7y, T,). Often, we will
assume that 7, and 7T}, are independent random variables, but not always.

Theorem 8.1. Suppose that T, and T, have joint survival function St, r,. Then, T, has
survival function St, (t) = St,z,(t,1).

Proof. The survival function of T, is
St (t) =P{Tyy >t} =P{T, NT, >t} =P{T, > t,T, >t} = Sp, 1, (L, 1). [ ]

Different joint survival functions Sz, 7, can give rise to the same survival function of T},,.

Example 8.3. Actuary 1 believes that T, and T, have joint survival function

(

1 if s <0,t <0,
—s)3(10— ,
%giwt) if 0 < s,t<10,
Sr,1, (s, 1) = ¢ 102 if0<s<10,t <0,
(10—t) ‘
0 if s <0,0<t<10,,
L0 if s > 10, ort > 10,

Actuary 2 believes that T,, and T, have joint survival function

(1 if s <0,t <0,
Q0RO 4 < .t < 10,

St (s,1) = { Q0= if0<s<10,t<0,
o if s <0,0<t<10,,
0 if s > 10, ort > 10,

Calculate the survival function of Ty, for each of the survival functions given.

Solution: For the first joint survival function, is it correct to have

(1 if s <0,t <0, ?
Q0210 i < 5,¢ < 10, ?
St (t,t) = ¢ Q00 if0<s<10,t<0,
Sl if s <0,0<t<10, ?
L0 if s > 10, or t > 10,
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For both joint survival functions, we have that

1 if t <0,
St (8) = Spy, (8,1) = { W= ip 0 < ¢ < 10,
0 if ¢t > 10.
Or Sy, (1) = W= if 0 < ¢ < 10,
Theorem 8.2.
Theorem 8.3.
Example 8.4. Suppose that T, and T, have joint density fr,r,(s,t) = ﬁ, s,t,> 0.
Find the survival function and the density of Ty,
Solution: The survival function of T}, is
St,, (t) = P{T,, >t} = P{min(T,,T,) > t} = IP’{T >t,T, >t}
) dvdu = dvd
/ / foTyuv vdu = / / 1+2u+3v) vdu
(a +v)"tt
((1/3 +2u/3 Sdvd "dy = ———
/ / ((1/3 4 20/3) + v)* dv du /(a+v) b=
2 (o]
= ———((1/3+2u/3 2 d
[ s s 10
o 2
= ——d
/t (1+2u+36)2"
o 2 1
= du = ——, t> 0.
/t 22(1/2 +3/2t +u)? " 1+ 5t
The density function of T, is
d d 1 5
t)y=——087(t) = —— = D 7?
fr,(8) = =90, () = =5 (14502 —one

Theorem 8.4. Suppose that T, and T, are independent,
(1) The survival function of Ty, iS tDyy = tPs - 1Dy, t > 0.
(i1) The cumulative distribution function of Ty, is

ey = 1 — P2y = 1 — (1 —1q2) (1 —4qy) = Gz + Gy — t90 * Gy, t > 0.

(iii) Ty has density fr,, (t) = fr,(t)St,(t) + fr,(t)S7,(t), t > 0.

Proof (i) Sr,, (t) = ipey = P{Ty > t} = P{min(7,,T,) > t}

=P{T, >t, T, >t} =P{T, >t}IP>{T >t} =Py 1py, t > 0.

(11) FTxy( ) tdzy = 1- tPxy = I —ps tDy = 1 - (1 - t%c)(l to) =, 1t2>0.
(iii) fr,, () = _%tpwy = _%(tpx “tDy), t>0.
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fr,, () = fr. (€)1, (1) + St () fr, (1)

We will abbreviate p,, = 1pzy and ¢zy = 1¢zy-
Example 8.5. Assume that Tzg and Ty are independent, 19p3o.40 = 0.3. Calculate 99p3g.
Solution: tPzy = tPx " tDy and m+nPz = mPz * nPz+m-

0.3 = 10P30:40 = 10P30 * 10P30+10 = 10+10P30-

Example 8.6. Suppose that:
(i) Tyo and Tsg are independent.
(7i) Tyo and Tsg follow De Moivre’s law with terminal age 100.
Find the survival function of Tyo.50.

Solution: Formula: (p,, = tpapy if T, L T},

The survival function of De Moivre’s law with terminal age 100 is s(t) = 123072 0 <t<100.
Theyuvhmlﬁummonofzgisghzzsg;ﬁ::?ﬁ&g;ﬁ if 0 <t < 100 — 2, which implies that

pe = 1ift <0 and ;p, = 0if £t > 100 — .

The survival function of T}g.59 is

o 60-t50—t (60— )(50 —t)
tP40:50 = tP40 * tP50 = 60 50 (60)(50)

L if 0<t<50.

Theorem 8.5. n+tPxy = nPxy * tPr4+n:y+n (TGCCLH /4/ n+tPz = nPz * tp:v—i-n)

Example 8.7. The probability that (30 : 25) survives 10 years is 0.9. The probability that
(30 : 25) survives 15 years is 0.8. Calculate the probability that (40 : 35) survives 5 years.

Solution: ,,1pyy = nDay * tPrtny+n With n =10, ¢t =5, (z,y) = (30, 25).
0.8 = 1045P2y = 10Pzy * 5Pe+10:y+10 = 0.9 * 5Dz 10:y+10-
15P30:25 8

The probability that (40 : 35) survives 5 years is spyg.35 = 222020 —

10P30:25 9°
Theorem 8.6. The pdf of Ty, is fr,,(t) = —% py,, t > 0.

Theorem 8.7. The mortality rate of Tyy is flzy(t) = —% log(1psy) = sz—y(t), t>0.

tPxy -
Recall pir,,,(0) = pte44(0) = poge = pa(t) = pr, (1)

Theorem 8.8. yir,,,,..(0) = fort:y++(0) = Hatty+t = Mcc:y(tl = it (1)

VvV
main eq.

Theorem 8.9. Suppose that T, and T, are independent, then:
(1) The mortality rate of Tyy 1S flyttyst = fatt + Mytt-
(ii) The density function of Ty, is fr,,(t) = (Hate + fyst) - tDa * tPy-
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Proof. (i) Hatiy+t = —% log(tpmy> = —% log(ps - tpy)
= —% log(:ps) — % log(ipy) = Hatt + fytt-

(11) We have that foy (t) = :ua:-f—t:y—‘rt . tpa:y = (M:L’+t + Hy+t)tp:v : tpy' u

Theorem 8.10.

Future life of joint life status (vy): 1o, =T, AT,
tpxy = STxy (t) = ST$7Ty (t7 t)’
tPzy = tPxtPy if Tx L Ty-
Jr., (t
(

My (T

d
T dt tpzy~
_% log(tpry) =

) =
) — fT:cy (t)

tPzy

Example 8.8. Ty, and Ty are independent. Tyy and Ty follow De Moivre’s law with ter-
manal age 100.
(i) Find the density function of Tyo.50-
(ii) Find the force of mortality of Tyo.50-
(#ii) Find the force of mortality of Tso.60-
(1v) Find 1pso.60-

Solution: (i) By Example 8.6, the survival function of Tyg.59 is

(60 —t)(50 —t) 3000 — 110t + ¢
(60)(50) 3000 ’

tP40:50 = P40 * tP50 = 0 <t <50.

The density function of Tyg.50 is

d 110 — 2t

t) = ——paoso = ——, 0 <t < 50.
fT40;50( ) dttp40.50 3000 9

(ii) The force of mortality of Tyg.50 is

f 110 — 2¢

= <t <50.
S 3000 — 110t + %’ 0st=350

Hao:s0(t) =

(iii) The force of mortality of T5g.6 is
ts0:60(t) = pao:s0(t + 10) = Sooo_ﬂg(ﬁ(f[};f()mop, 0 <t, (t+10) < 50.

(iv) Two ways: (1) ¢ps0.60 = P50 - tP60 = %;
(2) 1ps0:60 = exp(— f(f tso60(s)ds) = ... How to continue ?

—bE Vb —4
/Md / i + a2 dx, where aq,as = ac‘

2 tbr e T—a; T —a 2a
The complete expectation of the future lifetime of the entity (zy) is

o

emydéfE(Txy):/o tfr,, (t) dt:/o tpzydt:/o /0 (tAs)from, (s, t)dsdt. (1)
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Eﬁﬁﬂ:/mﬁﬁ@@th/w%tmwﬁ /./)tAszT@ﬂdwt(%em&M)
Var(T,,) = E[Txf] (exy)Q.

o4

Example 8.9. Suppose that the joint density function of T, and T, is

from,(s,1) = qremyn st > 0. Find ¢y,

Solution: 3 ways (see Eq. (1)).
Method (3). Notice that min(s,t) = sI(s <t)+tI(t < s)

éz: sl(s <t)+tl(t <s))fr (s, t)dsdt
o= [ st <0 4t < ) s,
0
o) t o) 00 xn—i—l
—/ /szz’Ty(s,t)dsdth/ / tfr,m,(s,t)dsdt. /a:”dx—n+1
t)ds dt = ds dt= 2 dtd
//Sf”s ’ //1+s+t ’ // 1+s+t ’

ds—/ —ds—/ ﬂds
o (14 2s)3 o (14 2s)3

QT,LT,?

*6s(1+s+¢) !

= /0 n+1 <
1 1 1 11
= 1+ 2s) (1+2 ds= | — = - ==
/ ((1+28)7 = (1+25)77) ds ( 2(1+23)+4(1+25)2) .2 1
/0 t tfr,r,(s,t)dsdt = / / mds dt = (by symmetry).
Hence, gxy = %L + %1 = %
Method (2). Notice that yp,, = P{T,, >t} =P{T, > t,T, >t} = [~ [~ fr.1,(u,v) dudv
—2 * o 2
/ / dudv—/ e W= [ et
1+u+v ¢ (T4+u+v)? |, . (I+u+1t)?
(1+u—|—t) . (1—1—215)
Cay = Jy 1Paydt = [)” 1+2t = —nm . =3
Method (1) €, = I tfr, ) dt = [°t _atp 2t ... (doable, but not preferred).

Example 8.10. Suppose that: (i) T,, and T, are independent. (ii) T, and T, have constant

mortality forces, say, p1 and puy. Find gxy and Var (T}, )

Solution: fizir.y+t = _%lntpxy = _%ln(tpz “iDy) = Matt + flyre = pa T+ o
Hence, Sr,, = e tmFr2) = e~ ¢ > (. So, E(T,,) = % and 07, = F% Or
gw u1+u2 and Var(T,,) = m
Let K,y = [T4y]. Then
— kPxy = k—1Pzy * Qe+k—1:y+k—1-

]P){sz - k} ]P){k —-1< Ta:y S k} - k—1|q;ty = k—1Pzy
kPzy = k—1Pz * k—1Py — kPz * kDy-

If T, L T, then P{K,, =k} = t—1Pzy —
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qe = 0.01 | gz41 =0.02 | gpyo = 0.02
qy = 0.01 | gy11 = 0.03 | gy42 = 0.03

Example 8.11. Suppose that T,, L T, and
Find P{K,, =k}, for k=1,2,3.

Solution: P{ny = k} = k=1Pzy — kPzxy; kPz = Pz " Patk-1 and kPzy = kPz * kPy-

9Dzy = 2Dz * 2Py = PaDa+1PyPy+1 ~ (0.99)(0.98)(0.99)(0.97) ~ 0.93,
3Dy = 3Pz * 3Dy = DaDa+1Pat2PyPy+1Py+2 = (0.99)(0.98)(0.98)(0.99)(0.97)(0.97) ~ 0.89.

Hence,  P{Ryy =1} = 1 = pyy ~ 0.02,
]P){ny = 2} = 1Pzy — 2Py =~ 0057
P{Kyy = 3} = 2Puy — 3Pay ~ 0.06.

The curtate expectation of future lifetime for the joint status (zy) is defined as

oy = E[Kyy] = > 7o | kPuy- Formula [2].
The temporary curtate expectation of future lifetime for the joint status (zy) is defined as

eaym| = E(Kyy A1) =Y )| kPay- Formula [2].

Example 8.12. Suppose that: (i) T, L T,. (i1) T, and T, have constant mortality forces,
say p and plo. Find eg,y,.

Solution: Since fig iyt = Hart + fyse = 1 + o,

Cay = Z kPxy = Z 67(“1+“2)k — pzpl — p]-l__p;
k=1 k=1 =0

8.3 Last—survivor status.

e~ (p1tps2) 1

. 1 —e(mtn) — pmtpz —1°
p="

Definition 8.4. The last survivor status is obtained from several lives by making the
age—at—death of the status the last of the indiwiduals deaths forming the status.

Definition 8.5. The last survivor status consisting of (x) and (y) is denoted by Ty or T y.
The future life r.v. of Ty is denoted Tyy. It is easy to see that Th = max(T,,T,) =T, vV T,.

Notations St (t) = pzy and Fr,_(t) = 1qzy.

Theorem 8.11. FTﬁ(t> = FTI,Ty (t,t) = FTI (t)FTy (t)
’ N————

if Ty lT,
Proof. Fr._(t) = P{Ty < t} = P{max(T},T,) < t} = P{T, <, T, < t} = Fr, 1,(t,1).
If T, LT, then Fy,_(t) = P{T, < t,T, <t} = P{T, < )P{T, < t} = Fy, (t)Fr, (t). n

) fr(¢)
t9zy = tqztqy if T, L Ty, fT@(t) = %th and NTW(t) =

tPzy
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Example 8.13. There are two cdfs:

(0 if s <0, ort<0, (0 if s <0,t<0,
S f0 < st < 10, S0 < st < 10,
From,(s,;t) =<2 if0<s<10,10<t, Frr(s,t)=4: if0<s<10,10 <t
L if10 < 5,0 <t <10, & if10<s,0 <t <10,
1 if s > 10,t > 10, (1 if s > 10,t > 10,
tdzy — ?
1 if t <O,
Solution: For both of them, ¢y = Fr. (t) = Fr,1,(t,t) =  &; it 0 <t < 10,
0 if ¢ > 10.
Theorem 8.12. fr_( fo Jr,m,(t,v) dv + fo Jro1, (u,t) du.
Fr, m, (¢, fo fo fro1, (u,v)dudv,
b(t
2 fu ))du = g(b(t), c(t)V' (1) = galt), c(t))a'(t) + [, Gg(u,c(t))du

—fO from,(t,v dv—O—i—fO 8tf0 fr,.1, (u, t) dudv= ......

Theorem 8.13. If T, L T, then fr(t) = fr,(t)Fr,(t) + Fr,(t) fr,(1),  (# fr.() f1,(1).)

Example 8.14. Suppose that: (a) Ty L Tso.
(b) Tyo and Ty follow De Moivre’s law with terminal age 100.
Find the c.d.f and the density function of Tiyxg-

X
Solution: Formulas: Fr,_(t) = Fr, (t)Fr,(t) and F'(t) = f(t). Thus Fr,(t) = {io
it
L if 0 <t <50, 60 50
L if 0 <t <50
Hence, the density of Ti5zg is — 4R, (t) = { 1500 )
o )= ) {% if 50 < ¢ < 60,

Theorem 8.14. (i) 1¢zg + 1Guy = 19w + 1Qy- (11) D7y + D2y = 1Dz + 1Py-

Proof. (1) I(t>T,)+1(t>1T,) =1(t>T,)+1(t>Ts).

Notice that if T, = T}, then T, = T, = T, = T and equality (1) holds.
If T, # T, then T, is one of T}, and Ty, and T&y is the other one of them.
Hence, equahty (1) holds for each t > 0.

if 0 <t <60,
if 60 < t.
if 0 <t <50,
if 50 < t < 60,
if 60 < t.
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Taking expectations of (1) yields
0=P(T, <t)+P(T, <t)— P(T,, <t)— P(Tm < 1)
—P(T, <t)+ P(T, < t) — P(Tyy < t) — P(Tsy < 1) Why ?
=tqe t tdy — tzy — tqxy => (i)
=Pz + tPy — tPzy — tPay = (11)
Theorem 8.15. fr. (t) = fr,(¢) + fr,(t) — fr., (D).

Corollary 8.1.

G = 0.01 | gz+1 = 0.01 | gpy2 = 0.02

Find
qy = 0.02 | gy41 =0.03 | gy12 = 0.03

Example 8.15. Suppose that T, 1L T, and

kPzy, for k=1,2,3.
Solution: Formulas: ;pzy = Pz + Dy — tPay, tPay = tPe - tPy and (P = 1 — 4q;.

Pzg =Pz + Py — Pay = Pz + Dy — PPy = (0.99) 4+ (0.98) — (0.99)(0.98) = 0.9998 (2Pe = PaPas1),
2Pz =2Pz + 2Py — 2Pxy = 2Pz + 2Py — 2Pz * 2Dy
=(0.99)(0.99) + (0.98)(0.97) — (0.99)(0.99)(0.98)(0.97) = 0.9990169,

3Pz =3P + 3Py — 3Dz * 3Dy
=(0.99)(0.99)(0.98) + (0.98)(0.97)(0.97) — (0.99)(0.99)(0.98)(0.98)(0.97)(0.97)
=0.9969221.

Let K@ = IVT@—I, then

P{Kzy = k} = P{k — 1 < Tay < k} = 1ldey = k-1P7g — #Pay = k-1P77 * Gorh—Togh=T-
T, LT, then P{Kz; =k} = kqu - kQy — k-1¢z - k-1G@y Why ?

Theorem 8.16. P{Kz; = k} = P{K, = k} + P{K, = k} — P{K,, = k}.

Theorem 8.17.

The complete expectation of the future lifetime of the entity (7y) is
E(Tey) = ezy = / tfr () dt = / Dy dt = / / (tV 8)fr,m,(t, s)dtds. (1)
0 0 o Jo
E(g(X,Y)) = [tfz(t)dt = [ H'(t)ipzdt = [ [ g(x,y)fxy(2,y)dxdy, where Z = g(X,Y).

o

BT = /0 £ fr (1) dt = /0 2t - ypay dt. and Var(Tey) = B[Ts?] — (8>

Example 8.16. Suppose that fr, r,(s,t) = (1+5L+t)4’ s,t > 0. Find 2@.
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Solution: 3 ways by Eq. (1):

Method (3). ez = / / max(s,t) fr,,(s,t) dsdt

/ /thzTy s, t) dsdt—l—/ / sfr,m, (s, t)dsdt,

1st integral = / /thz 1,(5,t) dsdt = / / T dsdt
1—|—3
6t 1+t+s)dsdt = —_—
// tite)de /0 (1+t+s) !
2t 2t *(1—(1+2¢) 2(1+t)—2)
= dt = dt
/0 ( (1+ 203 +(1+t)) /0 ( Tr207  (1+ep

e 1 2 -2\
_/0 ((1+2t)3_(1+2t)2+(1+t)2+(1+t)3) !

[e.9]

-1 1 2 1
- (4(1+2t)2 I T (1+t)2) ,
1 1 3
- —=42-1=-.
4 2 * 4
By symmetry, the second integral

o0 S 6 3
td dt = d dt = — dtds = —.
//SfT”“’TyS ° // +5+t ° /0/05(1+5+t)4 !

Hence, ¢, = S43=3
Method (2). ez5 = [;° ipay dt.

Dy = P{Tsy > t} = P{max(1,,T,) >t} =1— ]P’{T <t T, <t}

_1—//fT$Tyuvdudv—1 // 1—|—u—|—v du dv

_1‘/0 Trer P od”‘l‘/o (<1+u> - TTere ) w

. ~1 1 " 1 1 . 1

= _((1+u)2+(1+u+t)2) R G R R G W7 PR C R
9 1

T+ (1+202

o /OO gt /°° 2 1 & -2 . 1 3

ex— = T ey — = = —

v ), o \(T+62 (1+20? 1+t 20+20) |, 2
Method (1). ezy It (1) -+, where fr,_(t) = —%tp@ = —%(ﬁ - m)

Example 8 17. T, L T,. T, has mortality rate ,ux( ) = 50 -, 0 <t <50. T, has mortality
rate i, (t) = 55—, 0 < t < 30. Compute (1) Cov(Tyy,, T,) and (2) Cov(Tyy, Tay).
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Solution: : T}, has mortality rate pi,(t) = ;5 for 0 <t < b <=> T, ~ U(0,b).

Sr,(t) = 3 0 <t < 50. Sp, (1) = 221, 0 < t < 30.
(1) Cov(Ty, Ty) = E(TyT,) — E(Tyy) E(T%).

Need St,, () = Pz - 1Py = %,Ogtﬁ%?? or 0 <¢<3077

% 30 (50 _ ¢ 4 0 (9
E(T,,) :/ Dy dt = / (50=0)(30=1) 5, _ —/ 202w,
! ! 1500 4 5030

50 x 30
E(T}) :% =25
E[T.T,| = E(T.AT,) =E[L(TAT,)I(T, <T.)+ (T, > T,)]
—— v

S Jtsfry mpy (t,8)dtds [ [t(tAs)fr, 1, (t,s)dtds

=E(T, T, (T, >T,)) + E(T:I(T, <T,)

/ / tSfT fT dtdS —I—/ / t le fT )det
30 50 50 30
= / / ts dtds + / / t?
o Jo 730 x50 o J. 30

So, Cov(Ty, Thy) = 352.5 — (25)(12) = 52.5.

dsdt = 352.5.
508 352.5

(2) Cov(Tay, Toy) = E[Twyliy| — BT E[T,,],
ToyTag = T.Ty. => E[TTe,) = [ T,) = E[TL]E[T,].
T+ 1oy =T, + T, => E(I) = —E(1,,) + E(T,) + E(T}). =>

Cov(Tey, Tny) = E(T2)E(T,) — E(T; )( (Te) + E(T) — E(Twy))
— 15(25) — 12 % (15 4 25 — 12) = 39.

Note: (7},T,,) has a mixed distribution.
Theorem 8.18.
Theorem 8.19.
Theorem 8.20.

Example 8.18.

é:ch fooo tDagdt. exy = ) et kDTy-

ezy nl = fo tDaydl. Exgm| = D pei kDry-
tPzy T tPxy = tPzx + tDy-

Cxg + Cay = €x + €y exg + €oy = €x + €.

o o o o
E€zym| + Crym| = Cxm| + €yml- Ezy:m| + Crym| = Cxm| + €yl

59
0 _ =
S0 =
(x=30—1)



60 CHAPTER 8. MULTIPLE LIFE FUNCTIONS

8.4 Joint survival functions

Definition 8.6. ,.q,, = P{T, < T,, T, < n} (=P{T, = T, < n}).
Definition 8.7. .q,, = P{T, < T, T, < n} (=P{T, = T,, <n}).
Definition 8.8. ..q;, = P{T; < T,}.
Definition 8.9. .q,, = P{T, < T.}.

Theorem 8.21. If P{T, =T, < n} =0, n¢}, + nly) = nlay.

Proof. ,.q,, + ntyy = P{T: <T,,T, <n} +P{T, < T,,T, < n}
=P{T, < T,,(T, AT,) <n} +P{T, < T,, (T, AT,) <n} (+P{T, =T, <n} (=0))
=P{T, < T,,(T, AT,) <n} +P{T, < T,, (T, AT,) < n} +P{T, =T,, (T, NT,) <n}
=P{To AT, <n} =P{Toy < n} = uday.

Example 8.19. An engineer has estimated the lifetimes of the engines and transmission
of a new car. He estimates that the lifetime of the engine has constant mortality force of 0.05.
The lifetime of the transmission has constant mortality force of 0.08. The lifetimes of the
engine and transmission are independent random variables.

(i) probability that the transmission fails before the engine and within 10 years=?
(ii) probability that the transmission fails before the engine=?

Solution: (i) Let T}, be the lifetime of the engine of a new car. u, = 0.05 = 1/E(T})
Let T}, be the lifetime of the transmission of a new car. u, = 0.08 and E(T}) < E(T,) = u%

b= [ [ traesdas= [ 7 o iis= [Cao [ aras

why??
" " n 0.08
:/ fT1 (S)STQC(S) dS — / 6—0.0875(0.08)6—0-05t dt — / (0.08)6_0'13t dt _ (1 . 6—0.1371)

o 7 0 0 0.13

0.08
1 —-1.3
10day =573 (1—e'%) =0.4476727.
0.08
%oy =573 0.6153846

Theorem 8.22. IfP{T, =1T,} =0, mq}ﬁy + Ooqx; —1.

Definition 8.10. ,¢;, = P{T, < T, < n}.

ntay, = P{T, < T, T, <n}.
nqiy =P{T, > T,,T, <n}.
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Definition 8.11. ,.q,; = P{T, < T, < n}.
Definition 8.12. ¢}, = P{T, < T, }.
Definition 8.13. .q,, = P{T, < T,}.

Example 8.20. Jacob is 40 years old. Emily is 35 years old.
(a) Jacob and Emily future lifetimes are independent random variables.
(b) Jacob’s lifetime follows De Moivre’s model with terminal age 80 years.
(c) Emily’s lifetime follows De Moivre’s model with terminal age 90 years.
(i) the probability that Jacob dies after Emily and within 25 years=?
(ii) the probability that Jacob dies after Emily="?

Solution: Let Ty, and T35 be Jacob’s and Emily’s future lifetime.

n t
nqiy :IP’(Ty<Tx§n)://[(O<s<t<n)fTI7Ty(t,s)dsdt:/ /sz(t)ny(s) ds dt
A g
why?

_ [ _ (it
_/0 sz(t)FTy(t)dt—/O E%dt_ (2)(40)(55), n§40
25)?

(25)

2 — T —().1420455 and ¢
25qu (2)(40)(55) an Q:z:y

Il
/_/H
—
no
K
=]~
NSE
cleell
—~ N~ (V)
at
ot
=

Theorem 8.23. If P{T, = T,} =0, nqy, + nGsy = ndz 00 nQpy + nlpy = ny-

Proof. nq}Cy + nqiy =P{T, <T,, T, <n}+P{T, <T, <n}
—P{T, < T, T, <n} +P{T, > T,, T, <n} + P{T, =T}, T, <n} = P{T, <n} = ngp.  m

Theorem 8.24. If P{T, = T,} =0, nq2, + n, = nlay-
Proof. ¢, + nq,, = P{T, <T,, T, <n} +P{T, < T,,T, < n}

=P{T, < T, max(T,,T,) < n} +P{T, < T, max(T,,T,) < n}+P{T, =T, max(T,,T,) <n}
=P{max(T,,T,) < n} =P{Twm < n} = ¢z

Theorem 8.25. IfP{T, =1T,} =0,
nqxj +P{T, <n< Ty} = RQiy and nqiy + P{Ty <n<T,}= nqx;.

Proof. ,q,;+P{T, <n <T,} =P{T, <T, <n}+P{T, <n<T,}
=P{T, < T, T, <n} =P{T, < T, T, <n} = nq,,. Why ?

Theorem 8.26. IfP{T, =T,} =0, ooqu + oong = 1.
Proof. .2, + octyy = P{T, < T} + P{T, < T,} = 1. -
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8.5 Common shock model.

A model for dependence is the common shock model. This model for two lives assumes:
(1) there are three independent r.v.’s T}, Ty and 5,
(2) S has an exponential distribution with hazard rate function A,
(3) T, = min(T}, S) and T, = min(T}, S).
T and Ty model a force of mortality happening for each live independent of the other one.
S models an event which can cause the simultaneous death of both lives such as an accident.
The r.v. S is called the common shock. Let
¢p, be the survival function of T7; 7, be the force of mortality of T7;
P, be the survival function of T7; w7, be the force of mortality of T7;
P be the survival function of Tx, 21+ be the force of mortality of T;
+py be the survival function of T}; 4+ be the force of mortality of T;,.
The common shock model is determlned by the “parameter” (A, :pZ, tpy)

Example 8.21. Suppose that T 4 Exp(u1) and Ty 4 Exp(ps), where iy, s > 0. If A, 1y
and po are given, compute P{T, = T,}.

Solution: T, =T; NS and T, =T N S.

P{T, =T,} =P{T; NS =T; NS}
=P{T;NS=T; NS> S}+P{T; NS =T; NS < S}
=P{T; >5,T; > S} +P{T; <S,T; <S,T; =T;} why?

—P{T; > S, T} > S} why? — P{T; > SYP{T > S} ?
— BQ{T; > S.T; > SY) E(X)=p if X ~bin(1,p)
— B(E(I{T: > S, T > S5}|5)) [EQ{T: > w, T > w}) fs(w)dw

= E(P{T; > S,T; > S|S}) = E(P{T; > S}P{T* > S\S}) why?
= E(e m%¢~ “25|S} fo e Me—tte—r2t gt — —m+u2+/\

If X is continuous, then P(X = a) = 0V a. If T, and T} have a jointly continuous
distribution, then P{T, = T,} = 0. The joint distribution of T, and T, in R? is mixed. It has
two parts: a continuous distribution on {(s,t) : s,¢ > 0, s # t}, and a distribution on the half
line {(s,t) : s,t > 0,s =t}. (Length of a point =0=area of a curve).

Theorem 8.27. The joint survival function of T, and T, is given by
St,.1,(8,t) = oDy - D€ e Amax(st) g > ().

Proof. Sz, 1,)(s,t) =P{T, > s, T, >t} =P{(T; N S) > s,(T; NS) >t}
=P{T; >s,8>s5T;>tS8 >t}
=P{T; > s,T; > 1,5 > max(s,t)} = ;p; - the’AmaX(S’t), s, t > 0. ]

Theorem 8.28. The density of the continuous part of the density of (1, T,) is
: sDAA (e s 0 <t < 7
f(Tm7Ty)(8,t) — {(fTw <S) + Dy ) ny( )6 Zf s

frz(s) (frs (1) +ppX) e if 0 < s <L,
The “density” of (T, T,) on {(t,t) : t > 0} is fr, 1, (t,t) = Xe i - .
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Skip next two pages.
Recall fx(s) = ZFx(s) = —£Sx(s) if X is continuous.

If (X Y) is cts, then ny( t) = 856tFXY(S t) = 858tSXY(S t) and
P((X,Y fff z,y) € A)fxy (@, y)dzdy.

0? .
@S)(’y(s, t) = Ep 8t/ / Ifxy(z,y)dydx skip

" b()
(note % / ) g(z, t)dz = g(b(t), O (t) — gla(t),t)a’(t) + / o %

g(z,t)dx)

—g(:vt)
8381&/ / fXY z y)dydfﬁ

=5 / / fxy(z,y)dydx

a e}
= %/S —fxy(x,t)dz
= fxy(s,t)if (X,Y) is cts.

Is (1,,,T,)) cts ? or P(1, =T,) =07

P{T, = T, < t}
—P{T, <t,T:ANS=TAS>S}+P{T, <t,T*AS=T;AS < S}
—P{T, <t,T: > 8,T: > S} + P{T, < t,T" < S, T < S,T* = T}
=P{S<t,T;>51T; >S5} (P(Ty =T,)=0asT; and T} are cts)
=EB{S <t,T; > 5,T; > S})
— B(EQU{S < t,T% > S,T; > S}|S))
— BE(P{S <t,T > S,T; > S|S})
= fooo IF’{S <t,T;>s,T; >s|S=s})fs(s)ds
= fo (s < t)spk - Spy]/\e A8 ds
= fo oD% - spiAe ™ ds, or

P{T, =T, <t} =P{T;,T; > S,5 <t} = // / frz (8) fry (DA™ ds dt du
:/ uDy " uPyAe” Modu > 0if t > 0.
0

IP’{T =T, <t} =up; - upyre” M= fro1, (1) if t > 0.

625 ( t)—a—2 fopte™ (if0<s <)
sor T T\ 5 ) = GopysPe by °
0

= %sp; (= fr; (t)e ™ — )\tpzefAt)
= —fr:(t) - (—ny*(t)e_’\t — Mpye ™) = fry(t) - (fry (8) + Aipy)e

If 0 <t<s,then fr, 1, (st) = asatSTz 1,(8,1) = fr:(t) - (fr: (t) + Aept)e M.
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Another proof: For aset A C {(s,t):0 < s <t}

P{(T,,T,) € A} =P{(T: AS,T;AS) €A} T <SorT:>S$
—P{(T2,T}) € A, T; <T: < S} +P{(T7,5) € A, Ty < S < T}

Ty

// frs(s) frs(t /\ududtds—i—/A/u Frs () frs (DA dt duds

:/ fr:(8) fry (t)e Mdtds + / fT;(s)up;)\e_A“ du ds

A A

= / fT; (S)ny* (t)eiM dt ds + / fT; (S)th)\ei)\t dtds = / fT; (S) (ny* (t) + tp;)\) eiAt dt ds.
A A A

Hence, the density of (75,T}) on {(s,t) : 0 < s < t} is fr:(s) (fT*( )—I—tp;';)\) e M. A similar
argument gives that (75,7, on {(s,t) : 0 <t < s} is (fT;( )+ opk )fT*( e~

Foraset A C {(t,t):t> 0}, {(T.,T,) € A, T; <S}={T;NS=T;,T; <S}
={TyNS=T; Ty <STy <Sy+{I; NS=T;,T; <ST;>S}
T =TT < ST < S}+{S =T, T; < 5,17 > S}
={T; =1T,;,T; < S,T; < S} ={T; =T; < S} wp.0 as they are independent cts random
variables.

(T, T,)) € AT > S} ={T: NS = S,T; > S}
—{T*AS=S8,T:>8Tr < Sy+{TFAS=S,T: > 8T >S}
(T = S,T: > S,TF < S} +{S = S, 1" > S, T7 > 5}
={S=8,T;>8T;>8}={T; >5,T; > S}

B{(T,,T,) € A} =B{T}.T; > 5.5 € A"}

/ / / frz(s) frs (t M ds dt du
A* Ju

= / Ae N ypl - p} dt.

Hence, the density of (T, T,) on {(t,t) : t > 0} is e p - p}.
Theorem 8.29. P{T, = T,} = [~} - pire M dt.
Theorem 8.30. ;p, = ;pie M t >0 and p, = tp;;e"\t,t > 0.
Theorem 8.31. ;p,, = p - the’M = Pz - 1pye,t > 0.
Theorem 8.32. ;pz; = (tp?; + Dy, — Dy - tp;;) e M = ps + 1Py — Dx - pye™M, T > 0.

Example 8.22. Suppose that T < Exp(u1) and T < Exp(us), where puy, s > 0. Find
the pdf of each of T,, T, Ty, and Tg;.
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Solution: 7T, =T NS and T} L S.
St,(t) = Sreas(t) = ST*( )Ss(t) = exp(—puit) exp(—At) = exp(—(py + A\)t), t > 0.
Jr,(8) = (1 + N)e ¥ ¢ > 0.

Similarly, we get fr, (¢ ) = (IU/Q + A)e~Hr2tN) 1 >0,

Doy = P(Tp, >, Ty >t) =P(T; >t,5>t,T; >t,5>t)=P(T; >t,5>t,T; >1)
= exp(— (1 + p2 + A)t), t >0,

fro, () = (11 + p2 + N)e™ () § > 0,

Jre () + fr,, (8) = fr. (1) + fr, (¢)
Jrey () = fr, (8) + [, () = fr,, ()
= (pr + N)e Y b (y + N)e N — (g 4 gy A)e RN > 0,

Example 8.23. An actuary models the future lifetime of a married couple with ages 65
and 50 as follows: (1) Each individual life have a future lifetime at birth given by De Moivre’s
model with terminal age 110. (2) A married couple follows a common shock model with hazard
w=0.003. Find the probability that:

(i) Both (65) and (50) live more than 20 years.
(i1) At least of one (65) and (50) lives more than 20 years.

s\ s 110-65—t _ 45—t & _ 110-50—t _ 60—t
Solution: (i) s = 1 = 155 (¢ and 50 = 15750 = "o 1L -

The probability that both (65) and (50) live more than 20 years is

. _ 45 — 2060 — 20
20Dy = 20Dy * 200, € A0 = 15 50 ~(0:003)(20) — () 3488017

(ii) P(at least of one (65) and (50) lives more than 20 years)=

45—20 60 —20 25%40, 0,

20Pz7 = 20Dz + 200y — 20Pay = | 15 + 60 15s 60]6 ~ 0.80.

8.6 Insurance for multi—life models

8.6.1 Life insurance for multi—life status Whole life, term insurance, deferred insurance,
pure endowment and endowment can be defined for the joint-life status and the last—survivor
status in the same way it was done for one life.

Whole life:
Zyy = vy Tts actuarial present value is Ay, = > o 0"P{K,, =k} = > 1o " k1] quy-
Zzy = v, Tts actuarial present value is Az; = > oo | 0"P{Kz =k} = > 1 " k1| Gy
Z vy = vTov. Tts actuarial present value is A,, = Joo vt fr, () dt.
7@ — v’# . Its actuarial present value is ny fo fTIy

Azg+ Ay = Ay + Ay,
Ay + Ay = A + A,
This relation holds for other actuarial present value variables, for example,

A@:m + Azy:m = Az:m + Ay:ﬁ\~



66 CHAPTER 8. MULTIPLE LIFE FUNCTIONS
Theorem 8.33. Z7Z,, = Z,Z, and E|ZzZ,,| = E[Z,7Z,].

Theorem 8.34. Cov(Zzy, Zyy) = Cov(Z,, Zyy) + (A — Ayy)(Ay — Ayy).

Proof. Cov(Zey, Zy) = E|ZeyZuy) — E|Zeg) E[Zuy)
= Bl2,2,] = E|Zw]E[Z;,)]

= Cov(Z, Z,) + E|Z,|E|Z,) — E|Zsg) E|Zs,)
== COV(Zx, Zy) + A A (A + A - Axy)A:cy (A@ﬁl + Axy:m - Ax:ﬁ| + Ay:ﬁ‘)

— Cov(Ze, Z,) + AuAy — Ay Ayy — Ay Ay + Ay Asy

= Cov(Zs, Zy) + (As — wy)<Ay — Agy). n

Theorem 8.35. Cov(Zay, Z4y) = Cov(Z,, Z,) + (Ay — Agy) (A, — Asy).

Example 8.24. Using the life table in the end of the textbook and i = 6%, find Al (60:70)3
assuming Teg L Th.

Solution: Formulas: A} o = > v*fk,, (k). n = 3.
fr, (k) = Pk =1 < K, <k)=j1ps — 1Pe, [roy(k) =y kDay = kPx X kDy, Pz = Z@:k

lor b 87203 74507
. _ SO UL ).0686227418
Peor0 = T 88038 76191 )
loo by 86291 72717
oo teatr  SOLIL T2 ganem1m1g
26070 =y T 83038 76191 )
lo3 by 8530470811

oo teslbrs | S0URTUSLL 0 sosnEgy
3P60T0 = s T 83038 76101

A%60:70):§| = (oPay — Peo70) + v (Peo:70 — 2Ps0:70) + v° (26070 — 3P60:70)
~(1.06) (1 — 0.9686) + (1.06)2(0.9686 — 0.9355) + (1.06)3(0.9355 — 0.9005) =~ 0.1426.

Example 8.25. Suppose that: (i) T, 4 Exp(u1) and T, 4 Exp(ps), where py, pg > 0.
(ii) T, L T,. If p1, po and & are given, compute A,, and Axy

Solution: ny = Ooo vt fro, () dt,  1pey = 1Dy - 1Dy = e~ Mte—pat — o—pt 99
777

. o o0 B B o0 3 +
Agy = / o' fr,, (t)dt :/ e (py + po)e it gy :/ (1 + po)e M dt = o
0 0 0

fir + pg + 0

_ — — J251 H2 U1+ o
_ — + _ .
pr+0  pp+0 prtpe+0

Example 8.26. A life insurance pays 200000 at the end of the first death of (x) and (y)
and 100000 at the end of the second death of (x) and (y). Suppose that

A, =045 A, = 0.4, A, = 0.3.
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Find the APV of this life insurance.
Solution: E(Bjvfev + Byv®#) = BiA,, + BeAzy =7 By, Ba, Ayy =7
A=A, +A, — Ay =045+ 0.4 — 0.3 = 0.55.
Hence, the APV of this insurance is

2000004, -+ 100000 Az = (200000)(0.3) + (100000)(0.55) = 115000.

8.6.2 Life annuities for multi-life status The present value of a whole life annuity

immediate paid at the end of the year while both (z) and (y) are alive is Yz = az = Zf“i’ v

The actuarial present values of immediate case, due case and cts case are
Upy = D oy V- 1Dy immediate case
Aoy = D po U+ kDuy  due case
Uyy = fooo V' pay dt cts case.
The present value of a whole life annuity immediate paid at the end of the year while at
least one of (z) and (y) are alive is Yoy = ax, etc.
Ury = D pey V¥ - kpzy  immediate case
Their actuarial present values are  d,, = Y o, ¥ kpey due case

— oo 4
Ugy = fo v ypaydt  cts case.

Ozg + Qzy = Qg + Gy,
gy + Gy = (g + Gy
Ty + Ty = Ty + Ty.
The present value of a n—year temporary life annuity immediate paid at the end of the year
while both (z) and (y) are alive is Y,,m = Ut Koy €LC-
Quym| = Dopey V¥ kDzy  immediate case
Their actuarial present values are < 7 = ZZ;& Tl kPzy due case
— n ¢ .
Ozym| = fo V' 4pgy dt continuous case.
The present value of a n—year temporary life annuity immediate paid at the end of the year
while at least one of () and (y) are alive is Y5 = i g
Uzgm| = P pe ! Pk pey  immediate case
The actuarial present values are q dzgm = Zk 0 P kpwy  due case
QAzgm| = fo tDzy dt continuous case.

Other insurance variables are defined in a similar way.

Example 8.27. A life annuity pays 40000 at the beginning of the year while both (x) and
(y) are alive and 30000 at the beginning of the year while exactly one of (z) and (y) is alive.
Suppose that a, = 8,4, = 7 and d,y, = 5. Find the APV of this annuity.
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Solution: The payment made at the beginning of the k + 1-th year (k = 0,1, ...) is

40000 if k < T,
{ ! v =(40000)1(Tyy > k) + (30000)(I(Tey > k > Tyy))

30000 if Ty, < k < Tyy
=(40000)1(T,y > k) + (30000)(I(Tsy > k) — I(Ty, > k))
=(10000)I(T,y, > k) + (30000)I(Tsy > k).

Its present value is v*[(10000)1 (T, > k) + (30000)1 (T > k)].
The APV of the annuity:

> " w*[10000P (T > k) + 30000P (T > k)]
k=0
=10* Z vkkpmy +3 Z V" kPg)
k=0
(10000)%1, + (30000) iy Gy + liy = G + iy

(10000) gy + (30000)([iig + iy — diay))
(10000)5 + (30000)(8 + 7 — 5) = 350000.

Example 8.28. A continuous annuity pays at an annual rate of 40000 while both (x) and
(y) are alive and at annual rate of 10000 while exactly one of (x) and (y) is alive. Suppose
that p, = 0.05 and i, = 0.03. Assume that the future lifetimes of (x) and (y) are independent
random variables. Find the APV of this annuity if 6 = 0.06.

Solution: The APV of the annuity is

104(4 [ ' P(Tyy > t)dt + f0°° tP (T < t < Tiy)dt)
= 10*(4 f; 0" P(Tyy > t) dt + S VPt < Toy) — P(Tyy > t))dt)
= 10*(4 [~ v 1paydt + fo b pagdt — fo V'peydt) = 104(3@yy + Gry)

q, = /OO vtypy dt = /Oo et dt = /OO o~ (0.05)t ,—(0.06)¢ gy _ 1 :

o o 1
- _ —5t 34 _ —(0.03)t ,—(0.06)t
a, = tDy€ dt—/ e )t =
/ /0 v 0 0.09’

o0 oo o0 1
Uyy = / Daye dt = / o ipye *tdt = / e (0-08)t,=(0.06)t gy RPR
0 0 0 :

(zy + Ggy = (g + G,y. Hence, the APV of this annuity is
10*(48,y + (Ao — Ty)) = 101(3@y + (@x + @, — uy)) = 344877.3.

Why there is independent assumption in Ex.8.28, but not in Ex.8.27 ?

8.6.3 Benefit premiums for multi—life status For the multi-life status, benefit premium
are defined in exactly the same way as for one life. The annual benefit premium for a whole
life insurance paid at the end of the year of the first death is given by P, = Ary

Gzy
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The annual benefit premium for a whole life insurance paid at the end of the year of the second
death is given by P = Azy

a@

Example 8.29. A whole life insurance pays 75000 at the end of the year of the second
death of (x) and (y). Suppose that Az = 0.85 and i = 7%. This life insurance is funded by
level premiums made at the beginning of the year while at least one of (x) and (y) is alive.
Find the amount of each of these premiums if the equivalence principle is used.

251 — 7 Or 75000 Pgy= ? where

Qzy

=0 andd=1-v (v=1/(1—1i)).

Solution: Find Py =

a/@—

Each premium is (75000)Pgy = (75000) 125 i = (75000) 1253 = 27803.73832.
d

0.07/1.07

8.6.4 Benefit reserves for multi-life status
The benefit reserve at the end of the t—th year before the premium is paid for a whole life
insurance paid at the end of the year of the first death is

t‘/ary = A:c-l—t:y—l—t - Pacydaz+t:y+t-

For a whole life insurance paid at the end of the year of the second death, the benefit reserve
at the end of the t—th year depends on which life has survived.

Ariyri — Peglzrige if both (2) and (y) have survived at the ¢-the year,
Vg =  Aptt — Prglast if only (z) has survived at the t—th year,
Ayt — Pryliyyy if only (y) has survived at the t-th year.

8.6.5 Reversionary annuity. A reversionary annuity pays only after a determined life
has died while the other continuous to survive. Suppose that an unity payment is made to live
(y) while it is alive provided that (z) has died. The present value and the APV of this annuity
paid at the end of the year is denoted by Y|, and a,,, respectively.

Ky—1

Yoy = ZU—ZkIK <k<T,) Yoy =0if 0< T, <T, <1)
IP){KIgk,Ty>k}:P{T$§k,Ty>k} =P{T, > k} — P{T, > k, T, > k}
=P{T, > k} —P{Toy > k} = Dy — rDay-

Aaly = ZUkE([(Km <k<T,) :ka(kpy — kPay) = Gy — Qay.

k=1

Ay =Agly + Azy-

A n—year temporary reversionary annuity paid to (y) conditionally to death of (z) limits
payments to the first n years. The actuarial present value of this annuity is

— § k —
Qglym| = v (k:py - kpxy) = Qyq| — Qgym|-
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A cts reversionary annuity paid to (y) conditionally to death of (x) will make payments at
constant rate if (x) dies before (y) from the time of the death of (z) to the time of the death
of (y). The actuarial present value of a continuous reversionary annuity with unit rate is

Ty :E(/TTy o' dt) = E(/ I(T, <t <T,)v'dt)
:/E(I(Tm <t <T,))'dt

:/ P{(T,, <t <T,}v'dt = / V' (1py — tPay) At = Ty — Ty,
0 0

Example 8.30. The rate of a continuous life annuity to (x) and (y) is:
(1) 25000 while both (z) and (y) are alive.
(i) 10000 while (x) is alive and (y) is death.
(7i) 15000 while (x) is death and (y) is alive.
Suppose that a, =7, a, = 8 and Gy, = 5. Find the APV of this annuity.

Solution: The APV of this annuity is
25000/ V' P(t < Th,)dt + 10000/ V' P(T,, <t <T,)dt+ 15000/ V' P(Ty, <t <T,)dt
0 0 0

=(25000)a,y, + (10000)(@, — @yy) + (15000)(ay — Guy)
(25000)(5) + (10000)(7 — 5) + (15000)(8 — 5) = 190000.

Theorem 8.36.

8.6.6 Contingent insurance. A contingent insurance paid at the death of (z) only if (x)
dies before (y) has present value v=1(T, < T,). The actuarial present value of this insurance

is Ziy = B’ I(T, < T,)]. (Compare to A
Similarly, define ngl, = ElwI(T, > T,)).

Ty: n|)

Example 8.31. Suppose that:
(i) T, 2 Exp(p1) and T, L Exp(uz), where piy, pa > 0.
(i1) T, and T, are independent random variables.

: —1
Assume py, pi2 and & are given constants, compute A,,

Solution: A, = EW™I(T, < T,)] = [ [['I(t < s) fr, (t) fr, (s)dtds

/ / o fi () fr () s dt = /0 ot i, (£)Si, (1) dt

_/ 6”16 M1t6 pat dt = &/ e—utdt: L
0 B Jo p1+ pro +0

Example 8.32. Danzel is 40 years old. Isabella is 35 years old.
(i) Daniel and Isabella future lifetime time are independent random variables.
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(ii) Daniel’s lifetime follows De Moivre model with terminal age 85 years.

(iii) Isabella’s lifetime follows De Moivre model with terminal age 90 years.

A life insurance has death benefit of 50000 payable at the Isabella’s time of death, if Isabella
dies before Daniel. Find the APV of this life insurance if 6 = 0.065.

Solution: Let (z) = (40) and (y) = (35). fiu)(t) = "=, fip) (1) = L=,

v'Sr, (t) fr, (t)dt

A,y =B@™I(T, > T,)) = E(B(v Ty[(T > T,)|T,)) = E(v"Sr,(T)) =

_ /45 6—0.065t45 —t1 dt — o—0-065t 1 dt
0 45 55 55

(0.065)(45) B 1 "
- /0 ¢ ((0.065)(55) N (0.065)2(45)(55)> dz (v =0.065¢)

1 (0.065)(45) 1 (0.065)(45)

L — “dr — -z Ty = —xde*
(0.065)(55) /0 © T 0.065)2(45)(55) /0 ve amde am e e
(0.065)45 (0.065)45
Lo 1

—e

“wowes ], oo
=0.3401969384.

S~
8

e fr+e)

0

The APV of this life insurance is (50000)(0.3401969384) = 17009.84692.

A contingent insurance paid at the death of (z) only if (z) dies after (y) has present value
v I(T, > T,). The actuarial present value of this insurance is

—2
A,, = Ep"™I1(T, > T,)].

Similarly, define sz = EWI(T, < T,)).
It is easy to see that:

Theorem 8.37. IfP{T, =T,} =0, then Ziy + Ziy = A, and Z,E; +

|

I

|
<

zy
Theorem 8.38.
Theorem 8.39. If P{T, =T,} =0, then A,, = chy + XI; and Agy = Xiy + Emz
Proof. We have that
A, + A, = EW™I(T, < T,)] + Ep™ (T, > T,)]
=Ep™ (T, < T,))| + Ep™ (T, > T,)] = E[v"*] = A,,.
and
A+ A, = EW™I(T, > T,)] + E™ (T, < T,)]
=EW™ (T, > T,)] + Ep™ (T, < T,)] = E[v"™] = Ag.
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CHAPTER 9
Multiple Decrement Models

In some situations, we are interested in the cause of the removal of an individual from the
survivorship group. This cause can be withdrawal, or dispear, or other cause. We also may
be interested in the cause of the death. Insurance policies could be made different payments
based upon the cause of the death. We need to determine probabilities which depend on the
cause that an individual is removed from the survivorship group. Each cause which makes
individual to leave a survivorship group is a called a decrement. So far, we have studied
single-decrement models. In this chapter, we consider multiple-decrement models (or
competing risks model), i.e. the individuals in the survivorship group are subject to removal
from the group due to several decrements.

The competing risks model or multiple-decrement model assumes:
1. T, T8 are independent and cts random variables, with cdf’s F, m( ),
survival function ST(j) (t) (denoted by tq;;(j ) and tp;;(j ) respectively),

5 @)
density f,.(t), force of mortality p () = ux(i)t = ( 5 ete. for j =1,

2. T, = min{T", .. T8} and {J, = j} = {T, = TV}
3. Observe (T}, J,) (time and main cause of death) but not 74", ..., T,

In general, given a cdf F' of a cts r.v.,

S(t) = 1= F(t), ult) = L8 = —41ms(e),

f(t) = F'(t) = u(t)S(t), S(t) = exp(— [, n(s)ds).

Notations and formulae under the competing risks model:
) = Fr (1), w7 = Su,(8), u”) <t> (= w7 = 2=5).
@ = P(T, < t,J, = j) and ¥ = P(T, > t,J, = j)
(=P(TY > t,J, = j) compare to ) = P(TY > 1))
f(T:gn,m,ngm))(tl» o tm) =TI fro (),

. J>)
f@,m(t,y) )(t 51, (1) = i (1) S (1),

fr() = 5 S, (5) (s,
uw) Z}”lui”(t),

(]) f(Tx,Jx)( ’.7) _ fTéJ‘)(t)
Mz ( ) S () T Sngj)(t)

If m =1, it is so-called a single-decrement model.

lnS Q)( )

9.1 Deterministic survivorship group

According to the deterministic survivorship group, we are able to observe a cohort of
individuals and determine when and why an individual leaves the cohort group. Each reason
why an individual leaves the group is called a decrement. Decrements could be different causes

of death.
73
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Suppose that there are m decrements. According to the deterministic survivorship group,
foreach 1 < j < m, and each k =0, 1,2,..., we are able to determine the number of lives who
leave the group during the k—th year due to decrement j. Equivalently, for each 1 < 7 < m
and each £ =0,1,2,...,, we are able to determine the number of lives in the group at time &
who will leave the group due to decrement j.

Definition 9.1. The total number of lives at time x is denoted by ¢ = ly.

Definition 9.2. The total number of lives at time x which eventually die due to cause j,
7 =1,2,...,m, 1s denoted by ﬁg,j).

Definition 9.3. ¢\ (= ).

Definition 9.4.

Theorem 9.1. &7 = 7 09 and () = S 0.

Theorem 9.2.

Definition 9.5. (d\” = ,d,.

Definition 9.6. d\) = ;d\"”

Theorem 9.3. ,d\”) = ({7 — ¢7) a5 = ¢ —¢0), and (7 =522 _d.

Definition 9.7. The total number of lives aged (x) which die within t years due to cause j
1s denoted by td;]).

Theorem 9.4. ,d5) = (Y — ¢Y),

Definition 9.8. d;j) = 1d§cj).

Theorem 9.5. d) = Y7 d¥), d¥) = ¢ — &9), and ¢ = 230 d?.

Definition 9.9.

Example 9.1. A car company offers a three-year guarantee to new car sales. An actuary

models the number of customers in this guarantee as a double decrement models. Decrement 1
1s mechanical failure. Decrement 2 is withdrawal. Complete the table

E;T) KQ) &(62) dg;l) d§02)

xXr

0 75 175

1 70 155 Class exercise.
2 50 75

3

0 0
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Solution: Using that 6 =) 4 6P d = — €x+1> we get that

e 88D Y

0250 75 175 5 20

1225 70 155 20 80

21125 50 75 50 75

3/ 0 0 0 0 0

Definiti (n _ o _ 40 () _ ) _ G
efinition 9.10. ;p, ' = p, = Pr = 1ps =

eé‘") 7 e("')

Theorem 9.6. ,p\” = pg)pfvll ~p§;)n71, n=0,1,2, ...

Deﬁnition 9.]_]_. tqéT): th’ tqa(;r) — 1 tpa(r:T) _ =

Definition 9.12. ¢! = ¢{"”.

Theorem 9.7.

(0]

Definition 9.13. The proportion of lives aged x who die within t years due to cause j is

. G)_ )
() _ tdgj) b =ty
denoted by qz’ = = o

Theorem 9.8. tqg) = Z;” L tqgf).
Definition 9.14. ¢/ = ,¢¥.
Definition 9.15. s\tqg(f) =]t

Definition 9.16. S\QJ(CT) = 5|4

Definition 9.17. The proportion of lives aged x who die within s and s+t years due to

cause j is denoted by S|tq§]).

G =60
gl = S = e ) — gD = Z g

T

Remark: Quiz 452 upto Chapter 9 i (t) = ...

Theorem 9.9. s\tqg(g) = spgc )tqa(cj—i)—s

. () p() €] o) () .

(T) (]) _ Z‘L+§ ez+a_ez+a+t _ L+6_ZL+6+t _ (])

Proof. ,ps 1q,1s = PO = o) = s|eaa
T+s
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Definition 9.18. S\qg(gj) :s|1qg(cj).

Theorem 9.10. Let n be a positive integer.
(i) wlas” = p7p0 - o 10
(ii) n\qx =pp - -piln_lqgn-

(7’”) an Zk Ok’q
(iv) nas” = Sopo klat”.

Example 9.2. You are given the following multiple decrement table

. T (@ (i) spi7.  Class exercise.
30 | 10263 | 8965 (ii) s¢5)  Class exercise..
31| 10128 | 8896 (ii7) 2453 -
32 | 10034 | 8818 | Calculate: (iv) 5|2q\7.
33| 9897 | 8744 (v) 2|20 -
34 | 9764 | 8687 (W)qu“)
35 | 9683 | 8604 (vid) 2|g.

Solution: (i) sp{) = 41 — YTLSGBT _ ) 9608801514,

fé? 101288896
(i) 5¢57) = 1 — 5p) or = egg;;gy _ 102634896078 _ () ()3052839609.
(iii) 2057 = Eéﬁ;gg = Toias7ss0s = 0-007989907485.
(iv) ologsy) = Zgig‘gfg’? — (OSOTLSTA_(968548601) _ () (11860807401

(1) _ €5 -6 _ 10034-9764
(v) 2l2gs0’ = 45" = 103375065 = 0.01404202205.

(r) 50— (9897+8744)— (9764-+8687)
(V) 2lgs’ = = = 3505 = 0.009987384357.

.. 1) _ 66 9764—9683
(vil) alfy) = S = TS = 0.004296626353.

Example 9.3. You are given the following multiple decrement table

NG
R ©) ()3p61
. - (i )3960

60 | 0.005 | 0.01

61 | 0.006 | 0.01 (i72) 2‘161
62 0'007 0'02 Calculate: (iv) 2|q61 Class exercise.
63 | 0.008 | 0.02 <.)2|q6%7')
64| 0.01 |0.03 (vi) 2[261 -

.. 1
(vid) o]aqly) -

(1) (1), (1), (T)

Solution: (i) 3pg;’ = Per Pz Pes and D =1- G =1->", g,
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T qg(ﬁl) qg(f) qgf) pgf)

60 | 0.005 | 0.01 | 0.015 | 0.985
61 | 0.006 | 0.01 | 0.016 | 0.984
62 | 0.007 | 0.02
63 | 0.008 | 0.02
64 | 0.01 | 0.03
. T T T T 1 2 1 2 2
(1) o5 = PSP pis = (1 — (a5 +a$))(@ = () +a§3)) (1 — (a5 + a3))
= (1= 0.006 — 0.01)(1 — 0.007 — 0.02)(1 — 0.008 — 0.02) = 0.930623904.
(ii) 3450 z)l - z(agﬂ)éﬁ) =1 (—l)pé?])z?é?pé? :&)_ (1(5 g (1 — g1 = 18)
:1_(1_%0 _%0)(1_%1 _Q61)(1_Q62 _%2)
—=1—(1—0.005—0.01)(1 — 0.006 — 0.01)(1 — 0.007 — 0.02) = 0.05692948.
(iii) 202 = 01102 + 1162 = ¢ + p§ a2 = 0.01 + (1 — 0.006 — 0.01)(0.02) = 0.02968
(iv) 2gs7) = op{Pal® = PP ¢Ss) = (1 = 0.006 — 0.01)(1 — 0.007 — 0.02)(0.008 + 0.02)
— 0.026808096.
(v) 2lay = op83 sy = ps) i3 sy = (1 — 0.007 — 0.02)(1 — 0.008 — 0.02)(0.01)

— 0.00945756
(Vi) aloal] = apr2als) = 2haly + shasy = Py ps ay + 7 Py Sy 4ty

= pIp () + P i) = (1 = 0.006 — 0.01)(1 — 0.007 — 0.02)[0.008 + 0.02
+ (1 —0.008 — 0.002)(0.01 + 0.003)] = 0.03913024584.

.. 1 1 1 T T 1 T 1
(vii) alogsy = 2has + sl = Py pS7 (als + pSy asy)

= (1—0.005 — 0.01)(1 — 0.006 — 0.01)(0.007 + (1 — 0.007 — 0.002)(0.008))
— 0.01446881.

Need

9.2 Stochastic model for multiple decrements

Definition 9.19.
Definition 9.20.
Definition 9.21.
Definition 9.22.
Definition 9.23.

Theorem 9.11.
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Theorem 9.12. Under the competing risks model,
Froa.(t,3) = 7 ud (t), where g7 = 7 g,
Proof. WLOG, let j = 1. Recall that fr, ;,(¢,1) = 4P{T, <t,J, = 1}. Now
P{T, <t,J, =1} (=P{T, <t}P{J. =1} 7?)
=P{T, = min(TV,... ., T) <t J, =1} =P{TV <t 7H <7® .  1TL < 7™M}

xT

/fT<1> S1 / Jre(s2) / Spom ($m) ds -+ - dsy

B / o (52)S(51) -+ Sy (50) sy = / Frn()S 0 (8) -+ Sy (5) ds
//”Lg:i)ssp;c(l) splz(2) Spfr(m)d /M;stsp(;)d ’
0 0

1 T
fron 1) = 4P{T, <t J, =1} = 4 [ () pds = pi7pll), n

Notice that T}, is a continuous r.v. and J, is a discrete r.v.

Example 9.4. A live aged x 25 subject to two decrements. The mortality rates of these
decrements are p! )( t) = 525 and s ( ) = t, for 0 <t <40, Calculate:

(i) i (i1) fr,; (iii) fr,g.; (i) gV (v) g (vi) P{J, = 1}; (vii) P{J, = 2}.
Solution: Hereafter let ¢t € [O 40] (Otherwise, we need to specify t each time).
(i) Since {7 = exp ( Jy 18 () ds) and pD(1) = uV (1) + (1) = 7.
tp; = exp ( fo ,ux (s) ) = exp < fo iy 7 ds) = exp(7(log(40 — s)‘é))
= exp(7(log(40 — t) — log 40)) = exp(log((%54)") = (%)7.
(i) fr. () = — ol = o

() G _ (a0-\T () @UEOL if j=1
(iii) f(Tz,Jz)(taJ) = tPx Nx]+t = (T_t) Mz]+t = (5)(i(()]—t)6 .
407 lf .] - 27
t
t 2(40—s)6 40—s)7 2)((40)7 —(40—1)7
(iv) s =P{T, <t J,=1}= fo fr,,a(s,1)ds = [, =57 ds = (7))((40)5) 0: @) (7))(4(())7 Y
t
_ —(5)(40—5)" | _ (5)((40)"—(40—t)")
( ) tQ:Jc P{T <t Jy= 2} = fo fo )dS = Tm@nT | — (7)(40)7

(vi) P{J, = 1} = P{T, < 00, Jp = 1} = [ fr,.s(5,2) ds = wcat"?? = soat") = 2.
(vii) P{J, = 2} = 4q¢ =2
or=1—P(J=1)=5/T7.

Example 9.5. A live aged x is subject to two decrements. The mortality rates of these
decrements are ugl)(t) =0.01, for ¢t >0, and (t) = 0.03, for t > 0. Calculate:

(i) " (ii) fr,. (iii) fr, . (iv) P{J =1}, (v) P{J, = 2}. (vi) gt (vii) 157
Solution: Two independent r.v.s ~ Exp(u;). Let ¢t > 0 hereafter.
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(1) g7 (t) = 1l () + 2 (1) = 0.04 and p7) = e (= Sy, (1)).
(ii) fr,(t) = 0.04e00%,
SYC _ : e 00%(0.01) if j=1,
(111) f(Tx Jx) (t ]) tpa(c ):U/(xJJ)rt =€ 0'04t:ua(cJJ)rt = €_O’O4t(0-03) if ] — 2
EIV)EI’Fj{{j 21}} 1f0 J{T(ZJ ’ 11) i 3/4fo e P01t = G Jy e 004t = 5 = 1/4.
A% = = — = =
(vi) th — [ 0 (s)ds = [} e=00430.01ds = B0L [! 00450 04l = (0.25)(1 — e~0-04),
(vii) ;qt” = P{J, = 2}th = (0.75)(1 — e70:04),

Theorem 9.13. Suppose that a live is subject to m decrements. Decrement j has constant
force of mortality u'9). Then, fort > 0,

(i) ) = Z;n:l ),

(ii) tpS) = et

(111) th =1-

(’LU) th = I% (1 e (-r)t) )
)

(v) B{J, = j} = 12,

(vi) T,, and J, are independent r.v.’s.

(T)t

Proof. (i) Easy. (ii) ;p) = exp=Jo#7ds = =0t
(iii) tqéT) R

() 108" = Ji ) ds = Jy e 7ol ds = 25 (1= 1)
()
(V) P{J = ]} — ooQa:) _ z(ﬂ.
() BAT, < 6.0, = i} = =t (1= ™) = (T < ()L = 5} .

9.3 Random survivorship group.

9.4 Associated single decrement tables.

Definition 9.24. The probability of death within t years due to cause j in the absence of
other decrements is denoted by ¢ (= P(Téj) <t)). 129 is called the absolute rate of
death due to decrement ;. tq;(]) 15 also called the net probability of decrement and

independent rate decrement.
Definition 9.25. q/(j) = q;(]).
Definition 9.26. ;p/¥) =1 — ¢/,

Definition 9.27. p/(j = p;(j).

Notice that P(T < t Je.=7)= tqg(gj) < tq;:(j) = P(T:z(j) <1).
tqlr(]) fg sz luers ds and
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tql‘ fo spx :uz-i-s ds.

Theorem 9.14. tpg(cT) = H;n:1 tpgc(j).

Theorem 9.15. tq;(pj) < tq;:(j) < tq;E«T).

Example 9.6. A live aged x zs subject to two decrements. The mortality mtes of these

decrements are F‘gl)(t) = F and Nm ( ) = 40 ., for 0 <t <40, (1) Calculate tp ) and tpx(Z).
(ii) Calculate the densities of 7Y and Tf).
Soutions () " = exp (= [} () ) = exp (— fy w5 ds) = i

tpm@) = eXp( fO (2) ds) = exp <_ f(] P 8) _ (4(30)155 7 e [0 40]
(i) frun (1) = =" = 255" and

_\4
Fpo (£) = — L = B 1 € (0, 40).

Example 9.7. A live aged x is subject to two decrements. The mortality rates of these

decrements are u( )( t) = = 0.01 and ug(f)(t) = po = 0.03, for ¢t > 0.

(i) Calculate 2 and P2,

(i1) Calculate the densities of ngl) and TS,

Solution: (i) P = exp ( fo ) = e Hit ¢ > 0.
(i) £ (t) = 0.01e7*% and f, (2)( ) =0.03e7903 ¢ > 0.

0.01e790%  if j =1

t>0.
0.03¢004  if j =2

Remark. fr, ;(t,j) = {

Theorem 9.16.
Theorem 9.17.
Theorem 9.18.
Example 9.8.
Example 9.9.

Theorem 9.19.
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9.5 Interpolating multiple decrement life tables.

9.5.1 Uniformity in the multiple decrement table. Suppose that decrements are uni-
formly distributed over each year of age in the multiple decrement table. In this case,

PT, <t J,=j)= g =t 0<t <1 (not for A P(Téj) <1)).

Example 9.10. Suppose decrements are uniformly distributed over each year of age in the
multiple decrement context.
(a) If qg(gl) = 0.05 and qg(f) =0.02, find q;( and q’@).

(b) If qéc(l) = 0.05 and q;(Q) = 0.02, find qg(g and q373
Solution: Assume ,¢) = t¢¥, t € (0,1]. (a) Given ¢¥’s how to compute ,¢7 ?

Formulas: (i) i) =1 — (: P(ngl) <1t)),

need (i) pi?) = exp ( fo 1 ) No notation of ;7 (s) !!
need (iii) p$(t) = d”fl({)) = dtf;(q})) which to use ? = 1$iz%i>)’
need (iv) (¥ = tqg(cj) and ;¢%" - >, g = t>, @ =tg”, 0<t < 1. T

(i) e(iv) => p(t) = £ = & “‘Iii? =

1 1 (4)
(i) => p9 =exp (—/ uij)(S)dS) = exp —/ — 2 ds
0 1—sq

G) 1 g1 — g™ ()
—exp | & d(1 — s¢:") —exp | £ log(1 - s¢V)
@ J, 1 _ g™ e @

SQx x

1

0)
q(j) ﬁ ¢

P =exp(=i log(1 — 7)) = exp(log((1 = ¢f7)=”)) = (1 — {47, (1)

L
(i) => ¢V =1-p =1-(1-¢")" (¢ =7)
¢\7 =¢{V + ¢ = 0.05+0.02 = 0.07, (= ¢V +¢P777)
(1)
¢V =1-(1-¢M)d7 =1—(1-0.07)0% = 0.05051562906,
(2)
¢® =1—(1-¢")d” =1—(1—0.07)5% = 0.02052100228,
i ) 1o z(])
(b) Eq. (1) leads to log pi?) = (T) log(l g\ )) => ¢ = ¢§ )W NN
Ne NO) OO

Also Eq. (1) leads to p;;l)p;@) =(1- qg(g )) pel (1- qg(c )) pol =(1-— qg([)) <0 =1— qg(;)??
=> ¢ =1 pIp® =1 — (1 -0.05)(1 — 0.02) = 0.069.

(1) _ (0.069) log(0.95) (2) _ (0.069)log(0.98)
Gz = —log(l—Og.OGQ) 0.04950259075 and ¢q,' = W — 0.01949740925.
()

Announcement. Quiz on Friday: 447 and Chapter 7-9 (upto iy’ =...)

Need help for solutions of 1st midterm ?
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9.5.2 Uniformity in the single decrement table. We may assume that decrements are
uniformly distributed in the absence of other decrements i.e.,

Fro(t) = i =t 0 <t <1 (vs. Fr(t,j) = = tq), where z is an integer.
If this happens, we say that decrements are uniformly distributed in its associated single

decrement table (v.s. multiple decrement table).

Example 9.11. Suppose decrements are uniformly distributed over each year of age in the
associated single decrement table.
(a) If q;(l) =0.05 and q;@) = 0.02, find qg(c and qm).
(b) If qg(cl) = 0.05 and qg(cz) =0.02, find qé(l and qx

Solution: (a) Assume g =gt e (0, 1], but not WG9 =gt e (0, 1].

1
@ =P(T, <1,7,=1) = / fros(s,1) ds
0

! fro(8) f (s,7)
— (’T) (1) dS (]) (]) _ TQSJ — Te,Jz 7]
/0 spm :ua:Jrs (:U’ers N’r ( ) STQ(:J') (S) Sp:(;—) )
! fr(s) ,
= / V)T ds (P(T, > 1) = Pmin T > 6) = P(TY > ) P(TP > 1))
0 sPx %

1
:/ (1—s¢P)gMds (g9 =gV => fot) =g, 0<t <)
0

1 1
q'u)/ Lds — f(2q<1>/ sds — (1 qu@)) JO) =
0 0 2
1 1
= (1 30 ) and o = (1 30) . )

1 1
¢V = <1 — 5(0.02)) (0.05) = 0.0495 and ¢\» = (1 — 5(().05)) (0.02) = 0.0195.

(b) Equation (2) in (a) yields

0.020 ~ qéz) =P (1= 1) = ¢ = LD

(3)

Subtracting the two equations, 0.03 = ¢V — ¢ == ¢ = ¢ 4 0.03. Then Eq. (3) =>
1 1
0=qW (1 — §q;<2>> —0.05 = (¢/¥+0.03) (1 - 54 ’@)) —0.05 = —(0.5)(¢/*)?+(0.985)¢® —0.02.

The solutions of this quadratic equation are 0.021 and 1.949. Since 0 < q§§2) <1,
¢? =0.021 and ¢ = 0.051.

9.5.3 Other options. There are other options for the distribution of the decrements.
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Example 9.12. A live aged x is subject to a double—decrement model.
(i) Decrement 1 is death, which has a uniform distribution over each year of age in the asso-
ciated single decrement table.
(ii) Decrement 2 is withdrawal, which occurs at the end of the year.
(iii) ¢V = 0.01 and ¢i¥ = 0.03.
Calculate qg) and qg(cz).

Solution: Assume: tq;( ) = = tqy b ,t € (0,1], T e {1,2,3,...} with P{Tf) =1} =0.03.

D =P{T, < 1,J, = 1}ZP{TV < 1, J, = 1}2]P>{T§1> <1,TM < 7@}
:P{T(l) <1, 7TV <7® 1 <7®} =P{TM <1} = ¢ = 0.01.
=P{T® <1,J, =2} = IP’{T(Q) =1,J, =2} =P{T® =1, 7% < TV}
:P{ng?) = 1}P{1 < TW} = ¢P(1 - ¢V) = (0.03)(1 — 0.01) = 0.0297.

Example 9.13. A live aged x is subject to a double—decrement model.
(i) Decrement 1 is death, which has a uniform distribution over each year of age in the asso-
ciated single decrement table.
(ii) Decrement 2 is withdrawal, which occurs at the midpoint of the year.
(ii1) ¢ =0.01 and ¢ = 0.03.
Calculate q;g;l) and qg(cz).
Solution: Assume ,q.\" = tq.", t € (0, 1].
€ {0.5,1.5,..}. P{T? = 0.5} = 0.03.
¢V =P{1TV <1,J, =1}
=P{T"M <1,J,=1,T® =05} + P{TV < 1,J, = 1,TY > 1.5}
=P{T" <0.5,7? =05} + P{TV <1,1.5 < TP}
—0.5¢,0(0.03) 4+ 1¢,V(1 — 0.03) = (0.01¢|4—0.5)(0.03) + (0.01t[;1)(1 — 0.03) = 0.00985.
¢ =P{TY < 1,7 < TV}
=P{T® = 0.5 < TV}
=P{T? = 0.5}P{0.5 < TV} = (0.03)(1 — (0.01t],—¢5)) = 0.02985.

9.6 Insurance for multiple decrement life tables.

Suppose that a life insurance is paid at the end of the year of death if death is due to
decrement j. The APV of this insurance is

AV = B(wk=1(J Zv Tr.o0.(k,7) Z’U k— 1|q])_ZU Ty qa:—l—k 1
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Example 9.14. An insurance policy provides a payment at the end of the year of death of
$100000, if the cause of death is natural causes, and $200000, if the cause of death is accidental
death. The force of mortality for a new born due to natural causes is [L[()l)(t) =0.01, fort > 0.
The force of mortality for a new born due to accidents is ,u(()z) (t) = 0.005, fort > 0. Find the
APV of this insurance if 6 = 0.06.

Solutlon E(By, sz) S BEWS (], = j)) = BIAY + B,AY = .. By, AV =7
Zk 1Uk1\qw Zk 111 71pg)qilk - Fort >0,
tp(T) — p;( ) p/(2) — ¢—0.01,—0.005¢ _ 70A015t7 (P(Tx > t) _ P(min(Tél),Tf)) N t))

1
2
1) = / fTJc Jx t 1 dt = / sz M;l) ds = / 6_0'0155(0~01) ds = g(1 _ 6_0'015),
0

0

1 1
1
/ fr,.0.(t,2)d / pr M;z) ds _/ e~ 00155(0.005) ds = 5(1 — 70015y,
0 0

orq:D *qw Q(E) 1— T)

2
T - k — k— —0.
Agcl)zz_:v 7p;)qx+k = Ze 0.06k ,—0.015( 1)3(1_(3 0015)
o) co+1
:2670 06(] — ¢=0015) Z 00755 — 20061 _ o=0.015) 1—p — 0.1293636291,

3 J=0 1—p
Agcz) _ivk px q +k = Z ~0.06k ,—0. 015(k—1)1(1 o 6—0015)

k=1 k=1 3

1 _ N _ 1

3 006(1 e 0.015) e 0.0755 _ 56 0.06(1 —e 0.015) = = 0.06468181457.

=0

.

Hence, the APV of this insurance is
E(Bj v = A(I) + BQA = 10°(0.1293636291 + (2)0.06468181457) ~ 25872.73. o

Suppose that a life insurance is paid at the moment of death if death is due to decrement
j. The APV of this insurance is

E@™I(J, = j)) = A9 = / o frg () di = / o0 (1) dt. 2)
0 0

Example 9.15. An insurance policy provides a payment at the time of death. The policy
is the same as in the previous evample. pi = =005t Find the APV of this insurance.

Solution: E(Bj,v™) = ¥, BiEW™I(J, = j)) = BiAY + B,AY = ...

(1) OO (r) X 0.06t.—0.015t _ 0.01 _ 2
A= dt = 001)dt = —— = —
. /ovpm”””o /06 e 00 dt = 5o = 15

=@ [~ (r) /OO —0.06¢ _—0.015¢ 0005 1
AT = t)dt = 0.005)dt = —— = —.
¢ /ovpx“x() ¢ ( ) 0.075 15

Hence, the APV of this insurance is E(B,,v™*) = (100000)Z + (200000)+= =~ 26666.67.
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qa(vl) = f01<1_3q;(2))q;&(1) ds = q;f(l)(fol 1 ds—qu) fol sds) = q;(l) <1 N %q;@)) ‘(1) = q;’(l) (1 - %q;@))

Example 9.16. A 50-year old buys a 3—year term fully discrete insurance with face value
20000 payable at the end of the year of death. An actuary prices this insurance using a double
decrement model:

(i) Decrement 1 is death. Decrement 2 is withdrawal.

z | D dV |
(i) 50110000 | 54 | —

511 9923 | 75 | —

521 9847 | 80 | —
(iii) There are no withdrawal benefits.
(iv) i = 0.07

Calculate the level annual benefit premium.

Solution: Solve BP, where B = 20000,
E(By vk I(K, <3)) - Pi,3 =0and By, = I(J, =1).
Let A= E(B;v%I(K, <3))=EW@XI(J,=1,K, <3)),

=> A = Paw§|,
=> P =_4
A3

3
A=k a)gl) = vglf) + *i]gly) + vy
k=1

54 75 80
=(1.07) "' ——— + (1.07) >——— + (1.07) 33— = 0.0181279.
(1.07) 10000’+( ) 10000’+( ) 10000

2
(y3) = Z FiplD =14+ vply) + 0 - oply)

k=0

9923
=1+ (1.07) ' —=

10000

_, 9847

= 2.787458293.
10000

+ (1.07)

Hence, BP = "BA __ 20000x0.0181279 ~ 130.07.

e 2.787458293

9.7 Asset shares (;AS=the premiums—(benefits + expenses))

We consider a two decrement model for insurance including expenses. Decrement 1 is death.
Decrement 2 is withdrawal. Suppose that the benefit depends on the decrement and are paid at
the end of the death year and expenses are paid at the beginning of each year alive. For k > 1
let by, be the benefit paid for death during year k;

xCV be the cash value payable upon for withdrawal during year k;
G be the augmented premium,;
A fixed expense of e,_; is paid at year k.

Another expense is an r,_; percentage of the augmented premium.
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Under the equivalence principle,

G Z Ukkpg) = Z bkvkk,llqg) + Z kCVvkk,l\qx + Z T'kG + Gk v kpg(c 7) .
k=0 k=0

J/ N N J/ N J/
~~ ~~ ~~ ~~

premium beni fit refund erpenses
- (T 2 T
G ) = Z bkvkk—lpgg )qz+k 1t Z ROV by _1pl )Q£Jzk—1 + Z(TkG + €k)vkkp§c )
k=1 k=1 k=0

The following recurrence relation is useful:
(hAS + G — Gri. — ex) = vbrir g}y + 61OV, + 1) - 01 AS), (3)
Recall simple case: (;V, + P,) = v[qu” + 111 VaPrrdl,

k
where ;V, = Ayyy — Pplpyy. Or [V, = E bk+tU k—1Pr+tGz+t+k—1 — Py E U kPr+t-
k=1 k=0

Vv Vv
beni fit premium

Example 9.17. A fully discrete whole life insurance with face value of 50000 was issued to
(50). This life insurance provides cash value payments at the end of the year if the policyholder
cancels the policy. An actuary models this life insurance with two decrements: deaths and
withdrawal. You are given:

(i) The annual gross premium is 550.

(ii) Expenses are 6% of the gross premium and paid at the beginning of the year.
(1i1) q (eath) — .04

(“}) (w1thdrawal) — 0.05

(v) i = 0.065

(vi) 10AS = 6700  (AS= (the premiums—(benefits + expenses) at time t).
(vii) 11CV = 6000.

Calculate the asset shares at the end of year 11.

Solution: Eq (3) yields (10AS + G— G?"l() — 610)(1 + Z) = bllqg.zm + 110‘/(];(5_,210 —i—pgf_glo . 11AS.
(6700 + 550 — (550)(0.06))(1.065) = (50000)(0.04) + (6000)(0.05) 4 (1 — 0.04 — 0.05);, AS.

(6700 + 550 — (550) * (0.06)) * (1.065) — (50000) * (0.04) — (6000) * (0.05)
1—0.04 —0.05

Under the competing risks model, ngl), o T;ﬁm) are independent and cts, with cdf’s tq;(j ) and

iy . oo (@)
tpx(]) =1—1G (])7 H(])( t) = /"L:(E]-i)-t = —gxz) :
Ty (1)

(T, =t,J, = j} = {min{ngl), STy =T, =TV, (Fr (), St.(1) = (.08, p$).
2) ¢V +pM =17
1 _ _ 1 _ _ 1) n _ _
gz’ =P, <t,J,=1)and yp;’ = P(T, >t,J, =1), ¢’ +p:’ =P(J,=1) < L.




CHAPTER 10

Pension.

Pension is a series of periodic payments, usually for life, payable monthly or at other specified
intervals. If the annual pension benefit B, is paid monthly at the beginning of each month,
the APV at retired age x of whole life pension is Bzd,(vlz). Thus it is somewhat similar to the
annuity. The term is frequently used to describe the part of a retirement allowance financed

by employer contributions. Whereas the annuity is often purchased after retirement.

10.1 Pension Plans.

Two major categories of employer sponsored pension plans are

the defined contribution (DC) and the defined benefit (DB).

Defined Contribution Plan. A pension plan in which the contributions are made to
an individual account for each employee, as a percentage of salary. The retirement benefit
is dependent upon the account balance at retirement. The balance depends upon amounts
contributed during the employee’s participation in the plan and the investment experience on
those contributions.

Defined Benefit Plan. The DB plan specifies a level of benefit, usually in relation to
salary near retirement (final salary plans), or to salary throughout employment (career average
salary plans). The contributions are accumulated to meet the benefit level. The pension plan
actuary monitors the plan funding on a regular basis to assess whether the contributions need
to be changed. A pension plan provides a definite benefit formula for calculating benefit
amounts - such as a flat amount per year of service; a percentage of salary; or a percentage of
salary in the final years of service, and years of service.

The difference between these two plans: A defined benefit plan, most often known as a
pension, is a retirement account for which your employer ponies up (pays out) all the money
and promises you a set payout when you retire. A defined contribution plan, like a 401(k) or
403(b), requires you to put in your own money.

In general, defined benefit plans come in two varieties: traditional pensions and cash-
balance plans. In both cases, you just show up for work and, assuming you meet basic eligibility
rules, you are automatically enrolled in the plan. (In some instances, however, you are not
enrolled until you have completed your first year on the job.) You also need to stick around
on the job for several years, typically five, to be fully “vested” in the plan. The difference
is in how the benefits are calculated; in a pension, it’s based on a formula that takes into
account how long you have been on the job and your average salary during your last few years
of employment. The cash-balance plan credits your account with a set percentage of your
salary each year. Another key difference: If you leave the company before retirement age, you
may take the contents of your cash-balance plan as a lump sum and roll it into an IRA. A
traditional pension is not portable.

Some employers offer both defined benefit plans and defined contribution plans. If yours
does, you should definitely participate in the defined contribution plan as well. That is because

87
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more often than not, the amount of your defined benefit plan won’t be enough to allow you to
live comfortably in retirement.

Hereafter assume that the plan member is employed during the period of concern. Define
the annual rate of salary at age y, denoted by A,, through the expression

y+1
(10.1) Syz/ Adt,
Yy

where S, is the salary received in year of age y to y + 1. Notice that S, and A, vary person
by person, which is not convenient. Define the rate of salary function s,, y > z,, by

(10.2) Sy/5, = Ay /A, (or A, = A,5,/3,), where z, <z <y and 5,, = 1.
The salary scale, {s,}n>s,, is defined by

1_
S_y . fO Sy_;,_tdt

10.3 = , for z, <z <y.
(10.3) Sz [y Sagedt Y
Thus
(10.4) Sy/Su = Sy/ Sy, for z, <z <y, as
y+1
Sy :/ A, dt (by (10.1))
y
y+1 §t
:/ A, —dt (by (10.2))
y Sz
A, [yt
i gtdt
Se Jy
S f gm +tdt S S
:Ax_yL by (10.3 =~ ¥ _7Y
[ . (by (10.3) g Sr Se

sy is not uniquely defined by Eq. (10.3) or Eq. (10.4) neither, unless setting s,, = 1 or
Szy = Jy Saotedt. It is desirable to set both s,, = 1 and s,, = fol Seopedt. s it always
possible 7

Example 10.1. Let 5, =2, 2 > 20 = z,. Then

S99 = Sg, = fol Spypedt = fol el@ott) =20 — fol (2040204 — fol eldt = e —1 then s,, > 1.

Remark. The example indicates that we can only impose one constraint, say, s,, = fol Syporedl
or s,, = 1, but not both most of the time. If we set s,, = fol Sz,+tdt then it implies s, =
) Bosedt, as sy /55, = [) Sppedt] [i) Bappedt.

Formulae (10.1) — (10.4) should be memorized.

Example 10.2. An employee aged 30 whose current annual salary rate is $30,000.
(a) Suppose 5, = 1.04420 y > 20.
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(i) What is Ay, his annual rate of salary at age t > 30 ¢

(1) What is Sa, his salary for the year of age 40 to 41 ?
(b) Suppose that each year the rate increases by 4%, 3 months after his birthday and then
remains constant for a year. Answer the previous two questions.

Sol. (a) (A, Sa0) 7
(1) Sy = fy“ Adt, (2) 5,/5: = Ay/As, (3) 5oy = 1, (4) 3 = Jo Suredt s,

Sz fO Sptdt Sy *

Asy = 30000 & 5, = 1.041720 => A,/30000 = 5, /539 = 1.04:720/1.0430-20 = 1 04¢~20-(30-20)
=> A, = 30000 x 1.04!730 = 39000~ 1.04%, t > 30.

1. 0430

1 . t T
S, = /! U Aydt, => Sy = 39098 111,045t = 20000 log(ff;)g)) =45290. [adr = &

(b) Let h(t) = 5,/33 = 1.041-295)(|z] ([2]) is called the ﬂoor (ceiling) function), i.e.,
1 ift e [30,30.25)

ef ) 1.04 if t € [30.25,31.25 . )
h(t)d:f 1 ; ) where |x| = the largest integer which < x.
1.04% if ¢t € [31.25,32.25)

41

Sio = [y At = [ Aso=tdt = 30000 [ h(
= 30000 o 25+ JB ) (1.04)l=2925) gy
_ 3000()( 40 25(1 04) [t— 29 25 dt + f40 o 1 04) [t—29.25] dt)

= 30000( , i 02(1.04)10dt + [, (1.04)1dt)

= 30000(0 25 x 1. 0410 + 0. 75 x 1.04'1) = 45739.55.
Notice that Sy = 30000 f t)dt = 30000(0.25 x 1.04™ + 0.75 x 1.04'?). It is interesting to
see that Sy;/S4 = 1.04 and 341/340 = 1.04. It follows that for (z,y) = (40,41),

(10.5) Sy/Su = Sy/ Sz =3,/5: = Ay A, (versus 5,/5, = A, /A, and s,/s, = S,/Sz).

Is it true in general ?
Counterexample 1 to Eq. (10.5). Let 5; = 1 + at for ¢ > 0, where a = 1/1000. Then

_ 1 _
Syr1 _ Jo Sradt _ fol 1+ a(t+1)dt _ (1 +a)t+at2/2)|0 _ 1+ 3a/2 S1tan Syt
sy [l st i1+ atdt (t+at?/2)|, 1+a/2 5y

Counterexample 2. Skip it !! Under assumption (b) in Example 10.2. If = €
40,40.25), then

1 40.25—x 1
/ h(x+t)dt:(/ +/ V(e + )dt
0 0 40.25—x
40.25—x 1
= / 1.04%0dt + / 1.04Mdt
0 4

0.25—x
=1.04"[(40.25 — 2 — 0) + 1.04(1 — (40.25 — )]
—=1.04'7—0.04 % 40.25 + 1.04 + 0.04z]
=1.04"[0.04 * (x — 40.25) + 1.04].
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If z € [40.25,41), then

1
/ h(x + t)dt =1.04"1[41.25 — 2 + 1.04(1 + z — 41.25]
0

=1.04'1[0.04 * (x — 41.25) + 1.04].

In general, letting w(z) |x],

/ x—i—t
0

1.0412=29-25110.25 — w(x) + 1.04(0.75 + w(z))] if w
{1 041229251125 — w(z) + 1.04(w(z) — 0.25)]  if w
1.0417=2925[0.25 4 1.04 % 0.75 + 0.04w(x))]  if w(x
{1 042=2925]1 25 — 1.04 % 0.25 + 0.04w(x))]  if w(x
{1 04lz—29.25] [
I

(
(

140.04%0.75 + 0.04w(z))] if w(z) < 0.25
1.041-2925011 — 0.04 % 0.25 + 0.0dw(x))]  if w(z) > 0.25.

) < 0.25
x)>0.25

—_— — o~

[ 1(40.5 + t)dt = 1.04"[1 — 0.01 + 0.02] = 1.04'* x 1.01.
[ 1(30 4 t)dt = 1+ 0.03 = 1.03.
S40.5/830 = 1.04111.01/1.03.
S405/530 = 1.0411,

Thus it is a counterexample to (10.1) even under the assumption of Example 10.2.

Theorem 10.1. If the rate of salary function is s, = ca¥, where y > x, and a,c > 0, then
Eq. (10.5) holds. Moreover, if one further defines 5,, = s,, = 1, then's, = s,.

1_—
Proof. F: (10.5) s,/s, = S,/Se =5,/ = A,/ As Sy/ Sz = ﬁ};:iji
_ 1 1 Sy 1§y tdt _z Sy
Jo Syndt = ¢ [; a¥*dt = ca?™| /Ina = ca¥(a — 1)/Ina. Thus 2 = % =a" = 2
By (10.2) and (10.4), s,/s, = S,/S, and A,/A, =5,/5,. Thus Eq. (10.5) holds.
Notice that 5,/5,, = sy/Sz, = V"% it 5, = ca¥, V y > z,. If one further defines
Sy, = Sy, = 1, then 5,/5,, = s,/s,, yields 5, = s,. © |

Corollary. 1If (1) 5, = s, for some x, and (2) either s, = ca? or 5, = ca¥, where y > z, and
a,c > 0, then 5, = s,,.
Remark Under the assumptions in Theorem 1, if 5, = ca? for all y > z,, then 5, = s,

iff 8?; £ for all y > x,. Thus, 5,, = s,, is a necessary condition, which is not always valid.
Hereafter, we shall assume that 5, = s, = 1 for some = = x, in such a case.

Example 10.3. The final average salary for the pension benefit provided by a pension plan
1s defined as the average salary in the 3 years before retirement.
(a) A member aged exactly 35 at the valuation date received $75,000 in salary in the year to
the valuation date. Calculate his predicted final average salary assuming retirement at age 65.
(IS S34 or 535 given ?)
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(b) A member aged exactly 55 at the valuation date was paid salary at a rate of $100,000 per
year at that time. Calculate her predicted final average salary assuming retirement at age 65.
Make two different assumptions:

(i) the salary scale is s, = 1.04Y;

(i1) the integer age salary scale is given in Table 1 as follows.

T Sy T Sy T Sy T Sy
30 1 40 2.005 50 2.97 60 3.484
31 1.082 41 2.115 51 3035 61 3.536
32 1.169 42 2.225 52 3.091 62 3.589
33 1.26 43 2333 53 3.139 63 3.643
34 1.359 44 2438 54 3.186 64 3.698
35 1.461 45 2.539 55 3.234

36 1.566 46 2.637 56 3.282

37 1.674 47 2.73 57 3.332

38 1.783 48 2.816 58 3.382

39 1.894 49 2.897 59 3.432

Table 1. Salary scale

Sol. Formulas: S, = [**' Audt, 5,/5, = Ay/As, 5,, = 1, and 2 = ﬁ zi:j; Su.

(a) Zy 625 /3 ? Slnce S34 = 75000 (Why 7é 835 .) and Sy/834 = Sy/334,

64
Se2 1+ Se3 + Se4 Se2 1+ Se3 + Se4

10.6 S,/3 =25 = 75000 )

(105) 3 s st o

(i) Use the salary scale s, = 1.04Y in (10.6) (using R program):

> i=62:64
. 62 63 64
> 75000%sum(1.04%*1) /1.04**34/3 75000 L0 L0104
1] 234018.8

(i) Use the salary table:
> T5000%(3.589+3.643+3.698) /3/1.359

[1] 201067
(b) Given A55 = 105, by Eq(102), At/A55 = gt/§55-
(i) let x, = 0, then so = (1.04)® = 1. 5y = 1 by convention. Thus 5, = s, = 1.04¥ by the
previous corollary.
Sy = [T At = [T Ags(50/555)dt = Ass [T 1.047dt = Ag1.0475 [T 1,040t
= As51.047755 L O‘i 011 ~ As51.04%755, [ a*dx = a® /Ina
Thus the ﬁnal average salary is

64

(10.7) Z Sy/3 =~ Ass(se2 + Se3 + S64)/(3555) =

y=62

105(862 + S63 -+ 564)
3555 '
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> 1=62:65
> 10%*5*sum(1.04%*1) /1.04**55 /3
[1] 186268.6 # the final average salary.
(ii). Let z, = 30, then s3g = 1. Since 339 is not specified, one can define 5, = 1 if ¢ € [30, 31),

Sy+tdt
then fo S30+¢dt = 1 and s, = s,/s30 = ff" s:(:tdt fo Sy4++dt and

S:D == f;—i_l Atdt = A55 f;H_ (Et/§55)dt - A55Sz/§55.
Thus the final average can also be Eq. (10.7) but Ss5 is unknown now. Notice the difference
between Equations (10.6) and (10.7).
Since §s55 is unknown, there are two steps of approximations:

Step (1) Letting 355 & S5455, @.€.,
(10.8) St R St-0.5

Step (2) linear interpolation ss45 = (S54 + S55)/2.
The final average salary

Z Sy/3 ~ 100000 562 T 563 T Sea ~ 100000 Se2 + Se3 + Sea .
—62 38545 1.5(s54 + 555)
y_

> 10**5*(3.589+3.643+3.698) /(3%(3.186+3.282) /2)

[1] 112657.2
Justification of (10.8): Ifs5,, =1 =s,, and 5, is continuous and non-decreasing in u,
. _
St/ 8z, = o Fepudu & foranz € [t,t+ 1] and € € [0, 1] by the mean value theorem. That is,

f(] §950'5’udu

St - S¢ = 5,. It follows that s; <5, where x € [t,t + 1]. Actually, it is often that 5S¢ ~ 1. Thus
St = S,. Then choose x =t + 0.5 => s; = S;105 OT Sz_0.5 = Sg-

Remark. Under assumption (i) but using Eq. (10.8).
> 1=62:65
> 10%*5*sum(1.04%*1) /1.04**54.5 /3
[1] 189957.4 # compare to [1] 186268.6, the original outcome

Remark. From the previous example, one can see that if the expressions of 5, and s, are not
both given, then one can define s, = fyy+1 S.dt if it is needed.

Definition. The pension replacement ratio is
R— pension income in the year after retirement
salary in the year before retirement
or R — pension income in the year after retirement
final salary before retirement
we assume that the plan member survives the year following retirement. In a DC pension plan,

a certain amount of money is put into an account, the amount is proportional to salary, which
rate is called the contribution rate.

(used in the problems of this chapter),

, where

annual salary Sy, annual salary rate A,, salary rate function s,, salary scale s,,

A, /A, =5,/5, and S, /S, = s/, one sets s, = fyy+1 Sdt if no relation about 5, and s,,.
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Example 10.4. An employer establishes a DC' pension plan. On withdrawal from the plan
before retirement age of 65, for any reason, the proceeds of the invested contributions are paid
to the employee’s survivors. The contribution rate is set using the following assumptions.

(1) The employee will use the proceeds at retirement to purchase a pension for his lifetime, plus

a reversionary annuity for his wife at 60% of the employee’s pension (the wife gets pension

after she survives the member).

(2) At age 65, the employee is married and the age of his wife is 61.

(8) the target replacement ratio is R = 65%.

(4) The salary rate function is 5, = 1.04Y and salaries are assumed to increased continuously.

(5) Contributions are payable monthly in arrears at a fized percentage of the salary rate at

that time.

(6) Contributions are assumed to earn investment returns of 10% per year.

(7) Annuity purchased at retirement are priced assuming an interest rate of 5.5% per year.
0.0004 +4 x 1075 x 1.13* male

0.0002 4 1076 x 1.135® female

(9) Members and their spouses are independent w.r.t. mortality.

Consider a male new entrant aged 25.

(a) Calculate his contribution rate required to meet the target replacement ratio.

(b) To be specified later.

(8) Survival: Makeham’s law p, =

Sol. (a) Find the contribution rate ¢ through T'(c) = E x B.
T'(c)= the total contributions to pension at retirement=? E=unit annuity="

B=annual pension, B = R - Sg4, R = 0.65 (see (3)). (T(c), E, Seq)="

(65—25)12 (65—25)12

1 Con_; 1 S25+i/12 » A s
T — A ; 1‘165 25—i/12 __ A 1.140 i/12 vy _ 2y —9
(C) iD) E 1 CA51i/12, ~- =1 E 1 c 25—525 A, 5, (Ji, y)
1= Y 1=

by (5)
65—25)12 1 0425+i/12 (65—25)12

(
Ay 40—i/12 __ cAzs . 49 1.04 110
T(c) == ) o U =511 ) (57)"" = 719.6316¢A25,  (10.4.1)

=1 N — e’ i=1
by (7)

S, = /y+l Adt, AyJA, =35,/5, = S,/Se = 5,/5, = 104" as 5, = 1.04% by (4).  (10.4.2)
Sea = 131.0439525, as Sg4/S25 = Sea /525 = 1.04%
Sos = [y Aslt = Aos [ 1,042t = Ags [/ 1.04%dt = Aps LI & Ay,
B =RSgs = 0.65 x 1.04% Sy5 = 3.000638555 ~ 3.000638 Ays.
E =@ + 06607 — al2,)) = 10.5222 + 0.6 x (13.92 — 10.01) (see (1)) (10.4.3)
(10.4.3) is proved later on.

T(c) =E x B = (10.5222 + 0.6 x (13.92 — 10.01))3.000638 Ass
=38.61785Ass = 719.6316¢ A5 by (10.4.1).

It yields ¢ ~ 5.37%, the contribution rate. Now the details of (10.4.3):
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(12 3 (12 1 (12 i

aé‘&f)il = % D ico Mi/lﬂ%&fﬂ? aé5) = % > o Uz/mﬁp%v and aél ) = % > im0 Uzﬂ?%]?ﬁla
by (7)

with v = 1/1.055, and (;pgs, ¢Pe1, tPes:61) are derived as follows.

t
tP65 :eXp<_/ ,U65+z,maledx)
0
t
:eXp(—/ (0.0004 + 4 % 107° % 1.13%%)dx) 77
0

1.13' -1
=exp(—0.0004t — 4 x 1070 % 1.1365m) /amdx = a”/Ina

t
tP61 :eXp(—/ ﬂGl—&—:c,femaledx) 77
0

t
= exp(— / (0.0002 4+ 107% % 1.135°1 %) dx)
0

1.135t — 1
= exp(—0.0002t — 107 % 1.135% ———)
log(1.135)
tDe5:61 =tPestPe1 = exp(a) exp(b) = exp(a + b)
1.13t — 1 1.135t — 1
= —0.0004t — 4 %1079 % 1.13% ———— — 0.0002t — 107 % % 1.1355' ——
exp( T log(1.13) * log(1.135))

R program for computing the above quantities:
v=(1/1.055)
t=(0:1000) /12
a=v**t*exp(-0.0004*t-0.000004*1.13**65%(1.13**t-1) /log(1.13))
b=v**t*exp(-0.0002*t-0.000001*1.135**61*(1.135**t-1) /log(1.135))
c=v**t*exp(-0.0004*t-0.000004*1.13**65%(1.13**t-1) /log(1.13) -0.0002*t-0.000001
*1.135%*%61*(1.135**t-1) /log(1.135))

sum(a)/12 # dé?)
sum(b) /12 # 2
sum(c)/12 # i

Additional Homework 1. Redo part (a) in Example 10.4 by revise the condition (8) in
0.0003 +4 x 107% x 1.132* male

Example 10.4 as (8) Survival: Makeham’s law u, =
0.0001 + 1076 x 1.137* female

Example 10.5. (b) Assume now that

(1) the contribution rate will be 5.5% of salary, (denoted by c),

(2) and that over the member’s career, his salary will actually increase by 5% per year,

(3) investment return will be only 8% per year,

(4) the interest rate for calculating annuity values at retirement will be 4.5% per year.
Calculate the actual replacement ratio for the member.

Sol. Solve for R from Eq.s BE =T and B = RSg4, where B =annual pension, E=unit annuity,
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and T is the total contribution to pension. Thus R = T'/(FESg4).
By Theorem 10.1 (page 90), the salary received in the year before retirement Sgy is

Ses =S95564 /505 A AosBea/Fa5 = 1.055472 Ags = 6.704751 Ays
(65—25)12 (65—25)12

1 = 1 S25-+i/12 i
T=— Ags1i/121.0807/12 = — Agy —=1.08%071/12
12 ; CA25+i/12 12 ; 2 S5
A (65—25)12
= D L05VLostom/e as 3, = 1.05Y
i=1
0.055A 1 — 480
=20 (080 | e
12 1 — gy lr=(1.05/1.08)!/

~28.636 Ass.
E =il +0.6a0% — al),) = 11.3576 — 0.6(15.4730 — 10.7579) = 14.1867

as dégf)il = 1_12 Zzo 1'045i/12i/12p65:61>
_ _ 28.636A — _
R=T/ESs = 14.1867><6.7042$51A25 ~ 0.301 = 30.1%.

The next derivation using 5, ~ s,_¢5 (Eq. (10.8)) rather than s,/s, = 5,/5,
(Th.10.1). There are minor difference in results.

y+1
864 :A25 Se4 /325 lettmg Sy = / gtdt
k" Yy
~A955645/525  (or Aosses/s245 by Eq. (10.8))
=1.04%9° Ay = 4.7078 Ays.

The target pension benefit is B = RSgq = 0.65 x 4.7078 Ags = 3.0601 Ays.
T = B@ad +0.6(a5Y — al2)) = B+ (10.5222 + 0.6 x 3.9128) = 39.3826 Ass.
The total contributions at retirement is 7'(¢) = 719.6316cAy;.
T(c) = P yields ¢ = 5.4725% per year.
(b) By Eq.(10.4), the total contributions at retirement with ¢ = 5.5% is

T = 1—12 25251_25)12 cA25§25§L%1.()840_i/12 ~ 28.636 A5 as the previous derivation.

By Eq. (10.8), the salary received in the year before retirement Sgy is
564 = A25864/§25 ~ A25564/824‘5 = 1.0564_24'5A25 = 68703A25
The target pension benefit is 6.8703A455R = B.
The APV at retirement of total pension is
T = Bliigs” + 0.6(ie1 — iigsgr))-
df(igf)il = % Z;’io 1-045i/121/12p65:617
where ;19p65:61 = P((65) and (61) survive i/12 years).
T = B(11.3576 — 0.6(15.4730 — 10.7579)) = 14.1867B = 14.1867 x 6.8703 As5 R.

14.1867 x 6.8703A55R =T = 28.636 A5
Thus R = 29.38%.
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In a DB pension plan, a member of the plan may either retire at the normal age or exit
from the plan for various ways, such as withdraw (to take another job), disability retirement,
normal retirement (or age retirement), died in service. We assume that the exit modes are
independent of each other.

The demographic elements of the basis for pension plan calculations include assumptions
about survival model for members and their spouses, and about the exit patterns from em-
ployment.

The members might withdraw to take another job with a different employer at earlier ages,
and may be offered a range of ages at which they may retire with the pension that they
have accumulated. Some will die while in employment and another group leave early through
disability retirement.

In a DC plan, the benefit on exit is the same, regardless the reason for the exit. Thus there
is no need to model the member employment patterns. But there is the need for the DB plan.

10.2 Multiple decrement model for a DB pension plan

Hereafter, we use the following notations:
00: no exit;
01: withdrawn from the pension plan;
02: disability retirement;
03: age retirement;
04: died in service.
tpx P(Withdrawal exit time> x 4 t|the member survives z),

tpx P(disable exit time> x + t|the member survives x),
P(retirement time> x + t|the member survives x),
tpx P(death exit time> x + t|the member survives ).

Remark. Under the multiple decrement model, we have Tél), Tl@), ng3), Tg§4) and let

T = min, T, distinguishing from T, = (X —2)|(X > x), where X is the survival time of a

person. T

Death may happen after withdrawal or other exit. So
DY £, = P(T, > t) # P(TY) > ).
% = i = P(TY > ) = P(TY > t,J, = i)+ P(TSY > ¢, J, #4) # P(TS) > t, J, = 4.
o) =PI > 1,0, =),
22 = i = P(T) > t) = P(exit time> z + ¢|(z)).
e = P(T, > t) = P(age at death > z + t|(z)) = P(X >z + t|X > x).

Using the notation before, if the survival time is continuous, then

is the exist time of a person from the employment since x.

POt p/ = exp(— fo ,ux+5 = exp(— f " 10%ds) ? or = exp(— f pdtds) ?
tpx = ) = exp( f() :uers )7

t
Y ) = exp(— [ M?;is s),

tp;l; —tp:c ) eXp( fg Mm+s )
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Example 10.5. Assume in a pension plan that

(1) 30% of the members surviving in employment to age 60 retire at 60 and
all members who remain in employment to age 65 retire then;

(0.1 for z €0,35)

(2) pdt = p¥ =< 0.05 for x € [35,45)

0.02  for x € [45,60);

(3) 2% = pi = 0.001 (we actually only need to know for x € (0,65));

(0 for xz €[0,60)

(4) 2 = pl =< 0.3 discrete at v = 60

0.1 for x € (60, 65];
(5) 10 = pd = A+ B x ¢, A =0.00022, B = 2.7 x 1075 and ¢ = 1.124.

(a) P(retiring at age 65 |age 35) = ¢

(b) For each mode of exit, calculate

the probability that a member currently aged 35 exits employment by that mode.
(¢) Find the probability that a member currently aged 35 survival to age 65 (assuming fi,

Sol. (a) P(retiring at age 65|age 35) = 7
P(retiring at age 65|age 35) < P(being retired by age 65|age 35) = 1,

P(retiring at age 65|age 35) :P(Tég) > 30) = 30pgg-
=) =PI >0 = o - -l (= ITL, P(T3" > 1))
mel;zrod 1
(z+t)n60 4 ott) 4
= exp(~ / 3 il ds) x [(1 - 0.3) exp(— / Z W0 ds) Lr>60),
0 i=1
melf?z:)d 2
Method 1: 30pgg = 30pgé . 30p(3]§ . 30pg§ . SOngz ? (tpgl — eXp fo Hx+s

_ ,,04
_:ua:

t tA10 tA25
For t € [0,30], p% =exp(— / 195 .dx) = exp(— / 0.05dz — / 0.02dz) by (2)
0 0 t

A10

— exp{—0.05(t A 10) — 0.02[(t A 25) — (¢ A 10)]};

¢
tpg§ _exp(—/ M35+xd$) _ 6—0.00115;
0
¢ o
0
Pas = L t <25 by (4)
0.7 exp(— f25 P8, dx) = 0.7e01=25) 95 <t < 30,

=I(t < 25) + I(t € [25,30))0.7e 0125

97
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Method 2: 30p80 = 10p99 - 15P%5 - 5Pgy = exp(— f f pg dx) =7

0.05+0.001 + 0+ A+ Bc* z € (35,45)
p0 =p0 4+ %% 4+ %% 4 0 = € 0.0240.001+ 0+ A+ Be*  x € (45,60) why open ?
0+0.00l+0.1+A+ Bc* x€(60,65)

35+t
D38 = exp(— / (0.05+ 0.001 + A + Bc®)dz), t € [0,10)
35

45 45 _ 35
10P%8 = exp(—/ (0.051 + A + Bc®)dz) = exp(—[10(0.051 + A) + BC—]) =(a)in R
3

5 Inc

45+t
P} = exp(— / (0.021 + A+ Bc")dx), t€[0,15),
15

60
15Dl = exp(—/ (0.021 + A + Bc")dz) = 15p3s 777 (10.5.1)
4
i (50 _ 45
15945 =0.715-pl3 = 0.7exp(—[15(0.021 + A) + Bl—]) = (0.7b), bisin R
ne
60+t
ey = exp(— / (0.101 + A+ Bc")dzx), t € (0,5),
60
55 _ 60
spoy = exp(—[5(0.101 + A) + Bl—]) see R next
ne

Using R to compute:

> A=0.00022

> B=0.0000027

> C=1.124

> (a=exp(-(10*(0.054+0.001+A)+B*(C**45-C**35) /log(C))))
1] 0.5973421 # 10p2

> b=exp(-(15%(0.02+0.001+A) -+ B* (C**60-C**45) /log(C)))

> a*b

> 0.7*a*b

> c=exp(-(5%(0.140.001-+A ) +B*(C**65-C**60) /log(C)))

> c*0.7*a*b
[1] 0.1758789 # 30p% = 0.1759, the final answer.

Answer to (a): P(retiring at age 65|age 35) ~ 18%.

(b) P(a member Currently aged 35 exits employment by mode j) = Op;(v]) =7 7€{1,2,3,4}.
opgg) P(T(T) > 0,J, =j) = [ fY(t)dt, where f% is the corresponding density.
FO(t) = ,-phs x PJ35+t Why ?
~—~—

see (a) given
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The force of mortality or hazard function of a random variable X: ux(t) = SJ;XTS‘,?)
fx(t) = Sx(t—)ux(t) yieds ,_p2 - u, (:tpggugg+t if ;p3? is continuous at t).
There are 4 modes. Start with Mode (3) (normal retired):
30
(3) P =03 25 p30+1-50-p +/ 1Ps % 0.1dt why 77

30% retire 100% retire

5
=0.3 953 + 30_p% + 0.125pgg/ peadt =~ 0.4193, see R codes below
- ~~ g 0

known —
by R next
5 5 60+t
/ Peodt =/ exp<—/ (0 4 0.001 + 0.1 + A + Bc®)da)dt pu for 4 modes
0 0 60

60

5
B
:/ exp(—(0.001 + 0.1 + A)t — lc

e (¢ =1))dt computed by R :

g

=g
> £=(1:5000) /1000

> g=exp(-(0.140.0014+A)*t- B*C**60 * (C**t-1) /log(C))

> 0.3*a*b+ ¢*0.7*a*b 40.1*0.7*a*b*sum(g) /1000 (fabg(x)dx =" gla+i=2)=e)
[1] 0.4193452 a*b =0.4253701 (see (a) and 0.7b in R codes in p.98)  (a,b,n) =7

(1) The probability that a member currently aged 35 withdraws

30
) = PO > 0.0, = 1) = [ ol
0

10 25 30 10 25
= [ tguaes [ e [ oot =005 [ pBder ooz [ ot
0 10 25 0 10

10 t+35 _ .35 15
=0.05 /O exp(—[t(0.05+ 0.001 + A) + B — ])dt + 0.0210p58 /0 piadt (1.1)

10 t+35 _ 35
:0.05/ exp(—[t(0.05 +0.001 + A) + B— )dt

0 nc
A5 _ o35 15 ct+45 _ 45
+ 0.02 exp(—[10(0.05 4 0.001 + A) + Bl—]) / exp(—[t(0.021 + A) + B ] |)dt
nc 0 nc

~(.5432
(2)  The probability that a member currently aged 35 disability exits

30 30 10 25 30
=pP =P(T" >0,J,=2) = / e pd2dt = 0.001 / padt = 0.001] / + / + / 1p3odt
0 0 0 10 25

10 15 5
=0.001] / PRt + 10 / D00dt + 95p / pU0dt]
0 0 0

[ J/

Vv Vv Vv
see (1.1) above see (1.1) above ?

~0.0166 how ?
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(4) The probability that a member currently aged 35 death exits

30
=) = P(T\7) > 0,J, =4) = / e dt
0

30 30
=A / ipaadt +B/ ipasctdt =~ 0.0208.

known from (2) homework

Notice 0.4193 + 0.5432 4 0.0166 + 0.0208 = 0.9999.
Zle P(a member currently aged 35 exits employment by mode j)=1

Why £ 0.9999 ?

Z?Zl P(a member currently aged 35 exits employment by mode j)

= P(a member currently aged 35 exits employment).

2?21 P(a member in mode j currently aged 35 exits employment)= 4 or 1 7

(c) The probability that a member currently aged 35 survival to age 65 (assuming s, = u2%).
30P35 = exp(— f35 Mdr) = exp(—304 — BE=2) (u, = A+ B x ).

s0p3s = P (T35 > 30) 77 T = min,e(1,2,3,4) T —exit time of (x)#survival time of (x).
The service table

Notations:
[, = total number of persons at age x;
w, = number of persons withdraw at age x;
1, = number of persons retired due to illness or disability at age x;
r, = number of persons retired normally at age x;
d, = number of persons died at age x.
lzoJrk = laco : kpggu
Wgo+k = lxokpgg : pg(erq?
lpgtk = lxokpgg 'p2§+k>
Teo+k = lxokpgg : pgi-t,-k;a

_ 00 .04
Aypotk = l:cok:pmo "Dtk



10.2.

x
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

MULTIPLE DECREMENT MODEL FOR A DB PENSION PLAN

l Wy iy To dy X . Wy Oy Ty
1000000 95104 951 0 237 44 137656 6708 134 0
903707 85846 859 0 218 45 130719 2586 129 0
816684 77670 777 0 200 46 127904 2530 127 0
738038 70190 702 0 184 47 125140 2476 124 0
666962 63430 634 0 170 48 122428 2422 121 0
602728 57321 573 0 157 49 119763 2369 118 0
544677 51800 518 0 145 50 117145 2317 116 0
492213 46811 468 0 134 51 114572 2266 113 0
444800 42301 423 0 125 52 112042 2216 111 0
401951 38226 382 0 117 53 109553 2166 108 0
363226 34543 345 0 109 54 107102 2118 106 0
328228 31215 312 0 102 55 104688 2070 103 0
296599 28201 282 0 96 56 102308 2023 101 0
268014 25488 255 0 91 57 99960 1976 99 0
242181 23031 230 0 86 58 97642 1930 96 0
218834 10665 213 0 83 59 95351 1884 94 0
207872 10131 203 0 84 60— 930857 0 0 27926
197455 9623 192 0 &84 60+ 651607 O 62 6188
187555 9141 183 0 &85 61 58700 0 56 5573
178147 8682 174 0 86 62 52860 0 50 5018
169206 8246 165 0 &7 63 47579 0 45 4515
160708 7832 157 0 89 64 42805 0 41 4061
152631 7438 149 0 90 65— 38488 0 0 38488
144954 7064 141 0 93

Table 2. Pension plan service table

101

dw

95
100
106
113
121
130
140
151
163
176
190
206
224
243
264
288

0
210
212
213
214
215

0

In Table 2, 60— and 65— indicate the cases that the retirement occurs exactly at ages 60 and
65. 60+ indicates that the case that the event happens during age (60,61). [, is not the #
of people alive, but staying on. Check I, = w, + i, +r, +d, + 11 + 1 for x = 20. Why ?

Example 10.5 (continued). Use the service table information to answer the questions in (a)

and

Sol.

(b)

(b). (c) Moreover, estimate 30pss, 2pss and o.5pss.

(a) P(a member retiring at age 65/age 35)= P (T35 > 30) = 30p22
() _

les—

I35

ops’ = P(T. ) S 0, J, = j), P(a member currently aged 35 exits employment by mode j)
P(one withdraws|(35))= opSy = S0, w;/lss = S22, w;/lgs = 1060441884 () 5y

218834

P(one retires in ill health|(35)) = op:(,)? = i flss = St i sy = Bl 0,02,

P(one normally retires|(35)) = Opég)) = Zf5§5 ri/lss = Zfigg ri/l3s

P(one dies in service|(35)) = 0p§45’ =S diflss = S0 dflss =
(c) estimate 3035, 2pas and 2.5pss.

s0Pss = 2 = 9= — 38488/218834 ~ 0.18 ?

I35

218834
_ 27926+---+38488 ~
218834 0.42.
8344215 ~
218834 0.02.

No ! [, is not the # of people alive, but # of people stay in employment at time zx.
Q: How to find ;p, 7
Ans: Recall the Kaplan-Meier estimator (KME) (in Math 450) or the product-limit-
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estimator (PLE) with observations (Z;,6;), i =1, ..., n, Z; = X; AC; and ¢; = 1(X; < C)):

. A
Su(t) =TT -5,
tp <t Rk

where t; < --- < t,, are distinct values of Z;’s with d; = 1, d;, is the number of person died at
time tj, and Ry is the number of person at risk at time t; (= >, | I(Z; > t;)). An estimator

A A For(tr) .4 A
of of B8 % = H(Su(t)? Ty m A 95% CI of Sx(t) is Su(t) £1.966 .
Based on definition of the data in Table 2, one estimates s(20—) = Sx(20—) = 1. Moreover, dj,
is not the people died at time k, but in the time interval (k, k+1). Thus it is better to denoted

by dg., rather than dj, whereas [, remains the same. Then the PLE should be modified as

Sut) =[] - Cll—:),for t=je{1,2,3,..}. (rather than Sp(t) = [Tj<; (1 — %))
k<j

s(65) Iy <es( = di/ls) H (1 —di/lk)

30P35 = = -
s(35) Htk<35(1 — di/l) k:35<t, <65

83 84 215
=(1— 1-— oo (1 — ——) = 0.999.
( 218834)( 207872) ( 42805)
= [ (1—di/b) = (1— )1 - o)
218834 207872
35<t, <37
25035 = H (1 —di/li) = 2pss.
k: 35<k<37.5
Dy = H (1— %) rather than H (1— %) (10.5.2)
r<k<z+j z<k<j

If assume UDD, 9 5p35 = opss[(1 — ) + (1 — ’%8)] = opss[l — 7"%8] with r = 0.5, as

2.5P35 = (1=7)ap3s+7r3pss = (1-7) H (1—%)—#7" H (1_%) — 2p35[1—r+7’(1—%)],

[
k: 35<k<37 k k: 35<k<38 k 37

Use R program:
> (1-83/218834)*(1-84/207872) # 0.9992168

> q()
L=c(1000000,903707, ..., 38488)

d=c(237,218, ..., 0)
a=prod(1-d/L)
b=prod(1-d[1:15]/L[1:15])
a/b

prod(1-d[16:46] /L[16:46])

Example 10.6. Employees in a pension plan pay contribution of 6% of their previous
month’s salary at each month end. Calculate the APV at entry of contributions for a new
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entrant aged 35, with a starting salary rate of $100,000 using
(a) exact calculation using the multiple decrement model specified in Example 10.5,
(b) the values in Table 2, adjusting the APV of an annuity payable annually under UDD.
Other assumptions:
Salary rate function: Salaries increase at 4% per year continuously; (s,)
Interest: 6% per year effective.

Sol. Formulas: S, = ["" Aydt, S,/S, =s,/ss, = Ay/As =5,/5, (= 1.04V°7), by Th10.1.
Q: ]_06 is A35 or 535 ?
(a) Let Y be the exit time in years. APV of total contribution for (35)= ?

(Y —35)12 0 06 30%12
Ans = EL kz—; 120 06335+k/12” 2 Z 835+k/12” /2 k/l2pgg =7

where p% is given in Ex.10.5, v = 1/1.06, 5, = 5, = 1.04Y, g—z = ﬁ = 1.04Y"7%,
S, = 104778, = 1.04""3Sy5 and S, = [V Aydt,
Sis = [y T At = [} AgsStdt = [ Ags1.04%dt = Ags E0ZL = 1.02455 & Ags = 10°.

Three perlods (35,60), 60, (60,65]. lgo— < lgo- Why 3 7
25-D3 > 0.To5p% = 25p%0.
lgo— = # of people alive at 60.
lgo = # of people remain in work in (60,61).
So kin ), of Ans: 1:(25 x 12 — 1), 300, 301:360.

0.06 \30x12 00 k/12 __ 0.06 \—~30x12 00 k/12, k/12 ~
Ans = T2 2 k=1 k/12p35535+k/1211/ = 19 k=1 k/12])35535(1-04) /12 (535 ~A35)

~ M[% kpool 04k/12vk’/12+ 00 0425025+ % 009 04k/12vk/12] _9 ( _ 00)

~~ 19 £ L P35t 25—P351- 2 %p% . ! (tPe = tDy

(P32 = exp(—t(0.05 + 0.001 + A) — Be*(ct — 1)) t €0, 10)
32 = exp(—1(0.02 4+ 0.001 + A) — Bc*( )) 15)

b —

1
By Eq.(10.5.1) in Ex.10.5 ¢ ;p2 = exp(—t(0.1 + 0.001 + A) — Bc%(ct — 1)) 0, )
D52 = 1052 -+ 110P%2 (see 2 lines above 10, 25)
@pgg = 25293(5) : t—25p88 (2510%(5) = 0.725_pg(5)) t € [25,30)
0.06 x 10° =2, 104, 1.04 il 1.04
o0 X AU /12 00 25 00 k/12
Ans ~ 12 [2:: 7p35(1 06) + 25 p35(1 06) + :2: %p35<1,06) ]
0.06 x 10° [ o2 4, 1.04 o i 1.04
_ /12 00 00 k/12 _ _
12 [; 12p35( 1. 06 + 10P35 kgl 7_10]945 1. 06) (m+npx mPx npx-i—m)
1.04 )25 00 00 L.04,; 10 0 ;o -
+ 25— p35(1 06 + 25D35 Z 7_25]760 T 06) (1p,° is given above) (10.6.1)
k=301

One has to use program to compute Ans, as ), ¢’ has no simple expression.
(b)  With ;p% based on Table 2, compute F( (Y 35)12 LeSs510/100712).
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The expression of Ans is as in Eq. (10.6.1), but ;p3 is different.
Since ;pY? is discrete if using the service table, one has to use program to compute it. ;p39 = lzl:t ,
fort €{0,1,...,25—,25,...,29,30—}.

o PR —5) + s for i € {1,...,12} and j € {0,1, ..., 28}, except 25 and 29
C P35 = i i . )
12+ PR — )+ ey pRE ford € {1,...,12} and j € {24,29}

due to UDD.
006><105 g 1.04. .,
Ans =————3 "3 " (- Co6) )it/ (10.6.2)
7=0 =1

Additional Homework 2: Use R to compute Ans. in Eq. (10.6.1) and (10.6.2).

10.3 Valuation of benefits

The term accrued benefit means a benefit calculated using both past service and the
average salary as of the determination date. There are two methods for evaluation. The
approach which uses salaries projected to the exit date is called the projected unit credit
(PUC) method. Valuating the accrued benefit with no allowance for the future salary increases
is called the traditional unit credit (TUC) method, or unit credit cost method, or
accrued benefit cost method, or current unit method.

In a DB final salary pension plan, let B, be the basic annual age retirement pension benefit

B, = nSpipa or nB (B # Spina), where (10.3.1)

(1) n is the total number of year of service,

(2) Spin is the average salary in a specific period before retirement (1 or 3 years);
(3) « is the accrual rate, typically between 0.01 and 0.02.

(4) B is the fixed pension benefit per year.

The APV of the age (x) retirement pension is Bif?.

B, = naSp;, is used in the next two sections and B, = nB is used in the last section.

For an employee who has been a member of the plan for all his/her working life, say n = 40
years, this typically gives a replacement ratio R in the range of 40-80% (na = 40(1% ~ 2%)).
It can be interpreted that this benefit formula as that the employee earns a pension of 100a%
of final average salary for each year of employment.

For a member who is currently aged y, and who joined the pension plan at age e (< y)
with retirement age 60, an estimate of her annual pension at retirement is (60 — e)g rinc. It
can be split as

(60 — e)gpma = Sy — e)gpian —I—EGO — y)SFmOﬁ.

v ~~
accrued benefit to be earned

Example 10.7. A pension plan in Example 10.5 offers an age retirement pension of 1.5%
of final average salary for each year of service, where final average salary is defined as the
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earning in the 3 years before retirement. FEstimate the APV of the accrued age retirement
pension for a member aged 55 with 20 years of service, whose salary prior to the valuation date
was $50000. Basic assumptions:

(1) The pension is paid monthly in advance for life, with no spouse’s benefit.

(2) Interest rate is 5% per year.

(3) Salary scale s, is given in Table 1 with the linear interpolation.

(4) Post-retirement survival: p, = A + Bc® = 0.00022 + 2.7 x 1070 x 1.124".

(5) Exit age is Y, which is age retiring (Y € W based on Table 2).

Sol. The accrued age retirement pension is Bng,m), where B, = naSg;, (10.3.1), n = 20,
o = 0.015, Sps = 5000025 and zy = 2=E2tYat - Thys wnite Bydl” = naSpumay . Its
(12) LY 55

present value is By, LU=
Solve: Ans = E(Byd%,lQ)vY*55]((55) age retiring))=...
Ans =3, 2 i{"? R =P ((55) age retiring at k) = e 2 il oh 5, o |g03 =

Need to specify or derive W, 55165, dk and By, !

1. W = {60—, 65—} U (60,65),
2. k-s5/gs8 = 7= is based on Table 2.

3. a(12) S v"/u%pk. 3 ways for i py or il

=0
(1) direct derivation by (p, = e~ Jomede )y — A4 Be®, x>0 (see assumption (4)),
(2) direct derivation by Table D.1 (p.996),
(3) Table D.3 (see p.998) (not quite convenient here for dss 5 etc. (see Eq.(10.7.2) below)).

4. By: If the member retires at exactly age 60 (i.e. 60—, the accrued benefit, based on 20
years’ past service and an accrual rate of 1.5%, is an annual pension payable monthly in

advance from age 60: (By = naSgm)
3.332 + 3.382 + 3.432

Beo = 20 x 0.015 x 50000=% = 1500022 = 15000 — 15,922.79
S54 Ss54 3 x 3.186

based on Table 1, with probability f*(60) (= 7% (from Table 2)).

If the member retires at age 604, that is, in (60,61), the accrued benefit, based on 20 years’
past service and an accrual rate of 1.5%, is an annual pension payable monthly in advance
from age 60 approximated by

0.5(3.332 + 3.382) + 0.5(3.382 + 3.432) + 0.5(3.432 + 3.484
Beos. = 15000222 — 15000 ( * ) +0-5( + ) + 0.5( + )
S54 3 % 3.186

based on Table 1 and UDD, with probability o |¢%, estimated by rGO*.
If the member retires at age 61,62, 63, 64...

The APV of the accrued age retirement pension is

64
Ans =~ 15000( Y ool N Mv-“’“—ﬁoagﬁk-%) ~ 137,508. (10.7.1)

S [ S
ke{60—,65—} 04 % j—e0 0%
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based on the assumptions in Example 10.5. Here
rr+ and r,_ are from Table 2, e.g., r¢o— = 27926 and rgo. = 6188, and
$60.5 — (860 + 861)/2 from Table 1.

Remark 1. Table D.3 gives a,. For a period of length %:

3(m)
-

(i) the interest factor is (1 +i)Y/™ =1+

(ii) the effective rate of interest is (1 44)"/™ — 1 = i),

(i) the discount factor is (1 + 7)™ = o'/m = (1 — d)/m =1 — &2,
(iv) the effective rate of discount is 1 — v*/™ = d(m—m).

Under a uniform distribution of deaths within each year,

(m) id . i —

Uy = =y gmy & T S gom)

(10.7.2)

Additional Homework 3. Write an R code to derive Ans in Eq.(10.7.1) by directly deriving
d, and by Table D.1 (p.996).

The term accrued benefit means a benefit calculated using both past service and the
average salary as of the determination date. In a DB final salary pension plan, let B, be the
basic annual age retirement pension benefit

B, = nSpy,a or nB (B # Spia), where (10.3.1)

(1) n is the total number of year of service,

(2) Spin is the average salary in a specific period before retirement (1 or 3 years);
(3) « is the accrual rate, typically between 0.01 and 0.02.

(4) B is the fixed pension benefit per year.

The APV of the age (x) retirement pension is B.al™?.
B, = naSFg;, is used in the next two sections and B, = nB is used in the last section.
Ex. 10.7. A pension plan in Example 10.5 offers an age retirement pension of 1.5% of final
average salary for each year of service, where final average salary is defined as the earning in
the 3 years before retirement. Estimate the APV of the accrued age retirement pension for a
member aged 55 with 20 years of service, whose salary prior to the valuation date was $50000.
Basic assumptions:
(1) The pension is paid monthly in advance for life, with no spouse’s benefit.
(2) Interest rate is 5% per year.
(3) Salary scale s, is given in Table 1 with the linear interpolation.
(4) Post-retirement survival: p, = A + Bc® = 0.00022 + 2.7 x 1076 x 1.124%.
(5) Exit age is Y, which is age retiring (Y € W based on Table 2).
Sol. The accrued age retirement pension is Brdg/m), where B, = naSg;, (10.3.1), n = 20,
o = 0.015, Sz = 500002 and 2y = ¥=F22Et Thyg write By = naSpiniy -

Its present value is Byl ?vY =5,

Ans = E(Bya\"”vY=I(M = 01))),  where M is the mode (M € {01,02,03,04}),
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Ans =3, 2 a,(C 2 yk=55P((55) age retiring at k) =3, 2 al(c D ph=55, g3 =...,
Need to specify or derive W, r_s5/05%, dk and By !

Ex10.7 is for the accrued age retirement pension. There are other modes: withdraw, ill
leave, and death in service.
Withdrawal pension

When an employee leaves employment before being eligible to take an immediate pension,
the usual benefit in a DB plan is a deferred pension, i.e.,
accrual ratexservicexfinal average salary,

but would not be paid until the member attains the normal retirement age, where the fi-
nal average salary is based earnings in the years immediately proceeding withdrawal. Some
adjustments are called cost of living adjustments (COLAs).

Example 10.8. A final salary pension plan offers an accrual rate of 2%, and the normal
retirement age is 65. Final average salary is the average salary in the three years before
retirement or withdrawal. Pensions are paid monthly in advance for the life from age 65, with
no spouse’s benefit, and are guaranteed for 5 years (if the member died before age 70).

(a) Estimate the APV of the accrued withdrawal pension for a life now aged 35 with 10 years
of service whose salary in the past year was $10°, in the following two different cases
(i) with no COLA,

(1) with a COLA in deferment of 3% per year.

(b) On death during deferment, a lump sum benefit of five times the accrued annual pension,
with a COLA of 3% per year, is paid immediately. Estimate the APV of this benefit. Basis:
(1) Service table: Table 2.

(2) Salary scale: From Table 1;

(3) Interest rate is 5% per year.

(4) Post-retirement survival: the standard ultimate survival model

http://people.math.binghamton.edu/qyu/ftp /tableD. pdf;

Remark. In this example, the evaluation method is the projected unit credit (PUC) method,
as it allows future salary increases. It also related to the accrued benifit (annual) pension
By = naSpi,. In Ex.10.7, solve  E(Byi{ oY =55 [(M=03)).

Sol. (a) (i) With no COLA and v = 1/1.05, solve E(Bya(?; 05=35T(M = 01)A),  where
A = I((35) is alive at age 65), M is the mode (M € {01,02,03,04}), Y is the exit age,

sy73+sy72 + sy72+sy71 + sy71+sy

By = 10aSgin, Spin = 10° 2 3 2 2 s, see (2) (similar to Bgo, in Ex.10.7)
534

Reason: According to the service table assumption, the member can withdraw at any age up
to 60, that is, ages in {35, 36, ...,59}. Withdrawal between ages ¢t and ¢ + 1 (i.e. in [t,t + 1))
is treated as t + 0.5, and t € {35,...,59}. That is, the withdrawal age is treated as a discrete
rv. Y e W ={35.5,36.5,...,59.5}.

E(Byd%U?)OAI(M =01)) = 0™ il Z Bas54t - 29.5-tD98 541 * 1405|055 (1)

655
t=0
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Two issues: (I) Why ? (II) a\ ; ? Bass=" 205-D3954=" t+05/a55= "7

(I) Ans =E(Byiigsv™ I(M = 01)A) = v’ E(By I(M = 01)A)
=" a2 B(E(By I(M = 01)A| D)) D=|Y —35]
_&%QE(B I(M = 01)29.5—ngg.5+D)

N———

P(A=1|D)

30::(12) 01
20512 E Bsssit 20.5- tp35 5+t < +40.5|q35
65:5 N D e —

P(A=1,M=01|D=t) P(D=t)

(IT) Bsssis =na - Spim = 10 x 0.02 x 10° x M, (n=10 years service)

534
_ Sy-3+ 28,9+ 28,1+s5,
Zy+0.5 = 5.3

(sy from Table 1),

)

00 65

j9 = f ['able
29.5—tVF35.5+t (l35 . l36 t)/2 rom la 2

40, 5|q35 = l?’;;t from Table 2, as withdraw is really between 35 + ¢ and 36 + t.

d% :dgz) + 5p65v5d(70 (3 ways for a(m ) lig, Tables D.1 & D. 3) in my website).

1 1-2° l 1 ;
(12) 70 5 § i/12
Table D.1: 65:5 121_—2]1/12 + (@?} )E ' v / i/12p70 (ly from Table D].)

1 1—1)5 1 (l70 5 Zl70+z/12 i/12

=T —oim + o @U ™ (see Remark below)

7?7

/\
100-70 —

1 1-2° 1l 5 lro+i — drotik /12 41010
- v’ UDD) (3
BT 1l ; o e

~4.45 4 0.75 x 11.55 ~ 13.16.

Ans =E(Byassv* I(M = 01)A) = v CL%Z Bss.5429.5-tP%. 54t t+0. 51a5
[
502 210 0.02 . 1072355+ l 6? 2 W3St _ 42046
o R (Iss4e + 36+t)/ I35
=Bs5.5+t=naSFin Table 2 on or D.1 ? Table 2

Remark. If use Table D.1, ;p?° = lz:t
Z‘>xj—-1’|qa3 :Z>xl_] — 1 => 1p$ — z+1 — lgc dy — 1_6[1_3: — 1_1qx
J= j I -

le

and lzl+t _ ly —d, — dx+1l e 1— Zﬁzlé dyti
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R codes for 232%770 o WU”WH in (3):
L=c(91082.43, lr1, ..., Lioo)
d=L[1:30]-L[2:31]
d=c(d,L[31])
a=1:31
for(i in 0:30)
a[i+1]=sum((L[i4+1]-((0:11) /12)*d[i+1])*v**(i+(0:11) /12))
sum(a)/L[1]
(ii) With a COLA in deferment of 3% per year, solve

E(Byiz50°°1.03*5 P AI(M = 01)) (> E(Byissv® AI(M = 01)) as D > 0)

24
l
Ans = o120 3" 9 5 101725465 T, 032951 — gggs3,
05:5 o= $34 lsssie Uss

Remark. Recall that under the multiple decrement model before section 2, TV is the death
time since x due to i-th cause, ¢ € {1,2,...,m} and Tm(T) = min; ; 7; is the survival time since
x, same as 1.

= P(T) > 1,0, =i) = P(TY > t,J, =) ?

) = P(TY > ).

e = P(T, > t) = [, P(TY) > ¢).
Since Section 2, we use the following notations:

00: no exit;

01: withdrawn from the pension plan;

02: disability retirement;

03: age retirement;

04: died in service.

Y = P(withdrawal exit time> z + ¢|the member survives z) = P(Ts" > ¢),

PP = P(disable exit time> z -+ t|the member survives z) = P(T? > t),

p% = P(retirement time> x + ¢|the member survives z) = P(T%") > t),

™ = P(death exit time> x + ¢|the member survives z) = P(TS" > t).
T\ is the exist time of a person from the employment since x, distinguishing from
T, the survival time of a person since .

™ £ py = P(T, > t) # P(TY"” > t) (different from the statement in Remark).

DY =i = P(TY > ) = P(TY > t,J, = i)+ P(T > t,J, #4) £ P(T) > t,J, =),
S = P(T) > t, 0, =1i).

P = o) = P(TQET) > t) = P(exit time> = + t|(z)).

e = P(T, > t) = P(survival time> x + t|(z)) = P(X >z 4+ t|X > z). X =survival time.
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Using the notatlon before, if the survival time is continuous, then
tpz tpl“ - eXp f() Mr+s
4
tpx tpm = eXp fO i=1 Mz+s ) = z 1 GXp f(] 'U’96+5
Remark about midterm.

Problem 1. A continuous two-life annuity pays: 100 while both (30) and (40) are alive; 70
while (30) is alive but (40) is dead; and 50 while (40) is alive but (30) is dead. The actuarial
present value of this annuity is 1180. Continuous single life annuities paying 100 per year
are available for (30) and (40) with actuarial present values of 1200 and 1000, respectively.
Calculate the actuarial present value of a two-life continuous annuity that pays 100 while at
least one of them is alive.

Sol. 1005m :100(630 + G409 — Q3. 40) ? (530, a40 and aso- 40) ?

Formulas: P, = ‘2—; and a, = fo vpadt. => Gs0.40 = fo v'4p30.40dt and G5 = OOO v pgandt.

Thus @30 = 2= = 1200/100 = 12, dso = 1000/100 = 10 and @s0.40 can be found from
1180 =100aszp.40 + 70/ v' (130 — 1P30:40)dt + 50/ v' (10 — 1P30:40)dt
0 0

=100as0.49 + 70(/ v ipsodt —/ v"1p30.0dt) + 50(/ v ipaodt —/ 0" p30.40dt)
0 0 0 0

=100a30:40 + 70(a30 — 30:40) + 50(@a0 — A30:40)
:100530:40 + (70)(12) - 70630:40 + 50(10) — 50530:40.

_ 70)(12)+500—1180 : . )
Hence, @39.40 = ( )(70 4230—100 = 8. The actuarial present value of a two-life continuous

annuity that pays 100 while at least one of them is alive is

Problem 2. For a special fully continuous whole life insurance on (x), you are given:
(i) Mortality follows a double decrement model. (ii) The death benefit for death due to cause
1is 3. (iii) The death benefit for death due to cause 2 is 1. (iv) " (t) = 0.02, t > 0. (v)

s (t) =0.04, ¢t > 0. (vi) The force of interest, J, is a positive constant.

Calenlate (1) (2p1) (1), (2) (1pt) S0 (1), (8) (201) fyer , (1)
(4) (30pt) the benefit premium for this insurance.
Sol. Assume t > 0. (1) f (1) = e~ pit , by formulas:

,UX(:E) = /L(iL‘) = lg = SJ:((SC)) or ( ) /J’Z‘SX( ) ,Ux ( ) fg )(y

23. X ~G(a,p). f(x)= %1fx>0 p=af, o®=af’ Ta+1)=al(a)
24. Exp(\) = G(1, ),

(2) Sg) (t) = e~mteH2t = e=(m+n2)t by the formulas:
I£ T, LT, then (Goy = 1Guty: tPay = tpa:tpy and Hay (1) = pao(t) + 1y (1)

(3) frm , (i) = u(l)e it where = Y + 12, by the formula:

. f@ (@
f(T;T)JI)(tJ) = 5T< NG )SngT) (t) = Mg(gj)(t)STz(f)(t),
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(4) P, =

§\|D>\

2 =7

— —(1)  —(2 o
A, =34 + A7 = / o Bfpen , (0 1) + Sy, (,2)] d
0

o0

:/ e (3uD (1) + pl (t))e e W) g see (3) above
0
o 0.1
—5t ,—0.06t
= 3(0.02 0.04)) dt =
| et 600 + 0on)a -
o0 oo 1
= =t (1) dt :/ —ot ,—0.06¢ dt =
4 /0 ¢ the . ¢ ° 5 +0.06°
- A,
Pg; - = O.]..D
Qg

5. The force of mortality is px(x) = p(z) = p, = i(x(—gi)) P (t) = pe(t). If X is cts,
plx) = —5InSx(x), Sx(x) = exp (= [y p(t) dt), frw)(t) = wap(z +1). pa(t) = plz +1).
7. The multiple-decrement model:
1. Tél), o Tém) are independent and cts r.v.
2. T = min{T", ... T} and {J, = j} = {T¥" = T}
, - f (T)() m ,
2 = Sy (), w7 () = plTy = 3 0w = X (1),
WY = P07 >0, = ). p) = S,0(0).

Example 10.8. (b) On death during deferment, a lump sum benefit of five times the accrued
annual pension, with a COLA of 3% per year, is paid immediately. Estimate the APV of this
benefit. Basis:

(1) Service table: Table 2.

(2) Salary scale: From Table 1;

(3) Interest rate is 5% per year.

(4) Post-retirement survival: the standard ultimate survival model
Sol. Solve Q = E((5Bx)v* 35" Ix[(Tx <65 — X)I(M = 01) - 1.037x), where

X is exit time, treat X € {35.5,...,59.5} due to Table 2 and UDD.

Bx = naSgi,. n=10 years of service

M is exit mode,

T, is the survival length after (z),

let D =X —355¢€{0,...,24},
Q = E((5Bx)vPT05(1.03v)™> I(Tx < 65— X)I(M = 01))

= E((5Bx)vPT0° (M = 01)E((1~03)TXJ(TX < 65— X)|X))

1.05
= E((5Bx)vPT0° (M = Ol)A35 5+pa95-p|;) Where j = 0.02/1.05 =1 - 1.03/1.05.
= Y7(5 % 10 X 0.02 x 1072858y H05 5 T o Wion

— 105 24 2355+t , t+0.5 W35+t
=10 “eas U X A35 5+t:295—F lag
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Here Ax a1 = E(™1(T, <n)). Using basis (1) and (3), we have

—1 295t 295t S 1351

Ags 51020571 = Jo :ui(’)&’) 5)>+x35+xp35d$ = V(A + B )2 da
10500.5 24

_ —1 N
- l 23554+t W35tV A35.5+t:m| ~ 1813.
S34l35

Ignore the rest of this page !
(b.2). Using basis (3) Z;5.5+t:29.57t‘ = 029’5_t v” (exp(— fg oy dy)) pipdx. This approach ignores
that p, is related to I(M = 01).
(b.3). Using basis (1) and (3) (Table D.1) and using UDD,

29.5—t
—1 1.03
Ay iy = /0 (o) Frinsss (@) (for t € {0,...,24})

[29.5—¢]

©1.03. dssirrie 295-t 103, d
_ Z / ( )m 35+t+ ldl‘-i—/ ( );r 59 de
— Jia 105" g5 1205-¢ 1.0 I35544

This approach mistakes ¢|¢%* for post retirement df.
(b.4) Q = [((5B)v" BE(™I(T, <65 —x)-1.037)|X = 2)f{(z)dx,
with By = 2 x 104% and v®3° =95 for D= X — 35 € (t,t + 1], t € {0,1,...,24}.

Z w

5 B335+t 1405 35+t

Q=10 E X A35+t A where
—y o34 35

30—t

103 di\ d35t4i-1
35+t30 30—1)j — Z/ 105 05 H (1 — 222l gy

lp " 1 i
ki 35+t<k<35+t+i—1 ko 035+4t+i—1

_?it (1)’ — (5@ H (1— %>d35+t+z 1

log 103 )7
i=1 08 105 K 3541<k<354thiol kU35 4t4io1
30—t 1.03\4(0.02

~ (105)" (T5) H (1— %)d35+t+i71
4 0.02 < ™ lsstiviaa
i=1 ki 354t<k<35+t-+i—1

Similar mistake as in (b.3).
Career Average earnings (CAE) plans

This plan differs from the standard one in replacing Sg;, by (T'PE),/n, where
TPE= total pensionable earnings during the service and z is the age at evaluation.

(TPE).

n

B, =an (= anCAE).

A popular variation of the CAE plan is the career average revalued earnings plan, in which an
inflation adjustment of the salary is made before average. The accrual principle is the same.
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Example 10.9. A pension plan offers a retirement benefit of 4% of career average earnings
for each year of service. The pension benefit is paid monthly in advance for life, guaranteed
for & years, with no spousal benefit. On withdrawal, a deferred pension is payable from age 65.
The multiple decrement model in Example 10.5 is appropriate for this pension plan, including
the assumption that members can retire at exact ages 60 and 65. Consider a member now aged
35 who has 10 years of service, with total past earnings of $525000.

(a) Write down an integral formula for an accurate calculation of the APV of his accrued age
and withdrawal benefits.
(b) Use Table 2 to estimate the APV of his accrued age and withdrawal benefits assuming that

(1) Post-retirement survival is the Standard Ultimate Survival Model,

(2) Interest rate is 5% per year.

Sol. (a) APV of his accrued age retirement and withdrawal benefits are
E(HpvPI(M = 03)) and E(Hpv*I(M = 01)A), respectively, where

X is the exit age, D = X — 35, M is the exit mode,

(X—=35,M) = (Még), J35) under the multiple decrement model). > (t)deffM(T) s (t,3).
H, = d:(;;jt%Bt (total pension),  ([17] in 450)

B; = aTPE= anCAE = 0.04 x 525000 = 21000 (annual pension),  (a = 0.04)

A = I((35) survives to age 65).
APV of his accrued age retirement benefits) is

E(HpvPI(M = 03)) = / Ho' f3(t)dt + Z Hyp' -
(25,30)

te{25,30}

30
—21000( / o' il (E)de + 0P al 2 £ (25) + o™a 2 fF(30))  (10.9.1)
95 35415 65:5

30
12
—21000( /25 DD 14 0 180+ oM, )

E(Hpv* ' I(M = 01)A) = E(E(HpvI(M = 01)A|D))
=E(Hpv* I(M = 01)E(A|D)) = E(Hpv*I(M = 01)30_p30.,)

25
=21000d 20 / s0_P00, O (t)dt (10.9.2)
’ 0

25
:21000&%@30 /0 30— tp35+t tpggﬂgé—i-tdt
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(b) By (10.9.1), APV of his accrued age retirement benefits is E(Hpv? (M = 03))

30
—21000( / vtaéﬁ B (#)dt + 0?2 15(25) + 0™l 135 (30))
25

2554k (12)  T60+k 25,,(12) 760~ 30,;(12) T'65 ?
N21000 Z/ 605+k5 I35 . dttv 60.5 [35 T 655l35) Why *

:21000(2 otk T00th | TO0- 25502) 4 T80 30512)) o 31666,
pr 60 5+k:5 [35 I35 60:5 135 65:5

APV of his accrued withdrawal benefits is

25
E(Hpv™I(M = 01)4) = 21000 2™ / s0-tD554: /D (t)dt by (10.9.2)
’ 0
w w w
= 21000(—= P (20509 5) + T (28.5P365) + -+ + = (5.5D50. 5)) = 33173.

l3 l35 l35

10.4 Benefit reserves

In a typical DB pension plan the employee pays a fixed contribution, and the balance of
the cost of the employee benefits is funded by the employer. The employer’s contribution is
set at the regular actuarial valuations and is expressed as a percentage of salary.

The t-th actuarial (accrued) liability, denoted by ,V/, is the value at the valuation date
t (often at the beginning of a year), of the pension benefit accrued from the date of entry
into the plan to the date of valuation, taking into consideration all the appropriate benefits.
/V is also called the reserve or the t—th benefit reserve. The normal cost is the present
value of a single year’s accrual.

Vo= Bt - e)aSFméiSQ)), where R is the retiring age and e is the entering age.

(10.9) Vo=t —e)aSpy, x P x . patt it P(R=r)=1,
—_— ~ ———
annual PB 1 $/year  present value

as P(R=r|T, =1t)=P(T; >r —1).

For the moment, we assume for simplicity that

(1) all employer contributions are paid at the start of the year,

(ii) no employee contributions,

(iii) any benefits payable during the year are paid exactly half-way of the year.

With these assumptions, the normal contribution (or normal cost), denoted by C;, due
at the start of the year ¢t to ¢t + 1 for a member aged x at time ¢, is found from

(10.10) C; = APV of mid-year exists benifits (MYEB) +v - 1p% -,V — V.

Example 10.10. A member aged 50 has 20 years past service. His salary in the year
to valuation was $50000. Calculate the value of his accrued pension benefit and the normal
contribution due at the start of the year assuming valuation uses “final pensionable earnings”
(before age retirement) at the valuation date, and assuming
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(a) projected unit credit (PUC) funding, and (b) TUC funding, (see Section 10.3),
The pension plan:

accrual rate 1.5%,

normal retirement age 69,

life annuity payable monthly in advance,

no benefit due on death in service.
Assumptions are as follows:

no exist other than death before normal retirement age;

interest rate is 5% per year effectively;

salaries increase at 4% per year (in case of PUC);

mortality always follows p, = A+ Bc® = 0.00022 + 2.7 x 107¢ x 1.1242.

Sol. Compute 5V and Cjy, where ;V = (t — e)ozS’Fm X T_tptv’"_td,@) (see (10.9)), Cy is as in

(10 10), e = entering age =30, t = 50 or 51, 7 = 65, v = 1/1.05, ;p, = exp(— [; A+ Bc"vdy),
il = £ 30 v/ %65 19pes = 13.087, a = 0.015 and with dif ferent Sy, in (a)&(b).

( ) The PUC funding. Spi, = Sip2%= 50000 x 1.04'% 77 = 90047

7

The accrued pension benefit 50V = 20 x 1.5% x Spm X 15P50 Xt x aé152) = 163161,

51V =21 x 15% X SFm X 14Ps1 X U >< (1%2). (1)
N 21
Ulp50'51V =21 x 15% X Spm X 15P50 X U >< (l((315) = 2—050V
The normal contribution (by Eq. (10.10)) is
050 = 0 + UV1Ps0 - 51V — 50V = 50V/20 = 8158 (2)

—~—

no midyear exit

(b) The TUC funding. Spin = Si—1, not Sy,
The accrued liability and the accrued pension benefit

50V = 1.5% x 20 x Sy9 X 15p50 X v'° % aélf).

The accrued liability next year

51V = 1.5% x 21 x S5 X 14p51 X v'* x aé]éz)
- (12)

V- 1Ps50 51V =1.5% x 21 x 85() X 15P50 X U 5 x (L65

The normal cost Cyp = 50V(§—(1)%2 — 1) = 8335 (compare to Eq. (2)).

(1.04S49 = S50 compare to Eq. (1)).

Example 10.11. A pension plan offers a pension benefit of $1000 per year of service,
with fractional years counting proportionally. A member aged 61 has 35 years past service.
Determine the normal cost rate payable in respect of age retirement benefits using the following
plan information and valuation assumptions.
(1) Age retirement are permitted at any age between 60 and 65.
(2) The pension is paid monthly in advance for life.
(8) Contributions are paid annually at the start of each year.
(4) Assumptions:

Exits follow the service table given in Table 2.
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Interest rate: 6% per year effective.
All lifes taking age retirement exit exactly half-way through the year of age (except at 65).
Survival after retirement: follows the Standard Ultimate Survival Model.

Sol. Solve Cg1 = MY EB + v1pY - 2V — 1V = ?
where ,V = E((t — e)aSpin X ag% JyR- ), and other terms to be explained.
We do not need to specify whether we use PUC or TUC method as aSp;, = 103.
t — e = 35 years of past service. (The entring age e = 61 — 35 = 26). R =r € (61,65]. Then
61V =35 x 10° By vt = 35 x 10 Y, o vl 2 f,, () 5o, (r,3) and ¢ = 61.

a1V = 35 x 10%( Z TGZ‘”" WE08GD) Zﬁ v1{1?) = 345307,
k=1 61 61

as R € D ={61.5,62.5,63.5,64.5,65}.

v x 1p0 X 6oV = 10° x 36( Z ”2'0“‘3 V08D ;65 v'{1?) = 312863.
61 61

MYEB = 103 x 35.5 ><Z—61UO5 S = 41723,
Vv 61
aSpin(t—e)

Hence, Eq. (10.10) yields
Ce1 = MY EB + vipgs162V — 61V = 41723 + 312863 — 345307 = 9278.

10.5 The traditional unit credit (TUC) method.

The TUC method is most often used with pension plans that provide a flat pension benefit,
such as $30/month for each year of service. If the entry age is 35 and the retirement age is
65, the annual pension benefit commencing at retirement will be Bg; = 30 x 30 x 12 = 10800
dollars. In this section, we shall consider the case that B, = (r — e) B, where B is the annual
pension benefit, which is constant in the whole service time. If a participant is to retire at age
r with an expected annual pension of B,, with one-twelfth of B, payable at the beginning of

each month, then Brd7(«12) is sufficient to fund this pension at age r.

Let us consider a pension fund valuation for (x) at time 0. The annual pension benefit
which has accrued from (entering) age e to age z is usually a certain number of dollars per
month (e.g. $30) for each year of service.

The annual benefit that accrued to age x is denoted by B,.

B, =pension benefit per monthx12x years from age e to age .
e.g. B, = B x (t —e) =30 x 12 x 30. (This is the credit earned by the employee, which will
be paid after retirement (annually)). The actuarial liability at age z is the value of the
pension benefit accrued from age e to age z:

(r) r r . . . . . .
V=08, gg,,) it"?, where D" (Dg(g )) is given in a service table (i.e. D, in the next example).

If there no other decrement, then DY = D, .
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Compare t0 ;V = anSrin r—zPs - ) (see Eq. (10.10)).

By
The total actuarial liability (TAL) at time 0 for all active participants in a pension plan is

TALy = Z .V

x: age of all participants

Let b, be the piece of the total pension benefit that is earned (accrued) in the year following
age x. The simplest case is b, = B,./(r — e) (r is retirement age).

The normal cost (or normal contribution) at the beginning of each year is the cost of the
pension benefit that is earned in that year. That is,

C, = bx%dgm (compare to C, = MY EB + v - 1pge 1V — V).

In single—dec;ement situation, we will often use

C, = bxvttpzd,(ﬂu), where t =r —x, and ,V = C,(z — e).
Reason: .,V = (z —€)b,0" ™" - ,_,py - a1,

x-l—lv = (:E +1-— e)bx—&-lvrilﬁil “r—z—1Px+1 dg“m)

Since there is no midyear exit (no other decrement), the normal contribution

Cx =V 1Pz - x—l—lv - :rv - bmvr—x *r—zPz * a7(“12)

Example 10.12. The servise table is as follows.

’ Age x \
25
35
45
55
65

articipants \ D, ‘
6

ool O ool

1
8
4
2
1

Table 3. Service Table
Plan effective date: 1/1/84 and census date on 1/1/94,
Normal retirement benefit: $30 per month for each year of service
All employees were hired at age 25.
Retired or terminated vested participants: None
Preretirement terminations other than by death: None
Selected annuity value: dé?) =10

Commutation functions are given in Table 3.

What is the TUC actuarial liability (T ALy) and normal cost (TNCy) as of 1/1/94 ?

Note that there are no decrements other than death, we use appropriate single-decrement
table (mortality only). That is, we use D, rather than D,
Sol. Let 1/1/94 be time 0. TALy =), ,V =7 TNCy=>,C,=7 where
V=B, gﬁi il'? o, = bx%dﬁm, i'? =10, B, = (x — )by, e = 25, and b, = 30 x 12 ¥ z.
From the table, there are 8 x = 25 and 2 = = 45, but none of other (z).
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Bas = 30 x 12(t —25) = 0 and Bys = 30 x 12(t — 25) = 30 x 12 x 20 = 7200,
25V = Bos 22l = 0. 45V = BisBe2al? = 18000.

TALy =Y .V =855V + 245V =0+ 2(18000) = 36000.

D
— D, .. 02 —p, 02§ 2r . B
TNC,y = ;(J Zb by Z B, (by, iy, 1) = (30 x 12,10, 65))
—(30 x 12) x 10 x (8(1/16) + 2(1/4)) = 3600.
TUC actuarial liability (T"ALg) and normal cost (T'NCp) are 36000 and 3600, respectively.

Example 10.13. Normal retirement benefit: $10/month for each year of service
Actuarial cost method is TUC. Actuarial assumptions:

(1) Interest: 6%

(2) Preretirement terminations other than deaths: None

(3) Retirementage: 65

(4) Participants as of 1/1/93: 100 active employees, all age 60

(5) Normal cost for 1993 as of 1/1/93: $§100,000 (for 100 participant)

(6) Selected mortality value: ggo = 0.04
Calculate the normal cost for 1994 as of 1/1/94 in each of the following cases:

(a) per survivor,

(b) for the total group if 92 participants are alive at 1/1/94,
(c) if 96 participants are alive, and

(d) if all participants are alive.

Sol. Formula before Ex.10.12: C; = b, (v" "), _ tptar ,and TNC, = nC,, where

by =10 x 12, r = 65, v = 1/1.06, a4 = ? 1p, = ?
The normal cost per participant at age 60 is
Coo = (10 x 12)0%5pgoilt? = 100,000,100 (given in (5)).
a) Cgr = (10 x 12)?144]961&((3}52) = O.Qg% = 1104.17 (as 5ps0 = Peo - 4Dé61),
) TNCﬁl — 92061 — ].0].583
c) TNCg = 96Cs; = 106000
d) TNCs = 100Cs = 110417. o

—XT

(r) . . .
Note: g v is replaced by v"™* - ._;p,, due to assuming single-decrement and constant rates.

If Fj is the amount of the pension fund at time 0 and T'AL, represents the plan’s total
actuarial liability for all active, retired and terminated vested participants at time 0, then the
surplus at that time is Fy — T'ALy.

Traditionally, most plans had, and many plans still have, a negative sur-plus, called the
unfunded actuarial liability (UALg), where UALy = T ALy —
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Example 10.14. Refer to the data given in Example 10.12. Under the Traditional Unit
Credit cost method, what is the unfunded actuarial liability as of 1/1/9/4 if the plan assets
amount to 35000 at that time?

Sol. UALy =TALy — Fy = 36000 — 5000 = 31000. o

The fund balance at the beginning of the year (BOY), which we have denoted by Fj, will
increase during the year by actual investment income and contributions to the fund. It will
be diminished by amounts withdrawn from the fund as benefits. At time 0, we can calculate
what we expect the unfunded actuarial liability to be at time 1 as

“PUALy = (UALy + Co)(1 +1) —'C,
where ‘C is the contribution plus the interest earned during the year on the contribution using
the actuarial interest assumption. If the contribution is made at the end of the year (EOY),
then ‘C' = C, and if it is made at BOY, then ‘C' = C(1 +1i). A total experience gain, 'G,
will result if the actual unfunded actuarial liability (“?UAL) is less than “?UAL. That is,

lG, = “PUAL, — “‘UAL,.
A negative gain is called a loss.

Example 10.15. Actuarial cost method: TUC. Assumed interest rate: 6%
Valuation results as of 1/1/93:

Actuarial liability: $100000
Actuarial value of assets: $50000

Normal cost as of 12/31/93: $10000
Valuation results as of 1/1/94:

Actuarial liability: $115000

Actuarial value of assets: $70000
Contributions: (#normal cost=normal contribution)

$15910 at 12/31/93

$15587 at 12/31/94
What is the total experience gain for 1993 ¢

Sol. Let 1/1/93 be time 0 and 1/1/94 be time 1. *'G; = 7
There is a gain when the actual unfunded liability turns out to be less than the expected. Since
the normal cost is at 12/31/93, ‘C' = C. Then the expected unfunded liability at time 1 is

“PUAL, =UALy(1 +1i) + NC —'C (1)
=(100000 — 50000)(1.06) + 10000 — 13910 = 49090
“JALy =AL; — Fy = 115000 — 70000 = 45000
ol ="PUJ AL — “"U AL = 49090 — 45000 = 4090 o

Note that the normal cost is usually at BOY but occasionally it is at EOY; the contribution
is usually at EOY but occasionally it is at BOY or mid-year.
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Example 10.16. Normal retirement benefit: $§10 per month for each year of service
Vesting eligibility: 100% after 5 years of service
Preretirement death benefit: None
Actuarial cost method: Tranditional Unit Credit
Actuarial assumptions:

Interest rate: 7% per year
Preretirement terminations other than deaths: EOY

Retirement age: 65

Selected annuity value: dé?) = 8.736.

Data for sole participant:
Date of birth: 1/1/31
Date of hire: 1/1/89
Status as of 1/1/94: Active

x qg([,-T) Qa(cd)

63 0.069 0.019
64 0.081 0.021
65 0.023 0.023

What is the normal cost for 1994 as of 1/1/94 ?

Selected probability

Sol. The participant is 63 years old on 1/1/94 and will retire at r = 65. Then
Cy = b, (V") i
Coz = 10 x 12 x 0763 _g3p!Diigs = 120 x (1/1.07)2 x (0.981)(0.979)(8.736) = 879.3

In this defined benefit plan with no participant contributions, 100% vesting means that the
participant is entitled to 100% of the retirement benefit accrued to the date of withdrawal. If
withdrawal occurs before five years of service, no retirement benefit is payable because there
is no vesting. 60% vesting, for example, would mean that the participant is entitled to 60% of
the accrued benefit.

Since deaths occur at EQY, q;(vd) = q;(d), and we discount for mortality because the death
benefit is zero. If, alternatively, the terminal reserve were paid out on death, we would not
discount for mortality. Similarly, we do not discount for withdrawal because vesting is 100%),
and the unit credit liability is not released.

The benefit formulas mentioned so far did not make use of projected future salary. If
a salary scale is not being used in the benefit projection, it would appear that the actuary
is assuming that salaries are not expected to increase. The effect of such an assumption is
normally to shift a portion of the costs from the present to the future. This is often not
appropriate. If the actuary does use a salary scale, it may be a scale independent of age, such
as 5% per year, or it may be a more sophisticated scale that depends on age. In any event,
it will make due allowance for inflation, actual past salaries, and expected future salaries. We
will illustrate the use of a 5% scale by calculating the pension benefits for (a) a 2% final salary
plan, (b) a 2% final three-year average plan, and (c) a 2% career average plan.
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(a) For a person currently age = with a salary of S, the expected (or projected) final salary,
at age r — 1,1is S,_; = (1.05)" 7175, and the pension benefit accrued to age x is

B, = 0.02(1.05)"'7*S,(z — )

and the expected final 3-year average salary is

1
FAS :g[ST—Z% + Sr—? + Sr—l]

=L osy = 1 (Losy >+ 4 (1L05) s,

3
1 r=l—-zq
The accrued pension benefit is B, = 0OQ&%(1.05)“1_”%‘3'1(:1: —e)

Example 10.17. Which of the following statements concerning the Traditional Unit Credit
cost method are true ?
1. Under this method, the assumption must be made that each participant will remain in the
plan until retirement or prior death. That is, no other withdraw except retiring and death.
2. If the benefit accrual in each year (bya,(v"™"),_.p.) is constant for any given participant,
the normal cost for that participant will also remain constant, provided actual experience is in
accordance with actuarial assumptions.
3. The actuarial liability of a newly established plan is equal to the present value of the benefits
attributable to credited service prior to the effective date of the plan. That is, they all apply
the formula: (bya,(v"""),_.ps) for each additiona year of service.

Sol. 1. False. We could use other decrements such as withdrawal or disability.
2. False. The effect of mortality and interest discount is reducing with age.
3. True.

WV =Bt - e)aSFméiSZ)), where R is the retiring age.

Vo=t —e)aSpy x P x . ptt if P(R=r)=1.
— ~~ ——
By 1 $/year  present value
D"
tV :Bt ( )a,7(n12)
Dy
C; :th(T) d,f_m) (compare to Cy = MY EB +v - 1py - 111V — V).
t

10.6 Problems from actuarial exams

1. (#19. Exam MLC Spring 2018). Mark is covered under a defined benefit pension plan.
You are given:

(i) The annual benefit payable as a life annuity-due is 2% of the 3-year final average salary
per year of service.
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ii) Mark retires at age 65 with 30 years of service.

iii) Mark’s salary in his final year of employment was 100,000.

v) Mortality follows the Illustrative Life Table.

vi) i = 0.06

(vii) Mark chooses to take his benefit as a 10-year guaranteed whole life annuity-due.
Calculate the annual payment he will receive using the equivalence principle.

(A) 52,400 (B) 52,800 (C) 53,200 (D) 53,600 (E) 54,000

(
(
(iv) At the start of each of the last 3 years of employment, Mark’s salary increased by 3%.
(
(

2. (#20. Exam MLC Spring 2018). XYZ offers a pension plan with the following lump sum
death-in-service benefits, payable immediately on death:

(1) 10,000 for each full year of service on death in service between ages 64 and 65.
(2) 15,000 for each full year of service on death in service between ages 65 and 66.
You are given:
(i) Death is assumed to occur half-way through the year of age.
(ii) Decrements for this pension plan follow the Illustrative Service Table.
(iii) i = 0.05
(iv) XYZ uses the Traditional Unit Credit funding method.
Calculate the normal cost for this benefit for a new employee who is age 50.
(A) 60 (B) 70 (C) 80 (D) 90 (E) 100
3. (#6. Exam MLC Spring 2018). A defined benefit pension plan with two members, Finn and

Oscar, provides for a pension benefit paid as a monthly whole life annuity-due. The annual
pension benefit is 1.7% of the final one-year’s salary for each year of service.

You are given:

(i) Mortality follows the Illustrative Life Table, assuming deaths are uniformly distributed
between integer ages.

(ii) Participants reaching age 64.5 retire at that time with probability 50%. All participants
reaching age 65 in service retire immediately. There are no other retirements.

(iii) There are no withdrawals from the plan other than by death or retirement.

(iv) i = 0.06

(v) @52 = 9.5613

(vi) Salaries increase every year on January 1. Future salary increases are 2% per year.
(vi

vii) On January 1, 2018, Finn is 25 years old. He is a new employee with no past service.
His salary in 2018 is 60,000.

(viii) On January 1, 2018, Oscar is 64 years old and has 29 years of service. His salary in
2017 was 95,000 and in 2018 is 100,000.
(a) Calculate the projected replacement ratios for both Finn and Oscar assuming that they
each retire at exact age 65.
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(b) Calculate the total accrued liability for the plan on January 1, 2018, under the Traditional
Unit Credit (TUC) method.

(c) (i) Calculate the Normal Cost under the TUC method for Finn.
(ii) Calculate the Normal Cost under the TUC method for Oscar.

(d) (i) Without further calculation, state with reasons whether the Normal Cost under the
Projected Unit Credit (PUC) method will be greater or less than the TUC for Finn.

(ii) Without further calculation, state with reasons whether the Normal Cost under the
PUC will be greater or less than the TUC for Oscar.

10.7 Solution to the Problems from actuarial exams

1. Sol. Let B denote the regular annual pension and B* the one allowing for a 10-year

guarantee.
s o s e pw 9
Bigs = B igsge) => Ba65/a765:10| B 7

= {1 + 10E6sa75 = 7.8017 + 2.8864 = 10.6881 (from the Tllustrative Life Table).

aGB:ﬁ\

B = naSpi, = 30(0.02 % 107) (LB HELS ) — 58969 where v = 1/1.06.

B = S0 _ S00.5900 _ 53055 Apswer Key E
2. Sol. The normal cost is the APV of a single year’s accrual:
E(10%E (K, = 64.5 — x) + 1.5(10%" = [ (K, = 65.5 — x)
= 10405572 (g4, %) + 1.50%557%(g5_,|¢°")], where x = 50.

NC = 10%2
Answer Key D

6445—50d((;i)+1_5v6545—50dé§)

= 90.3.

ls0

pension income in the year after retirement
final salary before retirement :

Finn: RR — oSkin _ (65—25)(0.017)S25(1.02)%5 251 _ (65 — 25)(0.017) = 0.68.

3. Sol. a) The pension replacement ratio R =

Srin Sa5(1.02)65-25-1
Oscar: R = UG = (29 +1)(0.017) = 051,
64 B 12)
b) \V = E((t — e)aSpmv™tiy”).

The table only provide a,, not i\, Make use of the following method:

For a period of length %: Under a uniform distribution of deaths within each year,

id i =y
= g @ T g

a(m)

where (1+)Y/™ =1+ and (1 +4)" Y™ = v'/m = (1 —d)/m =1 - 222,
WV =E((t— e)aSFva_tdgz)).

Fin: ;V =0,ast—e=25—-25=0.

Oscar: (V= 29(0.017)S3[0.50 5p640" i3 + 0.5peav’ s

pr =1—¢q, and g5p, = 1 — 0.5¢, = 1 — 0.5(0.01952) ~ 0.99 from the Illustrative Table.
+V =29(0.017)(95000)[0.5(0.99)1.067%5(9.5613) + 0.5(0.98048)1.06~1(9.431551)]
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= 419644.49.

¢) The normal cost is the APV of a single year’s accrual.
(A) Cy = APV of benefits for mid-year exists +v - 1p%° - |V — V.

(B) Cy = E(aSpimv*tig) using TUC method (without MYEB).
Fin: NC = 0.01755 [0-539‘52725@39'5&&?5))+0-540p257140d%2)] from (B), or (A) as;V =0 = MY EB,

sopas = 0 = T4 () 787658, and gq5pa; = TORIIETIZ — . 7955
NC = (0.017)(60000)[0.5(0.7955)(1.06) ~395(9.5613) + 0.5(0.787658)(1.06) ~4°(9.431551)]
= 756.63 (v) ds2 = 9.5613

Oscar: V = 419644.49.
MY EB = 0.017(29.5)S63.50.50 5psa vl = 224827.81
141V 0pes = 0.017(30)S640.5pgaviily”) = 222462.17
NC = 224827 81 4 222462.17 — 419644, 49 = 27645.49.

(d) (i) Without further calculation, state with reasons whether the Normal Cost under the
Projected Unit Credit (PUC) method will be greater or less than the TUC for Finn.

(ii) Without further calculation, state with reasons whether the Normal Cost under the
PUC will be greater or less than the TUC for Oscar.
d) (1) The PUC would be more expensive for Finn as the NC includes the impact of future
salary increases in the pension cost. Because Finn has many years of service ahead, prefunding
salary increases will have a significant impact.

(2) The TUC would be more expensive for Oscar. The TUC requires all past accrued
liability to be adjusted for current salary increases. As Oscar is near retirement, this is a
significant cost. The PUC prefunds future salary increases, but since Oscar has little time left
in employment, this cost is small compared with the salary upgrade in TUC.

Additional Homework 3.
A1. Use R program to verify the answers in part (b) of Example 10.5 (see this page).

A2. Use R program to derive the answers in both (a) and (b) of Example 10.5 (continued)
(see last two pages)

Example 10.5. A pension plan member is entitled to a lump sum benefit on death in service
of 4 times the salary paid in the year up to death. Assume that

(1) 30% of the members surviving in employment to age 60 retire at 60 and

all members who remain in employment to age 65 retire then;

0.1 for x € [0, 35)
(2) 0 = o — 0.05 for x € [35,45)
! ¢ 0.02 for z € [45,60)

arbitrary (> 0) for z > 60 (as we only need to know up to age 60);
(3) p2% = pi = 0.001 (we actually only need to know for z € (0, 65));
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0  for x €10,60)
(4) % =pr =< 0.3 discrete at z = 60
0.1 for x € (60,65];

(5) ult=pl = A+ Bxc® A=0.00022, B=2.7x107% and ¢ = 1.124.
(a) P(retiring at age 65 |age 35) = 7
(b) For each mode of exit, calculate the probability that a member currently aged 35 exits
employment by that mode.

(b)(3) P(a member retires at 60 or 65 or in (60,65))
30
03 g+ Lo sl [l x 0 why 77
—_———— N——

25
30% retire 100% retire

5
=0.3 - 25 g3 + 50-p30 + 0. 125 / pendt ~ 0.4193,
~~ 0

known N——
by R next

5 5 60+t
/ tpggdt —/ exp(— / (0.1 +0.001 + A + ch)dl')dt
0 0 60

60
(" —1))dt computed by R program:

J/

5
B
:/ exp(—(0.1 4 0.001 4 A)t — lc
0

nc

-~

=g

60+t B 60

g= exp(—/ (0.140.001 + A + Bc")dx) = exp(—(0.1 +0.001 + A)t — (" —1))
60

> t=(1:5000)/1000

> g=exp(-(0.140.001-+A ) ¥t- B¥C**60 * (C**t-1) /log(C))

> 0.3%a*b+ c*0.7*a*b +0.1%0.7*a*b*sum(g) /1000 ([0 g(x)de ~ ", gla + =2)b=a)

1] 0.4193452 (a,b,n) = ?

(1) The probability that a member currently aged 35 withdraws

25 30
= / pas )t dt why not / ?
0 0

10 25
= [t [
0 10

10 25
~0.05 / 0t + 0.02 / Pt
0 10

t+35 .35

10 15
=0.05 / exp(—[t(0.05 + 0.001 + A) + B 1)dt + 0.02,0p30 / (pidt
0 0

Inc
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A5 45

35 15
—0.02exp(—[10(0.05 + 0.001 + A) + B——)) / exp(—[£(0.021 + A) + B
0

Inc

[)dt

Inc
t+35 35

10
+ 0.05/ exp(—[t(0.05 + 0.001 + A) + B 1)dt = 0.5432
0

Inc

(2)  The probability that a member currently aged 35 disability exits

30 30
_ / 002t = 0.001 / P
0 0

10 15 5
—0.001] / P0dt + 10p% / tp45dt + 25038 / tp88dt
0 0 0

J/
-~ -~
?

see (1) see (1)
~0.0166 how ?
The probability that a member currently aged 35 death exits

30
— / DIt (see assumption (5))
0

30 30
=A / ipasdt —|—B/ paactdt = 0.0208.
< <

known from (2) homework
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Additional problem 2. Employees in a pension plan pay contribution of 6% of their previous
month’s salary at each month end. Calculate the APV at entry of contributions for a new
entrant aged 55, with a starting salary rate of $100,000 using

(a) exact calculation using the multiple decrement model specified in additonal problem 1,
(b) the values in Table 2, adjusting the APV of an annuity payable annually under UDD.
Other assumptions:

Salary rate function: Salaries increase at 4% per year continuously;
Interest: 5% per year effective.
Sol. (a) Let Y be the exit time in years. APV of total contribution for (55).

Ans = E( ,(€Y155)12 £0.06S55.4/120"/12) = GO0 S~ 02 G 190712, 10p20 = 7
Given: A55 = 10 R

1.04Y =5, = s,.
v =1/1.05.
1
S55 == fO A55104tdt = A55110§41E O}L = 1 02A55 ~ A55
Three periods: (55,60), 60, (60, 65].
1.02(107)(0.06) =
Ans = 102 12)( )[Z « pRRLOA PR g p81.04%0° 4+ ) 7 pBBTL0AM T (1)
k=1 k=61
Ans — 10° 1x20 06[ 29 . 001 04k/124,k/12 + 57]9501 04505 + 2113061 kpool 04k/124, k/lQ]
Y = exp(—0.031t) t€10,5),
P98 = 5P - 1-5DPg0 t € [5,10),
P2 = exp(—0.131¢) te€0,5),

5p20 = 0.75_p22 = 0.7 exp(—0.155)

59 120

0.06 x 10° 1.04 104, 1.04
A e 00 k/12 OO OO k/12
T [;p55(1 05 Torelis +Z* Palios) )
0.06 X 10° = 0.031%.,1.04 ,
__ @ _ /12
2P
k=1
120
k 1.04
0.7 exp(—0.155 C0.131(— — 5))(S k2
+0.7 exp( )k:ZmeXp( (33 =)
0.06 x 10° & 1.04
= —0.031) - ———)k/12
1 [;(exp( ) To5)
= 104, 15
+0.7exp(—0.155 + 0.131 % 5) >~ (exp(—0.131) - o))
k=61 ’
1 — % o 1 — 160
=500[ 1—=x { =(exp(—0.031)-1:q5) /12 +0.Texp(0.5)¢ 1—t |t:(exp( 0.131)- L 04)1/12]

=39349.31
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x=(exp(-0.031)*1.04/1.05)**(1/12)
=x*(1-x**60) /(1-x)
—(exp(-0.131)*1.04/1.05)**(1/12)
V=tFRE1H(1-6%460) /(1-t)
500* (u+0. T*exp(0.5)%v)
1] 39349.31
(b) APV at entry of total contribution to Pension of (x)= E( ](Cylx)m LeSyir/120%12).
is estimated by lﬂ;:t. Under the assumption of

Ans is as in Eq. (1), but ;p¥ is different. ;p%°

xT

UDD,
£ 4iD5s = jPss(1 = 7) + japssr - E €[0,1]
Biti(] — L) 4 Bl if e {55,...,64} )\ {59,60} ) wﬁ if j € {55,...
SEi-f) iy =59 D T A
l i l i e l —d i/12) 4 o
- g)tEh =60 R =00
(Y —55)12
Ans :E( Z 120 06355+k/121) k/1 2)
k=1
10x12
0 06
Z 855+2/12U i/12pgg
006 x 10° '~ (1046712
1 k/12P55\ 05
k=1
S 1.04
=500 ") jrij12pss - 05)3“/ 12 — 41130.89
7=0 =1

1=c(104688,102308 ,99960, 97642, 95351, 93085, 65160 ,58700, 52860, 47579 ,42805 ,38488)
p=1:10

p[1:6]=1[1:6]/1[1]

p[7:12]=1[7:12]/1[1]

p

s=0

r=1.04/1.05

for (j in 1:5)

s=s+sum((((1:12)/12)*(p[j+1]-p[i))+p[j]) *r**(-1+(1:12)/12))
for (j in 7:11)

s=s+sum((((1:12)/12)*(p[j+1]-pli))+p[j]) *r**(-2+(1:12)/12))
(s=500*s)
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The solution below mistakes ;p? as D,

Y i
Ans = B(3)77 Lo, 06555+k/12vk/ 12) = 006 5 0 G vi100™ 12, 10D
Ans is as in Eq. (1), but Y is different.

Since ;p2) is discrete if using the service table,

one has to use program to compute it. In Table 2, there are censoring to death d, due to
(Wg, g, z), thus P2 # = k+t yse the PLE instead. The difference is very large !

l65/l55 = 037,
10055 = [ [55<p<s ~ 0.68

;

P33 = Tk ss<nessrs (1 — di/lk) for j € {0,1,2,3,4},
52755 = 0.711,. 55<k§55+4(1 — dy./ly,)
Jpgg = 07Hk 55<k§55+j(1 - dk/lk) for ] € {5a 67 ceey 10}7

Jpgg = j—lpgg(l — d55+j/l55+j) for j < {]_, 2, ey 4, 5—, 6, ey 10},
%Hpgg = ;P21 — ﬁ) —|—j+1pggf—2 for i € {1,...,12} and j € {0,1,2,3,5,...,9},
ﬁ+4pgg:4pgg(]‘_ )+5 p5512 fOTiE {17)11}7
id . .
%Hp% ;P21 — EZJ::] for i € {1,...,12} and 5 € {0,1,2,...,9}.
Note that under the assumption of UDD,
7
ﬁﬂ‘ng =iPss(1 = 7) + ja1pssr "=15 € [0,1]
0 i
00 i L0 dj156
—p001 — Y4 = 001
iPs5( 12) + 1211755( Lo )
00 i i djt56
iPssl (1 — —=) + —=(1 — ———
=8I0~ 35) + 151 2]
00 i djts6
D .
= 55[ 12 lj+56]

However, since d; actually occured between [j, j + 1), it is better to linearize d; in the interval
i dj+55

(7,7 + 1). This way yields %Hpgg = j_1pe[l — 9T °] for i € {1,2,...,12}, then

5 4

t djss, 10450000 d;
_5002+07Z Z 121+55)(1.05) H (1 l )

k: 55<k<55+j k

i diisy 1.04 dy,
—=500] 07 1 — — LRy ( )i 1+i/12 - 1
Z+ 12 zj+54)(1‘05) H ( lk) (1)
k: 55<k<54+j

:48248.82
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x1
x2
x3
x4
5)

¢(55,104688,2070,103,0,206)
¢(56,102308,2023,101,0,224)
¢(57,99960,1976,99,0,243)
¢(58,97642,1930,96,0,264)

(

(

(

(

"

c(h9 , 95351,1884, 94, 0,288)
x6=c(60,93085,0,0,27926 , 0)
X7=c(60,65160,0,62,6188,210)
x8=¢(61,58700,0,56,5573,212)
x9=c(62,52860,0, 50,5018,213)
x10=c(63,47579,0,45,4515,214)
x11=c( 64,42805,0,41,4061,215)
x12=¢(65,38488,0,0,38488,0)
x=c(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12)
dim(x)=c(6,12)

x=t(x)

d=x[,6]

1=x[,2]

p=1:12

for (i in 2:6)
p[i]=p[i-1]*(1-d[i] /1[i])
p[7]=0.7*p|6]

for (i in 8:12)
p[i]=p[-1]*(1-d[i] /1[i])
p=c(p[1:5],p[7:11]) # 0:4, 5:9
d=c(d[1:5],d[7:11])

1[12]/1[1]

s=0
r=1.04/1.05
for (j in 1:10)

CHAPTER 10. PENSION.

s=s+sum((1-((1:12)/12)*d[j] /1)) 5+ - 1+(1:12) /12)*"plj]) # compare Eq. (1)

(s=500%*s)
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Additional Homework 1. Assume that
(1) 30% of the members surviving in employment to age 60 retire at 60 and
all members who remain in employment to age 65 retire then;
0.1 for z €10,35)
(2) pt = p¥ =<0.05 for x € [35,45)
0.02 for = > 45;
(3) pg? = i, = 0.001;
0  for x €]0,60)
(4) P =pl =<0.3 discrete at x = 60
0.1 for x € (60, 00);
(5) u9* = pg = 0.01.
(a) P(retiring at age 65 |age 55) = 7
(b) For each mode of exit, calculate the probability that a member currently aged 55 exits
employment by that mode.

Sol. (a) P(retiring at age 65|age 55) =P(each exit time> 65|age 55) = tp55‘t 10°

P2 =P(a member’s exit time> x + t|age x)

=P(each exit time> z + t|age 7)) = 2" - P22 - ;P2 - tpz = exp(— / Z pY, ds

method 1 N V)
method 2
Method 2: 19p22 = 5p22 - 5pdd = exp(— —i— f pdr) =7
0.02 +0.001 4+ 0.01 = 0.031 x € (55,60)

00 01 02 03 04 — —
H K H a a {0.02 +0.001 +0.14+0.01 =0.131 z € (60,65)

55+t
P = exp(—/ (0.031)dx) = exp(—0.031¢), t € [0,5),
55

5P = exp(—0.155)
spas = 0.75_pos

604t
tpggzexp(—/ (0.131)dz) = exp(—0.131¢t), t € (0,5),
60

spa0 = exp(—5(0.131)) = exp(—0.655).

Using R to compute:
b=exp(-0.155)
c=exp(-0.655)
c*0.7*b # 10p22 = 0.3114006 the final answer.
The probability of (55) being retired by 65 is about 31%.

(b) The probability that a member currently aged 55 exits employment by mode j
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= [ fY(t)dt, where f% is the corresponding density, j € {1,2,3,4}.
FOt) = g X sk, Why ?
(a) '
see (a gwen

x(t) = Sx(t—)ux yieds ;—p.- - 1 ‘ =1 Psr b o «P=¢ is continuous at ).
fx() = Sx(t=)ux(t)  yieds —p - S51155... if upBS is comt bt
There are 4 modes. Start with the 3rd mode (normal retired):

(3) P(a member retires at 60 or 65 or in (60,65))

10
— 035 g4 110t / 22 % 0.1dt
S— N—\— 5
30% retire 100% retire
5
=0.3 - 5-p55 + 10- P53 + 0.15p§‘§/ exp(—0.131¢)dt
0

1 — exp(—0.655)

= 0.7882412
0.131 0.788

=0.3 - 5_p2 + 10_pis + 0.15p%

0.3%b4 ¢*0.7%b 4+0.1%0.7%b*(1-¢) /0.131

(2)  The probability that a member currently aged 55 disability exits
10
S
0
10
=0.001 / (pasdt
0

5 5
=0.001] / P2t + 5p2 / iPgodt]
0 0

—_— —
see (1) ?

1 —exp(—0.031 % 5) L0 1 — exp(—0.655)
0.031 5P55 0.131
0.001%((L-exp(-0.031%5)) /0.031 +b*0.7*(1-exp(-0.655))/0.131)

(4)  The probability that a member currently aged 55 death exits
10
= [ g
0

10
=0.01 / ipaadt
0

~0.06830929

=0.001] | ~ 0.006830929

(1) The probability that a member currently aged 55 withdraws

10 5
= / P00t dt = 0.02 / 0t ~ 2 % 0.06830929 = 0.1366186
0 0
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Additional problem 3. A pension plan offers an age retirement pension of 1.5% of final
average salary for each year of service, where final average salary is defined as the earning in
the three years before retirement. Estimate the APV of the accrued age retirement pension
for a member aged 55 with 20 years of service, whose salary prior to the valuation date was
$50000. Basic assumptions:

(1) The pension is paid monthly in advance for life, with no spouse’s benefit.

(2) Interest rate is 5% per year.

(3) Salary scale s, is given in Table 1 with the linear interpolation.

(4) Post-retirement survival: p, = u* given by additional problem 1, as well as the multiple
decrement model assumption.

(5) Use Table 2

Sol. Exit age is Y. E(Byi\r?vY =51 (age retiring))= rep L
where By is the accrued annual pension at age 55 and the exit age is Y,

By = (y—e)Spina = 20Spma, (y,e) = (55,35).
——

accrued benefit
Spm = SFm(Y) = 50000%, the projected final average salary,

Sy —3+Sy—2+sy—
ay = RIS — (.015.

If the member retires at exactly age 60 (i.e. 60—, the accrued benefit, based on 20 years’ past
service and an accrual rate of 1.5%, is an annual pension payable monthly in advance from age

60:

3.332 + 3.382 + 3.432
Bgo— = 20 x 0.015 x 50000— = 15000@ = 15000 + + = 15,922.79
S54 S54 3 x 3.186

based on Table 1. If the member retires at age 60+, that is, in (60,61), the accrued benefit,
based on 20 years’ past service and an accrual rate of 1.5%, is an annual pension payable
monthly in advance from age 60:

3.332 4+ 2% 3.382 + 2% 3.432 + 3.484 r¢go.
2% 3 x 3.186 l55

based on Tables 1 and 2. The APV of the accrued age retirement pension is

Beo- oo+ |dg5 = 15000~ 605 1% = 15000

15000 (Z9280-555(12) . ) 3,00 4 2656555 (12) 10p55+z 05tk 05055502 L 1003) — 170488.1
554 S54 oo o4
Here
rg+ and r,_ are from Table 2, e.g., r¢o— = 27926 and rgo. = 6188, and
S60.5 — (560 + 861)/2 from Table 1.

q12) —i i/12

D ;” Pk
12 pa
11
_E 1—=x ‘(exp(—0.01)/1.05)

((exp(—0.01)/1.05)/12)*

e = 17.05135
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R codes for problem 3:
x1=c(55,104688,2070,103,0,206)
x2=¢(56,102308,2023,101,0,224)
x3=¢(57,99960,1976,99,0,243)
x4=c(58,97642,1930,96,0,264)
xh=c(59 , 95351,1884, 94, 0,288)

(
(
(

x6=c(60,93085,0,0,27926 , 0)
x7=¢(60,65160,0,62,6188,210)
x8=c(61,58700,0,56,5573,212)
X9=c(62,52860,0, 50,5018,213)
x10=c(63,47579,0,45,4515,214)
x11=c( 64,42805,0,41,4061,215)
x12=c(65,38488,0,0,38488,0)
x=c(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12)
dim(x)=c(6,12)
x=t(x)
1=x[,2] # 55-65
d=x/,6]
r=x[,5]
z=c(3.186, 3.332 ,3.382 ,3.432 ,3.484 , 3.536 ,3.589 ,3.643 ,3.698) # 54,57-64
a=17.05135
v=1/1.05
s=mean(z[2:4]) /z[1]*v**5*1[6] /1[1]
s=s+mean(z[7:9])/z[1]*v**10*r[12]/1]1]
for (iin 0:4)
s=s+mean(z[c((2+1):(5+1),3+1,4+1)]) /z[1]*v**(5.5+1) *r[7+i] /1[1]
s*15000*a

R codes for solution (a) of Problem 4:

w=x/[,3]

a=(1-v¥*5) /(1-v**(1/12)) /12

b= exp(-0.001)*v

a=ath*5/(1-b*¥(1/12))/12 # 2

s=0

for (i in 0:4)
s=s+mean(z[c((24+1):(5+1),3+1,4+1)]) /z[1]*prod (1-(d[(i+2):12] /1[(i+2):12]) ) *w[i+1] /1[1]
vF*10%2*10000*a*s
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Additional Problem 4. A final salary pension plan offers an accrual rate of 2%, and the
normal retirement age is 65. Final average salary is the average salary in the three years before
exit (retirement or withdrawal or death). Pensions are paid monthly in advance for the life
from age 65, with no spouse’s benefit, and are guaranteed for 5 years (if the member died
before age 70).
(a) Estimate the APV of the accrued withdrawal pension for a life now aged 55 with 10 years
of service whose salary in the past year was $10°,

(i) with no COLA,

(ii) with a COLA in deferment of 3% per year.
(b) On death exit, a lump sum benefit of five times the accrued annual pension, with a COLA
of 3% per year, is paid immediately. Estimate the APV of this benefit.
Basic assumptions are as previous problems. (1) Service table: Table 2

(2) Salary scale: From Table 1;

(3) Post-retirement survival: as in Problem 3.

(4) Interest rate is 5% per year.

Sol. (a) At withdrawal age X, with no COLA, Q = E(Bp a655 vIAI(M =01)) =7
For simplicity, assume X € {55.5,56.5,57.5,58.5,59.5}.

Notations: D = X —55.5 € {0, 1,2, 3,4},
M is the mode (M € {01,02,03,04}),
A = 1((55) is alive at age 65)

SFin the average salary before withdrawal age X;
Bp = naSM% the accrued withdrawal (annual) pension with withdrawal age X,
B ag the accrued total pension with withdrawl age X;

By = nav - 1Spim = 10 X 0.02 x 10° x 235405
S54

3428, 9+ 25,
Sy—3 T 2Sy—2+ 251+ 8 (s, from Table 1),

Zy+0.5 = 5.3
Q =E(Bpil2 (M = 01);_pp p)
4

10 5 ..(12) .. ZX ’(4)
=01°.10-0.02 - 10 ~aﬁZE(I(X—55E [z,z+1))8—54[(M 01)65—xPx")

4

~u'0-10-0.02-10° - @52 N " B(I(D € [i,i+ 1)) 2555 T(M = 01)g5_ipi) )
o S54
=0

4
2109104 . 512 S55.54i—3 T 2855.54i—2 + 28555441 T S55.54i '(4) 01
ag 6s 9.5—iP55.54i 105|055

54

. 1 ! Ws5+i
=0'9.2.10*. @2(855 54i—3 T 2855.54i—2 + 2855.54i—1 + S55.544) 6 9.5—2’p5(5j1.)5+i ;5+ = 25045.8
- 54 55
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i+05|055 = Wos+i from Table 2, as withdraw is really between 55 + ¢ and 56 + i.
55
' d
9.5—1’275(;?5“ = H (1-— —k) use Table 2
55.5-+i<k<65 k
25% ( Dt spes’ily) = a£12) + (ve= 000155012

a2 L - i/12 _ 1 1-2°
as = 12 z(;v 12 1 — pl/12 ‘v 1/1.05
1 1

-(12) i/12 ,~0.001i/12 _ i - —0001 (1/12)\i _ *
70" = T 12 ZU 12 ; ) = 121 — (ve0001)1/12

(if). With COLA, Q = E(Bpi' v I(M = 01)5_ppss+p1.03"°P)

10 4 . (12) 4 S i—3+2s i—2+2s i—1+s i 9.5— i
2 10 65 5 Zl 0 55. 5+ 3 55.5+41 68254 55.5+1—1 55.5+1 1 03 9 5_ 1p55 5 155554,-
Under the competing risks model T;ﬁl), - Tx(m) are independent and cts, with cdf’ tq;(j ),
1(; 1(; - f (j)(t)
ltng(J) —1_ tq:c(j) and ,U:(c])( t) = Ng(c]-i)-t _ Ty

Sy
(T, =t J, = j} = {min{T", ... T{™} = ¢, T, = TV},
(Pr,(t), Sr,(t) = (:gt”), i)
fo(t) = poye = fg?(())a f(TMJl)(t j)~
P(T, <t,J, =j) =¥ and p¥) =1 — g
fw, gy (B, -y tm) = [I}% fr00 (&),
f(Tz,Jz)(t,j) - it = UOEN0

sz fO STI (S)d87
ux(t) = )( )
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The multiple-decrement model:
1. ngl), - 7™ are independent and cts r.v.

2. T, = min{Tw(l)’ T8 and {J, = j} = {T, = TV}
o = St (t),
u () = pl) = = = (),
o = P(T, > t,J, = j).
02 = S0 (b).

Multiple decrement model for a DB pension plan
00: no exit;

01: withdrawn from the pension plan;

02: disability retirement;

03: age retirement;

04: died in service.

tpx P(Withdrawal time> x + t|the member survives x),

tpx P(disable time> z + t|the member survives x),
P(retirement time> z + t|the member survives z),
tpx P(survival time> z + t|the member survives ).

Remark. T, = exit time for (x),
T = exit time for (x) in mode J, = j € {1,2,3,4} or (w,i,r,d}.
tp/(j) _ P(Téﬁ > 1),
W = P(T; > 1, J; = j) =
tpx tpgcT) = P(T, > 1).

Using Table 2,

lx+t
px - 9

I

( |qx 7t|q1 7t|Q:E 7t|q04> - (w?_:t7 %’ %7617_:5)’

'(4
tpac( ) = Hz<k§z+t(1 - d_k)a

Ik

(4 d
t‘qx( ) = Ha:<k<:r+t(1 B Cll_:)ﬁ’

If the exit time is continuous, then
0 — exp(— [ = SR ) e~ [7H 01ds))
tPy = p 0 M:c—&-s — exp(— [y ndlds) p Hs
tng = eXp( f() /’I’CL‘+S )7

tp(;;?) = eXp( fo /’Lx+s )7
tp24 = eXp( fo H:c-&-s )
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4/5/2019.
Additional Homework 1. Assume that
(1) 30% of the members surviving in employment to age 60 retire at 60 and
all members who remain in employment to age 65 retire then;
(0.1  for z € [0,35)
(2) P2t = p¥ =< 0.05 for x € [35,45)
0.02  for x > 45;
(3) po? = i, = 0.001;
(0 for z € [0,60)
(4) p2 = pr =< 0.3 discrete at x = 60
0.1 for z € (60, 00);
(5) pg* = pg = 0.0L.
(a) P(retiring at age 65 |age 55) = 7
(b) For each mode of exit, calculate the probability that a member currently aged 55 exits
employment by that mode.

Additional problem 2. Employees in a pension plan pay contribution of 6% of their previous
month’s salary at each month end. Calculate the APV at entry of contributions for a new
entrant aged 55, with a starting salary rate of $100,000 using

(a) exact calculation using the multiple decrement model specified in additonal problem 1,
(b) the values in Table 2, adjusting the APV of an annuity payable annually under UDD.
Other assumptions:

Salary rate function: Salaries increase at 4% per year continuously;
Interest: 5% per year effective.

Additional problem 3. A pension plan offers an age retirement pension of 1.5% of final
average salary for each year of service, where final average salary is defined as the earning in
the three years before retirement. Estimate the APV of the accrued age retirement pension
for a member aged 55 with 20 years of service, whose salary prior to the valuation date was
$50000. Basic assumptions:

(1) The pension is paid monthly in advance for life, with no spouse’s benefit.

(2) Interest rate is 5% per year.

(3) Salary scale s, is given in Table 1 with the linear interpolation.

(4) Post-retirement survival: p, = p% given by additional problem 1.

(5) Use Table 2.

Additional Problem 4. A final salary pension plan offers an accrual rate of 2%, and the
normal retirement age is 65. Final average salary is the average salary in the three years before
exit (retirement or withdrawal or death). Pensions are paid monthly in advance for the life
from age 65, with no spouse’s benefit, and are guaranteed for 5 years (if the member died
before age 70).

(a) Estimate the APV of the accrued withdrawal pension for a life now aged 55 with 10 years
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of service whose salary in the past year was $10°,
(i) with no COLA,
(i) with a COLA in deferment of 3% per year.
(b) On death exit, a lump sum benefit of five times the accrued annual pension, with a COLA
of 3% per year, is paid immediately. Estimate the APV of this benefit.
Basic assumptions are as previous problems.: (1) Service table: Table 2.
(2) Salary scale: From Table 1;
(3) Post-retirement survival: as in Problem 3.
(4) Interest rate is 5% per year.
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CHAPTER 11
Markov Chains

11.1 Stochastic processes.

Definition 11.1. A stochastic process {X; : t € T} is a collection of r.v.’s defined in
the same sample space €2, where T is a set.

T is called the parameter set, often a time set.
If T is discrete, {X; : t € T'} is called a discrete—time process. Usually, "= {0, 1, ... }.
If T is an interval, { X, : ¢t € T} is called a continuous—time process. Usually, T' = [0, c0).
Let R” be the collection of functions from 7" into R. A stochastic process {X; : t € T'} defines
a function from €2 into R?. That is,

X, isamap w— X, (w) ERT Vw e, where X, (w) = (Xy(w): t€T).
X; denotes a random variable, and X, denotes a stochastic processes. X, (w) = Xy(w) 7

Recall for a function f, f or f(-) = f(z) ?
Recall the definitions of a random variable X and a random vector X = (X1, ..., X,,).
Xisamap w— X(w) e RV w e,
X is a map w — X(w) € R" V w € Q, where X(w) = (Xj(w), ..., Xp(w)).
Remark. Pay attention to the difference between X, X, X and X;.

A stochastic processes associates a function to each outcome w. A stochastic process is a
random function (a generalized random variable with values in a space of functions).

Some actuarial concepts involve the study of a stochastic process. A stochastic process can
be used to model:

(a) X, is the total amount of policies in effect held by an insurance company until time t.
(b) X; is the number of death of policy holders of an life insurance policy at the ¢-th year.
(c) X; is the evolution of an insurance company’s investments over time ¢.

(d) X; is the surplus of an insurance company at time t.
(

e) X, is the price of a stock at time ¢.

11.2 Markov chains.

The rest of the chapter is dedicated to the study of a type of stochastic process appearing
in many applications.

Definition 11.2. A discrete time Markov chain {X,, : n=0,1,2,...} is a stochastic
process with values in a countable space E such that

P{Xn+1 :]|XO :i07X1 :il,...,Xn :Zn} :P{Xn+1 :]|Xn :Zn} Vi(hilw"ainaj € Ea
141
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where E is called the state space. Often £ = {0,1,2,...}, or £ = {0,1,2,...,m}. Each
element of F is called a state. If X,, = k € F, we say that the Markov chain {X,}", or
{X,}52, is at state k at (time) stage n.

Example 11.1. A fair coin is tossed repeatedly. Let X, be the total number of heads
obtained in the first n throws, n = 0,1,2.... Notice that Xo =0, X,, ~ bin(n,0.5), and state
space is E = {0,1,2,...}. {X,}°%, is a Markov chain because for each iy, iy,...,in,J € E

P{Xnp1 = j|Xo=1t0, X1 =i1,..., X1 = i1, Xy = in} o= 7,

B % if j =i, ori, +1, with iy —ig,...,in —in—1 € {0,1} why ?7?
0 otherwise.

Markov chains can be used to study the mortality models presented in the previous chapters.

First, we consider the basic survival model.

0 if the individual is alive at time n,
1 if the indwidual is dead at time n.

Theorem 11.1. Consider an individual. Let X,, = {
The sequence of r.v.’s {X,,}5° is a Markov chain with state space E = {0,1}.

Q: P{X,1 =0|Xo =ig? X1 =017 -+, Xpg =in1? X =1i,0 } =77
P{X,p1 =?Xo=ie? X1 =i1? -+ Xp1 =ina? X, =1} =77
We also can model multiple decrement models.

Theorem 11.2. Consider an individual, which may die due to causes 1,...,m. Let

X - 0 if the individual is alive at time n,
" j  if the individual is dead at time n and died due to cause j.

The sequence of r.v.s {X,,}5° is a Markov chain with state space E = {0,1,...,m}.
Q: P{X,11 =0|Xo = io? X1 =417 -+, X1 =ip1? Xy =0 } =77
P{Xp1 =2 Xo=i? X1 =017 -+  Xpo1=ip1? X, =3} =77

We also can model multiple life models.

Theorem 11.3. Consider a pair of individuals. Let

if both individuals are alive at time n,
if the first individual is alive and the second one dead at time n,

if the first individual is dead and the second one alive at time n,

N R

if both individuals are dead at time n,

The sequence of r.v.’s {X,,}5° is a Markov chain with state space
E={1,2,3,4} or E ={(0,0),(0,1),(1,0),(1,1)}.
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For a Markov chain the conditional distribution of a future state X,,,; given the past states
Xo, X1,...,X, depends only on X,,.

P{Xyi1 =7|X0o =10, X1 =11,..., Xsy =i} = P{ X1 = j| X0 = in}
This property is a special case of conditional independence, defined as follows:

Definition 11.3. Given events A, B and C, we say that A and B are (conditional) inde-
pendent given C if P{AN B|C} = P{A|C}P{B|C}.

Theorem 11.4. Given events A, B and C' such that P{BNC} > 0,
A and B are independent given C iff P{A|BNC} = P{A|C}.

By the previous theorem, for a Markov chain {X,, : n = 0,1,2,...}, Vig,...,in11 € E,
given that X,, = i, {(Xo, X1,..., X0 1) = (lo, - -,4n_1)} and {X,,11 = i,41} are independent.
In general, for a Markov chain, past and future are independent given the present (see Theorem
11.11 in page 150).

Example 11.2. Suppose that you are playing blackjack in a casino. At a certain moment,
you have 3200 in chips. How good would you be after that does not depend on the number of
money you started with.

It is possible to define Markov chain for a continuous time, i.e. there are Markov chains of
the form {X,}ier, where T is an interval.

Definition 11.4. The stochastic process {X; : t € [0,00)} is a Markov chain, if it takes
values in a countable space E and ¥ 19,11, ...,1,,] € E and whenever 0 <ty <t; < --- < tpi1,

P{Xt == j’XtO - io, “ o ,th71 — Zlnfl,th — ’Ln} — P{th+1 - j‘th - Zn}

n+1

Since X,, takes values in the countable set E, X, has a discrete distribution.
Let a,(i) = P{X,, =i}, i € E. a,(i), i € E, is the density function of the r.v. X, Notice
that o, (i) > 0 and ), p an(i) = 1.
Denote the row vector (ay,(7))icr by an, €.9., o = (an(0), (1), ..., an(k)) if E={0,1,...,k}.
ap or (ap(1));ep is called the initial distribution of the Markov chain.
Denote Q,(i,7) = P{ X411 = j|X,, = i}, where ¢,j € E.
Q. (7, 7) is called the one—step transition probability from state i into state j at stage n.
Denote Qn = (Qn(,7))ijcp-

Qn(oa()) Qnmal) Qn(oak)
Qn(LO) Qn<171) Qn(Lk

For example, @),, =

Qn(k>0) Qn(k71) Qn(kak)
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arriving states

0 1 ek
1,k

departing states
0.2 03 0.5
Example 11.3. Consider a Markov chain with E = {0,1,2} and Qs = | 0.3 0.5 0.2
0.1 0.1 0.8

Class exercise: Find P{X; = j|X¢ =0} and P{X7; = 1|Xs = j} for all j.
Solution: (P{X7 = 0|X6 = 0}, P{X7 = 1‘X6 = 0}, P{X7 = 2|X6 = O}) = (02, 03, 05)

P{X; = 1| X = 0} 0.3
P{X;=1|Xs=1}| = [ 05
P{X; = 1|X; = 2} 0.1

Theorem 11.5. The one—step transition probabilities Q,,(i,7), i,j € F, satisfy that
Qn(i,j) > 0 and ZjEE Qn(i,j) = 1.

Example 11.4. Let (i) Qo = ((;;) 0?5> and (i) Qo = <82 8;)

Which of the following are legitimate one-step transition probability matrices ?
Definition 11.5. A state j is called an absorbing state if Q,(j,j) = 1 for each n > 0.

If 7 is an absorbing state and X, = j, then X,,,,, = j for each m > 1.

For the Markov chain for a survival model (see Theorem 11.1 in page 142), state 1 (death)
is an absorbing state. For (z) after n years,

U = (Qn(l,O) Qn(1,1)> - ( J f )Why ? Qui1 = (? ?>

For the Markov chain for a multiple decrement model (see Theorem 11.2 in page 142), states

1,...,m are absorbing states. For (x) after time n,
() 1) (m)
A Mo o,
0 1 0 0 0
Qn _ e.g. m:ChJO 0 0 1 0 0
0 0 0 1 0
: 1 0 0 0 0 1
0 1
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For the Markov chain for a multiple life model (see Theorem 11.3 in page 142), that is,
((1,1),(1,d), (d,1),(d,d)), state 4 is an absorbing state. If (x) and (y) are independent lives,

PztnPy+n  Pz+nQy+n  Gzt+nDPy+n  Gzt+ndy+n

Q — 0 szrn 0 qgﬁJrn
" 0 0 Py+n Qy+n
0 0 0 1

Denote Q) (1,7) = P{Xp1x = j| X0 =i}
Q;k) (1,7) is called the k—step transition probability from state i into state j at time n.

QW (i,j) = 0and Y QP (i, j) = 1.

jEE
: (k) VY (k)
Denote the matrix (Qn (4, 7))ijer by Qn

Lemma 11.1. (Sequential conditioning) V B, Ay, Ay, ..., A, C Q with P{B} > 0,

Corollary 11.1. For each Ay, Ay, ..., A, CQ,
P{Ai1NnAyNn---NA,}=P{A}P{As | A1}---P{A, | A1 NAyN---NA, 1}

Why is P(A;) > 0 missing (see Lemma 11.1) ?

Example 11.5. From a deck of 52 cards, you withdraw three cards one after another.
P(the first two cards are spades and the third one is a club)= ¢

Solution: Let A; = {i — thcard is a spade}, i = 1, 2, and let A3 = {third card is a club}.

52 51 50
Next theorem shows that using the initial distribution and the one—step transition proba-
bilities, we can find the distribution of a Markov chain.

Theorem 11.6. (Basic theorem for Markov chains) Let {X,, : n =0,1,2,...} be a Markov
chain with state space E. Then, ¥ 19,11,...,1, € F,

(i) P{X; =i;, j = 0,1,..,n} = ao(io)Qolio, i1)Q1(ir, i2) - - Qu1(in_1,n).

(i) cnlin) = 3 i irin_rer @0(i0)Qoldo, 11)Q1 (i1, i2) -+ Qu1(in-1,in) (= P(Xyn =1n)).
We will say that

the Markov chain does ig > iy > -+ = Gy 1 = iy, if (Xo, X1, ..., X0) = (G0, 91, .-, 0n)-
Using matrix notation (setting £ = {0,1,...,k}), Theorem 11.6 (ii) implies that

ap = Q@1+ Qno1 = 01Q1Q2 - Qn1 = Ay 1Qp1.
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Example 11.6. Consider a Markov chain with

02 0.3 0.5 0.1 0.1 0.8
E=1{0,1,2}, ap = (0.3,0.4,0.3), Qo = [ 0.3 05 02],Q:= (03 05 02]. Find:

0.1 0.1 0.8 0.3 0.5 0.2
(’U) P{X()—]_ X1 —0} (UZ) P{Xo—l X1 =2 X2_2}
(vii) P{Xo =2, X; =1, Xy = 0}. (viit) P{X, =1, Xy = 2}.

Sol: Formulas (1) Qu(i,7) = P(X,11 = j| X, =1),
(2) G, J) = P(Xn = j1Xo = 1),
(3) P{X Z], = 0,1,...,%} = &o(io)Qo(io,i1)Q1(i17i2)"'Qn_1(in—1,in),
(4) (P(Xn =0), P(X,, = 1), P(X,, = 2)) = o, = (@ (0), (1), i (2)),
( ) Qp = OéoQle “Qno1 = H;:f Qj = 0y 1Qn—1-

(i) P{Xo =1} = ap(1) = 0.4 by (4) and ag = (0.3,0.4,0.3),
(i) P{X; =1} = a4 (1), where a; = (a1(0), a1(1), a1(2)).
02 0.3 0.5
ar = apQo = (0.3,0.4,0.3) [ 0.3 0.5 02| = (0.21,0.32,0.47) => a1(1) = 0.32
(0.1 0.1 0.8)

0 0.3
Or simpler way: P{X; = 1} = apQo (1) =(0.3,0.4,0.3) (0.5) = 0.32,
0 0.1

(111) P{X2 = 1} = 062(]_), where Qg = (&2(0),0&2(1), 062(2)) = OCQQle =
0.2 0.3 0.5 0.1 0.1 0.8 0.1 0.1 0.8
(0.3,0.4,0.3) (0.3 0.5 0.2) (0.3 0.5 0.2) = (0.21,0.32,0.47) (0.3 0.5 0.2)
0.1 0.1 0.8 0.3 05 0.2 0.3 0.5 0.2

— (0.258,0.416,0.326). as(1) = ?
Or simpler way: P{X, = 1} = apQoQ1(0, 1,0)"

02 0.3 05\ /0.1 0.1 08\ /0 0.1
= (0.3,0.4,0.3) [ 03 05 02] (03 05 02| |1] =(0.21,0.32,047) [ 0.5 | = 0.416.
01 0.1 08/ \0.3 05 02/ \0 0.5

(iv) P{Xo = 1,X; = 2} = P(Xo = 1)P(X; = 2| Xo = 1) = ap(1)Qo(1,2) = (0.4)(0.2) = 0.08.

(v) P{Xo=1,X1 =0} = P(1 = 0) = ap(1)Qo(1,0) = (0.4)(0.3) = 0.12.
(vi) P{Xp=1,X; = 2, X, = 2}
= ap(1)Qo(1,2)Q1(2,2) = (0.4)(0.2)(0.2) = 0.016.
(Vll) P{XO = 2 X1 1 XQ = 0}
= p(2)Q0(2,1)Q1(1,0) = (0.3)(0.1)(0.3) = 0.009.
(vii) P{Xo =1,X, =2} =37 (P{Xo =1,X; = j, X, = 2}
= (0.4)(0.3)(0.8) 4 (0.4)(0.5)(0.2) + (0.4)(0.2)(0.2) = 0.152, or

P{XO =1,Xy= 2} = O_/()(l) Q(()2)(17 2) = aO(l)(Ov L, O)QOQl(Q 0, 1)t = 04(037 0.9, 02) (

2 step

0.8
0.2
0.2

) |
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Example 11.7. An actuary models the life status of an individual with lung cancer using a
Markov chain model with states: Statel : alive; and State 2: dead. The transition probability

matrices are Qg = (0(')6 014) , Q1 = <O(')4 016) ,(Qa = (062 Of) , Q3 = (8 1) . A death

benefit of 10° is paid at the end of the year of the death. The annual effective rate of interest
is 5%. The insured is alive at the beginning of year zero. Calculate the actuarial present value
of this life insurance.

?
—~N

Solution: The APV is F(10%0%) = 10°> >  v" fk,(n) = 7 Notice:
1. fk, was given before for U(0,m), or Exp(1/u), or lifetable, but is MC here. Formulas:

n(in) = D i ivin_ser @0(i0)Qoldo, 11)Q1 (i1, 12) -+ Qu1(in-1,7n). (d0,i1,72,...) = 777)

Qp = aOQOQl T Qn—l = alQlQZ T Qn—l = an—lQn—l (CYO = (Oéo(()), &0(1)) ?)

P{XJ = ’ij, j = 0, 1, ,n} = P{XO = io, ,Xn = Zn} = Oéo(io)@o(io,’il) s Qn71<in717 Zn)
2. After four years, an individual is dead with probability one (why 7)
1st approach:

fr. (1) fr. (2) Jfr.(3) fr.(4)
P1l—2) Pl—1—~2) Pl—1—1—2) Pl=l—1—1—2)
1%x04 1%0.6 0.6 1%0.6+0.4%0.8 1%0.6%x04%0.2x1
0.4 0.36 0.192 0.048

The APV of this life insurance is 10° >".2, v%_1]q,
= 10°{(0.4)(1.05)~" + (0.36)(1.05)~2 + (0.192)(1.05)~3 + (0.048)(1.05)~*} = 91282.95.
2nd approach (standard): fg, (n) =P{X, =2} —P{X,_1 =2} = Fx(n) — Fx(n—1)
(Why 7).
{X,, =2} = { a person is dead (not necessarily died) in the n-th year}.
P(Xn = 2) (: Oén(2)> and Ay = OéleQQ ce anl-
Since at the beginning the individual is alive, ap = (1,0) = (ao(1), ap(2)).

ao(2) = 0
an(2) = ayQo (?) — (1,0) (Of) 0.4,

012(2) = O./()Q()Ql (?) = (06,04) (016) = 076,

@4(2) = OéoQleQQQg ((1)> = (()048,0952) (1) =1.

dead in year | 1 2 3 4
Probability | 0.4 0.76 —0.4=0.36 0.952 —0.76 = 0.192 1 —0.952 = 0.048

Next theorem shows how to find probabilities for a Markov chain given the initial state.
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Theorem 11.7. Let {X,, :n=0,1,2,...} be a Markov chain and i, ..., i, € E. Then
(i) P{AX1 =iy, ..., X = in| Xo = io} = Qollo, 11)Q1(i1,12) - - Qu-1(in-1,n),
(i) Qén) (f0y3n) = D iy in e Qolio, 11)Q1 (i1, d2) - - Qi (in-1,1n).

Using matrix notation, Theorem 11.7 (ii) states that
(11.1) Q(()n) = QoQ1 - Qn-1.

Equation (11.1) is one of the Kolmogorov—Chapman equations of a Markov chain.

Next theorem generalizes Theorem 11.6 by considering a general first time.

Theorem 11.8. (i) P{X,, = iy, Xos1 = tns1s s Xpkm = Gnim}
= Oén(zn)Qn(lny in—&—l)Qn—l-l(in—l-h in+2) Tt Qn—l—m—l(in—&—m—la Zn+m) .

-----

Q: oaliora) = D i iy iniscr @0(i0)Qolio, 11)Q1(i1, 72) Q2 (i2, i3)Q3(i3,44) 7
Q341 (i3+1) = ZiGE a3(i>Q3(i7 i4) ?
o+ (fo+4) = a1 (l311) = ap2(inga) 7
In matrix notation, Theorem 11.8 (ii) says that

Appm = anQnQn+1 tee Qnerfl-

When we condition in a general time, we have that:

Theorem 11.9. Let {X,, :n=0,1,2,...} be Markov chain. For each iy, ..., inim € F,
(Z) P{Xn+1 = in+17 cee aXn+m—1 = i’rH-?TL—la Xn-l—m = in+m|Xn = Zn}

= Qn@nv Z.n-i-l)Qn-',-l(Z‘n—kl7 Z‘n—&-Z) e Qn-i—m—l(in-i-m—la Z.n-i-m)'
(“) lem) (ina Z-n-i-m) = Zin+1 intm_1€E Qn(ina Z.n—&-l)Qn—i-l(Z.n-i-la in—i—?) U Qn—i—m—l(in—i-m—l? Z‘n—&-m)'

.....

Previous theorem follows from Theorem 11.8. Theorem 11.9 (ii) implies that

(112) Q?&m) = QnQn-H o Qn-i—m—l-

Equation (11.2) is called the Kolmogorov—Chapman equation.
Main formulas:
(1) an(i) = P(X,, = i),
Ay = (oo, (1), an (i + 1), ...),
(2) Q" (0.§) = P(Xnsm = j1X0 = i),
Qv(lm) - QnQn—H T Qn+m—1'
(3) P{X;=1ij, j=n,n+1,..n+m}
= O (in)Qn(im 2‘n+1)c‘2n+1<in+la Z'n+2) T Qnerfl(inerflv Z‘n+m)'
(4) P{X; =145, j=n+1,..,n+m|X, =1i,}
= Qn<znv Z.n—i-l)Qn-i-l(in—&-lv in+2> o Qn-l—m—l(in-l—m—h in+m>'

(5) Qp = C‘30620621 te Qn—l - alQlQ? T Qn—l = an—lQn—l = Qg H;L;]i Qja ke {Oa 17 cey U — 1}
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Example 11.8. Consider a Markov chain with E = {1,2},

0.5 0.5 0.2 0.8
Qo = (0.3 0'7> and Q1 = <0.6 0.4). Suppose that Xy = 1.

(i) Find the probability that the first time the chain is in state 2 is stage 2.
(ii) Find the probability that at stage 2 the chain is in state 2.

Solution: (i) If the first time the chain is in state 2 is stage 2, then the Markov chain does

P{X) =1, X = 2[Xo = 1} = Qo(1,1)@Q:1(1,2) = (0.5)(0.8) = 0.4
(ii) The Markov chain can be at stage 2 in state 2, if any of the following transitions occur

l—=1—2 orl—2—2.

QP(1,2) =P{Xy =2|Xg =1} = ?

QP(1,2) =P 12, or 12+ 2|Xe=1) = (0.5)(0.8) + (0.5)(0.4) = 0.6.
Standard approach:

20— 0o 0) ~ 0 (33 02) (02 03) () - 0309 (03) o0

Example 11.9. Consider a Markov chain with
0.6 0.4 0.2 0.8
Find: (i) P{X3=2,X,=1}. (i) P{X35=1,Xy,=1, X5 =2}. (iii) P{X;5 = 2}.

Solution: (i) P{X; =2, X; = 1} = a3(2)Q5(2,1) = (0.8)(0.3) = 0.24.
(i) P{X5 =1, X, = 1, X5 = 2} = a3(1)Q3(L, 1)Qu(L, 2) = (0.2)(0.6)(0.8) = 0.096.

ot - (1 -0200 (5 1) (82 03 ()

0.8
= (0.36,0.64) <0'3> = 0.48.

Example 11.10. Consider a Markov chain with

0.6 0.4 0.2 08
B={1.2}, Qs = (0.3 o.7> @i = <0.7 0.3) '

Solution: (i) P{X,; =2|X5 =1} = Q3(1,2) = 0.4.
(i) P{X, =2, X5 = 1|1 X3 = 1} = Q3(1,2)Q4(2,1) = (0.4)(0.7) = 0.28.
(iii) P{X5 = 1|X3 = 1} = QP (1,1) = 0.4, as

QP(1,1) = (1,0)Q5Q4 (é) = (0.6,0.4) (83)

Theorem 11.10.
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Theorem 11.11. Let {X,, :n=0,1,2,...} be Markov chain. Then,

P{(Xns1, s Xnim) € B|(Xo,..., Xp1) € A, X, =iy}
=P{(Xos1,---, Xpim) € B|X,, = i,} for each A € R" and B € R™.

Example 11.11. Consider a Markov chain with

04 0.3 0.3 0.2 0.3 05
E={1,2,3}, Q=101 02 07],Q3= (03 02 05
0.3 0.1 0.6 0.5 0.1 04

Solution: P{X3 = 3,X4 = 2|X0 = 2,X1 = 3,X2 = 1}
= P{X;=3,X;=2/Xs = 1} = Qu(1,3)Q5(3,2) = (0.3)(0.1) = 0.03.

Example 11.12. Consider a Markov chain (MC) with E = {1,2},

0.4 0.6 0.3 0.7 .

Solution: P{Xy = 1|X; =2, X; = 1} = P{Xe = 1|X- = 1} = Q\?(1,1),
@ B 04 0.6\ (03 07 (1) _ 0.3\
Q- (1, 1) = (1,0) (0.2 08) Lo6 04) (o) = O406) {4 ) =048

Main formulas:
(1) an(i) = P(X,, = 1), an = (e, (1), an(i + 1), ...),
(2) Qng) (Zaj) = P(Xn—l—m = j|Xn = 1)7 lem) = QnQn+l T Qn+m—1-
B) P{X; =14, j=n,n+1,...,n+m}

= Qp (Zn)Qn(ln: in+1)Qn+l<in+17 Z'nJrQ) e Qnerfl(inerfl? Zn+m)
(4) P{X; =145, j=n+1,..,n+m|X, =1i,}

= Qn(lna in—i—l)Qn—i—l(in—‘rlv in+2> e Qn-{—m—l(in-l—m—l; Zn—l—m)
(5) Qn = CYOCQOCgl te Qn—l = alQlQZ te Qn—l = an—lQn—l~
A Markov chain satisfying @, (i,7) = Qo(7,7), V n > 1, is called a homogeneous MC .
Define

P(i,j) = P{X,11 = 7| X = i} = Qn(i, ) for all n.

P = (P(i>j))i,jeE or = (pij)i,jEE

P (i, 5) = P{Xn1m = j| X, = i} = QU(4, §) for each n.

PO = (P (i, 5)); jer o = ()i jer
We have that P = P. The matrix P™ must satisfy that:

(i) for each i, € E, P™(i,5) > 0.

(ii) for each i € E, Y, cp P (i,5) = 1.
Main formulas for a homogeneous Markov chain,

(m)(; ) — — — (m) —
(2) P (Zaj) P(Xn+m j’Xn Z): P \PP; p,-
m factors

(3) P{X; =45, j=nn+1,....n+m}=an(in)Plin ins1)Pins1, ins2) - Plintm—1, intm)-
(4) P{Xj = ij’ ] =n+ 17 N m|Xn = in} - P(ina Z'n—&-l)P(Z.n—f—h in+2) T P(in+m—17in+m)'
(5) ap = agP™ = a; P Y = ... = q,_P.
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Example 11.13. Suppose that a homogeneous Markov chain has state space E = {1,2, 3},

1/3 2/3 0

transition matriv P = [ 1/2 0 1/2 |, and initial distribution ag = (1/2,1/3,1/6). Find:
1/4 1/4 1/2

(i) P®,

(i) P{X, = 2},

(iv) P{Xo =1, X3 = 3},

(v) P{X; =2, Xy =3,X3 =1|X, = 1},
(vi) P{X, = 3|X, = 3},

(vii) P{X12 = 1|X5 = 3, X390 = 1},
(viii) P{X3 = 3, X5 = 1| X = 1},

(iz) P{X3 = 3| X, = 1}.

Solution: (i) P? = PP

1/3 2/3 0\ [/1/3 2/3 0 0.4444444 0.2222222 0.3333333
=12 0o 1/2]1/2 0 1/2| = 02916667 0.4583333 0.2500000
1/4 1/4 1/2) \1/4 1/4 1)2 0.3333333  0.2916667 0.3750000

1/3 2/3 0 0.4444444 0.2222222 0.3333333
(ii) P® = PPP=|(1/2 0 1/2] |0.2916667 0.4583333 0.2500000
1/4 1/4 1/2) \0.3333333 0.2916667 0.3750000
0.3425926 0.3796296 0.2777778
= [ 0.3888889 0.2569444 0.3541667
0.3506944 0.3159722 0.3333333
(111) P{X2 = 2} = 062(2) = OéoQle(O, 1, O)t, thus
as(2) = apP?(0,1,0)t = (1/2,1/3,1/6)(0.2222, 0.4583,0.2917)* = 0.3125.
= ao(1)(QoQ1Q2)(1,3) (or = ag(1)(1,0,0)(QuRQ1Q2)(0,0,1)")
= ap(1)P®)(1,3) = (0.5)(0.2777778) = 0.1388889.
(v) P{X1 =2,X, =3, X3 = 1|Xo = 1} = Qo(1,2)Q1(2,3)Q2(3,1) = 357 = 15-
(vi) P{X, = 3| X1 =3} = Q:(3,3) = P(3,3) = 1/2.
(vii) P{X12 = 1| X5 =3, X190 = 1} = P{ X, = 1| X} = 1} = PA(1,1)
1
=(1,0,0)P? | 0 | = 0.444444.
0
(viii) P{X3 =3,X5 = 1| X = 1} = P{X3 = 3| X, = 1}P{X; = 1| X3 = 3}
= PO(1,3)P?(3,1) = (0.277778)(0.3333) = 0.09258341.
(ix) P{X3=3|Xo =1} = P®(1,3) = (1,0,0)P3(0,0,1)* = 0.277778.

Theorem 11.12.
Theorem 11.13.

Theorem 11.14.
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Theorem 11.15.

11.6. Some actuarial applications. In this section, we consider the APV of different
types of cashflows. Let v; be the t—year discount factor, i.e. the present value of $1 received
t years in the future is v;. Consider a Markov chain with state space F = {1,2,...,m}. Let
Q%k)(i,j) = P{X,1x = j| X, = i}. Suppose that a payment of ,,C(j) is made at time n + k
if the Markov chain is in state j at time n + k. If X,, = ¢, then the APV of this cashflow at
time n is

A= QW 5)  nrkC ) vnirvy )

0

k=
Example 11.14. An employer offers a pension plan for its employees. Assume that the
status of an employee is allowed to change at the end of the year. The status of employees is

modeled by a non-homogeneous Markov Chain with three states: Healthy (1), Disabled (2), and
Gone (3). The transition-probability matrices for a new entrant (time 0) are

[0.8 0.1 0.1] [0.4 0.2 0.4
Qo= 107 0.1 02|, Q. =05 02 03],
0 0 1] 0 0 1
[0.2 0.3 0.5] [0 0 1
Q= (0.1 01 08|, Q3=1(0 0 1 (= Q) k>4, implicitly).
0 0 1] 0 0 1

Suppose that i = 6%. FEvery employee makes a contribution of § 10* at the beginning of the
year while he is in state 1. Calculate the APV of these contributions.

Solution: By Eq. (1), the APV of these contributions is

A =§j@é’”(1, 1) - kC(1)v
k=0

(109[Q6”(1,1) + Q6" (1, v+ QF (1, 1)0” + Q7 (1, 1)0”]
=(10")[1 + (0.8)(1.06)~* + (0.37)(1.06) 2 + (0.092)(1.06)*] ~ 2.161261 x 10®.

0.37 0.18 0.45
Reason: QY (1,1) = 27 QY = Qo, ¥ = QuQ; = [0.33 0.16 0.51
0o 0 1
0.092 0.129 0.779 00 1
QY = Qu@:1Q2 = 0.082 0.115 0.803], W= QuQ:1Q:Q;= |0 0 1
0 0 1 00 1
Simpler way: QP (1,1) = (1,0,0)QoQ1(1,0,0) = (0.8,0.1,0.1)(0.4,0.5, 0)".
1 0.4 0.2 04] /0.2 0.1
Q¥(1,1)=1,0,00Q% (0] =(0.8,0.1,0.1) |05 0.2 03| [0.1] =(08,0.1,0.1) [0.12 | =
0 0 0 1 0 0

0.092
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Suppose that a payment of ,,,xC(7, ) is made at time n + k if the Markov chain satisfies
Xpyk—1 =t and X, = j. If X,, = h, then the APV of this cashflow at time n is

ZQ h i Qn+k(2 ]) 'n+kc(i;j)vn+k+1vgl

Example 11.15. Under the information on Example 11.14, the employer makes a benefit
payment of $5000 for transition from state 1 to state 2 (get sick).
(i) Calculate the APV of these benefit payments.
(ii) Suppose that these benefit payments are funded by a level premium made while an employee
1s at state 1. Calculate the level benefit premium.

Solution: (i) The APV of these contributions is
ZQ (1,1)Qr(1,2) - xC(1,2) 0441 vyt = (v

:<5000>[@0<17 2)0 + Qo(1, 1)Q1(1,2)0” + Q5 (1, 1)Qa(1, 2)0)
=(5000)[(0.1)(1.06) " + (0.8)(0.2)(1.06)* + (0.37)(0.3)(1.06) ~?]
=1649.684.

(ii) Let P be the level benefit premium. By Example 11.14, the APV of premiums is

2.161261P. Hence, P = 158084 — 763.30.

However, since the last year, everyone will go, the level benefit premium is
91,1 + QM1 1w+ QP (1,1)0* = 1 + (0.8)(1.06) " + (0.37)(1.06)~2 = 2.084.
Hence, P = 1649684 _ 797 59

T2.084
[0.8 0.1 0.1 (0.4 0.2 04
Qo= (0.7 01 02|, Q =05 02 03],
0 0 1] 0 0 1
[0.2 0.3 0.5] 0 0 1
Q.= (01 01 08|, Q=10 0 1
0 0 1] 0 0 1

Theorem 11.16.

11.3 Random walk.

Let {¢;}52, be a sequence of i.i.d.r.v.’s with
P{e; =1} =pand P{¢; = -1} =1—p, where 0 < p < L.
Let X, = Xo+ > 7_ ¢ forn > 1, where Xy is a r.v., often = 0.
The stochastic process {X,, : n > 0} is called a random walk.
Imagine a drunkard coming back home at night. We assume that the drunkard goes in
a straight line, but, he does not know which direction to take. After giving one step in one
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direction, the drunkard ponders which way to take home and decides randomly which direction
to take. The drunkard’s path is a random walk.

A random walk is a homogeneous Markov chain with states £ = {0,4+1,+2 ...} and
P(iyi+1) = P(Xni1 =i+ 1/X, =i)=pand Pli,i—1)=1—pV¥ n > 0.
Formulas:

Sp = =502 ~ b(n, p)

X, =Xy +25, —n.
For each 1 <m <n,
(i) X, L X, — X,
(ii) X, — X;n ~ X,,_m why does it mean ?
(iii) Cov(Xp, Xp) = 4mp(1 — p).

Example 11.16. Suppose that {X,, : n > 1} is a random walk with X = 0 and probability
0.55 of a step to the right, find:
(i) P{Xy = —2}. (i1) E[Xy]. (i1i) Var(Xy).

Solution: (i) P{X, = —2} = P(25; —4 = —2) = P{S, = 1} = (})(0.55)*(0.45)® ~ 0.20.
(ii) E[X4) = E(0+2S;—4) =2np—4=2%4%0.55 —4 =04.
(iii) Var(Xy) = Var(0 + 25, —4)) = 4npg = (4)(4)(0.55)(0.45) = 3.96.

Example 11.17. Suppose that {X,, : n > 1} is a random walk with Xo = 0 and probability
p of a step to the right, find:
(i) P{X3=-1,X¢=2,}
(it) P{X5 =1, X190 =4, X165 = 2}

Solution: Only do (ii).
P{X5 = 1,X10 = 4,X16 = 2}
= P{X5=1X10— X5 =3, X156 — X0 = -2}
(11) P{X5 - 1}P{X10 - X5 — 3}P{X16 - X10 - —2} .
= P{X; =1}P{X; =3}P{Xs = -2} X, =0+2S,—n and S, = Binom(n,p)
P{Binom(5, p) = (5 + 1)/2}P{Binom(5,p) = (5 + 3)/2}P{Binom(6, p) = (6 — 2)/2}
(Hp*a* C)'a’ G)p*a" = 750p".

Example 11.18. Suppose that {X,, : n > 1} is a random walk with Xo = 0 and probability
p of a step to the right and 0 < m < n Show that:
(i) Cov(Xpm, X,) = mdp(1l — p).
(i1) Var(X,, — X)) = (n —m)4p(1 — p).
(iii) Var(aX, + bX,,) = (a + b)*>mdp(1 — p) + a*(n — m)4p(1 — p).

Solution: (i) Since X,, L X,, — X,

Cov(Xy, X)) = Cov( X, Xon + X — Xin)
= Cov(Xy,, Xim) + Cov(Xy, X, — Xin) = Var(X,,) = mdp(1 — p).
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(ii) Since X,, — X ~ Xy,

Var(X,, — X,,) = Var(X,,_,,) = Var(0 + 25,,_,,, + (n —m)) = 4(n — m)p(1 — p).
(iii) Since X,, and X,, — X, are independent r.v.’s,

Var(aX,, + bX,,) = Var(bX,, + a(X,, + X,, — X;n))
Var((a + b) X, + a(X, — X))

= Var((a+b)X,,) + Var(a(X, — X,n)

= (a+0)*4mp(1 — p) + a®4(n —m)p(1 - p)

V(aX,+bX,,) = a*V(X,)+2abCov(X,, X,,) +0*V (X,,) = a*-4npq+2ab-4mpq+b* - 4mpq
= a® - 4(n —m)pq + a® - 4mpq + 2ab - 4mpq + b* - 4mpq.

Skip the next two examples.

Example 11.19. Suppose that {X,, : n > 1} is a random walk with Xy = 0 and probability
p of a step to the right, find:
(i) Var(—3 + 2X,)
(ii) Var(—2 + 3X, — 2X5).
(#i) Var(3X, — 2X5 + 4X).

Example 11.20. Let {X,, : n > 0} be a random walk with Xo = 0 and P[X,41 =i+ 1 |
Xp=i=pand P{X,, ;s =i1—1| X, =i} =1—p. Find:
(1) P{X10 = 4].
(i) P{X, = -2, X0 = 2}.
(iii) P{X3 = —1, Xy = 3, X4 = 6}.
(iv) Var(Xy).
(v) Var(b — X3 — 2X19 + 3Xy).
(UZ) COV(—2X3 + 5X10, 5 — X4 + X7)
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Remark. Let {X,},>0 be a random walk with X, = 0. Given k > 0, let T be the first time
that S, = k, i.e. T, = inf{n > 0: S, = k}. Then, T} has negative binomial distribution,

P{T}, =n} = (Zj)pk(l —p)"k 0>k E[T}] = g and Var(Ty) = f)—g.
Example 11.21.

11.4 Hitting probabilities.

In this section, we consider a homogeneous Markov chain { X, },>¢ with one-step transition
probablhty matrix (P(Za]))z,]EE (: (pl])z,]EE)

Definition 11.6. Given a set A C E, the hitting probability hi* is the probability that the
process hits A given that it starts at i.

hf:l = P{{Xn}nzo is ever in A‘XO = Z} = ZZO:O P{XO g A, ce 7Xn—1 g A,Xn € A|X0 =
Theorem 11.17. (ki h{,...) satisfies the recurrence equations

ht =1, fori € A,
ht =" P(i,j)hy, fori ¢ A.
JjEE
Proof. hA =P{Xo € A|Xg =i} + 3 P{Xo € A,... . X, 1 & A X, €AX,=i}?
Ifi e A h* = P{X, € A| Xy =i} = 1. On the other hand, if i ¢ A, then
=0

Wt =P{Xoe AlXo =i} + > P{Xo € A ..., X1 ¢ A, X, € AX, =i}
n=1

=Y P{X1 ¢ A, ... X\ g A X, € AlX, =i}
n=1

:(Z + Z)P{Xl = J,{Xn}n>1 1s ever in A|X, =i}

JEE  jEE
:ZP{XI = j|Xo =i} + ZP{Xl = J,{Xn}tn>1 s everin A|X, =i}
JEA JgA
:ZQo(i,j) + ZQo(i,j)P{{Xn}n21 is ever in A|X; = j}
JeA JEA
:ZP(i,j) + ZP(i,j)P{{Xn}nzl is ever in A|X; = j}
JjeA JEA
:ZP(i,j) hj‘ + Z P(z’,j)hf as { X, }n>0 is a homogeneous MC
jeA T A
-1

=Y _P(i,j)h.

JEE



11.4. HITTING PROBABILITIES. 157

Theorem 11.18. Suppose that (g, z1, ... ) is a nonnegative solution to the system of linear

x; =1, forie A, (1)
( ZjeE P(l,j)ﬂ?], for i g A (2)

It follows from the theorem that (h{',hi',...) is the minimal solution of the equations

if i € A, r; =1, fori e A, ht =1,

ifig A wmi=3 5P, 5)x;, b= Pli,5)h,
When A = {j}, where j is absorbing state, h{' (= 1) is the probability that the Markov chain
is absorbed by state j. In this case, h{! is called the absorption probability of state j.

equations, Then, for each i € E, x; > hi.

and z; > hit.

Example 11.22. An American roulette has 38 pockets numbered: 0,00,1,2, ...,36. Peter
has $100 and wants to have $400 or go broke. Peter bets all his money in each play to the first
18, i.e. to 1,2,...,18. If after turning the roulette, the ball falls into of the pockets in the first
18, Peter gets a payoff of twice his ante, i.e. Peter gets his ante plus a profit equal to its ante.

If the ball does not fall in the first 18, Peter loses all his ante. Calculate the probability that
Peter ends up with $400.

Solution: Let X, be Peter’s amount of money at time n, with A = {400}, hi}, =
{X,} is a Markov chain with state space E = {0,100,200,400}. The probability that Peter

1 0 0 0
9 - B0 2 0
wins in a bet is 55 = &. P = (P(Z,j))ijjeE = (P(Xpp1 = jI1X, = ))M.GE =11 0 6’ 9
19 19
0O 0 O
To 1 0 0 O T 0 0 0 0 0 To
10 9 10 9
Note T100 | _ E 0 19 g Z100 s 0 . B -1 _1—9 2 Z100
L200 v 0 0 55 200 0 o 0 1 55 200
T 400 0 0 O 1 T 400 0 0 0 0 0 T 400

The solution to x with x40 = 1 is not unique.
hiho = 1 by Theorem 10.17, as A = {400}.

hit =0, as P(0,0) =1 i.e., 0 is an absorbing state.
Then by Theorem 1017, X =Px => T100 — (9/19)1’200 and To00 — (9/19)&3400 = (9/19)

So, hity = 100 = (9/19)% = 0.2243767313.
Proof of Theorem 10.18. For ¢ & A,

ZPZ]lxﬂ ZPZjl —|—ZPZ]1:E]1 by Eq (1)

el Jj1€A J1€A
=P{X; € A[Xo=i}+ > P(i,j1) Y Pliv.jo)z, by Eq (2)
J1¢€A jo€E
=P{X; € A[Xo =i} + > Y P(i,j1)P(r.j2) + > Pli,j1)P(j1, j2)xj,
J1€A ja€A J1,J2¢€A

=P{X; € A[Xo =i} + P{X1 € A, Xy € A|[Xo =i} + Z P(i, j1) P (1, j2) @,
J1.J2¢A
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By induction, we get that

xZ:ZP{Xl gA,...,Xj_l gA,Xj EA‘XOZZ}+ Z P(Zyjl)P(JMJZ)P(]m—la]m)IJm
i=1 j

Since x; is nonnegative,

l’lz P{X1¢A7...,Xj_1gA,XjE/HXO:Z.}

M

1

J

M-

P{XogA,...,Xj_l¢A,Xj€A|X0:i} asigéA

J

Il
o

Lettlng m — o0, I; Z Z?ioP{XO Q A, N 7Xj_1 g A,Xj c A|X0 = Z} = th o

Example 11.23. A blind squirrel is in one of the chambers of a 2 x 3 maze. The squirrel
can go any available chamber which is either up, or down, or to the right or to the left at
random. In chamber 3, there is a weasel (huangshulang). In chamber 6, there is a raccoon
(li2). The raccoon and weasel do not move to any chamber. Once that the squirrel enters a
chamber with a predator, it is eaten. Calculate the probability that the squirrel is eaten by a
Taccoon.

1 2 3
WEASEL

4 5 6
RACCOON

Solution: The states are E = {1,2,3,4,5,6}. The transition matrix is

0 05 0 05 0 0
1/3 0 1/3 0 1/3 0
p_| 0 0 1 0 0 o0
05 0 0 0 05 0
0 1/3 0 1/3 0 1/3
o 0 0 0 0 1

For A = {6}, we need to find h# or h;, i € {1,2,4,5}. We setup the equations h = Ph =>

hi = hy + $hy 1 =05 =05 0 0 0\ /I 0
hy = hy + $hs -1/3 1 0 —1/3 0 0| |he 0
hs =0 __ |05 0 1 =05 0 0| |ha| | O
hy = 5h1 + 3hs B 0 —-1/3 =1/3 1 0 0f|hs| [1/3
hs = $hy + $hy + 5 0 0 0 0 1 0f[hs 0
hg =1 0 0 0 0 0 1) \hg 1

The solutions are hy = %, hy = %, hy = 1;‘1, hs = ll

[
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11.5 Gambler’s ruin problem.

Skip this section! Imagine a game played by two players. Player A starts with $%& and
player B starts with $(N — k). They play successive games until one of them ruins. In every
game, they bet $1. The probability that A wins is p and the probability that A losses is 1 — p.
Assume that the outcomes in different games are independent. Let X,, be player A’s money
after n games. After one of the player ruins, no more wagers are done.

If X,, = N, then X,, = N, for each m > n. If X,, =0, then X,, = 0, for each m > n. For
1<k<N-1,

P{Xp1 =k+1|X, =k} =p, P{Xps1 =k —1|X, =k} =1—p.

{X,}5°, is a homogeneous Markov chain with states {0,1,..., N} and one-step transition
probability

1 0 0 0 0 0 0 0

1—p 0 p O 0 0 00
0 1—p 0 p 0 0 0 0

pP=

0 0 0 0 1—p 0 p O
0 0 0 0 0 1—p 0O
0 0 0 0 0 0 01

1-(2)"

“\p if 1
Pr=q1-(2)" e

% ifp:%

Py, is the probability that a random walk with X, = k, reaches N before reaching 0. P} is the
probability that a random walk goes up N — k before it goes down k.

Theorem 11.19. (Gambler’s ruin probability) Consider the Markov chain with states E =
{0,1,2,..., N} and one-step transition probabilities, P,;+1 = p and P,;_y = ¢ = 1 —p for
1<i<N-1, and Poo = Pny = 1. Let h; be the probability that the Markov chain hits N.

=3 . 1
—\BJ)_ if 1
Then, h; = { 1-(2)" ifp#3

if p= %,

L
N
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Proof. To find h;, we need to find the minimal solution of h; > 0 (h = Ph).
hy =1
hn-1 = ghn—2+phn (=> phy-1+qhy-1 = ghn—2 + phy) (*)
hn—o = qhy—3 +phn_1

ho = qhy + phs
hy = qho + phy
ho - O

These equations and (*) imply that

I = Byt = H(hyy — hy-s)

S

Iy — hys = %(hN—2 —hxo1)

hg - hg (hg - hl) (**)

ho — hy = =(hy — ho).

D“
—~
—_
~—

v
~—~
[\)
~—

(k%) => h3 — hy =

/\/\A’EIQ’BIQ

VI B
\_/
&

hy — Ay <%> ~ ho) (N)

Adding Equations (1) through (N),

e (1 (0)+0)

= = oy S )
=5 (3)
Fori=1, ..., N — 1, adding Equations (1) through (i) yields

i—1

hi = (hi — ho) = Y1, (%)j (h1 = ho) = ﬁ =910 . .

RS2
~—
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Example 11.24. An American roulette has 38 pockets numbered: 0,00,1, 2,...,36. Peter
has $100 and wants to have 3400 or go broke. Peter bets $50 in each play to 1,2, ...,18, until
he is either broke or has $400. If after turning the roulette, the ball falls into of the pockets in
the first 18, Peter gets a payoff of twice his ante, i.e. Peter gets his ante plus a profit equal
to its ante. If the ball does not fall in the first 18, Peter loses all his ante. Calculate the
probability that Peter ends up with $400.

Solution: The probability that Peter wins in a bet is % = 1%. Let X,, be Peter’s amount
of money at time n. {%Xn} is a Markov chain with state space F' = {0, 1,...,8} and one-step
transition matrix

1 0 0 0 00000
0 &% 000000
p_ |0 B0 5 00000
00 20 20000
000 0 0 00001

With A = {8}, we need to find hily, = Py. This is the gambler’s ruin problem with p = 3%, k = 2

_(10)?
and N = 8. The probability that Peter ends up with $400 is P, = 1 Ef’ogs = 0.1772923206.
(%
Example 11.25. Two gamblers, A and B make a series of $1 wagers where B has 0.55

chance of winning and A has a 0.45 chance of winning on each wager. What is the probability
that B wins $10 before A wins 357

Solution: Here, p = 0.55, k =5, N — k = 10. So, the probability that B wins $10 before
: op o () -(8)
A wins $5 is P, = )T TR
Example 11.26. Suppose that on each play of a game a gambler either wins 31 with
probability p or losses $1 with probability 1 —p, where 0 < p < 1. The gambler bets continuously

until she or he is either winning n or losing m. What is the probability that the gambler quits
a winner assuming that she/he starts with $i?

Solution: We have to find the probability that a random walk goes up n before it goes
1*(%) if 1
e o ifp# g
down m. So, N —k =n and k = m, and the probability is P, = { 1-(%)

m
m-+n

ifp:%

Theorem 11.20. (Gambler’s ruin probability against an adversary with an infinite amount
of money) Let {X,} be the Markov chain with state space E = {0,1,2,...} and transition
probabilities P(i,i + 1) = p, and P(i,i —1) = ¢ =1—p fori > 1, and P(0,0) = 1. Let
Py be the probability that the Markov chain does not hit 0 given that X, = k, k > 1. Then,

k
P — 1—(%) if p>
0 it p <

NI N
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Proof. Let hy be the probability that the Markov chain hits 0 given that X,, = k. We
need to find the minimal solution of h; > 0 (h = Ph)). hy = 1,

hi = qho + phy (=> phy + qhy = qho + phy) => hy — hy = 2(hy — hy)
hy = qhy + phs, hy — hy = 1(hy — hy)

IR

hy—1 = qhn_o + phy, hy —hn_1 = %(hNA — hn_2)
=> hl — ho = (hl — h()),

ho — hy = <g) (h1 — ho)
hy — hy = (%)2 (hy — ho)

o1 8 (1)
hy>1— (f: (g)j)—l (letting N — c0)

The minimal solution is the one with hy =1 —{>>7 (%)j}—l.
If 0 < p < 0.5, then Y02, (g)j — 00, hy =1 and hy = 1 by Eq. (1), V N > 1.
If p> 0.5, E;io (%)j = é, and by = £ and
=L = DS (1) 1+ (=) 25 () - (8) .



CHAPTER 12

Poisson Processes

12.1 Exponential and gamma distributions.
12.1.1 Exponential distribution

Definition 12.1. The gamma function is defined by I'(a) = [ t* e " dt, a0 > 0.

Theorem 12.1. The gamma function satisfies the following properties: (i) For each a > 1,
I'(a) = (a— D)'(a—1). (i) For each integer n > 1, T'(n) = (n — 1)!. (i4) T'(1/2) = /7.

Theorem 12.2. For each integern > 1, [ %:Le*l" de = —e ")

n

Definition 12.2. X ~ Exp(}), f(x)

zJ

>

__ e

X if x> 0.
Theorem 12.3. Let X ~ Exp(A), then Sx(z) = e~

>|8

, x> 0.
E[X] =\ Var(X) = A2, B[X*] = \¥k, M(t)

_ BN = {—A if <A
The exponential distribution satisfies that for each s, > 0,

o

else.
P{X > s+ th > t} = sPt = STt(S)

s+t

CP{X>s+t} e

P{X > t} e~
This is property is called the memoryless property of the exponential distribution.
Example 12.1.

>l >

— e 3 =P{X > s}.

12.1.2 Gamma distribution

Definition 12.3. X ~ G(a, f) if fx(x) =

Bap(\) = G(1,1) and 2(v) = G(v/2,2).

—| wk

BT (a

Y

x >0, where a, 5 > 0.
Theorem 12.4. If X ~ G(«, 3), then

E[X] = ap, Var(X) = a8, B[X*"] =

_ T(a+k)p*
Example 12.2.

Example 12.3.
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Theorem 12.5.
Example 12.4.
Example 12.5.
Example 12.6.

Example 12.7.
Additional Formula in 447:

Xis v Xy Xy o G(on + a3, B)
Glas. B X (v1+v5)
X, Xy XU e L Pois(h + )
POZSO\i) - S
N (i, 02) N + p2, 01 + 03)
bm(nz‘;;?) bin(ny + na, p)

By induction, the previous formula implies the results as follows.

Theorem 12.6. (1) If Xi,...,X,, are independent r.v.’s and X; ~ Gamma(a;, 3), 1 <
i < mn, then, > o X; ~ Gamma(d .  «;,0). (2) If Xi,..., X, are i.i.d ~ Exp(\), then
> i Xi~G(n, A).

Example 12.8. Suppose that you arrive at a single—teller office of the Department of Motor
Vehicles to find three customers waiting in line and one being served. If the services times are
all exponential with rate 2 minutes, calculate the probability that you will have to wait in line
more than 10 minutes before being served.

Solution: By the memory—less property of the exponential distribution, the remaining
serving time for the customer which is served is also exponential. Hence, your waiting time is

Y =31 X;, where {X;}1, are iid. S(t) = e;t/Q t > 0. By Theorem 12.6, Y ~ G(4,2),

Hence, the density of Y is fy(y) = y;;? 4)7 = y 33 > 0. By the change of variable ¥
% ,3,—2 %~ .3 3 o0 3
yle” 5 z AT oy %
U /6 66\5/5<e>6
z3 22 > 52
= =—|—=+-+z+1 —+—+5—i—1 ® = 0.2650259153.
6 2 5 6 2

Suppose that a system has n parts. The system functions works only if all n parts work.
Let X; be the lifetime of the i—th part of the system. Suppose that X, ..., X, be independent
r.v.’s and that X; has an exponential distribution with mean 6;. Let Y be the lifetime of the
system. Then, Y = min(X},...,X,). Then, for ¢t > 0 P{Y >t}

= P{min(X;,..., X,) >t} =P{n{X; > t}} = HP{X >t} = He—e%. — ot 9*11

=1
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So, Y has an exponential distribution with mean

Yiig
Let Z = max(Xjy,...,X,). Then, for ¢t > 0,

P{Z < t} = P{max(Xy,...,X,) <t} = P{" {X; < t}} = ﬁp(xi <t} = f[ (1 _ e—e%-) .

Since max(z,y) + min(z,y) = = + v,

1
E[maX(Xl,XQ)] = 61 + 92 - T 1
01 02
Given x1,...,x,, by induction, we can show that max(zy,...,x,)
= Z?:l Ty — Zi1<i2 min(xil7xi2> + Zi1<i2<i3 min(xilrrh) 'Tig,) - + (_1)n+1 min(mla ... 7'Tn)~

Example 12.9. A system consists of 4 components. The lifetime of the / components are
independent random variables with an exponential distribution and respective means 2,3,4, 10.
The system will work only if all four components work. Find the expected lifetime of the system.

Solution: Let X;, 1 <1¢ < 4, be the lifetime of the components. Let 7' = min;<;<4 X; be

the lifetime of the system. Then E[T] = an — = 1+;+1;+g = 0.8450704225.
i=10; 23410

Example 12.10. A remote control has three batteries. The lifetime of these batteries are
20, 30 and 50 days respectively. The lifetimes of the batteries are independent r.v.’s with an
exponential distribution. The remote control will work if at least one of the batteries work.
Find the average time until the remote control does not work.

Solution: Let X, Y and Z be the lifetimes of the batteries. We have that

Emax(X,Y, Z)]

1
=20+ 30+ 50 — T 1 - 1

1
- — = 64.64170507.
20173 20t35 30 T3 20 30 50

Example 12.11. A system consists of 3 components. The lifetime of the 3 component are
independent, identically distributed random variables with density function f(x) = %, if 1 <x.
The system will work only if all 3 components work. Find the expected lifetime of the system.

Solution: Let X;, 1 <i < 3, be the lifetime of the components.
Let T' = min;<,<3 X; be the lifetime of the system.
Two ways: (1) E(T) = [« fr(x)dz, (2) E(T) = [;° Sr(t)dt.

o 1

3
1 1
P{T >t} = P{nL {X; > t}} = [[ P{X: >t} = (t—6)3 = t>1
=1
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Which way is better ?
2nd way: (a) E(Y) = [77 Sp(t)dt = [7¢'8dt = 1/17. Is it correct ?

(b) B(Y) = [°Sp(t)ydt = [} 1dt + [t '%dt = 18/17.
Ist way: fr(t) = —Sp(t) :tlfé,,t> 1. Thus E[T) = [Ftfr(t)dt = [° B adt =18

Theorem 12.7. (i) Let Xi,..., X, be independent r.v.’s such that X; has an exponential

1
distribution with mean 0;. Then, P{X; = min <<, X;} =

9;

i1
(i) Suppose X LY, X ~ Exp(6h) and Y ~ Exp(fy). Then P{X <Y} = =

91+92

1

v
91 92

Proof. (ii) fxy(z,y) = 6_2—9292,%3; >0. So, P{X <Y} = [[7 [7 55 dydx

xT

_z _v _z _x[L_FL}
e [T b e _ e T 0 7
= dy dx = e %2 dx = ———dr = T
o 01 J. 0o o b 0 0 o

1
1) P{X;= min X; P(X; < min X-:L,
( ) { 1<j<n } ( 1<j<n,j#i ]) 2?21 %
-1
because Y = minj<j<p j£; X; ~ Exp((Z?SjgnJ# %) ), and X; LY. |

Example 12.12. A factory has two electricity generators. The smaller of the two gen-
erators has expected duration before failure of 20 days. The other generator has an expected
duration of 15 days. The amount of time which each generator lasts before failing has an expo-
nential distribution. The duration before failure of the two generators are independent r.v.’s.
(i) Calculate the mean of the time until one of the two generators fails.

(i1) Calculate the mean of the time until both generators breaks down.
(iii) Calculate the probability that the smaller generators fails before the other.

Solution: (i) X and Y be the lifetime of the two generators.
X ~ Ezp(20) and Y ~ Exp(15).

. . - 1 o 1 __ 60
(i) E[mm(X,Y)]_—%JF% =TT =7

(ii) Emax(X,Y)] = E[X +Y —min(X,Y)] =20+ 15 — & = 12
1
(ili) P{X <V} = 2 = 2.

1
36115

Example 12.13. Let X; and X5 be v.i.d. from exponential distribution with mean A > 0.
Let X1y = min(X, X3) and X o) = max(Xy, Xs). Find the density function, the mean and the
variance of Xy and X )

Solution: Density: Formula: f = ' = =5 P(Xq) > t) = P(X; > t)P(Xy, > t)
— o—tPhe—tIN — o—12/X Qg fxa, (t) = % “3x,t > 0.
x x T 2z
P{Xo <2} =P{Xi <2, Xy <z}=(1-e>)(1—-ex)=1-2e"34e x.
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2z

So, the density function of X is fx, (z) = F)'((Q) (t) = @ — 22 r>0
Mean: Xy ~ Exp( A), iii 3. E[Xy =3
E[X @) = fo r(% ;/A — erx/k) =---, or since Xy + X)) = X; + Xo,
E(X@)=A+A—-X/2=23)/2. (2)

Variance: Var(X) = %2.
Since X(l) + X(Q) = X; + X5 and X(l)X(z) = X1 Xo,
V(X0 + X)) = V(X1 + Xp) = 2X?
=> V(X( )—I— V(X )+ QCOU(X( 1) X(g)) = 2)\2.
2 2
cov(X ), X(2)) = E(X(1>X< ) = B(X)E(X ) = E(X1Xz) = 35 = A A= 5= =7 by (2).
2 _

4
V(X)) =2\ —oX =8

Example 12.14.
Theorem 12.8. If X ~ Pois(\) then E[X] = A, Var(X) = X and M(t) = M1,

Theorem 12.9.
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12.2 Poisson process.

Definition 12.4. A stochastic process {N(t) : t > 0} is said to be a counting process if
N(t) represents the total number of "events” that have occurred up to time t.

A counting process N(t) must satisfy:
(i) N(t) € {0,1,2,...}. (ii) If s < t, then N(s) < N(t).

For a counting process {N(¢) : ¢ > 0} and s < ¢, N(t) — N(s) is the number of events
occurring in the time interval (s, t].

Definition 12.5. A stochastic process is said to possess independent increments if
N(t1),N(ta) — N(t1), N(t3) — N(t2),...,N(tm) — N(tm—1) are independent r.v.’s whenever
0<t; <teg < - <tp.

Notice that if s < t, N(t) — N(s) is the increment of the process in the interval (s,t].

Notice that independence is only required for non—overlapping increments. Variables such us
N(7) — N(4) and N(10) — N(5) are not necessarily independent.

Definition 12.6. A counting process is said to have stationary increments if for each

That is, a counting process has stationary increments if the distribution of an increment
depends on its length, independently on its starting time.

The main r.v. to count occurrences is the Poisson distribution (Pois(A) or P())).

Definition 12.7. A r.v. X ~ Pois(\) if P{X =k} = e 1 k=0,1,2,..., A > 0.

Definition 12.8. A stochastic process {N(t) : t > 0} is said to be a Poisson process with
rate A > 0, if: (i) N(0) = 0.
(ii) The process has independent increments.
(111) For each 0 < s,t, N(s+1t) — N(s) ~ Pois(\t).

Condition (iii) implies that a Poisson process has stationary increments.

The rate of occurrences per unit of time is a constant. The average number of occurrences
in the time interval (s, s + t] is At.

Theorem 12.10. For each t > 0, E[N(t)] = At and Var(N(t)) = At.

Theorem 12.11. Let {N(t) : t > 0} be a Poisson process with rate A > 0. Then, for each
0<t) <ty <+ <tp, and each 0 < ky < ky < -+ < kyp,

k:j—kj,1

kl m R .
PINILAN(t)) = kj}} = (/\]2? [[eo ()\(tj(kj t_]_/;.)_)l)[

Jj=2

(=P{N(t:) = k. } HP(N(tj) = N(tj-1) =kj — kj1)
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Announcement: Quiz on Wednesday: 8, 12, 13.

Theorem 12.12. For each 0 < s <t, Cov(N(s), N(t)) = As.
Proof. Since N(s) and N(t) — N(s) are independent, Cov(N(s), N(t) — N(s)) = 0. So,

Cov(N(s),N(t)) =Cov(N(s),N(s)+ N(t) — N(s))
=Cov(N(s),N(s)) + Cov(N(s), N(t) — N(s)) = Var(N(s)) = As,

Example 12.15. Let {N(t) : t > 0} be a Poisson process with rate A = 2. Compute:
(1) P{N(5) = 4}. (iii) P{N(5) =4, N(6) =9, N(10) = 15}.
(v) P{N(5) = N(2) = 3, N(7) = N(6) = 4}. (vi) P{N(2) + N(5) = 4}.

Solution: (i) P{N(5) = 4} = P{Pois(5\) = 4} = < GAT _ < 20017
(iii) P{N(5) = 4, N(6) = 9, N(10) = 15}
= P{N(5) = 4, N(6) = N(5) =9 — 4 = 5,N(10) — N(6) = 15 — 9 = 6}
=P{N(5) = 4}P{N(1) = 5}P{N(4) = 6} = e 1010 2L 85 — ¢~20...
(v) P{N(5) = N(2) = 3, N(7) — N(6) = 4} o
— P{N(5) — N(2) = 3}P{N(7) — N(6) = 4} = e 651e722 — ¢=8(24).
(vi) P{N(2) + N(5) = 4}
=P{N(2) + N(5) = N(2) + N(2) =4} = P{2N(2) + (N(5) — N(2)) = 4}
= P{2N(2)+(N(5)=N(2)) = 4, and N(2) € {0,1,2}} (as2N(2) < N(2)+N(5) = 4)
:P{<N(2> N(5) (2>) € {(0’4)7(173)7<272>}
=P{N(2) = 0}P{N(3) = 4} + P{N(2) = 1} P{N(3) = 2} + P{N(2) = 2} P{N(3) = 0}

- 61, 44l 66 442
—6466,—|—€41,66,+€42,66

Example 12 16. Ezample 12.15 (continued) (A = 2). Compute:
(i) E[2N(3) —4N(5)]. (i) Var(2N(3) — 4N (5)). (iii) E[N(5) — 2N(6) + 3N(10)].
(iv) Var(N(5) — 2N(6 + 3N(10)). (v) Cov(N(5) — 2N (6),3N(10)).

)
Solution: E( (1)) =V(N(t) =t\, N(t+s) — N(s) =P(tA), Cov(N(t+s),N(t)) = tA.

(i) E[2N(3) — ( )] =2E[N(3)] —4E[N(5)] = (2)(3)(2) — (4)(5)(2) = —28.
(i) Var(2N (3 ) AN(5)) = Var((2 —4)N(3) — 4(N(5) — N(3)))

= (=2)*Var(N(3)) + (—=4)*Var(N (5 — 3)) = (=2)%(2)(3) + (—4)*(2)(2) = 88
(iii) E[N(5) — 2N (6) + 3N (10)] = (5)(2) — (2)(6)(2) + (3)(10)(2) = 10 — 24 4+ 60 = 46
(iv) Var(N(5) — 2N (6) + 3N(10))

=Var((1 =2+ 3)N(5) + (=24 3)(N(6) — N(5)) + 3(N(10) — N(6)))

= Var(2N(5) + (N(6) — N(5)) + 3(N(10) — N(6)))

= 4Var(N(5)) 4+ Var(N (1)) +9Var(N(4)) = (4)(5)(2) + (1)(2) + (9)(4)(2) = 114
(v) Cov(N(5) — 2N (6),3N(10)) = Cov(N(5),3N(10)) — Cov(2N(6),3N(10))

(5),
= (3)(5)(2) = (6)(6)(2) = 30 — 72 = —42.
Example 12.17.

Theorem 12.13.
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Theorem 12.14. (Markov property of the Poisson process) Let {N(t) : t > 0} be a Poisson
process with rate X\. Let 0 <ty <ty < - <t, <sandletky <ks<---<k, <j. Then,
P{N(s) = jIN(t1) = k1, ..., N(tm) = km} = P{N(s) = j[N(tm) = km}.

Previous theorem says that a Poisson process is a Markov chain with continuous time and
state space £ = {0,1,...} (see Definition 11.4, page 143). Previous theorem implies that for
0<ti<teo< - <tp<s;<sy<---spandfork; <k <---<k,<j1 < <Jn,

P{N(Sl) :jl, ce ,N(Sn) :]n|N(t1) = k’l, e ,N(tm) = k’m}
:P{N(Sl> =J1,-- -aN(Sn) = ]n‘N(tm) = km}

Theorem 12.15. Let {N(t) : t > 0} be a Poisson process with rate A. Let to > 0 and
let j > 0. Then, the distribution of {N(t) — N(ty) : t > to} conditional on N(ty) = j is
that of a Poisson process with rate A\. In particular, for each to < s1 < --- < 8, and each

j <k << km7 P{N(Sl) = kl?"'aN<Sm) = km|N(t0) :J} = HfTL’zlP{N(Si_tO) = kz_]}
N(s+t)|(N(s) =j) = (N(s+t)=N(s)+N(s))|(N(s) = j) ~ N(s+t)=N(s)+j ~ N(t)+j

E[N(s+t)|N(s) =j] = M+ j and Var(N(s+t)|N(s) = j) = M.

Previous theorem says that the number of occurrences from one moment on is a Poisson
process. In some sense, the process starts anew at every time. Given a particular time, future
occurrences from that time on follow a Poisson process with the same rate as the original
process.

Example 12.18. Let {N(t) : t > 0} be a Poisson process with rate A = 3. Compute:
(i) P{N(5) = 7|N(3) = 2}. (ii) E[2N(5) — 3N(7)|N(3) =2). (i) Var(N(5)|N(2) = 3).
(iv) Var(N(5) — N(2)|N(2) = 3). (v) Var(2N(5) — 3N(7)|N(3) = 2).

Solution: (i) P{N(5) = 7|N(3) = 2} = P(N(5) — N(3) = 7 — 2|N(3) = 2)

=P(N(2) =5) = 6?,—:
(i) E[2N(5) — 3N(7 )!N( ) =2] = E2N(5) = 3(N(7) — N(5)) = 3N(5)|N(3) = 2|
= E[-(N(5) - N(3)) - N(3) —3(N(7) = N(3))IN(3) = 2] = —2(3) =2 -3(2)(3) = —26
(iii) Var(N(5)|N(2) = |) Var(N(5) — N(2 )+3|N(2))< =3) Why ?
3)(3) =9

= Var(N(5) — N(2)|[N(2) = 3) = Var(N(3)) = (
(iv) Var(N(5) — N(2)|N(2) = 3) = Var(N(5) — N(2)) = = .
(v) Var(2N(5) — 3N(7)|N(3) = 2) = Var(2N(5) — 3(N(7) — N(5) + N(5))|N(3) = 2)
= Var((2 = 3)(N(5) = N(3) + N(3)) = 3(N(7) = N(5))[N(
= Var(=(N(5) = N(3)) = 3(N(7) = N(5))) = 2(3) +3*(2)(3

Next we consider conditioning on the future.

Theorem 12.16. Let {N(t) : t > 0} be a Poisson process with rate \. Let s,t > 0. Then,

PON() = HNGs +) = n) = () (e)” (325)" "

i.e. N(t)|N(s+t)=mn~ bin(n,p), where p = -
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Proof P{N(t) = k|N(s+t) = n}
=P{N({t) =k N(s+t)=n}/P{N(s+1t) =n}
=P{N(t) =k, N(s+t)— N(t) =n—k}/P{N(s+t) =n}

At OE g (As) Tk n—
- e )\t(’:!) e ((nzk)! /n ; k s k
et (A(Stt))”_ C\k) \t+s t+s

Previous theorem can be extended as follows, given 0 < t; < t5 < -+ < t,,, the con-
ditional distribution of (N(t1), N(t2) — N(t1),..., N(tm) — N(tm-1)) given N(t,) = n is
Multi(n, (;~, %5, %)) Given N(t,,) = n, we know that events happens in the

interval [0,,,], each of these events happens independently and the probability that one of
these events happens in particular interval is the fraction of the total length of this interval.

Example 12.19. Customers arrive at a store according to a Poisson process with a rate 40
customers per hour. Assume that three customers arrived during the first 15 minutes. Calculate
the probability that no customer arrived during the first five minutes.

Solution: Let N(t) be the number of customers arriving in the first ¢ minutes. N(¢) is a
Poisson process with rate 2/3. We have that

P{N(5) = 0|N(15) = 3} = <Z)pw(1 — )T = (3) <135)0 (%)3 = 8/27.

Example 12.20. Let {N(t) : t > 0} be a Poisson process with rate A = 3. Compute:
(1) E[N(1)|[N(3) =2].
(i) Var(N(1)|N(3) = 2).
(1i) E[2N (1) — 3N(7)|N(3) = 2].

Solution: (i) bin(n,
(ii) Var(N(1 )!N(3) = 2)
(iif) E[2N (1) — )7)|

) (bin(2,1/3)). E[N(1)|N(3) = 2] = np = 21 = 2/3.
)n =2);01-3) =43

w

= 2]
3E(N(7) — N(3) + N(3)|N(3) = 2)
) +2) = =2

T
N(T)[N(3
BN NG =)
— (2@)(1/3) - ()
For a Poisson process with rate A > 0,
(i) N(0) = 0.
(ii) The process has independent increments.
(iii) For each 0 < s,t, N(s+1t) — N(s) ~ Pois(\t).
(iv) Cov(N(s),N(t)) = A(s A t).
Question: Var(N(1) —2N(2) + N(3))
— Var((N(3) - N(2)) - (N(2) — N(1))) = Var(N(1) — N(1)) =0 77

.

NN() NN()
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12.3 Interarrival times.
For n > 1, let S,, be the arrival time of the n—th event, i.e. S, =inf{t > 0: N(t) = n}.

{S, <t} = {the n—th occurrence happens before time ¢t} =

{N(t) > n} = {there are n or more occurrences in the interval [0, ]}.

(S, >t} = {N(t) < n}. (1)
{N(@)=n}={N@) 2n}N{N{) <n+1} ={S, <} N{Sp1 >t} ={S <t < Spp1}.

Let X ~ Gamma(n,1) and Y ~ Pois(t).
Abusing notation, write X = Gamma(n, 1) and Y = Pois(t).

Theorem 12.17. P{Gamma(n, 1) >t} = P{Pois(t) <n}, Vt >0 andn € {1,2,...}.
P{Gamma(n, 1) >t} = P{Pois(t) < n} 7?

P{Gamma(n,1) >t} = P{Pois(t) <n —1} 77

P{Gamma(n, 1) >t} = P{Pois(t) < n} 7?

Theorem 12.18. S, ~ G(n,1/))

Proof. Several ways: Check fs,, Fs,, Sg, or Mg, .
P{S, >t} =P{N(t) < n} (by Eq. (1))
—  P{Pois(\t) <n} =P{Gamma(n,1) > At} = [0 2"y

At F(n
(by Poisson Process) (by Theorem 12.17)

_ft Wy (z =y, /X =y and \/A — 1)
00 Y™ le /B
— )t yﬂ"l“(rf) dy (B=1/X)
=P {Gamma( ) > t} [ |
Theorem 12.19. fs, 5. (S1,...,8,) = A"e™™" if 0 <83 <853 < < 8.
Remark. The distribution of (Si,...,S,_1) given S,, = s,, is uniform in the region
0<$1<82<"'<Sn,i.e.
_f51 ..... Sn(sh DR Sn) - Anei)\sn
fSl ..... Sn—1|Sn (517 LRI 8n—1|5n) - fSn (Sn) - )\"82_167)‘5"
(n—1)!
—1
(n 1) ,for 0 < sy <89 <0+ < 8.
sy

Example 12.21. Let {N(t) : t > 0} be a Poisson process with rate A = 3. Let S,, denote
the time of the occurrence of the n—th event. Calculate:
(i) P{S5 > 5}.
(111) Find the expected value and the variance of Ss.
(Z’U) P{SQ > 3,55 > 7}
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Solution: Formulas: 13.6. S, ~ key: G(n,1/X\) (G(3,1/3))
13.11. {N(t) <n} = {Pois(t\) <n)} = key: {S, > t}.
(i) P{Ss > 5} = [;° Erfrggdt = P{N(5) < 3} = ™ (1 + 51+ %) which is better ?

(iii) E[Ss] = af =3(1/3) =1 and Var(S;) = af* = 3(1/3)? = 1/3.
(ZU) P{SQ > 3, Sy > 7}

=P{N(3) < 2,N(7) < 5}

=P{N(3) = 0,N(7) <4} + P{N(3) = 1, N(7) < 4}

=P{N(3) = 0}P{N(7) — N(3) <4 -0} + P{N(3) = 1}P{N(7) = N(3) <4 — 1}
=P{N(3) = 0}P{N(4) < 4} + P{N(3) = 1}P{N(4) < 3}

ey Y e dar

=e %12 (1 +12 + 1722 + 1%3 + 12—T> +e?(9)e (1 +12 + 1722 + %3)

~3.4 x 1075,

Let T,, = S, — S,—1 be the time elapsed between the (n — 1)-th and the n-th event (the
waiting time for the next event). 7), is called the interarrival between the (n — 1)-th and
the n—th event.

Theorem 12.20. T}, ..., T,, are i.i.d. ~ Exzp(1/)), and E(T,) =

>

Theorem 12.21.

Example 12.22. Let {N(t) : t > 0} be a Poisson process with rate A = 3. Calculate:
(i) The density of Tg.
(ii) Find the expected value and the variance of Tg.
(iii) Find Cov(Ts, T).
(iv) Find Cov(Ss,Sy).

Solution: (i) T ~ Fxp(1/3) => fr,(t) =3¢t > 0.
(i) E[Ty] = o = (1/3), Var(Ty) = af” = (1/3)? = 1/9.
(111) COV(Tg, Tg) =0.
(IV) SQ 7[ Sg, but SQ 1 Sg - SQ,
as So =11+ 15, Sg— So =13+ Ty +---+ Ty, and T;’s are i.i.d.

COV(SQ, Sg) = COV(SQ, SQ + Sg — SQ) = COV(SQ, SQ) + COV(SQ, Sg — SQ) = 2(1/3)2 + 0= 2/9
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Theorem 12.22. Given that N( ) = n, the n arrival times Sy, ..., S, have conditional
density f5'1 ..... Sn|N(t):n(817 SR )Sn) - tnao <sp <8< <5y < L

It follows from the previous theorem that
le ..... Tn|N(t)=n(t1>- .. atn) - t"’o < t17t27' .- 7tn7t1 +t2 + - _'_tn < t.

Example 12.23. Let {N(t) : t > 0} be a Poisson process with rate A = 3. Calculate:
(i) P{S3 > TIN(4) = 1}. (ii) E[S2|N(4) = 3]. (i) E[S5|N(4) =1]. (iv) P{T5 > 5|N(4) = 1}.

Sol: (i) P{S; > 7|N(4) = 1} S, =inf{t > 0: N(t) = n}.
= P{N(7) < 3|N(4) =1}
—P{N(7) = N(4) <3—1|N(4) = 1}
=P{N(3) <1} = P{Pois(3)\) < 1}
= 679(90/0' + 91/1|) = 0.001234.

(i) E[S2|N(4) = [yfv(y)dy = fg (z)dz ?
Formula: fs, Sn|N() (31, cey Sp) = tn,O < §51 < 89 < - < 8, <t
[SQ’N fO o2 8243d81d82d83
_fo o sgi’édsts;g
045333i3d33
=412 =2
4.3.43 oo
(iii) [53]N fo (S5 > s]N( ) =1)ds E(X) = fo Sx(t)dtif X > 0.
[53|N( ) = 1]
—fo 1ds—i—f4 (S3 > s|N(4) =1)ds
—4—|—f4 N(s) < 3|N(4) =1)ds
=4+ [ (N s) N(4) <3 —1|N(4) =1)ds
=4+ [["P(N(s—4) < 2)ds
=4+ [[TP(S2 > s —4)ds
=44 [[TP(Sy > t)dt Sy~ G(n,1/\)
=4+ B(Sy) =44+ af =4+2/X =42

(IV) P{Tg > 5‘N( ) = 1} P{Tg > 5’T1 <4 <7 +T2} = P{Tg > 5} =e 12 (Tg = S3 — Sg)
Exam 3 of Math 452, Spring, 2023. Name:

1. The notations are the same as in Chapter 10, with TQET) = MiNe(1,... 4} Téi). That is, there
are 4 exit modes: withdraw, illness, retiring normally and death in service. Assume that

(1) 30% of the members surviving in employment to age 60 retire at 60 and
all members who remain in employment to age 65 retire then;

0.1 forz €]0,35)
(2) pt = =< 0.05 for x € [35,45)

0.02 for z € (45,60);
(3) %2 = pi =0.001, z € (0,65);
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0 for x €10,60)

4 03 _— ,,r —
() e = 1 {0.1 for x € (60, 65);

(5) ud* = pd =0.01, x > 0.
(a) Calculate P(existing at age 61 |age 58) and P (existing at age 65 |age 58), i.e., P(Tég) =
) and P(T3) = 7).

8 exits by that mode, i.e., P(Tss < 7, Jss = 1), i = 3, 4.

3
(b) For each of the last 2 modes of exit, find the probability that a member currently aged
5
(

c¢) Calculate the probability that (58) is still alive by age 61.

Hint: 1. The problem is almost identical to Ex. 10.5 in my notes (around p.97).

Sy (z+t)
Sx(@)

2. P(T,>t)=P(X >z +tX >z) =

1 ift<0
3. If Sx(t) =qet iftel0,5), then
e S iftel58)

P(X=0)=? P(X=3)=? P(X=5)=? P(X=6)=? P(X =8) = ?

1. Sol. (a) P(existing at age 61]age 58)= tp58’t . tp5(8)|t _,=0.

P(existing at age 65age 58) = p%8|,_. — %8|, ~ 0.38.
0.1+0.001+0.01 if € [0,35)
0.05 4+ 0.001 + 0.01 if « € [35,45)
0.02 +0.001 +0.01 if « € [45,60)

0.001 4 0.1+ 0.01 if 2 € (60,65)

Reason: g = pg' + pg” + py’ + iy

0.111 if = €0,35)
_J0.061 if x€[35,45)
© ) 0.031 if x € [45,60)

0.111 if = € (60,65)

(1 if £ <0
exp(— [, 0.111dt) if r€0,35)
exp(—0.111(35) — 0.061(x — 35)) if x € [35,45)

Sx(z) = ¢ exp(—0.111(35) — 0.061(45 — 35) — 0.031(z — 45)) if € [45,60)
exp(—0.111(35) — 0.061(45 — 35) — 0.031(15) — 0.111(z — 60)) ?? if x € (60,65)
0.7[exp(—0.111(35) — 0.061(45 — 35) — 0.031(15)] exp(—0.111(z — 60)) ? if = € (60,65)
77 otherwise
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;

1 1ift<0
oy |BED irren
00 __ _ )
P58 = "oy 58 — 1 0.7 X o p® % if t € [2,7)
=9
0 otherwise

t 584t
e _ k(G841 exp(—/ (0.031)dz) = exp(—0.031t), t € [0,2),
5

58 54 (58)
o P = exp(—0.062)

2P =0.7 X 5_pis

8

6 t 604t
o _ k(0048 exp(—/ (0.111)dz) = exp(—0.111¢), t € (0,5),
6

60 T8¢ (60) .
5_p2 = exp(—5(0.111)) = exp(—0.555),
00 :O
5D60

00 __ .00 00 _
7P58 =2Ds8 - 5Pg0 = 0/

— —0111(3-3) _ )

Thus P(existing at age 61|age 58)= tpggh:g, —DB8),_s = €

P(existing at age 65|age 58) = tpgg’tﬂ, - tpgg‘tﬂ ~ 0.38 =0 =0.38.

Using R to compute:

b=exp(-0.062)

c=exp(-0.555)

c*0.7*b # 7p22 = 0.3776925 the final answer.
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The probability of (58) being existed by 65 is about 38%.

(b) P(a member retires at 60 or 65 or in (60,65))

—032p58+17p /f
——

30% retire 100% retire

=0.3- 9 ple +1-7_p2% +/ o9 x 0.1dt
2

5
=0.3 - 5_poa + 7-pos + 0. 12]958/ exp(—0.111¢t)dt
0

1 — exp(—0.555
_O 3 2— p58 + 7— p58 + 012pgg 0 ill )

=0.9121128
03%xb+c*x0.7%*b+0.1%x0.7*bx(1—¢)/0.111
The probability that a member currently aged 58 death exits

7
— [ tiuar
0

7 00 ftel0,2
—=0.01 / PRdt ~ 0.04463816 Pl = {1 00 00 Z.f 0,2)
0 0.7 X o_psgpgo  @f t €[2,7)

(c) 3p;084 =exp(— #24(3)) = exp(—0.01(3)) = o003

2. XYZ offers a pension plan with the following lump sum death-in-service benefits, payable
immediately on death:

(1) $10,000 for each full year of service on death in service between ages 63 and 64.
(2) $15,000 for each full year of service on death in service between ages 64 and 65.
You are given:

(i) Death is assumed to occur half-way through the year of age.

(ii) Decrements for this pension plan follow the Service Table.

(iii) i = 0.05

(iv) XYZ uses the Traditional Unit Credit funding method.

Calculate the normal cost for this benefit for a new employee who is age 50.
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x
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

lx
1000000
903707
816684
738038
666962
602728
244677
492213
444800
401951
363226
328228
296599
268014
242181
218834
207872
197455
187555
178147
169206
160708
152631
144954

Wy
95104
85846
77670
70190
63430
57321
51800
46811
42301
38226
34543
31215
28201
25488
23031
10665
10131
9623
9141
8682
8246
7832
7438
7064

Iy
951
859
e
702
634
273
218
468
423
382
345
312
282
255
230
213
203
192
183
174
165
157
149
141

<
8

O O OO DO DO OO OO DO DODDODODODO OO0 oo oo

237
218
200
184
170
157
145
134
125
117
109
102
96
91
86
83
84
84
85
86
87
89
90
93

44
45
46
47
48
49
50
ol
52
23
o4
95
o6
27
58
29
60—
60+
61
62
63
64
65—

lx
137656
130719
127904
125140
122428
119763
117145
114572
112042
109553
107102
104688
102308
99960
97642
95351
93085
65160
58700
52860
47579
42805
38488

CHAPTER 12.

Wy
6708
2586
2530
2476
2422
2369
2317
2266
2216
2166
2118
2070
2023
1976
1930
1884

SO OO o oo

Uy
134
129
127
124
121
118
116
113
111
108
106
103
101
99
96
94

0
62
56
20
45
41

0

<
8

S DD O DD DO DO DO OO o oo oo

0
27926
6188
5573
5018
4515
4061
38488

Table 1. Pension plan service table

POISSON PROCESSES

dgc
95
100
106
113
121
130
140
151
163
176
190
206
224
243
264
288
0
210
212
213
214
215
0

2. Sol. The normal cost is the APV of a single year’s accrual (see §10.4 (around page
114):

E(bpv™1(J, = 4)) with T, at mid-year.

E(10%5 (K, = 63.5 — z) + 1.5(10%5 I (K, = 64.5 — 1)

— 104U63.5—x (63_$ |q

NC = 10*-

xT

04

v=1/1.05

L0%*4% (vE*(63.5-50) %2144+ 1.5%v**(64.5-50)%215) /117145
How about replacing assumptions (i) and (ii) by (5) in # 1, i.e. u* = 0.01,

Question:
x>07

Ans: NC = E(bp,o™1(J, = 4) = 10* [ o' fo4(t)dt + 1.5 x 10* [, v f94(t)dt

= 10" [13 v'0.01,p%dt + 1.5 x 10* [ 010.01,p%dt

00 __
tPs0 =

Sx (50+t)
Sx (50)

= 23.02383.

= 0.7 exp(—0.031(10) — 0.111(¢ — 60))

) + 1.5(10M) 054572 (g4, |q%"), where z = 50.

63.5—50dé§)+1.5v64.5—50déi)

T
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ag 07exp(=0.111(35)~0.061(45-35)—0.031(50~45+10)0.111(t—60))
exp(—0.111(35)—0.061(45—35)—0.031(50—45))

= 0.7 exp(—0.031(10) — 0.111(t — 60))




