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Chapter 0. Introduction
Question: What is Statistics ?
One can use the following example to explain in short.
Example (capture-recapture problem).
In a pond, there are N fish.
Catch m, say m = 10,
tag them and put them back.
Re-catch n fish, say n = 10,
X of them are tagged, say X = 3.
— P(X =) =7 probability problem
Question: { N(: ? ) statistics problem.
Answer:

m N—m
1. f(a;N)=P(X =2) = (‘)((ﬁ‘), z€{0,1,...nAm}, nVm<N.
2. Many estimates of N: MLE, MME, LSE, etc. e.g. MLE: N = argmaxy f(3; N) => N = 40. MME: Solve
X = E(X)=nm/N => N =nm/X = 331
Properties of these estimators 7
What is the best estimator ?
Typically, statistics deals with such problems:
Given a random sample, say X, ..., X,,, i.i.d. from X,
assuming they are from a model with cdf F(z;0), where § unknown in ©
find out: § =7 or P(X < z) =7 (This is called point estimation).
What is 6 in the capture-recapture problem ?
We shall study
1. how to summarize Xy, ..., X,,
2. how to find a formula to guess 6 based on the summary,
3. whether the guess with such a formula is good.

Chapter 6. Principles of Data Reduction
Denote X = (X7, ..., X,,), where X1, ..., X, i.i.d. from X ~ F(x;6).
We call X a data set or observations from X.
One can use R to generate data set in simulation:
> x=rnorm(3,0,1)



[1] 0.3163466 0.4865695 -0.2163855
> x=rexp(30,3) # 3=E(X) or 1/E(X) ? ( f(x) x e /" = e~ 1 > 0).
> mean(x)
[1] 0.3559676
Definition. Given data X, a statistic T'(X) is a function of X, where T'(-) does not depend on .
A data set is often quite large,
for estimation purpose, it is desirable to simplify it to a statistic.
However, we do not want to lose information during the simplification.
This is called data reduction.
Several principles for data reduction:
(1) sufficiency principle,
(2) likelihood principle (maybe ignored in the lecture),
(3) invariancy principle (maybe ignored in the lecture).
§1. Sufficiency
Let X be a random vector (continuous or discrete),
with the density function (d.f.) fx (x;0).
Definition. If T(X) is a statistic and the conditional distribution of X given T, say (X|T), is independent of 6,
then T is a sufficient statistic for 6
(or we say that T is sufficient for 6).
Sufficiency principle: Reduce the data to a sufficient statistic.
Theorem 1. (Factorization theorem).
Let f be the d.f. of X, and T'(X) a statistic.
T is sufficient for 0 iff

f(x;0) = g(T(x);0)h(x), ¥V (x,0) where h does not depend on 6. (1)

Recall that a family of distributions, say {f(-;0): 6 € ©},
is said to belong to an exponential family if

k
(a:6) = h(@)e(O)eap(3 w,(O)1;(@))

where h and t;’s are independent of 8 and ¢ and w;’s are independent of x.
Theorem 2. If Xi, ..., X,, are i.i.d. from an exponential family, and if T'(X) = > | (¢1(X;), ..., tx(X;)), then T is
sufficient for 6.
Remark. 3 methods for determining a sufficient statistic:
(1) Definition. fx|7(x) is independent of 6.
(2) Factorization Th. f(x;60) = g(T'(x);0)h(x).
(3) Exponential family. T'(X) = >, t(X;), t = (t1, ..., tx)-
Method (3) is most convenient, but not always work. Why ?
Method (1) is not convenient, but always works.
Method (2) is convenient most of the time and always works.
Example 1. Suppose that X, ..., X,, (n > 3) is a random sample from bin(1,6). Are T'(X) sufficient for § in the
following cases 7

Sol. (a) F: T(X) = X is sufficient for 6.
By (1). P(X =x|T(X) =y) = 1(x =y) is independent of 6.

By (2). fx(x:0) =Tl fx(@i0) = [ ] fx(wis0) x 1.
=l h(X)
o1 C030)



Way (3) is not applicable though bin(1, ) belongs to an exponential family, as >, t(X;) (=
but T'= X is n—dimensional.

(b) F: T(X) =", X; + 1 is sufficient for .

By (1). F: leT is independent of 6.
P(X =x|T =t) = P(A|B) = P(AB)/P(B).
> Xi ~ bin(n,0).
PB)=P3 , Xi+1=t)=P(>, X;=t—1).
P(AB)=P(X =x,5, X, + 1 = t)
=10,z =t—-1)P(X =x)
=13,z =t—1)0"1(1—0)" ! why ?

1 i=t=1) . .
Thus P(X =x|T =1t) = 1Q mimton) is independent of 6.

(:"1)
) — P2 Ti (] _ g\ T gT(X) =171 _ g\n—T(X)+1
y (2). fx(x:0)=20 (1-0) 0 (1-0) x 1 .
mwmm h(X)

By (3) Fe T =300, H(XG) =32, Xi + 1, where fx (2) = h(z)c(6) exp(w(0)t(z)).
(33 0) = 0"(1-0)'"" = (3%5)"(1 = 0) = (s25)" /" (:55) /(1 - 0)

= (557" 9)6$P((w+1/n)1n1 5):

Thus k = 1, wy(0) = Int%; and ¢ (z) = 2+ 1/n.

It yields T =0 t1(X;) =>, X, + 1.

(c) X is sufficient for 6.
X =150 X (= (5, X+ 1) — 1/m)),
a linear combination of T in (b)).

The proof is similar to that in (b).

(d) F: X1 4+ X5 is not sufficient for 6.
Choose a counterexample:

P(X1=+=Xpn_1=0,Xpn=

P(X = (0,+,0,1)|T = 0) = 2= X a=0X0=])
=P(Xg=-=X,_ =0X7L=1=91—9("_2)_1:{0 ifd=0 .
(X3 1=0, ) =0(1-6) 0.5"2 if = 0.5

It depends on 6.
Q: Can we use methods (2) and (3) ? Why ?

(e) F: X + 0 is not a sufficient statistic for 6.
Reason: T depends on 6, Proof ? Let n =3 and X; = 1, then T'(X) = {

thus, it is not even a statistic,
let alone a sufficient statistic.

2 ifo=1
1.5 ifd=0.5

Remark. Sufficient statistics are not unique or equivalent.

X, X, i, Xi + 1 are all sufficient for §. Which is preferred ?
Remark. 3 methods for determining a sufficient statistic:

(1) Definition. (2) Factorization Th. (3) Exponential family.

>-; Xi) is 1 dimensional,

Example 2. Does the family of distributions belong to an exponential family in the following cases ?

(a) N(u,0?),

) bin(m, p),

) Poisson with mean u (P(u)),

) Exp(f) with mean 1/6,

) Double exponential distribution f = 2/\ exp(—
) U(a,b).

Sol. Yes for (a) through (d), explained in 501. No for (e) and (f).
Reason for (e) is explained in 501.

|ﬂ7;#|)

)
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(c
(d
(e
(f



Reason for U(a,b): Note that § = (a,b) is the parameter.
If it belongs to an exponential family,
say

Fr(a:6) = exp{ng )y = Heled) 0

then it is impossible that fx(x;60) = W =0 for all = ¢ [a, ],
as h and t;’s are independent of (a,b). Done ??

Give a counterexample: If Eq.(1) holds, for (a,b) = (0,2), fx(x;0) = W = 1/2 for x € (0,2)yields h(z) > 0
for z € (0,2) Why ??
but for (a,b) = (0,1) fx(z;6) = M =0 for & > lyields h(z) =0 for = € (1,2) Why ??
A contradiction. Thus it does not belong to an exponential family.

Example 3. Let Xy, ..., X,, be i.i.d. from N(u,0?). Find a sufficient statistic for # in the following cases.

(a) p known, (b) o known,(c) both unknown

Sol. 1(5:0) = ks -1 ) = o en(-155 + 3 - 18
Fx(r:6) = exp{zw]
(a) 0 =0T =>(X;—p)*or —%(X — u)?, etc. Why ?
(b)yO=pu,T Z X, or X.

(€) 0= (n,02), T=(3,Xi, > X7), ete.
Example 4. Find a (non-trivial) sufficient statistic for U(0,b) if X1, ..., X, is a random sample from U (0, b).
Sol. Question: What is a trivial sufficient statistics fo U(0,b) ?
Question: Can we use Method (3) ?
No! U(0,b) does not belong to an Exponential family.
Question: Can we use Method (1) ?
Not convenient ! as we have no idea on what is 7.
Method (2) is a good tool for finding a suitable sufficient statistic for non-exponential family.

0) =[] fx(xi;0) H5 e € (0,0)27
=1 i=1

—_

Correct approach:

) =TT 22 b(Ob))

i=1

= 1@ an € (0,0)) x L

—_

9(T(X);d)

1 . .
= ﬁl(x(l)’z(n) €(0,0))x 1 () S @) <+ < &) — order statistics)

h(X
9(T(X);d) 0

1
= b71($(7L) < b) X 1(m(1>>0)
N—_——

9(T(X);b) h(X)

Sufficient statistics:
(a) T = X (trivial one),
(b) IPES (X(l)vX(n))v



(C) Tg = X(n).
Which one you prefer ?

To find a sufficient statistic, it is not convenient to use the definition.
Seen from the examples, the dimension of a sufficient statistic can be n or smaller.
It is desirable to find a sufficient statistic that has the smallest dimension.
Definition. A sufficient statistic T is called a minimal sufficient statistic (MSS), if for any other sufficient statistic
T*, T is a function of T*.
A MSS = a sufficient statistic with the least dimension ?

Consider the case that n = 2, X and X3 are i.i.d. from U(6,0+1), 0 is unkown. Ty = (X1, Xo) and Ty = (X (1), X(2))-
Which is likely an MSS 7
Theorem 3. Suppose that
(1) f(x;0) is the density function of X;
(2) T(X) is a statistic;
(3) f(x;0)/f(y;0) is independent of 0 iff T(x) =T(y) V (x,y).
Then T is MSS.
Question. How to get the density function fyx for a random sample from fx ?
Remark. Two ways to determine a MSS.
1. Definition.
2. Theorem 3.
Example 5. Let Xy, ..., X;; be a random sample from N(u,0?), where 0 = (u1,0%). Find a MSS for 6.
Sol. A sufficient statistic is T(X) = (X, X2).
To show that it is MSS,
the definition is not convenient, we use Theorem 3.

Since f(x;0) x exp(_ﬂaﬁ + mcu ;ng)

F(x:0)/f(y;0) = exp(~ 2252 + e nEDY = 1 0 iff T(x) = T(y), ¥ (x,).
Thus T is MSS.

Example 6. Suppose thatXy, ..., X, are i.i.d. ~ U(0,0 + 1).

Find a MSS for U(6,6 + 1).

Sol. (1) Find a suitable sufficient statistic; (2) Show that it is MSS.

H1x1 (0,0 +1))

:1(9<1'(1),$(n)<9+1)>< 1, QE(*O0,00)

9(® (1), (n);0) h(X)
T = (X(1), X(n) is sufficient for 6 by the Factorization theorem.
F: T is MSS. That is,
fx(x;(g) B 1(0 < (1), T(n) < 0+1) _ { 1 ifT(x)=T(y)
fx(:0) 10 <yay,ym <0+1) depends on 0 if T(x) # T(y)
pdef ) . X (X:0) . . .
where § = 1. It suffices to show to show X0 is not constant in 0, if T(x) # T(y).

T(x) # T(y) implies either (1) z(1) <y (or z(1) > yay), or (2) T(n) < Yn) (OF T(n) > Y(n))-
By symmetry between x and y, we just need to consider either (1) z(1) < y(1) or (2) () < Yn)-
By symmetry between —(x,y) and (x,y),

we just need to prove case (1) z(1) < y1)-

I (X:0) % if yqy <0

Ix (y:6) % if x1) < 0 < Y(1) and Yn) < 0+1
Need to give 2 0’s

done ?



Since f(z;0) = 1(z € (0,0 +1)), () —z(1) € (0,1) and y(n) —y(1) € (0,1), (Z(n) Vym)) — () Ay)) € (0,1) why ?

S if0=yu) +2Why 27
: o
fx (x;0) 9 ifg= Tt
Ix:0) (as z(1) <0 <yq) and Yy <0 +1) (2)

due to 0 < (ym) V () — (yay Azry) <1
=>ya) Nz < 0 < Yin) V T(n) < 0+1

=> It depends on ¢ if z(1) < y(1)-

X;0
Thus % is independent of 6 iff T(x) =T(y) V (x,y). o

Definition. Suppose that {f(z;0) : 0 € O} is a family of density functions, X1, ..., X,, are i.i.d. from f. T = T(X)
is a statistic.
T is said to be ancillary if fr does not depend on 6.
T is said to be a complete statistic or complete for 6 (or for the distribution family), if V function g such that g(T")
is a statistic, we have

E(@T)=0v0=P(g(T)=0)=1V0.

Theorem 4. If an MSS exists, then each complete statistics is MSS.
Theorem 5. Suppose (1) X1, ..., X,, are i.i.d. from f(z;0), 6 € © C R*. (2) f = h(x)c(@)exp(Z?zl w;(0)t;(x));
write w = (w1, ..., wg); (3) {w(f) : 6 € O} contains a non-empty open set of R*; then 7' = Y"1 | t(X;) is complete;
where t = (1, ..., tg).
Q: Are w and t uniquely determined ?
Remark. Two ways to determine whether 7' is complete:
1. Definition;
2. Exponential family by Theorem 5.
Example 7. Let X3, ..., X,, be ii.d. from X. Is T(X) complete for 6 7
(a) T = (X, X?2), where X ~ N(p,0?) and 0 = (1, 0?).
(b) T = (X, X2), where X ~ N(6,6?).
(c) T = Xy, where X ~ U(0,0).
Sol.(a) Exponential family. {w(0): 0 € ©}=?
Notice f o exp(—5ez2? + Lha — %) o exp(—52za? /n+ Zha/n)
(w1, w2) = (*#7 %) = (*#7*2/‘%)3 € (—00,00), o € (0,00),
Why factor n ? (check Th 5).
{w(0):0 € B} =(—00,0) x (—00,00). Question: Why ?
It follows that {w(6) : § € ©} contains a non-empty open set in R2.
Thus by Theorem 5, T is complete.
Remark. Notice that T"is also MSS by Example 5.
(b) Q: {w(8):0 € O} = (—00,0) x (—00,00) ?
(wy,w2) = (=552, 5), 0 > 0.

{w(0) : 0 € ©} = {(w1,ws) : 2wi/n = (wz/n)% we > 0} is a curve in R?.

It does not contain an open set in R2.
Condition (3) in Theorem 5 does not hold.
Cannot use Theorem 5, as it only gives sufficient condition for completeness.
F: (X, X?2) is not complete for 6.

Use the definition. Need to construct a g such that E(g(T")) = 0 but P(g(T) =0) < 1.
How ? Notice that

(1) B(X) =9,

(2) E((X)?) = ,u%—k 02? =0%4+60%/n=(1+1)62

(3) BE(X?) = E(X?) =02+ 6% = 262
Now from (2) and (3), setting ¢(T') = 1(+X1)/2n — X2 Verify E(g(T)) = 0, but P(g(T) = 0) = 0 < 1 as g(T) is
continuous.

Thus T is not complete.




Question: Is T" MSS ?
Yes, by Example 5.
Remark. This is an example that T is MSS but it is not complete.

(c) Claim: T is complete.

U(0,0) does not belong to an exponential family,
thus use the definition.

Need to compute F(g = [g(t

fr="7
Formula: fx,, (f) = o2 (Fx ()" (£ (1),

fr(t) =nt"=1/0" t € (0,0).
(Or derive it directly as follows.
Frlt) = Fy(0).
F(t) (T<t) P(X(mﬁ ):P(X1<t L Xn <t)
=P(X; <t)) - P(X,, <t)=(F(t))" =t"/0", t € (0,6).
fr(t) =nt"=1/0", t € (0,0).)

= [0 gty dt =0V 0 >0,

Does it imply P(g(T) =0) =17
Answer. Yes, as h( ) = g(t)nt"1/6™ =0 ae. (or [ |h(t)|dt =0), i.e., g(t) =0 a.e. by the lemma as follows.
Lemma 1. Iffy (t)dt =0V y >0, then h(t) =0 a.e..
Note [1(¢t € {—1,1})dt =0, but it is not true that 1(¢t € {-1,1}) = 0).

The proof of Lemma 1 is an exercise in Real Analysis and is quite long. We consider one that is easy to prove
(though not quite precise).
Lemma 2. If h is continuous and fo t)dt =0V x> 0, then h(t) =
Proof. ([ h( *h()*OVx>OD

Note that g( )t” ! may not be continuous. e.g., g(t) = 1(t € {-1,1}).
Recall that

if fr does not depend on 6, the statistic 7" is called ancillary.
Basu’s Theorem. If T(X) is a complete and MSS statistic, then T(X) L U(X), V ancillary statistic U(X).
Example 8. Suppose that X, ..., X, is a random sample from U (0,0 + 1), T = X(,,) — X(1). Show that T is
ancillary.
Sol. Two ways to check (1) Direct. (2) Pivotal method.
Direct Way (1): Derive fr(t) by cdf or Jacobian method.
(la) By cdf:

P(X(m) — Xy <t)

// fX(1>,X(n)(l‘,y)d$dy

-/ _@1(“” T e @O (P ) = F@) P dady fa) = 1o € (6.0+1)

similar to trinomial dist

:// nn—110 <z <y<0+1)(y— )" *daxdy why?
y—x<t
:// nn—1D10<u<v<1)(v—uw"2dudv (u=2z—-0 v=y—20)

v—u<t

= // n(n —1)(v —u)" 2dudv
v—u<t,0<u<v<1

0 ift<o0
= { ftl vat n(n—1)(v —u)"2dudv ift € (0,1]
1 ift>1



Note that 6 disappears, thus fr(t) = F(t) is independent of 6.
T is ancillary.

(lb) By Jacobian. (T, W) = (X(n)fX(l),X(n)), fva(t,w) fX(1) X(”)(w t w)|J\ |J| =7 fT ffTW t ’LU dw —I

frt) =[x .x0, (W —t,w)dw..., where

i g @I (FW) ~ F@)'™ fe) =1 € (6.0 +1)

=nn—-D1@<z<y<O+D(y—z)"*=...

fX(l),X(n) (xa y) =

(2) Pivotal method: That is, given fx(+;0), find a pivotal Z = g(X, ) such that the density f7 is independent of
6.
Typical pivotals are related to the location-scale family:
X -0 if fx(z;0) = f(z —0)
Z =< X/0 if fx(x;0) = f(x/0)/0
AL fx(a;0) = f(52)/A

Then f7(1) = f(2).

fx(@)=1(z € (0,0 +1)=1(z—0 € (0,1)) = fz(z—0). =77
pivatol
where Z = X — 6 is called a pivotal, and fz(¢) = 1(¢t € (0,1)).
To prove T is ancillary, need to show I (i) fz is indenpendent of 6 F: (ii) T' = X(,,) — X(1) = Z(n) — Z(1)-
Then Fr(t) = P(X(n) — X < t) = P(Z(n) —Zn) < t) = f e fA fZ(l),Z<n (z,y)dxdy
where A = {(z,y): y— 2 <t} and

n'

17)'1'“2( 2) (F(y) = F(2))""(f2(y))" dzdy

fZ(l) Z(n (.T}, y) =

F: (i) fz is indenpendent of § There are two approaches to prove Z is a pivotal as well:
(a) cdf and (b) df.
Approach (a).
Since Fz(t) = P(Z <t)=P(X — 0 <)
0 itt+60<06
:P(X§t+9):{(t+9)—9 ite<t+0<0+1

itt+60>0+1
0 ift<O
:{t ifte[0,1).

1 ift>1
fz(z) =TT, 1(z € (0,1)) is independent of §, and T is ancillary.

Approach (b). fz(z) = fx(g7'(2))|% (z) =z — 0.
g 1(2) =2+ 6 and ’ag—;l’ = 1.
Thus fz(z) = fX( 1) =1(z+0€(0,0+1)) =1(z € (0,1)).
f7(z) =T1Ii-; 1(z; € (0,1)) is independent of #, T' is ancillary.
Example 9. Let X;, ..., X,, be a random sample from X ~ f(z;0), where f = %fo(g), 0 >0 and fo is a

—_

density function, i.e., [ fo(z)dz = 1, and f, > 0. Show that T is ancillary in the two cases: (1) T' = X where
SP= 1L (X - X)% (2 T =22
Sol. (1) Two ways as in Ex 8. Use the simpler way. Since f(z) o f,(%), Z = % is a pivotal.
f2(2) = Ix (g~ L)% (9=
S1RG0=
Let Z; =

X.ThgnT:%:—thereSZ—izl (Zi = Z)2.
Fr(t)=P(& <t)=[--- [, fz(2)dz, where A= {z: & <t}.



f7(z) = TT;—, fo(z) is independent of 6.
Thus T is ancillary.

(2)T= % = 27" Thus T is ancillary too.

Example 10. Let X1, ..., X,, be i.i.d. Eaxp(f), where E(X;) = 0. Let U(X) = (X,,/X)%

Sol. Usual way
EU) = /fo(x)dx = //(m/y)zfxny(m,y)dmdy ......

Another way: Make use of Basu’s Theorem.

If T(X) is a complete and MSS statistic, then T(X) L U(X), V ancillary statistic U (X).

T is said to be ancillary if fr does not depend on 6.

Recall Example 9. Let Xy, ..., X,, be a random sample from X ~ f(x;0), where f =

density function, We show that
T = X,,/X is ancillary.
Note that fx, (z) oc e=2/?,
Thus U(X) = (X,,/T(X))? is an ancillary statistic. How to show it ?

Let T(X) = X. Then T is a complete and MSS statistic. Why ?

E(X2)=E(UT?) = E(U)E(T?) (by Basu Theorem) => E(U) = E(X2)/E(T?).

02 + 0% = BE(U) (5 (nb? + (nh)?).
202

BU) = L (n6 + (n6)?)

Remark. If X ~ U(0,1)
B(U) = B(X2/(X)?) = B(X2)/E((X)?) 777
Chapter 7. Point estimation.

Definition. A point estimator is a statistic. Its values are called estimates.

We shall discuss methods of estimation and their optimal properties.
§7.2. Methods of estimation
§7.2.1. Methods of moments estimator (MME)
Suppose that Xy, ..., X,, are i.i.d. from X ~ f(x;0), 8§ = (04,...,0;) € O.
A MME of @ is a solution of 6 to equations

Xt = B(X™h)

Xit = E(X™), where iy, ..., i are distinct integers

Question: Where is 6 in these equations 7
In particular, a MME is a solution to

Xi=FEX"),i=1, ..,k
Remark. The solution to the MME is not unique.
Example 1. Suppose that X; ~ bin(n,p), § = p. MME of 6 ?
Sol. We present two solutions, denoted by p and p.

(1) X = px with k= 1.

X1 =np Why ?
Question: Why do not say MME is p = X;/n ?

(2) X2 = B(X?) with k = 1.

Xi = 0%+ p? =np(l1 —p) + (np)*> = np + (n* —n)p?

that is, —X? + np+ (n? —n)p* =0

_ —n* n2+4(n2—n)X12
= Pp= 2(n%2—n)

Question: Two solutions. Are they both MME 7

- —n++/n2+4(n2—n)X?2
Answer: p = 2(n2£n) ) X5

Example 2. Suppose that X7, ..., X, are iid. from bin(1,p), § = p. MME of 6 ?
Sol. Two approaches: (1) Standard, (2) MSS. T'=>"" | X;.

(1) X=p=>p=X.

2)T=E(T)=>T=np=>p=X.

1

0

Jo(3), 0 >0 and f, is a



Example 3. Suppose that X7, ..., X,, are i.i.d. from N(u,02), 0 = (u,0). MME of 0 ?

X=pn
Sol.
° {XQ—quU

p=X
= { 5= /X2 - (X)?
§7.2.2. Maximum likelihood estimator (MLE). Assume that fx(x;6) is the density function of X, where
0 € ©. Write L(0) = fx(x;0) and call it the likelihood function of §. The value of ¢ that maximizes L£(-) over all
possible 8 in © is call the MLE of 6.
0 = argmaxy. o L(6)

Interpretation: Given x, the MLE chooses 6 such that the probability that X = x is the largest

P(IX—X|<e)
(26)71,

~
~

=P(X=x) if X is discrete
fX(x if X is continuous

Typical steps for the MLE with differentiable L:

Step 1. Solve for critical points of InL
(i.e., all t’s such that (InL)'(t) =0 or L'(t) does not exist, or the boundary).
Step 2. Check whether ¢ is the maximum point by
either the second derivative test if £’ exists everywhere,
or comparing the value £(¢) over all ¢ obtained in step 1.
Example 1. Suppose that X, ..., X,, are i.i.d. from N(6,1). Find the MLE of 6 in the following cases: (a)
0 = (—o0,0), (b) ©® =1[0,00),(c) © =[-1,1].
Sol. Denote InL(0) = In[;_, fx(X;;0)

n 179 2
= IH{W exp(— Y 14 %)}

= ln4(27$n/2 - 22;1 (Xi;9)2
Remark. It is much clearer by drawing the graph of y = InL(x). A parabola concaving down.
(a) © =R
L) =>,(X;i—0)=0=0=X
Check: (InL) exists on R!, and (InL)” < 0. Thus § = X is the MLE.
(b) © =10,00).

Possible critical points: § = X, 0, co.
Check: Two cases: (1) X >0, (2 ) X <o.
critical pts : 0 X 00
X2 2 _ (%2
(1) (11;15((-.)))’ C_;X e (XO 0% _fo Do we need both?
MLE
critical pts : 0 00
(2)  InL(") finite —oo
MLE
Thus the MLE 6 = max{0, X }.
(c) ©=[-11].
Possible critical points: § = X, — L, 1.
Check: 3 cases: (1) X € (-1, )7L2) <-1,3)X>1
critical points : —1 X 1
(1) InL(-) ? ? ?  simple if X is given
(InL(-)) + 0 —
MLE
critical points : -1 1
InL(-) ? ?
@ ey - -
MLE

10



critical points : —1 1

L (") 79
® ey o+ o+
MLFE

) {X if X €[~1,1]
Thus the MLE 6 =< 1 if X < —1
1 if X >1.
Example 2. Suppose that X, ..., X,, are i.i.d. from bin(k,p) where p is known, p € (0,1), and k is unknown.
MLE of k 7
Solution. Question: What is © ?

n

% i=1

Remark. If X,) =0, L= ¢"™* is maximized by k = 1. Thus k=1if X(n) = 0. WLOG, assume X,y > 1.

Question: Should we use the typical method ? i.e., alnc(k) =07

(1) a%(k!) =7 (2) 0 = k is discrete, the root of alnaﬂk(k) may not be an integer.
Notice that Xy, ..., X,, < k. Thus the MLE R
k Z max{X(n), 1}

One method: Guess and try.
The MLE k& fargmaxk>x<")v1£( ).
An R program in the special case of (n,p, X1) = (1,0.8,5):
X=5
p=0.8
N=20
K=X:N
f=choose(K,X)*p**X*(1-p)**(K-X) (= ()’gl)pxl g —X1)
F=max(f)
round(F,3)
round(f,3)
[1] 0.393
[1] 0.328 0.393 0.275 0.147 0.066 0.026 0.010 0.003 0.001 0.000 0.000 0.000
[13] 0.000 0.000 0.000 0.000 (k= 177?)
Then the MLE is k = 6, Why ? according to f(5), ..., f(20).
K[f==F]
[1] 6
Remark. Drawback of this approach: It is not clear that k is the MLE, as we only list k € {5,6,...,20}.

Second approach: Consider g(k) = % e.g. let n =1, then

g(k) = 1Hq = Tx,7%4 decreases from oo to ¢ (< 1) for k € [X(n) V 1,00); X(n) = 77
=> (1) g(k) > 1 and (2) g(k+1) <1. Why ?
(1) 1x/k21_>q>1_X1/k =>X1/k>p(=1-¢q)=>X1/p>k.
2) tximm Sl=>¢<1-X/(k+1) =>Xi/(k+1)<p=>Xi/p<k+1.
Thus 3t —1 <k < ZLIf (n,p, X1) = (1,0.8,5), then 5.25 <k < 6.25 => k =6. Why ?
Now in general,
n ! X nkf X, n
g — (i e S Lt
g (Hn kiﬂx)‘) Z X; n(k 1)— Z X; i:lk_

i=1 X, 1((k—1)

g(k‘) = ﬁ(i;(ﬁ)l) = (Z]_:[l ﬁ)q", k> (X(n) \Y 1)7 where % = 0. (1)

WLOG, assume X,y > 1. ﬁ Lin k € [X(n),00), V i.
Then g(k) decreases from oo to ¢" (< 1) on [X(,), 00). (2)

11



By Eq. (1), at the MLE £, {EU% ~n<ek) o, {g@) >1

L(k+1) < L(k). gk+1)<1.

Statement (2) says y = g(z) is a decreasing curve that crosses y = 1.
We should look for k > X (n) such that

g(k) = 1;
g(k+1) < 1.
Q: gk)=1727
The MLE can be written as
k=max{k: g(k)>1,k> Xy} ?
k=min{k: g(k) <1,k > Xy} ?
k=min{k: g(k) <1,k> Xy} —17
Given a data set, we can solve it easily:
Solve y = g(x) and y = 1, x € {X (), X(n) + 1,...};
or solve y = [[;_ (1 — X;/k) and y = ¢", as g(k) = ([T}, ﬁ)qn
(I) draw graph y = [[;" (1 — Xi/k) and y = ¢", 2 € {X (), X(ny) + 1, ...}
(II) find their solution Z and k = max{k : k < &}

5000 10000 15000 20000 25000 30000

0

20 30 40 50 60

The R program:
p=0.6
n=6
x=rbinom(n,20,p) # simulation to get data x
m=max(x)
if (m==0)
h=1
if (m>0) {
j=4*m
k=m:j
g=rep(0,(j-m+1))
q=(1-p)**n # q**n
for(i in m:j)
gli-m+1]=q/prod(1-(x/i)) #g
h=min(k[g<=1])-1
# or use
H=max(k[g>=1])
}

12



h
H
I ran the program 3 times and got 16, 22, 19. Why 3 values ? True k ?
The revised R program:

p=0.6

n=>6

x=rbinom(n,20,p)

m=max(x)

if (m==0)
h=1

if (m>0) {
j=4*m
k=m:j
g—rep(0,(j-m-+1))
for(i in m:j)

gli-m-+1]=prod(1-(x/i)) #1/g

q=(1-p)**n # q**n
plot(k,g,type="1") # not necessary
lines(c(m,j),c(q,q)) # not necessary
h=min(k[g>=q])-1

7 or use
H=max(k[g<=q])
}

h

H

Theorem 1. (Invariance property of the MLE). If 0 is the MLE of 6 and 7 = g(0) is a function of §, then the MLE
of T is 7 = g(6).

Example 3. Let Xi, ..., X,, be a random sample from N(u,0?), 0 = (u,02), 0 € © = [0,00) x (0,00). Find the
MLE of pu, o, 02 and E(X?).

Sol. Let 7 = ¢2 and v = E(X?). MLE of u, 7, ¢ and v ? (0,7) are functions of 0. First get the MLE 6, then (6,%)
can be obained by the invariance property of the MLE.

n

£ =T CX0) = (2r0%) " expl— 5 (X = ),

i=1

£ = (2mr) " expl—- S ) why 77
InL =c— glm' — % Z:(X2 — ) (1)
ag;c =2 x ;rzi:(Xi_M):OZ>M:X7

8181;5 2—271_+271_2;(Xi—u)2:0:>72ii(Xi—,uf Done ? (2)

Check: Two ways: (A) one-by-one, (B) Two dimensions.
(A). Fix 7, maximize InL(p, 7) w.r.t. u, say p = g(7).
Then maximize InL(g(7),7) w.r.t. 7.
The MLE is (g(7), 7).
Now In£ is maximized by fi = 0V X, (see Example 1 in §72.2.) regardless 7. That is g(7) = fi.
Replacing p by i in L(u,7) and Eq. (2),

the critial points for 7: 0 T 00
log L(fi,T) —o0  finite —o0
(see Eq.(1)) MLE

13



Thus the MLE of (u,7,0,7) is f=0V X, 7=13" (X; - )% 6 =V7as 7= 0%
F= () +6% as B(X?) = p* + 0.

= X2 why ?
(B). (1) Critical points of L(u,7):
for p: X(le>0) 0, co.
for = L3 (X, ) 0, oo,
(2.a) Compare L(u, )over critical points if X > 0. (u, ) [ 00) x (0, 00).
ME G = X and 7= L0 (X, — 2 = 130 (X - X
4 boundary lines and a point.
p=0,pu=00,7=0,7=00and (X, X2~ (X)?).
= 0 reduces to (0,0), (0,00) and (0, X2 — (0)?), or only the latter ??
(w,7) w=0 (X, X2—(X)?) p=oc0 7=0 7=00
——
(0,X2-(0)?)
InL =c— 2Int — £ 3, (X; — p)? finite finite —00 —00 -0
oL, X2 (X)2) n 0 -
MLE

(2.b) compare L(u,T) over critical points (u,7) if X < O(only 4 boundary lines):

(1, 7) p=o0 7=0 7=00 (0,X2) <=p=0
InL —00 —00 —00 finite
MLFE

§7.2.3. Bayes estimator.
We have learned two estimators: MME and MLE under the assumption that Xi, ..., X,, are ii.d. from f(z;0),
6 eo.
6 is a constant (not random), unknown.
In this section, we consider Bayesian approach:
Conditional on 6, X, ..., X,, are i.i.d. from f(z|f),
6 is a random variable with df 7 (6),
f(x]0) is a conditional df of X|6.
Bayes estimator of 0 is § = E(6|X).
Recall the formula

Now
f(x,0) is the joint df of (X, 6),
Jx (x) is the marginal df of X,
() is the marginal df of 6, called prior df now,
f(x]0) is the conditional df of X|6,
m(0|x) is the conditional df of 8|X, called the posterior df now,
_ f(x,0)d6 if 0 is continuous
Fx () = { fzg f(x,0) if 0 is discrete.
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() {ff x,0)dx if X is continuous
Yox f(x,0) if X is discrete.
F(x]0) = L557 by Eq. (1),
m(6]%) = £ by Ea. (1),
_ dF( x 9 Om(0|x)de if 0 is continuous

BOIX =x) = J,07F ) { fzﬁw(ﬁ\x) if 6 is discrete.

Recall the Bayes set -up: condltlonal on 0, Xy, ..., X, are i.i.d. from f(x|6),
Are X;’s i.id. 7
Homework. Answer it through the assumption as follows. Let Xy, ..., X,, be i.i.d. ~ bin(1,p), and p ~ U(0,1).
Ans: No !
Remark. Two ways to compute the Bayes estimator:

1. E(0|1X),

2. E(0|T(X)) where T is a MSS.
They lead to the same estimator.
The second method is often simpler in derivation.

Example 1. Let Xi, ..., X;, be a random sample from bin(k, 0), 0 ~ beta(a, §) with 7(t) = M, te€0,1],

B(a,B)
where B(a, ) = Fr(?a)i(ﬁm a,B > 0 and (k,«, ) is known. Bayes estimator of 6 7

Sol. Recall T(X) = >""" | X, is MSS if 6 is a parameter.
(1) E@IX)= 7 (2) E(0|T(X))=
Method 1. Based on X.

Fx10) =TTy (567 (1 — 0)F—= = ([T, (;))gzi LS Y

~

(x,0
fx(x
f(x|0)m(6)

fx ()
o 02 i1 - 0)"k_zi #igo=1(1 — 0)°~! (main trick!!)
— 9 Tita-lq _ a)kn—zimﬁ-,@—l (1)

~—

m(0]x) =

~—

Thus 0|(X = x) ~ beta(d_, v; + a,nk — >, x; + B) (= beta(a,b)),
The Bayes estimator is

a _ZZX1+OZ
a+b nk+a+p
B nk > X a+p «a
nk+a+[3 nk nk+a+Ba+p
Z -2 z{MLE ifr a1
nk a+p E®) ifr=0

6=EW0X)=

"X .
a weighted average of the MLE Zn;é and the prior mean QL%

Method 2. Based on MSS T'= 3", X;. T|0 ~ bin(nk,0) ? or T ~ bin(nk,0) ? frje(t|0) = ("tk)ﬁt(l — g)rk—t,

_ (e a—omee (16" /Bla, B)
w(Q|t) = 0

o 0t+a—1(1 _ e)lm—t-&-ﬁ—l same as (1), why ?

Example 2. Suppose that Xi, ..., X,, is a random sample from N(6,02), 0 ~ N(u,7?), where (o, 1, 7) is known.
Bayes estimator of 6 7
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Sol. fx(z) = m—exp(—(*5#)?/2) occ e *+be (kernel of f).
Two ways: (1) E(6|X) and (2) E(0|T(X)). Which to choose ?
MSS of §is T

T=X.T|§~N(0,o2%/n).

/971' 0|t)do

E0]T(X

o1 71(9*,“)2)
2 o%/n 2 72
_1—27&0—&—92_102—2@)
2 o2%/n 2 72
L 1 1w
202/n 272 202%/n

1 1

— —20

7 + 72l + (29)
2
H
pel)

1. 51 s
) = eXp(—§[9 ﬁ — 29; + 0_2

* * *

129u
2 7'2)

:exp(—

_ Lo l

fexp(fi{e [ oy
1(0 — ps)?
SRS

1 1 1 s t o
o7 = lozgn vl end =1 |

*

Thus (T = t) ~ N(p«,02) and the Bayes estimator

Remark. It is interesting to notice the following fact again.
In Example 2, the Bayes estimator is

>
q

W)

~
3

1

1 1
o?/n + T2

if nislarge or r =~ 1
ifra0

a weighted average of the MLE X and the prior mean p.
§7.3. Methods of evaluating estimators.
Notice that the MME, MLE and Bayes estimators may not be the same.
Question: How to compare estimators ?
6 — 6 — error, Not good, Why ?
|0 — 6] — absolute error, Not good, Why ?
E(G) 6 — bias, denoted by bias(f) or B(f);
E(]6 — 0]) — mean absolute error, Not ideal, Why ?

16
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E((6 — 0)?) — mean-squared error of 0;
A naive approaches: R
Select ¢ that has smaller MSE(6).

Formula:

Reason: E((0 —0)%) =E[(6 — E(0) + E(§) — 0)?]
=E((0 — E(9))*) + E(E(9) — 6)*) +2E[(6 — E(0))(E(6) —0)]
=E((6 — E(0))*) + (E(9) — ) +2(E(9) — E(0))(E(®) - 6)

Definition. If bias(f) = 0, 6 is called an unbiased estimator of 6.

Example 1. Suppose X1, ..., X, are i.i.d. with mean p and Varlance o?. A common estimator of x is it = X, and
two common estimators of 62 are 62 = £ 3 (X; — X)? and 5% = L5 ZZ(X X)2. (a) Are they unbiased ? (b)
Compute the MSE of X, S? and 62 under N (u,02); (¢) Compare 62 to S? under N (u,0?).

Sol. (a) Recall: E(X) = px, unbiased estimator of px. Var(X) = E((X — p)?) = BE(X?) — p?, 6% = 13, (X; —
X)?=X2—(X)? and §? = 262,

=E(X?) - (E(X))? +0%) (Why ?)
=0? —o*/n Why ?
B(S?) nf -B(6?) = nf 1”;102 = g2

Thus S? is unbiased but not 62.
(b) MSE(f1) = Var(X) + (bias(fi))? = 0?/n + 0. MSE(S?) = Var(S?) + (bias(S?))? = Var(S?) MSE(6?%) =
("=1)*Var(S?) + (02 /n)?
(1) Recall a theorem: Under i.i.d. normal assumption,
1. X ~ N(u,0%/n);
2. (";712)52 ~x%(n —1), that is, S* ~ n"—jlxz(n —1);
3. X 1 S2%
(2) Moreover, recall E(x?(m)) = m and Var(x?(m)) = 2m.

4
MSE(S?) = (%5 ) x2(n—1)=2(;25).
MSE(5?) = (%1)*Var(S? ) + (o 2/n) =2 1254,
(¢) MSE(6%)/MSE(S?) = (250)(n - 1) < 1.
Thus 62 is better in terms of the MSE, (though S? is better than 62) in terms of unbiasedness.
Question. Is 2 is the best in terms of the MSE ?
MSE(5%) = 221204,
Let 62 =1, then MSE(62) = (1 — 02)2.

MSE(6%) > 0= MSE(5?) ifo=1
MSE(62) = 22850592 — 2205 < 1 — MSE(5%) if o2 =2 and n =28

Question: How to compare estlmatorb ?
1. Select § with smaller M SE(6),
2. Select § with the smallest MSE(0) (= E((f — 0)2)) (impossible) !.
3. Select § with smaller bias.
4. Select unbiased 6 with the smallest Var(6).

Definition. An estimator 7 is called the best unbiased estimator or uniformly minimum variance unbiased estimator
(UMVUE) of 7(0) if
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(a) E(7)=7(0) V 0 € ©;
(b) Var(7) < Var(7) V 6 € © and V unbiased 7.
In many situations, the UMVUE exists.
Question: How can we determine that 7 is UMVUE 7
To answer the question, we need several theorems.
Theorem 1 (Cramér-Rao Inequality (CR- Ineq.)) Let Xy, ..., X, be i.id. from X ~ f(x;6) and let W(X) be a
statistic. Suppose that
d [ ZW(x)f(x;0)dx if X is continuous
(1) G EW) = { x (%W(x)f(x, 0) if X is discrete;
(2) Var(W) < oo.
Let 7 = E(W). Then

(GEW)? (EEW)? .
Var(W) = E(ZInf(X:0))2) (= nE((%lnf(X;e))z))' Why =1

The latter is called the Cramér-Rao Lower Bound (CRLB) of 7(0).
Remark. A CR-ineq gives a tool for determining an UMVUE. If
(1) the assumptions in CR-inequality hold,
(2) E(W) = 7(0) and

3V W) = (%7(0))2
(3) Var(W) = 55 Ky

then W is an UMVUE of 7(6).
Results: The assumptions in CR-inequality

1. hold if f(x;6) belongs to an exponential family;

2. often fail if the domain of the f depends on 8 such as U(0, ).
Example 1. Let X, ..., X, be i.i.d. from N(p,4), UMVUE of u ?
Sol. N(u,c?) belongs to the exponential family.

Thus Condition (1) in CR-inequality holds. § = ?? 7(0)= 77
Candidate of an UMVUE of u: W = X;
E(W) = =6 (Condition (2) in Remark);
Var(W) = Var(X) = 02?/n < oo (Condition (2) in CR-In.);

- (gTe)? .
CRLB = S5t

(;‘27(9)) =1

lnf(X 0) = a@[lnc— L(X —0)2/0?] = 029’
(( ZInf(X; 9)) )= B((35%)?) = %i )

__ (EEWY? 1 o ~
CRLB = nE(%lnf(X;@))Q =g = o?/n=Var(X)

Thus X is an UMVUE of p.

One of 6.8 or 6.9 will be in the midterm.
Definition. An estimator 7 is the best unbiased estimator or UMVUE of 7() if

(a) E(t) =7(0) V 6 € ©;

(b) Var(7) < Var(7) V 6 € © and ¥V unbiased 7.
The Cramér-Rao Lower Bound (CRLB) gives a tool for determining an UMVUE.
0 is an UMVUE of 7(0) if

(1) 2 B(d) - {f@ x) & f(x;0)dx if X is continuous

>ox b (x)ai f(x;0) if X is discrete;
(2) E0) = 7(6),

R (&7(0)?
(3) Var(0) = grdtrctans
Results:

Assumptions in CR Th {

hold if f(x;6) belongs to an exponential family;
often fail if the domain of the f depends on 6 e.g. U(0,0).

Example 2. Let X1, ..., X,, be i.i.d. from X ~ f(z;60) = §1(z € (0,6)).
a. MLE 6 of 6 ? )
b. Find an unbiased estimator of 6 based on 6.
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c. Show that the CR-inequality fails.
d. Why does it fail ?
Sol. 1. Solve for MLE:

£0) = T roxeo) = [P S O g, < 0.0)

i=1 %

Typical way: ZInL(0) = —n/0 =0 7?7 if X, < 6.
<0 iff> X(n)
Notice that ZInL(6) { ? if 0 =X,

=0 ifd< X(n)
Critical points: 0 Xn) 00
Check L(0) : 0 0 0 | thus the
L(9) - =\

maximum value does not exist, based on the likelihood !
However, the density function of U(0,6) is unique in the sense that

E(|f(X;0) — f2(X;0)]) =0 if f and fy are two density functions of U(0,6).
Here f(z;0) = 1(z € (0,6))§ and fz(x;0) = 1(z € [0,6]) 5.
The latter leads to the likelihood

Lo(0) = 07"1(X(n € [0,0])1(X (1) > 0).
Then the maximum value does exist !!

The MLE is 0 = X,).
2. To find an unbiased estimator, consider E(f) = E(cf) = 6.

() = [ tfx,,, (1t

0 n— n: n—
= Joy tn(§)" 1 gdt (as fx,, (t) = G5 (FE)" (1)
= foe ni-dt

n
n+1 0.

An unbiased estimator related to the MLE is § = 2 ntlg,
3. To show the CR-inequality fails, one needs to show Var( )) < CRLB.
Now Var(0) = E((A)?) — 62.

B = [P, it (as E@(V) = [ im0t = [ g(a) (@)

0
n+1 ti,_11 n—

= [ ey G as Fx (1) = n(F()" ()

O n

n+1,1 [° 11
— — [ gt

n( n ) 6”/0
_on+1l, 1 5
=n( n ) n—|—29
_(n—|—1)2 2
“n(n+2)
(1) Var(d) = j;g;g 0% — 02 = L 02
)
CRLB = g

Inf(x;0) = —1n9 x € (0,0).
(Inf(z;0)) = € (0,0).
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1(X€(0 9))
E((Blnf(X i0) — { Z Which is correct 7?7
= PIXe(00) — 1 py acmdent' e.g.,
1(X € (¢,0) 1
XU 0,0) => B(——*—) = B(z) 77
CRLB — ni — % > m = Var(@)
02

Thus the CR-inequality fails. In fact, we shall show 6 is UMVUE of 6.
d. Reason that the CRLB fails: (condition (1) in theorem fails).
W) # [ ZW(x)f(x;0)dx where W = 0 = X,,) L,

W) :/%W(x)f(xﬂ)dx

— [ Syuhwlu:0)dyz?)

E(W) =0,
LHS=Z E(W) = 1. But RHS= —n, as
on n+1
RHS = 89 - wfx,,, (w)dw
P on+1 w.,_11
= —_ —\n —d
a0 ) gl

9 w
0 80(0)

6
:(n+1)/ w™(—n)0~ " Ldw
0
:9n+1(_n)07n71

=(-n)
or RHS = // %W(x)f(x;t))dx
—

how many?

0n+1 n
/ / l’(n)g l(z(l),x(n) S (O,H))dx

n

1
—n'/ / / Tpdry - dxp,— 1dxn{—0 ”n+ } Why??

=(n+1) dw

(by induction on n)
—_——~

(In)n71 7n71n + 1
/ Ty R dz,{(—n)b T }
0
_nl/ I” da:n )anflin 1
n
1 n+1
—_plgntl — ()il —
n!o it = 1)!( n)6 " n
W) # [ ZW(x)f(x;0)dx (condition (1) in theorem fails).

Theorem 2. If (1) T is a sufficient and complete statistic for 0; (2) ¢(T) is a statistic that only depends on T,
Then ¢(T) is the unique UMVUE of E(¢(T)).
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Corollary. 6 = 2l X,y is UMVUE of 6 if X;’s are i.i.d. ~ U(0,6). Why ?

n

Remark. 2 more ways for finding a UMVUE of 7(6) based on Theorem 2:

2. Find a sufficient and complete statistic 7" and
a ¢(T') that is unbiased of 7(6),
then ¢(T') is the UMVUE of 7(9).

3. Find a sufficient and complete statistic 7" and
an unbiased estimator W of 7(0),
then 7 = E(W|T) is the UMVUE of 7(6).

Example 1. Let X;’s be i.i.d. from N(u,0?). UMVUE of p? and o2 ?

Sol. Use Method 2.
T = (X, X?) is sufficient and complete (known due to exponential family).
A function ¢(T) such that E(¢(T)) =6 7

E(S?) = 0% and §% = 2= (X? — (X)?), a function of T'.

E(X?) = BE(X?) = p® + 0% and X2 is a function of T}

E(X? - 5%) =p?+ 0 —0? = p? and X2 — 52 is a function of T;
Thus X2 — S? and S? are the UMVUEs of p? and o2, respectively.

Example 2. Let X, ..., X,, be i.i.d. from Poisson(A). UMVUE of \ ?

Sol. Recall E(X1) = XA = Var(X;) for Poisson(\). T = >""" | X; is sufficient and complete.
Two unbiased estimators: A = X, =62

Method 1. Check: Cramer-Rao Lower Bound = V(A) or V() ?

Method 2. é\ =X, as E(X)=pu= M\

Method 3. A = E(W|T), where W = 52 or X.

Question:
(1) Which method is better here ?
(2) EX|IT)=X"?
(3) E(SYT)=\?

Consider the case n = 2.

Let T =3, X;.
E(S?|X) = BE(S*|T/n) = E(S*|T) = 2[B(X?|X) - (X)?].
fxixi4x (@) = P(Xy =2, Xo =t —2z)/P(T =t) = (1)0.50.5 " (bin(t,0.5)).
E(X?|T) = E(X?|T) = (Tpg + (Tp)*) = (T/4 - T?/4) = (X/2) — (X)*.
I ol 15 3 o 20X b ) o
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Example 3. Let X, ..., X,, be a random sample from X ~ bin(5,0).
= P(X < 1). UMVUE of 7 ?
Sol. =7 (= P(X <1)).
7= (1-0)5+50(1—0)
3 methods for UNVUE:
1. Find an unbiased 7, compare 0'72»_ to CRLB.
2. Find a complete sufficient T" and g(7T') so that E(g(T)) = 7.
3. Find a complete sufficient T' and an unbiased 7, compute E(7|T).
Method 3. 7 = E(W|T).
wW=? T=? E(W|T)=?
W =1(X; <1). Then E(W)=P(X; <1)=P(X <1).
Why not W=1(X <1)?
T =", X; is sufficient and complete (due to the exponential family).
Why T, not X ? Either is fine, but T' ~ bin(5n,0), T = nX, f+(y) = ?
EWIT)=7
Ans.: (1) gt) =EWI|T =t),t=0, ..., 5n. (2) EWI|T) = g(T).
EWI|T =t) = [ wdFywr(w|t) meaning ?
=0- fwrOft) +1- fwr(1[t)
E(WIT = 1) = fupr(1lt).
Jwr(1]t) = %, t € {0,1,...,5n}.
P(T=t)=
PW=1T=t)="7"

If t = 0, then P(W = 1,T = t) = P(X, € {0,1},T = 0) = {]fzgl —0?)
{T=0={3Y_Xi=0}={X; ==X, =0}.
E(W|T =0) = fi;r(1/0) = Fo=g).

> 1,

PW =1,T=t)=P(X;, € {0,1},T =t) how to proceed ?
(=P(X; € {0,1)P(T =t)?)

:P<X1 S {0, 1},iXi = t)

=P(X1=0,Y Xi=t)+P(X1=1,) X;=1)
i=1 =1

=P(X; =0, X;i=t)+P(X; =1, X;=t—1)

=2 1=2
=P(X; =0)P(>_X;=t)+ P(X; = 1)P EZX_J—l)
=2

=(1-6)° <5(nt— 1))92&(1 _ g)stn-1)-t

+5a_9feCY“1”>w—%1—9PW—U%H

) R )

Since P(T' =t) = (5:)915(1 — g)sn—t,
.1 if T =0 &
T= { [(5(nT—1)) + 5(5(%1:11))]/(5;) T >1, where T = ZXT

i=1
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Theorem 2. If (1) T is a sufficient and complete statistic for 0; (2) ¢(T) is a statistic that only depends on T,

Then ¢(T) is the unique UMVUE of E(¢(T)).
Theorem 3 (Rao-Blackwell). Suppose that
(1) W is an unbiased estimator of 7(0),

(2) T is sufficient for 6 and

(3) 7 =EW|T).

Then Var(t) < Var(W) and E(7) = 7(0).

What is the diffenrece between Th 2 and 3 ?
Remark. The R-B Theorem does not say that 7 is the UMVUE.
Proof of R-B Th. E(7) = E(E(W|T)) = E(W) = 7(0).

Var(W) =Var(E(W|T)) + E(Var(W|T))

Thus Var(W) > Var(E(W|T)) = Var(7). o
Proof of Theorem 2.
Step (1) Claim: ¢(T') is a UMVUE of 7(6) = E(¢(T)).

If ¢(T) is not a UMVUE of 7(6),
then there exists an unbiased estimator W such that

Var(W) < Var(¢(T)) for a § =6, (or for all 6 ?).

We shall show that it leads to a contradiction.
Now 7 = E(W|T) is an unbiased estimator and

Var(7) < Var(W) < Var(¢(T)) for § = 6, by R-B theorem.

Let g(T) = E(W|T) — 6(T),
then E(g(T)) =7(0) —7(6) =0V 6.

It follows that P(g(T)=0)=1V 6, Why ? that is,
¢(T) = E(W|T) w.p.1, a contradiction to Inequality (1) Why ??
The contradiction implies that ¢(7") is an UMVUE of .

Step (2) = Cov(W, ¢(T)) = owogry where W is an arbitrary UMVUE of 7(6).

W* = (W 4 ¢(T))/2 is also unbiased, and

Var(W) <Var(W™)
:%Var(gb(T)) + %Var(W) + %COU(@Z)(T), W)

1 1 1
§2—2Var(W) + Q—QVaT(W) + §Var(W)

=Var(W)

= Cov(¢(T),W) =Var(W) = /Var(¢(T))Var(W)  Why ?
Step (3) Claim: ¢(T') is the unique (w.p.1) UMVUE of 7(0).
Recall that Cov(X,Y) < oxoy
with equality iff P(Y = a+ bX) = 1 for some constants a and b.
Let W be an arbitrary UMVUE of 7(9).
Thus Step (2) => P(¢(T) = a + bW) =1 for some constants a and b.
Then E(¢(T)) = a4+ bE(W) and thus 7(0) = a + br(0) V 6.
It follows that = 0 and b =1, and thus P(W = ¢(T)) =1. o

(as W is an UMVUE)

Why ??

(CO’U(X, Y) S O'Xa'y)

Theorem 1 (Cramér-Rao Inequality (CR- Ineq.)) Let Xy, ..., X, be i.i.d. from X ~ f(x;0) and let W(X) be a

statistic. Suppose that
o . . .
SW(x)f(x;0)dx if X is continuous
1) L E(W) = fae )
(1) HEW) { x ZW(x)f(x;0) if X is discrete;
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(2) Var(W) < cc.
Let 7 = E(W). Then

(LEW)? . (EW)? .
Var(W) 2 ziah X & nb(amrxay): Why =7

Remark. In general, the CRLB = (;;((90)))2, where I,,(6) = E((%lnf(X; 0))?), I,(0) is called the Fisher information
number.
Here X = (X3,...,X,) and X1, ..., X,, do not need to be i.i.d..
If they are, then I,,(0) = nIl(H), where I1(6) = E((%lnf(Xi;H))2); Moreover,
F) . . .
. ssInf(z;0)f(x;0))dr if X; is continuous
f Q 1 X — f (ag ) )
if 55 E(3pInf (X1:6)) = {Z Z(ZInf(x;0)f(2;0))  if Xy is discrete,

then P o2
10(6) = ~B(55(251nf(X:6))) = —nB(o
Proof of (2) under the assumption that X is continuous.

Let Y; = %lnf(Xi;H), then

Inf(X1;6)) (2)

B(Y) =B( e (X,:0)

%f(th)
f(Xi:0)
£ (:0)
f(z;0)

%f(z;&)d:c

=E( )

f(z;0)dx

:%/f(m;@)dx (by (1) in the theorem)

E(Y?) = Var(Yy) = V(Y)). B, Y:) =
I,(0) = (%me (X:;6)) ZY (Z:Y ZV ) =nly (0

0= = [ (5pnf(ai0) (w0 —>
0 0 0
0= | (@lnf(x 0)f (x:6)d
/89 —lnf z;0)) f(x;0)]dx (by assumption)

— [ gt s 00 (36) + (I (a:0) 55 53 O)d
0

/[;anf(:r 9))]f($;9)d$+/(glnf(x 0)) 55/ (@:0)dz

2
= [12 st st o)+ [(Dng(a: o)) 001

B (X56) + (o f (X:6)))

Thus E(Z5Inf(X;;0)) = —E((ZInf(Xi;0))2).
§7.3.4. More about the Bayes estimator. .
Interpretation of various estimation methods: MLE § maximizes £(0) = fx (x; ), maximizing the chance for given
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X = x. MME 6 solves 6 through Ey(X*) = X*. Unbiased estimator 6 set E(f)) = 6., UMVUE § is the best unbiased
estimator in terms of variance. Why Bayes estimator E(6|X) ?
Definitions: A decision problem consists of
X — sample space,
A — action space,
© — parameter space,
L(6,a) — loss function, that is, L: © x A — R.
A decision rule § is a (measurable) function from X to A, that is,
0 X — A
R(0,9) = E(L(0,6(X))) — risk function of 4, or more precisely, R(0,9) = E(L(0,6(X))|0) (function of (6,4), not
X)).
r(m,0) = Ex(R(0,J)) — Bayes risk of . It is not a function of (X,0) !!
dp = arginfs r(m, o) is called the Bayes rule of § w.r.t. prior 7 and loss L.
Remark. If L = (6 —a)? (called the quadratic loss function or the squared error loss), then E,(0|X) is the Bayes
rule w.r.t. m and L (or Bayes estimator).
The Bayes estimator is the best in term of E(E(§(X) — 0)2]0), average error over (X, 0).

Example 1. Let X ~ bin(n,6), 7(8) ~ beta(o, 8) where o = 8 = \/n/2. Then the MLE is § = X/n, and the

Bayes estimator under the square error loss is § = E(0]X) = nii:iﬁ = XT:/\/HE/Q why ?
. o _ z++n/2

Can we write 6 = E(f|z) = v ?
. q _ z+/n/2

Can we write 0 = E(0|X) = e ?

This is an estimation problem and is also called a decision problem. In this decision problem,
X ={0,1,...,n} (set of possible observations)
O =1[0,1] = A (set of possible estimates)
L = (a — 0)? (error).

A decision rule ¢ is an estimator.

6 and 6 are both decision rules. Then

R(0.0) = E((0 - 0)*) = E(X — 0)) = 0%, = V(X/n) = 210

r(m,0) = E(e(ln_e)) = B(galb%jz_l) Why 7?7
Recall T'(a + 1) = ol'() and B(a, 8) = F&B-l;(gﬁ))
) B 1
r(m,0) = a+ﬁ+1 “atpf Tn T 4ﬁ(ﬁ+1)

R(0,0) = E((§ — 0)?) = MSE(§) = Var(%) + (bias(9))?

—_———
7

nf(1—0) nb++/n/2 2 _ n
R(0,0) = (n+f>2 +(5Gva 0 = e

7“(7r,9) =FE(R (0,9)) = 4(n+"ﬁ)2 = 4(\/51“)2 < r(m0).

It can be checked that r(m, ) = infs r(m, §) (see Remark later).
Thus 6 minimizes the average error. w.r.t. L and 7.
Example 2. Other loss functions:

L(0,a) = |a— 0],
L(0,a) = (9?1 92), where © = [0, 1], and %défoo

Is E(0]X) still the Bayes rule w.r.t. L and 7 ?

Example 3. Suppose that X ~ bin(n,p), m(p) ~ beta(a, 3), with o = 8 = \/n/2, and L(p,a) = ;?;fzj Let
p1 = X/n, and po = FE05. R(p,pi) = 7 r(m,pi) =7
« X/n—p)? 1 n
Sol. R(p.p1) = B(SH5) = 5l = 1/n.
r(m,p1) = E(1/n) =1/n.
(2225 - p)? X+a 1 n 1
R(p.p2) = B(-—F——)=E 2 = :
W) = B0 ) = PG s s P ) T dr v pi—p)



(by Ex. 1).

) — ¢ 1 :CB(a—l,ﬁ—l) o
) =BGy Bla.)
_ (@+B-D(a+B-2) _ n Wn-1)(/n-2)
(a-1)(B-1) 4(n+v/n)? (Y 1)2

___Gm-1 {>1/n=r(7r,ﬁ1) if n=4or09,
(Vn+1)2(/n—-2) | <1/n=r(rp) ifn=100

Can we tell whether p; or ps is Bayes rule (w.r..t. 7 and L) ?
Remark. Under certain regularity conditions (in the Fubini Theorem),
(1) If E(L(6,0)|X) is finite, then the Bayes rule is

dp(x) = argmin, E(L(0,a)|X = x).
Or, if T is sufficient and E(L(0,a)|T) is finite, then the Bayes rule is

dp(t) = argming E(L(0,a)|T =t). (2) If L = (a — 0)?, then d5 = E(0]|X).
Proof: Note that both X and ¢ are random.

r(m, 6) =E(E(L(6,5(X))[0))
=FE(E(L(9,0(X))|X)) (by Fubini Theorem)

is minimized by minimizing E(L(0,(X))|X = x) for each x
or minimizing E(L(#,a)|X = x) over all a € A for each x. Why ?
(2) If L = (a — 6)?, then
E(L(,a)|X =x) = E((a — 0)*|X = x)

If E((a — 0)?|X = x) is finite, then
, %2E(L(0, a)|X =x) = 2E(§a —0)|X =x) (Why ?? Is it right ?)
= g=la® = 2aE(0|X = x) + E(0°|X = x)] = 2a — 2E(0|X = x).
L E(L(0,a)X =x) =2> 0.
Thus a = E(0|X = x) is the minimum point.
That is, dp = E(0]X) is the Bayes estimator w.r.t. L and .

Remark. Hereafter, if we do not mention L in the problem, the Bayes estimator is E(6]|X), otherwise, the Bayes
estimator is the Bayes rule w.r.t. the loss L and the prior 7.
Remark. Under certain regularity conditions (in the Fubini Theorem),
If E(L(6,6)|X) is finite, then the Bayes rule is
dp(x) = argmin, E(L(0,a)|X = x).
Or, if T is sufficient and E(L(0,a)|T) is finite, then the Bayes rule is
dp(t) = argming F(L(0,a)|T = t).

Example 4. If one observes X, where X ~ bin(n,p), L = ;‘Z:);j, 7(p) ~ U(0,1),

then Bayes estimator p= 7
Sol. p=dp(x)=argmin, E(L(p,a)|X = x).

=7

[ L(p, a) 7 (plx) dp
——

—2
f@p) _ 9
fx(x) )

The joint distribution of (X,p) is

f(x,p) =f(zlp)m(p)
() -prawe o)
xp”(1—p)" " *1(p € (0,1)).
m(plx) ~ 7
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Thus 7 (p|z) ~ beta(x + 1,n —x + 1).

2

cp”(1—p)" *dp

(@) = (L)X =o) = [ G2

1
g(a) = C/o (a—p)*p" (1 —p)" " dp

Step (1 = cfo p* (1 —p)"~*"Lldp. ¢'(a) =0 =

folpp””‘l(l— p)"*tdp
f P 1 n T— 1dp

1 x—1 n—xr—1
fO - Bgi,npjm) dp

T pe—1(1—p)n—=—1
fO £ B(w,f;—w) dp

T

= mean of a beta distribution = ————
x4+ (n—x)

Step (2) g"(a) = c fy 2p" (1= p)"~*"Ldp > 0.
=> a = p(x) = z/n is the Bayes estimator of p.
Are we done 777

g(a) =E(L(p,a)| X = x)

1
:c/ (a® = 2ap + p*)p* (1 —p)" " tdp
0

xa’B(z,n —x) —2aB(x +1,n —z) + B(x +2,n — z).

B(a, ) < oo iff @ >0 and 8 > 0.

1. Notice that if x # 0 or n, g(a) is finite for all a € [0, 1].
g'(a) =2c[aB(z,n —z)— Bz +1,n—2)] =0
g"(a) =2¢B(z,n —z) > 0.
Thus g(a) is minimized by
B _ flpm(lfp)"_””_ldp _ B(z+1l,m—2) _ T(z+1)'(n—z)l'(n) _
a=dp(x)= folopl'*l(lfp)"*zfldp = Bn-2 - M@Ofn-ol(ntl) —

2. Notice that if x =0, g(a) is finite only when a = 0, as

1
g(0) = C/ P (1 —p)" " dp = cB(2,n)
0

Otherwise, (if unaware of (1)) g(a) = c{fo a’p~ (1 —p)"~tdp — 2aB(1,n) + B(2 n)}

> cfo/ 2p=1(0.5)""tdp + ¢{— 2aB(1 n)+ B(2, n)} = limy 0 ca?(0.5)" 1 lnpf
Thus g(a) is minimized by a = §5(0) =0 = 0/n.
Can we say that aB(z,n—z)=0ifz=0=a ?
3. Notice that if x = n, g(a) is finite only when a = 1, by symmetry.
Thus g(a) is minimized by a = dg(n) =1 =n/n.
Answer: The Bayes estimator w.r.t. 7 and L is 65(X) = X/n.
Question about

) b(y) 9

b(y)
a@/ g(z,y)dz = g(b(y), y)b' (y) — g(a(y), y)a'(y) +/

g(z
a(y) a) 0"
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a% fol sin(zy)1l(z < y)dz = 7
Chapter 8. Hypothesis Testing
1. Estimation problem: 6 =7
2. Testing Problem: # = 0, ? Here 0, is given.
Example 1. A slot machine is claimed to have winning rate 40%. To test the claim, 5 runs are made. Observe X
times of winning. Let p be the winning rate of the machine.

Possible Questions:
Hy : null hypothesis H; : alternative hypothesis made by

§8.1. Two types of inferences: {

p=40% ? p#40% ? manufacturer
p>40% ? casino owner
p<40% ? player

If Hy is correct, then X ~ bin(5,2/5) and one expects 2 winnings.

The maker rejects Hy if X =0,4,5 but nor 1,2,3.
The owner rejects Hy if X = 4,5 but not 0, 1,2,3
A player rejects Hy if X =0, but not 1,2,3,4,5.
rejection region (RR)

A test statistic or test function is ¢ = 1(X € RR),
which has two interpretations:
1. If X € RR, then ¢ = 1 or H; is accepted (often say rejecting Hy);
if X ¢ RR, then ¢ = 0 or Hy is accepted (often say not rejecting Hy).
2. The probability of rejecting Ho is { | if X € RR

. ) .0 otherwise.
A testing hypothesis for § € O consists of 5 elements:

1. Hy: 0 € ©, (©, = {0.4} in Example 1).
2. Hli 96@326\90

H o o
. 0404 (0,1 [0,0.4)U(0.4,1]
(in Example 1) 5 04 (0.4,1] (0.4,1]
0 <04 [0,04] [0,0.4)

3. Test statistic ¢ (= 1(X € RR) in Example 1).
4. « — size of the test defined by a = supyeg, Eo(¢).
5. Conclusion: Reject or do not reject Hy.
Two types of errors:
1. Type I error: reject correct Hy, denoted by Hi|H.
2. Type II error: do not reject wrong Hy, denoted by Hy|H;.
Definition. [3(6) — power function of the test defined by 3(8) = Eg(¢).
For 6 € ©¢, 5(0) is called the power (at ) of the test.
If 0 € ©, then 5(0) = P(Hy|Hy), the probability of type I error;
If ©, = {6,} then 5(6,) = «, the size of the test;
Ifo e @g, then 5(0) =1- Pg(H@‘Hl),
where Py(Hy|H) is the probability of type II error.
Example 1 (continued). Compute 5(p) and a.
B(p) = E(L(X € RR)) = 3, cpp (O)p"(1 —p)°~.
a = P,(X € RR) when p =04.
R
x=0:5
round(dbinom(x,5,0.4),3)
[1] 0.078 0.259 0.346 0.230 0.077 0.010
1. Hi: p<04. a=(P(X € {0})) =0.078.
2. Hy: p>04. o= (P(X € {4,5})) = 0.077 + 0.010 = 0.087.
3. Hi: p#04. a=(P(X €{0,4,5})) =0.078 + 0.077 + 0.010 = 0.165.
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68.2. Question: How to construct a test 7
Ans. Method 1. Likelihood ratio test (LRT):

Let X3, ..., X,, be a random sample from f(x;0).
For testing Hy: 6 € ©, v.s. Hy: 6 € O,

LRT ¢ = 1(\ < ¢), where

_ suppee, LOIX) _ L(0o]x)

 supgeo L(OIX)  L(4]x)

L(0x) = [, f(zi;0), 6 is the MLE of # under ©, 6, is the MLE of § under ©,, ¢ is determined by o =
supyee, P(A < ¢), or otherwise, ¢ = sup{t : a > supycg, P(A < 1)}
Q: How to understand \ 7
Two extremes 7

Is A=1 (or A >> ¢) likely under Hy or Hy ?

Is A=0 (or A << ¢) likely under Hy or H; ?
Example 1. A random sample from N (p, 1) results in X = 1.1, where n = 100. Do you believe u =1 ?
Sol. Use LRT.
Hy: p=1vs. Hi: p# 1.

a = 0.05.

L(plx) = cexp(—5 3272 (Xi — p)?),
O, = {1}: MLE jip = 1 (= po);
O = (—00,00): MLE i = X;
_ L(jw|x)
L(alx)
_cexp(=3 X1t (Xi — p0)?)
cexp(—3 Y, (Xi — X)?)

:exp(_%[(m — X = npo) (X — o))
:exp(—%(y - ,Uz[))(Y - N’O)])

~2(X — o))

=exp(—3

¢ =1\ <c)=1(X — pol > 1)
Since a = E,,(¢) = 0.05,
{N N(M07 1/”)7

X—-1
/v~ N(0,1),
P(|{;75| > 1.96) ~ 0.05,

c1 =1.96/y/n. Or ¢ = exp(—%¢}). (It is important to find ¢, and c).
That is ¢ = 1(|X — 1| > 1.96//n).
Thus do not reject H,.
It is likely that u = 1.
Where are the 5 elements of a test 7 A testing hypothesis for § € © consists of 5 elements:
1. Hy
2. Hy

3. Test statistic ¢ (= 1(A < ¢) for LRT)
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4. « — size of the test defined by a = supycg, Eo(¢).

5. Conclusion: Reject or do not reject Hy and answer to the related question.

Example 3. Suppose that X3, ..., X4 it N(u,0?), 0 = (u,0?) are unknown, X = 3 and S? =4. Hy: pp <0 (= o)

v.s. Hy: g > po. LRT ?
Sol.
Remark. A natural estimator of yp = 7
Ify: 100, H() or H1 ?
If X = —0.001, Hy or H; ?
If X =3, Hy or H; ? need to find out now).
A natural test is ¢4 = 1(f > b) Why ?

5 elements of a test: (1) ? (2) ?
) Choose size a = 0.05.

3
(4) Test statistics: L(A<¢) =7 A= LL((OG‘%) ? ¢= 7 The main work!!
(

5) Conclusion. Don’t forget !

L= (g=)"exp(—3 22;(Xi — p)?/0?)
0o = {(;0%) : pu < po, 0 > 0}
O = {(n,0%) : peRo >0}

MLE under ©: § = (X,62), where 62 = 1 "7 (X, — X)2.

MLE under ©,: 0, = (fi0,63) = (X A pio, 2 37 (X; — X A g)?)
(see Example 3 in MLE section), or the derivation as follows.
If X < pg, then 6 € ©, and thus it is the maximum point of the likelihood L(6|X).
If X > po, then,
since 6 is the unique stationary point in O,
the maximum point of L(#|X) must be on the boundary:

boundaries: pu=-o0co0 pu=py o=0 oc=00
L(91X) : 0 finite 0 0

It is easy to show that on the boundary p = pg, the maximum point of the likelihood is achieved at
90 = ([1’0760) MO’ n Zz 1( :U’O) )

540) = (k)" (= S5,(X = 02/6) = ()" exp(- ).
246 = ( \/;TT(%)"exm—%z (X, ~ )2 /63)
[ pesn) X <
N (\/;ri&g)nexp(—%) ify>,u0
1 if Y < Ho
USRS T
p=1A<¢) c=0? or c~17
zl(gz((j((z — Mo); < A Why ? Is it correct ?
o :1(m < AMIX > po) Is it correct ?
_ >i(Xi — X)? 2/n N2 i R
S E Ry SO ) o L) = 3 (X=X X )

=>,(Xi - Y)Q + Zz(y - NO)Q)




_ Zz(y_ 0)2 2/n
_1(21-()(1‘—7)2 >1/cH™ 1)
_ n(X — po)?

= (;(Xi—Y)Q > c)
_1(|X_Ho| > CS)

Recall that ~tpoq if Xi'sidid. ~ N(p,0?).

X—p

\/S2/n
X —pto

Q= SUP, <0 E(¢) = SUD, < P(l\/s;i/| > c3)

X— o
= SUPpu<puo P(‘ #/2(2#/ sl > c3).

Since t,_1 density function is bell-shaped and symmetric about 0,

n<po i< Vv S2%/n

¢:1(|X_MO|

Q: Two tests:

Which makes more sense ?
Recall Hy: 1 <0 (= po) v.s. Hy: p> po.
Question: Something goes wrong ?

1(1 <¢)
1(A<¢) = > (X=X s
1((21»()(@'_”0)2 = ¢
X — U0| ~
=1 >c3)1(X >

( i c3)1( Ho)
Y_ Ho

( 52/n el CS) ¢+

(4) Test statistic is ¢.
(5) Reject Hy. The data does not support the claim that g < 0. o

Example 2. A random sample X7, ..., X4 from f =exp(—(z —0)), x > 6.
Hy: 0 <1 (=0,) v.s. Hi: > 1. LRT of size « = 0.01 if X4y =1.17

Sol. 1A <¢)=7 A= L((GQIIS:)) = ? ¢= 7 The main task !!

What will you do if =017 9A: 100 ?
Remark: A natural test is 1(f > b) Why ?
Step (1) MLE under © = (—o00,00) :

(X =it (= po)| o

> t0.025.m—1)-
\/m = 00.025, 1)

by = 1(% > 10.05,n—1) => l(3>2.353) (reject Hp),

¢ = 1(|X ol > t0.025,n—1) => 1(13)>3.182) (don’t reject Hy)

L=]]exp(~(Xi - 0)) = exp(— Y _ X; +nb) T in 6......
i=1

=1

MLE =7
L= Hexp —0)1(X; > 0)]
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C3 =



=exp(— Y _ X; +n0)1(Xq) > 0)

' inf ifd<X .

Step (2) MLE under ©, = (—o0,1]:
L= Jlop(-(X; ~ 0)1(X; 2 11 2 0)

= exp(— ZXZ- +n60)1(X() > 0)1(1 > 0)

tin6 it < XAl

0 if0>xp AL > fe=Xonl

=exp(—nX +nd)1(0 < X1y A1) {

Lo _ [ X <1 (nXin)
Step (3) A= ) — { exp(—nY+n<1)1(9AO§X(1)/\1) . A= 1(X(1) < 1) + ul()((l) > 1)

L(0|X) cxp(fnY%»nX(l))l(égX(l)) if X(l) > 1. exp(—nX+nX(y))

if Xy <1 _ 1(X(1y>1)
{exp (1- X)) if Xg >1 — @20 =Xo)Ee=s,
1 )\ < C = l(exp( (1 — X(l))) < C)].(X(l) > 1) Why??
l(X(l) > cl) (X(l) A> 1) R
the natural test 1(6 > b), where 6 = X(;) and b > 1.
Step (4) c=7 or ;=7
Use a = supy<; E(¢).

|| ESER >,
I

P(X1>Cl,-. Xn > 1) )
Jo, et (Fx (@) (1 = F(2))"tde = (P(X1 > c1))

B(9) = P(Xq) 2 1) = {
Note that f(2;0) = e~ @9 = P(X > x), > 6 in this case !!.
E((b) _ (e—(01—9))n _ e—ncl+n97
a = supyo, e "tnd = eneitn — 0. 01. Why 77
c1 = (—In0.01)/n + 1 ~ 2.15,

(or ¢; = 00 1 g if H,: 6 < 6,).
Thus the test is ¢ = 1(X () > 2200 + 1 ~ 2.15).

Step (5) Do not reject Hy. 0 is likely < 1.

Midterm on March 20.
§8.3.
Two types of errors:
1. Type I error: reject correct Hy, denoted by Hy|Hy.
2. Type II error: do not reject wrong Hy, denoted by Hy|H;.
Definition.
B(0) — power function of the test defined by 5(0) = Ey(o).
If 6 € ©, then 5(0) = P(H1|Hy) is the probability of type I error;
If € ©¢, then 1 — 3(0) = Py(Ho|H;) is the probability of type II error.
Question 1: How to find a good test 7
Ideally, P(H|Hy) = 0 and P(Hp|H;) = 0, that is

[0 iffe0, (sizea=0)
6(9)_{1 if 0 € ©F (power = 1).

Question 2: Is it possible ?
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Example 1. Suppose X ~ bin(5,0), Hy: 6 =0.5 v.s. Hy: § = 0.4.
¢ =1(X € RR).

B(6) = E(1(X € RR)) = P(X € RR) = ) _ (i) 0°(1—0)°~=
zERR
B(0.5)=0= RR=0. (Why ?)
B(0) =1 with 6 € {04} = RR={0,1,2,3,4,5} = X, the sample space.
Answer to Q2: It is impossible that (1) holds.
Recall B4(0) = Eg(¢), size of ¢ = supycg, By(0).
Definition. A test is a level « test if its size < a.
A test ¢ is unbiased if 84(61) > B¢(6,) V (01,6,) € OF x O,,.
A test ¢ is uniformly most powerful (UMP) within a class C if

¢ €Cand E(¢) > E(p.) VO €O and V ¢, € C.

Alternatives for optimal tests:
(1) the UMP level « test,
(2) the UMP unbiased test.
Why not the UMP size « test ?
Example 1 (continued). X; ~ bin(5,6). Hy: 6 = 0.5, Hy: 6 = 0.4. Ideally, size of ¢ is « for the optimal test ¢. Let
a = 0.05, is there a size « LRT 7
Sol. The LRT is of the form ¢ = 1(A < a) or 1(d < ¢) Why ?
or ¢ =1(X1 <c). Why?
(1) Intuition based on 6;
(2) Direct derivation from 1\ <o).
A= f(X1500)/f(X1;0) = f(X1;05)/f(X1;6) Why ?
Oy=7=057?={05}70=7
x=dbinom(0:5,5,0.5)
[1] 0.031 0.156 0.312 0.312 0.156 0.031
y=dbinom(0:5,5,0.4)
[1] 0.078 0.259 0.346 0.230 0.077 0.010
X: 0 1 2 3 4 )
f: 04 04 04 05 05 05
Ao 21 1

346
a=FE(¢) = P(X; <c).
c= —0.1 0 1 2 3 4 5 6
= 0 é % larger

~ 0 0.031 0.187 0.500 0.812 0969 1 1
Answer: No size 0.05 LRT.

Definition. A test of form ¢ = 1(X € RR) is called a non-randomized test.
A randomized test for testing H, v.s. Hy is
a function ¢ from the sample space X to [0, 1].
¢ = ¢(X) is the probability of rejecting Hy for observing X.
o(x) = 0, reject Hy w.p.0 if z is observed.
¢(x) = 1, reject Hy w.p.1 if x is observed.
o(x) = 1/2, reject Hy w.p.1/2, if = is observed; e.g.,
flip a coin, reject Hy if the head faces up.
Theorem 1. (Neymann-Pearson Lemma). Consider testing Ho: 6 = 0, v.s. Hy: 0 = 01, based on X ~ f(x;0),
00 ={0,01}.
Let ¢ be a test such that for some k > 0,

000 = 108 2 ko) (Wmy mot 1555 ) ®



and
Ey, (¢(X)) = o (3)

Then

a. (Sufficiency) Fach level o test ¢* satisfying Eq. (2) and (3) is also a UMP level « test.

b. (Necessity) If 3 ¢ satisfying Eq. (2) and (3) with k > 0, then each UMP level « test ¢* satisfying Eq. (3) and
also satisfies Eq. (2) except on a set A satisfying Ppy(X € A) =0V 0 (P(¢"(X) =¢(X)) =1V 0).

LRT ¢ = 1( f(’;?)) <c).

A test of form ¢ = 1(X € RR) is called a non-randomized test. ¢ =1 => Hy, ¢ =0 => H,.

A randomized test ¢ = ¢(X) is the probability of rejecting Hy for observing X.
¢(x) =0, reject Hy w.p.0 if = is observed.
o(x) =1, reject Hy w.p.1 if z is observed.

o(x) =1/2, reject Hy w.p.1/2, if = is observed; e.g.,
flip a coin, reject Hy if the head faces up.

Neymann-Pearson Lemma. Hy: § =0, v.s. Hi: 0 = 04,

o= {700 ZHIb) (Why mot 45542 ®

and
Ep,(¢(X)) = a. (3)

“iff” ¢ is a UMP level « test.
Example 1 (continued). X; ~ bin(5,6). Hy: 6 = 0.5, Hy: 6 = 0.4. Ideally, size of ¢ is « for the optimal test ¢.
Let a = 0.05, is there a size o LRT ?
a=E(¢) = P(Xy <c).
c= =01 0 1 2 3 4 5 6
= 0 iz % larger

~~ 0 0.031 0.187 0.500 0.812 0969 1 1

Answer: No size 0.05 LRT.

1 ifX <1
Alternative ? Oo = { O;;g fX=1
0 it X > 1

if # = 0.5 (under ©,), E(¢,) = P(X =0) + a5/3*22 P(X=1)=oa.

Notice that ¢ = 1(A < a) is a LRT, where a = ff((l 9)) We often write LRT ¢ =1(A <¢), c="7
Is ¢, a LRT ?
bo _1()\<a)—&-r/‘°’2 (A=a).

1 if X <1

Example 1 (continued). Show that ¢ = { O;;T% if X =1 is a UMP level « test for testing Hy: p = 0.5 against
0 if X >1

Hy: p<0.5.

Sol. Let 8, =0.5, 0, =p,q=1—p and

r=f(x;01)/f(x;00) = ()73 = (2p)"(29)°™" = (p/a)" (20)°

r= (B)r(Zq)5 for all = ?
q

V p < 1/2, we have p/q < 1, (p/q)*(2¢)® | in z, then
r >k iff z < ¢ for some c;
r<kiffz>c.

That is, ¢ satisfies Eq. (2) and (3). Thus ¢ is the UMP level « test for testing
Hy: p=05vs. Hi: p=p1 (<1/2).
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Since this is valid for all p;, provided p; < 0.5, and E(¢) = a at § = 0.5,
¢ is the UMP level « test for testing Hyp: p=0.5 v.s. Hy: p < 1/2.
Proof of NPL: Note that [y, g(x)dF(x) = [y 4 9(x)f(x)dp(x)

ZXEA g(x) f(x) in discrete case
= Jxea9(x)f(x)dx in continuous case
Y xeanp 9(X)f(x) + erAnDc 9(x)f(x)dx in mixed case

if the d.f. f exists, where D is the set of discrete points of X.
WLOG, we can assume that X is continuous.
Sufficiency. Suppose that ¢ satisfies (2) and (3),
and ¢* is a level a test. Let

Ay ={x: f(x;61) > kf(x;65)}; On Ay, ¢(x) =1 > ¢ (x);
A_={x: f(x;601) <Ekf(x;6,)}; On A_, ¢(x) =0 < ¢*(x);
Ao ={x: f(x;01) = kf(x:05)}; On Ao, f(x;01) — kf(x;60) =0

/ (6(x) — 6 () (F(x: 61) — kf(x: 0,))dx
—( /A + / + [ (6060 = " (0) 1 xi01) — ki x:0,)x

o

_(/*+ +/»i +/A )(d(x) — ¢*(x))(F(x;01) — kf(x;0,))dx Why ??

o

(A% =A{x: f(x01) > kf(x;00), p(x) =1>¢"(x)}
and A* ={x: f(x;601) <kf(x;0,), ¢(x)=0<¢*(x)})

Y

/ i / )t / ho
>0

)

Inequality (5) yields (1) — B+ (61) — k(Bs(0,) — By (6,)) = 0. Why ?

= Bp(01) — By (61) > k(Bs(0,) — By (05)) > 0,
— N —

= 7 <a 7

as ¢* is an arbitrary level « test, ¢ satisfies Eq. (3).
= By(01) = By (01)-

(5)

Necessary. If 3 ¢ satisfying (2) and (3) with £ > 0, and ¢* is a UMP level « test, then Expression (4) and

inequality (6) yield
0= By(61) — By=(61) > k(By(0o) — By (60)) = 0.
—— ——
as both are UMP =a <a

= 0= (4(61) — By (61) = k(By(6o) — By-(65)) = 0.
= By(0,) — By~ (0,) =0, as k > 0.
= B(b* (90) = B(ﬁ(ea) = Q.
Thus ¢* satisfies Eq. (3).
Moreover, Inequality (5) yields 0 > 0, with “>” iff

either (1) fAj_uA* dx > 0and k> 0 or (2) fA:dx>Oandk:0.

Since k£ > 0, in order to avoid the contradiction 0 > 0,

it must be the case that [,. ,. dx=0.
TuAr

Thus ¢* satisfies (2), except on A = A% UA* if k> 0. o

Remark. If one deletes the condition “with & > 0” in the necessary condition of the NPL, then a UMP level

2
test ¢* must satisfy Eq. (2) w.p.1, but may not satisfies Eq. (3). Then its size { § @ 0
a 7
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Remark. Given «, the LRT ¢ = 1(L(X;é") < ¢) (a non-randomized test) may not attain the size o, while NP

1oif f(X5601)/f(X560) >k
Lemma yields a size a test (Eq. (3)) ¢(X) =< 7 if f(X;01)/f(X;0,) = k (a randomized test Eq. (2)).
0 if f(X;01)/f(X;60,) <k
In Example 1, we extend the UMP level « test for simple hypotheses to composite hypotheses, that is, © contains
more than 2 elements. But it is not convenient to check each time. We need a general tool.
Definition. A family of d.f. {g(t;0) : 6 € ©} for a univariate random variable T" with © C R' has a monotone

likelihood ratio (MLR) if either of the following statements is true (defining fﬁfoo):

1
0
(1) V 63 > 64, ggifgf; istinton {t: g(t;01) >0 or g(t;62) > 0}.

(2) VO3> 64, %33 is | inton {t: g(t;01) >0 or g(t;62) > 0}.
Theorem 2. (Karlin-Rubin). Consider testing Hy: 0 < 0, v.s. Hy: 6 > 0,,.
Suppose that (1) T is a sufficient statistic for 0 and
(2) the family of d.f. of T has T MLR.
Then for each ¢, ¢ = 1(T > ¢) is a UMP level o test with « = Py (T > ¢).
Corollary. Consider testing Hy: 0 > 0, v.s. Hi: 0 <6,.
Suppose that (1) T is a sufficient statistic for 0 and
(2) the family of d.f. of T has T MLR.
Then for each ¢, ¢ = 1(T < ¢) is a UMP level o test with « = Py (T < ¢).
Proof of Corollary. Let W = —T and v = —0. Then it becomes
Hi: v <~y vs. Hf: v> .
The family of the df of W has T MLR in 7.
Thus ¥V w, ¢ = 1(W > w) is a UMP level « test with oo = Py, (W > w),
i.e, Ve=—w, p =1(T < ¢) is a UMP level a test with o = Py_(T < ¢).
Example 2. Let X1, ..., X,, be a random sample from N(u,a2), where o is known. Hy: p < po v.s. Hi: p > pyo.
A UMP level 0.05 test ?
Sol. X is a sufficient statistic for p (= 6) and
T =X ~ N(u,0?/n) with d.f. g.

9(t:02) —p2)? —p1)? — 1 .
9050 = exp(—3 Ul + L) = exp(§(pa — pa) B30 4 i .

Thus the family of d.f. of 7" has T MLR.
¢ =1(T > ¢) is a UMP level a test,
where a =Py (T >¢)=1— @(;7\’;%) =1—®(1.645),
that is, ¢ = uo + 1.6450 /+/n.
Remark. Let X ~ N(p,0.01), Hy: p=1, Hy: p=—1.
The UMP level 0.05 test for testing
Hy = H, against Hp, is 1(X <1—0.1-1.65) (= 1(X < 0.835)).

{ Hy = Hy, against H, is 1(X > —140.1-1.65) (= 1(X > —0.835)).
Remark. In general, given a parameter 6, let 6 be its MLE, then for testing Hy: 0 = 6, v.s. Hy: 60 > 0,,
¢ =1(0 > ¢) is a reasonable test for ¢ given.

Question: Are they UMP level a test 7
Answer: Not necessary !
Results: Let u be the mean of a distribution.
For testing Ho: p = o, v.85. Hi: > o,
¢ =1(X > ¢) is UMP level « test,
if X ~ N(u,1);
if X ~ Poisson(u);
if nX ~ bin(n, u);
if X ~ f(z) = %e“”/“, x> 0;
etc, as they belong to the families that have MLR.
For testing Ho: = po, v.s. Hi: p < pio,
¢ =1(X < ¢) is UMP level « test if ... ?
Remark. Let X1,..., X,, be i.i.d from N(u,0?). for test Ho: pt = pio, v.5. Hi: jt > fio.
(1) Is ¢ = 1(X > c) a UMP level « test if o is known ?

36



(2) Is ¢ = 1(X > c) a UMP level « test if o is unknown ?
(3) Is ¢* = 1(T > ¢) a UMP level « test if o is unknown and T =

Method: (a) check the size of ¢, (b) try KR Th or NP Lemma.
Ans to (1): ¢ = 1(X > ¢) is UMP level « test if o is known, and if ¢ = po + z40/v/n.

Reason: f+(t; 1) has MLR and X/\;‘B N(0,1).

Ans to (2): ¢ = 1(X > ¢) is not UMP level « test if o is unknown.
Reason: (a) Given finite ¢, size of ¢ ?
size=FE, (¢)?

or = supgeg, E(9) 7 O, =7

size = supgee, P(% > g/\‘}“)— ? Why ¢ is not UMP level a test ?

(3) Question (continued) Let T = f and ¢ =tp_1q.
Is ¢* = 1(T > ¢) is a UMP level « test ?
Answer: No.
Reason : (a) Given finite ¢ = t,,_1,q, size of ¢* ?
(a) size of ¢*= E,, (¢*) = a ? or size of ¢p*=sups>oF,, - (¢*) = ?
a = supycg, E(¢*), (Where 0 = (u1,0), ©, = {(tto,0) : 0 > 0}) So the reason is not due to the size.
(b) Why is it not UMP ? Try KR theorem: The sufficient statistic is (X, S?) if § = (i, 0?) unknown.
T = fé;%’ is a statistic, but it is not sufficient.
T'%’tﬂfl if;uf#/io
Y = % ~ t,_1, but it is not a statistic if p # .
So Karlin-Rubin Theorem does not work. Try NPL.
By NP Lemma, if Hy: 0 =60y v.s. Hi: 0 = 04,
where 6y = (p0,00) and 61 = (u1,01), then a UMP test satisfies
Ep,(¢) = a and ¢ = 1(fx (x;61) > kfx (x;:60)) + 1(fx (x;61) = kfx (x:60)¢ 777
=1(fx .52y, 1;:61) > kfz 52 (y, t;60)) 777

4 Ix 2 (uvi01)
= 1(7&’52(%”;90) > k)

ST

If ¢ = 1(T > c) is the UMP, it would lead to a contradiction, by selecting different 6.
Remark. X 1 5% and fx o = fxfs2-
X~?7(n—-1)5%/c?~7
S? = n”—_:x%_l with
t n-1_4

1 —_
e e I e
1 n
Vom0

Jxs2 (Yt 00)
D)
:fy(y;ﬂl,g) if o) = 00 = 0,
fy(y;uoﬁ)
_exp(—=5()?)

“exp(—5 ()

fs2(t;0)

ff(y; Hy 0) X

:exp(;?@y = (p1 — po))(p1 — po))
. (y — B35 (1 — po)
= exp( v )

If 0 =1, then ¢ = 1(r > k) = 1(X > ¢) = 1(X > pg + 24 * 1//n) is a UMP level « test.
Ifo=2then g =1(r > k) =1(X >¢) = 1(X > po + 24 *2/y/n) is a UMP level « test.
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By letting 0 = 1 and o = 2, the NP lemma leads to two different UMP level « tests, with RR; and RRs satisfying
P((RRy \ RR3) U (RR2 \ RR1)) > 0. Thus there exists no UMP level « test for Ho: o = po, v.s. Hi: p> po if o is
unknown. ¢* is not UMP level « test.

Example 3. If X ~ N(u,1), then A the UMP level « test for testing

Hy: p=0,vs. Hi: p#0.

What is the difference between these two set-ups 7
Proof. Suppose that such UMP level « test exists and is ¢.
Then for testing Hj: p=0v.s. Hi: p=1.
¢ =1(X > z,) w.p.1 by NPL or Example 2.
For testing Hi: p=0v.s. Hi: p=—-1
¢ =1(X < —z,) w.p.1 by NPL or Example 2.
Since {X < —zo} N{X > 2,} =10,
0=P(1(X > zy) =1(X < —24)) =1 by NPL.
The contradiction indicates that the UMP level o does not exist. o
Example 3 (continued). If X ~ N(u,1), Hp: =0, v.s. Hy: g # 0. Show that the LRT is an unbiased test.
Q: What should the LRT 1(\ < ¢) look like ?
1(|| > a) (see Example 1 in §8.2).
Proof. : the LRT test ¢ = 1(|X| > z4/2), where ®(z,/2) = 1 — a/2.
Reason: 1 = X, fi, =0,

A = exp(—5(X — 0)%)/ exp(—5(X — X)) = exp(~5(X —0)%) < ¢

<=> X[ > zq)2

Recall that ¢ is unbiased if 84(61) > B4(0,) V 01 € ©F and 0, € ©,. a = supgeg, Lo(P).
F: ¢ is an unbiased test.
Reason: It suffices to show that

o .
= >0 ifu>0
{ auﬁ¢(l~t) 1 p Why?? (1)

o Be(p) <0 if p <0.

Be(1) =Pu(1X] > 2za/2)
=1 — PM(_ZQ/Q <X< ZQ/Q)

:1_Pu(_za/2_ﬂSX_MSZQ/Q_M)

Za/2TH 1 1 2
=1 —/ —e 2% dz
—Za/2TH 27T

1

5 06l0) == lexp(=5 caja = 1) = exp(—5(~0/2 = )]

Assume g > 0. Then

Bq. (1) <=> —=[exp(—35(zas2—1)?) —exp(—3(=2as2—1)?)] > 0; <=> exp(—5(2a/2— 1)) > exp(—3(~2as2—1)%);

<=> —5(2a2 = 1)° > =5 (=zas2 — 1)?; <=> (2072 = 1) < (=Zaj2 — 1)*;
<=> (za/2 - /’L)Q - (_ZQ/Q - M)Q <0
<=> —24(224/2) < 0 (which always holds).
Thus if 4 > 0, then %@b(ﬂ) > 0.
The proof of Eq.(1) for u < 0 is similar and is skipped.
As a consequence, ¢ is unbiased. o
Remark. The LRT test in Example 3 is actually a UMP unbiased test. The proof is given in Lehmann’s textbook
“Testing Statistical Hypotheses”.
Theorem 2. (Karlin-Rubin). Consider testing Ho: 0 < 0, v.s. Hy: 6 > 0,,.
Suppose that (1) T is a sufficient statistic for 0 and
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(2) the family of d.f. of T has T MLR.

Then for each ¢, ¢ = 1(T > ¢) is a UMP level o test with « = Py, (T > ¢).

Proof of KR theorem. Since T is sufficient for 0, fx(x;0) = g(T'(x);0)h(x). Let Hg: 0 = 01 v.s. Hf: 0 = 0,
where 6; < 6, < 65. By the NPL, the UMP level o* test satisfies

;0
¢ = ko Withat =Ep (9).
0 if T X0 <k
X (X:61)

Claim: fr(t;0) = g(t;0)c(t), where c is a function of ¢.
Reason: 3 cases: (1) Discrete. (2) Continuous. (3) mixed distribution.

o= [ a0

(:/.../ FX 5O lday, - dai, + S fx(x;6)
T(X)=t XeD: T(X)=t
n—1

t1 =T(x),t2 = iy, ..., tn = 4, J is Jacobian)
= [ aT e Ohx)dux)
X: T(X)=t

=) [ o)

=g(t;0)c(t)

. fx(x?92) . t;0
O Y SRS P S
0 if%dc 0 if Frgay <k N0 dfE<c
as fr(t:02) tint. =>

fr(t;61)
¢ =1(T > c) is a level a* UMP test for testing H vs Hy, where o* = Ey, (¢).

In fact, it is true for each Hg*: 0 =60, v.s. H{™, 0 > 0,.

F: ﬂ¢(9) > ,843(01) V>0
Reason: Verify that (1) ¢* = a* is a level o* test; (2) Ep(¢*) = a* V 6;

(3) Bp(8) > Byp-(0) = a* = By(61) V 6 > 6, Why 7?7
(NPL). Thus 34(0) 1 in 6. It follows that B4(61) < B4(6,) as 61 < 6, < 62, and the size of ¢ is o = supy<q_ By(0) =
By (6o). ®

Chapter 9. Interval Estimation

There are 3 statistical inferences:

(1) point estimation # = ? MLE, MME, Bayes estimator.

(2) test 0 = 6, ? LRT, NPL.

(3) interval estimation: a likely interval [L, U] for 6 ?

Undergradaute statistics: 95% Confidence interval for p is
X +1.960/+/n or
X ttn-1,0025/v/n
Definition. Let X ~ f(x;0), L(X) and U(X) be two statistics such that L(X) < U(X). Then the interval
[L(X),U(X)] or [L,U] is called an interval estimator (IE) of 6;
Py(0 € [L,U]) is called the coverage probability of [L, U];

1- % infy Py(0 € [L,U]) is called the confidence coefficient of [L, U];
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[L,U] is also called a 1 — a confidence interval (CI) of 6.
Example 1. If Xi,...,X,, are i.i.d.~ N(u,0?) with o known, a CI of u is [X — 1.960//n, X + 1.960//n] or
X +£1.960/y/n. Its coverage probability ? Its confidence coefficient ?
Sol. Some particular quantiles values z, of N(0,1).
> a=c(0.05,0.025,0.01,0.005)
> round(qnorm(1-a),2)
[1] 1.64 1.96 2.33 2.58
> round(qnorm(1-a),3)
[1] 1.645 1.960 2.326 2.576
Coverage probability = P,(u € [X — 1.960/y/n, X + 1.960//n ]) = P,(X — 1.960/v/n < pu < X 4+ 1.960/y/n) =
Pu(=1.960/yn < p— X <1.960/\/n) = P,(=1.960/\/n < X — pp < 1.960//n,)

X—pu
= Pu(—1.96 < 27 < 1.96) ~ 0.95

Confidence coefficient = inf,, P,(u € [X — 1.960/\/n, X + 1.960/y/n |) ~ inf,, 0.95 = 0.95.
Example 2. If X, ..., X,, are i.i.d.~ N(u,0?), where (u,0) is unknown. A 95% CI of p is
(X —tn-1,0.0255/v/1, X + t_1,0.0255/v/n] or X t,_1,0.0255/y/n.

Coverage probability and Confidence coefficient ?

Solution: In class exercise. Hint:

X £ ty-1,0.025 5 now. X £1.96-% in Example 1.

A simulation example in R:

> x=rnorm(20)

> round(x,2)

[1] -1.39 -1.55 1.00 0.29 -0.17 -1.50 -1.65 0.33 -0.07 2.24 -0.62 0.32

[13] -0.54 -0.11 -0.17 -0.23 -0.21 1.47 0.77 -0.26

> t.test(x)

t = -0.4541, df = 19, p-value = 0.6549

95 percent confidence interval:

-0.5708114 0.3672875

mean of x -0.1017619
Example 3. Let X, ..., X, beiid. from U(0,0). Then 2 IEs of 6 are (a) [X (), 2X ()], and (b) [X (), X(n) +1/n].
What are their coverage probabilities and confidence coefficients ?
Sol. Recall that the cdf of X(,, is Fx, (t) = P(X(n) <t) = (Fx())" =7
(a) Py(0 € [X(n),2X(n)]) (= coverage prob.)

= Py(Xn) <0 <2X(,,)

— Py(0)2 < Xy < 0)

= Py(X(n) <0) = Po(X(n) <0/2) (F(b) — F(a—))

= (0/0)" = ()" =1-(1/2)"
Coverage probability = Py (0 € [X(,,),2X(,,)]) = 1 — (1/2)" (independent of 6).
Confidence coefficient = infg{1 — (1/2)"} =1 — (1/2)".
(b) Py(0 € [X(n), X(ny +1/n]) (= coverage prob.)

=Py(X(n) <0< Xn) +1/n)

_ { (O/6)" — (S35 36> 1/n qo

0/0)r -0 otherwise
_J1-1=L)" ife>1/n
1 otherwise

=Coverage probability depending on 6)
Conlfidence coefficient = infgs1/,{1 — (1= )"} =0
Question: How to construct a CI ?

Answer: Two methods:
(1) Acceptance interval of LRT,
(2) Pivotal Method.

1. Acceptance interval of LRT.

40



Let RR(f,) be the rejection region for testing
Hy: 6 =0, vs. Hi: 0#0,.
Then a CI of 6 is © \ RR(0). (S1)

Example 2. Suppose that Xi,..., X199 are i.i.d.~ N(u,0?) with o unknown. The sample results in X = 2 and
S? = 1. Construct a 95% CI for p.
Sol. Set 6 = pu. Then Hy: 0 =0, vs. Hy: 0 # 0,.

The LRT is ¢ = 1(|§/—j73| > ty1,a/2)-

The RR is {(X1, ..., Xn) © [5702] 2 tn-1,0/2}

The acceptance region is {(Xy, ..., X,) : |)S(/_j§| <tp—1,a/2}

Replacing g by p results in the (1 — a) CI of p:

{lu’ S/f‘ S 1a/2} ( R \{ |S/f| > tp— 10/2}) (See( ))Any problem 7

Simplify it as in Ex 2: X —t,_1,,/25/V/n < p < X +t,_1,4/25/V/n.
2= 0.196,2 + 0.196] or 2 = 0.196.
2. Pivotal method. Let X ~ f(x;0) and T = h(X,0) be a pivotal rv,
i.e, its density fr or cdf Fr does not depend on 6.
Derive a CI from P(a < h(X,0) <b)=1—a.
Example 2 (continued) Since X ~ N(u,0?), Derive the CI by the pivotal method.

Sol. Notice T' = 3

(1, 0).
P((l < T < b) =l-a= P(_tnfl,a/Q < T < tnfl,a/2)'

/f = h(Xy,...,Xn,p,0) is a pivotal r.v., with ¢,_; distribution and f7 does not depend on

7tn—1,o¢/2 < ;j?/% > n—1,a/2-

X - tn—l,a/2S/\/ﬁ <p < X + tn—l,a/2S/\/ﬁ'
Example 3. Let X, ..., Xg beiid. ~U(0,0) and X9 = 3. Construct a 95% CI for 6.
Sol. Recall that X,y ~ Fix,, (z) = (2/0)"1(z € (0,0))+1(z > 0). Let T = X(,,)/0. Then Fr(t) =t"1(t € (0,1))+
1(t > 1), T is pivotal.

Pla <T <b)=0.95 yields a < (") <bor

X
() g 2,
b T T a

Q: (a,b) = 7?7
Fr(b) — Fr(a) = b" —a™ = 0.975 — 0.025.
" = 0.025 yields a = (0.025)/", and
b™ = 0.975 yields b = (0.975)"/™.
The 95% CI for 6:

X(n)
(0.975)1/n <6< (0.025)1/7

or [(0.975)1/95 (0.025)1/9] (_ [3'0174'52])'
Question: Why choose F(b) — F(a) = b" —a™ = 0.975 — 0.025 ?
Answer: Symmetry,
but it is even better to choose F(b) — F(a) = b" — a™ = 1 — 0.05.
It results [3,3/0.05'/9] or [3,4.18], which is the shortest.
This is due to the following results [a b] is the shortest 1 — a CI if (1) the density fr(t) (= nt"11(t € [0,1]) is
unimodal, (2) fr(a) = fr(b) and ( f frt)dt =1—a.
Here fr can be defined arbitrary at t =0 or 1, since it is on the boundary.
Remark.
1. In the statement Py(6 € [L,U]), € is not a random variable,
but L and U are.
Py e [L,U]))=Py(L<OGand U > 6).

Xn)
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2. Under the same model such as in Example 1 with ¢ unknown,

the CI X + tn—1,a/25/+/n changes each time and

even its length U — L (= 2t,,_1,4/25/+/n) may change each time Why ?
3. For each parameter 6,

(—00,00) is always a 100% CI for 6, but it is useless.

[0, 6] is often a 0% CI for 6,

an interval that it is unlikely that 0 is covered inside.
4. For the same confidence level and the same sample,

we prefer a CI that is shorter,

as it provides more accurate information about 6.

5. If g(f) is a monotone function of 6 e.g., F(t;6), then the confidence interval of g(0) can be derived directly or

by the CI [L,U] of 0, say [g(L),g(U)] or [g(U),g(L)] why ? whenever it is appropriate.

Example 4: Suppose that S(z) =1 — Fx(z) = e /% 2 > 0. X = 2 is observed. Derive a 95% CI for § and S(1).
Sol. Pivotal method: Find T = h(X, 6) such that Fr does not depend on 6. Then derive a CI from P(a < T < b).

Let T = X/6, why ? then Fr(t) = P(X/0 <t)= P(X < 6t),
Frt)=1—etift>0.

which is a pivotal.
Pla<T<b)=095=e"9%—e " yields a < % <b, or

| <

<0

a

Take e™* — e~ =1 —0.05 = 0.95, it yields (a,b) = —(In1,1n0.05).
CI for 0: 6 > X/In20 or [2/In20, c0).
Take 0.975 — 0.025 = 0.95, it yields (a,b) = —(In0.975, In0.025).
CI for 6: [0.27X,39.5X] or [0.54, 79].
Take 0.95 — 0 = 0.95, it yields (a,b) = (—In0.95, 00)
CI for 6: [0,19.5X] or [0,39].
LRT Method. Acceptance interval of LRT.
Let RR(6,) be the rejection region for testing
Hy: =06, vs. Hi: 0#0,.
Then a CI of 6 is © \ RR(6).

Consider testing

Hy: 6 =0, v.s. Hi: 6 #£60,. 6 =(0,00).
Under Hy, the MLE 6, = 6,;
Under ©, the MLE 6 = X.

if X =40,
if X 0,

= 1—
e

S
NE

A\ = fé(XEGO) . 11 —X/0, TfX:oO _
T if X 0,

N e r=ria
InA =InX — Inf, + 1 — X/6,, (In\), =1 — %. (In\)7 = =1,

In\ is concave down with maximum at X = 6,.
LRT ¢ =1(A<¢)=1(MX) <¢)=1(X < ky or X > k5), where

(8) Ak1) = A(kz) and (b) Eg, (¢) = o
RR: X §é [kl,kg}.
Acceptance region: k; < X < kg, where

k k

(a) g—iel_ﬁ = Z—iel_ﬁ and (b) e F1/00 — g=k2/0% — 1 _ o = 0.95 Why ?

<=> tiel 7 =tyel 7" and e7h — e7!2 = 0.95 (where t; = k;/0,).

<=> G(t) = t1e!™ —thel T2 = 0 where ty = —~In[e™ " — 0.95]
<=> g(t1) =tie” " —tye” "2 = 0 where to = —In[e”"* — 0.95].
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Then the acceptance region k1 < X < ks yields t160, < X < t20,.
Replace 6, by 0: t10 < X < t26.
It yields a 95% CI of 0: g <h< % Are we done ?
There is no closed form solution for Eq. (1) or (2). Solve the equation by R:
x=(1:49)/1000 # probabilities in (0,0.05)
a=qexp(x) # t1, quantile of Exponential at x
b=-log(exp(-a)-0.95) # ta,
g=a*exp(-a)-b*exp(-b)
plot(a,g,type="1")
abline(h=0)

0.0

-0.05

-0.10

-0.15

0.0 0.01 0.02 0.03 0.04

max(a[g<=0])

max(b[g<=0])

1] 0.0418642

1] 4.710531 Tt yields a 95% CI of 0: (2/4.75,2/0.042), or (0.42,47.62).

i, i max(b[gi=0])
4 95% CD’s in this example: [0.67,00), [0.54,79], [0, 39] or [0.42,47.62].
Which is better ?

Notice that the density is single-moded.

CI for S(1) = e~ 1/9 ?

CI for S(1) = e~ 19 [e=1/0 e 1/39] (= [0,e~1/39]).

Announcement: The class on April 7, Friday is a seminar about Intership application. 8-9:30am
Example 4. Suppose that X ~ bin(3,p). Compute the confidence coefficient of I = [% Vv 0,1].
Sol. Formula: The confidence coefficient = inf, P,(p € I). [ =7, P,(pe )= "7 inf, P,(pe I)="7
2/3,1] if X =3
I=4[1/3,1] it X =2
0,1 X<l
The coverage probability P,(p € I) is a function of p, try p =0, 1, 0.5.
P0el)=P(X <1) =35, ()01 -03" =1 P(1el)=P(X €{0,1,2,3})= 2 Pys(05 € I) =
Pos(X #3)=1—(0.5)3. -

[2/3,1] if X =3 [2,1] if X =3
r={3] itx=2 ={ 21Uz if X =2
0,1 ifXxX<1 [%,1]u[§,§)u[o,%) if X <1.



(1—p)®+3p(1 —p)? ifpe0,1/3) Why ??
Ppel)=41-p if p € [1/3,2/3)
1 if p € [2/3,1]

The confidence coefficient is
inf, P,(p € I).

—3(1-p)?2+3(1—p)?—6p(l—p)=—6p(l—p) <0 ifpe(0,1/3)
7dpp(5 €D _ —3p? ! g e ey ifg €(1/3,2/3)
P 0 if pe(2/3,1]

The confidence coefficient is

inf, Py(p € I) = min{1,1 — (2/3)3,(2/3) + (2/3)*} ~ min{1,0.70,0.74} = 0.70
Note. The CI in Example 4 is also called confidence bound, as it is one-sided.
Example 5. Suppose that X ~ bin(5,p) and observed X = 3. Construct a 95% CI for p.
Sol. Two methods: (1) Inverting RR of LRT, (2) Pivotal (does not work here).

For simplicity, one may consider a (1 — «) CI of form [L,1]. It can be obtained by inverting the acceptance
region of the LRT for testing

Hy: p=p, v.s. Hi: p>p, Why not p # p, 7 Then a non-randomized level « test is ¢ = 1(X > k), where k

) RR
satisfies

P,(X>k)>aand P, (X >k)<a Why ?
P (X<k)y<l—-cand P, ( X<k )>1—aWhy?
~———

what region?

k—1 k
5\ . ) 5\ . .
<=> § L(1—po)’t<1— d§ f1=po)° i >1—a.
‘ (i)pO( Do) o an (i)pO( Do) > «

=0

Acceptance region: {z: = < k(p,)}
Replacing p, by p yields

Clz)={p:x<k(p)}={p:p> k" ()}
(for proof, see Page 426 in the textbook), where

r—1

- 5Y —i
EN () = sup{p: Y <i>p (1-p)°">1-a}.
i=0
In particular, k=1(3) = sup{p : Ef’:—ol (f)pl(l —p)5~¢ >0.95}.
Solve by R:
p=(0:1000) /1000
x=3

y=pbinom(x-1,5,p)

max(ply>=0.95]) # Why ?

# Reason: The graph of y | from 1 to 0. How can tell ?

[1] 0.189
Thus if X = 3 then a 95% CI for p is (0.189, 1] (not exact solution !!)
For a given X, a 95% CI for p is (approximately)

[0,1] if X =0
(0.01,1] ifX =1

;) (0076,1] if X =2
~)(0.189,1] if X =3
(0.342,1] if X =4
(0.549,1] if X =5
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The coverage probability varies in p, for instance, P,(p € I) = (1 —p)> € [0.95,1] for p € [0,0.01], but the confidence
coefficient of the IE is 0.95

A second approach: Observe a value of X, say « (= 3). If the p-value P, (X > z) > «, then we do not reject H,.
Thus if P,(X > x) > «, then p belongs to the (1 —«a) CIL

Then the left end L = inf{p: P,(X > z) > a}, where P,(X >2)=1-P(X <z -1).

Solve by R

=3

p=(0:1000)/1000

y=1-pbinom(x-1,5,p)

min(p[y>0.05])

Chapter 10. Asymptotic Evaluations
10.1. Point estimation.

Suppose X,, = (X1, ..., Xy) ~ fx(x;0), 0 € ©.

6 is an estimator of 6. R
Given n, desirable (or “optimal”) properties of 6 are

1. E(§) =6,V 6 € © (unbiasedness),

2. UMVUE,

3. Bayes estimator E(E(L(H,é(X))|X)) = infs E(E(L(0,6(X))|X)),
These are finite sample properties. We shall consider large sample properties.
Recall in general, for random variables Y,, and X on the sample space €.

V23X <=>{we: YV,(w) > X(w)}=9Q,

Y, "3X <=> P(Y, - X)=1.

Vo BX <=>P(|Y, - X| <€)= 1Ve>0

YV, BX <=> Fy, (x) — Fx(x) at each continuity point x of Fx.
Definition. Let = 0, = W,,(X1,..., X,), n=1,2, 3, ...

Xy = (X100, Xp) ~ an(xn;O), 0 e 0.

If énfw VY 0 € O, then we say 0 is a consistent estimator of @ or 0 is consistent.
If 0,30V 0 € ©, then we say fis a strongly consistent estimator of 8 or 6 is strongly consistent.
0,50 <=>PweQ: [fh(w)—0]>e) >0Ve>0<=>P(|0,—0]>¢) >0V e>0<=>P(|f, — 0] <e) =1V
e>0
0,30 <=> Pwe Q: by(w) = 0) =1 <=> 0," %0
Remark. Consistency is the most important property of an estimator.
Reason:
Most of the time 0, # 0. P(d = ) = ??
One can only hope that it is getting close to 6 as n — co.
Consistency says that this is so if the sample size is large enough.
Example 1. Let Xy, ..., X, be i.i.d. from N(u,02). Is i = X consistent ? Does i converges in distribution to u ?
Sol. i = X“¥E(X) = u by the strong law of large numbers (SLLN). /i is strongly consistent.
Y, = X => ¥,X => v,5X => v, Bx.
Thus X is consistent and converges in distribution to u. F,(t) = ?
Another direct proof of consistency:

_ X = €
P(‘X_lj“<€)_P( U/\/ﬁ <O'/\/ﬁ)
= Grm) TR

—1-0=1Ve>0.

Does it prove strong consistency here 7 Question:
P(X —p| < e)™317?
P(X —pl <e)B17
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P(X —pul <e)B172
X > p?
Review of probability theory:
Suppose X;, X, Y, are random variables and a, b, ¢ are constant.

Y, and Y are p—dimensional random vectors and a, b, ¢ are constant in RP.

1. SLLN: If X1, ..., X,, are i.i.d. from X, E(]X|) < oo, then X“3 F(X).
2. VX => v,5X => v, BX.
3. IfY,"%q and g is a continuous function then g(V;,)%3g(a).
4. IfY,5a and g is a continuous function then g(Yn)gg(a).
5. Continuous mapping theorem. If g(-) is a continuous function, then
Y, Y (?) => g(Y.) = g(Y).
Y, 5Y => g(Y.,)5g(Y).
D D
Y.—a => g(Yn)=g(a).
6. If a, is constant and a,, — a, then a,~3a, anfm and an—D>a. Why ?7?
7. If Var(6,) — 0 and Bias(f,) >0V 0 € O,

then 6, is a consistent estimator of 6.
Proof. By Chebychev’s inequality, P(|X| > €) < E(X?)/é

P16 — 8] > €) <E((6, —0)*)/€

_ Var(én) + (Bais(én))2
2

—0, Ve>D0.

Tl{us éngﬁ. o R
8. If 0,, is consistent and a,, and b,, are constant satisfying a,, — 1 and b, — 0, then a,#6,, + b, are consistent.
Proof. Make use of Result 6.Let Y,, = (én,an,bn) and g(y,a,b) = ay + b, then Yng(& 1,0), g(Y,) = anbn +
by 59(0,1,0)=1-0+0=0. o
Theorem 1 (consistency of the MLE). Assume that the following conditions:

(A1) X4, ..., X,, are i.i.d. with f(-;0,), 0, € O;

(A2) f(-0) # f(-;0%) YV 0 £ 0% and 0,0* € O (identifiability);

(A3) {x: f(z;0) > 0} does not depend on 0 and %f(z;@) exists;

(A4) © contains an open set O and 0, € O;

(A5) 7 =7(0) is a continuous function of 6.
Then the MLE 7 of 7(0) is consistent i.e., %57(90),
Theorem 1 explains why we like the MLE. Theorem 1 only gives a sufficient condition.

Q: (1) Examples that (A3) fails ? (2) Let X = rnorm(100). 6= ? What is the difference between 6, and 6 ? (3)
Let X;; ~ N(v; + a;j,0?) with unknown (v, j,0), i,j € {1,2}. Does (A2) hold ?
——

Hij

H11 1010 G 0
H12 _ 1 0 0 1 Y2 _ 0
Ha1 o 01 1 0 (&3] o 0
H22 01 0 1 [6D) 0

1 01 0 Y1 0

01 1 0 ar | [0

1 0 0 1 v | |0

01 0 1 Qs 0

1 0 1 O 0%l 0

01 1 0 ay |0

0 0 -1 1 Y2 — 71 o 0

00 -1 1 Qg — Q1 0

Counterexample. ......
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Example 2. Suppose that X7, ..., X,, are i.i.d. from X, with Var(X) = 02 < co.
62 = %Z:Z(Xz —X)? and S? = nil >(X = X)2.
Are they consistent estimators of o2 ?
Sol. Q: Can we apply Theorem 1 ?
1. SLLN: If X3, ..., X,, are i.i.d. from X, E(|X|) < oo, then X3 E(X).
Notice that 62 = X2 — (X)2.
X“YE(X) = pu by the SLLN;
X2%3 B(X?) = 0% 4 42 by the SLLN.
g(z,y) = x — y? is continuous.
By Results 5, g(X2, X)"3'g(0? + p2, 1) = 0 + p? — (u)? = o2
That is, 62 is strongly consistent and thus is consistent.
Notice that S2% = ﬁ&? Let a, = 75 and b, = 0, then a,, — 1 and b, — 0. By Result 9, 52 is consistent estimator

n—

of 2.
Example 3. Supposet that X ~ bin(n,p). 7 = p(1 — p). Are the MLE of (p,7) consistent ?
Sol. MLE p = X/n and 7 = p(1 — p). Can we use Theorem 1 ?
Notice that X = Y; +---+Y,,, where Y;’s are i.i.d. from bin(1,p). Thus X/n =Y. It can verified that the conditions
in Theorem 1 are satisfied. Thus p and 7 are consistent.
In particular, (A3) holds i.e. f(x;0) = fy(y;0) =6Y(1 — ).
f(@;0) =09(1—0)' 7Y = f(2:61) = 67(1 - 61)' ¥ V y € {0, 1}.
=> 9 - 01.
Another way: By the SLLN, p%3p.
Let g(p) = p(1 — p). g is continuous, thus 7 is strongly consistent.
10.2. Efficiency.
Definition. An estimator 7 is asymptotically efficient for 7(0) if

(r'(6))*

VR(F = r(0) 3N (0,0(6) and v(6) = Trp s
80 ’

Recall Y, 3X <=> Fy, (x) — Fx(z) for each continuity point z of Fx.

YV, 5 X => V,X => v, 5x => v,3x.
Results:

1. The central limit theorem (CLT). If Xy, ..., X,, are i.i.d. from X, p = F(X) and 6% = Var(X) < oo, then
Xt ZiN(0,1).
X — u-2N(0,0%/n) 27
(X — w)y/n—2N(0,02) 27

2. Slutsky’s Theorem. If Xn£>X and Y,Li)a, then
X, +Y, X +a, How about X, — Y, —5X —a ?
Y, X, 2aX. How about X, /Y,—+X/a ?

How about Yn/Xnim/X ?

3. Delta method. Suppose that
(1) Y, (w) and 6 are p x 1 vectors;

(2) Va(Yn = 6)3N(0,%), or (Sy,)72(Y = )N (0, )
(3) g(+) is a function, /g is continuous and 7g(6) # 0. Then

Vi(g(Ya) = 9(6) =N (0,v()), where v(0) = (v9(9))'S v g(0); (2)

W%Nm, 1), where 3/n = (79(0))' Sy, v 9(0), (3)

and 3 (= nYy, ) is a consistent estimator of ¥.
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Note: A=2 =Q'D 2Qif A=Q'DQ. Q=?D=?D"3="7
Remark. Roughly speaking, Eq. (2) means that
) E(g(Yy)) =~ g(0) if n is large enough;

(1
(2) V(9(Yn)) = (V9(6))'S 7 g(0)/n if n is large enough
(asymptotic variance of g(Y;,)).

4. Cramér-Rao Inequality (CR- Ineq.) Let Xy, ..., X,, beiid. from X ~ f(z;0) and let W (X) be a statistic.
Suppose that

0)dx if X is continuous
1) 4 g fae x) f(x;

(1) HEW) = { X §9W(x) f(x;0) if X is discrete;
(2) Var(W) < cc.

en Var (HEW)? _ (HEW)?
Then V (W)ZE((%lnf(X;e))Q) nE((Znf(X;0))?)

(CRLB).

(Note: If 03, =CRLB then W is the UMVUE of 7(§) = ??. Thus 7 is efficient = 7 is approximately
UMVUE.)
To prove efficiency,
use CLT or Delta method to find Var(7) and show Var(7) ~ CRLB.
Theorem 1. Suppose that assumptions (A1) — (A5) in Theorem 1 of §10.1 hold; 6 is the MLE of 6;
v7(0) is a continuous function of 6;
(A6) For each z € X (the sample space), f"”'(x;0) is continuous,
d %ff(x;@)dx = f%f(x;@)dm;
(A7) V6, € ©,3 ¢ >0 and a function M (x) such that
E(M(X)) < o0 and
aeslnf(x ) <M(z)VaeXand|d—0, <c

Then /i(r(8) — 7(6,)) -2 N(0,0(6,)) (sce Ea. (1)).

Remark.
1. 7 is efficient if n is large enough and A1-A7 hold;
2. Roughly speaking, E(T(é)) ~ 7(0,) if n is large enough and A1-A7 hold;
4. Roughly speaking, V (7(0)) ~ v(0,)/n if n is large enough and A1-A7 hold;
4. If f(+;0) belongs to an exponential family, then A1-A7 hold.
Example 1. Suppose that X ~ bin(n,p). The odd ratio 7 = p/(1 — p)
(1) Is the MLE 7 of 7 consistent and efficient ?
2) V() =7
Sol The MLE of p is p = X/n and can be viewed as p =Y, Y ~ bin(1,p).
Reason: X =Y] + -+ Y, where Y1, ..., Y,, are i.i.d. from bin(1,p). i.e., p=Y.
(1) By the SLLN, p*3p. Thus it is strongly consistent.
MLE of 7 is 7 = 7(p) = p/(1 — p) (Why ??).
Assume p # 1. Then 7 is continuous. Thus 7 is strongly consistent.
bin(1, p) belongs to an exponential family, thus A1-A7 hold.
Thus 7 is asymptotically efficient.
(2) Two ways to approximate V (7):
(I) CRLB or Fisher information formula
V() ~ ((6))%/1,(6), where (I, (6) = E((Zf(X;0))2)),
(IT) Delta method.
Vn(p— p)£>N(0, 0?) where 02 = p(1 —p) Why ?
=(-1+15) = g #0ifp#1.
Va(r(p) = 7(p) >N (0, v(p)) (Why ?)
where v(p) = 7/(p)o?7'(p) = 1(31(1 pp) =p/(1—-p)®
Question: Note P(7 < ) =~ @(%). Can we say 7A'£>N(T(p), ﬁ)?

Vp/(1=p)3n
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Question: v =7
Question: V(7) ~ ?
Question: Can we say /n(7(p) — 7(p))—N(0,9) (?)
Question: Can we say fw D —N(0,1) ?
Question: What happens to f( p)—7(p)ifp=17
lfp=1p="77(p)="77() ="
Ans: 1f p =1 then P(p=1) = P(r(p) = 7(p)) = 1 and v/i(r(p) = 7(p )-250.
Example 2. Suppose that X ~ bin(n,p), p = X/n and 6% = p(1 — p).
(1) Is 62 efficient ? (2) Var(6?) = ?
Sol. (1) Question. Can we use Theorem 1 (for MLE) here ?
(2) There are two ways. First way: We first use the Delta method.
Let 7(p) = 02 = p(1 — p). Recall 6% = 7 is strongly consistent.
7'=1—2p+#0 unless p=1/2.
. D
V(7 (p) —7(p))—>N(0,v(p)),
where v(p) = (1 — 2p)?p(1 — p) by the Delta method. Are we done ?
V(7)=(1-2p)’p(1 —p)/n?
V(7)~ (1=2p)*p(1 —p)/n?

2nd way: Compute V(7). 7= X/n — (X/n)?.

V(7) = E(X?/n? —2X3/n3 + X*/n*) — (E(X/n — X?/n?))?,
where E(X*) can be obtained by the mgf:

Mx(t) = E(eX") = (E(eylt))” (g + pe)™.

M'(t) = n(q + pe')"'pet, => E(X) = np,

MY(£) = n(n — 1)(q + pe!)"2(pe')2 + n(g + pe')"pet, => E(X?) = npg + (np)?,

M"(t) = n(n — 1)(n — 2)(q + pe")"~*(pe’)® + 3n(n — 1)(q + pe')"?(pe’)® + n(q + pe')"~'pe’ => E(X?) =
n(n —1)(n — 2)p® + 3n(n — 1)p? + np,

MWt) = n(n—1)(n—2)(n—3)(g+pe")"~*(pe')* +6n(n—1)(n—2)(g+pe")"*(pe")* +Tn(n—1)(g+pe")" > (pe')*+
n(q + pe')"~'pe’
=> E(X*) =n(n—1)(n—2)(n —3)p* +6(n(n — 1)(n — 2)p* + 7(n(n — 1)p* + np.
Question. What can be said if p=1/2?
Ans: Y, —n(p 1/2)2£>X2(1).

This is provezd in homework of 501. It is also included as follows.

T=p—p* 7(1/2) =0, 7"(p) = =2, 7¥)(p) =0, k > 3.

By the Taylor expansion,

T(p) — 7(1/2) = 7/(1/2)(p — 1/2) /11 + 7" (0.5)(p — 1/2)% /21 + > 7o, T8 (0.5)(p — 0.5)% /k!.

T(p) — 7(1/2)) = 7"(0.5)(p — 1/2)?/2 = —(p — 1/2)*.

Let Y, = —4n(r(p) — 7(1/2)), then Y, = n(242)%.

F:Y, = n(zaifl/z)Q&XQ(l).

Reason: Let Z, = fﬁ71/2 i>N(O, 1). Letting Z ~ N(0,1), then fort >0,

FY,L() Py, <t)=P( 721 t)
P(—Vt < Z, < ¢3
Pkﬁsz_f)
=P(Z% <t).

Thus if p = 1/2, then

(2) —4n(r(p) — 7(1/2)=x3(1).

Remark. If p=1/2, v(p) = (1 —2p)?p(1 —p) = 0 by Th. 1, and /n(7(p) — T(p))gN(O,v(p)) = N(0,0) what
does it mean ?

(b) Va(r(p) — 7(1/2))-0

But it is not very useful, as it is the same as
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(c) valr(p) — 7(1/2))-50 or
() (r(p) — 7(1/2))-0.

In particular, we cannot approximate F;(x) based on either (b) or (c), but we can approximate F;(x) based on (a).

e.g. for x € (0,1/4),
F:(z) = P(7 < x) = P(—4n(7 — 1/4) > —4n(x — 1/4)) = P(x%(1) > —4n(x — 1/4)), F:(z) =
P(/n(r(p) — 7(1/2)) < v/n(z — (1/4)) = 1(y/n(x — (1/4) > 0) = 1(z > 0.25) Any contradiction ??

Theorem 1 in §10.2. Suppose that A1-A4 hold, 6 is the MLE of 6,
Moreover, 7(6) is efficient if 77(6) is a continuous function of 6;
(Al) Xy, ..., X, are i.i.d. with f(x;0), 6 € ©;
(A2) F(50) # F(50°) ¥ 0 £ 07
(A3) {z: f(z;0) > 0} does not depend on ¢ and %f(:c; 0) exists;
(A4) © contains an open set O and the true parameter 6, € O.
(A5) 7= 7(0) is a continuous function of 6.
(A6) For each x € X (the sample space), f(z;6) is continuous,
and %ff(x;@)dw = faa—;f(x;ﬁ)dx (or < =>[);
(AT) For each 6, € Q, 3 a ¢ >0 and a function M(z) such that
E(M(X)) < oo.

Counterexample if the assumptions in Theorem 1 are not valid.
Example 2 in §7.3. Let X, ..., X,, be i.i.d. from X ~ U(0,6).
The MLE is 6 = X(,,). An unbiased estimator is 6 = ”THX(n).

V(e) = n(71,1+2) 0°
Var(@) = mez
d_9)2 2 n A ~ D
CRLB = v(0)/n = m = L 2> 0% = Var(d). va(d — 0)/-N(0,0(0)).

Reason that the CRLB fails:
{z: f(z;0) >0} = (0,60) depends on §. Thus A3 fails.
Remark. Ifn <20, Var(7) ~ CRLB is not valid !!

P(r < x)

Counterexample. Let X ~ bin(4,p), the MLE of p is again p = X/4. Let p = .9, Y = V4(X — p) and

Z~N@0,p(1-p)). n<207?
F: Fy % Fy.
Question: How should we prove it 7
Find a t such that
Fy (t) # Fz(t).
T 0 1 2 3 4
Y(r)=2(7-09): —-1.8 -13 -08 -03 0.2

Thus Fz(0.2) = @(ﬁ) = P(0.67) ~ 0.75 << 1 = Fy(0.2).
Remark. If X ~ bin(n,p) with n =100, p=0.9 and Y = /n(X/n — p), then oy = 0.3,
Fy(0.3) = 0.883 and F7(0.3) = 0.841, where Z ~ N(0,0.09).
Q: Why efficiency of 67
1. To find an estimator that has the smallest asymptotic variance
(asymptotic UMVUE).
2. To approximate Fj.
e.g. in Example 2, for x > 0 (why ?)
z—p(l—p) ;
Foo(@) = N emmaan)  Ep#12
& 1= Feq(-—n(z—-1/4)) ifp=1/2and 0 <z <1/4,
1 ifp=1/2 and z > 1/4.
§10.3. Hypothesis testing. For large samples, say X1, ..., X,, (n > 20),
we have three approximate large sample testing procedures:
Hy: 0=0,vs. Hy: 0#46, 0>40, 0<0,
A. Z-test: o= 1(|Z| > 2a2) UZ>24) UZ < —24)
P —value~ 2(1-®(1Z])) (1-2(2)) ®(Z)
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where Z = A&é" and 6 is an estimae. Reject Hy if ¢ = 1 or P-value< a.
Remark 1. org can be obtained as follows.
1. If = X, use CLT with Var(X) estimated by S2/n.
2. If § = g(X), then use the delta method.
3. If 0 is an MLE and
assumptions (A1)—(A7) in Theorem 1 of §10.2 hold, then
9 (nl1(6,))"!  (CRLB), if doable
g% = A
0 (nl1(0,))~" (empirical CRLB) otherwise
L(0) = E((5 1lflf(X'9))2) (ao2lnf<X 9),
I(0) = %Zn ( lnf(Xz,H)) = _% " (8921nf(X110))' Why ?
Question: How about 00 (ndy(0))~1 7

where

-0

Remark 2. The Z-test makes use of the statement = =N (0,1). For instance, in case 1 of Remark 1,
6

><\

X —yu

- N(0,1), (1)
e S/\f
v.s. the CLT o
X —
Vne—2 LN, 1).
ox
Notice that o
< bd X - o
X—p _ X—p _ H ox - XY
ox S//n O'X/\/ﬁ S nin-
—_—

X0 2N (0,1) Yo 1
Thus Eq. (1) follows from the CLT and Slutsky’s theorem.
Questions: Are these expressions accurate ?

1. O'yrvO'X/n

P 2
2. 6%~ 5%/n.
3. i— S?/n.
B. Score test (assuming A1-AT). For testing Hy: 6 =0, v.s. Hy: 0 #6,,
S0, S0,
6= U] > ) o 6= 1<|#| > 2as2)

where S(0) = & 3" Inf(X;;6) (score function), and
L) = E((%lnf(Xi; 6))?) is the Fisher information number.
C. LRT. For testing Hp: 0 € ©,, v.s. Hy: 0 ¢ O,, if the assumptions A1-A7 hold, then the LRT 1(\ < ¢) can be
approximated by

¢ =1(=2InA > x3,)
where d = degree of freedom in © — degree of freedom in ©,, A is the likelihood ratio statistic and 1 — F) 2 (Xd o) =
Example 1. Let Xy, ..., X,, be i.i.d. from f(x;0) = é —2/0 2,0 > 0. Test Hy: 0 =1 v.s. Hi: 6 7é 1 at level
a = 0.05 in the 2 cases: Case 1. n =25 and X = 1.44. Why just record X ? Case 2. n =1 and X; = 0.05,
Sol. Case 1. We can use either of the three large sample tests.
A. Z-test or Wald test. ¢ = 1(|%| > Za/2), Z0.025 = 1.96.

=X, crg =o%/n=06%/n.

5 { V1442]25 = 1.44/5 = 0.288  if use 62 = 6%/n,
o V1/25=10.2 1fusea§_93/n_
‘092818‘ = 15T ifuse 3 é2/n do not reject Hy
Z = ‘90.21‘ =22 if use (?'é = eg/n’ => {ieject Hy.

~D
—
—
o
%)
@

o1



Q: Which decision is more “reliable” ?

B. Score test. 5(6,) 5(6,)
70|>za/2) or 1(| 9

-1 _ W)
® (| nlq (90) njl (90)

| > z4/2) where
S(0) = & Sy Inf(X,560) and nLi (6) = E((S(9))?) = —nB(T45%),
S(0) = i (—Inf — Xi/0)y = ¥o,(—§ + 3¢) = "2
L(0) =Var(—3 + )0(2"') =Var(X;)/0* = 4.
|| = okl =121
which is the same as the Z-test.

Q: fl( ) =7 1(0) = 5 I (5 Inf(X:6)° :“;—5)2

= Zz 18921nf(X170) *;T%za = 29)3( j1(9 ):2Y710r (Xv—l)2
_ 5(9) 2
Should we use |Z|—|m|o |Z |—|W| ?
Example 1 (continued). Let X, ..., X,, be i.i.d. from f(2;0) = e */% 2,6 > 0. Test Hy: 0 =1 v.s. Hy: 0 #1

at level o = 0.05 in the 2 cases:

Case 1. n =25 and X = 1.44.

Case 2. n =1 and X; = 0.05,

Sol. Case 1. We can use either of the three large sample tests.
A. Z-test or Wald test. ¢ = 1(|Z] > 1.96), where Z = Og?".
B. Score test. ’

p=1(0—2L 5 yor10—20L |5 1, ) where

’I’LIl(G ) n]1(9 )

S(0) = & 370, Inf(X;0) and nly(8) = E((S(60))?) = —nE (2150,
Here it is the same as Z test.
C. LRT. ¢=1(-2InA>x3,).

L =0""exp(—nX/0). How to get it ?

exp(—nX) - —
A= —=———"— = (X)"exp(n(l — X)). (2)
(X)~"exp(—n)
d = 1 - O )
~~ ~

d.f. under © d.f. under H,

RR: —2In\ > X%,o.os = 3.84.

Since —2In\ = 3.767844,

Do not reject Hy.
Is it consistent with Z-test or Score test 7 Why ?

Recall in Z-test, z,/2 = 1.96 = v/3.84, and for comparison,

V—2InA =1.94 do not reject H,,
Z = Ae’(e") =2.2, reject H,. (1)

Z = ("o =1.57, do not reject H,,.

Case 2. n =1. Can we apply Z-test or Score test ?
LRT Method.
InA =InX; +1— X; by Eq. (2), (In\(z)), = 1 — 1. (In\(2))) = =}. In\(z) is concave down with maximum at
z =1
LRT (b = )\(Xl) = 1(/\ < C) = 1(X1 <kiorX;> kg), ki < kg,
where Ey_(A\) = a and A(k1) = A(k2). These two equations are equivalent to

k1617k1 = k?gelfk2 and e "1 —e7F2 =1 — o = 0.95.
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=> kie' ™R — ko(ky)e! 7F2(F) = 0. ky(k1)= ?? Solving the equations yields k; = 0.04221185 and ky = 4.748271
Since X7 = 0.05 € (0.042,4.75), we do not reject Hy.

Question: Can we use RR: —2In\ > x3 o5 ?

Remark. If we use RR: —2InX > x3 4 o5, then —2InX\ = 4.09 > 3.84 and we reject H.

Reasoning of the Score test (assuming A1-A7).
5(8)
nl; (0,)
Let V; = ZInf(X;;0), then
S(6 ) S, Y;; by assumption A1-A7,

—>N(O 1) assuming X;’s are discrete.

Eo(Y;) = Eg(ﬁlanl,e Zde x;G)Z(Zf(w;H))é=0

L(0) = E(Y?) =Vary(V;) = 02,

7

Y-EY;) , nY—-nEY;)  S0) . b .
O'Y/\/ﬁ (* ’I’LUy/\/ﬁ - \/m) *)N(Ovl)?

By the SLLN, (X “%3 B(X)),

~ 82 a EN
Il (6) = 962 h’lf(X“ 9)

i=1

B(— o f(X,:6)) = 10

S6,) S, VTi(6,)

Vi (0,) - V/nh(8) Vh0,)

Remark. The large sample LRT test ¢ = 1(—2lnA > nga) makes use of the result

LyN(0,1)

—2ln)\£>x3 or F_opm\ ~ Fxﬁ'
There are empirical method and rigorous method to check whether
F oy = F2.

Rigorous method: Compare fxf and f_omx by

1. derive the density function of x3 (= G(3,2)),

2. derive the density function of —2In\ (= fx (g~ (y ))|dg;7;(y)|, where y = g(z) = —2In\(z)) (no explicit solution).
Empirical method. Two ways:
1. The empirical distribution function (edf) F(t) = 1 3°F | 1(X; <t) (= W) “SF(t) if X, ..., X,, are i.id. from
F(t).
2. qgplot (quantile-quantile plot). We expect a straight line if the two samples are from the same distributions.
Definition. If F is the cdf, F~!(p) = inf{z : F(z) > p} is the quantile function.
In Example 1, if n = 100, we can use the empirical method to see that

F_omy = F2
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The figure is created by R program as follows.
myfun=function(n){

m=10000

x=rgamma(m,n,1)/n # m X's

y=-2*(n*log(x)+n*(1-x)) # m \’s

u=rchisq(m,1)

aqplot(y,u)

lines(yy)

y=sort(y)

plot(y,ppoints(y), xlim=c(0.5,2), ylim=c(0.4,0.9), type="S" lty=1)
lines(y,pchisq(y,1), xlim=c(0.5,2), ylim=c(0.4,0.9), type="1" lty=2)

makepsfile = function(a,b) {

ps.options(horizontal = FALSE)

ps.options(height=9.0, width=6.5)

postscript(”figl0.ps”)

par(mfrow=c(2,2))

n=1

myfun(n)

n=100

myfun(n)

dev.off(

}

makepsfile()

You can use “gv figl0.ps” to view the graph and “lpr figl0.ps” to print the graph in the Linex system.
Example 2. Suppose that two independent random samples: X7, ..., X, iid. ~ N(0,0%), Y1, ..., Y, iid.
~ N(0,0%), v = 0% /o%, Observing X2 =1.2 and Y2/X2 = 2 with n = m = 25, do the data support v = 1 at level
0.05 7
Sol. Three ways: LRT, Z-tes and Score test.

LRT. 0 = (0%,0%) € © and v = 0% /0%. Degree of freedom of © ? © = {(z,y) : z,y > 0}, (6%,0%) € O,

54



O, ={(z,y): x=y>0}and y=1, =1

Hy: vy=v,=1, Hi: v# 1. ¢:1<_QIHA2X3,Q)~ d=7a=7 X\=7
Degree of freedom under O is 2,
Degree of freedom under Hp is 1. d =2 — 1.

A= L(8.)/L(9).

. 1 o 1
L= (2ro}) "2 exp(—5 3 X2 /o%) - (@mod) 2 exp(—5 YO VR /o).

MLE under ©: 6% =, X?/n, 6% =5, Y?/m, 4 =6} /6%.
2 XY

MLE under Hy: Ug( = T’ oy = &i,’ A= Yo
N (5%)~ 71./2(0,2) m/2exp(_L+n)
(6%)~ "/2(02) m/2exp(—%—1)

n ZIX2+Z] J )—n/2( m ZiXiz—i_Zijz)fm/Q

= (ner Z:Xt‘z n+m ZlYF

n Z YJ'Q -n m ‘Xi2 —m
— () 1+ R ) (s + Lo,

Jj 7

= ((1/2)(1+2))7#/2((1/2)(5 + 1)) 7>/ = (3) 7/

Test: ¢ = 1(—2InA > X?l,a)‘
—2In\ = 25Ing = 1.28 > x3 ;5 = 3.84 ? Thus the data support the claim that v = 1.

Z-test. ¢ = 1(|Z| > 1.96), where Z = L2, N(0,1).
Notice

Delta method. Suppose that

(1) Wy (w) and 6 are p x 1 vectors;

(2) VAW, = )N (0,5), or (Sw,) /(W = )N (0, Lyy);
(3) vy is contlnuous and 7¢g(0) # 0. Then

Vi(g(Wn) = 9(0)=2+N(0,0(0)), where v(0) = (vg(6))'S v g(6);

(fﬁ]() N(0,1), where © = (vg(é))tiWn v g(é), (if v£0),

and 3 is a consistent estimator of X. 0= 7 g(0) = ? g(y,x)=?p=7 W, =?
v = W/ﬁ =2, (= g(ﬁ,ﬁ))
Y/oy ~ N(0,1),
Y2/02 ~ x%(1) with E(x?(1)) = 1 and V(x2(1)

o%”(l/x,—y/ﬁ)va((};) ( Z//;)
(1/$,y/x2)(20416/m 0 >< 1/2 >

(y,x)=E(Y?2,X?)

(V2/oy ~ x*(1))

20t/ ) |~y
= 2% + 204 0t Jo%]/n = 492/25 = 4/25.
X
Gy =7

Z—ﬁY 7"—25>196

The data do not suggest that v = 1.
Question: Why is there a discrepancy in conclusion ?

Ans. 1. They are different tests and there is randomness. 2. Z-test is more acurate here as it has less approximation

than LRT. (03 ~ 47,/25 = 4/25).

Score test 7 Recall ¢ = 1( 5(0,)

|\/7| > Zay2) OF ¢ = 1(|\/T(90)| > Za/2)

For vector 6,

=1(|7 00 (0)S(6,)]| > 2a/2)

95



=12 (B0) S0 P > 15)
=1(8(0,) 1, (05)S(605) > X7 )

or ¢ = 1(|[1,7,,,(6.)S (Oo)I* > X1 0)-

0= 7
am|[[™ o0 1" X302
Vector approach: S(0) = I, /o 861 I, 76 )7
P, f(Y5:00) [Tz, f(Xi:62)
nin(6) = E(S(O)S(0)!) = ~B(~——— =1y Pl S S “
0 1
5(0) *%[( n/2)log(o%) — By ;X?/Ug( (—n/2)log(oy) ZY2 (0 = (thetay, 02))
7n/2 1 Z Y2
771/2 1 Z X2
a :
=3 S+ X
n/2 2 21 le 0
oL T 27 o8 1/0 0
(4) => I;pyn(0) = —F Y S 2 | = % ( ' 4 >
0 7;742 _ %z;;g(xl 0 1/0’X
SO) I m(0)S(0) = 3 (O 4 B2

6= 1(3(IopE 1 KA 5 30
ox =0y, Y2 =2X2 and X2 =12 => 6% =62 =3 x 1.2/2.
¢ = 1(%(@;:2”2 + (F;;i'})z) > 3.84) = 1(12.5[(0.5 x 1.2/1.5) + (1.5 x 1.2/1.5)2] > 3.84) = 1(4 > 3). Reject Ho.
The next approach does not work. § = 0% = 0%
S(0) = 8lnH;”:1f(Yj;999) I, f<Xi;9>’
Iin(8) = B(5(6))?) = — (L L0 TLL, 1060
S(0) = §(=n/2)log(0%) — 5 32, X7 /% + (—n/2)log(0%) — 5 32, Y /0¥
10, Y Lo %z;%(xf

= oz (=0 + Y20+ X?)
=2(—20""' + + (Y2 4+ X?2)972)
S(0) =77
Under H,, S(f,) depends on 6, which is unknown, and S(f,) = 0, as
9 = "XZQJ;"W =X 2+Y2 . Thus the score test approach does not work. Ignore the rest arguements.
= X2, X2*12andY2*24

5(9) = 7 (X?) = 557 (1.2) ~ 10.4

Iin(0) = —B(2(072 —2Y2073 + 072 — 2X2073)) = n/o%, Lnn(0) = 77

- (X?)
5(0.) _q2enz _
(|\/W| > Za/2) = 1 N <k 1.96) = 1(2.5 > 1.96)
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Reject Hy.

§10.4. Approximate CI.

For finite samples, construction of CI is based on
inverting LRT and
pivotal method.

Def. 9(;9 i

3

o —

0

£l

|§Zo¢/2)z1_o‘

A. CI based on Wald-type statistic.
CI for 6: 9:|:za/2c}é due to P({0 : \%| <zopl)R1l-a
Remark. (1) A smooth g(6) can also be viewed as a parameter, thus
CI for g(0): g(0) + Za/20 (4>

where 02(9) ~ (g (9))202 or (vg(9))'S v 9(0). ¢ (é) =7

(2) A monotone function g(): g(6) £ g(6;4).
B. CI based on MLE. {6 : |u| < Zaj2)
C. CI based on score function.

(0 |Z | 2 Inf(X:;6)

W‘ = a/2}
D. CI based on LRT.

{0 —2A(x;0) < 3.}
Example 1. Let X ~ bin(n,p), n = 100. Observe X = 30. Approximiate 95% CI for p ?
Sol. A 95% CI for p :

(1) Wald-type. \m| < 1.96, or p+ 1.96,/p(1 — p)/n or
p)/n

0.3+1.96 x v0.21 /10. Thus a 95% CI for p is (0.21070.390).
(2) MLE method:
| p—p
p(1 —p)/100

P> — 2pp + p* < (1.96%/100)(p — p?).

P2 — (2 +0.01 % 1.96%)p + (1 + 0.01 * 1.962)p? = ¢ + bp + ap® < 0.

=hevbiodac < < SbEvbEodac A 95% CI for p is (0.219, 0.396)
(3) Score method Inf(X; p) x Xlnp+ (n— X)In(1 — p).

Score function: S( ) = X _ n=—

P 1—1)'
st

| <1.96 (due to Eq. (1)).

Sp) | — < 1.96.
e = 'm‘
Y
T X—np  _ _ X/n— P . Eq. (2)). A 95% CI f is (0.219,0.396
\/p(ln—p) \/np 1-p) \/P(l p)/ (See d ( )) ’ OrplS( 7 )

1
(4) LRT. A = (X/ﬁ)x(u p;(/n)" X<
InA = XIn(p*xn/X) + (n — X)In((1 — p)/(1 — X/n)),
{p:—2Inx < x7, = 3.84}.
A 95% CT for p is (0.216,0.395) (solving by R).
Question: Which is more convenient 7 Which is better ?

R-program:
myfun=function(p){
x=30
n=100
y=-2*(x*log(p*n/x)+ (n-x) *log((1-p) / (1-x/n))) # —2InA
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u=min(y[y>=3.84])
ply==u]
}
=(200:300)/1000
myfun(p)
[1] 0.216
=(300:400)/1000
myfun(p)
1] 0.395
Example 1 (continued) Suppose that X ~ bin(n,p), n = 100. Observe X = 30. A 95% CI for the odd ratio
9(p) =p/(1 -
Sol. A 95% CI for g(0): g(9) + Za /20 44

52 25
where o6 = (¢'(0)) 0’6,

g(p)=(-1+ 1—p) = (1,1p)2~
95% CI for g(p) is
25 £ 1.96,/ BUSEL or 93 41,96 x | /5748215
A 95% CI for g(p) is (0.245, 0.612)
How about the other approaches ?
If the Cl is p £+ a and g is monotone, then ¢g(p) £ g(a). Pay attention to T or |.

Example 2. Suppose that X ~ bin(n,p), n = 3. Observe X = 1. p+1.961/p(1 — p)/n yields % + 1.96\/%. (a) Is
it a 95% CI for p ? (b) How about if X =1 and n =257

Sol. Confidence coefficient of CI = inf, P,(p € I). 7?77

The CI is of the form

0+0 it X =0 [0, 0] if X =0
I 3£1.96/2/27 if X =1 _][0,244d ifX=1 (a~ 0.53)
2 +1.96,/2/27 if X =2 (2 —a,1] if X =2 99
140 if X =3 [1,1] if X =3
i1-a<0<2-a<i+a<l<2+a
The coverage probability is P,(p € I)
P, (X=0o0rl) ifp=0 (1-p)? ifp=0
Py(X =1) ifpe(0,3—a) 3p(1—p)? ifpe(0,2—a)
={ P(X=1or2) ifpe [%i—a t4a =43p(1-p) ifpe [2—a i +ad
P, (X =2) ifp€(3+a,1) 3p%(1 —p) ifp€(3+a,1)
P(X=2o0r3) ifp=1 p? iftp=1
Confidence coefficient of CI = inf, P,(p C I) = min{1,0,3/4,0,1} =0
Answer: No, it is a 0% CI for p.
(b). What is the question ?
The approximate 95% CI is 0.04 + 1.964/24/253% if X = 1 and n = 25.
=(0:10)/25
round(p-1.96*sqrt (p*(1-p)/25),3)
round(p+1.96*sqrt(p*(1-p)/25),3)
X 0 1 2 3 4 ) 6 7 8 9 10

L 0.000 —-0.037 -0.026 —-0.007 0.016 0.043 0.073 0.104 0.137 0.172 0.208
R 0.000 0.117  0.186 0.247 0.304 0.357 0.407 0.456 0.503 0.548 0.592
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P,(X €{0,1,2,3}) if p € 10,0],
Py(X € {1,2,3}) if p € (0,0.016),
Py(X €{1,2,3,4 if p € [0.016,0.043), \
Coverage probability P,(p € I) = PZEX < }1’273747}%}) ifg < {0'04370'07337 = S —p)2255—|- 5215)101(123_ p)2;15+ 1(225/
eep Yo Py(X €{1,2,3.4.5,6}) ifpe 00730004, | PA-PIE)P A -0+ (G0
Py(X €{1,2.3,4,5,6,7)) ifpe (0.104,0.117),
X €{234,567)  ifpe 017,15

Coeffidence coefficient of p + 1.96+/p(1 — p)/n is
infp Pp(p S I) S infp€(070.016} Pp(X € {1, 2, 3}) = 0
Any contradiction ? Approximated 95% CI: If n is large

(h—1.967/p(1 —p)/n < p < p—+1.96/p(1 — p)/n) = \/“’7%<196)~0.95

95% CI: inf, P,(p € [L, R]) = 0.95.

Remark. Recall in Example 4 of Chapter 9. If X ~ bin(3,p) and I = [% V 0, 1], the confidence coefficient of I
is 0.59.
Review of testing and CI.
Assume that X1, ..., X,, are i.i.d. from N(p,o?).
1. If Hy: p = po and o is known,

LRT test statistic A yields Z = X=10 and observe z.

o/vn

H, 10) P —value cl
p#po W21 > zap2) 2P(Z2>|2]) (X = zap20/v/n, X + 2020 /v/n)
> o WZ > z,) P(Z > z) (X = 240/+/n,0)
w<po WZ<—zy) PZ<z) (=00, X + z40/y/n)

2. If Hyp: p = po and o is unknown,
LRT test statistic A yields T' = 5 7 \72 and observe t.
H, 10) P —value cl
—  tn1.a/25 % | ta1.a/25

s T >t 2P ) (X s X e
p>po  UT >ty 1a)  P(T>t) (X — =2 00)
p<po LT <—th_1a) PT<t) (=00, X + f2f22)

3. If Hy: 0 = 09 and p is unknown, LRT test statistic A yields Y = (n — 1)5? /02 and observe y.

H, o P — value CIlof o
2P(Y < ify<n-—1
ctor gy {SpESY VST VTRV
og>00 LY >x5_1,) P(Y >y) ( éfff)fi ,00)
o<oy LY <Xo 11 a) P(Y <y) (©, (22__11)82)

Aa) = A(b) and E(g) = a
Remark. If N(u,0?) is not valid, the derivation cannot be unified.
Chapter 11. Introduction to non-parametric analysis

Common interests of estimation are

1. Mean p,

2. SD o,

3. cdf F(t).
In this course, we make the assumption that
X1, ..., X, are i.i.d. with cdf F,(¢;6), where F, is known, but not 6 (€ ©),
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Then p = u(f) and o = o(6).
We derive either the MLEs or other types of estimators:

i -
Z _ ZEZ; ¢.g- X ~ bin(n,p), then N :an;(fllpi -
e i o E(l) = e, (1) (91— )

This is called point estimation of the parametric analysis. The CI and testing hypotheses discussed so far are also
under the parametric analysis frame work.
Question:

How do we know that the assumption F(t) = F,(¢;0) is correct ?

Answer: One approach is to compare the parametric estimator F,(t; é) to the empirical distribution function (edf)
1 n
— E 1(X; <t).
n
i=1

Example 1. Here is a simulation study for checking normality assumption. Given a data set, assume that it is
normal, then compute the MLE /i and &, and estimate the cdf by F,(t; i, ). Then compare it to its edf F'.
par(mfrow=c(2,2))
x=rexp(100)
# Now pretend we only have data x without knowing it is from Exp(1)
u=mean(x)
s=sd(x)
x=so0rt(x)
plot(x,ppoints(x),type="S") # edf
lines(x,pnorm(x,u,s),type="1") # F(t; ji, &)
y=rnorm(100,u,s)
qqplot(y,x) # check N(-,-)
abline(lm(x~ y))
Check for linearity.
qqnorm(x)
y=rexp(100,1/u)
aqplot(x,y)
abline(lm(y~ x))

Properties of the edf: F(t)=1Y" 1(X; <t).
1. Fis a cdf and for each ¢, F'(t) can be viewed as Y’
where Y1,..., Y, are iid. ~ bin(1,p) and p = F(¢).
2. E(F(t)) =E(Y) = E(Y) =p=F(t).

3. Var(E E)) V(Y) =pg/n=F(t)(1-F())/n.

4. Cov(F(t),F(s)) = LCov(1(X; <t),1(X; < s5)) (ZZ: g /n)

= HEQ(X: <5)1(X1 <t) - BE(L(X, <) E(1(X; <)) = LU FOF) ywhy 7

n
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5. Y2%p by the SLLN. F(t)23F(t) by the SLLN.

6. V(F(t) = F(t)=>N(0, F(t)(1 = F(t))) Why ??
Remark. Since E(F(t)) = F(t) < oo and nV (E(t)) = F(t)(1— F(t)) < o, thus we can apply the SLLN and CLT.
the density f(t) = L 37 1(X; =),

JtdE () =37 tf(t) =7
2

JPAE() = S0 2 f (1) = 7
J(t = X)2ab() = 7
Homework: Answer the following questions: If X1, ..., X, are i.i.d. from Cauchy, where
fla) = (n(1+ (2)*) 7",
then [%_af(z)dz =0as zf(z) is odd, [*_|z|f(z)dz = 2In(1 + 2?)|5° = oo.
EX)=7

X% ux ? (Yes, No, Not sure, explain).

\/ﬁ(y - /Lx)iN(Oﬂj) ? (Yes, No, Not sure, explain).
F)X5F(@) ?

VAE(E) — F() 2N (0, F()(1 - F(#))) ?

2 _
T =
~2
O'F(t) =7
-2
The) -7
~92 a.s,
naﬁ(t)—> ?
~D 2 D
\/ﬁA(sF(t) - UF(t))_> ?
I
V(o) =7
7. F(t) is admissible w.r.t. the squared error loss and the weighted squared error loss
~ (F(t) - F(t))
L(F(t), F(t) = msm— i (1)
F(t)(1 - F(t))
That is, if
(a) t is fixed,
(b) F € A, the collection of all estimators of the cdf F,
(c) R(F(t), F(1)) = B(L(F(1), F(t))),
(d) ©, is the collection of all cdf’s,
(e) R(F(t), F(t)) < R(F(t), F() ¥ Feo,

then R(F(t), F(t)) = R(F(t),F(t)) VY F € ©,.
No estimator can dominate F.
8. F(t) is minimax w.r.t. the weighted squared error loss in Eq. (1).
That is, if (a), (b), (¢) and (d) hold, then
supp R(F(t), F(t)) = infz 4 supr R(F'(t), F(t)). F is the best in the worst scenario.
Remark. Since F' is a functional, the functional properties are as follows.
9. sup, |E(t) — F(t)]“30 (uniform strong consistency) (Glivenko-Cantelli Theorem).

10. \/ﬁ(ﬁ‘ - F )£>W where W is a Gaussian process with the covariance specified in Part 4.
11. F is inadmissible w.r.t the loss function

L(F.a) = [(F() - a(t)*dP (0
and the parameter space being the collection of all continuous cdfs (Aggarwal (1955)).
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12. F is not minimax w.r.t the loss function
LiF.a) = [ (F(®) - a(t)*aW (1)

but is minimax w.r.t the loss function

_ [ (F(t) —a(t))?
s = | ot ray ™

where W is a finite measure, and the parameter space being the collection of all cdfs (Phadia (1973)).
13. F is admissible w.r.t the loss function

L(F,a) = / (F(t) — a(t))2dW (£)

where W is a finite measure, and the parameter space being the collection of all cdfs (Cohen and Kuo (1985)).
14. F is admissible w.r.t the loss function

L(F,a) = / (F(t) — a(t))*dF(t)

and the parameter space being the collection of all cdfs (Brown (1985)).
15. Whether F is admissible w.r.t the loss function

9= [ o r >dF”

and the parameter space being the collection of all continuous cdfs was an open question between 1950’s and
1980’s. Yu (1989) shows that it is admissible if n =1 or 2, and is inadmissible if n > 3.
16. F' is minimax w.r.t the loss function

t 2
/F Bi=F >>dF“

and the parameter space being the collection of all continuous cdfs was an longstanding conjecture between
1950’s and 1980’s. Yu and Chow (1991) shows that it is indeed minimax.
Chapter 12. Decision Theory
§12.1. Introduction.
There are several definitions of the optimality for an estimator.
Large samples:
1. consistency,
2. efficiency.
Small samples:
3. unbiasedness,
4. UMVUE,
5. Bayesian,
6. admissibility,
7. Minimaxity.
The last two has just been briefly mentioned and will be studied here. The last three all belong to the decision
theory frame work.
Recall in §7.3.4 that a decision problem consists of
data X from the sample space X (X = x € X), with density function fx (x;0),
the parameter 6 from the parameter space ©,
an action a from the action space A,

a loss function L(#,a) on © x A, e.g. |a — 0|, (a — 0)2, gzl__e();,

a (nonrandomized) decision rule d: X — A. the risk function of d: R(6,d) = E(L(0,d(X)).
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Example 1 Suppose that X1, ..., X, are i.i.d. from N(u,0?). Consider estimation of o2. This can be viewed as a
decision problem.
X =(Xy, ..., Xp), from X = R"™,
0 = (p,0?),in © = (—00, 00) x (0, 00),
A =10,00),
an action is an estimate of 02, say a € A,
a decision rule is an estimator of o2, say d: R™ +— [0, ),
a loss function L is the squared error L(f,a) = (a — 0?)2.
Recall that under this set-up:
R(0,d) = MSE(d) = E(L(6,d(X)) = E((d(X) — 02)?).
Two decision rules (estimators) S? and 62,
where §2 = L3 (X; — X)? and 62 = 2152 (= X2 - (X)?).
52 is the UMVUE of o2.
62 is biased.
R(0,8?) = Var($?) = o:25x2(n — 1) = 252,
as (n —1)5%/0? ~ x2%(n — 1).
R(0,6%) = Var(6?) + (bias(6?))? = (=2)*Var(5?) + (—0?/n)?
=22 1/n] < -Z52.
Thus R(6,62) < R(6,5?).
Hence the MLE 62 is preferable over S? in terms of the MSE.
Question: Can we find an estimator that is the best w.r.t. the MSE 7
Answer: No ! In Example 1, idealy, R(0,d) = 0V 0. However,
0= R(0,d) = E((d(X) — 02)?) for a given 02 => P(d(X) = 0?) =1 Why ??
Thus, for each estimator d, 3 a 0, such that R(6,,d) > 0.
Set 62(x) = 02 V x, then R(0,,5%) =0 < R(6,,d).
Thus the usual global optimality (R(6,d) < R(6,d) ¥ (0,d)) is not applicable. In decision theory, two other
types of optimalitiy are considered: admissibility and minimaxity.
Remark. Decision theory can be applied to point estimation, as well as to hypothesis testing and confidence interval.
Two classical textbooks in decision theory:
Mathematical Statistics, a Decision Theory approach, by Thomas Ferguson.
Statistical Decision Theory and Bayesian Analysis, by James Berger.
§12.2. Admissibility.
Definition. Let 0 and d be two decision rules.
J is as good as d if R(0,d) > R(0,9) V 6.
. .. | R(0,d) > R(0,0) V0
0 is better than d if {REG,d; > RE&J; for at least one 6.
In the latter case, the decision rule d is said to be inadmissible.
If a decision rule is not inadmissible, we say that it is admissible.
Example 1 (continued).
S? is inadmissible, even though it is UMVUE.
52 is biased, but it is better than S? in terms of the MSE.
7%(X) = ¢ (> 0) is admissible.
The example of 52 suggests that admissibility may not be an appealing property, but it is clear that inadmissible
estimators are definitely not desirable, as far as the risk is concerned.
Question: How to determine that an estimator is admissible ?
Answer:
(1) By definition as in Example 1,
(2) by the following theorem.
Theorem 1. Suppose that the following conditions hold:
1. © is a subset of the real line;
2. R(0,d) is continuous in 0 for each decision rule d;

3. 7 is a prior density on © such that f;i:e m(0)dd >0V e>0,V 0, €06;
4. 0™ is the Bayes estimator w.r.t. ™ and has a finite Bayes risk r(mw,d7).
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Then 6™ is admissible. )
Example 2. Suppose that X ~ bin(n,p) and L(p,a) = 1()?1_?1)3)' We have shown that p = X/n is Bayesian w.r.t. L
and m ~ U(0,1) (§7.3.4). Do the 4 conditions in Theorem 1 hold ? p is admissible.
Remark. If 7() is a non-negative function of § and [ 7(#)df = oo, it is called an improper prior density of 6.
Theorem 1 is still applicable if 7 is an improper prior density.
Example 2 (continued). Suppose that X ~ bin(n,p) and L(p,a) = (a — p)?. Show that p = 2 is admissible.
Sol. Two ways:
(1) Definition F: R(p,p) < R(p,p) => R(p,p) = R(p,p) ¥ p € ©;
(2) Theorem 1, main condition: p is a Bayes estimator w.r.t. L and a prior = ().
Notice that if 7(p) = ﬁ’ p € (0,1), 7 is not a proper prior.
However, the “Bayes estimator ” w.r.t. 7 exists and Theorem 1 is also applicable to non-proper prior .
To obtain the Bayes estimator, it suffices to solve

d(x) = argmin, E(L(p, a)|X = x).

_ J9@) fyix (ylz)dy  if cts _

BlIX =) = { UMY L )=

fyix(ylz) = f(z,y)/ fx (z) and f(:v y) = Fxpy @) fy(y) =77 fy () =7(). fxpy(zly) =7

Fxpp(lp)m(p) oc p™ 11 —p)» ===t

7T(p|.’17) I px—l(l _ p)n—x—l.
Ifze{l,..,n— 1} (p\m) can be viewed as a beta(x,n — ) density. beta(c, 8), a, 5 > 0.
E((L(p, |X =1) fo a— p*~1(1 — p)" = Ldp is finite if = ¢ {0,n}.(= a® — 2aE(p|X = z) + E(p?|X = z))
It is mlmmlzed by a = (p|X = x) 395 = s = a/n. ifx ¢ {0,n}.
If © = 0 then E(L(p,a)|X = z) is finite iff a = 0 = z/n.
If x = n then E(L(p,a)|X = x) is finite iff a =1 = z/n.
Thus p = z/n is the Bayes estimator w.r.t. to the improper prior 7.
Do the other 3 conditions in Theorem 1 hold ?
Consequently, it is admissible.
Remark. Thus p is admissible under the weighted squared error loss, admissible under the squared error loss,
UMVUE, consistent, efficient.
Remark. Since the edf Fi(t) =Y, where Y = 1(X < t) ~ bin(1, F(t)), F(t) is admissible w.r.t. L(F(t), F(t)) =
% and F'(t) is admissible w.r.t. L(F(t), F(t)) = (F(t) — F(t))2.
Example 3. Suppose that X ~ bin(n,p), L(p,a) = |a — p|. 6(z) = 1/3. Show that § is admissible.
Proof. Two possible approaches: (1) Bayes estimator, (2) definition. Since

Rip.d) = Bl(X) 5l = 3 (7)o (1= 9" ld(a) = . )

=0

Bayesian approach: Set w(p) = 1(p = 1/3). Bayes estimator = infy E(R(p,d)) = ?? Then verify that ¢ is the
Bayes estimator w.r.t. L and .
Can we apply Theorem 1 ?
The second apporoach: : R(p,d) < R(p,0) Vp € ©; => R(p,§) = R(p,d) V p € ©;
If d is as good as ¢, then R(p,d) < R(p,d) for all p € [0, 1].
R(1/3,8) =0. =>0< R(1/3,d) = E|d(X) — 1/3| < R(1/3,9). => P(|d(X) —1/3| =0) = 1.
Thus d(z) = () for all possible z.
Thus ¢ is admissible. o
Notice that if Xy, ..., X,, are i.i.d. from N(#,0?), then X ~ N (0,02 /n).
X is the MLE, UMVUE, consistent and efficient.
Is it admissible under the squared error loss ?
It suffices to ask whether X is admissible if X ~ N (6, 0?), by setting n = 1.
Example 4. Suppose that X ~ N(#,02%) and L = (a — 6)%. Show that
1. If o is known, § = X is admissible.
2. If o is unknown, 6 = X is admissible.
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Proof. Case 1. Two ways to prove admissibility: (1) Bayesian, (2) Definition.
Recall that in the Baysian approach, a candidate of the prior is
7(6) ~ N1, 7).
m(0|x) is N(/L*, 02), where
2
o = ST+ T2+g2u (1= n)a + nu and 02 = 729,
The Bayes estimator of 8 is 6™ = E(6|X), that is,
0™ (x) = pu = (L= m)z + npt.
The second approach needs MLE=Bayes estimator.
Q: Can we set 6" (z) =z ?

The second approach F: R(0,d) < R(0,0) V 0 € ©; => R(0,d) = R(0,0) V 0 € ©.

Suppose that o2 is known and thus the parameter is §. We shall assume that 0 is inadmissible and show that
it leads to a contradiction.

If 6 is inadmissible, then there is a d such that

i >0 V0
R(9,6) — R(6,d) { =2¢>0 for6=290, (1)
R(0,d) = [(6 —d(x))* \/2;76_ e dzx is continuous in 6 V estimator d,

thus R(6,d) — R(0,0) is continuous in 0 too.
Then by Eq. (1), there is a b > 0 such that
R(0,0) — R(0,d) > cif |6 —0,| < b.

r(m,0) — r(x,d) =

) /(R(O 0
/9 . /9 N /eib)(R(a’é) — R(0,d))m(0)do
>/9 +bC7T
0o,—b

0) = R(9,d))(6)d6 (let w(9) ~ N (1, 72)

(0)do
0,+b c
—/ —= = de (2)
0,—b V2mT2
. 00+b o2
(r(m,0) — r(m,d))T 2/ e 2:2df. (3)
0,—b V2
Letting 4 = 0,
I"(X)=(1—-n)X+pun— X if n — 0, that is, 7 — oo.
Moreover,

r(m,67) = E(R(0,67)) = E(E(1 —n)X = 0)*10)) = E(E((1 - nX - 0)*|X)) = E(E((u — 0)*X)) =

EVar(0|X)) =
r(m,07) = B(t*n) = 1. (4)
Since R(0,0) = E((0 — X)?) = 02,

(4) and (5) yield '
r(m,0™) — r(m,0) = 72 — 02 = TP o= 2 72;” = = o2v

2_;,_7-2
(r(m,6™) — T(?T,é))T = UQ;fTQT.

=7(r(m,0) — r(m,6™))
=7(r(r ) r(m,d) +r(m,d) —r(m,d")))
6, +b
/ Z= 224010 (6)
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by

Letting 7 — oo in inequality (6) yields 0 > 2be/+/27 > 0.
The contradiction implies that 8 is not inadmissible.

Case 2. Now assume o is unknown, then the parameters are v = (6, 0). Again we shall suppose that 6 is inadmissible
and show that it leads to a contradiction.

If 6 is inadmissible in such case, there exists an estimator d such that

~[<0 V
R(’% d) - R('Y, 0) { 2 0 fO;'y’y = (90, UO)

The risk becomes R(7,d) = E,((d(X) — 0)?). It implies that

Eo o ((d(X) = 0)%) = Eo.o (X — 0)?) { 20 V0= (o

That is, 0 is inadmissible when o = 0, is fixed. It corresponds to the assumption in part one. It contradicts to the
result in part one. Thus 6 is admissible when ¢ is unknown. o.

Notice that if X1, ..., X,, are i.i.d. from N(0,0?), then X ~ N(0,02/n).
X is the MLE, the UMVUE,

consistent,

efficient,

admissible under the squared error loss.

Remark. Recall that assuming X ~ bin(n,p), we had shown that
p = X/n is the MLE,
an MME,

the Bayes estimator under the loss L(p,a) = ;‘Z;f;j w.r.t. the prior U(0,1).
the Bayes estimator under the loss L(p,a) = (a — p)? w.r.t. the prior ﬁ.
admissible under the weighted squared error loss,

admissible w.r.t the squared error loss,

UMVUE,

consistent,

efficient.
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Proposition 1. Suppose that X ~ bin(n,p). Then
(1) d(z) = niziﬁ is the Bayes rule w.r.t. prior 7(p) = cp®* (1 —p)?~1, and L(p,a) = (a — p)?;
and is admissible with respect to L(p,a) = (a — p)?, where o, 3 > 0
(2) p = X/n is the Bayes rule w.r.t. prior 7(p) = cp~ (1 — p)~#~1 and L(p,a) = (a — p)?p*(1 — p)?; and is
admissible w.r.t. L(p,a) = (a — p)?>p®(1 — p)?, where o, 3 > —1.
Proof. (1) Since 7(p) = cp®~1(1 — p)P~L, n(p|x) ~ “beta(x + a,n —x + )", as

fxip(@|p)m(p) o p o1 — p)n—x+5_1.

The Bayes estimator is 6 = E(p|X) = nf;‘fﬁ Since the conditions in Theorem 1 hold, ¢ is admissible.

(2) Notice that one is more interested in whether X /n is admissible. Under the loss
L(0,a) = (a — 0)*p*(1 — p)?, where o, 8 > —1.
We have proved the special case of « = 8 € {0,1}.
Let m(p) =p~'~ "‘(1 p) =P, Then m(pla) ccp™t At E (L —p) =t p e (0,1).
E(L(p,a)lX = ) o< [ ((p— a)?p*(L = p)?p~ 1 2F(1 = p) 1=+ =0)dp

fo (o 1a)p)p —-p)"” )dp.
It can be Vlewed as the case of squared error loss with the posterior 1/(p(1 — p)), thus the Bayes estimator is X/n,
provided that we need to check that the posterior risk is finite if (a, X) = (—=1,0) or (8, X) = (=1, n).
E(L(p,a)lX =) o< fj((p—a)?p~+7(1 = p) 7" ~")dp.
12.3. Mlnlmax1ty
Definition. A decision rule ¢ is called a minimax decision rule if

sup R(0,6) = inf sup R(0,d), 1
R -0 = fo sup 1. M

where D is the collection of all nonrandomized decision rule. A decision rule ¢ is an equalizer rule if R(6, ) is constant
in 6.
Two typical methods for determining a minimax decision rule are given in the next two theorems.
Theorem 2. If§ is a Bayes and equalizer rule, then it is minimaz.
Theorem 3. If ¢ is admissible and is an equalizer rule, then it is minimaz.
Proof of Theorem 3. Suppose that the equalizer rule ¢ is admissible.
F: If § is not minimax then it leads to a contradiction.
By the 3 assumptions, 3 a rule d such that sup,y R(6,d) < supy R(6, ) (see (1)).
=> R(0,d) < supy R(6,d) < supy R(0,6) = R(0,0) ¥V 0. =>

R(0,d) < R(6,5) V0. (2)

Then § is inadmissible, contradicting the assumption that it is admissible. The contradiction implies that ¢ is
minimax. o

Proof of Theorem 2. Let § be an equalizer Bayes rule w.r.t. the prior .

F: If § is not minimax, it leads to a contradiction.

By the 3 assumptions, 3 a rule d such that Eq. (2) holds. It yields r(w,d) < r(w,0) Why ??

contradicting the assumption that § is the Bayes estimator w.r.t. w. The contradiction implies that § is minimax. o

Example 1. Suppose that X7, ..., X,, are i.i.d. from N(6,0?), show that the MLE of @ is minimax under the loss
L= (a—0)>2

Proof. The MLE is § = X. It is admissible

and with constant risk 0?/n Why 77

Thus it is minimax by Theorem ? o.

Remark. Under the set up in Example 1, the MLE 6 =X is UMVUE, consistent, efficient, admissible and minimax
(w.r.t. squared error loss).

Example 2. Suppose that X ~ bin(n,p) and the loss function is L = (C(L* p)* . Show that the MLE is minimax.

PU=p) 1 and thus it is an
np(l—-p) ~ n

Proof. p is the Bayes rule w.r.t the loss and the uniform prior. Moreover, R(p, p) =
equalizer rule. Consequently, it is minimax. o.

67



Remark. For bin(n,p), the MLE p is UMVUE, consistent, efficient, and is admissible and minimax w.r.t loss

g?:l)j). It yields the properties (7) and (8) of the edf.

Example 3. Suppose that X ~ bin(n,p) and the loss function is L = (a — p)?, is the MLE p minimax ?
Sol. F: p is not minimax.
In view of Th 2, try to find an equalizer rule of the form p = aX + b, as p is the same form.
R(0,p) = V(p) + (bias(p))?
=V(aX +b) + (a(np) + b — p)*
=a%np(1 —p) + (anp +b —p)? = —a’np?® + a®np + b> — 2pb(1 — an) + p*(1 — an)?
=p?[—(a®n) + (1 — an)?] +p[(a®n) — 2b(1 — an)] +b*> = b? (equalizer rule),
=0 =0

—(a’n)+ (1 —an)®> =0
=> —(a’n) +1—2an + (an)?> =0
=>a?(-n+n?) —2an+1=0

= q = 2ntv4an2+4n—4n2? _ 2n+v4n __ 1
- - 2(—n+n?) T 2(n?-n) T nkyn

(a®n) — 2b(1 — an) = 0 yields b = L-2’n

2 1—an
_ E/1/n
Thus b = TR
—4/1/n ~
2(1—+/1/n) p(0)
V1 5(0) = b > 0.

s P
Which b to choose ?

_ l/n _ _\ln (3)
14++4/1/ 2(1++4/1/n)’
R(p,p) = b = 4(1:\//?/7 < In = SUPyeio,1] R(p,p) = SUPpe(o,1] p(1—p)/n.

Q: Can we say that p is not minimax 77
Q: Can we say that p =aX + b is minimax ?
In view of Th 2, need to know whether p is Bayes.
Proposition 1. Suppose that X ~ bin(n,p) and L(p,8) = (6 —p)?. d(z) = nj_zj_ﬁ is Bayes estimator w.r.t.
beta(a, 8) distribution (and is admissible) for all «, 5 > 0.
Corollary. Let a and S satisfy Eq. (3), a = m and b = m i.e., a« = b/a and

B=7Thend=aX +b= nf_zi 5 is equalizer and is admissible and minimax.

Remark. For bin(n,p), the MLE p is UMVUE consistent, efficient, and is admissible w.r.t. loss (p—a)?p®(1—p)?,

a, 3> —1, and and is minimax w.r.t loss ;’Z - hut not (p — a)?.

Homework Due Wednesday.
Review : 3 statistical inferences:
(1) point estimation, MLE, MME, Bayes, UMVUE, consistency, SLLN, CLT.
(2) testing hypothesis, NP, LRT test, size and level of a test.
(3) interval estimation. {6 € I'}. Pivotal method, LRT method.
Point estimation.
Let X1, ..., X,, be a random sample from F'.
Recall that
(1) N, 0%): fx (%) x exp(S0, Xids — Y7 X221)
) Cammal, 3 T oxp( £ Tl T g )
(3) bin(1,p): fx ocexp(3o;; Xilog 1)
(4) NB(r,p): fx ocexp(72, Xilog(1—p) [T, (7
(5) Pois(A): fx ocexp(d i, X;logA)
UMVUE of E(X) is i = X. Why ?
(6) beta(a, B): fx o exp(3oi,(a—1)log X;+(8—1) 3_7_, log(1—X;)) The UMVUE of E(X) is E(Xlog X, log(1 — X))I
Why ?

he

(7) U(0,b): The UMVUE of E(X) is o = "t X,,/2, not X. Why ?
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A special case.
Let X ~ Multi(n,p), P = (p1,05). FX(X) = (4, oyt vra) [l -
Does it belong to the exponential family ?
FX) = (ot 2) €XP(E0—; ilpy)
What is the MSS of p 7
FxX) = (o 2 PR exp(S ailn(pi/ps))-
What is the UMVUE of p 7 Why ?
A3. Asin Example 10.3.4, with X ~ Multinomial(n,p1,...,p5). Set Ho: p1 = pa = p5 = 0.01, p3 = 0.5 v.s. Hy: Hp
is not true.
a. Derive the likelihood ratio test for n = 1 and n = 36 with level a = 0.05.
b. Give an estimate of P(H,|H;) when p; = ps = p5 = 0.02, p3 = 0.4, n = 36, using simulation. Present the
program.
c. Compute (not estimate !) P(H,|H;) when p; = ps =ps, p3 =04, n = 1.
Sol. a. Two ways to describe X ~ Multinomial(n,p1,...,ps) when n = 1:
(1) X = (le X?a X37 X4a X5)7
Ix(x)= mpflp?pgspﬁ“pg% a7

Ty=1) 1(y=2) 1(y=3) L(y=1) 1(y=5 poify=1
2) fy(y) = p; (y= )p2 (y= )p3 (y= )p4 (y= )p5 (y=5) _ {
ps ify=5
3) e 1 2 3 4 5
Jy(): p1 p2 p3 p3 ps
Which is more convenient ?
If n =1, LRT: ¢ = 1(A < ¢) with Ep(¢) < 0.05, p under Hp.

001 if X € {1,2,5}
A= Lf ifX =4 = 0.01X1 X2+ X5 47X 550
0 if X =3

=> ¢= l(Y € {1,2,5}) = 1(X1 + Xo+ X5 = 1)

Details:
! Tr1, To, T3, T4, Ts
X (%) = s meat Pl P2 P Py s,
Py = (0.01,0.01,0.5,0.47,0.01),
f) = X/n (: (Xl,XQ,Xg,X4,X5)/’I’L> Why ?
Xi ~ bin(napi)a
Ifn=1,
X X X X X
A= 0.01)(15(2.10)1(;{22(;?3;%?17)(535 2 0.01 X1+ X2+ X5 47X4() 5Xs
=1\ <e¢),
E(¢) = P(\ < ¢) < 0.05.
{0.01 X1 +Xo+X5=1
A =

047 if X4=1
0.5 if X3=0.5
¢=0.05? 0.01 7°0.02?

(Ifn=367... ¢ =1(—2In\ > X3 9.05)

e 1 2 3 4 5
Ty () : P1 P2 2] P3 Ps
3) Po: 0.01 0.01 0.5 0.47 0.01
pir Uy=1) 1Ly=2) 1Ly=3) Ly=4) 1y=5)
A 0.01 0.01 0.5 0.47 0.01

¢ =1(Y €{1,2,5})
C.
P(Ho|H,) =1-P(Y €{1,2,5}) =1-P(X1+ Xo+ X3 =1) = 1—-3p, p € [0, 3], when p; = po = p5 = p, p3 = 0.2.
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If do not impose p; = py = ps, p3 = 0.4, P(Ho|H,) =1—P(Y € {1,2,5}) =1—p1 —p2—ps, p; > 0 and Zle p; = 1.
It is a function of (p1,...,p5) under H;.
Interval estimation.
Q: The covarage probability and confidence coefficient of {6 € I} ?
P(0 cI),infg P(0 € I).
Let Xy, ..., X,, be ii.d. from N(u,0?).
The confidence interval for j is X + ta/g,n,ls/\/ﬁ. I =7 6= 7 Its confidence coefficient ?

P(X - ta/Z,n—ls/\/ﬁ <p< X+ ta/2,n—1S/\/ﬁ) = P(|%| < toc/2,n—1) =1l-o
Let X1, ..., X, be iid. from Exp(u).

P(X —1.96X/y/n < pu< X +1.96X/y/n) ~ 0.95 for given p.
Does its confidence coefficient ~ 0.95 7

Not always.

P(X —1.96X/y/n < p < X +1.96X/y/n) = P(X(1-1.96/y/n) <1< X(1+1.96/v/n)) = Pgairom < X<

"X %ﬂ gn—le—w
m) = P<1+1.E?6/\/ﬁ < ZZ? < 1—145?6/\/5) = % T(n) dz.
> n=100
> pgamma(n/(1-2/sqrt(n)),shape=n)- pgamma(n/(1+2/sqrt(n)),shape=n)
[1] 0.949306

Does its confidence coefficient ~ 0.95 7

Example 2. Suppose that X ~ bin(n,p), n = 3. Observe X = 1. p£1.961/p(1 — p)/n yields % + 1.96\/5. (a) Is
it a 95% CI for p ? (b) How about if X =1 and n > 20 ?

Sol. Confidence coefficient of CI = inf, P,(p € I). 77?7

The CI is of the form

0+0 if X =0 [0,0] if X =0
po ) FELOVERT WX =1 0 gk X =1
] 2+£1.96/2/27 if X =2 3 —a1] ifX=2 2o
1+0 if X =3 [1,1] ifX =3
i-a<0<2-a<i+a<l<i+a
The coverage probability is P,(p € I)
P,(X=0o0r1l) ifp=0 (1-p)?* ifp=0
Py(X =1) ifpe(0,2—a) 3p(1—p)? ifpe (0,2 —a)
={ P(X=1o0r2) ifpe[%—a,%—i—a]: 3p(1 — p) ifpé[%i—a,%—ka]
P, (X =2) ifpe(5+a,l) 3p*(1—p) ifpe(5+al)
P (X =2o0r3) ifp= 3 ifp=1

Confidence coefficient of CI = inf, P,(p C I) = 0.
{0} ifX=0

L+1.96,/%5  ifX=1

n

(b). The approximate 95% Cl is I =

n3

2 £1.96(/2052 if X =2

The coverage probability is
P,(X=0orl, or) iftp=0
Py(pel)= P, (X#0and X =1, or...) ifpe (0,a), wherea <1

Confidence coefficient of the approximate 95% CI = inf, P,(p C I) = 0.
Does its confidence coefficient ~ 0.95 ?
Homework solution.
Homework Solution Week 15
1. Answer the following questions:



Xy, ..., X,, are i.i.d. from Cauchy,

(A) B(X)=7
0, 00, DNE.
f@)=(r(1+ (2)?) ' and [ af(z)de =0 as zf(x) is odd ??
Remark. [ g(z)dx exists => [ |g(x)|dz < oo for all .
75 |zl f(z)de = 2In(1 + 2%)|§° = oo.
(B) X% ux ? (Yes, No, Not sure, explain).
No, as ux does not exist.
(C) vn(X — ,uX)£>N(O,7'2) ? (Yes, No, Not sure, explain).
No, as ux does not exist.
(D) F(t)“53F(t) ?
Yes, by SLLN, as E( (1)) = F(t).
(B) va(E(t) — F(£)->N(0, F(t)(1 - F(1))) ? .
Yes By CLT, as V(F(t)) = F(t)(1 — F(t))/n < oo and E(F(t)) = F(t).
(f)o%, =7
F(t)(1 = F(t)/n.
(8) 0%y =7

F(t)(1 = E(t)/n.
(H) & Q(t) =07

Proof (1): Yes, as 62, = F(t)(1 — F(t)) LE%P(t) x (1 — F(t)) x 0 = 0 by the continuous mapping

F(t)
theorem with g(z,2) = 2(1 —z)z. x,z = 7 Is it OK ?
Proof (2): Yes, as |&%(t)| = \w\ <ilo
Q) ’ILO'F( )—> ?
né2  LB(F()(1 - F(t)), ...

Th)

as g(r) = 2(1 — z)) is cts and n5?
(J) Vin(6%,, ~ a;(t))i ?

Delta method: Let g(x) = (1 — z), then O'F(t) %g(ﬁ(t))

Vin(%, — o2 ) = Vla(P (1) - g(F(1).

V(g(F (1) = g(F(1))) =N (0,72), 72 = (1= 2F(1))*F(t) (1 — F(#)).
(K) E(52,) =7

= E(F(t) — (F(t)
E(6%,,) =B -

E(Y —(UY

) =g(Y), where Y = F(t).

2)//n = (F(t) = (F(t))*)/n 77
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My (t) = B(e!) = (B(e¥)" = (q + pe)".
Consider either of tglese two methods:
(1) BW®) = <55 9.
(2) EWW - 1)(W - 2)) = Zk _ok(k—1)(k—2)(3)pFq" 7", ...
EW(W —1)(W —2)) = E(W3) —3E(W?) + 2E(W).
Do R(k — )(’€ 2)(M)pkqm*
= Y=g k(k = 1)(k —2)(})p*q" "
=2 p=snl(n — )( - 2)G=pte T,
Similarly for E((Y)4).
E(Y)Y) = 5z EWW = 1)(W = 2)(W = 3)) — --- + 6E(W)]
= M (0)
= B[l — Tp + Tnp + 12p* — 18np? + 6n?p? — 6p° + 11np® — 6n%p* + np).

. D
(m) V(6 = 0p@)— 7
Ans. 0, as

V(G = 0pw) = JeVi( FO) 1 = F(t) = /F)(1 = F(#))) = Wy Zy,, where W, = - and

= Va(EWQ ~ F#) — VFO -~ F(0

= Vilg(E (1) — g(F(£)) =N (0,72)
and g(z) = /x(1 — z).
A3. Asin Example 10.3.4, with X ~ Multinomial(n,p1,...,ps). Set
Hy: p1 = p2 =ps =0.01, p3 = 0.5 v.s. Hy: Hp is not true.
a. Derive the likelihood ratio test for n = 1 and n = 36 with level @ = 0.05.
b. Give an estimate of P(H,|H;) when p; = ps = ps = 0.02, p3 = 0.4, n = 36, using simulation. Present
the program.
c. Compute (not estimate !) P(H,|H;) when p; = ps =ps, p3 =04, n = 1.
Sol. a. Two ways to describe X ~ Multinomial(n,p1,...,ps) when n = 1:
(1) X = (Xl,XQ,X37X4,X5)
X (X) = s P P P s s s e 77

Ty=1) 1(y=2) 1(y=3) L(y=1) 1(y=5 p ity =1
2) fy(y) = p; (y= )p2 (y= )p3 (y= )p4 (y= )p5 (y=5) _ {
ps ify=5H
1 2 3 4 5

@) 7 :
fy(y): p1 p2 p3 p3s Dps
Which is more convenient ?

If n =1, LRT: ¢ = 1(A < ¢) with Ep(¢) < 0.05, p under Hp.

00 i Y € {1,2,5}
A= oAy gy = 0.01% TX24X50 47X40 5%5
05 iy -3

=> (ZS: 1(Y S {1,2,5}) = 1(X1 + Xo+ X5 = 1)

Details:
X(X) = s P PSR s P ps
Py = (0.01,0.01,0.5,0.47,0.01),
IA) = X/Tl (: (Xl,XQ,X37X4, X5)/n) Why ?

Ifn=1,
X X X >'¢ X
N = 001)2210)1(}(220)(0}%3;0)(37)(405 8 0.01X1+X2+X5() 47X2() 5Xs
6=1(A<c),

E(¢) = P(\ < ¢) < 0.05.
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047 if X, =1
0.5 if X3=1
c=0.057 0.01?0.02?

{0.01 ifXi+ X+ X5=1
A=

(Ifn=367 ... ¢ =1(—2InA > x3, o o5.)

y: 1 2 3 4 5
Ty (y): P1 P2 D3 P3 Ps
(3)  Po: 0.01 0.01 0.5 0.47 0.01
pi: ly=1) 1y=2) Ly=3) Ly=4) 1(y=5)
A 0.01 0.01 0.5 0.47 0.01

6=1(Y € {1,2,5})
c.
P(Ho|H)=1-PY €{1,2,5}) =1-P(X1 + Xo+ X5=1)
=1-3p, pe[0,55], when p; = po =p5 = p, p3 = 0.4.
If do not impose p; = p2 = ps, ps = 0.4,
P(HolH)) =1—P(Y €{1,2,5}) =1—p1 —p2 —ps, pi > 0and 30, p; = 1.
It is a function of (py,...,p5) under Hj.
b. How to get one sample (X7, Xo, X3) ~ Muiltnomial(7,p1,p2,p3) ?
p=c(1,4,5)/10
x=rmultinom(1,7,p)
]
11061
How to get 20 samples (X1, X2, X3) ~ Muiltnomial(100, p1, p2, p3) ?
x=rmultinom(20,100,p)
x[,1] =7
Dimension of x 7
P(Hy|Hy) = ? by simulation:
Choose one p under Hy, generate data and do the LRT test. Repeat 20+ and get the average.
In your report of simulation, report the value of the parameters and sufficient statistics.
3. In each of the cases in the three problems (40, 41, 48), generate a sample of size 100 and construct the
specified 95% CI in the problems. You should state your assumption and give the sufficient statistic.
7rnbinom
7rpois
?7rmultinom

10.48. Let U; (= (X;,Y;))’s be iid. from N(,3),

where (u,3) are parameters. CI for 0 = pg/p, 7

Sol. Two ways: (1) MLE, (2) Z =X —6Y.

(1) MLE: The MLE of the parameters are (fi,¥), where i = (X,Y) and & = U'U — UU.

The MLE of 6 is 6 = % (= ¢(U), where g(x,y) = z/y).
vg:(l/iya_i/yi)A . R
62 =(1)Y,-X/Y)%(1)Y,~X/Y)t/n. Thus, the CI of 6 is § + 1.96v/52.
(2) Since Z;’s are i.i.d. from N(0,0?%), as E(Z) = p, — O, = 0.

T= Szf\/ﬁ = &Z/\Z/m ~ tn_l distribution.
Solve 6 for ﬁ =ty 1.0/2-

Z =X —0Y and

62 =72—(2)*=6% -20XY - X -Y) + 0%6% (1)

(X = 07)? = (tn_1.02)%(6% — 20(XY =X -¥) +626%)/(n — 1)
This gives the endpoints of the CI for 6.
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(3) From —t,,_1,4/202/v/n—1< X —0Y < th—1,0/202/v/n — 1 yields

tn—l,a/Qa—Z/Vn_ 1 tn—l,a/Qa—Z/\/m
Y Y

[

X
<Hh< =+
- TY

Is this a CI for 6 ? (see Eq. (1)). o
In report of your simulation, report the value of (x,3) and (U, X).
2. Prove statement (11): The edf F' is inadmissible w.r.t the loss function

L(F.a) = / (F(t) — a(t))2dF(t)

and the parameter space being the collection of all continuous cdfs (Aggarwal (1955)). Hint: Fis of
the form

d(t) = a;i1(Xa) <t < X(i41)) (1)
=0

where X = —00, X(1) < --- < X(y) are order statistics of X;s and X(,,11) = oo. Compute R(F,d) and
find the one that minimizes R(F,d) over all possible d(-) as in Eq. (1). You can try n = 1 first.
11. F is inadmissible w.r.t the loss function

L(F,a) = / (F(t) — a(t))2dF (1)

and the parameter space being the collection of all continuous cdfs (Aggarwal (1955)).
Prove statement (11). Hint: F' is of the form

d(t) =Y a;1(X) <t < X(ii1)) (2)
=0

where Xo = —00, X1y < - < X5,y are order statistics of X;s and X(;,,41) = oo. Compute R(F,d) and find
the one that minimizes R(F),d) over all possible d(-). You can try n =1 first.
Proof of Part 11. Consider n = 1 first. F is of the form d(t) = a + b1(X < t) or

d(t) = apl(t < X) + a1 1(X < t) (1)

R(P.d) =E( [ (d(0) - Ftydr ()
:E(/(aol(t <o)+ al(z <t)— F(1)2dF(t))
://(aol(t < 2)+al(e < t) — F(t))2dF()dF(z)
://(aol(t < 2)+ al(z < t) — F(t))2dF(z)dF(t)
=/01 /01(a01<u< y) +arlly < ) - wldydu (y = F@), u=F(b)

:/01 /Ol(aol(u <y) —u)’dy + /Ol(all(y <) —u)’dydu

1 1 u
:/ / (ao—u)Qdy—i-/ (a1 —u)*dydu
0 u 0
1

:/ (1 —u)(ap — u)? + ula; —u)’du

0
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Now try to minimize the risk of this form. Taking derivatives w.r.t. ag and a; yields

0= [y (1 —u)(ag —u)du and 0 = [; u(a; — u)du. Thus

T(2)0(2) T(1 +2)

[ ' _B(22) _
aof/o (17u)udu//0 (1 —w)du= B(1,2) - T(2+2) (@)

—1/3

a1:/0 u du//0 udu = B(3,1)/B(2,1) =2/3

One can verify that (ag,a1) uniquely minimizes R(F,d) of the form (1), thus F is inadmissible.

For arbitrary n,

n
d(t) = ail(Xa) <t < X(iq1))
1=0

where Xo = —00, X(1) <--- < X, are order statistics of X;s and X, ;) = oc.

R(F,d) = B( / (d(t) — F(t)*dF (1))

—5( / (3 al(X) <t < X)) — F(D)2dF(2))
1=0

= B[ (@1 < 1 < Xw) — FOPAP()
1=0

> [ [ [t <t <o) - FOPIFQIF@)- ()
i=0

! ; / / - / e (@ = FOPAP@AF @) - dF ()

n 1
=n/! E / e / / (a; —u)?dtdx, - - - dx,,
i=0 0<z <<z <t<wijp1< 2, <1 JO

n 1
2
:n!E /// (a; —t)°dxy -
i=0 0 0<z < <2 <t<wjp1 < xpn <1
1

; (?)/O t(1—t)" " (a; — t)dt

=0

Taking derivatives w.r.t. a; and setting it to be zero yield

/1 t'(1—t)"""(a; —t)dt =0
0

a;=B(i+2,n—i+1)/B(i+1,n—i+1)
It canlshown that a; = :sz Auniquely minimizes R(F,d) for form (2).
S 21(X(;) <t < X(i41)). F is inadmissible. o.
Homework solutions for week 1

5.14. Let Z;’s be i.i.d. N(0,1) and X; = 0,;Z; + p1;. Suppose that

0=Cov(}yj_yaijZj, 3 51 b Zs) => 35y ai;Z L 305 brj Z;),
then

0=Cov(3 7y aiX;, 35—y by X;) => 30 ai Xj L 370 brj X;).
Sol. Notice that (1) Cov(aX + a, Y +b) = apfCov(X,Y) and
(2) oy @i Xy, 205y by X;)
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Since F is of form d and F =



= (Z? 105 (05Z; "‘NJ) Z; 1 brj(052Z; +NJ))

(Z;L 105”Z +ZGUM7,Z] 1ﬁmz +Zbr7,u])~

j=1 j=1
N—_——— N———

constant constant

Thus it suffices to show that
Z?:l wijZj L Z?:l BrjZ;
Now 0 = Cov(}]}_, aijZ ZJ 1 0rjZ) = 370 aijbyy and
0= Cov(}_7_; ai; X;, Z]:I brj X;)
= COU(Z; 105 (05 25 + p1j), Z?:l brj(0j 25 + 1;))
= COU(Z 10ij05 25, Z;’L:I brjo;Z;)
= CO”(Z;:1 @ijZ 722;1 BriZj)-
Thus 377y i Z; L 325 BriZ;
=>3" aX; LY b X
5.38. (b) Let X;’s be i.i.d. ~ X. Write S = 5,, = >, X;. Show that if E(X) < 0 then thereis a ¢ € (0,1)
with P(S, > a) < c".

Sol. Counterexample. Let X ~U(—-1,0),a=—-2and n =1,
then P(S, >a)=1¢c", ¥V ce (0,1).
Correction.

Mx (t) = Mx(0) + M’ (§)t (where £ € [0,1])
~1+tE(X) <1 (ift = 0+) Why 77
P(S >a) <e ®Mg(t) if t > 0,
=e U(Mx(t)" = (Ae/{ft(/(fb)) = ", where ¢ = J\i’f/(ﬁ) € (0,1) and ¢t = 0+,

which is possible if a > 0 or 0> a > Llog(Mx(t)) and t ~ 0+.
5.42. (a) X; ~ beta(1, ), v =7 so that n”(1 — X(,)) 2 some Y.

(b) If X; ~ Exp(1), find a sequence a,, so that X, —a, 2 some Y.
Sol. 1. Y,, = Y if lim,_,o Yy (w) = Y(w) V w €  (the sample space).
2. Y,y if P{|Y,, - Y| = 0}) =1
3. Y, BV if limyoo P(|Y, = Y| > €) =0V € > 0.
4. YngY if lim,, o0 Fy, (t) = Fy (t) for each cts point ¢ of Fy.
(b) P(X(n) = an < t) = P(X(n) < t+ay) = (1 — e Ham))m = (
e =n. Any restriction on ¢t ?

(a) P(n"(1 = X)) <t) = ... or

P(n"(1=X () > t) = P(X(n) < 1—t/n¥) = {1=[1—=(1=t/n")]P}" = (1—(t/n")?)" = (1- 25" — ¢
if t >0 Why ? and v = 1/8.

Fn”(le(n))(t)&Fy(t) =1(t>0)(1— e_tB) 29
(1 = X(y)—2Y (Weibull distribution) 72
5.43. Proof of the Delta method. v/n(g(X) — g(1)) =N (0,0% (¢'(1))?) if

(1) p = E(X),
(2) ¢’ is continuous at p and
(3) g'() # 0.

Proof. \/n(g(X) —g(p)) = vng'(u)(X — ) ? _
Vig(X) - g(1)) = Vg ()X — 1) + R (R = remainder = o,(X — 1)) ?
Vn(9(X) — g(p) = ¢'(€)v/n(X — p), where £ is between p and X ?
Q: Is £ random ?
Ve > 0,36 >0 such that |¢'(X,) — ¢'(1)| < € whenever | X,, — p| < 4.
{19/ (Xn) = /()] < €} > {|Xn — sl <3},
{19'(6) = g'(w)| < e} D{I€ — pl <} D{|X, — pf <0}
P9 () ~ g/ (1)) > &) < PX =] > ) = 0¥ e > 0.
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P(lg'(€) —g' ()| =€) < P(IX —pu| > 8) = 0V e>0.
=> g'(6)-"2g' ().
Via(g(X) = g(1) = ¢ V(X — 1)-25¢' (1) Z, where Z ~ N(0,0%).

Yo Zn—yZ

) :>>VHZY42+AKVf]h02)???
~Y,) —0.25)— —41 X3

n(g(Yn) — g(OE)) = —(V(Yn — 0.5))2 = —0.5%(y/n Y0 ) '

(J<Zs¢3=<ﬂ
=> 22 -3 7?7
Additional problem. I: If X,,“% X and g is continuous, then g(X,)%%g(X).
Proof. Q: Which proof is correct 77
1. Since {X,, —» X} C {9(X,) = g(X)},
= P({Xn = X}) < P({g(Xn) = g(X)}) <1. 0
2. Ve>0,33d > 0such that [g(X,) — g(X)| < € whenever | X,, — X| < §. Thus {|g(X,) —g(X)| <€} D
{IXn — X| <6}
> P(g(Xa) — 9(X)| < &) = P(1X, — X| < 8) 1
=> P(|g(Xn) —g(X)| <€) =>1Ve>0.
9(X )“ g(X) 777
9(Xn)Trg(X) 772
Remark. P(|X, —X|>¢)=>0Ve>0iff P(| X, —X| <€) = 1Ve>0.
P(X, = X)=P(X,—X|—0)
Additional problem. F: If Xni>X and g is continuous, then g(Xn)Lg(X).
Proof. Q: Which proof is correct ??
1. Ve> 0,36 > 0 such that |g(X,,) — g(X)| < € whenever |X,, — X| <. Thus {|g(X,) —g(X)| <€} D
{IXn — X| < 6}.
=> P(|g(Xn) —g(X)| <€) = P(|Xy — X[ <0) =
=> P(|g(Xn) —g(X)| <€) =1V e>0.
=> P(|lg(X,) —g(X)| >€) >0V e>0.
=> g(X,)—g(X).
2. Since X isar.v., V1 >0, 3 a > 0 such that P(|X| > a) <.
Ve > 0,36 >0 such that |g(X,,) — g(X)| < € whenever |X,, — X| < ¢ and |X| < a. Thus {|g(X,,) —
9(X)| < e} D{\X - X| <6, [X] < a}.
=> P(|9(Xn) — g(X)| <€) > P(|Xn — X[ <0) =0V e, > 0.
n) —g(X)|<e)—=>1—-nVen>a0.
) —g(X)| <€) = 1 letting n — 0.
n) —g(X)|>e)—=>0Ve>0.

Remark. P(| —X|>e)>0Vex>0iff P(|I X, —X|<e€) = 1Ve>0.
P(X, - X)=P(X,—X|—0)

9.17. CI for § based on X1, ..., X,,. (a) f(z;0) = 1(z — 0 € (—=0.5,0.5)). (b) F(X;0) = 222/6*1(z € (0,0)).
Sol. ( ) The MSS of 6 is ( 1),X(n))
as fx( X) = ( 1) >60-0.5 y X(n) < 6+0.5).

T = X, — 0 is a pivotal.

Fr(t) = (t+0.5)"1(t € —0.5,0.5) + 1(¢ > 0.5).
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fT(t) =N

(t+0.5)""1, ¢t € (—0.5,0.5), with mode at 0.5.

Choose b = 0.5 and (a + 0.5)" = o. That is, a = (a)= — 0.5.

a< X —0<05
Question: Can we choose (Frp(b), Fr(a)) =

(b) X(y) is the MSS. T' = X,y /0 is a pivatol.
Fr(t) = ( )2"1(?5 E (0 1.
fT( ) = 2’)’Lt2n y ( 5 )
Choose b =1 and Fr(a) = a®" =
a< X(n)/9 <1

Additional. before Chapter 9

(1—-a/2,a/2) 7

(b) Redo the folllowing problem and compute P(Ho|H;) explicitly:

Carry out the following simulation project.

1.b.1. Use R to generate 5 observations from N(1,1). Now pretend that you only known that the data

were from N (p, o) without knowing p and o, use t-test to test Hy: pu =

0.1.

Sol. The LRT test is ¢ = 1(|T| > tn—1,0.05), where T =

Since X ~ N(1,1),

X ~ N(1,1/V5),

48% ~ x%(4) = Gamma(2,2),

X 152

fs2(t) :i 2/2 e t8 t>0.
P(Ho|H,) = P(T € [~ t4,o.05,t4,0.05])
= P(X € [~t1,0.055/V5,t1,0.055/V5))

0 v.s. Hi: p# 0 with a size

=to

Xopo (see Ex 3 in §8.2)

S/Vn

t

= I f_‘;;;jﬁ;@7 (@) (y)dyd
= fttf:; y)dy where fr is given in #8.35(b)
3 / \/ﬁ is called non-central t-distribution with parameter p and df n — 1.
It can be obtained numericall in R:

> n=>»y

> df =n-1

> sigma=1

> mu=1

> ncp = mu
> q=qt(0.05, df, ncp=0, lower.tail = F)
> b=pt(q, df, ncp, lower.tail = TRUE)
> a=pt(-q, df, ncp, lower.tail = TRUE)
> b-a

[1] 0.4200955 # = P(Ho|H,)

> 7z=0

> m=10000

> for (iin 1:m) {

+ x=rnorm(n)+mu

+ y=t.test(x)

+ z=z-+as.numeric(y$p.value > 0.1)
+}

> z/m

[1] 0.4189 # = P(Hy|H,)
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[1] 0.4156 # = P(Hy|H,)
For m = 100, it results 0.36, 0.43, 0.44, 0.53, ...

Recall the SLLN. X — E(X) a.s. X;= ??
For submitting homework in simulation,
1. Put the command in a file called hw8.r
2. R ——vanilla < hw8.r > output8
3. Edit the file called output8 by answering the question in the problem.
4. mail qyu@math.binghamton.edu < output8
A.1. Discuss whether the following solutions are correct for
7.12. Compare the MLE 6 = min{X,1/2} and the MME 6§ = X.
Sol (1). MSE()) = {E((X —0)?) iHo=X _ {9(1 —0)/n fo=X
E((0—-1/2)%) ifo=1/2 (0—1/2)% ifo=1/2

. ~ 0 Hh—X >0 if6=0
MSE(H)—MSE(G):{ 9 e <0 if6=1/2
0-1/2)*—-01—-0)/n ifH=1/2 otherwise
Thus none of theNm is better than the other in terms of MSE.
Sol (2). MSE(f) = Y00 — 5" (1 _9)2(")gi(1 — §)"".
MSE(H) = Zign/2(i - 9)2(?)9i(1 - e)n_i + Zi>n/2(% - 9)2(?)9i(1 o e)n_Z
) 5y _ 1 2 L o (M i i [=0 if0=0
MSE(0) — MSE(f) = .;2[(2 —0)? = (~—0) ](i)e (1—10) { <0 if0e (0,12
Thus the MLE is better than the MME in terms of MSE.
Answer: R
A E(X —6)?) fG:Y
MSE(0) = 1
O={ 5wy 1521y W

Comment: Eq.(1) => E((d — 0)?) is a random variable. This is wrong !

E((6 — 0)?) is a function of 6.
e.g. if X ~ N(u,1), then E(X) = u is not a random variable.

poif X € A (a set)
2 ifu=2
E(X) = poif =2
2 if0=p=2
A.2. Question related to #7.14. Recall W ~ bin(1,p), with df. f(t) = P(W =1t) = {2 ﬁ i B (1) Answer

the following questions:
f@&)=pift=1. Yes, No ?
f&)=pif W=1. Yes, No ?
PW=t)=pift W=1. Yes, No ?
PW=t)=pift=1. Yes, No ?
({weQ W(w)=t})=PW =t)=pif W=1. Yes, No?
PlweQ: Ww)=t})=P(W=t)=pift=1. Yes, No?

Notice that Z = {X fW=1

Y ifW=0.
PZ<t)=1-P(Z>t)=1-PX>t,Y>t)=1-P(X >t)P(Y >1).
P(Z<t,W=a)=PX <t,W=1)ifa=1 Yes, No?
P(Z<t,W=a)=PX <t,W=1)if W=1 Yes, No ?
PZ<t,W=a)=PX<1,W=1)ift=1=a Yes, No ?
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PZ<t,W=a)=P(X<t,W=1)if Z=X Yes, No ?

Answer: f(t) = PW =t) = Plw e Q: W) =1t) = {Z iii :(1) is not a random variable, but a
function of t.
q ift=0
ft) iEw=1
f6) = F0) ifw=1
flz) ift=x
fit) ifa=1
A.3. What is the connection between A.1 and A.2 7
Given random variable X,
E(X) and P(X € A) are constant, not random variables.
They do not change accoring to values of X, as in
Sol(1) in A.1 and the statement “f(t) =0if W =1".
Homework Solution
6.9b. Find MSS for 6§, where f(2;0) = e~ =9 2 > 6.
Sol. Two solutions:
1. fx(X) = H?:l 671i+91(Ii > 9)
=e e 1(zq) > 0).
T = X(l) is MSS, as
x(x) = ¢ M=) L) ) is independent of 0 iff z(;) = y(1). (1)

xly) 1(y) > 0)

n —2it0q (.
Ix() _ Ilizie (#: > )\ independent of 0 iff x = . 2)

fx)  ILo e 1y > 0)

Anything Wrong 7?7

Eq. (1) is correct, but needs justification as follows.
If T1) = YQ) then

X(X)/fX(Y) = e (@ y)% = @) ig independent of 8. OW,
1

fx(X) (7 1(1‘(1) > 0) _ e~n@-9) > if 0 = [ A y(l)]
x) Ly >60) | oollyn) <z if 6= "0 0

whereroo:Oand%:L%:oo.
Eq. (2) is incorrect and a counterexample is as follows.
Ix®)/fx(y) = e’”@’@% = ¢ (@Y is independent of 6 if z(;) = y(1) and z(2) = y(2) + 1 and
thus if x # y.
Thus X is not a MSS. )
#6.9. (c) Let Xy, .., Xy ~ f(2 — 0), where f(x —0) = 220, Show
T = (X(l), ...,X(n)) is MSS.
Proof. WLOG, assume z1 < -+ < xp and y1 < -+ < Yn.
[Tizs f(@i6) = exp(= 320 @i + nf) [L, (1 + exp(=(z; — 0))) 7
. n T 1+ex n—0
Since [Ty f(r::60)/f (yi30) = "0 [, Hrobo—t,
[T, f(zi:0)/f(yi;0) does not depend on 0 iff ;) =y i € {1,...,n} Done ?
Need a proof!
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T, f(.%‘(i);e)/f(y(i);e) =6
(1+exp(—(y)—0)))? .
iff TTim1 Trep—teca=onz = &

. (1+exp(—(yi)—9))) .
1ﬂ:“Hz-zlm—fw’

14+exp(—
iff Hz 1 1+ex§( zi ;)99 \[ v o;

exp(y(i )+8 ) — _
i T {omooyren) = exp(ng — nZ)v/e = a ¥ 0;
Yiy+o0

(a =limg_o0 [Ti—, 2 T0 = 1, where (t; = e, s; = e¥%, n = €?));

+n
lﬂHz 1:2))4-7] 1V777527t1>0;

iff TIi_ (s +n) =1Lz (bay + 1) ¥, 80t > 0
(both are polynomial of degree n in 7);
iff Ly = S() Vi iff (i) = Y(i) Y i.
Previous proofs make use of two results in complex analysis:
(1) Y aix’ = Y7o ba” iff a; = b, for all .
(2) Y gaixt = e[\, (x — ¢;), where ci, ..., ¢, ¢ ares uniquely determined complex numbers.
Additional homework.
AL Let X ~ N(0,1),
W ~ bin(2,0.1),
Y ~ bin(1,0.5)
X, W and Y are independent.

g={X Y=1
W ifY =0.
P(Z<t)=P(X<t,Y =1)+P(W <,Y =0)if ¥ = 1. Yes, No ?
. _JPX<tY=1) ifa=1
P(Z <tY = )_{P(Wgt,Y:O) fa Yes No?
=P(X<t,Y=a= )+P(W<tY—a—0)Yes,No?

P(Z<t,Y=a)#£P(X<t,Y=1)if YV =1. Yes, No ?
P(Z<t,Y=a)=P(X <t,Y=1)ifa=1. Yes, No ?

Are statements 3 and 4 equivalent 7 Yes, No.

3. {w:we (0,3)}if w>2

4. {w:we(0,3),w> 2}

Are the sets in 3 and 7 the same ? Yes, No.

7. {u:ue(0,3)}ift>2

Are the sets in 3 and 8 the same ? Yes, No.

8. {r:ze(0,t)}ift=3

9. P(Z<t)=Pw: Z(w)<t)=Pw: X(w) <t)if Y =1. Yes, No ?
# 6.5. X1, ..., X,, are independent. fx,(x) = 1(”6(_“"2;5)’“9+1)”. A two-dimensional sufficient statistic for 6 ?
Sol.

L£(0) =[ J1(x,€(=i(6-1),i(6+1))): i€{1,....n})

=
<

[y
S

«
Il
-

7

|

Il
N

} ( 16( (6—1),(6+1))): ie{1,...,n})

| = ‘H
Qb

1(%71e(79,a)): ie{l,...m})

Jamp
[\

N

)

©
Il
-

} (max; | £ —1]€(0,0)))

‘ -
<b

«
Il
-

Thus T' = (max; \% —1],0). In fact, max; |% — 1] is MSS for 6.
Solution to Additional Homework.
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# 6.8. Let X1, ..., X, beiid. ~ f(x —6), where f(-) is a df. Show T' = (X(y),..., X(5,) is MSS.

Sol. Discuss whether the following two solutions are correct (give your reasoning).
Solution 1. Let f = 3 exp(—|z|), then it is shown in Exercise 6.9.e that T is MSS for f(t — 6).
Solution 2. The statement is a wrong statement. It suffices to give a counterexample as follows.
Let X; ~ N(0,1), then X; ~ f(z —0) with f(z) = \/%exp(—ﬁﬂ). An MSS is X, T is not a function of
X. Thus T is not MSS.
Correct solution. There are two interpretations of the problem.
(1) Ouly 0 is a parameter, though f is an arbitrary given density. (T is MSS for 0).
(2) Both f and 6 are parameters. (T is MSS for (f,0)).
In case (1), it is a wrong statement. Thus Solution 2 but not 1 is correct.
In case (2), it is a correct statement. Thus Solution 1 but not 2 is correct.

It suffices to show that given T'(x) # T'(y), we can find (f1,61) and (f2,602) such that

HLI Ja(x(s)—02)
H:Zl f2(y@)y—02)

H:Zl fi(zy—61) ”)
szl F1(yy—061)

In particular, let f; = fo = %exp(—|x|) and let f; and 65 be as in #8.9.c. o

# 6.8. Let X1, ..., X, beiid. ~ f(x —6), where f(-) is a df. Show T' = (X(y),..., X(5,) is MSS.

Sol. There are two interpretations of the problem.
(1) f is not a parameter, but 6 is. (7' is MSS for 6).
(2) Both f and 6 are parameters. (T is MSS for (f,0)).

In case (1), it is a wrong statement. Counterexample. o o
Let X; ~ N(6,1), then X; ~ f(x —0) with f(¢) = \/% exp(—z2/2). An MSS is X, T is not a function of X.
Thus T is not MSS.

In case (2), it is a correct statement.

It suffices to show that given T'(x) # T'(y), we can find (f1,61) and (f2,62) such that %

ieq S =01
H:Zl Ja(z(y—02)
szl f2(yiy—02) "
#6.9. e. b Let Xy, ..., X, ~ f = 2e7 1700 T = (X(y), ..., X)) is MSS.
Proof. leT(x\t) = L, thus T is sufficient by the definition.
X;0
It is easy to show that if T'(x) = T'(y), then % =1 for each 6.
Need to show that if T'(x) # T(y), then there exist 6; and 5 such that

In particular, let f; = fo and let 6; and 65 be as in #6.9.cor d, or e. o

Ix(y;01) © fx(y;02)

Discuss whether the following two approaches are correct.
Approach 1. If T'(x) # T(y), without loss of generality (WLOG), one can assume x(;y = y(;) for i # j
and ;) < y(;) for ¢ = j. Then

fx(x0) I e lro =0l
fX(Y§ 0) N ; e~y —0l
B e~ lz@—0l _ [eTmTYm if 0 <z
T e lo0l T | etroto=20 i 0 € (2, y())

Letting 01 = x(;) — 1 and 02 = (2(;j) + y(;))/2 yields Ineq. (1).

Approach 2. If T'(x) # T(y), then there exists j € {1,...,n} such that z(; = y for i < j and
Ty # Y for i = j. Without loss of generality, assume that z(;) < y¢;). Let t = y) Amin{zy) @ 2y >
r(;), k> j} (where x(,41) = 00).
WLOG, assume (1) > x(;) and t = y;) A T(j41)-
Let 0 € [z(;),t]. Then

o~z —0)

fX(XJH) _ H

Fx(vi0) Lo

i
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el =0 e~z =0l e~z =0l

- (H e~y =0l )(H e~y ol )(H ey =0l )

eTu) — -0 e (l() 9)

- ?/<J>+9 H —(yy—9)

—(z@))

e

= e“?<j>+y<j>*29(| | )
LL —(yu)
1>7

Letting 01 = x(;) and 0, = t, we get inequality (1). Thus T" is MSS. o

Discuss whether the proofs are correct.
6.9(d) Let Xy, ..., X;, ~ f(z — ), where f(x) =

T= (X(l), 7X(n)) is MSS.

Sol. [T, f(zi):0)/ f(y@);0) = ¢

iff H?:l(l + (l‘(i) — 9)2)/(1 + (y(i) — 9)2) =c—>1iff -
(both are polynomial of degree 2n in 6);

approach 1:
iff their coefficients are the same.

iff @) =y v J-

m . Show

approach 2: (1+ (z—0)%) = (1 —i(x —0))(1 +i(z — 0))
=(1—ix + 10)(1 + iz — 0)
=—(i+xz—0)(i—xz+06).
HL Fla@:;0)/f(yay: 0) = 1
i 17, [+ y) — ) — vy + O] = [T, [=(i+ 25y — 0)(i — 5y + 0)] ¥ 0
(both are polynomial of degree 2n in 6);
iff their 2n roots are the same
iff 25y =y vV J-
prove by induction on j: WLOG, assume 21 < --- <z, and y1 < -+ < Yp.
7 =1 9:Z+y1 => 1 =Y1.
j =k (<n). Assume zj, =y, for h < k.
j =k + 1. By induction,
[l =G+ i) — 0 =y + 0] =TTy [+ 2y — 0)(i — 25y +0)] ¥ 6;
0 =1i+yr+1 —> Thtl = Yyl
Homework Solution
6.10. Let X;’s be i.i.d. from U(0,60 + 1). Show T' = (X (1), X(»)) is not complete.
A wrong proof:
(1) Let g(T) = X(ny — X1y — E(X(n) — X(1))-
(2) Then E(g(T)) =0V 6.
(3) But ¢g(T) is a non-zero function.
Thus T is not complete.
What is wrong ?
Should add “g(T) is a statistic” in (1);
Replace (3) by “P(¢g(T)=0)=1V § € ©.”
Reason 1:
Let T ~ Exp(1) and g(T') = 1(X = 1) is non-zero. P(g(T) =0) = 7?
Reason 2. If it works, then we can show that
compete statistic T is not complete!!
Let X1, ..., X,, be i.i.d. ~ N(6,1), then T = Y7 | X; is complete Why ??

Bz ))
wy (6) t1(2)

fx(x) x exp(f%[x2 -2

{wi1(0) : 6 >0} = (0,00) contains an open set in R'.
Let ¢(T) = T — E(T).
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Then E(g(T)) =0V 6.

But P(g(T)=0)=0<1V8#.
Thus T is not complete. Anything wrong ?
A Correct proof.

EX(l) fth(w _9+n—10—1’
E(X(m)) = [tfx,,(t dt—0+n+1,
Slnce E(X(n) - X)) = n—;l is independent of 6,

let g(T) = X(n) = X() = E(X(n) — X0))-
That is, g(z y)fyfa:f%.

Then E(g(T)) =0V 0.

But P(¢(T)=0)=0<1V4.

Thus T is not complete. o.

#714. Let X LYY ~ f(z;u) x e_z/“, x>0, X ~ f(x;\). We observe (Z,W), where Z = min(X,Y)

and W = 1(X<y) If (Zi,Wy), i = 1 , nare i.i.d. from (Z,W), MLE of (u, A) ?
Sol. £(6 )n 12y fzw(Zi, W;) =
L0) = [[i= [(fzw (Zi, 0))1_Wi(fZ,W(Ziv 1)"],

(ecall ur(0) = (w0 =) = { ) 1=0)
W(Z,O) azew(Z O)
FZV[/Z,O): PXANY <z,X>Y)
P(Y <z X>Y)
=P(X > ) P(X >Y > z)
PX>Y)— [ [ fx(z)fy (y)dyda

E"

fraw(2,0) =—<—%> [ i@ [T [ i@ why:
22 o, 2)de =V (2)g(b(=), 2) — ' (g(a(=),2) + [13) Lol
fzw(z,0) :/ fX(Z)fY(y)dy+/ fx (@) [y (2)dx

1
=—e e 2> 0.
1

Likewise, fzw(z,1) = %e*Z/Ae*Z/”, z>0.

Lo—z/Ap=2/0 ifw=1
B B /\6 e I w
=> fzw(z,w)= { iefz/kefz/ﬂ ifw=0
:(le_z/)\e_z/p)w(le—z/)\e—z/,u)l—w’ z> 0.
A K
L) =TIy fzw(Zi,Ws)
_ HLl[(%e Z: (1/M+1/)\))1*W1‘( —Z; (1/M+1/>\)%)W}
= [(2)(- W= 20/t /) (1 W)
= (1= W)l — mWind - Z(£ + §)
=—(1—W)ly— £ — InWin\ — 7)

It suffices to max1m1ze @ and A\ seperately.

If W ¢ {0,1}, then

Y LT 7/ =0 => = Z/(1-TW),
as H(0,\) = H(o0, A) = —o0.

84

z)dx



Similarly, A = Z/W.
Otherwise, if W = 1, the observations are all from X and thus 4 = X. A = 1 (or any number).
If W =0, then A\ =Y and i = 1 (or any number).

Recall W ~ bin(1,p), with df. f(t) = P(W =1t) = {p if t =1

q ift=0"
f&)y=pift=1. Yes, No ?
f@)=pif W=1. Yes, No ?
PW=t)=pift W=1. Yes, No?
PW t)y=pift=1. Yes, No ?
PlweQ: Ww)=t})=P(W=t)=pif W=1. No
PlweQ: Ww)=t})=P(W=t)=pift=1. Yes
X ifw=1

Notice that Z = Y W —o.
P(Z<t)=1-P(Z>t)=1-P(X >tY >t)=1—P(X > t)P(Y > 1).

P(Z<t,W=a)=P(X<t,W=1)ifa=1 Yes, No?

PZ<t,W=a)=PX <t,W=1)if W=1 Yes, No ?

( ) =P( ))

/—\/—\/\/\

PZ<tW=a)=P(X<1,W=1)ift=1=a Yes, No?
PZ<t,W=a)=PX<t, W=1)if Z=X Yes, No ?
7.2. Let X;’s be i.id. from G(a, B). f(x) oc 2 Le=*/# 2 > 0. MLE of (a, 3) ?
Sol. (a) If « is given, the MLE of 8 = X /a.
(b) Three ways for numerical solutions of the MLE:
(1) Plot y = L(x), Where x € O, looking for ?
(2) Plot y = dlnc ) and y = 0 looking for ?
(3) Newton- Raphson method

new old (dlnﬁ(l‘)/thLC(x)
dx dx?

" =2z new _ pold| < ¢,

)| p=gora untill |z

n X2 le=Xilf
L=1lio s
_ (L X0"" exp(-nX/8)
BRICR pna
_ TL X" exp(=na)
- Tl (X/a)ne

_ (L xo

()™

— (I, X" ().

# R program for hw7.2

x=c(22,23.9,20.9,23.8,25,24,21.7,23.8,22.8,23.1,23.1, 23.5,23,1)
n=length(x)
(mean(x)/sd(x))**2 # MME: a = (X)?/52.
# as E(X) = af and V(X) = af>
[1] 12.87023
(1:170)/10 # possible range of « (in view of MME).
((prod(x))**(a-1))*((a/ (exp(1)*mean(x)))**(a*n)) /((gamma(a))**n)
(z=aly==max(y)])
[1] 3.4 #MLE of «
sum(x)/(n*z)
1] 6.336134 # (MLE of 3))
plot(a,y)

a
y=

The second and third approach need to compute I'(a)’

= [;0t* Y (Int)e~tdt = 2L [ t>~(Int)e~'dt.

Why not x=c(22,23.9,20.9,23.8,25,24,21.7,23.8,22.8,23.1,23.1, 23.5,23,23) ?
Compare to x=c(22,23.9,20.9,23.8,25,24,21.7,23.8,22.8,23.1,23.1, 23.5,23,1)
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MME: & = (X)?/6? ~ 485.1. 1t is too large for computing I'(c).
Q: What else 77

Since & = 485.1 >> 100, use Stirling’s formula n! ~ v/2rn"*t1/2e=",
If & = m, then

m )m

L~ (Hz Xi)m I(M(m 1)m 1/26—(m—1))n

(H X')mfl((é) ( )m71/2m1/267m+m71)n

(IT; Xo)m™ 1(()()"’¢12—7r 1/2)

~ (IL X/ (X)) () v/ 33)"
#Use Stirling’s formula
n=14
x=c(22,23.9,20.9,23.8,25,24,21.7,23.8,22.8,23.1,23.1, 23.5,23,23)
a=1:600
y=((prod(x)/mean(x)**n)**(a-1))*((sqrt(a/(2 *pi))/mean(x))**(n))
z=aly==max(y)]

[1] 514
sum(x)/(n*z)

[1] 0.04496943

Q

Q

7.6. Let X;’s be i.i.d. from f =27 21(x > #). MME of § ?
Sol. MME: E(X?) = X1, i is an integer.

(BE(1/X)=1/X.
E(1/X)=["= *3dx:%%|?:1/(20).
0=1/(2X

#7.10. X1, ..., X, ~ f(x]0) = £2° L 0cap), 0 = (o, ). MLE of )

Solution: Note that £(#) = ﬂam (ITimy ) 110 < 21, () < B).
There are three ways to solve the problem.
The first way (bivariate):
algﬁ = =& < (), thus no stationary points.
The MLE must be on the boundary: o = 0 or oo, or 8 = w(,) or oo, which are 4 straight line on the
plane. Verify
0: a=0 a=o00 =00 [=xn4

L(0) : 0 0 0 see below
% =2 —nlnf +In 1,z = 2 —nlnz(,) + In [T,z at 8= Ty
Thus 3ln£ |5—:c( , = 0 yields the stationary point & = m on the line 8 = ().

Verify the boundary points and stationary point on the line § = z(,):
0=(v,2pn): a=0 a=00 a=a

L(0) : 0 0 >0
Thus ( —,(y)) is the MLE of 6.

Inz () —Inz
The second way (one-by-one):

8IEL = %“" < 0, thus for each «, the maximum of L(«, 8) over 3 is at = x(,), denoted by . Thus it

suffices to maximize £(a, 3) over a.

ML@B) _ () yields & = 1/(Ina(,) — Inz).

Verify the boundary points and stationary point:
0= (a,zp)): a=0 a=00 a=a
L£(6) : 0 0 >0
Thus (&, z(,)) is the MLE of 6.
The third way (one-by-one):
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For each 8, ZmEB) — o vields & = &(B8) = 1/(8 — Inz). Since W = -2 <0, for each f,

L(&(B), ) reaches its maximum at o = &.

Thus it suffices to maximize £(&(8), 8) over 8. Now

£6(8). ) = () 7 ([
i=1

It can be shown that %B(B)’B) < 0, thus the maximum is obtained at 3 = z(,). That is the MLE of
Bis B = T(p) and &(B) is the MLE of a.
Homework Solutions, week 4

Additional Problem
Let Xy, ..., X, be i.i.d. ~ bin(1,p), and p ~ U(0,1). Are X;’s i.i.d. ?

Sol.
fx,(x)=05if z € {0,1}.
fo;=--=2,=1.
1 n
fX<x):/ [Tr" (- p)'—=dp
0 i=1
1
_ nd _
/Op P n+1
Ans: No!

1 ifze{0,1}

7.1. There are two MLESs, and one is 6= { . .
3 if otherwise.

#7.21. Assume Y; = z;8 + ¢;, where ¢;’s are i.i.d. r.v. and x; and 8 are constant. Compare the three
qstimators
51 =Y wYi/ X a3,

Z Y/ > Ty

53 i ;
Sol

%Zi(xi—f)zfﬁ (T)Qz():sﬁz( ) éal §a2.

n? = (Z xza; Z % = <z

Other relation ?

1/(@)? <227

1/(@)?*>a27

1/(z)? <227 Try T = 0+ but z; # 0.

1/(Z)? > 272 ? Try one z; = 0+ but T # 0.

7.23. If X;’s are a random sample from N(u,0?), S% ~ n"—le = h(V), where V ~ x?(n — 1). If Y = 02 has

prior f(y;a, 8) = r(a)ﬁa Q+1eﬂv, > 0. Bayes estimator of o2 ?
Sol. §? = n”—le =h(V) (=T), where V ~ x%(n — 1).
h~HT) = %51 T.

Let Y = o2 B
1 e A
friy (ty) = fs2102(tly) = fr (R ()] ]| = ——T ;1> 0.
r(ez)2s ’
T(ylt) = for)s2 (ylt) o < exp(—=—)y ™" -y~ teap(5;)
y 2 m-DtY Y
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—a-1-25t 11

exp(—z— + 5,)

(n— l)t
1 —1
T exp(ﬂ y) where .

- Yy
fo 76"75@4—16’3 dt
= fooo F(a)ﬁa to 11+1e Bt dt
(a—1)s " 1 1 -1
I'(o) B fo T(a—1)po—T fa=171€ 7t dt
1

ICEDER
E(Y|T) =
7.12. Compare the MLE 6 = min{X, 1/2} and the MME 6 = X.
Sol. MSE(f) = 200 = Y7 (£ —0)2(})6'(1 - 0)" "

MSE) = T ol — 02 (010 4 3 = 02001 — 0

=Yy

MSE(9) —- MSE@) = > [(% —0)* - (% —0)?] <T;>9i(1 -0 { - 8 g 3 c ?0, 1/2]

i>n/2

Homework Solutions, week 5
§7.57. Let X;’s be i.i.d. ~bin(1,p). h(p) = P(> i, Xi > Xpn41). UMVUE of h(p) ?
Sol. Let p = l(zn Xi>Xoia) D= E(p|T), where T = Zn+1 X; ~ bin(n+ 1,p). Then p is the UMVUE of
i=1"" "

h(p).
E@p) =P ", X; > Xnt1) = h(p).
p=0.P(p=0T) 1 1 P(p=1[T) = P(p = 1[T).
P(F=1|T =t) = ?

Ift=0, P(F=1T =t) =0.
Ift>2 P(p=1T=t)=1
Ift=1,PH=1T=t) =P ", Xi=1,X,41 = 0)/P(T =1)
Ift=2 PH=1T=t)=P(X ", Xi=2 Xn1 =0)/P(T =1)
0 if7T=0
Thep:E(pT):{... .
1 ifT>2

Homework Solutions, week 6
D. Assume that Xi, ..., X0 are i.i.d. from N(0,1). T = X V0, Y = 1(T > 1). Check which of the
following equations are correct. If so, given the explicit expressions of the density functions involved
and complete the calculation; otherwise, make proper corrections based on the given density functions.

D1EY -1)=Y_2fy_1(z)

D2 E(Y —1) = [(z— 1) fy(z)dx

D3 EY —1)= [(zV0) - 1) fx(z)dz

D4 E(Y ):ff"x—1fT (z)dx

D5S5EY —-1)=[-- [(1( w\/O)—l)fX( x)dxy -+ day,.

Sol. Formula
Y9 fy(t) =2 tfyoy(t) if Y and g(Y) are discrete
Eg(Y)) =4 if -
Ja) fy(t)dt = [tfyvy(t)dt if Y and g(Y) are continuous

Xi+--+ X,

Y—1=1(T>1)—-1=1((XV0)>1)—1=1( VO)>1)—1.

g(Y) g(T) 9(X) X

D1Ye{0,1},Y —1e{-1,0}, fy_i(t) = P(Y —1=1).
E(Y -1)=Y,afy_1(z) =0P(Y —1=0)— 1P(Y — 1 = —1)

= P(Y=0)=-PT<1)=-P(XV0)<1)=—(1-PX>1)=—1+1-d(10)
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EY-1)~ -1

D2 EY-1)=Y (z=1)fy(z)=(0-1)PY =0)+(1-1)PY =1) # [(z—1)fy(z)dz, as Y is discrete.

D3 EY —1)= [(1((zxV0) > 1) — 1) fx(z)dz # [((z V0) — 1) fx(x)dz, where X ~ N(0,1/100).

D4 EY-1)= [(1(z>1)—1)fr(z)dz+ (0—1) fr(0 fo fr(z)de —1

# [ (x = 1) fr(x)dz,
where
fr(t) = 0.51(t:0)(f§(t))1(t>0)
D.5 BE(Y~-1) = [ [(1((&Z=2V0) > 1)-1) fx (x)day - - do, # f'"f(l((#VO))—l)fx(X)dm---dxn.l

7.49.

1. Find an unbiased estimator of A based only on Y = min(X;)

2. Find a better estimator than the one in part (a), prove it is better.

3. The following data are high stress failure times (in hours) of Kevlar/expoxy spherical vessels used in a
sustained pressure environment on the space shuttle:

50.1,70.1,137.0,166.9, 170.5, 152.8, 80.5, 123.5, 112.6, 148.5, 160.0, 125.4

Failure times are often modeled with the exponential distribution. Estimate the mean failure time using the
stimators from part (a) and (b)

Sol. 1. Y = X(y) ~ Exp(A\/n). We have E(nY’) = A. The A=nY,as E(nY) =n\/n=\

2. We know X; belong to an exponential family. Therefore by Theorem 6.2.25 we know »_ X; is a
sufficient and complete statistic. By Theorem 7.3.23 we know X is the best unbiased estimator. Theorefore
it must be better than 7" = nY since theorem 7.3.23 dictates the UMVUE in this situation is unique.
P(nX@yy=X)=0. Thus Var(T) > Var(X).

In fact, V(T) = A2 < \2/n = V(X).

3. We have nY = 601.2 and X = 128.8
Something looks fishy.

Compare the empirical distribution function edf to the MLE of cdf, where the edf F'(t) = LS (X <
t).

Compare the edf of pseudo random numbers to the MLE of cdf.

From the figure, we can conclude that the data does not fit the expnential distribution. No wonder the
two estimates differ so large !
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7.46. X1, Xy, X5 iid. from U(6,26), 0 > 0.
a. MME § = 2X.

b. MLE induces unbiased estimator 6 = 2 X(3)-
c. Which of the two estimators can be 1mproved by sufficiency ?
How ?

Sol. Which ? T = (X(l),X(3)) is sufficient for 6.
= 0, thus 6 cannot be improve
E@|T) =6, thus 0 b d.
F: E(O|T) = 27)((”“‘“)
Two ways to prove
BOIT) = 3 B(X2557) = 2 B(X,T) =
BOIT) = §B(-=geT)
= % [E(X (1) + X(3) |T2( + E)EX(Q) IT)]
+
73l(X) + X)) + =252
Xy +Xe)
3 .

2 X+ X
3 2 ‘

w\ww

fX2 X1y, X (3 (x,y,z)
FX o | Xy X s ()Y, 2) =22
(2)‘ (1),4%(3) ? fX(l),X(g) (y,Z)

i (fx (@) (Fx (1) (fx(2))

T B (Fx @) (Fx (2) — Fx (1) (fx ()L
1z e (3.2)
z—y
Thus 6 can be improved.
HOW ?

either compare V(0) and V(E(9|T)), )
or show E(V(0|T)) > 0, as V(0) = +E(V(0|T)).
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V(BO)T) = V(3F057).

V(X)) = [0 123(1 — Fx(1)* ' fx (t)dt — (0 + 16)2.

V(X)) = ;9 123(Fx (1)) fx (t)dt — (6 + 20)2.

CO’U(X(l ( ))

20 V03 2 () (Fx (y) — Fx (2))* 2 fx (y)dady — (0 + 10)(6 + 20).
Sol to d Estlmates based on data using R:
x=c¢(1.29,.86,1.33)
2*mean(x)/3
4*max(x)/7
7.51. Let X;’s be i.i.d. N(6,6%),0>0. T ={T:T = a1 X + ax(cS)}, where E(cS) = 6.
(a) Solve T* = argminrcT MSE(T).
(b) Show MSE(T*) < MSE(T®) from #7.50
(c) Show that MSE(T*) < MSE(T*"), where T** =T V0.
(d) Is 6 a scale or location parameter ?
Sol. Since X 1 S2,
MSE(T*) = V(T*) + (bias(T*))? = a3V (X ) +a?V(cS) + ((a1 + az — 1)0)?

=0%(a?/n+a3(c® — 1)+ (a1 + az — 1)?) = 02g(ay, as).
6—9 0 yields
* 1 *
a; = (nnicl)&f)n and ay = (n+1)1(:27n'

Check: 1 point (af, a3) and 4 boundary lines a; = to0.
Since g(a1,a2) — oo if a; — Fo0, o
(a%,a3) is the unique minimum point and T* = a7 X + a3(c5).

(b) MSE(T*) < MSE(T?), as

(1) T° € T, where a§ = a} and a§ =1 — a$,

(2) P(T* £ 7°) = 1,

(3) T is the unique minimum point in 7.
(c) Find the correct solutions among the following approaches:
(c.1) MSE(T*) = E((T* —6)?)

= E((T* = 0)>1(T* < 0)) + E(T* - 0)*1(T* > 0))
> E(T* —6)*1(T* >0)) = MSE(T* Vv 0)

(c:2) MSE(T*) = E((T* - 0)%)
= E((T* = 0)°L(T* < 0)) + E(T* - 0)*1(T* > 0))
> BE(T* — 60)?1(T* > 0)) as P(T* <0) >0
= MSE(T* Vv 0).

In fact, P(T* < 0) = [ f__;gy/a({ Jx (@) fes(y)dxdy > 0,
as fes(y) > 0 on (0,00) and fx(x) >0V z.
(c.3) If T* > 0, then T* = T** | thus their MSE’s are the same. Otherwise, T* < 0 = T*t,
then (T*+ — 0)? = 6% and (T* — 6) > 02, thus MSE(T*) > MSE(R*T).
(cd) fT* <0, MSE(T*T) = (0 - 0)2 < E((T* — 6)?) as 6 > 0,
otherwise, they are the same.
(d) F: 0 is not a location parameter.
If 0 is a location parameter, then it is possible that # = —1, but § > 0. A contradiction.
F: 0 is a scale parameter.
X ~ N(0,60%),
=> fx(t) = 9;%6—(%—1)2/2
=> fx(t) = §fv (£/6), where fy(t) = Zb=e~(=D"/2, ¥ ~ N(1,1)
7.52. (2) Prove the rather remarkable identity E(S%|X) = X if X ~ Poisson(\).

That is, prove directly E(S?/X) = X if X ~ Poisson()).
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(3) Use completeness, form a general theorem ...

Possible approach: (1) Find fg. =7 (2) fxx = ? (3) first simplify E(S?X).
Recall §? = -2-[X2 — (X)?].
Let T'= ), X;, then

E(S?|X =v) = E(S*|T =t), where t = nw.

Consider thﬁe casen=2.
E(SQ\X =v) =2[E(X?X =v) — (0)2].
le\X1+X2(x|t) = P(Xl = iL’,XQ = tf:c)/P(Xl +X2 = t)

e M\ /z!) (e AT/ (t—x)! t
={ éef)Z(%(zx)t/u)/( D = (r)0'5t

E(X?+X3T =t) =2E(X3T =t) = 2(tpq + (tp)?) = 2(t/4 +t?/4).
E(S?X =v) =2[32(t/442 /4) — v} =t/2+ ?/4 —v? = v, as v = t/2.
In general, n > 2.

Xi| >0, Xi ~bin(t,1/n),i=1, ..., n.
Let t = nv. B
E(S?|X =v) = B(S*[X =v)

= B - (X)X =)

= o2 B(XE = (t/n)*[X =)

= 2 B(YX = o) ~ (t/n)?

fxl\f(ﬂv)

P(Xlzvalel Xi=nv)

P(ijl X;=nv)
%, where t = nv,
P(Xi=z,) "  X;=t—x)

- P(I=t)

=HE)yra-LHt= z=0,..,t

Xq| Zz X ~ bin(t,1/n),

E(S?|X = v)
_ n/Tll(t}L(1 — 3+ (/) = (t/n)?)
=t/n=wv

Thus E(S%[X) = X.

E(S*T =1t)

= 2 B(X2 - (X))T =t)
= 2 B(X2 — (t/n)*|T = 1)
= 2 (B(X2|T =t) — (t/n)?)

n—1

= SRR 1)+ /)2 — (¢/n)?)

(3) A general formula is E(7|W) = W if W is a sufficient and complete statistic and if E(W) = 7 and
=T.
Q: Is E(S?|X;) random variable ?
Is £(S?|X;) a statistic ?
E(S?|T) is a statistics if T is sufficient. Why ?
7.59. X;’s are i.i.d. from N(u,0?), UMVUE of o, where p > 0.
Sol. It is known that T = (X, S?) is suf and complete for § = (u,0?) (due to exponential family). ¥V =
1142
L5~ P (n—1).
v2(d) = G(d/2,2).

3

E(7)
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E(Yr/?) = fo )ﬁ —y* e v/B gy

r(et - +p/2)2 - Lip/2 _ F(n+§71)2p/2 _
= F(n;l) =C.

5o = (=LSD"2 4 UMVUE of o?,

—1
(77,2

g

7.44 X ~ N(0,1/n),

VIX)? —1/n) = V((X)*) = B(X)*) ~ (B((X)*))”
E((X)") = BE((X)*(X = 0)) + 0E(X)*(X - 0)) + 0°E((X)?)
= 2[EB(X)?) + 0B(2X))] + 0*E((X)?)
= (5 + ) E((X)*) + Y E(X)).
V((X)? —1/n) = E(X)") — (E(X)*))* _
= +0)E (( X)?) = (B((X)*)* + T E(X))
— (3402 —L_p2) (L2422
:%(%+92)+292
Z 4

7.60 X,’s are i.i.d. from G(«, 8) with o known. UMVUE of § = 1/5 ?
Sol. T = 3. X; is suf and complete.

T ~ G(na, B),

E(T) = naﬁ.

Try Y =

IfEY)= c/ﬂ7 then 0 = Z X is the UMVUE of 6.
In fact, E(Y) = [;* not™ %dt

_ nal(a—1)g !
- I(a)pe ’
Homework solutions for week 7

Additional questions:
Remark. For a test ¢ = 1(0 € RR) with estimate § = ¢ and Hy: 6 = 0,,
P(0 > t) if right-sided test (H7)
the P-value = ¢ P(f < t) if left-sided test (H)
P(|0 = 0,] > |t — 0,]) if two-sided test
2. Carry out the following simulation project.
2.1. Use R to generate 5 observations from N(1,1). Now pretend that you only known that the data
were from N(u, o) without knowing p and o, use t-test to test Ho: =0 v.s. Hy: p # 0 with a size
0.2. Record the P-value.
What is a correct decision here (in terms of rejecting Hy or not) ?
Do you think that you will accept Hy based on data ? Why ?
2.2. Repeat procedure 2.1 100 times. That is, record 100 P-values.
How many times, say z, would you reject Hy ?
Question: What does the number =z tell you about P(Hy|H,) ?
Sol. 2.1. It is a correct decision to reject Hy,
but we may not reject as the test statistic is random.
2.2. One record is z=73.
z would tell me that P(Ho|H;) ~ 1 — 2/100 = 0.27. In fact P(Ho|H,) = (S‘/X} <toam1,p=1)~
0.24.
2. Carry out the following simulation project.
2.1. Use Splus to generate 5 observations from N(1,1). Now pretend that you only known that the
data were from N(u, o) without knowing p and o, use t-test to test Ho: =0 v.s. Hy: p # 0 with a
size 0.2. Record the P-value. Splus commands are :
x < —rnorm(5) + 1
y=t.test(x)
y$p.value
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a
b.
c.

d.

Hint: Figure out how to use t.test using 7t.test in this case. Notice t-test: ¢ = 1(|

2.2. Repeat procedure 2.1 20 times. That is, record 20 P-values.
What is a correct decision here (in terms of rejecting Hy or not) ?
How many times you will reject Hy 7

What does the number tell you about P(Hy|H;) ?

Do you think that you will accept Hy based on data ? Why ? -
X —po
S/vn

| > to/2, where

o =0 and a =0.2.

t.test(x, alternative="two.sided”, mu=0) ”greater”, ”less”

Answer:

a. Correct decision is to reject Hp, as the data are from N(1,1), not N(0,1).

b. reject Hy 15 times (in one study).

c. An estimate of P(Hy|H;) is 1 —15/20.

d. No. not necessary. Remember we only observe one sample in reality. Due to type II error, the t.test
may suggest incorrectly to accept Hy.

3. Carry out the following simulation project.
3.1. Use Splus to generate 5 observations from N(1,1). Now pretend that you only known that the
data were from N(u, o) without knowing p and o, use t-test to test Ho: p =1 v.s. Hy: p <1 with a
size 0.05. Figure out how to use t.test in this case. Record the P-value.
3.2. Repeat procedure 3.1 20 times. That is, record 20 P-values.

a. What is a correct decision here (in terms of rejecting Hy or not) ?

b. How many times you will reject Hy ?

c. What does the number tell you about P(H;|Hy) ?

d. Do you think that you will accept Hy based on data ? Why 7

Answer:

a. Correct decision is to accept Hy, as the data are from N(1,1).

b. reject Hy 2 times (in one study).

c. An estimate of P(Hy|Hp) is 2/20.

d. No, due to type I error, the t.test may suggest incorrectly to reject Hy approximately 1 time (20 x 0.05),

though we shall not reject Hy, as the data are from N(1,1).

8.1 Solution without using LRT. 5 elements of a test:

1,2,3.

4.

w

Hy: p=0.5,v.s. Hi: p#0.5.

A natural estimate of p is X/n.

Test Statistic 1(x/n¢(a,p)), Where X ~ bin(n,p) and n = 1000.
RR X/1000 ¢ (a,b).

R

> p=2%*pbinom(440,1000,0.5)

Since p-value < 0.0001, reject Hy.

. In a city the number of auto accidents used to follow Poisson(15). If this year the # is 10, is it justified

that the # dropped?

. 5 elements of a test.

Hy: p=15,vs. Hy: p < 15.

Note that the sample size n = 1 and the observation is X = 10.
LRT:

MLE: fip =15, and g = X.

A= ..

test statistic reduces to ¢ = L(x<c,) = 1(x<c)-
o:

R

> round(ppois(5:11,15),2)

[1] 0.00 0.01 0.02 0.04 0.07 0.12 0.18

If we take a = 0.07, then ¢ = 1(x<g).

(If we take a = 0.01, then ¢ = 1(x<¢).)
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P-value= P(X < 10) = 3212 e~ 13(15)7 /il = 0.12 > 0.05.
5. Conclusion: It is not justified that the # dropped this year.
8.5. Suppose X7, ..., X,, are iid with
fx(@) = 251w <z < o0), >0, v>0.
a. Find the MLE of 6 and v.
b. Show that the LRT of
Hy: 0 =1, v unknown vs. Hy: 0 # 1, v unknown,

is ¢ = 1(T ¢ (c1,¢2)), where T = log [M]

c. Show that under Hy, 27T has a x? distribution.
Question: Why ask question ¢ ?
Answer: Among the 5 elements of a test, we need to choose «, and for ¢ = 1 (<), we need to know t = 7
Otherwise, it is not a test.
One approach. Let Y = logX, then h=!(y) = e¥ and |J| = €Y.
Fr(y) = fx(en)e = ve, y > .
Reorder (Y1, ...,Yy) as (Y1, ...,Ys) such that
Y, = Y(1) and (}72, ,}7”) the rest Yj’s.
Then fg 7 (v) =nfy () [1j=s fr(y;), y1 <y; for j > 2. 277 need a proof.

—1
Under certain condition, fy (t) =3, fx(g; *(2)) a%'t |, where

(a) g; is a 1-1 map from A; to g(4;),
(b) Ay, ..., Ay are disjoint and
(C) P(X € UyAz) =1.
What are A; here ?
Y, = Y1) and
(Ya,...,Yy) = (Yo,....Y,) if Y1 = Y}y,

(Ya,...,Y,) = (Y1,Y3,...,Y,) if Yo = Yy,

(Y27 affn) = (Y17Y2a "'75/n—1) if Yn = }/(1)5

Sol.
a. L£(0,v) =0"v"(I], X;) 711 (v < X(1)).
For each 6, £ 1 in v for v < X(qy. Thus £(0,v) < L(6, X(1y). That is, the MLE of v is & = X(;), which
does not depend on 6. To find the MLE of 6, it suffices to maximize L£(6, X)). 0(19“9£ = 7 +nlnXq) —
> InX; = 0 yields

0 =1/(InX — InXy)) = n/ln(H X/ X)) =n/T.

8;2;5 = —zz < 0 implies that (6,0) is the MLE of (6, ).
b. It is easy to show that the MLE under Hy is (6°,0°) = (1, X)) Thus

N\ —n zX’L )— —n 22— —nm n—
y= @) (UeXiyior — ymy=o(ery 2ot 2 pegrenr,
(1)

p=1A<c)=1(T"e T < ¢)

Let g(T) =In(T"e™ "), ¢ = % — 1 and ¢" = —75 <0.
Thus g is concave down with maximum point 7" = n. It follows that

p=1A<c)=1(T"e T <c,) =1(T ¢ (c1,¢2))
where c1e= /" = e /" and P{c; < T < ¢3) =1 — a.
8.5.c. Suppose X, ..., X,, are iid with

fx(x)= %l(y <z < o0), §>0, v>0. (Pareto Distribution).
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Show that under Hy (9 = 1), 2T has a x? distribution,
where T' =

i

log (mm X) :

Question: Why ask question ¢ ?

Answer: Among the 5 elements of a test, we need to choose «, and for ¢ = 1(y<y), we need to know t = 7
Otherwise, it is not a test.

Under Hy, f(z) = Z1(x >v) and F(z) =1-%,if 2/v > 1.

Notice that Z = X/v is a pivatol, as Fz(t) =1— 1, > 1.

I, X( ) _ () _ N~y 260 N
T =log(=:=—) =log = log —% = Yo
(X<1> H = Za) ; Zn) ;
——
Zwy=Xa /v
where Y(;) = log( 21; ), i > 1. Notice that Y(;) = 0.
FX(1y0e X () (@150 5T0)

fX(Q),...,X(n)\Xu)(xZa oy Tn|T1) =
(@) flan)
(1)f@)(A—F(z1)"~!
_ (n=1)lal” ! < < <
T T ez VS2T1 S S T
Notice that fz,, does not depend on v, as
_ (n=1)la}™
[ 20201 200y (T25 e Tp| 1) = (1—[71)27
Then z(;) = z1)e¥®, i > 2, |J| = 2]~ Yexp(31, vi) and
fy(g),..i,y(nﬂz(l)(y% coes YnlT1)
Z2) 2| Z (1) r1e¥2, .. xredn|ay)|J|
= (TL - 1)!eXp(— Z?:Q yz)7 O S Y2 S te S Yn-
Thus, Y(s), ..., Y(5) are order statistics of i.i.d. Ys, ..., Y, ~ Exp(1).

Fx(y (@1)

1<z < <.

X YT I[=s Za - .
7 = tog(Lim ey g L= 2y log((7=2210) = S v = Y Vi

(X)) (Zw)" (Z(1)) P P

~ Gamma(n —1,1).
x2(m) = Gamma(m/2,2).

Thus 27 ~ x%(2(n — 1)).
Summary:

Hy: 0=1,vs. Hi: 0 #£1

a=0.05= FEy, (o)

(b—l()\<a) l(w . ) *1(W¢(a b),where

2 ms

W =2T, %exp(—£) = L exp(— )andFW(b) Fy(a)=1-c.
Question: If n =3 and 27 = W = 8. What is the conclusion ?
Ans: Need to find out (a,b) !
Note 2T ~ x?(4), E(2T) = 4 and V(2T) =
Solve numerically

gla) = %exp(—%ﬂ)—gexp(—%) =0, where b = F, (FW( )+ 1—a).

R

x=(1:499)/10000 # probabilities in (0,0.05)

df =4

a=qchisq(x) # t1, quantile of Exponential at x
b=qchisq(pchisq(a,df)+0.95,df) # to,
g=(a/2)*exp(-(a/6))-(b/2)*exp(-(b/6))
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plot(a,g,type="1")
abline(h=0) # check whether the curve cross the x-axis

0.0

-0.05

-0.10

-0.15

0.0 0.01 0.02 0.03 0.04

(I=max(ajg<=0]))
(r=max(blg<=0]))
pchisq(l,df)
[1] 0.7075065
[1] 20.48774
[1] 0.0496 # < 0.0499, make change if >0.0499
Ans: Do not reject Hp.
Additonal.
1. (a) Under each of the assumptions in 8.5 and 8.7, generate 10 observations from R, and do the
tests.
Remark. There are two issues:
(1) How to generate 10 observations ?
(2) How to determine RR or ¢cin 1(A <¢) ?

8.5. Suppose X7, ..., X, are iid with

fx(x) = %1(1/ <z <o), § >0, v>0, v unknown, (Pareto Distribution).
The LRT of

Hy: 0 =1vs. Hi: 0#1.

(1) Data generation.
x=rnorm(10) # ?
x=rexp(10) ?
x=1/(1-runif(10)) # Pareto

Reason: F~1(X), where X ~ U(0,1).
flz) = f;’—fll(x >wv), 0 >0andv>0.
Since Hy: 0 =1, v.s. Hy: 0 # 1.
Select (6,v), say 6 = v = 1.
F(t) = [y f(z)dz = —1/z|y =1~ 1/, t > 0.
Fﬁl(y) = ﬁa Y€ (07 1)

Reason: F~1(X), where X ~ U(0,1).

(2) RR=7
6= 1A(W) < ¢) = LW ¢ (a,D)),
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where A =n~

)

n(%)nen—(%)

"X
w =2l X o eem ),

Ala) = A(b), and
Fw(b) - Fw(a) =1-a.

Question: Some students use t.test(x). Can we ?
Are these right ”
p=11< \c,/) ?
=0.05
d=1A<¢)=1W ¢ (X3,_2.0.975 X3n—2.0.025))
p=1A<c)=1(W > X%n72,0.05) ?

The R program is given, but you need to provide data as in step (1)

Second approach:

(™) ~Eexp(2tlog( Tzt
_ HZ’: Xior
~lexplos([ T 21)

_ H:'L:1 Xi 2t
= (X))

_ [Lims X

[T X

Not easy to proceed.

Third approach: It is easy to simplify 27" as follows.
2T = i 2InX; — 2nln ml_in X; = i (2InX; — mjin(?lan))
i=1 i=1
Define Y; = 2InX; and Z; = Y; — Y(y).
2T = Zn:(yi —Yq)) = zn:(y(i) —Yq)) = iZ(i)a
i=1 i=2 i=2
Since X1, ..., X, are i.i.d, so is Y7, ..., ¥,,. Note Z;) = 0. We shall show

Z(2)s - Z(n) have the same distribution as Uy, ..., U, —1),

which are the order statistics of (n — 1) i.i.d. r.v.s from Gamma(1,2), and

n

n—1 n—1
2T = ZZ(i) = Z Ugy = Z Ui ~ Gamma(n —1,2) = x*(2(n — 1)).
i=1

=2 i=1
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To this end, notice that Z(i) = Y(l-) — Y(l), i=1, .. n.
2T = h(Z(g), ,Z(n)) and (Z(g),,Z(n)) = H(Yi, ...,Yn). =77 H=177
fy = fgz = for. We first show that

0 0
Y; has a density function fy(y) = %6796/2, y > 2n(v), 6 >0, (2)

and ,
fr(y) = 56774/2, y > 2In(v) under Hy. (3)

To prove Egs. (2) and (3), set y = G(z) = 2lnz and G~ (y) = e¥/2.

—1 0
dG | = QLe*ye/z, y > 2ln(v) (which is (2)).

fr(w) = fx (G~ (y))| dy 5

Thus, under Hy, §# = 1 and Eq. (3) holds.
Moreover, recall Z(z) = }/(z) - Yv(l) (Z(Q), ceey Z(n)) = H(Yl, ,Yn)
Given fyr, we can find fz by two ways:
1. fgz(z) = fy(H '(z))|Jacobian| (not applicable!)
2. Fyz(z) = P(H(Y) <z) and fz = Fy.
In method 2, we can either compute

P{Z9) < 20, Z(y < 2} directly

or
Plei < Zpy <z < <zno1 < Zny < 2n}

and then identify its distribution. We take the latter approach.
For 20 =0< 21 < 25 < -+ < z,, We first compute an preliminary result.
Plzj1 <Y —y < z,y <Y}
=P{zj_1 <Y -y <z,0<Y; -y}

=P{z;_1 <Y; —y <z} (as z1 > 0)
Zj"ry v

[ et (b (3))
Zj—1tYy 2

:(6721—1/2 _ 6*%/2)”6*@//2 (4)

Plzn < Zgy <z < <2zp1 < Zn) < 2}
=P{z1 <Zp <2< <zp1 < Zp) <2, Yy € {Y1, ., Y0}

=Y Pler<Zoy <z < < zpo1 < By < 20, Yy = Vi)
i=1
(mutually exclussive)
=nP{z1 < Zpy <z < - < zpe1 < Zpy < 2, Yy = Y1} (as Vs are i.i.d.)
=nP{z1 < Zgy <z < ..2n1<Zp) <z, Y1 <Y, §>2}
=nlP{z < Zy < 2z, ., 2n-1 < Zp < 2, Y1 <Y, 7> 2}
=nlP{z1 <YYo —Y1 < 29,.,2p1 <Y, =Y < 2,1 <Y}, j>2}
=n!E(1{z1 <YYo — Y1 <29,..,2,1 <Y, - Y1 <2,,Y1 <Y, j >2})
=nlE(E(1{z1 <Y —Y1 <2,...,2p-1 <Y, = Y1 < 2, Y1 <Y}, j > 2}I17))
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znl/(E(l{z1 <Yo—y<zo, 201 < Yn—y<zp,y<Y;, j>2}HY1 =) fv,(y)dy

=n!/E(1{z1 <Yo—y<zonzp1 <Y, —y < 2p,y<Yj j2>2})fy (y)dy

by i.i.d.
:n!/P{zl <Yo—y<z9,.zn1 <Y, —y<z,y<Y; j>2}fy(y)dy
=n/ / H P{z;_1 <Y; —y <z,y<Y;}fy(y)dy (as Y;s are independent)
j=2

) / TT (75172 — e==/2)ue=v/2) fy (3)dy (by (4))
=2
:71!1_[(67%’1/2 - eizi/z)/Vnilei(nil)y/sz(y)dy
=2

n o
:n!H(efzj_1/2 _e*Zi/Q) /1 anlef(nfl)y/Z%efy/Qdy
i=2 2lnv

I
E)
|
=
.

(e—zj,1/2 _ e—zi/Z)/ Vne—ny/Zd@

i—9 2lnv 2

=(n— ) Je77/2 —e7/2) /1 Ve tdt (t="5)
i—9 nlny

=(n—1)! 1_[(6*2’171/2 _ e*Zi/Z)/ e~ ttninv gy = e
. nlny

N
3 |l
(V]

(e—z1_1/2 _ 6—21/2)

A
/Z 56_‘/2dm

j—1

Il
—
S
|
—_
S~—
-
/|
[v)

I
)
|
=
p

~
I|
o

Verify that if Uy, ...., U,—1 are iid from G(1,2), then

n Zi 1
P{Ugu € (2zi,2i41),i = 1,...,m — 1} = (n — 1)! H/ §e_z/2d$‘
1=2 j

Zj—1

In other words, statement (1) holds and thus
2T = 315 Zay ~ G("5+,2) = X*(2n - 2).
Additonal.
1. (a) Under the assumptions in 8.7, generate 10 observations from R, and do the tests.
8.7.(a) Find the LRT for testing Ho: 6 < 0 v.s. Hp: 6 > 0, based on a sample X, ..., X,, from a density

z—6

fx(x)= %e_ # , x>0 and g8 >0, where § and 0 are unknown.
There are two issues:
(1) How to generate 10 observations ?
(2) How to determine RR ?
(1) Are these right ?
x=rnorm(10) # 7
x=rexp(10) 7

(2) RR
8.7.(a) Find the LRT for testing Ho: 6 < 0 v.s. Hp: 6 > 0, based on a sample X, ..., X,, from a density
z—6

fx(x)= %e_ 7, x>0 and S >0, where 8 and 6 are unknown.
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Sol. £(u,8) = f"eap(— ¥2,(X, — 0)/)1(0 < X (1)
= 7 "exp(—n(X —0)/8)1(0 < X(1)).
MLE under ©: For each 8, £ 1 in 0 for § < Xy).
Thus the MLE of 6 is always 6 = X(1)-
It is easy to check that
the MLE 8 = X — X(1) under ©
MLE under Og:
It turns out that the MLE 6° = min{f, 0} and 3° =

A{l
R

Thus the LRT test is 1(A < ¢) = 1((1 —
Are we done ?
No ! We need to know ¢ = 7

if X <0,

X-X .
@™ \n
—2)"  otherwise.

%)" <cand X >0).

In view of Eq. (1), if ¢ =1, E(¢) =1 > a. Thus, ¢ € [0,1) and we can assume X > 0,

C2

_Xoyn < X<1>> <
(I-=)"<ce c@X”

< k(l) - 3}(1 =G
Yo, X Yo, X —(n=1)Xq)
< X<21> S X s
E:]: T(i>—(n—1)T(1)
<~ T =
where X _g
T=2""
B
then h=1(t) = Bt + 6,
fr(t) = fx (Bt +O)|(h1 (1)) | = 5e* Lt>0
Notice that T > 0 w.p.1. Let
W= ZT@

Thus by Eq. (1), the LRT test is
¢ =1__w_y (first way) or

(b = 1({W/b§T(1)0}) (second Way).
It can be shown (see #8.5) that under H,,
(1) T(ry ~ Gamma(1,1/n);
(2) W ~ Gamma(n — 1,1);
(3) W L Tyy.

w
1)+e

— 0° under Q.
1 if X <0, 1
(1— X%” )™ otherwise. (1)
h(X), (2)
n - 1 (1)- (3)

Thus we need to find (fy, fT(l)) or (Fw, FT(l)) assuming 6 < 0 due to Hy. Then find b by

the first way: o = fob f

w_ (z)dx = ...

the 2nd way: o = E(E(1(W/b < Ty + 60)[W)).

a =sup E(E(L(W/b < Ty + 0)|W))

0<0

=sup 5 fi (w)dw

o0
0<0 Jo

/ e fu (w)dw
0

0o ,wnflflefw
[revme
0 I(n—1)

dw
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00 wnflflefw(1+%)
= dw
0

I(n-1)
—(1+ %)"‘1A mistake. Should be = (1 + %)—W—“
b=—"" Should be b= (—1— )1
oan—1 — 1 oan—1 — 1
¢ _ 1()\ S c) _ 1(21‘:2 X(i))(—(n—l)X(l) S 1n )7
(1) an—1_—-1
Wrong, should be 1(2:1':2 X(?(:l()nil)xm < —t—),or
an—1-1

6=1( < —— 1)
an—1—-1
F: (1) T(qy ~ Gamma(1,1/n).
Notice: Let T = X/ﬂ h(X), then h=1(t) = ft,
fr(t) = fx(BOI(A~1 ()| = ge~ B=e"", t > 0.
Fort >0, P(T1) > t) = (P(T >t))" = (e7")", thus ...
P(Gamma(n,1) r.v. > t) = P(Poiss(t) r.v. <n—1).
F:(2) W~ Gamma(n —1,1) and (3) W L T(yy.
Proof. Let Y7 = (1), Y; = T(j) T(l) j1=2,...,n. (Y = (T)) ?
Ty = Vi iy = Y, + Y1, = 2.n. (Y =g 1(T)) 7

Jr(t) =nle” le"O<t1< C <ty

) = frla @)=
=nlexp(=(ny1 +y2 4+ +yn))s ¥1, 0 <y2 <+ <yn.

Thus Y7 L (Ya,...,Y,) and (Y3, ...,Y,,) are order statistics of n-1 Exp(1) r.v.’s.
W =>3",Y; ~Gamma(n — 1,1).

Another proof. Let U =31 , T(;) = >0 5 X(;y/f and V = T(1y = X(1)/f then W = V/U. Thus WLOG,
we can assume that 5 =1 and § =0

Notice fx, = fx =1li-; fx.-

= X0y X (@15, ) = 0l (21,0, T), Where 71 < -0 < T

= fuv = fW

(1) fov="72) fw=

Typlcally two ways: ( ) cdf (2) Jacobian.

02
We use cdf approach for fy v as follows. fyy = dafg’vv

2
or fov(u,v) = —ZPUSLVZ0) e yge the latter one.

Typically, let n = 3.
Note P(U < u,V >v) =0 if u < v(n —1). Thus we can assume u > v(n — 1).

P{U <,V > v}
:P{X(Q) +o A+ Xy Su, Xy > v}
=nlP{Xs+ - 4+ X, <u, X, > > Xo>X; >0}
=nlP{v < X1 < X5, Xo< XsA(u—X3—-—X,),
X1 < X A (4 — Xn), Xy < u)
=n!P{v < X1 < Xo, Xo < X3 A (u—X3), X3 <u}
=nlP{v < X; < Xo, Xo < X3, X3 <u/2, X3 <u}
+nlP{v< Xy < Xy, Xo<u— X3, X3>u/2,X3<u}
=n!P{v < X7 < Xy < X3 < u/2}
+nlP{v<X; < Xy <u— Xz, u/2< X3 <u}
Should we further simplify 77
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=n!P{v < X; < X5 < X3 < u/2}

+nlP{v<X; < Xo<u—Xz, v<u—Xz<u/2, u/2 < X3 <u}
=n!P{v < X1 < X5 < X3 < u/2}

+nlP{v<X; < Xa<u—X3, Xg<u—wv, u/2<X35<u}
=n!P{v < X; < X5 < X3 < u/2}

+nlP{v<X; < Xy <u—X3, u/2< X3 <u—v}

u/2  rx3 u—v  pu—z3 za
:n!(/ / +/ / )/ e~ TTTTE duy daodrs
v v w/2 v v
w/2 a3 u—v  puU—23
:nl(/ / _|_/ / )[e—v—zz—axg _ 6—2902—z3]dx2dx3
v v w/2 v

w/2 T3 u—v u—1xs3
Y Y s
v v u/2 v
u/2 pxs u/2  pxs
:6/ / e VTP T dxodxs —6/ / €223 o dipg
v v v v
u—uv U—x3 u—uv U—x3
—|—6/ / e VT T drodxs —6/ / e 22T o dus,
u/2 v u/2 v

u
O<v < ——.
v 1

9?
68

0 v w/2
:76— [7/ e VT2 “dng/ e VTV T,

u/2
/ / e VTT2— zsdxzdl‘g] [/ 6_2m2_vd$2
+/ —2v— ””3d:v} [_/ e VT2 (u 7U)d$2
_/ e T ””“"dxs—/ / e VTP T dxodxs)
u/2

+] / o202~ (=) gy 4 / €723 4y}
/2

w/2
{ / / e VT2~ 13d$2d$3 _/ / 7v7m27m3dz2dz3}
/2

U A B

v v

u—u/2 u—v
— (—1/2)/ e—”—f’?2—"/2dx2} _ / e—v—(u—zs)—msdx3}
v u/2

fov(u,v) = —6—7P{U <u,V > v}

w/2 u—u/2
~6{(1/2) / emrmm—u/2qp, _ (1/2) / emv—aa—u/2gy

U—v
+ / G_U_ud$3}
w/2

U—v
26/ e " Udxs
w/2

:6(% —v)e T 0<u < g
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After finding fy,v, we can find fy again by two ways:
L Let (u,w) = g(u,v), then fuw (u,w) = fuy (g~ (u,w)|(Fmp)2x2] = fir-
2. Fyw(w) = [ [u_, fov(u,v)dudv. fiw(w)= Fj(w).
Now (u,w) :U(;,v/u) = g(u,v), thus (u,v) = (u,uw) = g~ (u, w).

TR (é Z)

fow (u, w) :6u(g —uw)e T 0<w<1/2 & u>0.

fw (w) z/ 6u2(% —w)e W gy
0
:6(% —w)/ w3 tem W) gy,
0
1 1
:6(5 - w)@)(rﬂ) ; we(0,1/2).

Summary: Hy: 0 <0, vs Hi: § >0
a = 0.05;
¢ = L(w>c), where

(=)
0.05 = / fw (w)dw.

If we set n = 4, the derivation is more tedious.

P{U <,V > v}
:P{X(g) +oo+ Xy < U,X(l) > v}
=nlP{Xo+ -+ X, <u, Xp, > > Xo > X3 >0}
=nlP{v < X; < Xo, Xo< XsA (u—X3—---—X,),
X1 < Xp A (u—Xp), X, <u}
=nlP{v < X; < Xo, Xo < X3A(u—X3—X4), X3 <XyA(u—Xy), Xy <u}
=nlP{v < X1 < Xa, X < X3, X3 < (u— X4)/2, X5 < X4, X4 <u/2,Xs <u}
FnlPlo < X1 < Xa, Xo <u— X3 — Xa, X3 > (u—X1)/2, X3 < Xa, X4 < /2, Xy <ul
+n!lP{v< X1 < Xo, Xo< X3, Xg<(u—X4)/2,Xs <u—Xyq, Xy >u/2,Xy <u}
+nlP{lo< Xy < Xo, Xo<u—Xsg— Xy, Xz>(u—Xy)/2, Xs<u—Xq, Xy>u/2, X4 <u}
=n!P{v < X1 < X3, Xa < X3, X3 < (u—X4)/2,X3 < X4 <u/2}
+nlP{v< X; < Xo, Xo<u—X3— Xy, X3>(u—Xy)/2, X3 <Xy <u/2}
+nlP{v < X; < Xg, Xo < X3, X3 < (u—X4)/2, u/2 <Xy <u}
+nlP{lo< Xy < Xo, Xo<u—Xs— Xy, (u—X4)/2< X3 <u—Xy, u/2 < Xy <u}

Homework solutions for week 8
8.24. Is the LRT for the simple hypotheses equivalent to the one obtained by NPL ?
Sol. Let H,: 0 =0, v.s. Hyi: 0 = 0. ,
The LRT test is ¢ = 1(A < ¢), where A = \(x) = m.
Let ap = Ep, ().
The MP test from NPL is
1 if f(x;01) > kf(x;0
¢r =4 p(x) if fa;61) = kf(x;06,) (1)
0 if f(x;01) <kf(x;6
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where k > 0 and Ey,(¢1(X)) = a.

Two understandings of the question:
(a) Given ¢, does ¢ = ¢ for a ¢, of form Eq. (1) ?
(b) Given ¢q, does ¢ = ¢ for a LRT ¢ 7
(a) Yes iff Fy_(¢) = Ey,(¢1). Need a proof.
o) {Yes if P(f(X,01) = kf(X,00)) = 0
No in general otherwise
Proof in Case (a). 3 cases of “if”: (1) ¢ =0, (2) c€ (0,1), (3) c=1.
In case (a.1), A(z) < ¢ = 0 implies that
f(z;0,) =0 < f(x;01) (ice. 1/A(x) = 00),
otherwise, x is not of concern why ?
Define k = 0o = 1/0 and oo x 0 = 0, then
$»=1(A=0) =¢; with k =00 and p(z) =0 and o, = 0 = Ey_(¢1).
In case (a.2), ¢ = ¢1 as in Eq. (1) with k = 1/c > 1 and p(z) = 1. Tt is a MP level a, test.
In case (a.3), ¢ = ¢1 asin Eq. (1) with k=0 (#1=1/c) and p(z) = 1. a, = 1. It is a MP level «, test.
Not of practical interest !
Proof in Case (b). The answer in general is "No”. A counterexample for discrete case: X ~ bin(1,p).
Hy: p=0.5vs. Hi: p=04. ¢ = %1()( = 0) satisfies Eq. (1), but it is not a LRT ¢.

Need a proof.

#8.22. Let X ,..., Xj9 be i.i.d. from bin(1,p). For testing Hy: p = 1/2 vs. Hy: p = 1/4. A UMP size
0.0547 test is ¢ = 1(2,» Xi<2)"
Question c: For what o level does there exist a UMP test of Hy: p=1/2vs. H: p=1/47
Answer: Two points of view:
(1) Theoretical point of view: « < 1.
(2) Pratical point of view: a < 1/2.
Since T = 2121 X; is the sufficient statistic and has T MLR, the UMP test of level « is

1 T <1
¢_{7 if T =i (1)

0 ifT>i,

where 10 10
_ 10 .
Q[Z(j>+7<i>}o.5 . i€{0,1,2,3,4,5}.
1<t

o €10,0.5).

For instance, for o = 0.05, take ¢ = 2 and

y=la- 21: (19) 0.57] /[(120) 0.5'% = 0.8933333

i=o \J

1 ifT <2
o= { 0.8933333 if T =2
0 it T > 2,
R commands:
x=0:5
round(pbinom(x,10,0.5),4)
[1] 0.0010 0.0107 0.0547 0.1719 0.3770 0.6230
(0.05-pbinom(1,10,0.5)) /dbinom(2,10,0.5)
[1] 0.8933333
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Question related to 8.29, where X ~ Cauchy(). If X € bin(10,0), let ¢; = 1(X € RR;), where
RRy ={X €[0,2], RRy; = [0,1] and RR3 = [0, 1.5].
1. ¢1 # ¢2 as RRy; # RRy. Yes, No, DNK.
2. ¢3 # ¢2 as RR3 # RRy. Yes, No, DNK.
3. ¢3 = @2 as P((RRg \ RRQ) @] (RR2 \ RR3) = 0. Yes, No, DNK.
4. ¢1 # ¢ as P((RR1 \RRQ) @] (RRQ \ RRl) > 0. Yes, No, DNK.
8.29. Let X ~ f(x;0) = m. p=1(1 < X <3).
(b) F: ¢ is UMP level « test for H,: 6 =0 v.s. Hy: 0 =1.
(¢c) F: Prove of disprove: ¢ is the UMP level Ey_(¢) test for testing
H,: 6 <0v.s. Hyi: 6>0.
(d) What can be said about in general.

Proof. (b) Let g(x) = f(x;1)/f(x;0) = % Since g(1) = ¢g(3) = 2, by the NPL, a UMP level « test
is ¢0 = 1(9(X) > 2) with o = E9:0(¢0)'
2

g(z) >2 <=> Hl(;ifl)g>2 <=>1+4+22-2(1+(x—-1)?)>0<=>1<z<3.
By the NPL, ¢ = ¢, is the UMP test of level a.
(d). In genenal, we can show that a test of the form ¢ = 1(X € (u,v)) is a UMP level « test for testing H,:
0 =0, vs. Hy: 0=0601+#86,, where (u,v) depends on (6,,6;) and a.
It suffices to show that ¢ = 1(X € (u,v)) = 1(;%33 > k) for some k > 1.

In fact, since o = Ep, (#(X)) 1 0 as k 1 oo,

fl@0) _ 14(z—0,)*
f(:c;Gi) =TTz >k (>1).

<=>1+4+(x—-0,)> -1+ (z—61))k>0

<=>ar’+br+c=2?(1—k)—22(0, — kb)) +02 - k07 +1 -k >0
<=> u<zr<v
where u and v are

—b+vb2—4ac
2a :

(¢) F: ¢ is not UMP level « test for Hy,: 6 <0 v.s. Hy: 6 > 0.
Proof 1. Take 6 = 2 and let

Go(x) = f(2;2)/f(2;0) =

Ga(1) = £L # 12 = Ga(3)
Thus ¢ is not UMP level « test.
Is it correct ?
Example: Suppose that © = {0,1}. o =0.2.
T 1 2 3
f(x;0) is given by the table: | f(x;1): 0.3 0.4 0.3
f(xz;0): 05 0.2 0.3
Prove or disprove that ¢ = 1(1 < X < 3) is the UMP level 0.2 test.
Disroof. Let G(z) = f(z;1)/f(x;0).
Then G(1) =3/5# 1= G(3). a = Eg—(9).
Thus ¢ is not a UMP level « test.
Proof. ¢ is the UMP level 0.2 test by the NPL, as
Ep—o(¢) = 0.2 and
- oo 1 f(X1) > LLIF(X;0)
¢=11<X<3)=1X=2) = {o it F(X:1) < L1A(X;0).

What does the example mean ?

8.29 (c¢) (continued). How to correct proof 1?
Ans: Find the UMP level « test ¢o with 8, = 2 and
show either P(¢(X) = ¢2(X)) <1 or By(2) < £4,(2).

In fact, by the conclusion in part (d), the UMP level « test is
¢o = 1(X € (u,v)) and G(u) = G(v).
Recall ¢ = 1(X € (1, 3)).

106



Since Gao(1) # G2(3),
(u,v) # (1,3) and P(X € A) > 0 for each nonempty open interval A,

P(6(X) # $2(X)) > 0.
Additional Homework solutions for week 8

1. The Weibull random variable has a pdf f(z;6) = 9309_1@_3’9, z,0 > 0.
(1) Find a MP test of size o« = 0.1 for testing
Hy: 0 =1 versus Hy: 0 = 2.
(2) Compute the Type II Error probability.
(3) If X = 1.2 is observed, what is your conclusion ?
Sol. Hy: 0=1,v.s. H: 0=2. aa=0.1.
A MP test is ¢ = 1(,>1), where E(¢(X)) = 0.1 and
;0 2?4 ifze (0,1

"= ;Ex&l)% =2ee”" T {I ifx2(1 )
Thus ¢ = 1(xe(ab)): (08 L(xefab)) OF Lixe(ap)s OF L(xelap)))s and
[P erdr = 0.9, ie.,

e v —et=0.0.
2ae~%Fa _ opeb*+b — 0.

Substituting b = g(a) to Eq. (2) yielding
w(a) = 2ae="" T — 2g(a)e~(9(@)*+9(®) = ¢,

x=(1:200) /100

w=w(x)

plot(x,w)

abline(h=0)

It turns out (a,b) = (0.87,1.13). Thus do not reject Hyp, as X = 1.2.
Additonal.

1. The Weibull random variable has a pdf f(z;6) = 62! exp(—2?), z,0 > 0.
(1) Find a MP test of size o = 0.1 for testing Hy: 6 =1 versus H;: 6 = 2.
(2) Compute the Type IT Error probability.

(3) If X = 1.2 is observed, what is your conclusion ?

Sol. The LR
8
g =22z +1)(—z+1)
z: O 1 2
g: S max N\
/ hY

g(z) >k <=>z € (a,b).
Thus the MP test of level o is ¢ = 1(x¢(q,p)), Where

b
0.1:a:/ e dr=e*—¢?
a

or 0.1 = pexp(b) — pexp(a).
gla) =g(b) <=> ae®™ " = et~
Solve the equations using R:

2

h(a) = ae®™* — bbb = 0, where b = —In(e™® —0.1)
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x=(1:150) /200

a=qexp(x)
b=-log(exp(-a)-0.1)

# or b= qexp(0.14+pexp(a))
y=a*exp(a-a*a)-b*exp(b-b*Db)
plot(a,y,type="1")
max(aly<=0])

max(b[y<=0])

[1] 0.8556661 [1] 1.12393

0.4

0.2

0.0

-0.2
I

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

8.13. Let X;, X3 be iid. ~U(6,0+ 1), ¢po = 1(X; + Xz > C), find a test which is more powerful than ¢s.
Sol. Note C = 2 — /2.
How to get a better test ?
By NPL, for testing H,: § =60, =0 v.s. Hi: § =6; =1 — /a, the UMP test of size « is

6= 1 if f(z,y;01) =1>0= f(z,y;0,) i.e., xory >1
10 if f(z,y;600) =0< 1= f(x,y;0,) e, T,y <1—/a

with Eg,(¢) = .. If a = 0.05, C — 1 = 0.68 and 1 — \/a = 0.78.
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¢ C-1

Candidate ¢ = 1(X € RR), where
RR:{X1 ZlorXQZI}U{XthZl—\/a}Why ?
Are we done ?

No, we need a proof.
Consider 3 cases:

(1) 6 €0,C—1];

(2) 6 (C—1,1- ya)

3) 0 el —a,x).

Since ¢ > ¢ on the region {X; > 1 or X, > 1}, it is easy to check that 84(6) > By, (0) V 6 in cases (1)
and (3).

In case (2) P(¢ =1,X1, X5 <1) =, but P(¢s =1,X1, X5 < 1) <, thus 4(0) > B4,(0) V 0 in case
(2).

For testing Hy: 6 € ©¢ v.s. Hy: 0 € OF,
LRT ¢ = 1(\ < ¢), where

SuPgco, L(0]x) L(6o|x)

suppee L(Ox)  L(0|x)

L(0]x) = ;= f(zi;0),

0 is the MLE of 6 under o,

90 is the MLE of 6 under ©g,

c is determined by a = supyeg, P(A < ¢), or
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otherwise,

c=sup{t: a> ese%) P\ <1t)}.
9]

8.35.(c) Show that the pdf of the noncentral t dostribution 7" has an MLR in its noncentrality parameter

6= |pl.
Sol. T=X/\/Y/v, X ~ N(u,1) and Y ~ x?(v). Let |2 > |u1]

t\/y/v T 2—1,—y/2
7(t,0) // ! 1 *(!L’#)/d / ey/dy
[(v/2)2v/2

yu/2—1e—y/2

e 1 2
— / —(t\/y/v—p)*/2
T(taé) /0 y/y 277'6 F<V/2)2y/2 dy

i v/2—1_—y/2
fr(t.6))  Jo" Nulv e Ve R e dy
fr(t. o) oo yJv e Wulvom? 2y leviz b

0 T(v/2)2v/?
Sagak
= L[y v (t\/ﬁ A DL K i
Jo* Vulv e R S dy
I il e ST
Jy = e e T ) > 0

02 o T ) e

(D/Z)Q“/z Yy
1122 /2y /2= le—u/2
IRY /y y/v—p2) /297F( /2)2:“;2 dy

fooy/yw —(tm 1) /QMdy

0 N T(v/2)2"72
v—111)2 v/2=1le—y/2
fo /y/yi6 (ty/y/v—p1) /er(/wdy

e~ (tVy/v—p2)?/2
e~ (tVy/v—p1)?/2
If ugy > 0, then po — g > 0, g(¢) Tin ¢, and ;Tg’g?) T in t too.
If po <0, then pg — g <0, g(t) 1 in ¢, and fr(t92) 4 i ¢ too.

fr(t,01)
Homework solutions for week 10

g(t) = The ratio of the intergrants = = 7 2V Y/v—pa—m)(pa—pm)

Additional problem.
3. Carry out the following simulation project.
3.1. Use Splus to generate 10 observations from N(1,4).
3.2. Now pretend that you only known that the data were from N (i, o) without knowing p and construct
a 80% confidence interval for p.
3.3. Repeat Steps 3.1 and 3.2 100 times.
Splus commands are :
y=rep(0,200)
dim(y)=c(100,2)
z=qnorm(0.9)
for(i in 1:100) {
x=rnorm(10,1,2)
u=mean(x)
y[i,1]=u-z*2/sqrt(10)
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y[i,2]=u+z*2/sqrt(10)

}

plot(1:100,y[1:100,2], xlim=c(0,100), ylim=c(-2,5))
par(new=T)

plot(1:100,y[1:100,1], xlim=c(0,100), ylim=c(-2,5))
for(i in 1:100) {

par(new=T)
plot(c(i,i),yl[i,1:2],type="1", xlim=c(0,100), ylim=c(-2,5))
}

In the above approach, what assumption is made on o 7
What is the proportion that the CIs contain the true mean?
What is the relation between the proportion and the confidence coefficient?
Compare the lengths of the interval between those in problems 2 and 3 and make comments on the
lengths and discuss why there is a difference.
Sol. c. The proportion ~ the confidence coefficient 80%.
d. The mean length of the CI in #2 is longer than the length of CI in # 3,
as we have more accurate information in # 3 than in # 2. In fact,
in #2 the 80% CI is X + 1.535//5,
in #3 the 80% CI is X + 1.28¢//5 (noting F(S?) = o?)).
x=(1:150)/200
a=qexp(x)
b=-log(exp(-a)-0.1)
y=a*exp(a-a*a)-b*exp(b-b*b)
plot(a,y,type="1")
max(afy<=0])
max(b[y<=0])
9.2. Suppose X L X.
P(X e[z —1.96/y/n, T+ 1.96/\/n])
=®(T+1.96/y/n) — (T —1.96/y/n) ?
P(X € [X —1.96/y/n, X + 1.96/+/n))
=®(X +1.96/y/n) — ®(X —1.96/y/n) ?
P(X € [X —1.96/y/n, X +1.96/\/n])
=P(-1.96/y/n < X — X <1.96/\/n]) ?
X-X~7?

o T

X - X| < 1.96//n

V1i+1/n = \/1+1/n

P(X € [X —1.96/vn, X +1.96//n]) = P(

).

Howmework week 9 and 10
Additonal.
1. A tire company guarantees that a particular brand of tire has a mean lifetime of 42 thousand miles or more.Jj
A consumer test agency collected 10 observations as follows: 42, 36, 46, 43, 41, 35, 43, 45, 40, 39. Assume
the lifetime has an exponential distribution. Use these data to determine a 95% and a 99% confidence
intervals for the mean lifetime of a tire using the pivotal method and the LRT method, separately.

Sol. The LRT method depens on Hj.
Hy:p#420r < 42777
The LRT test leads to RR: {X < a}.
The CI is 227:1& < por (21.1,00).
X2n, 1 —
~——

right—tail

The pivotal T =231 | X;/pn ~ x3,. The CILis
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2222;1 Xi

X
2n, 11—«
——
right—tail

or a shortest one, but how 7
It is not obvious to use T', as T leads to

[QZTX Z)ZTX] with Fr(b) — Fr(a) = 0.95.

< p (common sense),

Let W =1/T.
Fy(w) = P(W <w) = P(T > 1/w) =1— Fr(1/w) and
fw(w) = fr(1/w)1/w?, w > 0.

TNXZnWIthdffT()—% t>0.
The shortest CLis 2" | X;a,2>"" | X;b], where

Fw(b) = Fw(a) =1 — o and fw(a) = fw (D).

9.3. X1, ..., X, are i.i.d. from F(x) = (%)‘X if z € (0,8) and « is given. 95% upper confidence limit for 3,
where X(,) = 25, a = 12.59, n = 14.

Sol. f(z;8) = (a/B)(z/B)*", = € (0, ).
Ho: B = Bo, v.s. Hi: B # Bo.
MLE: By = o, B = X(n)-
LRT leads to
Acceptance region : {x: A(x) > c}, where
L(X;0, n (F)" Xin
A = L((XQ)) =TI, ( x:ll))a = ( B(o))na
Notice that 7' = X(,,y/f is a pivotal random variable, as
P(T <t)=t"ifte|0,1].
The acceptance region leads to
Pla<T)=0.95=1—a" ?? or
Pla<T<1)=095=1—a" 7?7
a_oosﬁ and b= 1.
a< (B") <1,
T <<
95% CI for B is
[25,25.43] or (0,25.43] ??
# 9.4. Use LRT to derive CI for X\, where
X1, ooy Xp ~ N(0,0%)
Y1, vy Yin ~ N(0,0%)
A= 0}2//03(7
A2. Then generate a set of data with n = 9 and m = 16 from normal distributions and derive the LRT
based 90% CI of A using numerical method. Report the sufficient statistics.
Sol. Hy: A = A,, v.s. Hy: otherwise.
a. MLE under ©: 6% =3, X?/n, 63 = 3., Y7 /m, A=062/6%.
2 2
MLE under Hy: 6% = M o

n+m

. 1 . 1
L =(2mo%) P exp(—5 Y X2/0%)(2m0%) " exp(—5 ZY{"/U%)

—(2ro%) "2 (2mod) /2 exp(— 1[2X2/0—X )+ 30720t

12 X2+, YQ/A)

2 X%

:(271'0?()7"/2(277032/)7"’/2 exp(—
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O i
(Ug()—n/Z( )2/)—771/2
o n Zz X12 + Zj )/jz/)\o —n/2 m Zt Xlz + Z] }/}2/)\0
_(n+m >, X2 ) (n+m Y7
2 2
O((l_’_zjy}/)‘o)—n/Z(/\OZiXiQ+1)—m/2 T = Zj}/}/)\o
2 2 ’ 2
>, X R e

x(1+T)""2(1+ %)"”/2
:(1 + T)fn/Qfm/Q(T)m/2

;) n/24m/2 | m/2 ) =+o00 if T =0+
(InLR)p = =57~ + 517 {20 i T~ o0 but T # oo
and has a unique zero point. Thus LR first 1, then |

Acceptance region a < T' < b, where (LR(a) = LR(D)).
Notice F — 2zg= 0 /me)
- leg/(mg() -

Acceptance region can be written as

n
RT ~ Fm7n.

2

a < om < b, where Fy, ,(b) — Fryn(a) =1—«, LR(am/n) = LR(bm/n).

o

d
dN

CI: (Ta a )a
Question: How to find (a,b) numerically by R-program ?
Numerical method for given Y2/X?:

LR o« g = (1 +T)~(+m)/2(T)ym/2

Assign «, say a = 0.05,

t= Fm,mlfou

a =(1:999) /1000
a=txa

p= Fm,n(a)

b= Fp, n (a—p) (critical value, i.e., 1 — Fp, »(b) = a — p)
solve LR(am/n) — LR(bm/n) = 0.

2
Then a < 25— < b yields
XA

the (LRT method) CI

2 2

<A< 2, where LR(am/n) — LR(bm/n) = 0.

Xb Xa
vz vz
An approximate CI: (=2 X2 if p and m are large.

m,n,o/2 ’ Fm,,n,l—oc/2

But it is not the LRT CI !

R program for #9.4 m=10
n=15

x=rnorm(n)
y=rnorm(m,0,3)
f=mean(y**2)/mean(x**2)
f 4 [1] 10.5161
t=qf(0.05,m,n)
a=(1:999)/1000

a=t*a

p:pf(a,m,n)
b=qf(1-0.05+p,m,n)
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r=m/n
y=(L4r*b) ™ (-(n+m) /2) (") **(m 2)
= (141%) **(-(n-+m) /2)*(r¥a) * (m/2)
Z=y-X
u=z[z>=0]
s=min(u)
f/blz==s]
f/a[z==s]
Simulation result: The 95% CI is [ 3.359162, 36.13342]
A different numerical method for given Y2/X?2:
1. Generate a sequence of A. For each A: (note X is not LR)
2. find ¢y for the RR: LR < ¢y;
3. X €CILif )\ is not rejected.
This can be done as follows:
Treat Y2/X2 as one of a or b and find the other one.
Compute the P(a < T < b), if it is < 1 — «, then p € CL

9.6. 90% CI of p based on two-tailed test with X = X7 ~ bin(n, p).

A3. Do #9.6. Then generate a r.v. from bin(n,p) with your (n,p), report the sufficient statistic values
and derive the LRT based 90% CI of p using numerical method.

Sol. Hy: p=p, v.s. Hi: p # po.
MLE: py = p, and p = X/n.

N P (p) ™
= /XXX
LRT ¢ = 1(5<0

In\ = zlnp, + (n — 2)In(1 — p,) — zlnz + zlnn — (n — z)Iln(l — =/n)

1
(In\)), = Inp, — In(1 — p,) — In(z/n) — z/x +In(1 — z/n) + (n — x)l _/;l/n
. Do l—x/n (4 ifz=0
_lnl—p0+ln x/n _{— ifx=n

RR: X <aor X >0
AR: a < X < b, where A(a) = A(b).
Notice that in LRT ¢ = 1(5<), ¢ depends on p,, thus write

(b = 1()‘§Cpo)'

where ¢, satisfies that (1) E,_ (¢) < «,
(2) Ep,(6) + Py (X € (,a+ 1)) > a and (3) Ep, (6) + Py, (X € [b—1,5) > a

X ({_p)n—X

Then a CI for p is {p: (X/g)x((lf’;(/n)n,x > ¢y}, where P,(A < ¢,) < a, Ep(¢) + Pp(X € (a,a+1]) > a and
Ep(¢) + Py(X € b—1,b)) > cu.

In other words, the test is ¢ = 1(x¢(a,p)), Where
InA(a) = lnA(b),
P, (MX) < Xa)) <aand P,,(AM(X) < Aa+1)) > a.
That is, observe X = z,
we do not reject H, if the p-value P, (AM(X) < A(z)) > .
(1—a)CIl:{p: P,(AX)>A(z)) <1l—-a}.

The idea of deriving CI numerically is as follows.
1. Generate a sequence of p. For each p:

2. find cp;

3. p €CI if p is not rejected.
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# R for 9.6.

n=10

x=rbinom(1,n,0.2)

X

[1] 8 # an observation for testing
p=(1:1000)/1001

z=rep(0,1000) # 1(p is accepted)
for (j in 1:1000){

y=1:(n-1)

g= y*log(p[i]) +(n-y)*log(1-p[j]) -y*log(y/n) -(n-y)*log(1-(y/n)) # In A
g=c(n*log(1-plj]),g.n*log(pli]))
u=0

for(i in 1:(n+1)) {

if( g[i] > g[x]) u=u+dbinom(i,n,p[j])

if (u < 0.9) z[j] =1

min(p[z==1])

max(p[z==1])

CI: [0.5004995, 0.9450549]

# not a LRT CI

n=10

m=1000

t=0.4

x=rbinom(1,n,t)

x=8

q=(1:m)/m

p=1:m

for (i in 1:m){

y=binom.test(x,n,q[i])

p[i] = y$p.value

}

q=q[p>=0.1]

min(q)

max(q)

[1] 0.5

[1] 0.945

9.13 (b). Let X ~ Beta(#,1). Find a pivotal quantify and a CI of size e~ /2 — e,

Sol. fx(z) = 0271, 2 € (0,1). Let T = —log(X%) = —flogX. X = e T/ do — Le=t/0 f.(t) =
Bexp(—(t/0)(0 — 1))%67t/9 =e ' t>0.

eV —el=P(T<b)=1-e"0< —flog(X)<b. 0<0< _lé’gx.
It is the shortest CI with the confidence coefficience (due to fr(a) = fr(b)).

9.12. Assume Xy, ..., X,, are i.i.d. from N(0,60). Construct a 95% CI for 6.

Sol. 3 approaches:

(1) Pivotal method,

(2) LRT method,

(3) X £ t,_1,4/25/y/n (not a good one), Why ??
(1a) A pivotal T = X‘i ~ N(0,1). It leads to

Vo

X -6
0/n

| | <1.96 (and 6 > 0).
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or (X — G)ig 1.96j€/n.
62 —2X0 + (X)? — 1.96%0/n < 0.
92 _ 2(Y+ 1.962)9 + (*)2 <0.
Two solutions to the equation: 2 — 2(X + 1.26° 96 )0+ (X)? =0:
=X+ 1297? +e if 2X + 1297? >0, Where
c= /(X + 1) - (X2,
(X + % —c, X + % +¢]. It is right 777

OV (X + 12 ) 0v (X + L2 1 ¢)]. Tt is right 777
Solutions 95% CI for 6:

0V (X + 22 —¢),0v (X + 15 o) if 2X + 12" >0
{0} if 2X + 12 <

Q: Why {0} is a 95% CI for 6 in the latter case 7
Hint: Compute the coverage probability.
2
(1b) Another pivotal Y = % ~ x%(n —1). Not a good one. Thus
Pa<Y<b=1-a

=> 95% Clis [(n — 1)5%/b,(n — 1)S?/a],
where fy (a) = fy(b) gives the shortest CI of this type.
(2) LRT method

n N (@=0)?
fx(X; 0) = Hi:l f((ﬂl, 0) = \/QTane i=1 20
Infx (x,0) = ¢+ F*Inf— %(“— — 2T+ 0).

Infx(x,0) = -5 — 5(—% 2 4 1) =0.

02 4+60— 22 =0.
_ —1+V 14422
9— f.
=> = “LEVLEE
Check: 0: 0 0 o0

Infy : —oo finite —oo’

The MLE is 6 = /2% + 1 — 1/2.
The derivation of the CI is more complicated and is skipped here.

We consider a special case as follows.

A4. 9.12. Generate a random variable X; from N(6,6) using R (n = 1) and report the sufficient statistic
value. Use the LRT approach to derive a 90% CI for § by numerical method.
Sol. LRT based on Y ~ N(6,0) with n = 1.

1 _w=9?

Ty (y,0) = N .
Infy (y,0) =c+ %ln@—%(% y—i—G).
(Infy (y,0)) = —55 — 5(— yﬁ +1)=0.

62 4+60 —y2 =0.
9 — -1+ 21+4y2. _
é—_1+\/1+4y2 (1)
B 2
. 0 6 00
Check: Infy : —oo finite —oo’
The MLE is 6.
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_ (w—09)?
20

€

A= \/9170 IOEGE
%e 20
ie,(y;gﬁ
The 95% CI of § induced by the LRT is {6 : —————> > ¢y}, or
\/él(?e 26(y)
W) w0 (v 0w’
0: xp(— + = > cot,
¢ Vo ( 260 20(y) )> e}

Notice that in # 9.23, the function A(z, 6) is concave down,
but the function A(y, 8) here may not be concave down,
and the acceptance region may not be an interval.
Sketch of a numerical solution for given ¥ = y:
1. Give a range of 6, say (0,y + 3,/y) (why ?)
2. For each 0 € (0,y + 3,/y), it belongs to the CI if 6 is not rejected.
This can be done in two ways:
a. Find ¢y for each 6. Check A(z,6) > cg ?
b. Compute the p-value. Check p-value > a?
Or Compute 1—p-value. Check 1—p-value < 1 — a?
If the acceptance region (AR) is [a,b], and X is cts,1 — p = F(b) — F(a).
If the AR is [a,b] and X is discrete, 1 —p = F(b) — F(a — 1).
If the AR is not an interval, 1 — p = [ 1(A\(z,6) > A(x,,0))dF (x;0).

Graph of y = A\(z,0) with § =4 and observation X =y = 0.557788.
y=rnorm(1,1,1)
# y=1.457788
Yy
m=2000 # forY
k=1000
p=(1:k)/100
z=rep(0,k)
u=(3:(m-3))/m # partition (0,1) into 2000 parts
for (j in 1:k){
a=plj]
t=sqrt(y*y+0.25)-0.5 # MLE based on observation
g=sqrt(t/a)*exp(-(y-)**2/(2%q)+(y-t)**2/(2%t)) # A
x=qunorm(u,q,sqrt(q)) # quantiles
t=sqrt(x*x+0.25)-0.5 # MLE for x
G=sqrt(t/q)*exp(-(x-q)**2/(2*q)+(x-t)**2/(2*%t)) # A
x=x[G>=g]
w=length(x)/m # [1(A(z,0) > \(z,,0))dF (x;0,).
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if (w < 0.95) zj] =1
}

z  # check whether adjustment is need for p.
a=min(p[z==1])
b=max(plz==1])

c(a.b)
oo01111111111111111111111111111111111
t1111111111111111111111111111111111111
1111111111111111111111111111 111111111
1111111111111111111111111111111111111
t1111111111111111111111111111111111111
i1111111111111111111111111111111111111
t1111111111111111111111111111111111111
t1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111000000000
00000000000000O00OO0OOOOOOOOOOOOOOOOOOOODO

1]

38]

75]

112
149
186
223
260
297
334
371
408]0000000000000000000000000000000000000

[
[
[
[
[
[
[
[
[
[
{
[445]0000000000000000000000000000000000000
[482] 0000000000000000000000000000000000000
[
[
[
[
[
[
[
[
[
[
[
[
[
[

556]0000000000000000000000000000000000000
593]0000000000000000000000000000000000000
630]0000000000000000000000000000000000000
667]0000000000000000000000000000000000000
704]0000000000000000000000000000000000000
74110000000000000000000000000000000000000
77810000000000000000000000000000000000000
815/0000000000000000000000000000000000000
852]0000000000000000000000000000000000000
889]0000000000000000000000000000000000000
926]0000000000000000000000000000000000000
963]0000000000000000000000000000000000000
1000] 0

}
]
}
}
}
}
}
}
}
|
519]0000000000000000000000000000000000000
}
}
}
}
|
}
}
}
}
}
}
}

1] 0.04 3.61

(2) LRT based on sufficient statistic Y = X ~ N(6,6/n).
There is a mistake in the following approach.

Fr(0,0) = <hme™ 00

2

Infy (y,0) = c+ FInb—2 (4% — 2y +0).
1/2

0
(Infy(y,0))' = —g5 — 5(~= +1) =
92+9/n—y = 0.

g— TG
~ Ly S gy2
—>f=T""V2TT 59
Check: 0 0 0 o0
Infy: —oo fzmte —o0’

The MLE is = V(X
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(w=00)%

—

\ \/%6 200 /1
B | —w=9?
L 20/n
NG
_w=0)?
1 o 20/n
The 95% CI of 6 induced by the LRT is {# : ~2——— > c}, or
1 20/n

4

{6 : \\/[jexp(— (yQ;/i) + (y%T/i) ) > c}, where 6 = \/y2 + ;5 — 5.

Sketch of a numerical solution for given X = y:
1. Give a range of 6, say (0,y + 31/y/n).
2. For each 6 € (0,y + 3y/y/n), it belongs to the CI if € is not rejected.
Remark. There is an error in the previous discussion unless n = 1. The sufficient statistics is not X, but
(X, X?). Thus the derivation is not correct.
# 9.23. X4, ..., X,, ~ Poisson(0), derive a 90% CI based on Formula (9.2.17) in page 435 and LRT.
x=c(155,104,66,50,36,40,30,35,42)
Sol. (1) Method from Formula (9.2.17) in page 435.

1, 1

2
[%Xzyo,l—a/% 2 X2(yo+1)7a/2]'

n

Here y, = 558. a = 0.1
a=qchisq(0.05,2*y)/(2*n)
b=qchisq(0.95,2*(y+1))/(2*n)
c(a,b)

[1] 57.74689 66.49441

(2) LRT method. Hy: 0 =0, v.s. Hy: 0 #46,
Sufficient and complete statistic Y =Y. X; ~ Poisson(nf).
Fr(y:0) = e (nf)¥ /y!

MLE: 6 = Y/n, 6y = 0,.
e "% (nh,)Y

e*yyy

A= = V=" (nh, /y)Y

In\ =y —nb, + yln(nb,) — ylny
(InX);, = 1+ In(nb,) — Iny — 1

Thus A first T and then |.
® = 1(y¢(ap)), Where A(a) = A(b) and Ey, (¢) < a,
Eo (@) + Py, (Y € la,a+1)) >, Eg (6)+ Po, (Y € (b—1,b]) > a
The 95% CI of 0 is {6 : A > cg}.
o Fy(y;0) —Fb—-1,0)<1—a ifb<uy,
oc CIlf{Fy(b;H)—Fy(y—l;Q) <l—-a ifb>y
{b,y} = {min(A), max(A4)} and
A=Y log(\(V;6)) > log(A(y;0))).
x=c¢(155,104,66,50,36,40,30,35,42)
y=sum(x) #y=>558
n=9 # sample size
k=1000

, where
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Additional 8.2.

z=(y-200):(y+200)  # selected Y values
=((-k):k)/10

q+y # selected n# range: y + 100, separation by 0.1

q # initialize v

for (i in 1:(2*k+1)) {

p=q[i]

g=y-p+y*log(p)-y*log(y)  # log(A(y))

G=z-p+z*log(p)-z*log(z) # log(A(Y) for selected Y values)
t=2[G>=g]

m=length(t)

if (t[1] < 2) u=as.numeric(ppois(t[m],p)<0.95) else # left end of t = 07
u=as.numeric(ppois(t[m|,p)-ppois(t[1]-1,p)<0.95)

q
q
v

v[i]=u
}
x=q[v == 1]

x[c(1, length(x))]/n
[1] 57.04444 67.25556
(b) Redo the following problem and compute P(Ho|H):
Carry out the following simulation project.
1.b.1. Use R to generate 5 observations from N(1,1). Now pretend that you only known that the data
were from N(u, o) without knowing p and o, use t-test to test Ho: = 0 v.s. Hy: p # 0 with a size
0.2. Record the P-value. R commands are :
x < —rnorm(5) + 1
y=t.test(x)
y$p.value
What is a correct decision here (in terms of rejecting Hy or not) ?
1.b.2. Repeat procedure 2.1 100 times. That is, record 100 P-values.
How many times, say z, would you reject Hy 7
Question: What does the number =z tell you about P(Hy|H,) ?

Sol. Under given condition, X ~ N(1,1) and ﬁ ~ non-central t-distribition with degree freedom n =5
and non-central parameter -

(no?/\/n=1x+/n). P(H,|H,) = P(|#| <tp1,a/2) = 0.2391

(see R program below).

The number z = 74 tells us 1 — z/100 = 0.26 ~ P(H,|H1).

R:

8.47.

n=>s

q=qt(0.9,n-1)

pt(q, n-1, sqrt(n))-pt(-q, n-1, sqrt(n))

[1] 0.2391017

Consider two independent normal sample with equal variance. F: The LRT for H; : pux — pty < —0 v.s.
Hi:px —py > —6is

i L XV(=5
¢ =1T" > tmin—2a), where T~ = T(Hs;,

Sol. Since X and Y are the sufficient statistics of (g, p,) and the parameter of interest is 6 = py, — py, it
suffices to consider the likelihood of X =Y ~ N(6,0%(L + 1)). ......

n
Homework solutions for week 11

Additional. R project:

Al
2.
3.

4.

Generate n=9 observations from a N (ug, o).

Perform a t-test for Hy: pu = po against Hy: p # po.

Repeat Steps 1 and 2 400 times, count the number my of rejections among the first k£ times for k = 1,
2,3, ..., 400.

plot(my/k k) for k € {1,...,400}.
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5. Make comment on {my/k}r>1 and «, the size of the test.
Ans. to A.5: my/k%%a (= P(Hy|H,) by the SLLN.
B.1. Generate n=9 observations from a discrete random variable X, with X = a,b,c w.p. 1/6, 2/6, 3/6, and
with mean and variance the same as in part A (you need to determine a,b,c and check ?sample
in R).
2. Perform a t-test for Ho: p = po against Hi: pu # pig-
3. Repeat Steps 1 and 2 400 times, count the number my of rejections among the first k times for k = 1,
2, 3, ..., 400.
4. plot(my/k.k).
5. Make comment on {my/k}r>1 and «, the size of the test.
Ans.: my/k%% P(H |H,) by the SLLN. Notice that it is most likely that o # P(H,|H,), as
the distribution is not normal.
C. Let n = 80 and repeat A and B. Is there any difference on your comments. If there is one, why 7
Ans.: Under the assumption in A, compare the two curves of (my/k, k), the variation is
smaller for n = 80, about 1/9/v/80 ~ 1/3 variation for n = 9. my/k“%P(H,|H,) by the SLLN.
Notice that P(H;|H,) = «a, as the distribution is normal.

0.10
I
0.10
I

0.08
I
0.08
I

0.06
I
0.06
I

i 'Ww«

0.04
I
0.04
I

0.02
I
0.02
I

0.00
I
0.00
I

Under the assumption in B m;/k~%P(H,|H,) by the SLLN. Notice that P(H;|H,) ~ a, as
the distribution is approximately normal by the CLT.

myfun=function(n){

z=0

N=1000

m=1:N

for (iin 1:N){

x=rnorm(n)+1

y=t.test(x, mu=1)

z=z+(y$p.value<0.05)

mli]=z/i
}
i=1:N

plot(i,m, xlim=c(0,N), ylim=c(0.0,0.10), type="1" lty=1)
abline(h=0.05)

makepsfile = function() {
ps.options(horizontal = F)

ps.options(height=9.0, width=6.5)
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postscript(” fighw.ps”)
par(mfrow=c(1,2))
n=9
myfun(n)
n=80
myfun(n)
dev.off(
}
makepsfile()
Additional.
AG6.
1. Generate n=4 observations from a discrete random variable X, with X = a,b,c¢ w.p. 1/6, 2/6, 3/6,
and with mean and variance the same as in part A5 (you need to determine a,b,c¢ and check
help(sample) in R).
. Perform a t-test for Hy: p = po against Hy: p # po with o = 0.1
. Repeat Steps 1 and 2 400 times, count the number my of rejections among the first k£ times for k = 1,
2, 3, ..., 400.
. Plot(k,my/k).
. Do you believe the size of the test is 0.1 based on my/k ?
. Compute the size of the test P(H;|Hp) here. Make comment on the relation between {ms/k}ir>1, o,
and the size of the test.

w N

S Ut

Sol. (6) The size P(Hy|Ho) = P(5702l > oy 1) =7
> qt(0.05,3) # why ?

1] -2.353363
t-test: ¢ = 1(152el > 2.35),
The size P(H|Hy) = P(;S( /‘;ﬁ} > 2.(35)) =7
_ ey Ix(x)dxif cts o
P((X1,, Xa) € 4) = {erA Ix (x) if discrete” X=7
The size P(H1|Hp)
= el a8 ) fla) ) F )
X1,Tr2,Xx3,T4 S/\/ZI
4
B - B |T — o] 1 1 1
- Z M(l — (a1 = - = a))1( N i 2.35)gf(xi) tatmty
1/6 ifrx=a
where f(z) =< 2/6 ifx=b E(X)=p, and V(X)= o2 for (u,, o) in Ab.
3/6 ifz=c

Ans. a = 0.1 # P(H|Hp), size of the test.

my/k = Z = 1(reject correct H,)*>P(H,|Hy) due to SLLN

A8. Assume the assumption as in #10.1.
(a) Select a parameter (say 6, = 0.5), and generate a random sample of 25, say O, through
n=25
O= runif(n)
O = Fx'(0), # convert Fy' to R formula.
where Fx (t) = 1(t € [-1,1)) [*, 2(1 + 0y)dy + 1(¢ > 1).
(b) Derive the likelihood function L(6, O) and the MLE using numerical method, e.g., plotting (6, L(6, O)).
(c¢) Show that the MLE is consistent by verifying (A1) — (A5) in Theorem 1 of §10.1.
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(d) Estimate the asymptotic variances of the MLE and the MME with given O. Which is smaller ?

Sol. (a) fx(z) =0.5(1+6z), vz € (—1,1), |f] < 1.
Recall that
Y =Fx(X)~U(0,1) if X is a cts r.v..
Thus pseudo random number can be derived by R through Fi'(Y).
Here F'y 1is given by
y=[" Bdt = (0.5t + 0.125t%)|"; = 0.125z% + 0.5z + 0.375.
0.12522 + 0.5z + 0.375 — y = 0.

_ —0.5%+4/0.52-4(0.125)(0.375—y) _ —0.5£4/0.5(0.125+y)
2+0.125 = 0.25 :

0.5+ /05(0.125 + y)

0.25

Fx'(y)

n=25

y=runif(n)

x=4%(-0.5 + sqrt(0.5%(0.125+y)))

round(x,2)

[1] 0.35 0.80 0.64 0.93 0.94 0.88 0.46 0.07 0.99 0.97 -0.73 0.74

[13] -0.74 0.60 0.90 0.54 0.68 -0.75 0.02 0.30 -0.19 -0.94 -0.24 0.64
[25] 0.06

(b) MLE 6 = ?
Usual approaches:

(1) Solve %(éx;e) = 0 if feasible, such as N(u,0?).

(2) Compare L(x;60), 8 € © if the latter is finite, such as © = {6, 6, }
Neither works here !

Two numerical methods:
(1) graph £(#) to find the maximum point, £(#) o [T, (1 + 6z;)
(2) Newton-Raphson method.

dinL(0) /d21n1:(9)
do 92

grew = gold _ ( V|ggota until [0 — 14| < .

f=-1+(1:2000)/1000
L=rep(0,2000)
for (i in 1:2000)
L[i]=prod(1+t[i]*x)
plot(t,L,1ty="1") # bell-shape
plot(t[500:2000],L[500:2000],type="1")
h=max(L)
t[L==h]
[1] 0.517 # MLE of §
(d) o2 is not easy to derive.
But &; can.
Y ~ A ~
z= (7119()(5)) or (1(0))?/1,(0) or CLT or Delta method.
7(0) =77
1,(0) = n1y(6) 1,(0) = B((PREFE0)2) = — p(Ff0).
In[0.5(1 + 6X)]
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= E((1+0X)2)

— f_ 1«&01:)2 1+0tdt

= f 1 1+9tdt/2

_f10 1+tdt1

1 2420 14072201 (t+60"1)+0~ 2dt 1
— 0- T+t

=Y t+0 12071 4 54— 1+tdt19

=[2/2-07t+0 2t + 0] L
=[-20"" + 920 ] L
=—0"240.50"3In 1

62 =0.10
MME: E(X) = [*, 2(0.5) + 0.502)dx = (4 + Z2)|L, = 6/3

0/3=X => 0 =3X.

62 =95%/n=9(X? — (X)?)/(n - 1).

g% =0.13.
Which of &g and &g is smaller ?

Why ??

(c) Verifying (A1)-(A5) for f(z;6) = 0.5(1 4+ 20), x,0 € (—1,1).
(A1) X4, .., X, are i.i.d. with f(-;6,), 0, € ©;
(Al1): It is true with §, = 0.5 € (—1,1) = ©.
(A2) f(30) # f(;0%) V0 £ 6* and 6,0* € O (identifiability);
(A2): £(30) = f(:0°)
=> 0= £(0.2;0) — £(0.2:0%) = 0.5(0 — 6*) x 0.2
=>0=0".
(A3) {z: f(z;0) > 0} does not depend on ¢ and %f(ac; 0) exists;
(A3): {x: f(x;0) >0} = (—1,1) does not depend on 6
2 f(x;0) = 0.5z if 2,0 € (—1,1).
(A4) © contains an open set O and 6, € O;
(A4) © =(—1,1) is open and 6, = 0.5 € (—1,1).
(A5) 7= 7(0) is a continuous function of 6.
(Ab5): 7(0) = 0 is continuous in 6.

Additional. A4+ If Y,—2a and X,,—2+X, then Y, /X,—>a/X.

Proof. Disprove unless P(X = 0) = 0. In view of Slutsky’s Theorem, it suffices to disprove
Zy =1/X,-21/X = Z, unless P(X = 0) = 0.

Notice that ¢ is a continuous point of a cdf Fy (¢) iff P(W =t) = 0.

Define 1/0 = +o0.

Fy,(0) = P(1/X, < 0) = P(X, < 0) + P(X, = 00) = Fx, (0-).

If ¢t <0, then
Fz (t)=P(Z, <t)

=P(1/X, <1)

=P(X, <0& 1> X,t)

= P(X, <0& 1/t < X,,)

=P(1/t< X, <0)

= Fx,(0—) — Fx, (s—), where s = 1/t.

If t > 0, then
FZ,,L (t) = P(Zn < t)

=P(1/X, <t)

= P(X, <0&1/X, <)+ P(X, > 0& 1/X, <t) + P(Xp =0 & 1/X,, < 1)
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P(X, <0)+P(X, >0& X, >1/t)
P(X, <0)+ P(X,, >1/t)
Fx,(0-)+1— Fx, (s—).

Fx, (0—)— Fx, (s—) ift<Oand s=1/¢
Fz (t) =} Fx,(0-) itt=0
FX”(O )+1—FX( —) ift>0and s=1/t,
Fx(0—) — Fx(s—) ift<Oand s=1/t
=< Fx(0-) ift=0

Fx(0—)+1—Fx(s—) ift>0and s=1/t,

if s is a continuous point of Fx and P(X = 0) = 0. Notice that if P(X = 0) = 0, then 0 is a continuous
point of Fy. Moreover, if ¢ # 0, then t is a continuous point of Fx iff s = 1/t is a continuous point of I} x.
Moreover, 1/Xn£>1/X7
A second proof. Z, = 1/Xn£>1/X =Z.

Notice g(z) = 1/x with the domain R is not a continuous function. If P(X =
X, = X1(X #0) 4+ 1(X = 0), WLOG, we can assume that {X = 0} = 0. Then g(z
R\ {0} is a continuous function. Thus ¢(X,) = Z,, = 1/Xn£>1/X =Z.

0) = 0, by letting
) with the domain

0 ift<0
F: Let P(X =0) >0, let Fx(t) = {0.5 +0.5¢t if t € [0,1] for n is even.
1 if t > 1
Fx(¢) if n is even
0 ift<—-1/n
Fx,(t) =4 105 tE[-1/m 0] i i odd.
0.5+ 0.5t ifte(0,1]
1 if ¢t > 1

D
X,—X.
Notice that Fy/x(t) =0V ¢t <0 and thus F;,x is continuous for all ¢ < 0.

If t < 0, then
Fz (t) = Fx,(0—) — Fx, (s—), where s = 1/t.
If nis odd, Fz,(t) =05if s = 1 < —1/n,

Thus 1/X,—+1/X is not true.
# 10.5. Let X1, ..., X,, be i.i.d. sample from N(u,0?), then

V(= — —)-25N(0,72). (1)

This means that roughly speaking, Var(T,,) ~ 7%, where T}, = %
Setting g(u) = 1/p, using delta method,

72
=g (u) 9 (1)
—oz/u <o<>1f/¢740
That is,
Var(T,) =~ o*/u* < co. (2)
(a) However,
Var(T,) =00 V n, (3)
_(=—pw)?
as B(T7?) = [ — \/m 202/n d
. (z—)2
= %dwmin{\/:e A v e f—ed} =
Another proof: lim, o L =oco => [ 1 fo(2)dr = 00 7777
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Let fr(t) = ct*1(|t| < 1). Then [ 5 fr(z)dz < oc.
Question: What do Eq. (2) and (3) mean ?
Var(T,) =~ o?/u* is only in the sense of Eq. (1).
It does not really mean that
Var(T,) — 7.
This example serves as a counterexample.
(b) F: In view of Eq. (1), s # 0. If we delete interval (—6,§) from the sample space (of X), then

V(T,) < (4)

Q: Does Eq. (4) contradict Eq. (3) ?
V(T,1(|X]| > §)) < o0 (5)

Exercise 10.4. Go over it after #10.5
Y; = BX; +¢€, i =1, ..., n. Observe (X;,Y;)s. Assume independence, X; ~ N(ux,7?), ¢ ~ N(0,0?%).

Approximate the mean and variance of

(a) B = Zz XY/ Zj Xz

(b) § = %ﬂi,
(c) B =Y/X.

Sol. Q: What does it mean ? (1) 62 ~ V(8) ? Or (2) 2 B *8£>N(O, 1).

2
B

Ans.: Most of the time, (2).

Q: Can we write E(ee) ~ E(e)E( )=072?

S XY/, X2 = B+ Zz =6+ Xe/ X2,

About the formulas in page 245.

o? o? Cov(X,Y
B(X/Y) ~ jx /py and Var(X/v) = (LX)2(2X 4 T _pGouX 1),
Hy X My 122.9%

Counterexample Let X =1and Y ~ Exp(1).
E(X)Y)= [y e Vdy=oco~ 1 777
It really means: (3~

L) & ux, /Py, , in the sense that

V(X /Yy) — (uxn/uyn)]gN(O,aQ), if the latter equation holds.

For instance, let X1, Xo, ... be i.i.d. from Ezp(1). ¥, =1/X =n/> 1 X;, then

[ ny*tev,  T(n—-1) n
200 = [ e =

Thus E(Y,) =~ 1= g(;() if n & oo, but
B(Yi) = o 1.
E(Yy) =24 1.

> XY

BUE ) = 04 DB ) =0+ S BB ) =
777 [ J

To approximate variance, use the delta method.

V(g(0)) = vg(6); v 9(0),
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or V(9(W)) = vg(w)'COV(W) 7 g(W)lw_pW)-
S XiYi/ 3, X7 = B4 eX /X2 = g(eX, X?),
where g(v,ﬁ: B+v/x.

Vil( ) - (2 202 ) 2N0OD)

where ¥ = COV(;gg )

Var(S, X2/ 55, X3) = (12, ~0/2)COV(55) (1//2)

L 1):O,w:u§(+zf§(
~/zocov() ()
2 V(EX) ‘m:;@(-&-ai

E((eX)?)|

02x’

—0 =12 2
v=0,x=p5 +o%

‘ -

n.

=8

2 g2
T=py oy

3
=8
)

— na? m:u§(+a§{
Question: Var(}, X;Yi/ Y, X7) = Loz
Why approximation ?

(1) Tt is difﬁcAuIt to compute ‘/(B)7 where 3 = > XiYi/Zj Xf;
(2) Need in B&_B.

:c:p,zx +a§( :

Var<%?§;?>z;(i,—;’)(ZZ’—Z@)’)(_%) I <€X)
X %) lomeozn= (X
Var S ~ LG -7 22 ()

v=0,2=px

Var(Y/X) = Var(e/X) ~ 2%~ —2_ using delta method.

wx o n(X)?

Question: Notice in 10.4. a&b V(%) ~ (‘;%)2, is it true in general ?

Counterexample. See #10.5. X; ~ N(u,0%).

)-25N(0,72).

V(1/X) ~ % in the sense of Eq. (1) if Eq. (1) holds. Note that V(1)/(E(X))? = 0.

nu
In fact, it is prove()l( in #10.5 that o
V(1/X) = oo.

Let Y; =1,

Y\ _ V(E)
V(X)) = Gz 77

10.4c. V(Y/X) =7
Sol. Notice that Y/X = X2+ = g4 £
V(Y/X) =V (e/X).
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Standard approach: CLT. \/n(Z — E(Z))£>N(O77'2)7 where Z =Y/X and 2 = V(Y/X) =V (e/X) =
V(e/X)/n. - _
Let Z=Y/X, then V(Y/X) ~ 6%/n and 6% = Z2 — (Z)2. 7??
Note that the CLT does not work here, as o3 /X is not finite.
Question: Var(e/X) ~ az => Var(e/X) = Zz 77
Remark. V(%)= (%)2) =E()E(gz)="7
Counterexample. See #10.5. X; ~ N(u,0%) and Eq. (2).
Also, it can be checked by numerical calculation in R
mu=2.0
e=rnorm(100000)
x=rnorm(100000)+mu
var(e/x)/n
[1] 7.725 # v(e/x)= 5.725 x 100000
1/(mumutl)  # = ;’X

[1] 0.2
0'2 >
7= 0241025 xn~ V(%) = B($).

E(e®)E(gz) = 0o Why ?
Ans. See Exercise 10.5a.

But if X ~ N(u,1), then E(1/X) does not exist, as F(1/|X|) = oo (see #10.5).

10.31.c. Prove: /n(p; —ﬁQ)gN(O/I'z).

Two independent bin(ny,p1) and bin(na, p2). n = ny 4+ ny. min{ny, ny} — oo.
Under H,: p1 = py = p.

0
Let Y, = (p1,92), ¢ = 1 —p;, ’ Ny — pi1ga/m
(P1,P2)', q Pi, P = (p1,p2)", By, ( 0 paga/n

) and ¢(Y,,) = p1 — P2, Notice that
22/2(5/71 —p)-N(0, szz) y
Since 2 = (vg(0))'Sy, v g(0) = —|— where ¢; =1 — p;

9(Yn) —9(p) _ P1— Do DuN(0.1) Why 77

V2 JER (= p1) + (1 - o)

Homework Solutions, week 13

10.31(a, b) a. Two independent bin(ni,p1) and bin(ng,p2). Hp: p1 = pa. Show a test has RR

_(a=p2)®
(n11 7112 )B(1—p) > Xl ot That is,

(Pr — p2)? D__ o
L+ Dp—p) F

Proof.
Proof 1. MLE: With two independent binomials, thus AS1-AS7 are satisfied. The MLE of )py, p2) is (P1,D2).
p1 — P2 is the MLE of p; —
p1 — P2 has mean 0 and variance p(1 — p)/ny + p(1 — p)/ns. Thus

D1 — P2 D

N(0,1).

N T T R
(1 — p2)? D o

S14S, .S, .
%—)plfpl:pgzp,wheren:nl—i—ng.

ﬁ)
|




by Slutsky’s theorem.
Proof 2. Suppose that My, (t) = E(eX?) and Mx (t) = E(eX") exist.

X2 X iff My, () = Mx(t) for t € [0,¢), ¢ > 0.

Let X, — —pi=p’ .9y pp
ot X = iy 20d Yo, = A=l then

X, 25N (0,1)
Yo, N (0,1)
Mx, (t) = exp(t?/2), and My, (t) — exp(t*/2).

1 /1
Ean - EYng
Uy,

= , n="n1 + No.

niy na

JEX =AY,
My, (t) = E(exp( - t))
T s
Vit X Vit Yo
ni n2
E(exp( t))E(exp( t
R art

— B(exp(Xn,— L)) E(exp(Y, _\/Zt))

1 1 "2 1
m T Vo T
/L L
/L 1 1 4 1
1 + n2 1 + mn2

1)?/2) exp((— ————1)?/2) = exp(t*/2).
That is, UngN(O, 1). The rest is the same as in the MLE approach.
Proof 3. Assume n;/n = n;/(n1 + na) — pix € (0,1). Then

Val(p1 = p2) — (p1 — p2)] =v/n/niv/ma(pr — p1) — V/n/nay/nz (P2 — p2).

Let g(z,y) = © —y. Since

3

— exp((

3
3

\/> \/n/n“/TTz — Di —>N(O pz( pz)/pz*)v 1= 1327

by Slutsky’s theorem. Then by the delta method,
Va[(p1 = p2) — (p1 — p2)] = Vn(g(p1, P2) — g(p1,2))

D

—>N(0,p1(1 = p1)/prs + p2(1 = p2)/p2s).-

Thus A .
o (P1 — P2) — (p1 — p2)

Vi1 = p1)/p1s + p2(1 = p2)/pas
The conclusion then follows from Slutsky’ theorem and the assumption p; = ps = p, as p is the consistent
estimator of p; = ps = p and n;/n is the consistent estimator of p;.

2

2
10.47. Shortest CI with form (éi; szm ), c€[0,a] ?

L2,N(0,1).
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Sol. Write (

Xdlac Xdc )

22 ’221) 2y @ T2y

It suffices to minimize

where b = b(t) is determined by

Eq 1)=>4=0—-1=0=>10=1
Eq. (2) => F'(b)b; — F'(t)t; = 0 => f(b)b, — f(t) = 0.

Thus f(b) = f(¢).

In other word, if f(t) = f(b) and F(b) — F(t) = 1 — o, then we have the shortest CI of the form given.
Addtional A3. 1. As in Example 10.3.4, set

H(): P1 = P2 = P5, P3 = 0.5 v.s. Hll HO is not true.

a. Derive the likelihood ratio test.

b. Give an estimate of P(H,|H1) when p; = ps = ps5, ps = 0, n = 100, using simulation. Present the
program.

m=1000

n=100

x=rmultinom(m,n, prob c(1/8,1/8,0 5/8 1/8))

reject H, if —2logA > X3 + Why not x? ol

Remark. In compute —210g()\) use 0° rather 10og(0°) = 0log 0 in R codes.

P(Hy|H,) can be estimated by frequency of acceptance Why ?
x=sample(c(1,2,3,4,5),100,replace=T ,prob=c(1/8,1/8,0,5/8,1/8))
Can we estimate P(H,|H,) with the previous codes ?

#10.41. Let X, ..., X,, be i.i.d. negative binomial(r,p).
a. Calculate Wilks” approximation (10.4.1) i.e., the score function form, and show how to construct some

b.

approximate intervals with this expression.

Find an approximate 1 — « confidence interval for the mean of the negative binomial distribution. Show
how to incorporate the continuity correction into your interval.

Sol. (a) Assuming r is known,

S(p) = ilogp"’"(l —p)r ¥ = X

1-p’
aS(p) _ nr
—Zop = 5 e
35() _nr nr/ __nr nr __ nr
E(-T5) = 3 + a7 = % T = e
It is easy to derive the CI is
nr TLY
nr_ nX
s [P < 2ape) (3)
p%q
(L n? )2
Solving 2 ;2; =22 /2 yields

- ,,.22
2X7+ 22 ok £ \/(;/2)2 + X 22 )y (r +X)

n

Sol. (b) In both (a) and (b), if r is a parameter, estimate it by the MLE .
Recall L(p,r) = p" (1 —p)21 L Xi T (r+X 71>

j—l X]‘
The MLE of p: p = m-j-:zf

duetoE’—Oorﬂ—%:O7

7 = argmax, L(p,r) (4)
Since E(X) = rq/p and V(X) = rq/p?, Solving p through 6 = r(1 — p)/p, Eq.(3) yields

(0 — X)%nr 9
e
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The (1 - a) CI is 2rnX +zaord/ <2"T§::j;i22)—4<"2*—Za/zW@Z.
Write the (1 — a) CI as [aX + b,cX + d].
Continuity correction:
[a(X — 28) +b,¢(X 4+ 22) +d] Why ?
10.41.c. Use the data in #9.23 to construct an approximate 90% CI for the mean of the negative binomial. The
data: x=c(155,104,66,50,36,40,30,35,42)
Sol. There are 9 data in #9.23. Thus it may not be appropriate to use the approximation.
However, if Y1 ~ bin(25,p), P(Y1 < t) = N(25p,25pq). Why 77
Since each X; is large (that is, each corresponds to an experiment with more than 20 independent Bernoulli
trials), thus there are large number of Bernoulli trials and it is fine to use normal approximation.
There are several ways:
(1) MLE i £ 1.646,/y/n,
(2) MME X + 1.64(X2 — (X)?)//n.
(3) X £ 1.646/+/n, where 6% = X /p,
as E(X) = rq/p and V(X) = rq/p?,

The MLE of p: p = nritz? B

duetoE':Oor%—%:O7
where r can be estimated by its MLE.

How to find the MLE of r 7 .

The likelihood L(p,r) = p™" (1 — p)zi=1 X H?:l (H?:fl)-

Fixed r, £ is maximized by ’
pP=.1x= 1+1Y/r (= 9(X)),

due to L' =0 or & — % = 0, after checking !

It is the MLE of p if r is given.

Otherwise, the MLE of r is

7 = argmax, L(p,r), where

[ N ynrgq nr )ZZL_IX,iH(r—i—Xj—l)

(m“—i—ny - nr +nX
Since E(X) = rq/p and V(X) = rq/p?,
the MLE g =7§/p = f(% —1) = 7h(X).
In fact, o =71+ X/F —1) = X.
02 = #4/p* = X /p.
So the CI of puis X &+ za/Q\/ﬁin.

(o) ey I ()
L(r+1)/L(r) = ! = . 2
()" ()X T (7Y
X)X N
_ (1+X/((T’;/li§:;+l)+nx —n H(T + X))
(14X /r)nr+nX i=1
X)X N
S | (9
(r+X)nr+nX =1
r+X L

=( )X (4 14+ X) T [+ X

r+1+X pale}
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No easy way to solve.
0% = ()2
Eq.(3) yields

X X_re

Xy | X
o e = g = e I <z}
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