
Final: May 17 (W) 6:30 pm In WH 100E Notice the time changes !
Introduction to Statistics (Math 502)

WH 100E MWF 8:30am-9:30am
Office: WH 132
Office hours: M, T 3-4pm
Textbook: Statistical Inference (2nd ed.)

by George Casella and Roger L. Berger
Chapter 6 - Chapter 10.

Homework due: W in class.
Quiz: 8:20am Every Friday,
Midterm: March 20 (M)
Final: May 17 (W) 6:30 pm In WH 100E Notice the time changes !

Each is allowed to bring a piece of paper with anything on it.
Homework assigned during last week is due each Wednesday.

It is on my website: http://www.math.binghamton.edu/qyu
Remind me if you do not see it by Saturday morning !
Homework due this Friday is on my website !!!
The solution is on my website. Grade yourself carefully and hand in.

Grading Policy: 50% hw and quizzes +50% exams
B = 70 ±

Chapter 0. Introduction
Question: What is Statistics ?

One can use the following example to explain in short.
Example (capture-recapture problem).

In a pond, there are N fish.
Catch m, say m = 10,
tag them and put them back.
Re-catch n fish, say n = 10,
X of them are tagged, say X = 3.

Question:

{

P (X = x) =? probability problem
N = ? statistics problem.

Answer:

1. f(x;N) = P (X = x) =
(mx)(

N−m
n−x )

(Nn)
, x ∈ {0, 1, ..., n ∧m}, n ∨m < N .

2. Many estimates of N : MLE, MME, LSE, etc. e.g. MLE: Ň = argmaxNf(3;N) => Ň = 40. MME: Solve
X = E(X) = nm/N => N̂ = nm/X = 33 1

3 .
Properties of these estimators ?
What is the best estimator ?

Typically, statistics deals with such problems:
Given a random sample, say X1, ..., Xn, i.i.d. from X,
assuming they are from a model with cdf F (x; θ), where θ unknown in Θ
find out: θ = ? or P (X ≤ x) = ? (This is called point estimation).
What is θ in the capture-recapture problem ?

We shall study
1. how to summarize X1, ..., Xn,
2. how to find a formula to guess θ based on the summary,
3. whether the guess with such a formula is good.

Chapter 6. Principles of Data Reduction
Denote X = (X1, ..., Xn), where X1, ..., Xn, i.i.d. from X ∼ F (x; θ).
We call X a data set or observations from X.
One can use R to generate data set in simulation:

> x=rnorm(3,0,1)
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[1] 0.3163466 0.4865695 -0.2163855
> x=rexp(30,3) # 3=E(X) or 1/E(X) ? ( f(x) ∝ e−x/µ = e−ρx, x > 0).
> mean(x)
[1] 0.3559676

Definition. Given data X, a statistic T (X) is a function of X, where T (·) does not depend on θ.
A data set is often quite large,
for estimation purpose, it is desirable to simplify it to a statistic.
However, we do not want to lose information during the simplification.
This is called data reduction.

Several principles for data reduction:
(1) sufficiency principle,
(2) likelihood principle (maybe ignored in the lecture),
(3) invariancy principle (maybe ignored in the lecture).

§1. Sufficiency
Let X be a random vector (continuous or discrete),
with the density function (d.f.) fX(x; θ).

Definition. If T (X) is a statistic and the conditional distribution of X given T , say (X|T ), is independent of θ,
then T is a sufficient statistic for θ

(or we say that T is sufficient for θ).
Sufficiency principle: Reduce the data to a sufficient statistic.
Theorem 1. (Factorization theorem).

Let f be the d.f. of X, and T (X) a statistic.
T is sufficient for θ iff

f(x; θ) = g(T (x); θ)h(x), ∀ (x, θ) where h does not depend on θ. (1)

Recall that a family of distributions, say {f(·; θ) : θ ∈ Θ},
is said to belong to an exponential family if

f(x; θ) = h(x)c(θ)exp(
k∑

j=1

wj(θ)tj(x)),

where h and ti’s are independent of θ and c and wi’s are independent of x.
Theorem 2. If X1, ..., Xn are i.i.d. from an exponential family, and if T (X) =

∑n
i=1(t1(Xi), ..., tk(Xi)), then T is

sufficient for θ.
Remark. 3 methods for determining a sufficient statistic:

(1) Definition. fx|T (x) is independent of θ.
(2) Factorization Th. f(x; θ) = g(T (x); θ)h(x).
(3) Exponential family. T (X) =

∑n
i=1 t(Xi), t = (t1, ..., tk).

Method (3) is most convenient, but not always work. Why ?
Method (1) is not convenient, but always works.
Method (2) is convenient most of the time and always works.
Example 1. Suppose that X1, ..., Xn (n ≥ 3) is a random sample from bin(1, θ). Are T (X) sufficient for θ in the
following cases ?

(a) T = X,
(b) T =

∑n
i=1 Xi + 1,

(c) T = X,
(d) T = X1 +X2,
(e) T = X + θ.

Sol. (a) ⊢: T (X) = X is sufficient for θ.
By (1). P (X = x|T (X) = y) = 1(x = y) is independent of θ.

By (2). fX(x; θ) =
∏n

i=1 fX(xi; θ) =

n∏

i=1

fX(xi; θ)

︸ ︷︷ ︸

g(T (x);θ)

× 1
︸︷︷︸

h(x)

.
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Way (3) is not applicable though bin(1, θ) belongs to an exponential family, as
∑n

i=1 t(Xi) (=
∑

i Xi) is 1 dimensional,
but T = X is n−dimensional.

(b) ⊢: T (X) =
∑

i Xi + 1 is sufficient for θ.
By (1). ⊢: fX|T is independent of θ.

P (X = x|T = t) = P (A|B) = P (AB)/P (B).
∑

i Xi ∼ bin(n, θ).
P (B) = P (

∑

i Xi + 1 = t) = P (
∑

i Xi = t− 1).
P (AB) = P (X = x,

∑

i Xi + 1 = t)
= 1(

∑

i xi = t− 1)P (X = x)
= 1(

∑

i xi = t− 1)θt−1(1− θ)n−t+1 why ?

Thus P (X = x|T = t) =
1(
∑

i
xi=t−1)

( n
t−1)

is independent of θ.

By (2). fX(x; θ) = θ
∑

i
xi(1− θ)n−

∑

i
xi = θT (x)−1(1− θ)n−T (x)+1

︸ ︷︷ ︸

g(T (x);θ)

× 1
︸︷︷︸

h(x)

.

By (3). ⊢: T =
∑n

i=1 t(Xi) =
∑

i Xi + 1, where fX(x) = h(x)c(θ) exp(w(θ)t(x)).
fX(x; θ) = θx(1− θ)1−x = ( θ

1−θ )
x(1− θ) = ( θ

1−θ )
x+1/n( θ

1−θ )
−1/n(1− θ)

= ( θ
1−θ )

−1/n(1− θ)exp((x+ 1/n)ln θ
1−θ ).

Thus k = 1, w1(θ) = ln θ
1−θ and t1(x) = x+ 1/n.

It yields T =
∑n

i=1 t1(Xi) =
∑

i Xi + 1.

(c) ⊢: X is sufficient for θ.
X = 1

n

∑n
=1 Xi (=

1
n ((

∑

i Xi + 1)− 1/n)),
a linear combination of T in (b)).

The proof is similar to that in (b).

(d) ⊢: X1 +X2 is not sufficient for θ.
Choose a counterexample:

P (X = (0, · · · , 0, 1)|T = 0) = P (X1=···=Xn−1=0,Xn=1)
P (X1=X2=0)

= P (X3 = · · · = Xn−1 = 0, Xn = 1) = θ(1− θ)(n−2)−1 =
{
0 if θ = 0
0.5n−2 if θ = 0.5

.

It depends on θ.
Q: Can we use methods (2) and (3) ? Why ?

(e) ⊢: X + θ is not a sufficient statistic for θ.

Reason: T depends on θ, Proof ? Let n = 3 and Xi = 1, then T (X) =
{
2 if θ = 1
1.5 if θ = 0.5

thus, it is not even a statistic,
let alone a sufficient statistic.

Remark. Sufficient statistics are not unique or equivalent.
X, X,

∑n
i=1 Xi + 1 are all sufficient for θ. Which is preferred ?

Remark. 3 methods for determining a sufficient statistic:
(1) Definition. (2) Factorization Th. (3) Exponential family.

Example 2. Does the family of distributions belong to an exponential family in the following cases ?
(a) N(µ, σ2),
(b) bin(m, p),
(c) Poisson with mean µ (P(µ)),
(d) Exp(θ) with mean 1/θ,

(e) Double exponential distribution f = 1
2λ exp(− |x−µ|

λ ),
(f) U(a,b).

Sol. Yes for (a) through (d), explained in 501. No for (e) and (f).
Reason for (e) is explained in 501.
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Reason for U(a, b): Note that θ = (a, b) is the parameter.
If it belongs to an exponential family,
say

fX(x; θ) = h(x)c(θ)exp{
k∑

j=1

wj(θ)tj(x)} =
1(x ∈ (a, b))

b− a
(1)

then it is impossible that fX(x; θ) = 1(x∈(a,b))
b−a = 0 for all x /∈ [a, b],

as h and ti’s are independent of (a, b). Done ??

Give a counterexample: If Eq.(1) holds, for (a, b) = (0, 2), fX(x; θ) = 1(x∈(a,b))
b−a = 1/2 for x ∈ (0, 2)yields h(x) > 0

for x ∈ (0, 2) Why ??

but for (a, b) = (0, 1) fX(x; θ) = 1(x∈(a,b))
b−a = 0 for x > 1yields h(x) = 0 for x ∈ (1, 2) Why ??

A contradiction. Thus it does not belong to an exponential family.
Example 3. Let X1, ..., Xn be i.i.d. from N(µ, σ2). Find a sufficient statistic for θ in the following cases.

(a) µ known, (b) σ known,(c) both unknown.

Sol. f(x; θ) = 1√
2πσ2

exp(− 1
2
(x−µ)2

σ2 ) = 1√
2πσ2

exp(− 1
2
x2

σ2 + xµ
σ2 − 1

2
µ2

σ2 )

fX(x; θ) = h(x)c(θ)exp{
k∑

j=1

wj(θ)tj(x)}

(a) θ = σ2, T =
∑

i(Xi − µ)2 or − 1
2 (X − µ)2, etc. Why ?

(b) θ = µ, T =
∑

i Xi or X.
(c) θ = (µ, σ2), T = (

∑

i Xi,
∑

i X
2
i ), etc.

Example 4. Find a (non-trivial) sufficient statistic for U(0, b) if X1, ..., Xn is a random sample from U(0, b).
Sol. Question: What is a trivial sufficient statistics fo U(0, b) ?

Question: Can we use Method (3) ?
No! U(0, b) does not belong to an Exponential family.

Question: Can we use Method (1) ?
Not convenient ! as we have no idea on what is T .

Method (2) is a good tool for finding a suitable sufficient statistic for non-exponential family.

fX(x; θ) =
n∏

i=1

fX(xi; θ) =
n∏

i=1

1

b
, x1, ..., xn ∈ (0, b)??

Correct approach:

fX(x; θ) =

n∏

i=1

1(xi ∈ (0, b))

b

=
1

bn
1(x1, ..., xn ∈ (0, b))

︸ ︷︷ ︸

g(T (x);b)

× 1
︸︷︷︸

h(x)

=
1

bn
1(x(1), x(n) ∈ (0, b))

︸ ︷︷ ︸

g(T (x);b)

× 1
︸︷︷︸

h(x)

(x(1) ≤ x(2) ≤ · · · ≤ x(n) – order statistics)

=
1

bn
1(x(n) < b)

︸ ︷︷ ︸

g(T (x);b)

× 1(x(1)>0)
︸ ︷︷ ︸

h(x)

Sufficient statistics:
(a) T = X (trivial one),
(b) T2 = (X(1), X(n)),
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(c) T3 = X(n).
Which one you prefer ?

To find a sufficient statistic, it is not convenient to use the definition.
Seen from the examples, the dimension of a sufficient statistic can be n or smaller.
It is desirable to find a sufficient statistic that has the smallest dimension.
Definition. A sufficient statistic T is called a minimal sufficient statistic (MSS), if for any other sufficient statistic
T ∗, T is a function of T ∗.

A MSS = a sufficient statistic with the least dimension ?

Consider the case that n = 2, X1 and X2 are i.i.d. from U(θ, θ+1), θ is unkown. T1 = (X1, X2) and T2 = (X(1), X(2)).
Which is likely an MSS ?
Theorem 3. Suppose that
(1) f(x; θ) is the density function of X;
(2) T (X) is a statistic;
(3) f(x; θ)/f(y; θ) is independent of θ iff T (x) = T (y) ∀ (x,y).
Then T is MSS.
Question. How to get the density function fX for a random sample from fX ?
Remark. Two ways to determine a MSS.

1. Definition.
2. Theorem 3.

Example 5. Let X1, ..., Xn be a random sample from N(µ, σ2), where θ = (µ, σ2). Find a MSS for θ.
Sol. A sufficient statistic is T (X) = (X,X2).

To show that it is MSS,
the definition is not convenient, we use Theorem 3.

Since f(x; θ) ∝ exp(−n
2

x2

σ2 + nxµ
σ2 − nµ2

2σ2 )

f(x; θ)/f(y; θ) = exp(−n
2
x2−y2

σ2 + n(x−y)µ
σ2 ) = 1 ∀ θ iff T (x) = T (y), ∀ (x,y).

Thus T is MSS.
Example 6. Suppose thatX1, ..., Xn are i.i.d. ∼ U(θ, θ + 1).
Find a MSS for U(θ, θ + 1).
Sol. (1) Find a suitable sufficient statistic; (2) Show that it is MSS.

fX(x; θ) =
n∏

i=1

1(xi ∈ (θ, θ + 1))

=1(θ < x(1), x(n) < θ + 1)
︸ ︷︷ ︸

g(x(1),x(n);θ)

× 1
︸︷︷︸

h(x)

, θ ∈ (−∞,∞)

T = (X(1), X(n)) is sufficient for θ by the Factorization theorem.
⊢: T is MSS. That is,

fX(x; θ)

fX(y; θ)
=

1(θ < x(1), x(n) < θ + 1)

1(θ < y(1), y(n) < θ + 1)
=

{
1 if T (x) = T (y)
depends on θ if T (x) 6= T (y)

where 0
0

def
= 1. It suffices to show to show

fX(x;θ)

fX(y;θ) is not constant in θ, if T (x) 6= T (y).

T (x) 6= T (y) implies either (1) x(1) < y(1) (or x(1) > y(1)), or (2) x(n) < y(n) (or x(n) > y(n)).
By symmetry between x and y, we just need to consider either (1) x(1) < y(1) or (2) x(n) < y(n).
By symmetry between −(x,y) and (x,y),

we just need to prove case (1) x(1) < y(1).
fX(x;θ)

fX(y;θ) =

{
0
0 if y(1) < θ
0
1 if x(1) < θ < y(1) and y(n) < θ + 1

done ?

Need to give 2 θ’s
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Since f(x; θ) = 1(x ∈ (θ, θ+1)), x(n)−x(1) ∈ (0, 1) and y(n)− y(1) ∈ (0, 1), (x(n)∨ y(n))− (x(1)∧ y(1)) ∈ (0, 1) why ?

fX(x; θ)

fX(y; θ)
=







0
0 if θ = y(1) + 2 Why 2 ?
0
1 if θ =

x(1)+y(1)

2
(as x(1) < θ < y(1) and y(n) < θ + 1)
due to 0 < (y(n) ∨ x(n))− (y(1) ∧ x(1)) < 1
=> y(1) ∧ x(1) < θ < y(n) ∨ x(n) < θ + 1

(2)

=> It depends on θ if x(1) < y(1).

Thus
fX(x;θ)

fX(y;θ) is independent of θ iff T (x) = T (y) ∀ (x,y).

Definition. Suppose that {f(x; θ) : θ ∈ Θ} is a family of density functions, X1, ..., Xn are i.i.d. from f . T = T (X)
is a statistic.
T is said to be ancillary if fT does not depend on θ.
T is said to be a complete statistic or complete for θ (or for the distribution family), if ∀ function g such that g(T )
is a statistic, we have

E(g(T )) = 0 ∀ θ ⇒ P (g(T ) = 0) = 1 ∀ θ.

Theorem 4. If an MSS exists, then each complete statistics is MSS.
Theorem 5. Suppose (1) X1, ..., Xn are i.i.d. from f(x; θ), θ ∈ Θ ⊂ Rk. (2) f = h(x)c(θ)exp(

∑k
j=1 wj(θ)tj(x));

write w = (w1, ..., wk); (3) {w(θ) : θ ∈ Θ} contains a non-empty open set of Rk; then T =
∑n

i=1 t(Xi) is complete;
where t = (t1, ..., tk).

Q: Are w and t uniquely determined ?
Remark. Two ways to determine whether T is complete:

1. Definition;
2. Exponential family by Theorem 5.

Example 7. Let X1, ..., Xn be i.i.d. from X. Is T (X) complete for θ ?
(a) T = (X,X2), where X ∼ N(µ, σ2) and θ = (µ, σ2).
(b) T = (X,X2), where X ∼ N(θ, θ2).
(c) T = X(n), where X ∼ U(0, θ).
Sol.(a) Exponential family. {w(θ) : θ ∈ Θ}=?

Notice f ∝ exp(− 1
2σ2x

2 + µ
σ2x− µ2

2σ2 ) ∝ exp(− n
2σ2x

2/n+ nµ
σ2 x/n)

(w1, w2) = (− n
2σ2 ,

nµ
σ2 ) = (− n

2σ2 ,−2µ −n
2σ2 ), µ ∈ (−∞,∞), σ ∈ (0,∞),

Why factor n ? (check Th 5).
{w(θ) : θ ∈ Θ} = (−∞, 0)× (−∞,∞). Question: Why ?

It follows that {w(θ) : θ ∈ Θ} contains a non-empty open set in R2.
Thus by Theorem 5, T is complete.

Remark. Notice that T is also MSS by Example 5.
(b) Q: {w(θ) : θ ∈ Θ} = (−∞, 0)× (−∞,∞) ?

(w1, w2) = (− n
2θ2 ,

n
θ ), θ > 0.

{w(θ) : θ ∈ Θ} = {(w1, w2) : 2w1/n = (w2/n)
2, w2 > 0} is a curve in R2.

It does not contain an open set in R2.
Condition (3) in Theorem 5 does not hold.
Cannot use Theorem 5, as it only gives sufficient condition for completeness.
⊢: (X,X2) is not complete for θ.

Use the definition. Need to construct a g such that E(g(T )) = 0 but P (g(T ) = 0) < 1.
How ? Notice that

(1) E(X) = θ,
(2) E((X)2) = µ2

X
+ σ2

X
= θ2 + θ2/n = (1 + 1

n )θ
2,

(3) E(X2) = E(X2) = σ2 + θ2 = 2θ2.

Now from (2) and (3), setting g(T ) = (X)2

1+1/n − X2

2 . Verify E(g(T )) = 0, but P (g(T ) = 0) = 0 < 1 as g(T ) is
continuous.

Thus T is not complete.
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Question: Is T MSS ?
Yes, by Example 5.

Remark. This is an example that T is MSS but it is not complete.

(c) Claim: T is complete.
U(0, θ) does not belong to an exponential family,

thus use the definition.
Need to compute E(g(T )) =

∫
g(t)fT (t)dt.

fT= ?
Formula: fX(n)

(t) = n!
(n−1)!1! (FX(t))n−1(fX(t))1.

fT (t) = ntn−1/θn, t ∈ (0, θ).
(Or derive it directly as follows.

fT (t) = F ′
T (t).

FT (t) = P (T ≤ t) = P (X(n) ≤ t) = P (X1 ≤ t, ..., Xn ≤ t)
= P (X1 ≤ t)) · · ·P (Xn ≤ t) = (F (t))n = tn/θn, t ∈ (0, θ).
fT (t) = ntn−1/θn, t ∈ (0, θ).)

E(g(T )) =
∫ θ

0
g(t)nt

n−1

θn dt = 0 ∀ θ > 0,
Does it imply P (g(T ) = 0) = 1 ?
Answer. Yes, as h(t) = g(t)ntn−1/θn = 0 a.e. (or

∫
|h(t)|dt = 0), i.e., g(t) = 0 a.e. by the lemma as follows.

Lemma 1. If
∫ y

0
h(t)dt = 0 ∀ y > 0, then h(t) = 0 a.e..

Note
∫
1(t ∈ {−1, 1})dt = 0, but it is not true that 1(t ∈ {−1, 1}) ≡ 0).

The proof of Lemma 1 is an exercise in Real Analysis and is quite long. We consider one that is easy to prove
(though not quite precise).
Lemma 2. If h is continuous and

∫ x

0
h(t)dt = 0 ∀ x > 0, then h(t) = 0.

Proof. (
∫ x

0
h(t)dt)′ = h(x) = 0 ∀ x > 0.

Note that g(t)tn−1 may not be continuous. e.g., g(t) = 1(t ∈ {−1, 1}).
Recall that

if fT does not depend on θ, the statistic T is called ancillary.
Basu’s Theorem. If T (X) is a complete and MSS statistic, then T (X) ⊥ U(X), ∀ ancillary statistic U(X).
Example 8. Suppose that X1, ..., Xn is a random sample from U(θ, θ + 1), T = X(n) − X(1). Show that T is
ancillary.
Sol. Two ways to check (1) Direct. (2) Pivotal method.
Direct Way (1): Derive fT (t) by cdf or Jacobian method.
(1a) By cdf:

P (X(n) −X(1) ≤ t)

=

∫ ∫

y−x≤t

fX(1),X(n)
(x, y)dxdy

=

∫ ∫

y−x≤t

1(x < y)
n!

1!× 1!× (n− 2)!
f(x)f(y)(F (y)− F (x))n−2

︸ ︷︷ ︸

similar to trinomial dist

dxdy f(x) = 1(x ∈ (θ, θ + 1))

=

∫ ∫

y−x≤t

n(n− 1)1(θ < x < y < θ + 1)(y − x)n−2dxdy why?

=

∫ ∫

v−u≤t

n(n− 1)1(0 < u < v < 1)(v − u)n−2dudv (u = x− θ v = y − θ)

=

∫ ∫

v−u≤t,0<u<v<1

n(n− 1)(v − u)n−2dudv

=

{
0 if t ≤ 0
∫ 1

t

∫ v−t

0
n(n− 1)(v − u)n−2dudv if t ∈ (0, 1]

1 if t > 1
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Note that θ disappears, thus fT (t) = F ′
T (t) is independent of θ.

T is ancillary.

(1b) By Jacobian. (T,W ) = (X(n)−X(1), X(n)), fT,W (t, w) = fX(1),X(n)
(w−t, w)|J |. |J | = ? fT (t) =

∫
fT,W (t, w)dw =

......
fT (t) =

∫
fX(1),X(n)

(w − t, w)dw..., where

fX(1),X(n)
(x, y) =

1(x < y)n!

1!× 1!× (n− 2)!
f(x)f(y)(F (y)− F (x))n−2 f(x) = 1(x ∈ (θ, θ + 1))

=n(n− 1)1(θ < x < y < θ + 1)(y − x)n−2 = ......

(2) Pivotal method: That is, given fX(·; θ), find a pivotal Z = g(X, θ) such that the density fZ is independent of
θ.
Typical pivotals are related to the location-scale family:

Z =







X − θ if fX(x; θ) = f(x− θ)
X/θ if fX(x; θ) = f(x/θ)/θ
X−µ
λ if fX(x; θ) = f(x−µ

λ )/λ.
Then fZ(t) = f(t).

fX(x) = 1(x ∈ (θ, θ + 1)) = 1(x− θ
︸ ︷︷ ︸

pivatol

∈ (0, 1)) = fZ(x− θ). = ??

where Z = X − θ is called a pivotal, and fZ(t) = 1(t ∈ (0, 1)).
To prove T is ancillary, need to show ⊢: (i) fZ is indenpendent of θ ⊢: (ii) T = X(n) −X(1) = Z(n) − Z(1).
Then FT (t) = P (X(n) −X(1) ≤ t) = P (Z(n) − Z(1) ≤ t) =

∫
· · ·

∫

A
fZ(1),Z(n

(x, y)dxdy
where A = {(x, y) : y − x ≤ t} and

fZ(1),Z(n
(x, y) =

n!

1!n− 2)!1!
(fZ(x))

1(F (y)− F (x))n−2(fZ(y))
1dxdy

⊢: (i) fZ is indenpendent of θ There are two approaches to prove Z is a pivotal as well:
(a) cdf and (b) df.
Approach (a).
Since FZ(t) = P (Z ≤ t) = P (X − θ ≤ t)

= P (X ≤ t+ θ) =

{
0 it t+ θ < θ
(t+ θ)− θ it θ ≤ t+ θ < θ + 1
1 it t+ θ ≥ θ + 1

=

{
0 if t < 0
t if t ∈ [0, 1)
1 if t ≥ 1

.

fZ(z) =
∏n

i=1 1(zi ∈ (0, 1)) is independent of θ, and T is ancillary.

Approach (b). fZ(z) = fX(g−1(z))
∣
∣∂g

−1

∂z

∣
∣ where z = g(x) = x− θ.

g−1(z) = z + θ and
∣
∣∂g

−1

∂z

∣
∣ = 1.

Thus fZ(z) = fX(g−1(z)) = 1(z + θ ∈ (θ, θ + 1)) = 1(z ∈ (0, 1)).
fZ(z) =

∏n
i=1 1(zi ∈ (0, 1)) is independent of θ, T is ancillary.

Example 9. Let X1, ..., Xn be a random sample from X ∼ f(x; θ), where f = 1
θfo(

x
θ ), θ > 0 and fo is a

density function, i.e.,
∫
fo(x)dx = 1, and fo ≥ 0. Show that T is ancillary in the two cases: (1) T = X

S , where

S2 = 1
n

∑n
i=1(Xi −X)2; (2) T = Xn

X
.

Sol. (1) Two ways as in Ex 8. Use the simpler way. Since f(x) ∝ fo(
x
θ ), Z = X

θ is a pivotal.

fZ(z) = fX(g−1(z))
∣
∣∂g

−1

∂z

∣
∣ (g = ?)

= 1
θfo(z)θ = fo(z).

Let Zi =
Xi

θ . Then T = X
S = Z

SZ
where S2

Z = 1
n

∑n
i=1(Zi − Z)2.

FT (t) = P ( Z
SZ

≤ t) =
∫
· · ·

∫

A
fZ(z)dz, where A = {z : z

Sz
≤ t}.
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fZ(z) =
∏n

i=1 fo(zi) is independent of θ.
Thus T is ancillary.

(2) T = Xn

X
= Zn

Z
. Thus T is ancillary too.

Example 10. Let X1, ..., Xn be i.i.d. Exp(θ), where E(Xi) = θ. Let U(X) = (Xn/X)2. E(U) = ?
Sol. Usual way

E(U) =

∫

xfU (x)dx =

∫ ∫

(x/y)2fXn,X
(x, y)dxdy......

Another way: Make use of Basu’s Theorem.
If T (X) is a complete and MSS statistic, then T (X) ⊥ U(X), ∀ ancillary statistic U(X).

T is said to be ancillary if fT does not depend on θ.
Recall Example 9. Let X1, ..., Xn be a random sample from X ∼ f(x; θ), where f = 1

θfo(
x
θ ), θ > 0 and fo is a

density function, We show that
T = Xn/X is ancillary.

Note that fX1
(x) ∝ e−x/θ.

Thus U(X) = (Xn/T (X))2 is an ancillary statistic. How to show it ?
Let T (X) = X. Then T is a complete and MSS statistic. Why ?

E(X2
n) = E(UT 2) = E(U)E(T 2) (by Basu Theorem) => E(U) = E(X2

n)/E(T 2).
θ2 + θ2 = E(U)( 1

n2 (nθ
2 + (nθ)2).

E(U) =
2θ2

1
n2 (nθ2 + (nθ)2)

Remark. If X ∼ U(0, 1)
E(U) = E(X2

n/(X)2) = E(X2
n)/E((X)2) ???

Chapter 7. Point estimation.
Definition. A point estimator is a statistic. Its values are called estimates.

We shall discuss methods of estimation and their optimal properties.
§7.2. Methods of estimation
§7.2.1. Methods of moments estimator (MME)
Suppose that X1, ..., Xn are i.i.d. from X ∼ f(x; θ), θ = (θ1, ..., θk) ∈ Θ.
A MME of θ is a solution of θ to equations





Xi1 = E(Xi1)
......
Xik = E(Xik), where i1, ..., ik are distinct integers

Question: Where is θ in these equations ?
In particular, a MME is a solution to

Xi = E(Xi), i = 1, ..., k.
Remark. The solution to the MME is not unique.
Example 1. Suppose that X1 ∼ bin(n, p), θ = p. MME of θ ?
Sol. We present two solutions, denoted by p̂ and p̃.

(1) X = µX with k = 1.
X1 = np Why ?
⇒ p̂ = X1/n.

Question: Why do not say MME is p = X1/n ?
(2) X2 = E(X2) with k = 1.
X2

1 = σ2 + µ2 = np(1− p) + (np)2 = np+ (n2 − n)p2

that is, −X2
1 + np+ (n2 − n)p2 = 0

⇒ p =
−n±

√
n2+4(n2−n)X2

1

2(n2−n)

Question: Two solutions. Are they both MME ?

Answer: p̃ =
−n+

√
n2+4(n2−n)X2

1

2(n2−n)

Example 2. Suppose that X1, ..., Xn are iid. from bin(1, p), θ = p. MME of θ ?
Sol. Two approaches: (1) Standard, (2) MSS. T =

∑n
i=1 Xi.

(1) X = p => p̂ = X.
(2) T = E(T ) => T = np => p̂ = X.
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Example 3. Suppose that X1, ..., Xn are i.i.d. from N(µ, σ2), θ = (µ, σ). MME of θ ?

Sol.

{

X = µ
X2 = µ2 + σ2

⇒
{
µ̂ = X

σ̂ =
√

X2 − (X)2

§7.2.2. Maximum likelihood estimator (MLE). Assume that fX(x; θ) is the density function of X, where
θ ∈ Θ. Write L(θ) = fX(x; θ) and call it the likelihood function of θ. The value of θ that maximizes L(·) over all
possible θ in Θ is call the MLE of θ.

θ̂ = argmaxθ∈ΘL(θ)

Interpretation: Given x, the MLE chooses θ such that the probability that X ≈ x is the largest

fX(x)

{
= P (X = x) if X is discrete

≈ P (|X−x|<ǫ)
(2ǫ)n if X is continuous

Typical steps for the MLE with differentiable L:
Step 1. Solve for critical points of lnL

(i.e., all t’s such that (lnL)′(t) = 0 or L′(t) does not exist, or the boundary).
Step 2. Check whether t is the maximum point by

either the second derivative test if L′ exists everywhere,
or comparing the value L(t) over all t obtained in step 1.

Example 1. Suppose that X1, ..., Xn are i.i.d. from N(θ, 1). Find the MLE of θ in the following cases: (a)
Θ = (−∞,∞), (b) Θ = [0,∞),(c) Θ = [−1, 1].
Sol. Denote lnL(θ) = ln

∏n
i=1 fX(Xi; θ)

= ln{ 1
(2π)n/2 exp(−

∑n
i=1

(Xi−θ)2

2 )}
= ln 1

(2π)n/2 −∑n
i=1

(Xi−θ)2

2

Remark. It is much clearer by drawing the graph of y = lnL(x). A parabola concaving down.
(a) Θ = R1.

lnL(θ)′ = ∑

i(Xi − θ) = 0 ⇒ θ = X.

Check: (lnL)′ exists on R1, and (lnL)′′ < 0. Thus θ̂ = X is the MLE.
(b) Θ = [0,∞).
Possible critical points: θ = X, 0, ∞.
Check: Two cases: (1) X > 0, (2) X ≤ 0.

(1)

critical pts : 0 X ∞
lnL(·) c− n

2X
2 c− n

2 (X
2 − (X)2) −∞

(lnL(·))′ + 0 −
MLE

Do we need both?

(2)
critical pts : 0 ∞

lnL(·) finite −∞
MLE

Thus the MLE θ̂ = max{0, X}.
(c) Θ = [−1, 1].
Possible critical points: θ = X, −1, 1.
Check: 3 cases: (1) X ∈ (−1, 1), (2) X ≤ −1, (3) X ≥ 1.

(1)

critical points : −1 X 1
lnL(·) ? ? ? simple if X is given

(lnL(·))′ + 0 −
MLE

(2)

critical points : −1 1
lnL(·) ? ?

(lnL(·))′ − −
MLE
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(3)

critical points : −1 1
lnL(·) ? ?

(lnL(·))′ + +
MLE

Thus the MLE θ̂ =

{
X if X ∈ [−1, 1]
−1 if X < −1
1 if X > 1.

Example 2. Suppose that X1, ..., Xn are i.i.d. from bin(k, p) where p is known, p ∈ (0, 1), and k is unknown.
MLE of k ?
Solution. Question: What is Θ ?

L =

n∏

i=1

(
k

Xi

)

pXiqk−Xi = (

n∏

i=1

1

Xi!
)(
p

q
)
∑

i
Xi(

n∏

i=1

1

(k −Xi)!
)(k!)nqnk

Remark. If X(n) = 0, L = qnk is maximized by k = 1. Thus k̂ = 1 if X(n) = 0. WLOG, assume X(n) ≥ 1.

Question: Should we use the typical method ? i.e., ∂lnL(k)
∂k = 0 ?

(1) ∂
∂k (k!) = ? (2) θ = k is discrete, the root of ∂lnL(k)

∂k may not be an integer.
Notice that X1, ..., Xn ≤ k. Thus the MLE

k̂ ≥ max{X(n), 1}.
One method: Guess and try.
The MLE k̂ =argmaxk≥X(n)∨1L(k).
An R program in the special case of (n, p,X1) = (1, 0.8, 5):

X=5
p=0.8
N=20
K=X:N
f=choose(K,X)*p**X*(1-p)**(K-X) ( =

(
k
X1

)
pX1qk−X1)

F=max(f)
round(F,3)
round(f,3)
[1] 0.393
[1] 0.328 0.393 0.275 0.147 0.066 0.026 0.010 0.003 0.001 0.000 0.000 0.000

[13] 0.000 0.000 0.000 0.000 (k̂ = ??)

Then the MLE is k̂ = 6, Why ? according to f(5), ..., f(20).
K[f==F]
[1] 6

Remark. Drawback of this approach: It is not clear that k̂ is the MLE, as we only list k ∈ {5, 6, ..., 20}.
Second approach: Consider g(k) = L(k)

L(k−1) . e.g. let n = 1, then

g(k) = k
k−X1

q = 1
1−X1/k

q decreases from ∞ to q (< 1) for k ∈ [X(n) ∨ 1,∞); X(n) = ??

=> (1) g(k̂) ≥ 1 and (2) g(k̂ + 1) ≤ 1. Why ?
(1) q

1−X1/k
≥ 1 => q ≥ 1−X1/k => X1/k ≥ p (= 1− q) => X1/p ≥ k.

(2) q
1−X1/(k+1) ≤ 1 => q ≤ 1−X1/(k + 1) => X1/(k + 1) ≤ p => X1/p ≤ k + 1.

Thus X1

p − 1 ≤ k ≤ X1

p . If (n, p,X1) = (1, 0.8, 5), then 5.25 ≤ k̂ ≤ 6.25 => k̂ = 6. Why ?
Now in general,

g(k) =
(
∏n

i=1
k!

Xi!(k−Xi)!
)p
∑

i
Xiqnk−

∑

i
Xi

(
∏n

i=1
(k−1)!

Xi!((k−1)−Xi)!
)p
∑

i
Xiqn(k−1)−

∑

i
Xi

= (

n∏

i=1

k

k −Xi
)qn

g(k) =
L(k)

L(k − 1)
= (

n∏

i=1

1

1−Xi/k
)qn, k ≥ (X(n) ∨ 1), where 1

0 = ∞. (1)

WLOG, assume X(n) ≥ 1. 1
1−Xi/k

↓ in k ∈ [X(n),∞), ∀ i.

Then g(k) decreases from ∞ to qn (< 1) on [X(n),∞). (2)
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By Eq. (1), at the MLE k̂,

{

L(k̂ − 1) ≤ L(k̂)
L(k̂ + 1) ≤ L(k̂). i.e.,

{

g(k̂) ≥ 1

g(k̂ + 1) ≤ 1.

Statement (2) says y = g(x) is a decreasing curve that crosses y = 1.

We should look for k̂ ≥ X(n) such that

g(k̂) ≥ 1;

g(k̂ + 1) ≤ 1.

Q: g(k̂) = 1 ??
The MLE can be written as

k̂ = max{k : g(k) ≥ 1, k ≥ X(n)} ?

k̂ = min{k : g(k) ≤ 1, k ≥ X(n)} ?

k̂ = min{k : g(k) ≤ 1, k ≥ X(n)} − 1 ?
Given a data set, we can solve it easily:

Solve y = g(x) and y = 1, x ∈ {X(n), X(n) + 1, ...};
or solve y =

∏n
i=1(1−Xi/k) and y = qn, as g(k) = (

∏n
i=1

1
1−Xi/k

)qn.

(I) draw graph y =
∏n

i=1(1−Xi/k) and y = qn, x ∈ {X(n), X(n) + 1, ...}.
(II) find their solution x̂ and k̂ = max{k : k ≤ x̂}

k

g

20 30 40 50 60

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

The R program:
p=0.6
n=6
x=rbinom(n,20,p) # simulation to get data x
m=max(x)
if (m==0)

h=1
if (m>0) {

j=4*m
k=m:j
g=rep(0,(j-m+1))
q=(1-p)**n # q**n
for(i in m:j)

g[i-m+1]=q/prod(1-(x/i)) #g
h=min(k[g<=1])-1

# or use
H=max(k[g>=1])
}

12



h
H

I ran the program 3 times and got 16, 22, 19. Why 3 values ? True k ?
The revised R program:

p=0.6
n=6
x=rbinom(n,20,p)
m=max(x)
if (m==0)

h=1
if (m>0) {

j=4*m
k=m:j
g=rep(0,(j-m+1))
for(i in m:j)

g[i-m+1]=prod(1-(x/i)) #1/g
q=(1-p)**n # q**n
plot(k,g,type=”l”) # not necessary
lines(c(m,j),c(q,q)) # not necessary
h=min(k[g>=q])-1

# or use
H=max(k[g<=q])
}

h
H

Theorem 1. (Invariance property of the MLE). If θ̂ is the MLE of θ and τ = g(θ) is a function of θ, then the MLE

of τ is τ̂ = g(θ̂).
Example 3. Let X1, ..., Xn be a random sample from N(µ, σ2), θ = (µ, σ2), θ ∈ Θ = [0,∞) × (0,∞). Find the
MLE of µ, σ, σ2 and E(X2).

Sol. Let τ = σ2 and γ = E(X2). MLE of µ, τ , σ and γ ? (σ, γ) are functions of θ. First get the MLE θ̂, then (σ̂, γ̂)
can be obained by the invariance property of the MLE.

L =

n∏

i=1

f(Xi; θ) = (2πσ2)−n/2 exp(− 1

2σ2

∑

i

(Xi − µ)2),

L = (2πτ)−n/2 exp(− 1

2τ

∑

i

(Xi − µ)2), why ??

lnL = c− n

2
lnτ − 1

2τ

∑

i

(Xi − µ)2, (1)

∂lnL
∂µ

= 2× 1

2τ

∑

i

(Xi − µ) = 0 ⇒ µ = X,

∂lnL
∂τ

= −n

2

1

τ
+

1

2τ2

∑

i

(Xi − µ)2 = 0 ⇒ τ =
1

n

n∑

i=1

(Xi − µ)2 Done ? (2)

Check: Two ways: (A) one-by-one, (B) Two dimensions.
(A). Fix τ , maximize lnL(µ, τ) w.r.t. µ, say µ = g(τ).

Then maximize lnL(g(τ), τ) w.r.t. τ .
The MLE is (g(τ̂), τ̂).
Now lnL is maximized by µ̂ = 0 ∨X, (see Example 1 in §72.2.) regardless τ . That is g(τ) = µ̂.
Replacing µ by µ̂ in L(µ, τ) and Eq. (2),

the critial points for τ : 0 τ̂ ∞
logL(µ̂, τ) −∞ finite −∞
(see Eq.(1)) MLE
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Thus the MLE of (µ, τ, σ, γ) is µ̂ = 0 ∨X, τ̂ = 1
n

∑n
i=1(Xi − µ̂)2, σ̂ =

√
τ̂ as τ = σ2;

γ̂ = (µ̂)2 + σ̂2 as E(X2) = µ2 + σ2.

γ̂ = (µ̂)2 + σ̂2

= (µ̂)2 +
1

n

∑

i

(Xi − µ̂)2

= (µ̂)2 +
1

n

∑

i

(X2
i − 2Xiµ̂+ (µ̂)2)

= (µ̂)2 +X2 − 2X · µ̂+ (µ̂)2

= X2 why ?

(B). (1) Critical points of L(µ, τ):
for µ: X (if X > 0), 0, ∞.
for τ : 1

n

∑n
i=1(Xi − µ)2, 0, ∞,

(2.a) Compare L(µ, τ) over critical points if X > 0. (µ, τ) ∈ [0,∞)× (0,∞).
∂lnL
∂θ = ~0: µ = X and τ = 1

n

∑n
i=1(Xi − µ)2 = 1

n

∑n
i=1(Xi −X)2.

4 boundary lines and a point.
µ = 0, µ = ∞, τ = 0, τ = ∞ and (X,X2 − (X)2).
µ = 0 reduces to (0, 0), (0,∞) and (0, X2 − (0)2), or only the latter ??

(µ, τ) µ = 0
︸ ︷︷ ︸

(0,X2−(0)2)

(X,X2 − (X)2) µ = ∞ τ = 0 τ = ∞

lnL = c− n
2 lnτ − 1

2τ

∑

i(Xi − µ)2 finite finite −∞ −∞ −∞
∂lnL
∂µ (µ,X2 − (X)2) + 0 −

MLE

(2.b) compare L(µ, τ) over critical points (µ, τ) if X ≤ 0(only 4 boundary lines):

(µ, τ) µ = ∞ τ = 0 τ = ∞ (0, X2) <= µ = 0
lnL −∞ −∞ −∞ finite

MLE

§7.2.3. Bayes estimator.
We have learned two estimators: MME and MLE under the assumption that X1, ..., Xn are i.i.d. from f(x; θ),
θ ∈ Θ.
θ is a constant (not random), unknown.
In this section, we consider Bayesian approach:

Conditional on θ, X1, ..., Xn are i.i.d. from f(x|θ),
θ is a random variable with df π(θ),
f(x|θ) is a conditional df of X|θ.
Bayes estimator of θ is θ̂ = E(θ|X).

Recall the formula

fX|Y (x|y) =
f(x, y)

fY (y)
. (1)

Now
f(x, θ) is the joint df of (X, θ),
fX(x) is the marginal df of X,
π(θ) is the marginal df of θ, called prior df now,
f(x|θ) is the conditional df of X|θ,
π(θ|x) is the conditional df of θ|X, called the posterior df now,

fX(x) =

{∫
f(x, θ)dθ if θ is continuous

∑

θ f(x, θ) if θ is discrete.
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π(θ) =

{∫
f(x, θ)dx if X is continuous

∑

x f(x, θ) if X is discrete.

f(x|θ) = f(x,θ)
π(θ) by Eq. (1),

π(θ|x) = f(x,θ)
fX(x) by Eq. (1),

E(θ|X = x) =
∫

θ
θ dF (x,θ)

fX(x) =

{∫
θπ(θ|x)dθ if θ is continuous

∑
θπ(θ|x) if θ is discrete.

Recall the Bayes set-up: conditional on θ, X1, ..., Xn are i.i.d. from f(x|θ),
Are Xi’s i.i.d. ?
Homework. Answer it through the assumption as follows. Let X1, ..., Xn be i.i.d. ∼ bin(1, p), and p ∼ U(0, 1).
Ans: No !
Remark. Two ways to compute the Bayes estimator:

1. E(θ|X),
2. E(θ|T (X)) where T is a MSS.

They lead to the same estimator.
The second method is often simpler in derivation.

Example 1. Let X1, ..., Xn be a random sample from bin(k, θ), θ ∼ beta(α, β) with π(t) = tα−1(1−t)β−1

B(α,β) , t ∈ [0, 1],

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) , α, β > 0 and (k, α, β) is known. Bayes estimator of θ ?

Sol. Recall T (X) =
∑n

i=1 Xi is MSS if θ is a parameter.
(1) E(θ|X)= ? (2) E(θ|T (X))= ?
Method 1. Based on X.
f(x|θ) = ∏n

i=1

(
k
xi

)
θxi(1− θ)k−xi = (

∏n
i=1

(
k
xi

)
)θ
∑

i
xi(1− θ)nk−

∑

i
xi .

π(θ|x) = f(x, θ)

fX(x)

=
f(x|θ)π(θ)
fX(x)

∝ θ
∑

i
xi(1− θ)nk−

∑

i
xiθα−1(1− θ)β−1(main trick!!)

= θ
∑

i
xi+α−1(1− θ)kn−

∑

i
xi+β−1 (1)

Thus θ|(X = x) ∼ beta(
∑

i xi + α, nk −∑

i xi + β) (= beta(a, b)),
The Bayes estimator is

θ̂ = E(θ|X) =
a

a+ b
=

∑

i Xi + α

nk + α+ β

=
nk

nk + α+ β

∑

i Xi

nk
+

α+ β

nk + α+ β

α

α+ β

= r

∑n
i=1 Xi

nk
+ (1− r)

α

α+ β
≈

{
MLE if r ≈ 1
E(θ) if r ≈ 0

a weighted average of the MLE

∑n

i=1
Xi

nk and the prior mean α
α+β .

Method 2. Based on MSS T =
∑

i Xi. T |θ ∼ bin(nk, θ) ? or T ∼ bin(nk, θ) ? fT |θ(t|θ) =
(
nk
t

)
θt(1− θ)nk−t,

π(θ|t) =
(
nk
t

)
θt(1− θ)nk−tθα−1(1− θ)β−1/B(α, β)

fT (t)

∝ θt+α−1(1− θ)kn−t+β−1 same as (1), why ?

...
Example 2. Suppose that X1, ..., Xn is a random sample from N(θ, σ2), θ ∼ N(µ, τ2), where (σ, µ, τ) is known.
Bayes estimator of θ ?
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Sol. fX(x) = 1√
2πσ

exp(−(x−µ
σ )2/2) ∝ e−ax2+bx (kernel of f).

Two ways: (1) E(θ|X) and (2) E(θ|T (X)). Which to choose ?
MSS of θ is T = X. T |θ ∼ N(θ, σ2/n).

E(θ|T (X) = t) =

∫

θ π(θ|t)
︸ ︷︷ ︸

dθ.

π(θ|t) = f(t|θ)π(θ)
fT (t)

= ??

∝ f(t|θ)π(θ) (main trick)

∝ exp
(
− 1

2

(t− θ)2

σ2/n
− 1

2

(θ − µ)2

τ2
)

∝ exp
(
− 1

2

−2tθ + θ2

σ2/n
− 1

2

θ2 − 2θµ

τ2
)

= exp
(
− 1

2

θ2

σ2/n
− 1

2

θ2

τ2
+

1

2

2tθ

σ2/n
+

1

2

2θµ

τ2
)

= e−aθ2+bθ

= exp
(
− 1

2

{
θ2[

1

σ2/n
+

1

τ2
] + (−2θ)[

t

σ2/n
+

µ

τ2
]
})

∝ e−( θ−µ∗
σ∗

)2/2

exp(−1

2

(θ − µ∗)2

σ2
∗

) = exp(−1

2
[θ2

1

σ2
∗
− 2θ

µ∗
σ2
∗
+

µ2
∗

σ2
∗
])

1

σ2
∗
= [

1

σ2/n
+

1

τ2
] and

µ∗
σ2
∗
= [

t

σ2/n
+

µ

τ2
]

σ2
∗ =

1

[ 1
σ2/n + 1

τ2 ]
and µ∗ =

[ t
σ2/n + µ

τ2 ]

[ 1
σ2/n + 1

τ2 ]

Thus θ|(T = t) ∼ N(µ∗, σ2
∗) and the Bayes estimator

θ̂ = E(θ|T ) = µ∗ =

X
σ2/n + µ

τ2

1
σ2/n + 1

τ2

.

Remark. It is interesting to notice the following fact again.
In Example 2, the Bayes estimator is

θ̂ =

X
σ2/n + µ

τ2

1
σ2/n + 1

τ2

=

1
σ2/n

1
σ2/n + 1

τ2

X +
1
τ2

1
σ2/n + 1

τ2

µ

= rX + (1− r)µ

≈
{

X if n is large or r ≈ 1
E(θ) if r ≈ 0

a weighted average of the MLE X and the prior mean µ.
§7.3. Methods of evaluating estimators.
Notice that the MME, MLE and Bayes estimators may not be the same.
Question: How to compare estimators ?

θ̂ − θ — error, Not good, Why ?
|θ̂ − θ| — absolute error, Not good, Why ?

E(θ̂)− θ — bias, denoted by bias(θ̂) or B(θ̂);

E(|θ̂ − θ|) — mean absolute error, Not ideal, Why ?

16



E((θ̂ − θ)2) — mean-squared error of θ̂;
A naive approaches:

Select θ̂ that has smaller MSE(θ̂).
Formula:

E(θ̂ − θ)2 = V ar(θ̂) + (bias(θ̂))2

Reason: E((θ̂ − θ)2) =E[(θ̂ − E(θ̂) + E(θ̂)− θ)2]

=E((θ̂ − E(θ̂))2) + E((E(θ̂)− θ)2) + 2E[(θ̂ − E(θ̂))(E(θ̂)− θ)]

=E((θ̂ − E(θ̂))2) + (E(θ̂)− θ)2 + 2(E(θ̂)− E(θ̂))(E(θ̂)− θ)

=V ar(θ̂) + (bias(θ̂))2

Definition. If bias(θ̂) = 0, θ̂ is called an unbiased estimator of θ.
Example 1. Suppose X1, ..., Xn are i.i.d. with mean µ and variance σ2. A common estimator of µ is µ̂ = X, and
two common estimators of σ2 are σ̂2 = 1

n

∑

i(Xi −X)2 and S2 = 1
n−1

∑

i(Xi −X)2. (a) Are they unbiased ? (b)

Compute the MSE of X, S2 and σ̂2 under N(µ, σ2); (c) Compare σ̂2 to S2 under N(µ, σ2).
Sol. (a) Recall: E(X) = µX , unbiased estimator of µX . V ar(X) = E((X − µ)2) = E(X2)− µ2, σ̂2 = 1

n

∑

i(Xi −
X)2 = X2 − (X)2 and S2 = n

n−1 σ̂
2.

E(σ̂2) =E(X2)− E((X)2)

=E(X2)− ((E(X))2 + σ2
X
) (Why ?)

=σ2 − σ2/n Why ?

E(S2) =
n

n− 1
E(σ̂2) =

n

n− 1

n− 1

n
σ2 = σ2.

Thus S2 is unbiased but not σ̂2.
(b) MSE(µ̂) = V ar(X) + (bias(µ̂))2 = σ2/n + 0. MSE(S2) = V ar(S2) + (bias(S2))2 = V ar(S2) MSE(σ̂2) =
(n−1

n )2V ar(S2) + (σ2/n)2

(1) Recall a theorem: Under i.i.d. normal assumption,
1. X ∼ N(µ, σ2/n);

2. (n−1)S2

σ2 ∼ χ2(n− 1), that is, S2 ∼ σ2

n−1χ
2(n− 1);

3. X ⊥ S2.
(2) Moreover, recall E(χ2(m)) = m and V ar(χ2(m)) = 2m.

MSE(S2) = ( σ2

n−1 )
2 × 2(n− 1) = 2( σ4

n−1 ).

MSE(σ̂2) = (n−1
n )2V ar(S2) + (σ2/n)2 = 2n−1/2

n2 σ4.
(c) MSE(σ̂2)/MSE(S2) = (n−1

n2 )(n− 1
2 ) < 1.

Thus σ̂2 is better in terms of the MSE, (though S2 is better than σ̂2) in terms of unbiasedness.
Question. Is σ̂2 is the best in terms of the MSE ?

MSE(σ̂2) = 2n−1/2
n2 σ4.

Let σ̃2 = 1, then MSE(σ̃2) = (1− σ2)2.

{
MSE(σ̂2) > 0 = MSE(σ̃2) if σ = 1

MSE(σ̂2) = 2 28−0.5
216 22 = 28−0.5

213 < 1 = MSE(σ̃2) if σ2 = 2 and n = 28

Question: How to compare estimators ?
1. Select θ̂ with smaller MSE(θ̂),

2. Select θ̂ with the smallest MSE(θ̂) (= E((θ̂ − θ)2)) (impossible) !.

3. Select θ̂ with smaller bias.
4. Select unbiased θ̂ with the smallest V ar(θ̂).

Definition. An estimator τ̂ is called the best unbiased estimator or uniformly minimum variance unbiased estimator
(UMVUE) of τ(θ) if

17



(a) E(τ̂) = τ(θ) ∀ θ ∈ Θ;

(b) V ar(τ̂) ≤ V ar(τ̃) ∀ θ ∈ Θ and ∀ unbiased τ̃ .

In many situations, the UMVUE exists.

Question: How can we determine that τ̂ is UMVUE ?

To answer the question, we need several theorems.

Theorem 1 (Cramér-Rao Inequality (CR- Ineq.)) Let X1, ..., Xn be i.i.d. from X ∼ f(x; θ) and let W (X) be a
statistic. Suppose that

(1) d
dθE(W ) =

{∫
∂
∂θW (x)f(x; θ)dx if X is continuous

∑

x
∂
∂θW (x)f(x; θ) if X is discrete;

(2) V ar(W ) < ∞.

Let τ = E(W ). Then

V ar(W ) ≥ ( d
dθE(W ))2

E(( ∂
∂θ lnf(X;θ))2)

(=
( d
dθE(W ))2

nE(( ∂
∂θ lnf(X;θ))2)

). Why = ?

The latter is called the Cramér-Rao Lower Bound (CRLB) of τ̂(θ).

Remark. A CR-ineq gives a tool for determining an UMVUE. If
(1) the assumptions in CR-inequality hold,
(2) E(W ) = τ(θ) and

(3) V ar(W ) =
( d
dθ τ(θ))

2

E( ∂
∂θ lnf(X;θ))2

,

then W is an UMVUE of τ(θ).

Results: The assumptions in CR-inequality

1. hold if f(x; θ) belongs to an exponential family;

2. often fail if the domain of the f depends on θ such as U(0, θ).

Example 1. Let X1, ..., Xn be i.i.d. from N(µ, 4), UMVUE of µ ?

Sol. N(µ, σ2) belongs to the exponential family.
Thus Condition (1) in CR-inequality holds. θ = ?? τ(θ)= ??

Candidate of an UMVUE of µ: W = X;
E(W ) = µ = θ (Condition (2) in Remark);
V ar(W ) = V ar(X) = σ2/n < ∞ (Condition (2) in CR-In.);

CRLB =
( d
dθ τ(θ))

2

nE(( ∂
∂θ lnf(X;θ))2)

;

( d
dθ τ(θ))

2 = 1;
∂
∂θ lnf(X; θ) = ∂

∂θ [lnc− 1
2 (X − θ)2/σ2] = X−θ

σ2 ,

E(( ∂
∂θ lnf(X; θ))2) = E((X−θ

σ2 )2) = σ2

σ4 = 1/σ2.

CRLB =
( d
dθE(W ))2

nE( ∂
∂θ lnf(X;θ))2

= 1
n× 1

σ2
= σ2/n = V ar(X)

Thus X is an UMVUE of µ.

One of 6.8 or 6.9 will be in the midterm.

Definition. An estimator τ̂ is the best unbiased estimator or UMVUE of τ(θ) if
(a) E(τ̂) = τ(θ) ∀ θ ∈ Θ;
(b) V ar(τ̂) ≤ V ar(τ̃) ∀ θ ∈ Θ and ∀ unbiased τ̃ .

The Cramér-Rao Lower Bound (CRLB) gives a tool for determining an UMVUE.

θ̂ is an UMVUE of τ(θ) if

(1) d
dθE(θ̂) =

{∫
θ̂(x) ∂

∂θf(x; θ)dx if X is continuous
∑

x θ̂(x) ∂
∂θf(x; θ) if X is discrete;

(2) E(θ̂) = τ(θ),

(3) V ar(θ̂) =
( d
dθ τ(θ))

2

E( ∂
∂θ lnf(x;θ))2

.

Results:

Assumptions in CR Th

{
hold if f(x; θ) belongs to an exponential family;
often fail if the domain of the f depends on θ e.g. U(0, θ).

Example 2. Let X1, ..., Xn be i.i.d. from X ∼ f(x; θ) = 1
θ1(x ∈ (0, θ)).

a. MLE θ̂ of θ ?
b. Find an unbiased estimator of θ based on θ̂.
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c. Show that the CR-inequality fails.
d. Why does it fail ?

Sol. 1. Solve for MLE:

L(θ) =
n∏

i=1

f(Xi; θ) =
∏

i

1(Xi ∈ (0, θ))

θ
= θ−n1(X(n) ∈ (0, θ))

Typical way: ∂
∂θ lnL(θ) = −n/θ = 0 ??? if X(n) < θ.

Notice that ∂
∂θ lnL(θ)







< 0 if θ > X(n)

? if θ = X(n)

= 0 if θ < X(n)

,

Check:





Critical points: 0 X(n) ∞
L(θ) : 0 0 0
L(θ) → − ց



 thus the

maximum value does not exist, based on the likelihood !
However, the density function of U(0, θ) is unique in the sense that

E(|f(X; θ)− f2(X; θ)|) = 0 if f and f2 are two density functions of U(0, θ).
Here f(x; θ) = 1(x ∈ (0, θ)) 1θ and f2(x; θ) = 1(x ∈ [0, θ]) 1θ .
The latter leads to the likelihood

L2(θ) = θ−n1(X(n) ∈ [0, θ])1(X(1) ≥ 0).
Then the maximum value does exist !!

The MLE is θ̂ = X(n).

2. To find an unbiased estimator, consider E(θ̃) = E(cθ̂) = θ.

E(θ̂) =
∫
tfX(n)

(t)dt

=
∫ θ

0
tn( tθ )

n−1 1
θdt (as fX(n)

(t) = n!
(n−1)!1! (F (t))n−1f(t))

=
∫ θ

0
n tn

θn dt
= n

n+1θ.

An unbiased estimator related to the MLE is θ̃ = n+1
n θ̂.

3. To show the CR-inequality fails, one needs to show V ar(θ̃) < CRLB.
Now V ar(θ̃) = E((θ̃)2)− θ2.

E(θ̃2) =

∫

(
n+ 1

n
)2t2fX(n)

(t)dt (as E(g(Y )) =

∫

tfg(Y )(t)dt =

∫

g(x)fY (x)dx)

=

∫ θ

0

(
n+ 1

n
)2t2n(

t

θ
)n−1 1

θ
dt as fX(n)

(t) = n(F (t))n−1f(t)

=n(
n+ 1

n
)2

1

θn

∫ θ

0

tn+1dt

=n(
n+ 1

n
)2

1

n+ 2
θ2

=
(n+ 1)2

n(n+ 2)
θ2.

(1) V ar(θ̃) = (n+1)2

n(n+2)θ
2 − θ2 = 1

n(n+2)θ
2.

CRLB =
( d
dθ θ)

2

nE( ∂
∂θ lnf(X; θ))2

.

lnf(x; θ) = −lnθ, x ∈ (0, θ).
(lnf(x; θ))′ = −1

θ , x ∈ (0, θ).
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E((∂lnf(X;θ)
∂θ )2) =

{

E(1(X∈(0,θ))
θ2 ) ?

E( 1
θ2 ) ?

Which is correct ??

= P (X∈(0,θ))
θ2 = 1

θ2 by accident! e.g.,

X ∼ U(0, θ) => E(
1(X ∈ ( θ2 , θ))

θ2
) = E(

1

θ2
) ??

CRLB = 1
n 1

θ2
= θ2

n > θ2

n(n+2) = V ar(θ̃)

Thus the CR-inequality fails. In fact, we shall show θ̃ is UMVUE of θ.
d. Reason that the CRLB fails: (condition (1) in theorem fails).

∂
∂θE(W ) 6=

∫
∂
∂θW (x)f(x; θ)dx where W = θ̃ = X(n)

n+1
n ,

∂

∂θ
E(W ) =

∫
∂

∂θ
W (x)f(x; θ)dx

(=

∫
∂

∂θ
yfW (y; θ)dy??)

E(W ) = θ,
LHS= ∂

∂θE(W ) = 1. But RHS= −n, as

RHS =

∫
∂

∂θ

n+ 1

n
wfX(n)

(w)dw

=

∫ θ

0

∂

∂θ

n+ 1

n
wn(

w

θ
)n−1 1

θ
dw

=(n+ 1)

∫ θ

0

∂

∂θ
(
w

θ
)ndw

=(n+ 1)

∫ θ

0

wn(−n)θ−n−1dw

=θn+1(−n)θ−n−1

=(−n)

or RHS =

∫

· · ·
∫

︸ ︷︷ ︸

how many?

∂

∂θ
W (x)f(x; θ)dx

=

∫

· · ·
∫

∂

∂θ

n+ 1

n
x(n)θ

−n1(x(1), x(n) ∈ (0, θ))dx

=n!

∫ θ

0

∫ xn

0

· · ·
∫ x2

0

xndx1 · · · dxn−1

︸ ︷︷ ︸

dxn{
∂

∂θ
θ−nn+ 1

n
} Why??

=n!

∫ θ

0

(by induction on n)
︷ ︸︸ ︷

xn
(xn)

n−1

(n− 1)!
dxn{(−n)θ−n−1n+ 1

n
}

=n!

∫ θ

0

(xn)
n

(n− 1)!
dxn(−n)θ−n−1n+ 1

n

=n!θn+1 1

(n+ 1)(n− 1)!
(−n)θ−n−1n+ 1

n
= −n

∂
∂θE(W ) 6=

∫
∂
∂θW (x)f(x; θ)dx (condition (1) in theorem fails).

Theorem 2. If (1) T is a sufficient and complete statistic for θ; (2) φ(T ) is a statistic that only depends on T ,
Then φ(T ) is the unique UMVUE of E(φ(T )).
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Corollary. θ̃ = n+1
n X(n) is UMVUE of θ if Xi’s are i.i.d. ∼ U(0, θ). Why ?

Remark. 2 more ways for finding a UMVUE of τ(θ) based on Theorem 2:

2. Find a sufficient and complete statistic T and
a φ(T ) that is unbiased of τ(θ),
then φ(T ) is the UMVUE of τ(θ).

3. Find a sufficient and complete statistic T and
an unbiased estimator W of τ(θ),
then τ̂ = E(W |T ) is the UMVUE of τ(θ).

Example 1. Let Xi’s be i.i.d. from N(µ, σ2). UMVUE of µ2 and σ2 ?

Sol. Use Method 2.
T = (X,X2) is sufficient and complete (known due to exponential family).
A function φ(T ) such that E(φ(T )) = θ ?

E(S2) = σ2 and S2 = n
n−1 (X

2 − (X)2), a function of T .

E(X2) = E(X2) = µ2 + σ2 and X2 is a function of T ;
E(X2 − S2) = µ2 + σ2 − σ2 = µ2 and X2 − S2 is a function of T ;

Thus X2 − S2 and S2 are the UMVUEs of µ2 and σ2, respectively.

Example 2. Let X1, ..., Xn be i.i.d. from Poisson(λ). UMVUE of λ ?

Sol. Recall E(X1) = λ = V ar(X1) for Poisson(λ). T =
∑n

i=1 Xi is sufficient and complete.

Two unbiased estimators: λ̂ = X, λ̌ = S2.
Method 1. Check: Cramer-Rao Lower Bound = V (λ̂) or V (λ̌) ?

Method 2. λ̂ = X, as E(X) = µ = λ.
Method 3. λ̃ = E(W |T ), where W = S2 or X.

Question:
(1) Which method is better here ?

(2) E(X|T ) = λ̂ ?

(3) E(S2|T ) = λ̂ ?
Consider the case n = 2.

Let T =
∑

i Xi.

E(S2|X) = E(S2|T/n) = E(S2|T ) = 2[E(X2|X)− (X)2].

fX1|X1+X2
(x|t) = P (X1 = x,X2 = t− x)/P (T = t) =

(
t
x

)
0.5x0.5t−x (bin(t, 0.5)).

E(X2|T ) = E(X2|T ) = (Tpq + (Tp)2) = (T/4− T 2/4) = (X/2)− (X)2.

E(S2|X) = E(S2|T ) = 2[E(X2|X)− (X)2] = X.
In general, n ≥ 2. Xi|

∑

i Xi ∼ bin(t, 1/n), i = 1, ..., n.
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Example 3. Let X1, ..., Xn be a random sample from X ∼ bin(5, θ).
τ = P (X ≤ 1). UMVUE of τ ?
Sol. τ = ? (= P (X ≤ 1)).

τ = (1− θ)5 + 5θ(1− θ)4.
3 methods for UNVUE:

1. Find an unbiased τ̂ , compare σ2
τ̂ to CRLB.

2. Find a complete sufficient T and g(T ) so that E(g(T )) = τ .
3. Find a complete sufficient T and an unbiased τ̂ , compute E(τ̂ |T ).

Method 3. τ̂ = E(W |T ).
W=? T=? E(W|T)= ?
W = 1(X1 ≤ 1). Then E(W ) = P (X1 ≤ 1) = P (X ≤ 1).
Why not W = 1(X ≤ 1) ?

T =
∑n

i=1 Xi is sufficient and complete (due to the exponential family).
Why T , not X ? Either is fine, but T ∼ bin(5n, θ), T = nX, fX(y) = ?

E(W |T ) = ?
Ans.: (1) g(t) = E(W |T = t), t = 0, ..., 5n. (2) E(W |T ) = g(T ).

E(W |T = t) =
∫
wdFW |T (w|t) meaning ?

= 0 · fW |T (0|t) + 1 · fW |T (1|t)
E(W |T = t) = fW |T (1|t).
fW |T (1|t) = P (W=1,T=t)

P (T=t) , t ∈ {0, 1, ..., 5n}.
P (T = t) = ?
P (W = 1, T = t) = ?

If t = 0, then P (W = 1, T = t) = P (X1 ∈ {0, 1}, T = 0) =

{
P (X1 = 0) ?
P (T = 0) ?

{T = 0} = {∑n
i=1 Xi = 0} = {X1 = · · · = Xn = 0}.

E(W |T = 0) = fW |T (1|0) = P (T=0)
P (T=0) .

If t ≥ 1,

P (W = 1, T = t) =P (X1 ∈ {0, 1}, T = t) how to proceed ?

(=P (X1 ∈ {0, 1})P (T = t)?)

=P (X1 ∈ {0, 1},
n∑

i=1

Xi = t)

=P (X1 = 0,

n∑

i=1

Xi = t) + P (X1 = 1,

n∑

i=1

Xi = t)

=P (X1 = 0,
n∑

i=2

Xi = t) + P (X1 = 1,
n∑

i=2

Xi = t− 1)

=P (X1 = 0)P (

n∑

i=2

Xi = t) + P (X1 = 1)P (

n∑

i=2

Xi = t− 1)

=(1− θ)5
(
5(n− 1)

t

)

θt(1− θ)5(n−1)−t

+ 5(1− θ)4θ

(
5(n− 1)

t− 1

)

θt−1(1− θ)5(n−1)−t+1

=[

(
5(n− 1)

t

)

+ 5

(
5(n− 1)

t− 1

)

]θt(1− θ)5n−t

Since P (T = t) =
(
5n
t

)
θt(1− θ)5n−t.

τ̂ =

{
1 if T = 0
[
(
5(n−1)

T

)
+ 5

(
5(n−1)
T−1

)
]/
(
5n
T

)
if T ≥ 1, where T =

n∑

i=1

Xi.
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Theorem 2. If (1) T is a sufficient and complete statistic for θ; (2) φ(T ) is a statistic that only depends on T ,
Then φ(T ) is the unique UMVUE of E(φ(T )).
Theorem 3 (Rao-Blackwell). Suppose that
(1) W is an unbiased estimator of τ(θ),
(2) T is sufficient for θ and
(3) τ̂ = E(W |T ).
Then V ar(τ̂) ≤ V ar(W ) and E(τ̂) = τ(θ).

What is the diffenrece between Th 2 and 3 ?
Remark. The R-B Theorem does not say that τ̂ is the UMVUE.
Proof of R-B Th. E(τ̂) = E(E(W |T )) = E(W ) = τ(θ).

V ar(W ) = V ar(E(W |T )) + E(V ar(W |T ))
Thus V ar(W ) ≥ V ar(E(W |T )) = V ar(τ̂).
Proof of Theorem 2.
Step (1) Claim: φ(T ) is a UMVUE of τ(θ) = E(φ(T )).

If φ(T ) is not a UMVUE of τ(θ),
then there exists an unbiased estimator W such that

V ar(W ) < V ar(φ(T )) for a θ = θo (or for all θ ?).

We shall show that it leads to a contradiction.
Now τ̂ = E(W |T ) is an unbiased estimator and

V ar(τ̂) ≤ V ar(W ) < V ar(φ(T )) for θ = θo by R-B theorem. (1)

Let g(T ) = E(W |T )− φ(T ),
then E(g(T )) = τ(θ)− τ(θ) = 0 ∀ θ.

It follows that P (g(T ) = 0) = 1 ∀ θ, Why ? that is,
φ(T ) = E(W |T ) w.p.1, a contradiction to Inequality (1) Why ??
The contradiction implies that φ(T ) is an UMVUE of τ .

Step (2) ⊢: Cov(W,φ(T )) = σWσφ(T ) where W is an arbitrary UMVUE of τ(θ).

W ∗ = (W + φ(T ))/2 is also unbiased, and

V ar(W ) ≤V ar(W ∗) (as W is an UMVUE)

=
1

22
V ar(φ(T )) +

1

22
V ar(W ) +

1

2
Cov(φ(T ),W )

≤ 1

22
V ar(W ) +

1

22
V ar(W ) +

1

2
V ar(W ) Why ??

=V ar(W ) (Cov(X,Y ) ≤ σXσY )

⇒ Cov(φ(T ),W ) = V ar(W ) =
√

V ar(φ(T ))V ar(W ) Why ?
Step (3) Claim: φ(T ) is the unique (w.p.1) UMVUE of τ(θ).

Recall that Cov(X,Y ) ≤ σXσY

with equality iff P (Y = a+ bX) = 1 for some constants a and b.
Let W be an arbitrary UMVUE of τ(θ).
Thus Step (2) => P (φ(T ) = a+ bW ) = 1 for some constants a and b.
Then E(φ(T )) = a+ bE(W ) and thus τ(θ) = a+ bτ(θ) ∀ θ.
It follows that a = 0 and b = 1, and thus P (W = φ(T )) = 1.

Theorem 1 (Cramér-Rao Inequality (CR- Ineq.)) Let X1, ..., Xn be i.i.d. from X ∼ f(x; θ) and let W (X) be a
statistic. Suppose that

(1) d
dθE(W ) =

{∫
∂
∂θW (x)f(x; θ)dx if X is continuous

∑

x
∂
∂θW (x)f(x; θ) if X is discrete;
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(2) V ar(W ) < ∞.
Let τ = E(W ). Then

V ar(W ) ≥ ( d
dθE(W ))2

E(( ∂
∂θ lnf(X;θ))2)

(=
( d
dθE(W ))2

nE(( ∂
∂θ lnf(X;θ))2)

). Why = ?

Remark. In general, the CRLB = (τ ′(θ))2

In(θ)
, where In(θ) = E(( ∂

∂θ lnf(X; θ))2), In(θ) is called the Fisher information

number.
Here X = (X1, ..., Xn) and X1, ..., Xn do not need to be i.i.d..
If they are, then In(θ) = nI1(θ), where I1(θ) = E(( ∂

∂θ lnf(Xi; θ))
2); Moreover,

if ∂
∂θE( ∂

∂θ lnf(X1; θ)) =

{∫
∂
∂θ (

∂
∂θ lnf(x; θ)f(x; θ))dx if X1 is continuous

∑
∂
∂θ (

∂
∂θ lnf(x; θ)f(x; θ)) if X1 is discrete,

then

In(θ) = −E(
∂

∂θ
(
∂

∂θ
lnf(X; θ))) = −nE(

∂2

∂θ2
lnf(X1; θ)) (2)

Proof of (2) under the assumption that X is continuous.
Let Yi =

∂
∂θ lnf(Xi; θ), then

E(Yi) =E(
∂

∂θ
lnf(Xi; θ))

=E(
∂
∂θf(Xi; θ)

f(Xi; θ)
)

=

∫ ∂
∂θf(x; θ)

f(x; θ)
f(x; θ)dx

=

∫
∂

∂θ
f(x; θ)dx

=
∂

∂θ

∫

f(x; θ)dx (by (1) in the theorem)

=0.

E(Y 2
i ) = V ar(Yi) = V (Yi). E(

∑

i Yi) = 0.

In(θ) = E((
∂

∂θ

∑

i

lnf(Xi; θ))
2) = E[(

∑

i

Yi)
2] = V (

∑

i

Yi) =
∑

i

V (Yi) = nI1(θ)

0 =E(Yi) =

∫

(
∂

∂θ
lnf(x; θ))f(x; θ)dx =>

∂

∂θ
0 =

∂

∂θ

∫

(
∂

∂θ
lnf(x; θ))f(x; θ)dx

=

∫
∂

∂θ

[
(
∂

∂θ
lnf(x; θ))f(x; θ)

]
dx (by assumption)

=

∫

[
∂

∂θ
(
∂

∂θ
lnf(x; θ))]f(x; θ) + (

∂

∂θ
lnf(x; θ))

∂

∂θ
f(x; θ)dx

=

∫

[
∂2

∂θ2
lnf(x; θ))]f(x; θ)dx+

∫

(
∂

∂θ
lnf(x; θ))

∂

∂θ
f(x; θ)dx

=

∫

[
∂2

∂θ2
lnf(x; θ))]f(x; θ)dx+

∫

(
∂

∂θ
lnf(x; θ))(

∂

∂θ
lnf(x; θ))f(x; θ)dx

=E(
∂2

∂θ2
lnf(Xi; θ)) + E((

∂

∂θ
lnf(Xi; θ))

2)

Thus E( ∂2

∂θ2 lnf(Xi; θ)) = −E(( ∂
∂θ lnf(Xi; θ))

2).
§7.3.4. More about the Bayes estimator.
Interpretation of various estimation methods: MLE θ̂ maximizes L(θ) = fX(x; θ), maximizing the chance for given
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X = x. MME θ̃ solves θ through Eθ(X
k) = Xk. Unbiased estimator θ̌ set E(θ̌)) = θ., UMVUE θ̆ is the best unbiased

estimator in terms of variance. Why Bayes estimator E(θ|X) ?

Definitions: A decision problem consists of
X – sample space,
A – action space,
Θ – parameter space,
L(θ, a) – loss function, that is, L: Θ×A → R.

A decision rule δ is a (measurable) function from X to A, that is,
δ: X → A.

R(θ, δ) = E(L(θ, δ(X))) – risk function of δ, or more precisely, R(θ, δ) = E(L(θ, δ(X))|θ) (function of (θ, δ), not
X)).
r(π, δ) = Eπ(R(θ, δ)) – Bayes risk of δ. It is not a function of (X, θ) !!
δB = arg infδ r(π, δ) is called the Bayes rule of θ w.r.t. prior π and loss L.

Remark. If L = (θ − a)2 (called the quadratic loss function or the squared error loss), then Eπ(θ|X) is the Bayes
rule w.r.t. π and L (or Bayes estimator).

The Bayes estimator is the best in term of E(E(θ̂(X)− θ)2|θ), average error over (X, θ).

Example 1. Let X ∼ bin(n, θ), π(θ) ∼ beta(α, β) where α = β =
√
n/2. Then the MLE is θ̂ = X/n, and the

Bayes estimator under the square error loss is θ̃ = E(θ|X) = X+α
n+α+β = X+

√
n/2

n+
√
n

why ?

Can we write θ̃ = E(θ|x) = x+
√
n/2

n+
√
n

?

Can we write θ̃ = E(θ|X) = x+
√
n/2

n+
√
n

?

This is an estimation problem and is also called a decision problem. In this decision problem,
X = {0, 1, ..., n} (set of possible observations)
Θ = [0, 1] = A (set of possible estimates)
L = (a− θ)2 (error).

A decision rule δ is an estimator.
θ̂ and θ̃ are both decision rules. Then

R(θ, θ̂) = E((θ̂ − θ)2) = E((Xn − θ)2) = σ2
X/n = V (X/n) = θ(1−θ)

n .

r(π, θ̂) = E( θ(1−θ)
n ) = B(α+1,β+1)

B(α,β)n Why ??

Recall Γ(α+ 1) = αΓ(α) and B(α, β) = Γ(α)Γ(β)
Γ(α+β) .

r(π, θ̂) = α
α+β+1 · β

α+β · 1
n = 1

4
√
n(

√
n+1)

R(θ, θ̃) = E((θ̃ − θ)2) = MSE(θ̃) = V ar(
X +

√
n/2

n+
√
n

︸ ︷︷ ︸

θ̃

) + (bias(θ̃))2

R(θ, θ̃) = nθ(1−θ)
(n+

√
n)2

+ (nθ+
√
n/2

n+
√
n

− θ)2 = n
4(n+

√
n)2

r(π, θ̃) = E(R(θ, θ̃)) = n
4(n+

√
n)2

= 1
4(

√
n+1)2

< r(π, θ̂).

It can be checked that r(π, θ̃) = infδ r(π, δ) (see Remark later).
Thus θ̃ minimizes the average error. w.r.t. L and π.

Example 2. Other loss functions:

L(θ, a) = |a− θ|,
L(θ, a) = (a−θ)2

θ(1−θ) , where Θ = [0, 1], and 1
0

def
=∞

Is E(θ|X) still the Bayes rule w.r.t. L and π ?

Example 3. Suppose that X ∼ bin(n, p), π(p) ∼ beta(α, β), with α = β =
√
n/2, and L(p, a) = (a−p)2

p(1−p) . Let

p̂1 = X/n, and p̂2 = X+α
n+α+β . R(p, p̂i) = ? r(π, p̂i) = ?

Sol. R(p, p̂1) = E( (X/n−p)2

p(1−p) ) = p(1−p)/n
p(1−p) = 1/n.

r(π, p̂1) = E(1/n) = 1/n.

R(p, p̂2) = E(
( X+α
n+α+β − p)2

p(1− p)
) = E((

X + α

n+ α+ β
− p)2)

1

p(1− p)
=

n

4(n+
√
n)2

· 1

p(1− p)
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(by Ex. 1).

r(π, p̂2) = cE(
1

p(1− p)
) = c

B(α− 1, β − 1)

B(α, β)
Why ?

= c
(α+ β − 1)(α+ β − 2)

(α− 1)(β − 1)
=

n

4(n+
√
n)2

· (
√
n− 1)(

√
n− 2)

(
√
n
2 − 1)2

=
(
√
n− 1)

(
√
n+ 1)2(

√
n− 2)

{
> 1/n = r(π, p̂1) if n = 4 or 9,
< 1/n = r(π, p̂1) if n = 100

Can we tell whether p̂1 or p̂2 is Bayes rule (w.r..t. π and L) ?
Remark. Under certain regularity conditions (in the Fubini Theorem),
(1) If E(L(θ, δ)|X) is finite, then the Bayes rule is

δB(x) = argmina E(L(θ, a)|X = x).
Or, if T is sufficient and E(L(θ, a)|T ) is finite, then the Bayes rule is

δB(t) = argmina E(L(θ, a)|T = t). (2) If L = (a− θ)2, then δB = E(θ|X).
Proof: Note that both X and θ are random.

r(π, δ) =E(E(L(θ, δ(X))|θ))
=E(E(L(θ, δ(X))|X)) (by Fubini Theorem)

is minimized by minimizing E(L(θ, δ(X))|X = x) for each x
or minimizing E(L(θ, a)|X = x) over all a ∈ A for each x. Why ?

(2) If L = (a− θ)2, then
E(L(θ, a)|X = x) = E((a− θ)2|X = x)

If E((a− θ)2|X = x) is finite, then
∂
∂aE(L(θ, a)|X = x) = 2E((a− θ)|X = x) (Why ?? Is it right ?)

= ∂
∂a [a

2 − 2aE(θ|X = x) + E(θ2|X = x)] = 2a− 2E(θ|X = x).
∂2

∂a2E(L(θ, a)|X = x) = 2 > 0.
Thus a = E(θ|X = x) is the minimum point.
That is, δB = E(θ|X) is the Bayes estimator w.r.t. L and π.

Remark. Hereafter, if we do not mention L in the problem, the Bayes estimator is E(θ|X), otherwise, the Bayes
estimator is the Bayes rule w.r.t. the loss L and the prior π.
Remark. Under certain regularity conditions (in the Fubini Theorem),
If E(L(θ, δ)|X) is finite, then the Bayes rule is

δB(x) = argmina E(L(θ, a)|X = x).
Or, if T is sufficient and E(L(θ, a)|T ) is finite, then the Bayes rule is

δB(t) = argmina E(L(θ, a)|T = t).

Example 4. If one observes X, where X ∼ bin(n, p), L = (a−p)2

p(1−p) , π(p) ∼ U(0, 1),

then Bayes estimator p̂= ?
Sol. p̂ = δB(x) = argmina E(L(p, a)|X = x)

︸ ︷︷ ︸

=?

.

∫
L(p, a)π(p|x)

︸ ︷︷ ︸

=?

dp

f(x,p)
fX(x) = ?

The joint distribution of (X, p) is

f(x, p) =f(x|p)π(p)

=

(
n

x

)

px(1− p)n−x1(p ∈ [0, 1])

∝px(1− p)n−x1(p ∈ (0, 1)).

π(p|x) ∼ ?
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Thus π(p|x) ∼ beta(x+ 1, n− x+ 1).

g(a) = E(L(p, a)|X = x) =

∫ 1

0

(a− p)2

p(1− p)
cpx(1− p)n−xdp

g(a) = c

∫ 1

0

(a− p)2px−1(1− p)n−x−1dp

Step (1) g′(a) = c
∫ 1

0
2(a− p)px−1(1− p)n−x−1dp. g′(a) = 0 ⇒

a =

∫ 1

0
ppx−1(1− p)n−x−1dp

∫ 1

0
px−1(1− p)n−x−1dp

=

∫ 1

0
ppx−1(1−p)n−x−1

B(x,n−x) dp
∫ 1

0
px−1(1−p)n−x−1

B(x,n−x) dp

= mean of a beta distribution =
x

x+ (n− x)

Step (2) g′′(a) = c
∫ 1

0
2px−1(1− p)n−x−1dp > 0.

=> a = p̂(x) = x/n is the Bayes estimator of p.
Are we done ???

g(a) =E(L(p, a)|X = x)

=c

∫ 1

0

(a2 − 2ap+ p2)px−1(1− p)n−x−1dp

∝a2B(x, n− x)− 2aB(x+ 1, n− x) +B(x+ 2, n− x).

B(α, β) < ∞ iff α > 0 and β > 0. (1)

1. Notice that if x 6= 0 or n, g(a) is finite for all a ∈ [0, 1].
g′(a) = 2c[aB(x, n− x)−B(x+ 1, n− x)] = 0
g′′(a) = 2cB(x, n− x) > 0.
Thus g(a) is minimized by

a = δB(x) =

∫ 1

0
px(1−p)n−x−1dp

∫ 1

0
px−1(1−p)n−x−1dp

= B(x+1,n−x)
B(x,n−x) = Γ(x+1)Γ(n−x)Γ(n)

Γ(x)Γ(n−x)Γ(n+1) = x/n.

2. Notice that if x = 0, g(a) is finite only when a = 0, as

g(0) = c

∫ 1

0

px+1(1− p)n−x−1dp = cB(2, n)

Otherwise, (if unaware of (1)) g(a) = c{
∫ 1

0
a2p−1(1− p)n−1dp− 2aB(1, n) +B(2, n)}

≥ c
∫ 1/2

0
a2p−1(0.5)n−1dp+ c{−2aB(1, n) +B(2, n)} = limy↓0 ca2(0.5)n−1(lnp

∣
∣
0.5

y
) = ∞.

Thus g(a) is minimized by a = δB(0) = 0 = 0/n.
Can we say that aB(x, n− x) = 0 if x = 0 = a ?

3. Notice that if x = n, g(a) is finite only when a = 1, by symmetry.
Thus g(a) is minimized by a = δB(n) = 1 = n/n.

Answer: The Bayes estimator w.r.t. π and L is δB(X) = X/n.
Question about

∂

∂y

∫ b(y)

a(y)

g(x, y)dx = g(b(y), y)b′(y)− g(a(y), y)a′(y) +

∫ b(y)

a(y)

∂

∂y
g(x, y)dx
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∂
∂y

∫ 1

0
sin(xy)1(x < y)dx = ?

Chapter 8. Hypothesis Testing

§8.1. Two types of inferences:

{
1. Estimation problem: θ =?
2. Testing Problem: θ = θo ? Here θo is given.

Example 1. A slot machine is claimed to have winning rate 40%. To test the claim, 5 runs are made. Observe X
times of winning. Let p be the winning rate of the machine.
Possible Questions:

H0 : null hypothesis H1 : alternative hypothesis made by

p = 40% ? p 6= 40% ? manufacturer
p > 40% ? casino owner
p < 40% ? player

If H0 is correct, then X ∼ bin(5, 2/5) and one expects 2 winnings.

The maker rejects H0 if X = 0, 4, 5 but nor 1,2,3.
The owner rejects H0 if X = 4, 5 but not 0, 1,2,3
A player rejects H0 if X = 0, but not 1, 2, 3, 4, 5.

rejection region (RR)

A test statistic or test function is φ = 1(X ∈ RR),
which has two interpretations:

1. If X ∈ RR, then φ = 1 or H1 is accepted (often say rejecting H0);
if X /∈ RR, then φ = 0 or H0 is accepted (often say not rejecting H0).

2. The probability of rejecting H0 is
{
1 if X ∈ RR
0 otherwise.

A testing hypothesis for θ ∈ Θ consists of 5 elements:
1. H0: θ ∈ Θo (Θo = {0.4} in Example 1).
2. H1: θ ∈ Θc

o = Θ \Θo

(in Example 1)

H1 Θ Θc
o

θ 6= 0.4 [0, 1] [0, 0.4) ∪ (0.4, 1]
θ > 0.4 [0.4, 1] (0.4, 1]
θ < 0.4 [0, 0.4] [0, 0.4)

3. Test statistic φ (= 1(X ∈ RR) in Example 1).
4. α – size of the test defined by α = supθ∈Θo

Eθ(φ).
5. Conclusion: Reject or do not reject H0.

Two types of errors:
1. Type I error: reject correct H0, denoted by H1|H0.
2. Type II error: do not reject wrong H0, denoted by H0|H1.

Definition. β(θ) – power function of the test defined by β(θ) = Eθ(φ).
For θ ∈ Θc

o, β(θ) is called the power (at θ) of the test.
If θ ∈ Θo then β(θ) = P (H1|H0), the probability of type I error;
If Θo = {θo} then β(θo) = α, the size of the test;
If θ ∈ Θc

o, then β(θ) = 1− Pθ(H0|H1),
where Pθ(H0|H1) is the probability of type II error.

Example 1 (continued). Compute β(p) and α.
β(p) = E(1(X ∈ RR)) =

∑

x∈RR

(
5
x

)
px(1− p)5−x.

α = Pp(X ∈ RR) when p = 0.4.
R
x=0:5
round(dbinom(x,5,0.4),3)
[1] 0.078 0.259 0.346 0.230 0.077 0.010

1. H1: p < 0.4. α = (P (X ∈ {0})) = 0.078.
2. H1: p > 0.4. α = (P (X ∈ {4, 5})) = 0.077 + 0.010 = 0.087.
3. H1: p 6= 0.4. α = (P (X ∈ {0, 4, 5})) = 0.078 + 0.077 + 0.010 = 0.165.
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§8.2. Question: How to construct a test ?
Ans. Method 1. Likelihood ratio test (LRT):

Let X1, ..., Xn be a random sample from f(x; θ).
For testing H0: θ ∈ Θo v.s. H1: θ ∈ Θc

o,
LRT φ = 1(λ ≤ c), where

λ =
supθ∈Θo

L(θ|x)
supθ∈Θ L(θ|x) =

L(θ̂o|x)
L(θ̂|x)

L(θ|x) =
∏n

i=1 f(xi; θ), θ̂ is the MLE of θ under Θ, θ̂o is the MLE of θ under Θo, c is determined by α =
supθ∈Θo

P (λ ≤ c), or otherwise, c = sup{t : α ≥ supθ∈Θo
P (λ ≤ t)}.

Q: How to understand λ ?
Two extremes ?

Is λ = 1 (or λ >> c) likely under H0 or H1 ?
Is λ = 0 (or λ << c) likely under H0 or H1 ?

Example 1. A random sample from N(µ, 1) results in X = 1.1, where n = 100. Do you believe µ = 1 ?
Sol. Use LRT.
H0: µ = 1 v.s. H1: µ 6= 1.

α = 0.05.
L(µ|x) = c exp(− 1

2

∑n
i=1(Xi − µ)2),

Θo = {1}: MLE µ̂0 = 1 (= µ0);
Θ = (−∞,∞): MLE µ̂ = X;

λ =
L(µ̂0|x)
L(µ̂|x)

=
c exp(− 1

2

∑n
i=1(Xi − µ0)

2)

c exp(− 1
2

∑n
i=1(Xi −X)2)

= exp(−1

2

n∑

i=1

[(Xi − µ0)
2 − (Xi −X)2])

= exp(−1

2

n∑

i=1

[(2Xi −X − µ0)(X − µ0)])

= exp(−1

2
[(2nX − nX − nµ0)(X − µ0)])

= exp(−n

2
(X − µ0)(X − µ0)])

= exp(−n

2
(X − µ0)

2).

φ = 1(λ ≤ c) = 1(|X − µ0| ≥ c1).
Since α = Eµ0

(φ) = 0.05,
X ∼ N(µ0, 1/n),
X−1
1/

√
n
∼ N(0, 1),

P (| X−1
1/

√
n
| > 1.96) ≈ 0.05,

c1 = 1.96/
√
n. Or c = exp(−n

2 c
2
1). (It is important to find c1 and c).

That is φ = 1(|X − 1| ≥ 1.96/
√
n).

Thus do not reject Ho.
It is likely that µ = 1.

Where are the 5 elements of a test ? A testing hypothesis for θ ∈ Θ consists of 5 elements:
1. H0

2. H1

3. Test statistic φ (= 1(λ ≤ c) for LRT)
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4. α – size of the test defined by α = supθ∈Θo
Eθ(φ).

5. Conclusion: Reject or do not reject H0 and answer to the related question.

Example 3. Suppose that X1, ..., X4
i.i.d.∼ N(µ, σ2), θ = (µ, σ2) are unknown, X = 3 and S2 = 4. H0: µ ≤ 0 (= µ0)

v.s. H1: µ > µ0. LRT ?
Sol.
Remark. A natural estimator of µ = ?

If X = 100, H0 or H1 ?
If X = −0.001, H0 or H1 ?
If X = 3, H0 or H1 ? need to find out now).

A natural test is φ+ = 1(µ̂ > b) Why ?

5 elements of a test: (1) ? (2) ?
(3) Choose size α = 0.05.

(4) Test statistics: 1(λ ≤ c) = ? λ = L(θ̂o|x)

L(θ̂|x)
= ? c= ? The main work!!

(5) Conclusion. Don’t forget !
L = ( 1√

2πσ2
)n exp(− 1

2

∑

i(Xi − µ)2/σ2)

Θo = {(µ, σ2) : µ ≤ µ0, σ > 0}.
Θ = {(µ, σ2) : µ ∈ R1, σ > 0}.

MLE under Θ: θ̂ = (X, σ̂2), where σ̂2 = 1
n

∑n
i=1(Xi −X)2.

MLE under Θo: θ̂o = (µ̂0, σ̂
2
0) = (X ∧ µ0,

1
n

∑n
i=1(Xi −X ∧ µ0)

2)
(see Example 3 in MLE section), or the derivation as follows.

If X ≤ µ0, then θ̂ ∈ Θo and thus it is the maximum point of the likelihood L(θ|X).
If X > µ0, then,
since θ̂ is the unique stationary point in Θ,
the maximum point of L(θ|X) must be on the boundary:

boundaries : µ = −∞ µ = µ0 σ = 0 σ = ∞
L(θ|X) : 0 finite 0 0

It is easy to show that on the boundary µ = µ0, the maximum point of the likelihood is achieved at
θ̂o = (µ̂0, σ̂

2
0) = (µ0,

1
n

∑n
i=1(Xi − µ0)

2).

L(θ̂) = ( 1√
2πσ̂2

)n exp(− 1
2

∑

i(Xi − µ̂)2/σ̂2) = ( 1√
2πσ̂2

)n exp(−n
2 ).

L(θ̂o) = ( 1√
2πσ̂2

0

)n exp(− 1
2

∑

i(Xi − µ̂0)
2/σ̂2

0)

=

{
( 1√

2πσ̂2
)n exp(−n

2 ) if X ≤ µ0

( 1√
2πσ̂2

0

)n exp(−n
2 ) if X > µ0.

λ =







1 if X ≤ µ0

(

∑

i
(Xi−X)2

∑

i
(Xi−µo)2

)n/2 if X > µ0.

φ =1(λ ≤ c) c ≈ 0? or c ≈ 1?

=1(

∑

i(Xi −X)2
∑

i(Xi − µo)2
≤ c2/n) Why ? Is it correct ?

φ+ =1(

∑

i(Xi −X)2
∑

i(Xi − µo)2
≤ c2/n)1(X > µo) Is it correct ?

φ =1(

∑

i(Xi −X)2
∑

i(Xi −X)2 +
∑

i(X − µo)2
≤ c2/n) (as

∑

i

(Xi − µo)
2 =

∑

i

(Xi −X +X − µo)
2

=
∑

i(Xi −X)2 +
∑

i(X − µo)
2)

=1(

∑

i(Xi −X)2 +
∑

i(X − µo)
2

∑

i(Xi −X)2
≥ 1/c2/n)
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=1(

∑

i(X − µo)
2

∑

i(Xi −X)2
≥ 1/c2/n − 1)

=1(
n(X − µo)

2

∑

i(Xi −X)2
≥ c2) c2 = ?

=1(
|X − µo|
√

S2/n
≥ c3) c3 = ?

Recall that X−µ√
S2/n

∼ tn−1 if Xi’s i.i.d. ∼ N(µ, σ2).

α = supµ≤µ0
E(φ) = supµ≤µ0

P ( |X−µo|√
S2/n

≥ c3)

= supµ≤µ0
P ( |X−µ+(µ−µo)|√

S2/n
≥ c3).

Since tn−1 density function is bell-shaped and symmetric about 0,

α = sup
µ≤µ0

E(φ) = sup
µ≤µ0

P (
|X − µ+ (µ− µo)|

√

S2/n
≥ c3) = P (

|X − µo|
√

S2/n
≥ c3)

with µ0 = 0 here. That is,

φ = 1(
|X − µo|
√

S2/n
≥ t0.025,n−1).

Q: Two tests:







φ+ = 1( X−µo√
S2/n

≥ t0.05,n−1) => 1(3>2.353) (reject H0),

φ = 1( |X−µo|√
S2/n

≥ t0.025,n−1) => 1(|3|>3.182) (don’t reject H0)

Which makes more sense ?
Recall H0: µ ≤ 0 (= µ0) v.s. H1: µ > µ0.

Question: Something goes wrong ?

1(λ ≤ c) =







1(1 ≤ c) if X < 0

1((

∑

i
(Xi−X)2

∑

i
(Xi−µo)2

)n/2 ≤ c) if X > µ0

=1(
|X − µo|
√

S2/n
≥ c3)1(X > µ0)

=1(
X − µo
√

S2/n
≥ c3) = φ+

(4) Test statistic is φ+.
(5) Reject H0. The data does not support the claim that µ ≤ 0.
Example 2. A random sample X1, ..., X4 from f = exp(−(x− θ)), x ≥ θ.
H0: θ ≤ 1 (= θo) v.s. H1: θ > 1. LRT of size α = 0.01 if X(1) = 1.1 ?

Sol. 1(λ ≤ c) = ? λ = L(θ̂o|x)

L(θ̂|x)
= ? c= ? The main task !!

What will you do if θ̂ = 0.1 ? θ̂ = 100 ?
Remark: A natural test is 1(θ̂ > b) Why ?
Step (1) MLE under Θ = (−∞,∞) :

L =

n∏

i=1

exp(−(Xi − θ)) = exp(−
n∑

i=1

Xi + nθ) ↑ in θ......

MLE = ?

L =

n∏

i=1

[exp(−(Xi − θ))1(Xi ≥ θ)]
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=exp(−
n∑

i=1

Xi + nθ)1(X(1) ≥ θ)

= exp(−nX + nθ)1(X(1) ≥ θ)

{ ↑ in θ if θ ≤ X(1)

= 0 if θ > X(1).
=> θ̂ = X(1).

Step (2) MLE under Θo = (−∞, 1]:

L =

n∏

i=1

[exp(−(Xi − θ))1(Xi ≥ θ)1(1 ≥ θ)]

= exp(−
n∑

i=1

Xi + nθ)1(X(1) ≥ θ)1(1 ≥ θ)

= exp(−nX + nθ)1(θ ≤ X(1) ∧ 1)

{ ↑ in θ if θ ≤ X(1) ∧ 1
= 0 if θ > X(1) ∧ 1.

=> θ̂o = X(1) ∧ 1.

Step (3) λ = L(θ̂o|x)

L(θ̂|x)
=

{
1 if X(1) ≤ 1
exp(−nX+n·1)1(θ̂o≤X(1)∧1)

exp(−nX+nX(1))1(θ̂≤X(1))
if X(1) > 1.

λ = 1(X(1) ≤ 1) + exp(−nX+n)

exp(−nX+nX(1))
1(X(1) > 1)

λ =

{
1 if X(1) ≤ 1
exp(n(1−X(1))) if X(1) > 1

= [exp(n(1−X(1)))]
1(X(1)>1).

φ = 1(λ ≤ c) = 1(exp(n(1−X(1))) ≤ c)1(X(1) > 1) Why??
φ = 1(X(1) ≥ c1)1(X(1) > 1)

= the natural test 1(θ̂ > b), where θ̂ = X(1) and b > 1.
Step (4) c= ? or c1= ?

Use α = supθ≤1 E(φ).

E(φ) = P (X(1) ≥ c1) =

{
P (X1 ≥ c1, ..., Xn ≥ c1)∫∞
c1

n!
1!(n−1)! (fX(x))1(1− F (x))n−1dx = (P (X1 ≥ c1))

n

Note that f(x; θ) = e−(x−θ) = P (X > x), x > θ in this case !!.
E(φ) = (e−(c1−θ))n = e−nc1+nθ,
α = supθ≤1 e

−nc1+nθ = e−nc1+n = 0.01. Why ??
c1 = (−ln0.01)/n+ 1 ≈ 2.15,

(or c1 = (−ln0.01)
n + θo if Ho: θ ≤ θo).

Thus the test is φ = 1(X(1) ≥ ln100
n + 1 ≈ 2.15).

Step (5) Do not reject H0. θ is likely ≤ 1.

Midterm on March 20.
§8.3.
Two types of errors:
1. Type I error: reject correct H0, denoted by H1|H0.
2. Type II error: do not reject wrong H0, denoted by H0|H1.

Definition.
β(θ) – power function of the test defined by β(θ) = Eθ(φ).

If θ ∈ Θo then β(θ) = P (H1|H0) is the probability of type I error;
If θ ∈ Θc

o, then 1− β(θ) = Pθ(H0|H1) is the probability of type II error.
Question 1: How to find a good test ?

Ideally, P (H1|H0) = 0 and P (H0|H1) = 0, that is

β(θ) =

{
0 if θ ∈ Θo (size α = 0)
1 if θ ∈ Θc

o (power = 1).
(1)

Question 2: Is it possible ?
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Example 1. Suppose X ∼ bin(5, θ), H0: θ = 0.5 v.s. H1: θ = 0.4.
φ = 1(X ∈ RR).

β(θ) = E(1(X ∈ RR)) = P (X ∈ RR) =
∑

x∈RR

(
5

x

)

θx(1− θ)5−x

β(0.5) = 0 ⇒ RR = ∅. (Why ?)
β(θ) = 1 with θ ∈ {0.4} ⇒ RR = {0, 1, 2, 3, 4, 5} = X , the sample space.

Answer to Q2: It is impossible that (1) holds.

Recall βφ(θ) = Eθ(φ), size of φ = supθ∈Θo
βφ(θ).

Definition. A test is a level α test if its size ≤ α.
A test φ is unbiased if βφ(θ1) ≥ βφ(θo) ∀ (θ1, θo) ∈ Θc

o ×Θo.
A test φ is uniformly most powerful (UMP) within a class C if

φ ∈ C and E(φ) ≥ E(φ∗) ∀ θ ∈ Θc
o and ∀ φ∗ ∈ C.

Alternatives for optimal tests:
(1) the UMP level α test,
(2) the UMP unbiased test.

Why not the UMP size α test ?

Example 1 (continued). X1 ∼ bin(5, θ). H0: θ = 0.5, H1: θ = 0.4. Ideally, size of φ is α for the optimal test φ. Let
α = 0.05, is there a size α LRT ?

Sol. The LRT is of the form φ = 1(λ ≤ a) or 1(θ̂ ≤ c) Why ?
or φ = 1(X1 ≤ c). Why?

(1) Intuition based on θ̂;
(2) Direct derivation from 1(λ ≤ c).

λ = f(X1; θ̂o)/f(X1; θ̂) = f(X1; 0.5)/f(X1; θ̂) Why ?
Θ0 = ? =0.5 ? ={0.5} ? Θ= ?

x=dbinom(0:5,5,0.5)

[1] 0.031 0.156 0.312 0.312 0.156 0.031

y=dbinom(0:5,5,0.4)

[1] 0.078 0.259 0.346 0.230 0.077 0.010




X : 0 1 2 3 4 5
θ̂ : 0.4 0.4 0.4 0.5 0.5 0.5
λ : ? ? 312

346 1 1 1





α = E(φ) = P (X1 ≤ c).
c = −0.1 0 1 2 3 4 5 6
α = 0 1

32
6
32 larger

≈ 0 0.031 0.187 0.500 0.812 0.969 1 1
Answer: No size 0.05 LRT.

Definition. A test of form φ = 1(X ∈ RR) is called a non-randomized test.
A randomized test for testing Ho v.s. H1 is

a function φ from the sample space X to [0, 1].
φ = φ(X) is the probability of rejecting H0 for observing X.

φ(x) = 0, reject H0 w.p.0 if x is observed.
φ(x) = 1, reject H0 w.p.1 if x is observed.

φ(x) = 1/2, reject H0 w.p.1/2, if x is observed; e.g.,
flip a coin, reject H0 if the head faces up.

Theorem 1. (Neymann-Pearson Lemma). Consider testing H0: θ = θo v.s. H1: θ = θ1, based on X ∼ f(x; θ),
θ ∈ Θ = {θo, θ1}.
Let φ be a test such that for some k ≥ 0,

φ(x) =

{
1 if f(x; θ1) > kf(x; θo)
0 if f(x; θ1) < kf(x; θo)

(Why not f(x:θ1)
f(x:θo)

?) (2)
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and
Eθo(φ(X)) = α. (3)

Then
a. (Sufficiency) Each level α test φ∗ satisfying Eq. (2) and (3) is also a UMP level α test.
b. (Necessity) If ∃ φ satisfying Eq. (2) and (3) with k > 0, then each UMP level α test φ∗ satisfying Eq. (3) and

also satisfies Eq. (2) except on a set A satisfying Pθ(X ∈ A) = 0 ∀ θ (P (φ∗(X) = φ(X)) = 1 ∀ θ).

LRT φ = 1( f(x;θ̂0)

f(x;θ̂)
≤ c).

A test of form φ = 1(X ∈ RR) is called a non-randomized test. φ = 1 => H1, φ = 0 => H0.

A randomized test φ = φ(X) is the probability of rejecting H0 for observing X.
φ(x) = 0, reject H0 w.p.0 if x is observed.
φ(x) = 1, reject H0 w.p.1 if x is observed.

φ(x) = 1/2, reject H0 w.p.1/2, if x is observed; e.g.,
flip a coin, reject H0 if the head faces up.

Neymann-Pearson Lemma. H0: θ = θo v.s. H1: θ = θ1,

φ(x) =

{
1 if f(x; θ1) > kf(x; θo)
0 if f(x; θ1) < kf(x; θo)

(Why not f(x:θ1)
f(x:θo)

?) (2)

and
Eθo(φ(X)) = α. (3)

“iff” φ is a UMP level α test.
Example 1 (continued). X1 ∼ bin(5, θ). H0: θ = 0.5, H1: θ = 0.4. Ideally, size of φ is α for the optimal test φ.
Let α = 0.05, is there a size α LRT ?

α = E(φ) = P (X1 ≤ c).
c = −0.1 0 1 2 3 4 5 6
α = 0 1

32
6
32 larger

≈ 0 0.031 0.187 0.500 0.812 0.969 1 1
Answer: No size 0.05 LRT.

Alternative ? φo =

{
1 if X < 1
α− 1

32

5/32 if X = 1

0 if X > 1.

if θ = 0.5 (under Θo), E(φo) = P (X = 0) +
α− 1

32

5/32 P (X = 1) = α.

Notice that φ = 1(λ < a) is a LRT, where a = f(1;θ̂o)

f(1;θ̂)
. We often write LRT φ = 1(λ ≤ c), c = ?

Is φo a LRT ?

φo = 1(λ < a) +
α− 1

32

5/32 1(λ = a).

Example 1 (continued). Show that φ =

{
1 if X < 1
α− 1

32

5/32 if X = 1

0 if X > 1

is a UMP level α test for testing H0: p = 0.5 against

H1: p < 0.5.
Sol. Let θo = 0.5, θ1 = p, q = 1− p and

r = f(x; θ1)/f(x; θo) =

(
5
x

)
pxq5−x

(
5
x

)
( 12 )

5
= (2p)x(2q)5−x = (p/q)x(2q)5

r = (
p

q
)x(2q)5 for all x ?

∀ p < 1/2, we have p/q < 1, (p/q)x(2q)5 ↓ in x, then
r > k iff x < c for some c;
r < k iff x > c.

That is, φ satisfies Eq. (2) and (3). Thus φ is the UMP level α test for testing
H0: p = 0.5 v.s. H1: p = p1 (< 1/2).
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Since this is valid for all p1, provided p1 < 0.5, and E(φ) = α at θ = 0.5,
φ is the UMP level α test for testing H0: p = 0.5 v.s. H1: p < 1/2.

Proof of NPL: Note that
∫

x∈A
g(x)dF (x) =

∫

x∈A
g(x)f(x)dµ(x)

=







∑

x∈A g(x)f(x) in discrete case
∫

x∈A
g(x)f(x)dx in continuous case

∑

x∈A∩D g(x)f(x) +
∫

x∈A∩Dc g(x)f(x)dx in mixed case
if the d.f. f exists, where D is the set of discrete points of X.

WLOG, we can assume that X is continuous.

Sufficiency. Suppose that φ satisfies (2) and (3),
and φ∗ is a level α test. Let

A+ = {x : f(x; θ1) > kf(x; θo)}; On A+, φ(x) = 1 ≥ φ∗(x);
A− = {x : f(x; θ1) < kf(x; θo)}; On A−, φ(x) = 0 ≤ φ∗(x);
Ao = {x : f(x; θ1) = kf(x; θo)}; On Ao, f(x; θ1)− kf(x; θo) = 0.

∫

(φ(x)− φ∗(x))(f(x; θ1)− kf(x; θo))dx (4)

=(

∫

A+

+

∫

A−

+

∫

Ao

)(φ(x)− φ∗(x))(f(x; θ1)− kf(x; θo))dx

=(

∫

A∗
+

+

∫

A∗
−

+

∫

Ao

)(φ(x)− φ∗(x))(f(x; θ1)− kf(x; θo))dx Why ??

(A∗
+ = {x : f(x; θ1) > kf(x; θo), φ(x) = 1 > φ∗(x)}

and A∗
− = {x : f(x; θ1) < kf(x; θo), φ(x) = 0 < φ∗(x)})

≥
∫

A∗
+

(+)(+)dx+

∫

A∗
−

(−)(−)dx+

∫

Ao

(−1)
︸︷︷︸

Why?

(0)dx (5)

≥0,

Inequality (5) yields βφ(θ1)− βφ∗(θ1)− k(βφ(θo)− βφ∗(θo)) ≥ 0. Why ?

⇒ βφ(θ1)− βφ∗(θ1) ≥ k(βφ(θo)
︸ ︷︷ ︸

=α ?

−βφ∗(θo)
︸ ︷︷ ︸

≤α ?

) ≥ 0, (6)

as φ∗ is an arbitrary level α test, φ satisfies Eq. (3).
⇒ βφ(θ1) ≥ βφ∗(θ1).

Necessary. If ∃ φ satisfying (2) and (3) with k > 0, and φ∗ is a UMP level α test, then Expression (4) and
inequality (6) yield

0 = βφ(θ1)− βφ∗(θ1)
︸ ︷︷ ︸

as both are UMP

≥ k(βφ(θo)
︸ ︷︷ ︸

=α

−βφ∗(θo)
︸ ︷︷ ︸

≤α

) ≥ 0.

⇒ 0 = βφ(θ1)− βφ∗(θ1) = k(βφ(θo)− βφ∗(θo)) = 0.
⇒ βφ(θo)− βφ∗(θo) = 0, as k > 0.
⇒ βφ∗(θo) = βφ(θo) = α.
Thus φ∗ satisfies Eq. (3).
Moreover, Inequality (5) yields 0 ≥ 0, with “>” iff

either (1)
∫

A∗
+
∪A∗

−
dx > 0 and k > 0 or (2)

∫

A∗
+
dx > 0 and k = 0.

Since k > 0, in order to avoid the contradiction 0 > 0,
it must be the case that

∫

A∗
+
∪A∗

−
dx = 0.

Thus φ∗ satisfies (2), except on A = A∗
+ ∪A∗

− if k > 0.

Remark. If one deletes the condition “with k > 0” in the necessary condition of the NPL, then a UMP level α

test φ∗ must satisfy Eq. (2) w.p.1, but may not satisfies Eq. (3). Then its size
{≤ α ?
> α ?
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Remark. Given α, the LRT φ = 1(L(X;θ̂o)

L(X;θ̂)
≤ c) (a non-randomized test) may not attain the size α, while NP

Lemma yields a size α test (Eq. (3)) φ(X) =







1 if f(X; θ1)/f(X; θo) > k
? if f(X; θ1)/f(X; θo) = k
0 if f(X; θ1)/f(X; θo) < k

(a randomized test Eq. (2)).

In Example 1, we extend the UMP level α test for simple hypotheses to composite hypotheses, that is, Θ contains
more than 2 elements. But it is not convenient to check each time. We need a general tool.
Definition. A family of d.f. {g(t; θ) : θ ∈ Θ} for a univariate random variable T with Θ ⊂ R1 has a monotone

likelihood ratio (MLR) if either of the following statements is true (defining 1
0

def
=∞):

(1) ∀ θ2 > θ1,
g(t;θ2)
g(t;θ1)

is ↑ in t on {t : g(t; θ1) > 0 or g(t; θ2) > 0}.
(2) ∀ θ2 > θ1,

g(t;θ2)
g(t;θ1)

is ↓ in t on {t : g(t; θ1) > 0 or g(t; θ2) > 0}.
Theorem 2. (Karlin-Rubin). Consider testing H0: θ ≤ θo v.s. H1: θ > θo.
Suppose that (1) T is a sufficient statistic for θ and
(2) the family of d.f. of T has ↑ MLR.
Then for each c, φ = 1(T > c) is a UMP level α test with α = Pθo(T > c).
Corollary. Consider testing H0: θ ≥ θo v.s. H1: θ < θo.
Suppose that (1) T is a sufficient statistic for θ and
(2) the family of d.f. of T has ↑ MLR.
Then for each c, φ = 1(T < c) is a UMP level α test with α = Pθo(T < c).
Proof of Corollary. Let W = −T and γ = −θ. Then it becomes
H∗

0 : γ ≤ γ0 v.s. H∗
1 : γ > γ0.

The family of the df of W has ↑ MLR in γ.
Thus ∀ w, φ = 1(W > w) is a UMP level α test with α = Pγ0

(W > w),
i.e., ∀ c = −w, φ = 1(T < c) is a UMP level α test with α = Pθo(T < c).
Example 2. Let X1, ..., Xn be a random sample from N(µ, σ2), where σ is known. H0: µ ≤ µ0 v.s. H1: µ > µ0.
A UMP level 0.05 test ?
Sol. X is a sufficient statistic for µ (= θ) and
T = X ∼ N(µ, σ2/n) with d.f. g.
g(t;θ2)
g(t;θ1)

= exp(− 1
2
(t−µ2)

2

σ2/n + 1
2
(t−µ1)

2

σ2/n ) = exp( 12 (µ2 − µ1)
(2t−(µ2+µ1))

σ2/n )) ↑ in t.

Thus the family of d.f. of T has ↑ MLR.
φ = 1(T > c) is a UMP level α test,

where α = Pθo(T > c) = 1− Φ( c−µ0

σ/
√
n
) = 1− Φ(1.645),

that is, c = µ0 + 1.645σ/
√
n.

Remark. Let X ∼ N(µ, 0.01), Ha: µ = 1, Hb: µ = −1.
The UMP level 0.05 test for testing

{
H0 = Ha against Hb is 1(X < 1− 0.1 · 1.65) (= 1(X < 0.835)).
H0 = Hb against Ha is 1(X > −1 + 0.1 · 1.65) (= 1(X > −0.835)).

Remark. In general, given a parameter θ, let θ̂ be its MLE, then for testing H0: θ = θo v.s. H1: θ > θo,
φ = 1(θ̂ > c) is a reasonable test for c given.
Question: Are they UMP level α test ?
Answer: Not necessary !
Results: Let µ be the mean of a distribution.
For testing H0: µ = µo, v.s. H1: µ > µo,
φ = 1(X > c) is UMP level α test,

if X ∼ N(µ, 1);
if X ∼ Poisson(µ);
if nX ∼ bin(n, µ);
if X ∼ f(x) = 1

µe
−x/µ, x > 0;

etc, as they belong to the families that have MLR.
For testing H0: µ = µo, v.s. H1: µ < µo,

φ = 1(X < c) is UMP level α test if ... ?
Remark. Let X1, ..., Xn be i.i.d from N(µ, σ2). for test H0: µ = µo, v.s. H1: µ > µo.

(1) Is φ = 1(X > c) a UMP level α test if σ is known ?
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(2) Is φ = 1(X > c) a UMP level α test if σ is unknown ?

(3) Is φ∗ = 1(T > c) a UMP level α test if σ is unknown and T = X−µo

S/
√
n

?

Method: (a) check the size of φ, (b) try KR Th or NP Lemma.
Ans to (1): φ = 1(X > c) is UMP level α test if σ is known, and if c = µ0 + zασ/

√
n.

Reason: fX(t;µ) has MLR and X−µ0

σ/
√
n
∼ N(0, 1).

Ans to (2): φ = 1(X > c) is not UMP level α test if σ is unknown.
Reason: (a) Given finite c, size of φ ?
size = Eµo

(φ) ?
or = supθ∈Θo

E(φ) ? Θo = ?

size = supθ∈Θo
P (X−µo

σ/
√
n
> c−µo

σ/
√
n
)= ? Why φ is not UMP level α test ?

(3) Question (continued) Let T = X−µo

S/
√
n

and c = tn−1,α.

Is φ∗ = 1(T > c) is a UMP level α test ?
Answer: No.
Reason : (a) Given finite c = tn−1,α, size of φ∗ ?
(a) size of φ∗= Eµo

(φ∗) = α ? or size of φ∗=supσ>0Eµo,σ(φ
∗) = α ?

α = supθ∈Θo
E(φ∗), (where θ = (µ, σ), Θo = {(µo, σ) : σ > 0}) So the reason is not due to the size.

(b) Why is it not UMP ? Try KR theorem: The sufficient statistic is (X,S2) if θ = (µ, σ2) unknown.

T = X−µo

S/
√
n

is a statistic, but it is not sufficient.

T 6∼ tn−1 if µ 6= µo

Y = X−µ
S/

√
n
∼ tn−1, but it is not a statistic if µ 6= µo.

So Karlin-Rubin Theorem does not work. Try NPL.
By NP Lemma, if H0: θ = θ0 v.s. H1: θ = θ1,

where θ0 = (µ0, σ0) and θ1 = (µ1, σ1), then a UMP test satisfies
Eθo(φ) = α and φ = 1(fX(x; θ1) > kfX(x; θ0)) + 1(fX(x; θ1) = kfX(x; θ0)φ ???
= 1(fX,S2(y, t; θ1) > kfX,S2(y, t; θ0)) ???

= 1(
f
X,S2 (u,v;θ1)

f
X,S2 (u,v;θ0)

> k)

If φ = 1(T > c) is the UMP, it would lead to a contradiction, by selecting different θ.
Remark. X ⊥ S2 and fX,S2 = fXfS2 .

X ∼ ? (n− 1)S2/σ2 ∼ ?

S2 = σ2

n−1χ
2
n−1 with

fS2(t;σ) ∝ 1

σ2/(n− 1)
(

t

σ2/(n− 1)
)

n−1
2 −1 exp(−(

t

σ2/(n− 1)
)/2), t > 0.

fX(y;µ, σ) ∝ 1
√

2πσ2/n
exp(−n

2
(
y − µ

σ
)2)

r =
fX,S2(y, t;µ1, σ1)

fX,S2(y, t;µ0, σ0)

=
fX(y;µ1, σ)

fX(y;µ0, σ)
if σ1 = σ0 = σ.

=
exp(−n

2 (
y−µ1

σ )2)

exp(−n
2 (

y−µ0

σ )2)

= exp(
n

2σ2
(2y − (µ1 − µ0))(µ1 − µ0))

= exp(
(y − µ1−µ0

2 )(µ1 − µ0)

σ/
√
n

))

If σ = 1, then φ = 1(r > k) = 1(X > c) = 1(X > µ0 + zα ∗ 1/√n) is a UMP level α test.
If σ = 2, then φ = 1(r > k) = 1(X > c) = 1(X > µ0 + zα ∗ 2/√n) is a UMP level α test.

37



By letting σ = 1 and σ = 2, the NP lemma leads to two different UMP level α tests, with RR1 and RR2 satisfying
P ((RR1 \RR2) ∪ (RR2 \RR1)) > 0. Thus there exists no UMP level α test for H0: µ = µ0, v.s. H1: µ > µ0 if σ is
unknown. φ∗ is not UMP level α test.
Example 3. If X ∼ N(µ, 1), then 6 ∃ the UMP level α test for testing
H0: µ = 0, v.s. H1: µ 6= 0.

What is the difference between these two set-ups ?
Proof. Suppose that such UMP level α test exists and is φ.
Then for testing H∗

0 : µ = 0 v.s. H∗
1 : µ = 1.

φ = 1(X > zα) w.p.1 by NPL or Example 2.
For testing H∗

0 : µ = 0 v.s. H∗
1 : µ = −1

φ = 1(X < −zα) w.p.1 by NPL or Example 2.
Since {X < −zα} ∩ {X > zα} = ∅,

0 = P (1(X > zα) = 1(X < −zα)) = 1 by NPL.
The contradiction indicates that the UMP level α does not exist.
Example 3 (continued). If X ∼ N(µ, 1), H0: µ = 0, v.s. H1: µ 6= 0. Show that the LRT is an unbiased test.

Q: What should the LRT 1(λ ≤ c) look like ?
1(|µ̂| ≥ a) (see Example 1 in §8.2).

Proof. ⊢: the LRT test φ = 1(|X| > zα/2), where Φ(zα/2) = 1− α/2.
Reason: µ̂ = X, µ̂o = 0,

λ = exp(−1

2
(X − 0)2)/ exp(−1

2
(X −X)2) = exp(−1

2
(X − 0)2) ≤ c

<=> |X| ≥ zα/2

Recall that φ is unbiased if βφ(θ1) ≥ βφ(θo) ∀ θ1 ∈ Θc
o and θo ∈ Θo. α = supθ∈Θo

Eθ(φ).
⊢: φ is an unbiased test.
Reason: It suffices to show that {

∂
∂µβφ(µ) > 0 if µ > 0
∂
∂µβφ(µ) < 0 if µ < 0.

Why?? (1)

βφ(µ) =Pµ(|X| > zα/2)

=1− Pµ(−zα/2 ≤ X ≤ zα/2)

=1− Pµ(−zα/2 − µ ≤ X − µ ≤ zα/2 − µ)

=1−
∫ zα/2−µ

−zα/2−µ

1√
2π

e−
1
2x

2

dx

∂

∂µ
βφ(µ) =

1√
2π

[exp(−1

2
(zα/2 − µ)2)− exp(−1

2
(−zα/2 − µ)2)]

Assume µ > 0. Then
Eq. (1) <=> 1√

2π
[exp(− 1

2 (zα/2−µ)2)−exp(− 1
2 (−zα/2−µ)2)] > 0; <=> exp(− 1

2 (zα/2−µ)2) > exp(− 1
2 (−zα/2−µ)2);

<=> − 1
2 (zα/2 − µ)2 > − 1

2 (−zα/2 − µ)2; <=> (zα/2 − µ)2 < (−zα/2 − µ)2;
<=> (zα/2 − µ)2 − (−zα/2 − µ)2 < 0;
<=> −2µ(2zα/2) < 0 (which always holds).

Thus if µ > 0, then ∂
∂µβφ(µ) > 0.

The proof of Eq.(1) for µ < 0 is similar and is skipped.
As a consequence, φ is unbiased.

Remark. The LRT test in Example 3 is actually a UMP unbiased test. The proof is given in Lehmann’s textbook
“Testing Statistical Hypotheses”.
Theorem 2. (Karlin-Rubin). Consider testing H0: θ ≤ θo v.s. H1: θ > θo.
Suppose that (1) T is a sufficient statistic for θ and
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(2) the family of d.f. of T has ↑ MLR.
Then for each c, φ = 1(T > c) is a UMP level α test with α = Pθo(T > c).
Proof of KR theorem. Since T is sufficient for θ, fX(x; θ) = g(T (x); θ)h(x). Let H∗

0 : θ = θ1 v.s. H∗
1 : θ = θ2,

where θ1 ≤ θo < θ2. By the NPL, the UMP level α∗ test satisfies

φ =







1 if
fX(x;θ2)

fX(x;θ1)
> k

0 if
fX(x;θ2)

fX(x;θ1)
< k

with α∗ = Eθ1(φ).

Claim: fT (t; θ) = g(t; θ)c(t), where c is a function of t.
Reason: 3 cases: (1) Discrete. (2) Continuous. (3) mixed distribution.

fT (t; θ) =

∫

x: T (x)=t

fX(x; θ)dµ(x)

(=

∫

· · ·
∫

T (x)=t
︸ ︷︷ ︸

n−1

fX(x; θ)|J |dxi2 · · · dxin +
∑

x∈D: T (x)=t

fX(x; θ)

t1 = T (x), t2 = xi2 , ..., tn = xin , J is Jacobian)

=

∫

x: T (x)=t

g(T (x); θ)h(x)dµ(x)

=g(t; θ)

∫

x: T (x)=t

h(x)dµ(x)

=g(t; θ)c(t)

fX(x; θ2)

fX(x; θ1)
=

g(T (x); θ2)h(x)

g(T (x); θ1)h(x)
=

g(t; θ2)c(t)

g(t; θ1)c(t)
=

fT (t; θ2)

fT (t; θ1)
, t = T (x),

φ =







1 if
fX(x;θ2)

fX(x;θ1)
> k

0 if
fX(x;θ2)

fX(x;θ1)
< k

=

{

1 if fT (t;θ2)
fT (t;θ1)

> k

0 if fT (t;θ2)
fT (t;θ1)

< k
=

{
1 if t > c
0 if t < c

as fT (t;θ2)
fT (t;θ1)

↑ in t. =>

φ = 1(T > c) is a level α∗ UMP test for testing H∗
0 vs H∗

1 , where α∗ = Eθ1(φ).
In fact, it is true for each H∗∗

0 : θ = θ1 v.s. H∗∗
1 , θ > θ1.

⊢: βφ(θ) ≥ βφ(θ1) ∀ θ > θ1.
Reason: Verify that (1) φ∗ = α∗ is a level α∗ test; (2) Eθ(φ

∗) = α∗ ∀ θ;
(3) βφ(θ) ≥ βφ∗(θ) = α∗ = βφ(θ1) ∀ θ > θ1 Why ??

(NPL). Thus βφ(θ) ↑ in θ. It follows that βφ(θ1) ≤ βφ(θo) as θ1 ≤ θo < θ2, and the size of φ is α = supθ≤θo βφ(θ) =
βφ(θo).

Chapter 9. Interval Estimation
There are 3 statistical inferences:

(1) point estimation θ = ? MLE, MME, Bayes estimator.
(2) test θ = θo ? LRT, NPL.
(3) interval estimation: a likely interval [L,U ] for θ ?

Undergradaute statistics: 95% Confidence interval for µ is
X ± 1.96σ/

√
n or

X ± tn−1,0.025S/
√
n

Definition. Let X ∼ f(x; θ), L(X) and U(X) be two statistics such that L(X) ≤ U(X). Then the interval
[L(X), U(X)] or [L,U ] is called an interval estimator (IE) of θ;
Pθ(θ ∈ [L,U ]) is called the coverage probability of [L,U ];

1− α
def
= infθ Pθ(θ ∈ [L,U ]) is called the confidence coefficient of [L,U ];
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[L,U ] is also called a 1− α confidence interval (CI) of θ.

Example 1. If X1, ..., Xn are i.i.d.∼ N(µ, σ2) with σ known, a CI of µ is [X − 1.96σ/
√
n,X + 1.96σ/

√
n] or

X ± 1.96σ/
√
n. Its coverage probability ? Its confidence coefficient ?

Sol. Some particular quantiles values zα of N(0, 1).
> a=c(0.05,0.025,0.01,0.005)
> round(qnorm(1-a),2)
[1] 1.64 1.96 2.33 2.58
> round(qnorm(1-a),3)
[1] 1.645 1.960 2.326 2.576
Coverage probability = Pµ(µ ∈ [X − 1.96σ/

√
n,X + 1.96σ/

√
n ]) = Pµ(X − 1.96σ/

√
n ≤ µ ≤ X + 1.96σ/

√
n) =

Pµ(−1.96σ/
√
n ≤ µ−X ≤ 1.96σ/

√
n) = Pµ(−1.96σ/

√
n ≤ X − µ ≤ 1.96σ/

√
n, )

= Pµ(−1.96 ≤ X−µ
σ/

√
n
≤ 1.96) ≈ 0.95

Confidence coefficient = infµ Pµ(µ ∈ [X − 1.96σ/
√
n,X + 1.96σ/

√
n ]) ≈ infµ 0.95 = 0.95.

Example 2. If X1, ..., Xn are i.i.d.∼ N(µ, σ2), where (µ, σ) is unknown. A 95% CI of µ is
[X − tn−1,0.025S/

√
n,X + tn−1,0.025S/

√
n] or X ± tn−1,0.025S/

√
n.

Coverage probability and Confidence coefficient ?

Solution: In class exercise. Hint:
X ± tn−1,0.025

S√
n
now. X ± 1.96 σ√

n
in Example 1.

A simulation example in R:

> x=rnorm(20)

> round(x,2)

[1] -1.39 -1.55 1.00 0.29 -0.17 -1.50 -1.65 0.33 -0.07 2.24 -0.62 0.32

[13] -0.54 -0.11 -0.17 -0.23 -0.21 1.47 0.77 -0.26

> t.test(x)

t = -0.4541, df = 19, p-value = 0.6549

95 percent confidence interval:

-0.5708114 0.3672875

mean of x -0.1017619

Example 3. Let X1, ..., Xn be i.i.d. from U(0, θ). Then 2 IEs of θ are (a) [X(n), 2X(n)], and (b) [X(n), X(n)+1/n].
What are their coverage probabilities and confidence coefficients ?

Sol. Recall that the cdf of X(n) is FX(n)
(t) = P (X(n) ≤ t) = (FX(t))n = ?

(a) Pθ(θ ∈ [X(n), 2X(n)]) (= coverage prob.)
= Pθ(X(n) ≤ θ ≤ 2X(n))
= Pθ(θ/2 ≤ X(n) ≤ θ)
= Pθ(X(n) ≤ θ)− Pθ(X(n) < θ/2) (F (b)− F (a−))

= (θ/θ)n − ( θ/2θ )n = 1− (1/2)n.

Coverage probability = Pθ(θ ∈ [X(n), 2X(n)]) = 1− (1/2)n (independent of θ).

Confidence coefficient = infθ{1− (1/2)n} = 1− (1/2)n.

(b) Pθ(θ ∈ [X(n), X(n) + 1/n]) (= coverage prob.)
= Pθ(X(n) ≤ θ ≤ X(n) + 1/n)
= Pθ(θ − 1/n ≤ X(n) ≤ θ)

=

{

(θ/θ)n − ( θ−1/n
θ )n if θ > 1/n

(θ/θ)n − 0 otherwise
why ?

=

{

1− (1− 1
nθ )

n if θ > 1/n
1 otherwise
=Coverage probability depending on θ)

Confidence coefficient = infθ≥1/n{1− (1− 1
nθ )

n} = 0

Question: How to construct a CI ?

Answer: Two methods:

(1) Acceptance interval of LRT,

(2) Pivotal Method.

1. Acceptance interval of LRT.
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Let RR(θo) be the rejection region for testing
H0: θ = θo vs. H1: θ 6= θo.

Then a CI of θ is Θ \RR(θ). (S1)

Example 2. Suppose that X1, ..., X100 are i.i.d.∼ N(µ, σ2) with σ unknown. The sample results in X = 2 and
S2 = 1. Construct a 95% CI for µ.
Sol. Set θ = µ. Then H0: θ = θo vs. H1: θ 6= θo.

The LRT is φ = 1(|X−µ0

S/
√
n
| ≥ tn−1,α/2).

The RR is {(X1, ..., Xn) : |X−µ0

S/
√
n
| ≥ tn−1,α/2}.

The acceptance region is {(X1, ..., Xn) : |X−µ0

S/
√
n
| < tn−1,α/2}.

Replacing µ0 by µ results in the (1− α) CI of µ:

{µ : |µ−X

S/
√
n
| ≤ tn−1,α/2} (= R1 \ {µ : |X − µ

S/
√
n
| > tn−1,α/2}) (see (S1))Any problem ?

Simplify it as in Ex 2: X − tn−1,α/2S/
√
n ≤ µ ≤ X + tn−1,α/2S/

√
n.

[2− 0.196, 2 + 0.196] or 2± 0.196.
2. Pivotal method. Let X ∼ f(x; θ) and T = h(X, θ) be a pivotal rv,

i.e, its density fT or cdf FT does not depend on θ.
Derive a CI from P (a ≤ h(X, θ) ≤ b) = 1− α.
Example 2 (continued). Since X ∼ N(µ, σ2), Derive the CI by the pivotal method.

Sol. Notice T = X−µ
S/

√
n

= h(X1, ..., Xn, µ, σ) is a pivotal r.v., with tn−1 distribution and fT does not depend on

(µ, σ).
P (a ≤ T ≤ b) = 1− α = P (−tn−1,α/2 ≤ T ≤ tn−1,α/2).

−tn−1,α/2 ≤ X−µ
S/

√
n
≤ tn−1,α/2.

X − tn−1,α/2S/
√
n ≤ µ ≤ X + tn−1,α/2S/

√
n.

Example 3. Let X1, ..., X9 be i.i.d. ∼ U(0, θ) and X(9) = 3. Construct a 95% CI for θ.
Sol. Recall that X(n) ∼ FX(n)

(x) = (x/θ)n1(x ∈ (0, θ))+1(x ≥ θ). Let T = X(n)/θ. Then FT (t) = tn1(t ∈ (0, 1))+
1(t ≥ 1), T is pivotal.

P (a ≤ T ≤ b) = 0.95 yields a ≤ X(n)

θ ≤ b or

X(n)

b
≤ θ ≤ X(n)

a
.

Q: (a, b) = ??
FT (b)− FT (a) = bn − an = 0.975− 0.025.
an = 0.025 yields a = (0.025)1/n, and
bn = 0.975 yields b = (0.975)1/n.

The 95% CI for θ:
X(n)

(0.975)1/n
≤ θ ≤ X(n)

(0.025)1/n

or [ 3
(0.975)1/9

, 3
(0.025)1/9

] (= [3.01, 4.52]).

Question: Why choose F (b)− F (a) = bn − an = 0.975− 0.025 ?
Answer: Symmetry,

but it is even better to choose F (b)− F (a) = bn − an = 1− 0.05.
It results [3, 3/0.051/9] or [3, 4.18], which is the shortest.

This is due to the following results: [a, b] is the shortest 1 − α CI if (1) the density fT (t) (= ntn−11(t ∈ [0, 1]) is

unimodal, (2) fT (a) = fT (b) and (3)
∫ b

a
fT (t)dt = 1− α.

Here fT can be defined arbitrary at t = 0 or 1, since it is on the boundary.
Remark.
1. In the statement Pθ(θ ∈ [L,U ]), θ is not a random variable,

but L and U are.
Pθ(θ ∈ [L,U ]) = Pθ(L ≤ θ and U ≥ θ).
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2. Under the same model such as in Example 1 with σ unknown,
the CI X ± tn−1,α/2S/

√
n changes each time and

even its length U − L (= 2tn−1,α/2S/
√
n) may change each time Why ?

3. For each parameter θ,
(−∞,∞) is always a 100% CI for θ, but it is useless.

[θ̂, θ̂] is often a 0% CI for θ,
an interval that it is unlikely that θ is covered inside.

4. For the same confidence level and the same sample,
we prefer a CI that is shorter,
as it provides more accurate information about θ.

5. If g(θ) is a monotone function of θ e.g., F (t; θ), then the confidence interval of g(θ) can be derived directly or
by the CI [L,U ] of θ, say [g(L), g(U)] or [g(U), g(L)] why ? whenever it is appropriate.

Example 4: Suppose that S(x) = 1− FX(x) = e−x/θ, x > 0. X = 2 is observed. Derive a 95% CI for θ and S(1).
Sol. Pivotal method: Find T = h(X, θ) such that FT does not depend on θ. Then derive a CI from P (a ≤ T ≤ b).
Let T = X/θ, why ? then FT (t) = P (X/θ ≤ t) = P (X ≤ θt),

FT (t) = 1− e−t if t > 0.
which is a pivotal.

P (a ≤ T ≤ b) = 0.95 = e−a − e−b yields a ≤ X
θ ≤ b, or

X

b
≤ θ ≤ X

a
.

Take e−a − e−b = 1− 0.05 = 0.95, it yields (a, b) = −(ln1, ln0.05).
CI for θ: θ ≥ X/ln20 or [2/ln20,∞).

Take 0.975− 0.025 = 0.95, it yields (a, b) = −(ln0.975, ln0.025).
CI for θ: [0.27X, 39.5X] or [0.54, 79].

Take 0.95− 0 = 0.95, it yields (a, b) = (−ln0.95,∞)
CI for θ: [0, 19.5X] or [0, 39].

LRT Method. Acceptance interval of LRT.
Let RR(θo) be the rejection region for testing

H0: θ = θo vs. H1: θ 6= θo.

Then a CI of θ is Θ \RR(θ). (S1)

Consider testing
H0: θ = θo v.s. H1: θ 6= θo. Θ = (0,∞).

Under H0, the MLE θ̂o = θo;
Under Θ, the MLE θ̂ = X.

λ =
fθ̂(X; θo)

fθ̂(X; θ̂)
=

{
1 if X = θo
1
θo

e−X/θo

1

θ̂
e−X/θ̂

if X 6= θo
=

{
1 if X = θo
X
θo
e1−

X
θo if X 6= θo

lnλ = lnX − lnθo + 1−X/θo, (lnλ)
′
x = 1

x − 1
θo
. (lnλ)′′x = −1

x2 .
lnλ is concave down with maximum at X = θo.

LRT φ = 1(λ ≤ c) = 1(λ(X) ≤ c) = 1(X ≤ k1 or X ≥ k2), where
(a) λ(k1) = λ(k2) and (b) Eθo(φ) = α.

RR: X /∈ [k1, k2].
Acceptance region: k1 < X < k2, where

(a) k1

θo
e1−

k1
θo = k2

θo
e1−

k2
θo and (b) e−k1/θo − e−k2/θo = 1− α = 0.95 Why ?

<=> t1e
1−t1 = t2e

1−t2 and e−t1 − e−t2 = 0.95 (where ti = ki/θo).

<=> G(t1) = t1e
1−t1 − t2e

1−t2 = 0 where t2 = −ln[e−t1 − 0.95] (1)

<=> g(t1) = t1e
−t1 − t2e

−t2 = 0 where t2 = −ln[e−t1 − 0.95]. (2)
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Then the acceptance region k1 < X < k2 yields t1θo < X < t2θo.
Replace θo by θ: t1θ < X < t2θ.
It yields a 95% CI of θ: X

t2
< θ < X

t1
Are we done ?

There is no closed form solution for Eq. (1) or (2). Solve the equation by R:

x=(1:49)/1000 # probabilities in (0,0.05)

a=qexp(x) # t1, quantile of Exponential at x

b=-log(exp(-a)-0.95) # t2,

g=a*exp(-a)-b*exp(-b)

plot(a,g,type=”l”)

abline(h=0)

a

g

0.0 0.01 0.02 0.03 0.04

−
0.

15
−

0.
10

−
0.

05
0.

0

max(a[g<=0])

max(b[g<=0])

[1] 0.0418642

[1] 4.710531 It yields a 95% CI of θ: (2/4.75, 2/0.042), or (0.42, 47.62).

¿ ¿ max(b[g¡=0])

4 95% CI’s in this example: [0.67,∞), [0.54, 79], [0, 39] or [0.42, 47.62].
Which is better ?

Notice that the density is single-moded.
CI for S(1) = e−1/θ ?

CI for S(1) = e−1/θ: [e−1/0, e−1/39] (= [0, e−1/39]).

Announcement: The class on April 7, Friday is a seminar about Intership application. 8-9:30am

Example 4. Suppose that X ∼ bin(3, p). Compute the confidence coefficient of I = [X−1
3 ∨ 0, 1].

Sol. Formula: The confidence coefficient = infp Pp(p ∈ I). I = ?, Pp(p ∈ I)= ? infp Pp(p ∈ I)= ?

I =







[2/3, 1] if X = 3
[1/3, 1] if X = 2
[0, 1] if X ≤ 1

.

The coverage probability Pp(p ∈ I) is a function of p, try p = 0, 1, 0.5.
P0(0 ∈ I) = P0(X ≤ 1) =

∑

i≤1

(
3
i

)
0i(1 − 0)3−i = 1. P1(1 ∈ I) = P1(X ∈ {0, 1, 2, 3})= ? P0.5(0.5 ∈ I) =

P0.5(X 6= 3) = 1− (0.5)3.

I =







[2/3, 1] if X = 3
[1/3, 1] if X = 2
[0, 1] if X ≤ 1

=







[ 23 , 1] if X = 3
[ 23 , 1] ∪ [ 13 ,

2
3 ) if X = 2

[ 23 , 1] ∪ [ 13 ,
2
3 ) ∪ [0, 1

3 ) if X ≤ 1.
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Pp(p ∈ I) =







(1− p)3 + 3p(1− p)2 if p ∈ [0, 1/3) Why ??
1− p3 if p ∈ [1/3, 2/3)
1 if p ∈ [2/3, 1]

The confidence coefficient is
infp Pp(p ∈ I).

dPp(p ∈ I)

dp
=







−3(1− p)2 + 3(1− p)2 − 6p(1− p) = −6p(1− p) ≤ 0 if p ∈ (0, 1/3)
−3p2 if p ∈ (1/3, 2/3)
0 if p ∈ (2/3, 1]

The confidence coefficient is
infp Pp(p ∈ I) = min{1, 1− (2/3)3, (2/3)3 + (2/3)2} ≈ min{1, 0.70, 0.74} = 0.70

Note. The CI in Example 4 is also called confidence bound, as it is one-sided.
Example 5. Suppose that X ∼ bin(5, p) and observed X = 3. Construct a 95% CI for p.
Sol. Two methods: (1) Inverting RR of LRT, (2) Pivotal (does not work here).

For simplicity, one may consider a (1 − α) CI of form [L, 1]. It can be obtained by inverting the acceptance
region of the LRT for testing

H0: p = po v.s. H1: p > po Why not p 6= po ? Then a non-randomized level α test is φ = 1(X > k
︸ ︷︷ ︸

RR

), where k

satisfies
Ppo

(X ≥ k) > α and Ppo
(X > k) ≤ α Why ?

Ppo
(X < k) < 1− α and Ppo

( X ≤ k
︸ ︷︷ ︸

what region?

) ≥ 1− α Why ?

<=>

k−1∑

i=0

(
5

i

)

pio(1− po)
5−i < 1− α and

k∑

i=0

(
5

i

)

pio(1− po)
5−i ≥ 1− α.

Acceptance region: {x : x ≤ k(po)}
Replacing po by p yields

C(x) = {p : x ≤ k(p)} = {p : p > k−1(x)}
(for proof, see Page 426 in the textbook), where

k−1(x) = sup{p :

x−1∑

i=0

(
5

i

)

pi(1− p)5−i ≥ 1− α}.

In particular, k−1(3) = sup{p :
∑3−1

i=0

(
5
i

)
pi(1− p)5−i ≥ 0.95}.

Solve by R:
p=(0:1000)/1000
x=3
y=pbinom(x-1,5,p)
max(p[y>=0.95]) # Why ?
# Reason: The graph of y ↓ from 1 to 0. How can tell ?
[1] 0.189

Thus if X = 3 then a 95% CI for p is (0.189, 1] (not exact solution !!)
For a given X, a 95% CI for p is (approximately)

I =







[0, 1] if X = 0
(0.01, 1] if X = 1
(0.076, 1] if X = 2
(0.189, 1] if X = 3
(0.342, 1] if X = 4
(0.549, 1] if X = 5
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The coverage probability varies in p, for instance, Pp(p ∈ I) = (1− p)5 ∈ [0.95, 1] for p ∈ [0, 0.01], but the confidence
coefficient of the IE is 0.95

A second approach: Observe a value of X, say x (= 3). If the p-value Ppo
(X ≥ x) > α, then we do not reject Ho.

Thus if Pp(X ≥ x) > α, then p belongs to the (1− α) CI.
Then the left end L = inf{p : Pp(X ≥ x) > α}, where Pp(X ≥ x) = 1− P (X ≤ x− 1).
Solve by R

x = 3
p=(0:1000)/1000
y=1-pbinom(x-1,5,p)
min(p[y>0.05])

Chapter 10. Asymptotic Evaluations
10.1. Point estimation.

Suppose Xn = (X1, ..., Xn) ∼ fX(x; θ), θ ∈ Θ.

θ̂ is an estimator of θ.
Given n, desirable (or “optimal”) properties of θ̂ are

1. E(θ̂) = θ, ∀ θ ∈ Θ (unbiasedness),
2. UMVUE,
3. Bayes estimator E(E(L(θ, θ̂(X))|X)) = infδ E(E(L(θ, δ(X))|X)),

These are finite sample properties. We shall consider large sample properties.
Recall in general, for random variables Yn and X on the sample space Ω.

Yn
.→X <=> {ω ∈ Ω : Yn(ω) → X(ω)} = Ω,

Yn
a.s.→X <=> P (Yn → X) = 1.

Yn
P→X <=> P (|Yn −X| < ǫ) → 1 ∀ ǫ > 0

Yn
D→X <=> FYn

(x) → FX(x) at each continuity point x of FX .

Definition. Let θ̂ = θ̂n = Wn(X1, ..., Xn), n = 1, 2, 3, ...
Xn = (X1, ..., Xn) ∼ fXn

(xn; θ), θ ∈ Θ.

If θ̂n
P→θ ∀ θ ∈ Θ, then we say θ̂ is a consistent estimator of θ or θ̂ is consistent.

If θ̂n
a.s.→ θ ∀ θ ∈ Θ, then we say θ̂ is a strongly consistent estimator of θ or θ̂ is strongly consistent.

θ̂n
P→θ <=> P (ω ∈ Ω : |θ̂n(ω)− θ| ≥ ǫ) → 0 ∀ ǫ > 0 <=> P (|θ̂n − θ| > ǫ) → 0 ∀ ǫ > 0 <=> P (|θ̂n − θ| < ǫ) → 1 ∀

ǫ > 0

θ̂n
a.s.→ θ <=> P (ω ∈ Ω : θ̂n(ω) → θ) = 1 <=> θ̂n

w.p.1→ θ
Remark. Consistency is the most important property of an estimator.
Reason:

Most of the time θ̂n 6= θ. P (θ̂ = θ) = ??
One can only hope that it is getting close to θ as n → ∞.
Consistency says that this is so if the sample size is large enough.

Example 1. Let X1, ..., Xn be i.i.d. from N(µ, σ2). Is µ̂ = X consistent ? Does µ̂ converges in distribution to µ ?

Sol. µ̂ = X
a.s.→E(X) = µ by the strong law of large numbers (SLLN). µ̂ is strongly consistent.

Yn → X => Yn
a.s.→X => Yn

P→X => Yn
D→X.

Thus X is consistent and converges in distribution to µ. Fµ(t) = ?
Another direct proof of consistency:

P (|X − µ| < ǫ) =P (

∣
∣
∣
∣

X − µ

σ/
√
n

∣
∣
∣
∣
<

ǫ

σ/
√
n
)

=Φ(
ǫ

σ/
√
n
)− Φ(− ǫ

σ/
√
n
)

→1− 0 = 1 ∀ ǫ > 0.

Does it prove strong consistency here ? Question:
P (|X − µ| < ǫ)

a.s.→1 ?

P (|X − µ| < ǫ)
P→1 ?
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P (|X − µ| < ǫ)
D→1 ?

X → µ ?

Review of probability theory:

Suppose Xi, X, Yn are random variables and a, b, c are constant.

Yn and Y are p−dimensional random vectors and a, b, c are constant in Rp.

1. SLLN: If X1, ..., Xn are i.i.d. from X, E(|X|) < ∞, then X
a.s.→E(X).

2. Yn
a.s.→X => Yn

P→X => Yn
D→X.

3. If Yn
a.s.→a and g is a continuous function then g(Yn)

a.s.→g(a).

4. If Yn
P→a and g is a continuous function then g(Yn)

P→g(a).

5. Continuous mapping theorem. If g(·) is a continuous function, then

Yn
a.s.→Y (?) => g(Yn)

a.s.→ g(Y).

Yn
P→Y => g(Yn)

P→g(Y).

Yn
D→a => g(Yn)

D→g(a).

6. If an is constant and an → a, then an
a.s.→a, an

P→a and an
D→a. Why ??

7. If V ar(θ̂n) → 0 and Bias(θ̂n) → 0 ∀ θ ∈ Θ,

then θ̂n is a consistent estimator of θ.

Proof. By Chebychev’s inequality, P (|X| ≥ ǫ) ≤ E(X2)/ǫ2

P (|θ̂n − θ| ≥ ǫ) ≤E((θ̂n − θ)2)/ǫ2

=
V ar(θ̂n) + (Bais(θ̂n))

2

ǫ2
→ 0, ∀ ǫ > 0.

Thus θ̂n
P→θ.

8. If θ̂n is consistent and an and bn are constant satisfying an → 1 and bn → 0, then anθ̂n + bn are consistent.

Proof. Make use of Result 6.Let Yn = (θ̂n, an, bn) and g(y, a, b) = ay + b, then Yn
P→(θ, 1, 0), g(Yn) = anθ̂n +

bn
P→g(θ, 1, 0) = 1 · θ + 0 = θ.

Theorem 1 (consistency of the MLE). Assume that the following conditions:

(A1) X1, ..., Xn are i.i.d. with f(·; θo), θo ∈ Θ;

(A2) f(·; θ) 6= f(·; θ∗) ∀ θ 6= θ∗ and θ, θ∗ ∈ Θ (identifiability);

(A3) {x : f(x; θ) > 0} does not depend on θ and ∂
∂θf(x; θ) exists;

(A4) Θ contains an open set O and θo ∈ O;

(A5) τ = τ(θ) is a continuous function of θ.

Then the MLE τ̂ of τ(θ) is consistent i.e., τ̂
P→τ(θo).

Theorem 1 explains why we like the MLE. Theorem 1 only gives a sufficient condition.
Q: (1) Examples that (A3) fails ? (2) Let X = rnorm(100). θ= ? What is the difference between θo and θ ? (3)
Let Xij ∼ N(γi + αj

︸ ︷︷ ︸

µij

, σ2) with unknown (γi, αj , σ), i, j ∈ {1, 2}. Does (A2) hold ?






µ11

µ12

µ21

µ22




 =






1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1











γ1
γ2
α1

α2




 =






0
0
0
0











1 0 1 0
0 1 1 0
1 0 0 1
0 1 0 1











γ1
α1

γ2
α2




 =






0
0
0
0











1 0 1 0
0 1 1 0
0 0 −1 1
0 0 −1 1











γ1
α1

γ2 − γ1
α2 − α1




 =






0
0
0
0






Counterexample. ......
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Example 2. Suppose that X1, ..., Xn are i.i.d. from X, with V ar(X) = σ2 < ∞.
σ̂2 = 1

n

∑

i(Xi −X)2 and S2 = 1
n−1

∑

i(Xi −X)2.

Are they consistent estimators of σ2 ?
Sol. Q: Can we apply Theorem 1 ?
1. SLLN: If X1, ..., Xn are i.i.d. from X, E(|X|) < ∞, then X

a.s.→E(X).
Notice that σ̂2 = X2 − (X)2.

X
a.s.→E(X) = µ by the SLLN;

X2a.s.→E(X2) = σ2 + µ2 by the SLLN.
g(x, y) = x− y2 is continuous.

By Results 5, g(X2, X)
a.s.→g(σ2 + µ2, µ) = σ2 + µ2 − (µ)2 = σ2.

That is, σ̂2 is strongly consistent and thus is consistent.
Notice that S2 = n

n−1 σ̂
2. Let an = n

n−1 and bn = 0, then an → 1 and bn → 0. By Result 9, S2 is consistent estimator

of σ2.
Example 3. Supposet that X ∼ bin(n, p). τ = p(1− p). Are the MLE of (p, τ) consistent ?
Sol. MLE p̂ = X/n and τ̂ = p̂(1− p̂). Can we use Theorem 1 ?
Notice that X = Y1+ · · ·+Yn, where Yi’s are i.i.d. from bin(1, p). Thus X/n = Y . It can verified that the conditions
in Theorem 1 are satisfied. Thus p̂ and τ̂ are consistent.
In particular, (A3) holds i.e. f(x; θ) = fY (y; θ) = θy(1− θ)1−y.

f(x; θ) = θy(1− θ)1−y = f(x; θ1) = θy1(1− θ1)
1−y ∀ y ∈ {0, 1}.

=> θ = θ1.
Another way: By the SLLN, p̂

a.s.→p.
Let g(p) = p(1− p). g is continuous, thus τ̂ is strongly consistent.

10.2. Efficiency.
Definition. An estimator τ̂ is asymptotically efficient for τ(θ) if

√
n(τ̂ − τ(θ))

D→N(0, v(θ)) and v(θ) =
(τ ′(θ))2

E(( ∂
∂θ lnf(X; θ))2)

. (1)

Recall Yn
D→X <=> FYn

(x) → FX(x) for each continuity point x of FX .

Yn → X => Yn
a.s.→X => Yn

P→X => Yn
D→X.

Results:
1. The central limit theorem (CLT). If X1, ..., Xn are i.i.d. from X, µ = E(X) and σ2 = V ar(X) < ∞, then

X−µ
σ/

√
n

D−→N(0, 1).

X − µ
D−→N(0, σ2/n) ??

(X − µ)
√
n

D−→N(0, σ2) ??

2. Slutsky’s Theorem. If Xn
D−→X and Yn

D−→a, then

Xn + Yn
D−→X + a, How about Xn − Yn

D−→X − a ?

YnXn
D−→aX. How about Xn/Yn

D−→X/a ?

How about Yn/Xn
D−→a/X ?

3. Delta method. Suppose that
(1) Yn(ω) and θ are p× 1 vectors;

(2)
√
n(Yn − θ)

D−→N(0,Σ), or (Σ̂Yn
)−1/2(Yn − θ)

D−→N(0, Ip×p);
(3) g(·) is a function, ▽g is continuous and ▽g(θ) 6= 0. Then

√
n(g(Yn)− g(θ))

D−→N(0, v(θ)), where v(θ) = (▽g(θ))tΣ▽ g(θ); (2)

g(Yn)− g(θ)
√

v̂/n

D−→N(0, 1), where v̂/n = (▽g(θ̂))tΣ̂Yn
▽ g(θ̂), (3)

and Σ̂ (= nΣ̂Yn
) is a consistent estimator of Σ.
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Note: A− 1
2 = Q′D− 1

2Q if A = Q′DQ. Q = ? D = ? D− 1
2 = ?

Remark. Roughly speaking, Eq. (2) means that
(1) E(g(Yn)) ≈ g(θ) if n is large enough;
(2) V (g(Yn)) ≈ (▽g(θ))tΣ▽ g(θ)/n if n is large enough
(asymptotic variance of g(Yn)).

4. Cramér-Rao Inequality (CR- Ineq.) Let X1, ..., Xn be i.i.d. from X ∼ f(x; θ) and let W (X) be a statistic.
Suppose that

(1) d
dθE(W ) =

{∫
∂
∂θW (x)f(x; θ)dx if X is continuous

∑

x
∂
∂θW (x)f(x; θ) if X is discrete;

(2) V ar(W ) < ∞.

Then V ar(W ) ≥ ( d
dθE(W ))2

E(( ∂
∂θ lnf(X; θ))2)

=
( d
dθE(W ))2

nE(( ∂
∂θ lnf(X; θ))2)

. (CRLB).

(Note: If σ2
W =CRLB then W is the UMVUE of τ(θ) = ??. Thus τ̂ is efficient = τ̂ is approximately

UMVUE.)
To prove efficiency,

use CLT or Delta method to find V ar(τ̂) and show V ar(τ̂) ≈ CRLB.

Theorem 1. Suppose that assumptions (A1) – (A5) in Theorem 1 of §10.1 hold; θ̂ is the MLE of θ;
▽τ(θ) is a continuous function of θ;

(A6) For each x ∈ X (the sample space), f ′′′(x; θ) is continuous,

and ∂3

∂θ3

∫
f(x; θ)dx =

∫
∂3

∂θ3 f(x; θ)dx;
(A7) ∀ θo ∈ Θ, ∃ c > 0 and a function M(x) such that

E(M(X)) < ∞ and

| ∂3

∂θ3 lnf(x; θ)| ≤ M(x) ∀ x ∈ X and |θ − θo| < c.

Then
√
n(τ(θ̂)− τ(θo))

D−→N(0, v(θo)) (see Eq. (1)).
Remark.

1. τ̂ is efficient if n is large enough and A1-A7 hold;
2. Roughly speaking, E(τ(θ̂)) ≈ τ(θo) if n is large enough and A1-A7 hold;

4. Roughly speaking, V (τ(θ̂)) ≈ v(θo)/n if n is large enough and A1-A7 hold;
4. If f(·; θ) belongs to an exponential family, then A1–A7 hold.

Example 1. Suppose that X ∼ bin(n, p). The odd ratio τ = p/(1− p).
(1) Is the MLE τ̂ of τ consistent and efficient ?
(2) V (τ̂) ≈ ?
Sol The MLE of p is p̂ = X/n and can be viewed as p̂ = Y , Y ∼ bin(1, p).
Reason: X = Y1 + · · ·+ Yn, where Y1, ..., Yn are i.i.d. from bin(1, p). i.e., p̂ = Y .

(1) By the SLLN, p̂
a.s.→p. Thus it is strongly consistent.

MLE of τ is τ̂ = τ(p̂) = p̂/(1− p̂) (Why ??).
Assume p 6= 1. Then τ is continuous. Thus τ̂ is strongly consistent.
bin(1, p) belongs to an exponential family, thus A1-A7 hold.
Thus τ̂ is asymptotically efficient.

(2) Two ways to approximate V (τ̂):
(I) CRLB or Fisher information formula

V (τ̂) ≈ (τ ′(θ))2/In(θ), where (In(θ) = E(( ∂
∂θ lnf(X; θ))2)),

(II) Delta method.
√
n(p̂− p)

D−→N(0, σ2) where σ2 = p(1− p) Why ?
τ ′ = (−1 + 1

1−p )
′ = 1

(1−p)2 6= 0 if p 6= 1.
√
n(τ(p̂)− τ(p))

D−→N(0, v(p)) (Why ?)

where v(p) = τ ′(p)σ2τ ′(p) = p(1−p)
(1−p)4 = p/(1− p)3

Question: Note P (τ̂ ≤ x) ≈ Φ( x−τ(p)√
p/(1−p)3n

). Can we say τ̂
D−→N(τ(p), p

n(1−p)3 )?
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Question: v̂ = ?
Question: V (τ̂) ≈ ?

Question: Can we say
√
n(τ(p̂)− τ(p))

D−→N(0, v̂) (?)

Question: Can we say
√
n τ(p̂)−τ(p)√

v̂

D−→N(0, 1) ?

Question: What happens to
√
n(τ(p̂)− τ(p)) if p = 1 ?

If p = 1, p̂= ? τ(p) = ? τ(p̂) = ?

Ans: If p = 1 then P (p̂ = 1) = P (τ(p̂) = τ(p)) = 1 and
√
n(τ(p̂)− τ(p))

D−→0.
Example 2. Suppose that X ∼ bin(n, p), p̂ = X/n and σ̂2 = p̂(1− p̂).
(1) Is σ̂2 efficient ? (2) V ar(σ̂2) = ?
Sol. (1) Question. Can we use Theorem 1 (for MLE) here ?
(2) There are two ways. First way: We first use the Delta method.
Let τ(p) = σ2 = p(1− p). Recall σ̂2 = τ̂ is strongly consistent.

τ ′ = 1− 2p 6= 0 unless p = 1/2.
√
n(τ(p̂)− τ(p))

D−→N(0, v(p)),
where v(p) = (1− 2p)2p(1− p) by the Delta method. Are we done ?
V (τ̂) = (1− 2p)2p(1− p)/n ?
V (τ̂) ≈ (1− 2p)2p(1− p)/n ?

2nd way: Compute V (τ̂). τ̂ = X/n− (X/n)2.
V (τ̂) = E(X2/n2 − 2X3/n3 +X4/n4)− (E(X/n−X2/n2))2,

where E(Xk) can be obtained by the mgf:
MX(t) = E(eXt) = (E(eY1t))n = (q + pet)n.
M ′(t) = n(q + pet)n−1pet, => E(X) = np,
M ′′(t) = n(n− 1)(q + pet)n−2(pet)2 + n(q + pet)n−1pet, => E(X2) = npq + (np)2,
M ′′′(t) = n(n − 1)(n − 2)(q + pet)n−3(pet)3 + 3n(n − 1)(q + pet)n−2(pet)2 + n(q + pet)n−1pet => E(X3) =

n(n− 1)(n− 2)p3 + 3n(n− 1)p2 + np,
M (4)t) = n(n−1)(n−2)(n−3)(q+pet)n−4(pet)4+6n(n−1)(n−2)(q+pet)n−3(pet)3+7n(n−1)(q+pet)n−2(pet)2+

n(q + pet)n−1pet

=> E(X4) = n(n− 1)(n− 2)(n− 3)p4 + 6(n(n− 1)(n− 2)p3 + 7(n(n− 1)p2 + np.
Question. What can be said if p = 1/2 ?

Ans: Yn = n
( p̂−1/2

1
2

)2 D−→χ2(1).

This is proved in homework of 501. It is also included as follows.
τ = p− p2, τ ′(1/2) = 0, τ ′′(p) = −2, τ (k)(p) = 0, k ≥ 3.

By the Taylor expansion,
τ(p̂)− τ(1/2) = τ ′(1/2)(p̂− 1/2)/1! + τ ′′(o.5)(p̂− 1/2)2/2! +

∑∞
k=3 τ

(k)(0.5)(p̂− 0.5)k/k!.
τ(p̂)− τ(1/2)) = τ ′′(0.5)(p̂− 1/2)2/2 = −(p̂− 1/2)2.

Let Yn = −4n(τ(p̂)− τ(1/2)), then Yn = n( p̂−1/2
1/2 )2.

⊢: Yn = n
( p̂−1/2

1
2

)2 D−→χ2(1).

Reason: Let Zn =
√
n p̂−1/2

1
2

D−→N(0, 1). Letting Z ∼ N(0, 1), then for t ≥ 0,

FYn
(t) = P (Yn ≤ t) = P (Z2

n ≤ t)
= P (−

√
t ≤ Zn ≤

√
t)

→ P (−
√
t ≤ Z ≤

√
t) ??

= P (Z2 ≤ t).

Thus if p = 1/2, then

(a) −4n(τ(p̂)− τ(1/2))
D−→χ2(1).

Remark. If p = 1/2, v(p) = (1 − 2p)2p(1 − p) = 0 by Th. 1, and
√
n(τ(p̂) − τ(p))

D−→N(0, v(p)) = N(0, 0) what
does it mean ?

(b)
√
n(τ(p̂)− τ(1/2))

D−→0
But it is not very useful, as it is the same as
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(c)
√
n(τ(p̂)− τ(1/2))

P−→0 or

(d) (τ(p̂)− τ(1/2))
P−→0.

In particular, we cannot approximate Fτ̂ (x) based on either (b) or (c), but we can approximate Fτ̂ (x) based on (a).
e.g. for x ∈ (0, 1/4),

Fτ̂ (x) = P (τ̂ ≤ x) = P (−4n(τ̂ − 1/4) ≥ −4n(x − 1/4)) ≈ P (χ2(1) ≥ −4n(x − 1/4)), Fτ̂ (x) = P (τ̂ ≤ x) =
P (

√
n(τ(p̂)− τ(1/2)) ≤ √

n(x− (1/4)) ≈ 1(
√
n(x− (1/4) ≥ 0) ≈ 1(x ≥ 0.25) Any contradiction ??

Theorem 1 in §10.2. Suppose that A1-A4 hold, θ̂ is the MLE of θ;
Moreover, τ(θ̂) is efficient if ▽τ(θ) is a continuous function of θ;

(A1) X1, ..., Xn are i.i.d. with f(x; θ), θ ∈ Θ;
(A2) f(·; θ) 6= f(·; θ∗) ∀ θ 6= θ∗;
(A3) {x : f(x; θ) > 0} does not depend on θ and ∂

∂θf(x; θ) exists;
(A4) Θ contains an open set O and the true parameter θo ∈ O.
(A5) τ = τ(θ) is a continuous function of θ.
(A6) For each x ∈ X (the sample space), f ′′′(x; θ) is continuous,

and ∂3

∂θ3

∫
f(x; θ)dx =

∫
∂3

∂θ3 f(x; θ)dx (or
∑

< − >
∫
);

(A7) For each θo ∈ Ω, ∃ a c > 0 and a function M(x) such that
E(M(X)) < ∞.

Counterexample if the assumptions in Theorem 1 are not valid.
Example 2 in §7.3. Let X1, ..., Xn be i.i.d. from X ∼ U(0, θ).

The MLE is θ̂ = X(n). An unbiased estimator is θ̃ = n+1
n X(n).

V (θ̃) = 1
n(n+2)θ

2

V ar(θ̂) = n
(n+1)2(n+2)θ

2.

CRLB = v(θ)/n =
( d
dθ θ)

2

nE( ∂
∂θ lnf(X;θ))2

= θ2

n >> n
(n+1)2(n+2)θ

2 = V ar(θ̂).
√
n(θ̂ − θ)

D

6−→N(0, v(θ)).

Reason that the CRLB fails:
{x : f(x; θ) > 0} = (0, θ) depends on θ. Thus A3 fails.

Remark. If n < 20, V ar(τ̂) ≈ CRLB is not valid !!
Counterexample. Let X ∼ bin(4, p), the MLE of p is again p̂ = X/4. Let p = .9, Y =

√
4(X4 − p) and

Z ∼ N(0, p(1− p)). n < 20 ?
⊢: FY 6≈ FZ .
Question: How should we prove it ?
Find a t such that

FY (t) 6≈ FZ(t).
x : 0 1 2 3 4

Y (x) = 2(x4 − 0.9) : −1.8 −1.3 −0.8 −0.3 0.2
Thus FZ(0.2) = Φ( 0.2√

0.9(1−0.9)
) = Φ(0.67) ≈ 0.75 << 1 = FY (0.2).

Remark. If X ∼ bin(n, p) with n = 100, p = 0.9 and Y =
√
n(X/n− p), then σY = 0.3,

FY (0.3) = 0.883 and FZ(0.3) = 0.841, where Z ∼ N(0, 0.09).

Q: Why efficiency of θ̂ ?
1. To find an estimator that has the smallest asymptotic variance

(asymptotic UMVUE).
2. To approximate Fθ̂.

e.g. in Example 2, for x ≥ 0 (why ?)

Fσ̂2(x) ≈







Φ( x−p(1−p)√
(1−2p)2p(1−p)/n

) if p 6= 1/2

1− Fχ2(1)(−n(x− 1/4)) if p = 1/2 and 0 < x < 1/4,
1 if p = 1/2 and x ≥ 1/4.

§10.3. Hypothesis testing. For large samples, say X1, ..., Xn (n ≥ 20),
we have three approximate large sample testing procedures:

A. Z-test:
H0 : θ = θo v.s. H1 : θ 6= θo θ > θo θ < θo

φ = 1(|Z| > zα/2) 1(Z > zα) 1(Z < −zα)
P − value ≈ 2(1− Φ(|Z|)) (1− Φ(Z)) Φ(Z)
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where Z = θ̂−θo
σ̂θ̂

and θ̂ is an estimae. Reject H0 if φ = 1 or P-value< α.

Remark 1. σ̂2
θ̂
can be obtained as follows.

1. If θ̂ = X, use CLT with V ar(X) estimated by S2/n.

2. If θ̂ = g(X), then use the delta method.

3. If θ̂ is an MLE and
assumptions (A1)–(A7) in Theorem 1 of §10.2 hold, then

σ̂2
θ̂
=

{

(nI1(θo))
−1 (CRLB), if doable

(nÎ1(θo))
−1 (empirical CRLB), otherwise

where

I1(θ) = E(( ∂
∂θ lnf(X; θ))2) = −E( ∂2

∂θ2 lnf(X; θ)),

Î1(θ) =
1
n

∑n
i=1(

∂
∂θ lnf(Xi; θ))

2 = − 1
n

∑n
i=1(

∂2

∂θ2 lnf(Xi; θ)). Why ?

Question: How about σ̂2
θ̂
= (nÎ1(θ̂))

−1 ?

Remark 2. The Z-test makes use of the statement θ̂−θ
σ̂θ̂

D−→N(0, 1). For instance, in case 1 of Remark 1,

X − µ

σ̂X

=
X − µ

S/
√
n

D−→N(0, 1), (1)

v.s. the CLT
√
n
X − µ

σX

D−→N(0, 1).

Notice that
X−µ
σ̂
X

= X−µ
S/

√
n
=

X − µ

σX/
√
n

︸ ︷︷ ︸

Xn
D−→N(0,1)

σX

S
︸︷︷︸

Yn
P−→1

= XnYn.

Thus Eq. (1) follows from the CLT and Slutsky’s theorem.
Questions: Are these expressions accurate ?
1. σ2

X
≈ σ2

X/n,

2. σ̂2
X

≈ S2/n.

3. σ2
X

= S2/n.

B. Score test (assuming A1-A7). For testing H0: θ = θo v.s. H1: θ 6= θo,

φ = 1(| S(θo)
√

nI1(θo)
| > zα/2) or φ = 1(| S(θo)

√

nÎ1(θo)
| > zα/2)

where S(θ) = ∂
∂θ

∑n
i=1 lnf(Xi; θ) (score function), and

I1(θ) = E(( ∂
∂θ lnf(Xi; θ))

2) is the Fisher information number.
C. LRT. For testing H0: θ ∈ Θo, v.s. H1: θ /∈ Θo, if the assumptions A1-A7 hold, then the LRT 1(λ ≤ c) can be
approximated by

φ = 1(−2lnλ ≥ χ2
d,α)

where d = degree of freedom in Θ − degree of freedom in Θo, λ is the likelihood ratio statistic and 1−Fχ2
d
(χ2

d,α) = α.

Example 1. Let X1, ..., Xn be i.i.d. from f(x; θ) = 1
θ e

−x/θ, x, θ > 0. Test H0: θ = 1 v.s. H1: θ 6= 1 at level

α = 0.05 in the 2 cases: Case 1. n = 25 and X = 1.44. Why just record X ? Case 2. n = 1 and X1 = 0.05,
Sol. Case 1. We can use either of the three large sample tests.

A. Z-test or Wald test. φ = 1(| θ̂−θo
σ̂θ̂

| > zα/2), z0.025 ≈ 1.96.

θ̂ = X, σ2
θ̂
= σ2

X/n = θ2/n.

σ̂θ̂ =

{√

1.442/25 = 1.44/5 = 0.288 if use σ̂2
θ̂
= θ̂2/n,

√

1/25 = 0.2 if use σ̂2
θ̂
= θ2o/n.

Z =







|θ̂−1|
0.288 = 1.57 if use σ̂2

θ̂
= θ̂2/n

|θ̂−1|
0.2 = 2.2 if use σ̂2

θ̂
= θ2o/n,

? if use σ̂2
X

= S2/n

=>

{
do not reject H0

reject H0.
?
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Q: Which decision is more “reliable” ?
B. Score test.

φ = 1(| S(θo)
√

nI1(θo)
| > zα/2) or 1(|

S(θo)
√

nÎ1(θo)
| > zα/2) where

S(θ) = ∂
∂θ

∑n
i=1 lnf(Xi; θ) and nI1(θ) = E((S(θ))2) = −nE(∂

2lnf(X;θ)
∂θ2 ).

S(θ) =
∑

i(−lnθ −Xi/θ)
′
θ =

∑

i(− 1
θ + Xi

θ2 ) =
n(X−θ)

θ2 .

I1(θ) = V ar(− 1
θ + Xi

θ2 ) = V ar(Xi)/θ
4 = 1

θ2 .

| S(θo)√
nI1(θo)

| = | X−θo
θo/

√
n
| = |Z|

which is the same as the Z-test.

Q: Î1(θo) = ? Î1(θ) =
1
n

∑n
i=1(

∂
∂θ lnf(Xi; θ))

2 = (X−θ)2

θ2

= −1
n

∑n
i=1

∂2

∂θ2 lnf(Xi; θ) = − ∂
∂θ

X−θ
θ2 = 2X

θ3 − 1
θ2 . Î1(θo) = 2X − 1 or (X − 1)2

Should we use |Z| = | S(θo)√
nÎ1(θo)

| or |Z| = | S(θo)√
nI1(θo)

| ?
Example 1 (continued). Let X1, ..., Xn be i.i.d. from f(x; θ) = 1

θ e
−x/θ, x, θ > 0. Test H0: θ = 1 v.s. H1: θ 6= 1

at level α = 0.05 in the 2 cases:
Case 1. n = 25 and X = 1.44.
Case 2. n = 1 and X1 = 0.05,
Sol. Case 1. We can use either of the three large sample tests.

A. Z-test or Wald test. φ = 1(|Z| > 1.96), where Z = θ̂−θo
σ̂θ̂

.

B. Score test.

φ = 1(| S(θo)
√

nI1(θo)
| > zα/2) or 1(|

S(θo)
√

nÎ1(θo)
| > zα/2) where

S(θ) = ∂
∂θ

∑n
i=1 lnf(Xi; θ) and nI1(θ) = E((S(θ))2) = −nE(∂

2lnf(X;θ)
∂θ2 ).

Here it is the same as Z test.
C. LRT. φ = 1(−2lnλ ≥ χ2

d,α).

L = θ−n exp(−nX/θ). How to get it ?

λ =
exp(−nX)

(X)−n exp(−n)
= (X)n exp(n(1−X)). (2)

d = 1
︸︷︷︸

d.f. under Θ

− 0
︸︷︷︸

d.f. under Ho

,

RR: −2lnλ ≥ χ2
1,0.05 = 3.84.

Since −2lnλ = 3.767844,
Do not reject H0.

Is it consistent with Z-test or Score test ? Why ?
Recall in Z-test, zα/2 = 1.96 =

√
3.84, and for comparison,







√
−2lnλ = 1.94 do not reject Ho,

Z = θ̂−θo
σ̂θ̂(θo)

= 2.2, reject Ho.

Z = θ̂−θo
σ̂θ̂(θ̂)

= 1.57, do not reject Ho.

(1)

Case 2. n = 1. Can we apply Z-test or Score test ?
LRT Method.

lnλ = lnX1 + 1−X1 by Eq. (2), (lnλ(x))′x = 1
x − 1. (lnλ(x))′′x = −1

x2 . lnλ(x) is concave down with maximum at
x = 1.
LRT φ = λ(X1) = 1(λ ≤ c) = 1(X1 ≤ k1 or X1 ≥ k2), k1 < k2,
where Eθo(λ) = α and λ(k1) = λ(k2). These two equations are equivalent to

k1e
1−k1 = k2e

1−k2 and e−k1 − e−k2 = 1− α = 0.95.
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=> k1e
1−k1 − k2(k1)e

1−k2(k1) = 0. k2(k1)= ?? Solving the equations yields k1 = 0.04221185 and k2 = 4.748271

Since X1 = 0.05 ∈ (0.042, 4.75), we do not reject H0.

Question: Can we use RR: −2lnλ > χ2
1,0.05 ?

Remark. If we use RR: −2lnλ > χ2
1,0.05, then −2lnλ = 4.09 > 3.84 and we reject H0.

Reasoning of the Score test (assuming A1-A7).

⊢: S(θo)√
nÎ1(θo)

D−→N(0, 1) assuming Xi’s are discrete.

Let Yi =
∂
∂θ lnf(Xi; θ), then

S(θ) =
∑n

i=1 Yi; by assumption A1-A7,

Eθ(Yi) = Eθ(
∂

∂θ
lnf(Xi; θ)) =

∑

x

∂
∂θf(x; θ)

f(x; θ)
f(x; θ) = (

∑

x

f(x; θ))′θ = 0

I1(θ) = E(Y 2
i ) = V arθ(Yi) = σ2

Y ,

Y − E(Yi)

σY /
√
n

(=
nY − nE(Yi)

nσY /
√
n

=
S(θ)

√

nI1(θ)
)

D−→N(0, 1);

By the SLLN, (X
a.s.−→E(X)),

Î1(θ) = − 1

n

n∑

i=1

∂2

∂θ2
lnf(Xi; θ)

a.s.−→E(− ∂2

∂θ2
lnf(Xi; θ)) = I1(θ)

S(θo)
√

nÎ1(θo)
=

S(θo)
√

nI1(θo)

√

I1(θo)
√

Î1(θo)

D−→N(0, 1)

Remark. The large sample LRT test φ = 1(−2lnλ > χ2
d,α) makes use of the result

−2lnλ
D−→χ2

d or F−2lnλ ≈ Fχ2
d
.

There are empirical method and rigorous method to check whether

F−2lnλ ≈ Fχ2
1
.

Rigorous method: Compare fχ2
1
and f−2lnλ by

1. derive the density function of χ2
1 (= G( 12 , 2)),

2. derive the density function of −2lnλ (= fX(g−1(y))|dg
−1(y)
dy |, where y = g(x) = −2lnλ(x)) (no explicit solution).

Empirical method. Two ways:

1. The empirical distribution function (edf) F̂ (t) = 1
n

∑n
i=1 1(Xi ≤ t) (= W )

a.s.−→F (t) if X1, ..., Xn are i.i.d. from
F (t).

2. qqplot (quantile-quantile plot). We expect a straight line if the two samples are from the same distributions.

Definition. If F is the cdf, F−1(p) = inf{x : F (x) ≥ p} is the quantile function.

In Example 1, if n = 100, we can use the empirical method to see that

F−2lnλ ≈ Fχ2
1

53



0 2 4 6 8 10

0
2

4
6

8
10

12

y

u

0.5 1.0 1.5 2.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

y
pp

oi
nt

s(
y)

0 5 10 15

0
2

4
6

8
10

12

y

u

0.5 1.0 1.5 2.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

y

pp
oi

nt
s(

y)

The figure is created by R program as follows.
myfun=function(n){
m=10000
x=rgamma(m,n,1)/n # m X’s
y=-2*(n*log(x)+n*(1-x)) # m λ’s
u=rchisq(m,1)
qqplot(y,u)
lines(y,y)
y=sort(y)
plot(y,ppoints(y), xlim=c(0.5,2), ylim=c(0.4,0.9), type=”S”,lty=1)
lines(y,pchisq(y,1), xlim=c(0.5,2), ylim=c(0.4,0.9), type=”l”,lty=2)
}
makepsfile = function(a,b) {
ps.options(horizontal = FALSE)
ps.options(height=9.0, width=6.5)
postscript(”fig10.ps”)
par(mfrow=c(2,2))
n=1
myfun(n)
n=100
myfun(n)
dev.off()
}
makepsfile()
You can use “gv fig10.ps” to view the graph and “lpr fig10.ps” to print the graph in the Linex system.

Example 2. Suppose that two independent random samples: X1, ..., Xn i.i.d. ∼ N(0, σ2
X), Y1, ..., Ym i.i.d.

∼ N(0, σ2
Y ), γ = σ2

Y /σ
2
X , Observing X2 = 1.2 and Y 2/X2 = 2 with n = m = 25, do the data support γ = 1 at level

0.05 ?
Sol. Three ways: LRT, Z-tes and Score test.
LRT. θ = (σ2

X , σ2
Y ) ∈ Θ and γ = σ2

Y /σ
2
X . Degree of freedom of Θ ? Θ = {(x, y) : x, y > 0}, (σ2

X , σ2
Y ) ∈ Θ,
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Θo = {(x, y) : x = y > 0} and γ = γo = 1.
H0: γ = γo = 1, H1: γ 6= 1. φ = 1(−2lnλ ≥ χ2

d,α). d= ? α= ? λ= ?
Degree of freedom under Θ is 2,
Degree of freedom under H0 is 1. d = 2− 1.
λ = L(θ̂o)/L(θ̂).

L = (2πσ2
X)−n/2 exp(−1

2

∑

i

X2
i /σ

2
X) · (2πσ2

Y )
−m/2 exp(−1

2

∑

i

Y 2
i /σ

2
Y ).

MLE under Θ: σ̂2
X =

∑

i X
2
i /n, σ̂

2
Y =

∑

i Y
2
i /m, γ̂ = σ̂2

Y /σ̂
2
X .

MLE under H0: σ̃
2
X =

∑

i
X2

i +
∑

j
Y 2
j

n+m , σ̃2
Y = σ̃2

X , γ̃ = γo.

λ =
(σ̃2

X)−n/2(σ̃2
Y )−m/2 exp(−m+n

2 )

(σ̂2
X
)−n/2(σ̂2

Y
)−m/2 exp(−n

2 −m
2 )

= ( n
n+m

∑

i
X2

i +
∑

j
Y 2
j

∑

i
X2

i

)−n/2( m
n+m

∑

i
X2

i +
∑

j
Y 2
j

∑

i
Y 2
i

)−m/2

= [( n
m+n )(1 +

∑

j
Y 2
j

∑

i
X2

i

)]−n/2[( m
n+m )(

∑

i
X2

i∑

j
Y 2
j

+ 1/γo)]
−m/2,

λ = ((1/2)(1 + 2))−25/2((1/2)( 12 + 1))−25/2 = ( 98 )
−25/2

Test: φ = 1(−2lnλ ≥ χ2
d,α).

−2lnλ = 25ln 9
8 = 1.28 ≥ χ2

1,0.05 = 3.84 ? Thus the data support the claim that γ = 1.

Z-test. φ = 1(|Z| > 1.96), where Z = γ̂−1
σ̂γ̂

D−→N(0, 1).

Notice

γ = σ2
Y /σ

2
X

def
= g(σ2

Y , σ
2
X).

Delta method. Suppose that
(1) Wn(ω) and θ are p× 1 vectors;

(2)
√
n(Wn − θ)

D−→N(0,Σ), or (Σ̂Wn
)−1/2(Wn − θ)

D−→N(0, Ip×p);
(3) ▽g is continuous and ▽g(θ) 6= 0. Then

√
n(g(Wn)− g(θ))

D−→N(0, v(θ)), where v(θ) = (▽g(θ))tΣ▽ g(θ); (2)

g(Wn)− g(θ)√
v̂

D−→N(0, 1), where v̂ = (▽g(θ̂))tΣ̂Wn
▽ g(θ̂), (if v 6= 0), (3)

and Σ̂ is a consistent estimator of Σ. θ= ? g(θ) = ? g(y, x)= ? p = ? Wn = ?
γ̂ = Y 2/X2 = 2, (= g(Y 2, X2)).
Y/σY ∼ N(0, 1),
Y 2/σ2

Y ∼ χ2(1) with E(χ2(1)) = 1 and V (χ2(1)) = 2.

σ2
γ̂ ≈ (1/x,−y/x2) ˆCov(

(
Y 2

X2

)

)

(
1/x

−y/x2

) ∣
∣
∣
∣
(y,x)=E(Y 2,X2)

= (1/x,−y/x2)

(
2σ4

Y /m 0
0 2σ4

X/n

)(
1/x

−y/x2

)

(Y 2/σ2
Y ∼ χ2(1))

= [2
σ4
Y

σ4
X

+ 2σ4
Xσ4

Y /σ
8
X ]/n = 4γ2

o/25 = 4/25.

σ̂γ̂ = ?

Z = γ̂−γo

σ̂γ̂
= 2.5 > 1.96,

The data do not suggest that γ = 1.
Question: Why is there a discrepancy in conclusion ?
Ans. 1. They are different tests and there is randomness. 2. Z-test is more acurate here as it has less approximation
than LRT . (σ2

γ̂ ≈ 4γo/25 = 4/25).

Score test ? Recall φ = 1(| S(θo)√
nI1(θo)

| > zα/2) or φ = 1(| S(θo)√
nÎ1(θo)

| > zα/2)

For vector θ,

φ =1(||I
−1
2

n+m(θo)S(θo)|| > za/2)
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=1(||I
−1
2

n+m(θo)S(θo)||2 > χ2
1,α)

=1(S(θo)
tI−1

m+n(θo)S(θo) > χ2
1,α)

or φ = 1(||Î
−1
2

m+n(θo)S(θo)||2 > χ2
1,α).

θ = ?

Vector approach: S(θ) =
∂ln

∏m

j=1
f(Yj ;θ1)

∏n

i=1
f(Xi;θ2)

∂θt ,

Im+n(θ) = E(S(θ)S(θ)t) = −E(
∂2ln

∏m
j=1 f(Yj ; θ1)

∏n
i=1 f(Xi; θ2)

∂θt∂θ
. (4)

S(θ) =
∂

∂θ
[(−n/2) log(σ2

X)− 1

2

∑

i

X2
i /σ

2
X + (−n/2) log(σ2

Y )−
1

2

∑

i

Y 2
i /σ

2
Y ] (θ = (theta1, θ2))

=





−n/2
σ2
Y

+ 1
2

∑

i
Y 2
i

σ4
Y

−n/2
σ2
X

+ 1
2

∑

i
X2

i

σ4
X





=
n

2





−1
σ2
Y

+ Y 2

σ4
Y

−1
σ2
X

+ X2

σ4
X





(4) => Im+n(θ) = −E





n/2
σ4
Y

− 2
2

∑

i
Y 2
i

σ6
Y

0

0 n/2
σ4
X

− 2
2

∑

i
X2

i

σ6
X



 = n
2

(
1/σ4

Y 0
0 1/σ4

X

)

S(θ)′I−1
n+m(θ)S(θ) = n

2 (
(Y 2−σ2

Y )2

σ4
Y

+
(X2−σ2

X)2

σ4
X

)

φ = 1(n2 (
(Y 2−σ2

Y )2

σ4
Y

+
(X2−σ2

X)2)

σ4
X

> 3.84)

σX = σY , Y 2 = 2X2, and X2 = 1.2 => σ̂2
X = σ̂2

Y = 3× 1.2/2.

φ = 1(n2 (
(Y 2−σ2

Y )2

σ̂4
Y

+
(X2−σ̂2

X)2)

σ̂4
X

> 3.84) = 1(12.5[(0.5× 1.2/1.5)2 + (1.5× 1.2/1.5)2] > 3.84) = 1(4 > 3). Reject H0.

The next approach does not work. θ = σ2
X = σ2

Y .

S(θ) =
∂ln

∏m

j=1
f(Yj ;θ)

∏n

i=1
f(Xi;θ)

∂θ ,

Im+n(θ) = E((S(θ))2) = −E(
∂2ln

∏m

j=1
f(Yj ;θ)

∏n

i=1
f(Xi;θ)

∂θ∂θ .

S(θ) = ∂
∂θ [(−n/2) log(σ2

X)− 1
2

∑

i X
2
i /σ

2
X + (−n/2) log(σ2

Y )− 1
2

∑

i Y
2
i /σ

2
Y ]

= −n/2
σ2
X

+ 1
2

∑

i
Y 2
i

σ4
X

+ −n/2
σ2
X

+ 1
2

∑

i
X2

i

σ4
X

= n
2 (

−1
σ2
X

+ Y 2

σ4
X

+ −1
σ2
X

+ X2

σ4
X

)

= n
2σ4

X

(−σ2
X + Y 2−σ2

X +X2)

= n
2θ2 (−θ + Y 2−θ +X2)

= n
2 (−2θ−1 + (Y 2 +X2)θ−2)

S(θ̂) = ??

Under Ho, S(θo) depends on θo which is unknown, and S(θ̂o) = 0, as

θ̂o = nX2+nY 2

2n = X2+Y 2

2 . Thus the score test approach does not work. Ignore the rest arguements.

σ̂2
X = X2, X2 = 1.2 and Y 2 = 2.4.

S(θ̂) = n

2(X2)2
(X2) = 25

2(1.2)2 (1.2) ≈ 10.4

Im+n(θ) = −E(n2 (θ
−2 − 2Y 2θ−3 + θ−2 − 2X2θ−3)) = n/σ4

X , Im+n(θ̂) = ??

φ = 1(| S(θ̂o)√
nÎ1(θ̂o)

| > zα/2) = 1(

n

2(X2)2
(X2)

√
n/X2

> 1.96) = 1(2.5 > 1.96)
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Reject H0.
§10.4. Approximate CI.
For finite samples, construction of CI is based on

inverting LRT and
pivotal method.

Def. θ̂−θ
σ̂θ̂

is called a Wald-type statistic if θ is known and if

P (| θ̂ − θ

σ̂θ̂

| ≤ zα/2) ≈ 1− α (1)

A. CI based on Wald-type statistic.

CI for θ: θ̂ ± zα/2σ̂θ̂ due to P ({θ : | θ̂−θ
σ̂θ̂

| ≤ zα/2}) ≈ 1− α.

Remark. (1) A smooth g(θ) can also be viewed as a parameter, thus

CI for g(θ): g(θ̂)± zα/2σ̂g(θ̂),

where σ2
g(θ̂)

≈ (g′(θ))2σ2
θ̂
or (▽g(θ))tΣθ̂ ▽ g(θ). σ̂2

g(θ̂)
= ?

(2) A monotone function g(θ): g(θ̂)± g(σ̂θ̂).

B. CI based on MLE. {θ : | θ̂−θ
σθ̂

| ≤ zα/2}.
C. CI based on score function.

{θ : |
∑n

i=1

∂
∂θ lnf(Xi;θ)√
nI1(θ)

| ≤ zα/2}.
D. CI based on LRT.

{θ : −2lnλ(x; θ) ≤ χ2
d,α}

Example 1. Let X ∼ bin(n, p), n = 100. Observe X = 30. Approximiate 95% CI for p ?
Sol. A 95% CI for p :
(1) Wald-type. | p̂−p√

p̂(1−p̂)/n
| ≤ 1.96, or p̂± 1.96

√

p̂(1− p̂)/n or

0.3± 1.96×
√
0.21/10. Thus a 95% CI for p is (0.210, 0.390).

(2) MLE method:

| p̂− p
√

p(1− p)/100
| ≤ 1.96 (due to Eq. (1)). (2)

p̂2 − 2pp̂+ p2 ≤ (1.962/100)(p− p2).
p̂2 − (2p̂+ 0.01 ∗ 1.962)p+ (1 + 0.01 ∗ 1.962)p2 = c+ bp+ ap2 ≤ 0.
−b−

√
b2−4ac
2a ≤ p ≤ −b+

√
b2−4ac
2a . A 95% CI for p is (0.219, 0.396)

(3) Score method: lnf(X; p) ∝ Xlnp+ (n−X)ln(1− p).
Score function: S(p) = X

p − n−X
1−p .

−S′(p) = X
p2 + n−X

(1−p)2 .

In(p) = −E(S′(p)) = np
p2 + n−np

(1−p)2 = n
p(1−p) .

| S(p)√
In(p)

| = |
X
p −n−X

1−p√
n

p(1−p)

| ≤ 1.96.

X
p −n−X

1−p√
n

p(1−p)

= X−np√
np(1−p)

= X/n−p√
p(1−p)/n

. (see Eq. (2)). A 95% CI for p is (0.219, 0.396)

(4) LRT. λ = pX(1−p)n−X

(X/n)X(1−X/n)n−X .

lnλ = Xln(p ∗ n/X) + (n−X)ln((1− p)/(1−X/n)),
{p : −2lnλ ≤ χ2

1,α = 3.84}.
A 95% CI for p is (0.216, 0.395) (solving by R).
Question: Which is more convenient ? Which is better ?

R-program:
myfun=function(p){
x=30
n=100
y=-2*(x*log(p*n/x)+(n-x)*log((1-p)/(1-x/n))) # −2lnλ
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u=min(y[y>=3.84])

p[y==u]

}
p=(200:300)/1000

myfun(p)

[1] 0.216

p=(300:400)/1000

myfun(p)

[1] 0.395

Example 1 (continued) Suppose that X ∼ bin(n, p), n = 100. Observe X = 30. A 95% CI for the odd ratio
g(p) = p/(1− p) ?

Sol. A 95% CI for g(θ): g(θ̂)± zα/2σ̂g(θ̂),

where σ̂2
g(θ̂)

= (g′(θ̂))2σ̂2
θ̂
,

g′(p) = (−1 + 1
1−p )

′ = 1
(1−p)2 .

95% CI for g(p) is
p̂

1−p̂ ± 1.96
√

p̂(1−p̂)
(1−p̂)4n or 0.3

0.7 ± 1.96×
√

0.3
0.73×100 .

A 95% CI for g(p) is (0.245, 0.612)
How about the other approaches ?

If the CI is p̃± a and g is monotone, then g(p̃)± g(a). Pay attention to ↑ or ↓.
Example 2. Suppose that X ∼ bin(n, p), n = 3. Observe X = 1. p̂± 1.96

√

p̂(1− p̂)/n yields 1
3 ± 1.96

√
2
27 . (a) Is

it a 95% CI for p ? (b) How about if X = 1 and n = 25 ?

Sol. Confidence coefficient of CI = infp Pp(p ∈ I). ???
The CI is of the form

I =







0± 0 if X = 0
1
3 ± 1.96

√

2/27 if X = 1
2
3 ± 1.96

√

2/27 if X = 2
1± 0 if X = 3

=







[0, 0] if X = 0
[0, 1

3 + a] if X = 1
[ 23 − a, 1] if X = 2
[1, 1] if X = 3

(a ≈ 0.53).

1
3 − a < 0 < 2

3 − a < 1
3 + a < 1 < 2

3 + a.
The coverage probability is Pp(p ∈ I)

=







Pp(X = 0 or 1) if p = 0
Pp(X = 1) if p ∈ (0, 2

3 − a)
Pp(X = 1 or 2) if p ∈ [ 23 − a, 1

3 + a]
Pp(X = 2) if p ∈ ( 13 + a, 1)
Pp(X = 2 or 3) if p = 1

=







(1− p)3 if p = 0
3p(1− p)2 if p ∈ (0, 2

3 − a)
3p(1− p) if p ∈ [ 23 − a, 1

3 + a]
3p2(1− p) if p ∈ ( 13 + a, 1)
p3 if p = 1

Confidence coefficient of CI = infp Pp(p ⊂ I) = min{1, 0, 3/4, 0, 1} = 0

Answer: No, it is a 0% CI for p.
(b). What is the question ?

The approximate 95% CI is 0.04± 1.96
√

24/253 if X = 1 and n = 25.

p=(0:10)/25

round(p-1.96*sqrt(p*(1-p)/25),3)

round(p+1.96*sqrt(p*(1-p)/25),3)

X 0 1 2 3 4 5 6 7 8 9 10
L 0.000 −0.037 −0.026 −0.007 0.016 0.043 0.073 0.104 0.137 0.172 0.208
R 0.000 0.117 0.186 0.247 0.304 0.357 0.407 0.456 0.503 0.548 0.592
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Coverage probability Pp(p ∈ I) =







Pp(X ∈ {0, 1, 2, 3}) if p ∈ [0, 0],
Pp(X ∈ {1, 2, 3}) if p ∈ (0, 0.016),
Pp(X ∈ {1, 2, 3, 4}) if p ∈ [0.016, 0.043),
Pp(X ∈ {1, 2, 3, 4, 5}) if p ∈ [0.043, 0.073),
Pp(X ∈ {1, 2, 3, 4, 5, 6}) if p ∈ [0.073, 0.104],
Pp(X ∈ {1, 2, 3, 4, 5, 6, 7}) if p ∈ (0.104, 0.117],
Pp(X ∈ {2, 3, 4, 5, 6, 7}) if p ∈ (0.117, 186]
· · · · · ·

=







p0(1− p)25 +
(
25
1

)
p1(1− p)24 +

(
25
2

)

p(1− p)[
(
25
1

)
p0(1− p)23 +

(
25
2

)
p1(1

· · ·

Coeffidence coefficient of p̂± 1.96
√

p̂(1− p̂)/n is
infp Pp(p ∈ I) ≤ infp∈(0,0.016] Pp(X ∈ {1, 2, 3}) = 0.

Any contradiction ? Approximated 95% CI: If n is large,

P (p̂− 1.96
√

p̂(1− p̂)/n ≤ p ≤ p̂+ 1.96
√

p̂(1− p̂)/n) = P ( |p̂−p|√
p̂(1−p̂)/n

< 1.96) ≈ 0.95

95% CI: infp Pp(p ∈ [L,R]) = 0.95.

Remark. Recall in Example 4 of Chapter 9. If X ∼ bin(3, p) and I = [X−1
3 ∨ 0, 1], the confidence coefficient of I

is 0.59.
Review of testing and CI.

Assume that X1, ..., Xn are i.i.d. from N(µ, σ2).
1. If H0: µ = µ0 and σ is known,

LRT test statistic λ yields Z = X−µ0

σ/
√
n

and observe z.

H1 φ P − value CI
µ 6= µ0 1(|Z| > zα/2) 2P (Z > |z|) (X − zα/2σ/

√
n,X + zα/2σ/

√
n)

µ > µ0 1(Z > zα) P (Z > z) (X − zασ/
√
n,∞)

µ < µ0 1(Z < −zα) P (Z < z) (−∞, X + zασ/
√
n)

2. If H0: µ = µ0 and σ is unknown,

LRT test statistic λ yields T = X−µ0

S/
√
n

and observe t.

H1 φ P − value CI

µ 6= µ0 1(|T | > tn−1,α/2) 2P (T > |t|) (X − tn−1,α/2S√
n

, X +
tn−1,α/2S√

n
)

µ > µ0 1(T > tn−1,α) P (T > t) (X − tn−1,αS√
n

,∞)

µ < µ0 1(T < −tn−1,α) P (T < t) (−∞, X +
tn−1,αS√

n
)

3. If H0: σ = σ0 and µ is unknown, LRT test statistic λ yields Y = (n− 1)S2/σ2
0 and observe y.

H1 φ P − value CI of σ

σ 6= σ0 1(Y /∈ (a, b))

{
2P (Y < y) if y < n− 1
2P (Y > y) if y > n− 1

(
√

Y/b,
√

Y/a)

σ > σ0 1(Y > χ2
n−1,α) P (Y > y) (

√

(n−1)S2

χ2
n−1,1−α

,∞)

σ < σ0 1(Y < χ2
n−1,1−α) P (Y < y) (0,

√

(n−1)S2

χ2
n−1,α

)

λ(a) = λ(b) and E(φ) = α.
Remark. If N(µ, σ2) is not valid, the derivation cannot be unified.

Chapter 11. Introduction to non-parametric analysis
Common interests of estimation are

1. Mean µ,
2. SD σ,
3. cdf F (t).

In this course, we make the assumption that
X1, ..., Xn are i.i.d. with cdf Fo(t; θ), where Fo is known, but not θ (∈ Θ),
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Then µ = µ(θ) and σ = σ(θ).
We derive either the MLEs or other types of estimators:







θ̂
µ̂ = µ(θ̂)

σ̂ = σ(θ̂)

F̂ (t) = Fo(t; θ̂)







e.g. X ∼ bin(n, p), then







p̂ = X/n
µ̂X = np̂

σ̂ =
√

np̂(1− p̂)

F̂ (t) =
∑

i≤t

(
n
i

)
(p̂)i(1− p̂)n−i







This is called point estimation of the parametric analysis. The CI and testing hypotheses discussed so far are also
under the parametric analysis frame work.
Question:

How do we know that the assumption F (t) = Fo(t; θ) is correct ?

Answer: One approach is to compare the parametric estimator Fo(t; θ̂) to the empirical distribution function (edf)

F̂ (t) =
1

n

n∑

i=1

1(Xi ≤ t).

Example 1. Here is a simulation study for checking normality assumption. Given a data set, assume that it is
normal, then compute the MLE µ̂ and σ̂, and estimate the cdf by Fo(t; µ̂, σ̂). Then compare it to its edf F̂ .

par(mfrow=c(2,2))
x=rexp(100)

# Now pretend we only have data x without knowing it is from Exp(1)
u=mean(x)
s=sd(x)
x=sort(x)
plot(x,ppoints(x),type=”S”) # edf
lines(x,pnorm(x,u,s),type=”l”) # F̂ (t; µ̂, σ̂)
y=rnorm(100,u,s)
qqplot(y,x) # check N(·, ·)
abline(lm(x∼ y))

Check for linearity.
qqnorm(x)
y=rexp(100,1/u)
qqplot(x,y)
abline(lm(y∼ x))
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Properties of the edf: F̂ (t) = 1
n

∑n
i=1 1(Xi ≤ t).

1. F̂ is a cdf and for each t, F̂ (t) can be viewed as Y ,
where Y1, ..., Yn are i.i.d. ∼ bin(1, p) and p = F (t).

2. E(F̂ (t)) = E(Y ) = E(Y ) = p = F (t).
3. V ar(F̂ (t)) = V (Y ) = pq/n = F (t)(1− F (t))/n.
4. Cov(F̂ (t), F̂ (s)) = 1

nCov(1(X1 ≤ t),1(X1 ≤ s)) (Σ
Z

= ΣZ/n)

= 1
n (E(1(X1 ≤ s)1(X1 ≤ t))− E(1(X1 ≤ s))E(1(X1 ≤ t))) = F (t∧s)−F (t)F (s)

n . Why ?
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5. Y
a.s.−→p by the SLLN. F̂ (t)

a.s.−→F (t) by the SLLN.

6.
√
n(F̂ (t)− F (t))

D−→N(0, F (t)(1− F (t))) Why ??
Remark. Since E(F̂ (t)) = F (t) < ∞ and nV (F̂ (t)) = F (t)(1−F (t)) < ∞, thus we can apply the SLLN and CLT.

the density f̂(t) = 1
n

∑n
i=1 1(Xi = t),

∫
tdF̂ (t) =

∑n
i=1 tf̂(t) = ?

∫
t2dF̂ (t) =

∑n
i=1 t

2f̂(t) = ?
∫
(t−X)2dF̂ (t) = ?

Homework: Answer the following questions: If X1, ..., Xn are i.i.d. from Cauchy, where

f(x) = (π(1 + (x)2))−1,

then
∫∞
−∞ xf(x)dx = 0 as xf(x) is odd,

∫∞
−∞ |x|f(x)dx = 2

π ln(1 + x2)|∞0 = ∞.
E(X) = ?

X
a.s.−→µX ? (Yes, No, Not sure, explain).

√
n(X − µX)

D−→N(0, τ2) ? (Yes, No, Not sure, explain).

F̂ (t)
a.s.−→F (t) ?

√
n(F̂ (t)− F (t))

D−→N(0, F (t)(1− F (t))) ?
σ2
F̂ (t)

= ?

σ̂2
F̂ (t)

= ?

σ̂2
F̂ (t)

→ ?

nσ̂2
F̂ (t)

a.s.−→ ?
√
n(σ̂2

F̂ (t)
− σ2

F̂ (t)
)

D−→ ?

E(σ̂2
F̂ (t)

) = ?

V (σ̂2
F̂ (t)

) = ?

7. F̂ (t) is admissible w.r.t. the squared error loss and the weighted squared error loss

L(F (t), F̃ (t)) =
(F̃ (t)− F (t))2

F (t)(1− F (t))
. (1)

That is, if
(a) t is fixed,
(b) F̃ ∈ A, the collection of all estimators of the cdf F ,
(c) R(F (t), F̃ (t)) = E(L(F (t), F̃ (t))),
(d) Θo is the collection of all cdf’s,
(e) R(F (t), F̃ (t)) ≤ R(F (t), F̂ (t)) ∀ F ∈ Θo,

then R(F (t), F̃ (t)) = R(F (t), F̂ (t)) ∀ F ∈ Θo.
No estimator can dominate F̂ .

8. F̂ (t) is minimax w.r.t. the weighted squared error loss in Eq. (1).
That is, if (a), (b), (c) and (d) hold, then

supF R(F (t), F̂ (t)) = inf F̃∈A supF R(F (t), F̃ (t)). F̂ is the best in the worst scenario.

Remark. Since F̂ is a functional, the functional properties are as follows.
9. supt |F̂ (t)− F (t)| a.s.−→0 (uniform strong consistency) (Glivenko-Cantelli Theorem).

10.
√
n(F̂ − F )

D−→W where W is a Gaussian process with the covariance specified in Part 4.
11. F̂ is inadmissible w.r.t the loss function

L(F, a) =

∫

(F (t)− a(t))2dF (t)

and the parameter space being the collection of all continuous cdfs (Aggarwal (1955)).
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12. F̂ is not minimax w.r.t the loss function

L(F, a) =

∫

(F (t)− a(t))2dW (t)

but is minimax w.r.t the loss function

L(F, a) =

∫
(F (t)− a(t))2

F (t)(1− F (t))
dW (t)

where W is a finite measure, and the parameter space being the collection of all cdfs (Phadia (1973)).
13. F̂ is admissible w.r.t the loss function

L(F, a) =

∫

(F (t)− a(t))2dW (t)

where W is a finite measure, and the parameter space being the collection of all cdfs (Cohen and Kuo (1985)).
14. F̂ is admissible w.r.t the loss function

L(F, a) =

∫

(F (t)− a(t))2dF (t)

and the parameter space being the collection of all cdfs (Brown (1985)).
15. Whether F̂ is admissible w.r.t the loss function

L(F, a) =

∫
(F (t)− a(t))2

F (t)(1− F (t))
dF (t)

and the parameter space being the collection of all continuous cdfs was an open question between 1950’s and
1980’s. Yu (1989) shows that it is admissible if n = 1 or 2, and is inadmissible if n ≥ 3.

16. F̂ is minimax w.r.t the loss function

L(F, a) =

∫
(F (t)− a(t))2

F (t)(1− F (t))
dF (t)

and the parameter space being the collection of all continuous cdfs was an longstanding conjecture between
1950’s and 1980’s. Yu and Chow (1991) shows that it is indeed minimax.

Chapter 12. Decision Theory
§12.1. Introduction.
There are several definitions of the optimality for an estimator.
Large samples:

1. consistency,
2. efficiency.

Small samples:
3. unbiasedness,
4. UMVUE,
5. Bayesian,
6. admissibility,
7. Minimaxity.

The last two has just been briefly mentioned and will be studied here. The last three all belong to the decision
theory frame work.
Recall in §7.3.4 that a decision problem consists of

data X from the sample space X (X = x ∈ X ), with density function fX(x; θ),
the parameter θ from the parameter space Θ,
an action a from the action space A,

a loss function L(θ, a) on Θ×A, e.g. |a− θ|, (a− θ)2, (a−θ)2

θ(1−θ) ,

a (nonrandomized) decision rule d: X 7→ A. the risk function of d: R(θ, d) = E(L(θ, d(X)).
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Example 1 Suppose that X1, ..., Xn are i.i.d. from N(µ, σ2). Consider estimation of σ2. This can be viewed as a
decision problem.

X =(X1, ..., Xn), from X = Rn,
θ = (µ, σ2), in Θ = (−∞,∞)× (0,∞),
A = [0,∞),
an action is an estimate of σ2, say a ∈ A,
a decision rule is an estimator of σ2, say d: Rn 7→ [0,∞),
a loss function L is the squared error L(θ, a) = (a− σ2)2.

Recall that under this set-up:
R(θ, d) = MSE(d) = E(L(θ, d(X)) = E((d(X)− σ2)2).
Two decision rules (estimators) S2 and σ̂2,

where S2 = 1
n−1

∑

i(Xi −X)2 and σ̂2 = n−1
n S2 (= X2 − (X)2).

S2 is the UMVUE of σ2.
σ̂2 is biased.
R(θ, S2) = V ar(S2) = σ4

(n−1)2 2(n− 1) = 2 σ4

(n−1) ,

as (n− 1)S2/σ2 ∼ χ2(n− 1).
R(θ, σ̂2) = V ar(σ̂2) + (bias(σ̂2))2 = (n−1

n )2V ar(S2) + (−σ2/n)2

= σ4

n [2− 1/n] < σ4

n−12.

Thus R(θ, σ̂2) < R(θ, S2).
Hence the MLE σ̂2 is preferable over S2 in terms of the MSE.
Question: Can we find an estimator that is the best w.r.t. the MSE ?
Answer: No ! In Example 1, idealy, R(θ, d) = 0 ∀ θ. However,

0 = R(θ, d) = E((d(X)− σ2)2) for a given σ2 => P (d(X) = σ2) = 1 Why ??
Thus, for each estimator d, ∃ a θo such that R(θo, d) > 0.
Set σ̃2(x) = σ2

o ∀ x, then R(θo, σ̃
2) = 0 < R(θo, d).

Thus the usual global optimality (R(θ, δ) ≤ R(θ, d) ∀ (θ, d)) is not applicable. In decision theory, two other
types of optimalitiy are considered: admissibility and minimaxity.
Remark. Decision theory can be applied to point estimation, as well as to hypothesis testing and confidence interval.
Two classical textbooks in decision theory:

Mathematical Statistics, a Decision Theory approach, by Thomas Ferguson.
Statistical Decision Theory and Bayesian Analysis, by James Berger.

§12.2. Admissibility.
Definition. Let δ and d be two decision rules.

δ is as good as d if R(θ, d) ≥ R(θ, δ) ∀ θ.

δ is better than d if

{
R(θ, d) ≥ R(θ, δ) ∀ θ
R(θ, d) > R(θ, δ) for at least one θ.

In the latter case, the decision rule d is said to be inadmissible.
If a decision rule is not inadmissible, we say that it is admissible.

Example 1 (continued).
S2 is inadmissible, even though it is UMVUE.
σ̂2 is biased, but it is better than S2 in terms of the MSE.
σ̃2(X) ≡ c (> 0) is admissible.

The example of σ̃2 suggests that admissibility may not be an appealing property, but it is clear that inadmissible
estimators are definitely not desirable, as far as the risk is concerned.
Question: How to determine that an estimator is admissible ?
Answer:

(1) By definition as in Example 1,
(2) by the following theorem.

Theorem 1. Suppose that the following conditions hold:
1. Θ is a subset of the real line;
2. R(θ, d) is continuous in θ for each decision rule d;

3. π is a prior density on Θ such that
∫ θo+ǫ

θo−ǫ
π(θ)dθ > 0 ∀ ǫ > 0, ∀ θo ∈ Θ;

4. δπ is the Bayes estimator w.r.t. π and has a finite Bayes risk r(π, δπ).
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Then δπ is admissible.
Example 2. Suppose that X ∼ bin(n, p) and L(p, a) = (a−p)2

p(1−p) . We have shown that p̂ = X/n is Bayesian w.r.t. L

and π ∼ U(0, 1) (§7.3.4). Do the 4 conditions in Theorem 1 hold ? p̂ is admissible.
Remark. If π(θ) is a non-negative function of θ and

∫
π(θ)dθ = ∞, it is called an improper prior density of θ.

Theorem 1 is still applicable if π is an improper prior density.
Example 2 (continued). Suppose that X ∼ bin(n, p) and L(p, a) = (a− p)2. Show that p̂ = X

n is admissible.
Sol. Two ways:

(1) Definition ⊢: R(p̂, p) ≤ R(p̃, p) => R(p̂, p) = R(p̃, p) ∀ p ∈ Θ;
(2) Theorem 1, main condition: p̂ is a Bayes estimator w.r.t. L and a prior π(·).

Notice that if π(p) = 1
p(1−p) , p ∈ (0, 1), π is not a proper prior.

However, the “Bayes estimator ” w.r.t. π exists and Theorem 1 is also applicable to non-proper prior π.
To obtain the Bayes estimator, it suffices to solve

d(x) = argminaE(L(p, a)|X = x).

E(g(Y )|X = x) =

{∫
g(y)fY |X(y|x)dy if cts

∑

y g(y)fY |X(y|x) if dis
g(y)= ?

fY |X(y|x) = f(x, y)/fX(x) and f(x, y) = fX|Y (x|y)fY (y) = ?? fY (·) = π(·). fX|Y (x|y) = ?
fX|p(x|p)π(p) ∝ px−1(1− p)n−x−1.
π(p|x) ∝ px−1(1− p)n−x−1.

If x ∈ {1, ..., n− 1}, π(p|x) can be viewed as a beta(x, n− x) density. beta(α, β), α, β > 0.

E((L(p, a)|X = x) =
∫ 1

0
(a− p)2cpx−1(1− p)n−x−1dp is finite if x /∈ {0, n}.(= a2 − 2aE(p|X = x) + E(p2|X = x))

It is minimized by a = E(p|X = x) = α
α+β = x

x+n−x = x/n. if x /∈ {0, n}.
If x = 0 then E(L(p, a)|X = x) is finite iff a = 0 = x/n.
If x = n then E(L(p, a)|X = x) is finite iff a = 1 = x/n.
Thus p̂ = x/n is the Bayes estimator w.r.t. to the improper prior π.
Do the other 3 conditions in Theorem 1 hold ?
Consequently, it is admissible.
Remark. Thus p̂ is admissible under the weighted squared error loss, admissible under the squared error loss,
UMVUE, consistent, efficient.
Remark. Since the edf F̂ (t) = Y , where Y = 1(X ≤ t) ∼ bin(1, F (t)), F̂ (t) is admissible w.r.t. L(F (t), F̃ (t)) =
(F̃ (t)−F (t))2

F (t)(1−F (t)) and F̂ (t) is admissible w.r.t. L(F (t), F̃ (t)) = (F̃ (t)− F (t))2.

Example 3. Suppose that X ∼ bin(n, p), L(p, a) = |a− p|. δ(x) = 1/3. Show that δ is admissible.
Proof. Two possible approaches: (1) Bayes estimator, (2) definition. Since

R(p, d) = E|d(X)− p| =
n∑

x=0

(
n

x

)

px(1− p)n−x|d(x)− p|. (1)

Bayesian approach: Set π(p) = 1(p = 1/3). Bayes estimator = infd E(R(p, d)) = ?? Then verify that δ is the
Bayes estimator w.r.t. L and π.

Can we apply Theorem 1 ?
The second apporoach: ⊢: R(p, d) ≤ R(p, δ) ∀ p ∈ Θ; => R(p, δ) = R(p, d) ∀ p ∈ Θ;
If d is as good as δ, then R(p, d) ≤ R(p, δ) for all p ∈ [0, 1].
R(1/3, δ) = 0. => 0 ≤ R(1/3, d) = E|d(X)− 1/3| ≤ R(1/3, δ). => P (|d(X)− 1/3| = 0) = 1.
Thus d(x) = δ(x) for all possible x.
Thus δ is admissible.

Notice that if X1, ..., Xn are i.i.d. from N(θ, σ2), then X ∼ N(θ, σ2/n).
X is the MLE, UMVUE, consistent and efficient.

Is it admissible under the squared error loss ?
It suffices to ask whether X is admissible if X ∼ N(θ, σ2), by setting n = 1.
Example 4. Suppose that X ∼ N(θ, σ2) and L = (a− θ)2. Show that

1. If σ is known, θ̂ = X is admissible.
2. If σ is unknown, θ̂ = X is admissible.
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Proof. Case 1. Two ways to prove admissibility: (1) Bayesian, (2) Definition.
Recall that in the Baysian approach, a candidate of the prior is

π(θ) ∼ N(µ, τ2).

π(θ|x) is N(µ∗, σ2
∗), where

µ∗ = τ2

τ2+σ2x+ σ2

τ2+σ2µ
def
= (1− η)x+ ηµ and σ2

∗ = τ2η.
The Bayes estimator of θ is δπ = E(θ|X), that is,

δπ(x) = µ∗ = (1− η)x+ ηµ.

The second approach needs MLE=Bayes estimator.
Q: Can we set δπ(x) = x ?

The second approach: ⊢: R(θ, d) ≤ R(θ, θ̂) ∀ θ ∈ Θ; => R(θ, d) = R(θ, θ̂) ∀ θ ∈ Θ.

Suppose that σ2 is known and thus the parameter is θ. We shall assume that θ̂ is inadmissible and show that
it leads to a contradiction.

If θ̂ is inadmissible, then there is a d such that

R(θ, θ̂)−R(θ, d)

{
≥ 0 ∀ θ
= 2c > 0 for θ = θo

(1)

R(θ, d) =
∫
(θ − d(x))2 1√

2πσ2
e−

(x−θ)2

2σ2 dx is continuous in θ ∀ estimator d,

thus R(θ, d)−R(θ, θ̂) is continuous in θ too.
Then by Eq. (1), there is a b > 0 such that

R(θ, θ̂)−R(θ, d) > c if |θ − θo| < b.

r(π, θ̂)− r(π, d) =

∫

(R(θ, θ̂)−R(θ, d))π(θ)dθ (let π(θ) ∼ N(µ, τ2))

=(

∫ θo−b

−∞
+

∫ θo+b

θo−b

+

∫ ∞

θo+b

)(R(θ, θ̂)−R(θ, d))π(θ)dθ

≥
∫ θo+b

θo−b

cπ(θ)dθ

=

∫ θo+b

θo−b

c√
2πτ2

e−
θ2

2τ2 dθ (2)

(r(π, θ̂)− r(π, d))τ ≥
∫ θo+b

θo−b

c√
2π

e−
θ2

2τ2 dθ. (3)

Letting µ = 0,
δπ(X) = (1− η)X + µη → X if η → 0, that is, τ → ∞.

Moreover,
r(π, δπ) = E(R(θ, δπ)) = E(E(((1 − η)X − θ)2|θ)) = E(E(((1 − η)X − θ)2|X)) = E(E((µ∗ − θ)2|X)) =

E(V ar(θ|X)) =>
r(π, δπ) = E(τ2η) = τ2η. (4)

Since R(θ, θ̂) = E((θ −X)2) = σ2,

r(π, θ̂) = σ2. (5)

(4) and (5) yield

r(π, δπ)− r(π, θ̂) = τ2η − σ2 = τ2 σ2

σ2+τ2 − σ2 = σ2 τ2−σ2−τ2

σ2+τ2 = −σ4

σ2+τ2 .

(r(π, δπ)− r(π, θ̂))τ = −σ4

σ2+τ2 τ.

τ
σ4

σ2 + τ2
=τ(r(π, θ̂)− r(π, δπ))

=τ(r(π, θ̂)− r(π, d) + r(π, d)− r(π, δπ)))

≥
∫ θo+b

θo−b

c√
2π

e−
θ2

2τ2 dθ + 0 (6)
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by

τ(r(π, θ̂)− r(π, d)) ≥
∫ θo+b

θo−b

c√
2π

e−
θ2

2τ2 dθ. (3)

Letting τ → ∞ in inequality (6) yields 0 ≥ 2bc/
√
2π > 0.

The contradiction implies that θ̂ is not inadmissible.

Case 2. Now assume σ is unknown, then the parameters are γ = (θ, σ). Again we shall suppose that θ̂ is inadmissible
and show that it leads to a contradiction.

If θ̂ is inadmissible in such case, there exists an estimator d such that

R(γ, d)−R(γ, θ̂)

{
≤ 0 ∀ γ
< 0 for γ = (θo, σo)

The risk becomes R(γ, d) = Eγ((d(X)− θ)2). It implies that

Eθ,σ((d(X)− θ)2)− Eθ,σ((X − θ)2)

{
≤ 0 ∀ (θ, σ) = (θ, σo)
< 0 ∀ (θ, σ) = (θo, σo)

That is, θ̂ is inadmissible when σ = σo is fixed. It corresponds to the assumption in part one. It contradicts to the
result in part one. Thus θ̂ is admissible when σ is unknown. .

Notice that if X1, ..., Xn are i.i.d. from N(θ, σ2), then X ∼ N(θ, σ2/n).
X is the MLE, the UMVUE,

consistent,
efficient,
admissible under the squared error loss.

Remark. Recall that assuming X ∼ bin(n, p), we had shown that
p̂ = X/n is the MLE,

an MME,

the Bayes estimator under the loss L(p, a) = (a−p)2

p(1−p) w.r.t. the prior U(0, 1).

the Bayes estimator under the loss L(p, a) = (a− p)2 w.r.t. the prior 1
p(1−p) .

admissible under the weighted squared error loss,
admissible w.r.t the squared error loss,
UMVUE,
consistent,
efficient.

66



Proposition 1. Suppose that X ∼ bin(n, p). Then
(1) d(x) = x+α

n+α+β is the Bayes rule w.r.t. prior π(p) = cpα−1(1− p)β−1, and L(p, a) = (a− p)2;

and is admissible with respect to L(p, a) = (a− p)2, where α, β ≥ 0
(2) p̂ = X/n is the Bayes rule w.r.t. prior π(p) = cp−α−1(1 − p)−β−1 and L(p, a) = (a − p)2pα(1 − p)β ; and is
admissible w.r.t. L(p, a) = (a− p)2pα(1− p)β , where α, β ≥ −1.
Proof. (1) Since π(p) = cpα−1(1− p)β−1, π(p|x) ∼ “beta(x+ α, n− x+ β)”, as

fX|p(x|p)π(p) ∝ px+α−1(1− p)n−x+β−1.

The Bayes estimator is δ = E(p|X) = X+α
n+α+β . Since the conditions in Theorem 1 hold, δ is admissible.

(2) Notice that one is more interested in whether X/n is admissible. Under the loss
L(θ, a) = (a− θ)2pα(1− p)β , where α, β ≥ −1.

We have proved the special case of α = β ∈ {0, 1}.
Let π(p) = p−1−α(1− p)−1−β . Then π(p|x) ∝ p−1−α+x(1− p)−1−β+n−x, p ∈ (0, 1).

E(L(p, a)|X = x) ∝
∫ 1

0
((p− a)2pα(1− p)βp−1−α+x(1− p)−1−β+n−x)dp

=
∫ 1

0
(( p−a)2

p(1−p)p
x(1− p)n−x)dp.

It can be viewed as the case of squared error loss with the posterior 1/(p(1− p)), thus the Bayes estimator is X/n,
provided that we need to check that the posterior risk is finite if (α,X) = (−1, 0) or (β,X) = (−1, n).

E(L(p, a)|X = x) ∝
∫ 1

0
((p− a)2p−1+x(1− p)−1+n−x)dp.

12.3. Minimaxity.
Definition. A decision rule δ is called a minimax decision rule if

sup
θ∈Θ

R(θ, δ) = inf
d∈D

sup
θ∈Θ

R(θ, d), (1)

where D is the collection of all nonrandomized decision rule. A decision rule δ is an equalizer rule if R(θ, δ) is constant
in θ.

Two typical methods for determining a minimax decision rule are given in the next two theorems.
Theorem 2. If δ is a Bayes and equalizer rule, then it is minimax.
Theorem 3. If δ is admissible and is an equalizer rule, then it is minimax.
Proof of Theorem 3. Suppose that the equalizer rule δ is admissible.
⊢: If δ is not minimax then it leads to a contradiction.
By the 3 assumptions, ∃ a rule d such that supθ R(θ, d) < supθ R(θ, δ) (see (1)).
=> R(θ, d) ≤ supθ R(θ, d) < supθ R(θ, δ) = R(θ, δ) ∀ θ. =>

R(θ, d) < R(θ, δ) ∀ θ. (2)

Then δ is inadmissible, contradicting the assumption that it is admissible. The contradiction implies that δ is
minimax.
Proof of Theorem 2. Let δ be an equalizer Bayes rule w.r.t. the prior π.
⊢: If δ is not minimax, it leads to a contradiction.
By the 3 assumptions, ∃ a rule d such that Eq. (2) holds. It yields r(π, d) < r(π, δ) Why ??
contradicting the assumption that δ is the Bayes estimator w.r.t. π. The contradiction implies that δ is minimax.

Example 1. Suppose that X1, ..., Xn are i.i.d. from N(θ, σ2), show that the MLE of θ is minimax under the loss
L = (a− θ)2.

Proof. The MLE is θ̂ = X. It is admissible
and with constant risk σ2/n Why ??
Thus it is minimax by Theorem ? .
Remark. Under the set up in Example 1, the MLE θ̂ = X is UMVUE, consistent, efficient, admissible and minimax
(w.r.t. squared error loss).

Example 2. Suppose that X ∼ bin(n, p) and the loss function is L = (a−p)2

p(1−p) . Show that the MLE is minimax.

Proof. p̂ is the Bayes rule w.r.t the loss and the uniform prior. Moreover, R(p, p̂) = p(1−p)
np(1−p) = 1

n and thus it is an

equalizer rule. Consequently, it is minimax. .
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Remark. For bin(n, p), the MLE p̂ is UMVUE, consistent, efficient, and is admissible and minimax w.r.t loss
(p−a)2

p(1−p) . It yields the properties (7) and (8) of the edf.

Example 3. Suppose that X ∼ bin(n, p) and the loss function is L = (a− p)2, is the MLE p̂ minimax ?
Sol. ⊢: p̂ is not minimax.
In view of Th 2, try to find an equalizer rule of the form p̃ = aX + b, as p̂ is the same form.
R(θ, p̃) = V (p̃) + (bias(p̃))2

= V (aX + b) + (a(np) + b− p)2

= a2np(1− p) + (anp+ b− p)2 = −a2np2 + a2np+ b2 − 2pb(1− an) + p2(1− an)2

= p2 [−(a2n) + (1− an)2]
︸ ︷︷ ︸

=0

+p [(a2n)− 2b(1− an)]
︸ ︷︷ ︸

=0

+b2 = b2 (equalizer rule),

−(a2n) + (1− an)2 = 0
=> −(a2n) + 1− 2an+ (an)2 = 0
=> a2(−n+ n2)− 2an+ 1 = 0

=> a = 2n±
√
4n2+4n−4n2

2(−n+n2) = 2n±
√
4n

2(n2−n) = 1
n±√

n

(a2n)− 2b(1− an) = 0 yields b = 1
2

a2n
1−an

Thus b =
±
√

1/n

2(1±
√

1/n)
.

b =
−
√

1/n

2(1−
√

1/n)
=> p̃(0) = b < 0.

b =

√
1/n

2(1+
√

1/n)
=> p̃(0) = b > 0.

Which b to choose ?

a = 1/n

1+
√

1/n
and b =

√
1/n

2(1+
√

1/n)
, (3)

R(p, p̃) = b2 = 1/n

4(1+
√

1/n)2
< 1

4n = supp∈[0,1] R(p, p̂) = supp∈[0,1] p(1− p)/n.

Q: Can we say that p̂ is not minimax ??
Q: Can we say that p̃ = aX + b is minimax ?

In view of Th 2, need to know whether p̃ is Bayes.
Proposition 1. Suppose that X ∼ bin(n, p) and L(p, δ) = (δ − p)2. d(x) = x+α

n+α+β is Bayes estimator w.r.t.

beta(α, β) distribution (and is admissible) for all α, β > 0.
Corollary. Let α and β satisfy Eq. (3), a = 1

n+α+β and b = α
n+α+β . i.e., α = b/a and

β = ? Then d = aX + b = x+α
n+α+β is equalizer and is admissible and minimax.

Remark. For bin(n, p), the MLE p̂ is UMVUE, consistent, efficient, and is admissible w.r.t. loss (p−a)2pα(1−p)β ,

α, β ≥ −1, and and is minimax w.r.t loss (p−a)2

p(1−p) but not (p− a)2.

Homework Due Wednesday.
Review : 3 statistical inferences:

(1) point estimation, MLE, MME, Bayes, UMVUE, consistency, SLLN, CLT.
(2) testing hypothesis, NP, LRT test, size and level of a test.
(3) interval estimation. {θ ∈ I}. Pivotal method, LRT method.

Point estimation.
Let X1, ..., Xn be a random sample from F .

Recall that
(1) N(µ, σ2): fX(x) ∝ exp(

∑n
i=1 Xi

µ
σ2 −∑n

i=1 X
2
i

1
2σ2 )

(2) Gamma(α, β): fX ∝ exp(−∑n
i=1 Xi/β + (α− 1)

∑n
i=1 logXi)

(3) bin(1, p): fX ∝ exp(
∑n

i=1 Xi log
p

1−p )

(4) NB(r, p): fX ∝ exp(
∑n

i=1 Xi log(1− p))
∏n

j=1

(
r+Xj−1

Xj

)

(5) Pois(λ): fX ∝ exp(
∑n

i=1 Xi log λ)

The UMVUE of E(X) is µ̂ = X. Why ?
(6) beta(α, β): fX ∝ exp(

∑n
i=1(α−1) logXi+(β−1)

∑n
j=1 log(1−Xi)) The UMVUE of E(X) is E(X|logX, log(1−X)).

Why ?
(7) U(0, b): The UMVUE of E(X) is µ̂ = n+1

n X(n)/2, not X. Why ?
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A special case.
Let X ∼ Multi(n,p), p = (p1, ..., p5). fX(x) =

(
n

x1,x2,x3,x4,x5

)∏5
i=1 p

xi
i .

Does it belong to the exponential family ?
fX(x) =

(
n

x1,x2,x3,x4,x5

)
exp(

∑5
i=1 xilnpi)

What is the MSS of p ?
fX(x) =

(
n

x1,x2,x3,x4,x5

)
pn5 exp(

∑4
i=1 xiln(pi/p5)).

What is the UMVUE of p ? Why ?
A3. As in Example 10.3.4, with X ∼ Multinomial(n, p1, ..., p5). Set H0: p1 = p2 = p5 = 0.01, p3 = 0.5 v.s. H1: H0

is not true.
a. Derive the likelihood ratio test for n = 1 and n = 36 with level α = 0.05.
b. Give an estimate of P (Ho|H1) when p1 = p2 = p5 = 0.02, p3 = 0.4, n = 36, using simulation. Present the
program.
c. Compute (not estimate !) P (Ho|H1) when p1 = p2 = p5, p3 = 0.4, n = 1.

Sol. a. Two ways to describe X ∼ Multinomial(n, p1, ..., p5) when n = 1:
(1) X = (X1, X2, X3, X4, X5),

fX(x) = n!
x1!x2!x3!x4!x5!

px1
1 px2

2 px3
3 px4

4 px5
5 , ......??

(2) fY (y) = p
1(y=1)
1 p

1(y=2)
2 p

1(y=3)
3 p

1(y=4)
4 p

1(y=5)
5 =

{
p1 if y = 1
...
p5 if y = 5

(3)
y : 1 2 3 4 5

fY (y) : p1 p2 p3 p3 p5
.

Which is more convenient ?
If n = 1, LRT: φ = 1(λ ≤ c) with Ep(φ) ≤ 0.05, p under H0.

λ =







0.01
1 if X ∈ {1, 2, 5}

0.47
1 if X = 4

0.5
1 if X = 3

= 0.01X1+X2+X50.47X40.5X3

=> φ = 1(Y ∈ {1, 2, 5}) = 1(X1 +X2 +X5 = 1).

Details:
fX(x) = n!

x1!x2!x3!x4!x5!
px1
1 px2

2 px3
3 px4

4 px5
5 ,

p̂0 = (0.01, 0.01, 0.5, 0.47, 0.01),
p̂ = X/n (= (X1, X2, X3, X4, X5)/n) Why ?
Xi ∼ bin(n, pi),

If n = 1,

λ = 0.01X10.01X20.01X50.47X40.5X3

X
X1
1 X

X2
2 X

X3
3 X

X4
4 X

X5
5

= 0.01X1+X2+X50.47X40.5X3

φ = 1(λ ≤ c),
E(φ) = P (λ ≤ c) ≤ 0.05.

λ =

{
0.01 if X1 +X2 +X5 = 1
0.47 if X4 = 1
0.5 if X3 = 0.5

c = 0.05 ? 0.01 ? 0.02 ?

(If n = 36 ? ...... φ = 1(−2lnλ ≥ χ2
??,0.05.)

(3)

y : 1 2 3 4 5
fY (y) : p1 p2 p3 p3 p5
p̂o : 0.01 0.01 0.5 0.47 0.01
p̂i : 1(y = 1) 1(y = 2) 1(y = 3) 1(y = 4) 1(y = 5)
λ : 0.01 0.01 0.5 0.47 0.01

.

φ = 1(Y ∈ {1, 2, 5})
c.
P (H0|H1) = 1−P (Y ∈ {1, 2, 5}) = 1−P (X1+X2+X3 = 1) = 1−3p, p ∈ [0, 8

30 ], when p1 = p2 = p5 = p, p3 = 0.2.
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If do not impose p1 = p2 = p5, p3 = 0.4, P (H0|H1) = 1−P (Y ∈ {1, 2, 5}) = 1−p1−p2−p5, pi ≥ 0 and
∑5

i=1 pi = 1.
It is a function of (p1, ..., p5) under H1.
Interval estimation.

Q: The covarage probability and confidence coefficient of {θ ∈ I} ?
P (θ ∈ I), infθ P (θ ∈ I).

Let X1, ..., Xn be i.i.d. from N(µ, σ2).
The confidence interval for µ is X ± tα/2,n−1S/

√
n. I = ? θ= ? Its confidence coefficient ?

P (X − tα/2,n−1S/
√
n < µ < X + tα/2,n−1S/

√
n) = P (| X−µ

S/
√
n
| < tα/2,n−1) = 1− α.

Let X1, ..., Xn be i.i.d. from Exp(µ).
P (X − 1.96X/

√
n < µ < X + 1.96X/

√
n) ≈ 0.95 for given µ.

Does its confidence coefficient ≈ 0.95 ?
Not always.

P (X − 1.96X/
√
n < µ < X + 1.96X/

√
n) = P (Xµ (1− 1.96/

√
n) < 1 < X

µ (1 + 1.96/
√
n)) = P ( 1

1.96+1/
√
n
< X

µ <

1
1−1.96/

√
n
) = P ( n

1+1.96/
√
n
<

∑n

i=1
Xi

µ < n
1−1.96/

√
n
) =

∫ n
1−1.96/

√
n

n
1+1.96/

√
n

xn−1e−x

Γ(n) dx.

> n=100
> pgamma(n/(1-2/sqrt(n)),shape=n)- pgamma(n/(1+2/sqrt(n)),shape=n)
[1] 0.949306
Does its confidence coefficient ≈ 0.95 ?

Example 2. Suppose that X ∼ bin(n, p), n = 3. Observe X = 1. p̂± 1.96
√

p̂(1− p̂)/n yields 1
3 ± 1.96

√
2
27 . (a) Is

it a 95% CI for p ? (b) How about if X = 1 and n ≥ 20 ?
Sol. Confidence coefficient of CI = infp Pp(p ∈ I). ???
The CI is of the form

I =







0± 0 if X = 0
1
3 ± 1.96

√

2/27 if X = 1
2
3 ± 1.96

√

2/27 if X = 2
1± 0 if X = 3

=







[0, 0] if X = 0
[0, 1

3 + a] if X = 1
[ 23 − a, 1] if X = 2
[1, 1] if X = 3

(a ≈ 0.53).

1
3 − a < 0 < 2

3 − a < 1
3 + a < 1 < 2

3 + a.
The coverage probability is Pp(p ∈ I)

=







Pp(X = 0 or 1) if p = 0
Pp(X = 1) if p ∈ (0, 2

3 − a)
Pp(X = 1 or 2) if p ∈ [ 23 − a, 1

3 + a]
Pp(X = 2) if p ∈ ( 13 + a, 1)
Pp(X = 2 or 3) if p = 1

=







(1− p)3 if p = 0
3p(1− p)2 if p ∈ (0, 2

3 − a)
3p(1− p) if p ∈ [ 23 − a, 1

3 + a]
3p2(1− p) if p ∈ ( 13 + a, 1)
p3 if p = 1

Confidence coefficient of CI = infp Pp(p ⊂ I) = 0.

(b). The approximate 95% CI is I =







{0} if X = 0
1
n ± 1.96

√
n−1
n3 if X = 1

2
n ± 1.96

√
2(n−2)

n3 if X = 2
· · · · · ·

The coverage probability is

Pp(p ∈ I) =

{
Pp(X = 0 or 1, or ) if p = 0
Pp(X 6= 0 and X = 1, or...) if p ∈ (0, a), where a < 1
· · · · · ·

Confidence coefficient of the approximate 95% CI = infp Pp(p ⊂ I) = 0.
Does its confidence coefficient ≈ 0.95 ?

Homework solution.
Homework Solution Week 15

1. Answer the following questions:

F̂ (t) = 1
n

∑n
i=1 1(Xi ≤ t) = Y , where Yi = 1(Xi ≤ t)
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X1, ..., Xn are i.i.d. from Cauchy,

(A) E(X) = ?
0, ∞, DNE.

f(x) = (π(1 + (x)2))−1 and
∫∞
−∞ xf(x)dx = 0 as xf(x) is odd ??

Remark.
∫
g(x)dx exists =>

∫∞
t

|g(x)|dx < ∞ for all t.
∫∞
−∞ |x|f(x)dx = 2

π ln(1 + x2)|∞0 = ∞.

(B) X
a.s.−→µX ? (Yes, No, Not sure, explain).

No, as µX does not exist.

(C)
√
n(X − µX)

D−→N(0, τ2) ? (Yes, No, Not sure, explain).
No, as µX does not exist.

(D) F̂ (t)
a.s.−→F (t) ?

Yes, by SLLN, as E(F̂ (t)) = F (t).

(E)
√
n(F̂ (t)− F (t))

D−→N(0, F (t)(1− F (t))) ?
Yes. By CLT, as V (F̂ (t)) = F (t)(1− F (t))/n < ∞ and E(F̂ (t)) = F (t).

(f) σ2
F̂ (t)

= ?

F (t)(1− F (t))/n.
(g) σ̂2

F̂ (t)
= ?

F̂ (t)(1− F̂ (t))/n.
(H) σ̂2

F̂ (t)
→ 0 ?

Proof (1): Yes, as σ̂2
F̂ (t)

= F̂ (t)(1 − F̂ (t)) 1n
a.s.−→F (t) × (1 − F (t)) × 0 = 0 by the continuous mapping

theorem with g(x, z) = x(1− x)z. x, z = ? Is it OK ?

Proof (2): Yes, as |σ̂2
F̂ (t)

| = | F̂ (t)(1−F̂ (t))
n | ≤ 1

n → 0.

(I) nσ̂2
F̂ (t)

a.s.−→ ?

nσ̂2
F̂ (t)

a.s.−→(F (t)(1− F (t)), ...

as g(x) = x(1− x)) is cts and nσ̂2
F̂ (t)

= g(Y ), where Y = F̂ (t).

(J)
√
nn(σ̂2

F̂ (t)
− σ2

F̂ (t)
)

D−→ ?

Delta method: Let g(x) = x(1− x), then σ̂2
F̂ (t)

= 1
ng(F̂ (t)).

√
nn(σ̂2

F̂ (t)
− σ2

F̂ (t)
) =

√
n(g(F̂ (t))− g(F (t))).

√
n(g(F̂ (t))− g(F (t)))

D−→N(0, τ2), τ2 = (1− 2F (t))2F (t)(1− F (t)).
(K) E(σ̂2

F̂ (t)
) = ?

= E(F̂ (t)− (F̂ (t))2)/n = (F (t)− (F (t))2)/n ??
E(σ̂2

F̂ (t)
) = E(Y − (Y )2)/n

= (E(Y )− (σ2
Y
+ (E(Y ))2))/n

= 1
n (F (t)− (σ2

F̂ (t)
+ (E(F̂ (t))2)))

= 1
n [F (t)− ((F (t))2 + F (t)(1− F (t))/n)]

= 1
n [F (t)(1− F (t))(1 + 1/n)]

(l) V (σ̂2
F̂ (t)

) = ?

V (σ̂2
F̂ (t)

) = 1
n2V (Y − (Y )2)

= 1
n2 [V (Y ) + V ((Y )2)− 2(E((Y )3)− E(Y )E((Y )2))].

V ((Y )2) = E((Y )4)− (E((Y )2))2.
E((Y )2) = V (Y ) + (E(Y ))2=......

To compute E((Y )3), notice
Y = 1

n

∑n
i=1 Yi, Yi ∼ bin(1, p) and W =

∑n
i=1 Yi ∼ bin(n, p).

E((Y )3) = 1
n3E(W 3),
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MW (t) = E(eWt) = (E(eYit))n = (q + pet)n.
Consider either of these two methods:

(1) E(W 3) = d3MW (t)
dt3 |t=0.

(2) E(W (W − 1)(W − 2)) =
∑n

k=0 k(k − 1)(k − 2)
(
n
k

)
pkqn−k, ...

E(W (W − 1)(W − 2)) = E(W 3)− 3E(W 2) + 2E(W ).
∑n

k=0 k(k − 1)(k − 2)
(
n
k

)
pkqn−k

=
∑n

k=3 k(k − 1)(k − 2)
(
n
k

)
pkqn−k

=
∑n

k=3 n(n− 1)(n− 2) (n−3)!
(k−3)!p

kqn−k, ...

Similarly for E((Y )4).
E((Y )4) = 1

n4E(W (W − 1)(W − 2)(W − 3))− · · ·+ 6E(W )]

= 1
n4M

(4)
W (0)

= np
n4 [1− 7p+ 7np+ 12p2 − 18np2 + 6n2p2 − 6p3 + 11np3 − 6n2p3 + n3p3].

(m)
√
n(σ̂F̂ (t) − σF̂ (t))

D−→ ?
Ans. 0, as
√
n(σ̂F̂ (t) − σF̂ (t)) =

1√
n

√
n(

√

F̂ (t)(1− F̂ (t))−
√

F (t)(1− F (t))) = WnZn, where Wn = 1√
n
and

Zn =
√
n(

√

F̂ (t)(1− F̂ (t))−
√

F (t)(1− F (t)))

=
√
n(g(F̂ (t))− g(F (t)))

D−→N(0, τ2)
and g(x) =

√

x(1− x).
A3. As in Example 10.3.4, with X ∼ Multinomial(n, p1, ..., p5). Set

H0: p1 = p2 = p5 = 0.01, p3 = 0.5 v.s. H1: H0 is not true.
a. Derive the likelihood ratio test for n = 1 and n = 36 with level α = 0.05.
b. Give an estimate of P (Ho|H1) when p1 = p2 = p5 = 0.02, p3 = 0.4, n = 36, using simulation. Present
the program.
c. Compute (not estimate !) P (Ho|H1) when p1 = p2 = p5, p3 = 0.4, n = 1.

Sol. a. Two ways to describe X ∼ Multinomial(n, p1, ..., p5) when n = 1:
(1) X = (X1, X2, X3, X4, X5),

fX(x) = n!
x1!x2!x3!x4!x5!

px1
1 px2

2 px3
3 px4

4 px5
5 , ......??

(2) fY (y) = p
1(y=1)
1 p

1(y=2)
2 p

1(y=3)
3 p

1(y=4)
4 p

1(y=5)
5 =

{
p1 if y = 1
...
p5 if y = 5

(3)
y : 1 2 3 4 5

fY (y) : p1 p2 p3 p3 p5
.

Which is more convenient ?
If n = 1, LRT: φ = 1(λ ≤ c) with Ep(φ) ≤ 0.05, p under H0.

λ =







0.01
1 if Y ∈ {1, 2, 5}

0.47
1 if Y = 4

0.5
1 if Y = 3

= 0.01X1+X2+X50.47X40.5X3

=> φ = 1(Y ∈ {1, 2, 5}) = 1(X1 +X2 +X5 = 1).

Details:
fX(x) = n!

x1!x2!x3!x4!x5!
px1
1 px2

2 px3
3 px4

4 px5
5 ,

p̂0 = (0.01, 0.01, 0.5, 0.47, 0.01),
p̂ = X/n (= (X1, X2, X3, X4, X5)/n) Why ?
Xi ∼ bin(n, pi),

If n = 1,

λ = 0.01X10.01X20.01X50.47X40.5X3

X
X1
1 X

X2
2 X

X3
3 X

X4
4 X

X5
5

= 0.01X1+X2+X50.47X40.5X3

φ = 1(λ ≤ c),
E(φ) = P (λ ≤ c) ≤ 0.05.
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λ =

{
0.01 if X1 +X2 +X5 = 1
0.47 if X4 = 1
0.5 if X3 = 1

c = 0.05 ? 0.01 ? 0.02 ?

(If n = 36 ? ...... φ = 1(−2lnλ ≥ χ2
??,0.05.)

(3)

y : 1 2 3 4 5
fY (y) : p1 p2 p3 p3 p5
p̂o : 0.01 0.01 0.5 0.47 0.01
p̂i : 1(y = 1) 1(y = 2) 1(y = 3) 1(y = 4) 1(y = 5)
λ : 0.01 0.01 0.5 0.47 0.01

.

φ = 1(Y ∈ {1, 2, 5})
c.
P (H0|H1) = 1− P (Y ∈ {1, 2, 5}) = 1− P (X1 +X2 +X5 = 1)

= 1− 3p, p ∈ [0, 6
30 ], when p1 = p2 = p5 = p, p3 = 0.4.

If do not impose p1 = p2 = p5, p3 = 0.4,
P (H0|H1) = 1− P (Y ∈ {1, 2, 5}) = 1− p1 − p2 − p5, pi ≥ 0 and

∑5
i=1 pi = 1.

It is a function of (p1, ..., p5) under H1.

b. How to get one sample (X1, X2, X3) ∼ Muiltnomial(7, p1, p2, p3) ?

p=c(1,4,5)/10

x=rmultinom(1,7,p)

x[,]

[1] 0 6 1

How to get 20 samples (X1, X2, X3) ∼ Muiltnomial(100, p1, p2, p3) ?

x=rmultinom(20,100,p)

x[,1] = ?

Dimension of x ?
P̂ (H0|H1) = ? by simulation:

Choose one p under H1, generate data and do the LRT test. Repeat 20+ and get the average.

In your report of simulation, report the value of the parameters and sufficient statistics.

3. In each of the cases in the three problems (40, 41, 48), generate a sample of size 100 and construct the
specified 95% CI in the problems. You should state your assumption and give the sufficient statistic.

?rnbinom

?rpois

?rmultinom

10.48. Let Ui (= (Xi, Yi))’s be i.i.d. from N(~µ,Σ),
where (µ,Σ) are parameters. CI for θ = µx/µy ?
Sol. Two ways: (1) MLE, (2) Z = X − θY .

(1) MLE: The MLE of the parameters are (µ̂, Σ̂), where µ̂ = (X,Y ) and Σ̂ = U′U−U
′
U.

The MLE of θ is θ̂ = X

Y
(= g(U), where g(x, y) = x/y).

▽g = (1/y,−x/y2)

σ̂2 = (1/Y ,−X/Y )Σ̂(1/Y ,−X/Y )t/n. Thus, the CI of θ is θ̂ ± 1.96
√
σ̂2.

(2) Since Zi’s are i.i.d. from N(0, σ2), as E(Z) = µx − θµy = 0.

T = Z
SZ/

√
n
= Z

σ̂Z/
√
n−1

∼ tn−1 distribution.

Solve θ for Z
σ̂Z/

√
n−1

= tn−1,α/2.

Z = X − θY and

σ̂2
Z = Z2 − (Z)2 = σ̂2

X − 2θ(XY −X · Y ) + θ2σ̂2
Y (1)

(X − θY )2 = (tn−1,α/2)
2(σ̂2

X − 2θ(XY −X · Y ) + θ2σ̂2
Y )/(n− 1)

This gives the endpoints of the CI for θ.
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(3) From −tn−1,α/2σ̂Z/
√
n− 1 ≤ X − θY ≤ tn−1,α/2σ̂Z/

√
n− 1 yields

X

Y
− tn−1,α/2σ̂Z/

√
n− 1

Y
≤ θ ≤ X

Y
+

tn−1,α/2σ̂Z/
√
n− 1

Y

Is this a CI for θ ? (see Eq. (1)).
In report of your simulation, report the value of (µ,Σ) and (U, Σ̂).
2. Prove statement (11): The edf F̂ is inadmissible w.r.t the loss function

L(F, a) =

∫

(F (t)− a(t))2dF (t)

and the parameter space being the collection of all continuous cdfs (Aggarwal (1955)). Hint: F̂ is of
the form

d(t) =

n∑

i=0

ai1(X(i) ≤ t < X(i+1)) (1)

where X0 = −∞, X(1) < · · · < X(n) are order statistics of Xis and X(n+1) = ∞. Compute R(F, d) and
find the one that minimizes R(F, d) over all possible d(·) as in Eq. (1). You can try n = 1 first.

11. F̂ is inadmissible w.r.t the loss function

L(F, a) =

∫

(F (t)− a(t))2dF (t)

and the parameter space being the collection of all continuous cdfs (Aggarwal (1955)).
Prove statement (11). Hint: F̂ is of the form

d(t) =

n∑

i=0

ai1(X(i) ≤ t < X(i+1)) (2)

where X0 = −∞, X(1) < · · · < X(n) are order statistics of Xis and X(n+1) = ∞. Compute R(F, d) and find
the one that minimizes R(F, d) over all possible d(·). You can try n = 1 first.
Proof of Part 11. Consider n = 1 first. F̂ is of the form d(t) = a+ b1(X ≤ t) or

d(t) = a01(t < X) + a11(X ≤ t) (1)

R(F, d) =E(

∫

(d(t)− F (t)2dF (t))

=E(

∫

(a01(t < x) + a11(x ≤ t)− F (t))2dF (t))

=

∫ ∫

(a01(t < x) + a11(x ≤ t)− F (t))2dF (t)dF (x)

=

∫ ∫

(a01(t < x) + a11(x ≤ t)− F (t))2dF (x)dF (t)

=

∫ 1

0

∫ 1

0

(a01(u < y) + a11(y ≤ u)− u)2dydu (y = F (x), u = F (t))

=

∫ 1

0

∫ 1

0

(a01(u < y)− u)2dy +

∫ 1

0

(a11(y ≤ u)− u)2dydu

=

∫ 1

0

∫ 1

u

(a0 − u)2dy +

∫ u

0

(a1 − u)2dydu

=

∫ 1

0

(1− u)(a0 − u)2 + u(a1 − u)2du
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Now try to minimize the risk of this form. Taking derivatives w.r.t. a0 and a1 yields

0 =
∫ 1

0
(1− u)(a0 − u)du and 0 =

∫ 1

0
u(a1 − u)du. Thus

a0 =

∫ 1

0

(1− u)udu/

∫ 1

0

(1− u)du =
B(2, 2)

B(1, 2)
=

Γ(2)Γ(2)

Γ(2 + 2)

Γ(1 + 2)

Γ(1)Γ(2)
= 1/3

a1 =

∫ 1

0

u2du/

∫ 1

0

udu = B(3, 1)/B(2, 1) = 2/3

One can verify that (a0, a1) uniquely minimizes R(F, d) of the form (1), thus F̂ is inadmissible.
For arbitrary n,

d(t) =

n∑

i=0

ai1(X(i) ≤ t < X(i+1)) (2)

where X0 = −∞, X(1) < · · · < X(n) are order statistics of Xis and X(n+1) = ∞.

R(F, d) = E(

∫

(d(t)− F (t)2dF (t))

=E(

∫

(

n∑

i=0

ai1(X(i) ≤ t < X(i+1))− F (t))2dF (t))

=

n∑

i=0

E(

∫

(ai1(X(i) ≤ t < X(i+1))− F (t))2dF (t))

=n!

n∑

i=0

∫ ∫

· · ·
∫

(ai1(x(i) ≤ t < x(i+1))− F (t))2dF (t)dF (x1) · · · dF (xn)

=n!

n∑

i=0

∫ ∫

· · ·
∫

x1<···<xi≤t<xi+1<···xn

(ai − F (t))2dF (t)dF (x1) · · · dF (xn)

=n!
n∑

i=0

∫

· · ·
∫

0<x1<···<xi≤t<xi+1<···xn<1

∫ 1

0

(ai − u)2dtdx1 · · · dxn

=n!

n∑

i=0

∫ 1

0

∫

· · ·
∫

0<x1<···<xi≤t<xi+1<···xn<1

(ai − t)2dx1 · · · dxndt

=
n∑

i=0

(
n

i

)∫ 1

0

ti(1− t)n−i(ai − t)2dt

Taking derivatives w.r.t. ai and setting it to be zero yield

∫ 1

0

ti(1− t)n−i(ai − t)dt = 0

ai = B(i+ 2, n− i+ 1)/B(i+ 1, n− i+ 1)

It can shown that ai = i+1
n+2 uniquely minimizes R(F, d) for form (2). Since F̂ is of form d and F̂ =

∑n
i=1

i
n1(X(i) ≤ t < X(i+1)). F̂ is inadmissible. .

Homework solutions for week 1
5.14. Let Zi’s be i.i.d. N(0, 1) and Xj = σjZj + µj . Suppose that

0 = Cov(
∑n

j=1 aijZj ,
∑n

j=1 brjZj) =>
∑n

j=1 aijZj ⊥
∑n

j=1 brjZj),
then

0 = Cov(
∑n

j=1 aijXj ,
∑n

j=1 brjXj) =>
∑n

j=1 aijXj ⊥
∑n

j=1 brjXj).
Sol. Notice that (1) Cov(αX + a, βY + b) = αβCov(X,Y ) and
(2) (

∑n
j=1 aijXj ,

∑n
j=1 brjXj)
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= (
∑n

j=1 aij(σjZj + µj),
∑n

j=1 brj(σjZj + µj))

= (
∑n

j=1 αijZj +
n∑

j=1

aijµj

︸ ︷︷ ︸

constant

,
∑n

j=1 βrjZj +
n∑

j=1

brjµj)

︸ ︷︷ ︸

constant

.

Thus it suffices to show that
∑n

j=1 αijZj ⊥
∑n

j=1 βrjZj .

Now 0 = Cov(
∑n

j=1 aijZj ,
∑n

j=1 brjZj) =
∑n

j=1 aijbrj and

0 = Cov(
∑n

j=1 aijXj ,
∑n

j=1 brjXj)

= Cov(
∑n

j=1 aij(σjZj + µj),
∑n

j=1 brj(σjZj + µj))

= Cov(
∑n

j=1 aijσjZj ,
∑n

j=1 brjσjZj)

= Cov(
∑n

j=1 αijZj ,
∑n

j=1 βrjZj).

Thus
∑n

j=1 αijZj ⊥
∑n

j=1 βrjZj .

=>
∑n

j=1 aijXj ⊥
∑n

j=1 brjXj .

5.38. (b) Let Xi’s be i.i.d. ∼ X. Write S = Sn =
∑n

i=1 Xi. Show that if E(X) < 0 then there is a c ∈ (0, 1)
with P (Sn > a) ≤ cn.
Sol. Counterexample. Let X ∼ U(−1, 0), a = −2 and n = 1,

then P (Sn > a) = 1 6< cn, ∀ c ∈ (0, 1).
Correction.
MX(t) = MX(0) +M ′

X(ξ)t (where ξ ∈ [0, 1])
≈ 1 + tE(X) < 1 (if t ≈ 0+) Why ??
P (S > a) ≤ e−atMS(t) if t > 0,

= e−at(MX(t))n = (MX(t)
eat/n )n = cn, where c = MX(t)

eat/n ∈ (0, 1) and t ≈ 0+,

which is possible if a ≥ 0 or 0 > a > t
n log(MX(t)) and t ≈ 0+.

5.42. (a) Xi ∼ beta(1, β), ν =? so that nν(1−X(n))
D→ some Y .

(b) If Xi ∼ Exp(1), find a sequence an so that X(n) − an
D→ some Y .

Sol. 1. Yn → Y if limn→∞ Yn(ω) = Y (ω) ∀ ω ∈ Ω (the sample space).

2. Yn
a.s.→Y if P ({|Yn − Y | → 0}) = 1

3. Yn
P→Y if limn→∞ P (|Yn − Y | ≥ ǫ) = 0 ∀ ǫ > 0.

4. Yn
D→Y if limn→∞ FYn

(t) = FY (t) for each cts point t of FY .

(b) P (X(n) − an ≤ t) = P (X(n) ≤ t+ an) = (1− e−(t+an))n = (1− e−t

ean )
n = (1− e−t

n )n → e−e−t

= FY (t), if
ean = n. Any restriction on t ?

(a) P (nν(1−X(n)) ≤ t) = ...... or

P (nν(1−X(n)) > t) = P (X(n) < 1−t/nν) = {1−[1−(1−t/nν)]β}n = (1−(t/nν)β)n = (1− tβ

nνβ )
n → e−tβ

if t > 0 Why ? and ν = 1/β.

Fnν(1−X(n))(t)
D−→FY (t) = 1(t ≥ 0)(1− e−tβ ) ??

nν(1−X(n))
D−→Y (Weibull distribution) ??

5.43. Proof of the Delta method.
√
n(g(X)− g(µ))

D−→N(0, σ2
X(g′(µ))2) if

(1) µ = E(X),
(2) g′ is continuous at µ and
(3) g′(µ) 6= 0.
Proof.

√
n(g(X)− g(µ)) =

√
ng′(µ)(X − µ) ?√

n(g(X)− g(µ)) =
√
ng′(µ)(X − µ) +R (R = remainder = op(X − µ)) ?√

n(g(X)− g(µ)) = g′(ξ)
√
n(X − µ), where ξ is between µ and X ?

Q: Is ξ random ?
∀ ǫ > 0, ∃ δ > 0 such that |g′(Xn)− g′(µ)| ≤ ǫ whenever |Xn − µ| ≤ δ.
{|g′(Xn)− g′(µ)| ≤ ǫ} ⊃ {|Xn − µ| ≤ δ}.
{|g′(ξ)− g′(µ)| ≤ ǫ} ⊃ {|ξ − µ| ≤ δ} ⊃ {|Xn − µ| ≤ δ}.

P (|g′(ξ)− g′(µ)| > ǫ) ≤ P (|X − µ| > δ) → 0 ∀ ǫ > 0.
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P (|g′(ξ)− g′(µ)| ≥ ǫ) ≤ P (|X − µ| ≥ δ) → 0 ∀ ǫ > 0.

=> g′(ξ)
P−→g′(µ).

√
n(g(X)− g(µ)) = g′(ξ)

√
n(X − µ)

D−→g′(µ)Z
︸ ︷︷ ︸

YnZn
D−→yZ

, where Z ∼ N(0, σ2
X).

g′(µ)Z ∼ N(0, σ2
X(g′(µ))2).

Q:
√
n(X − µ)

D−→N(0, σ2) =>
√
nX

D−→N(
√
nµ, σ2) ???

5.44. ⊢: If p = 0.5, n(Yn(1− Yn)− 0.25)
D−→−1

4 χ2
1.

Proof. Let g(Yn) = Yn(1− Yn),

n(g(Yn)− g(0.5)) = −(
√
n(Yn − 0.5))2 = −0.52(

√
nYn−0.5

0.5 )2.

Extra Question: If Zn
D−→Z ∼ N(0, 1), how to show Z2

n
D−→χ2

1 ?

FZ2
n
(t) = P (Z2

n ≤ t) = P (−
√
t ≤ Zn ≤

√
t)

→ P (−
√
t ≤ Z ≤

√
t) = P (Z2 ≤ t) = FZ2(t)

=> Z2
n → χ2

1 ??

Additional problem. ⊢: If Xn
a.s.−→X and g is continuous, then g(Xn)

a.s.−→g(X).

Proof. Q: Which proof is correct ??

1. Since {Xn → X} ⊂ {g(Xn) → g(X)},
1 = P ({Xn → X}) ≤ P ({g(Xn) → g(X)}) ≤ 1.

2. ∀ ǫ > 0, ∃ δ > 0 such that |g(Xn) − g(X)| < ǫ whenever |Xn −X| ≤ δ. Thus {|g(Xn) − g(X)| < ǫ} ⊃
{|Xn −X| ≤ δ}.

=> P (|g(Xn)− g(X)| < ǫ) ≥ P (|Xn −X| ≤ δ) → 1.
=> P (|g(Xn)− g(X)| < ǫ) → 1 ∀ ǫ > 0.

=>

{

g(Xn)
a.s.−→g(X) ???

g(Xn)
P−→g(X) ???

Remark. P (|Xn −X| ≥ ǫ) → 0 ∀ ǫ > 0 iff P (|Xn −X| ≤ ǫ) → 1 ∀ ǫ > 0.

P (Xn → X) = P (|Xn −X| → 0)

Additional problem. ⊢: If Xn
P−→X and g is continuous, then g(Xn)

P−→g(X).

Proof. Q: Which proof is correct ??

1. ∀ ǫ > 0, ∃ δ > 0 such that |g(Xn) − g(X)| < ǫ whenever |Xn −X| ≤ δ. Thus {|g(Xn) − g(X)| < ǫ} ⊃
{|Xn −X| ≤ δ}.

=> P (|g(Xn)− g(X)| < ǫ) ≥ P (|Xn −X| ≤ δ) → 1.
=> P (|g(Xn)− g(X)| < ǫ) → 1 ∀ ǫ > 0.
=> P (|g(Xn)− g(X)| ≥ ǫ) → 0 ∀ ǫ > 0.

=> g(Xn)
P−→g(X).

2. Since X is a r.v., ∀ η > 0, ∃ a > 0 such that P (|X| > a) < η.

∀ ǫ > 0, ∃ δ > 0 such that |g(Xn) − g(X)| < ǫ whenever |Xn −X| ≤ δ and |X| ≤ a. Thus {|g(Xn) −
g(X)| < ǫ} ⊃ {|Xn −X| ≤ δ, |X| ≤ a}.

=> P (|g(Xn)− g(X)| < ǫ) ≥ P (|Xn −X| ≤ δ)− η ∀ ǫ, η > 0.
=> P (|g(Xn)− g(X)| < ǫ) → 1− η ∀ ǫ, η > 0.
=> P (|g(Xn)− g(X)| < ǫ) → 1 letting η → 0.
=> P (|g(Xn)− g(X)| ≥ ǫ) → 0 ∀ ǫ > 0.

=> g(Xn)
P−→g(X).

Remark. P (|Xn −X| ≥ ǫ) → 0 ∀ ǫ > 0 iff P (|Xn −X| ≤ ǫ) → 1 ∀ ǫ > 0.

P (Xn → X) = P (|Xn −X| → 0)

9.17. CI for θ based on X1, ..., Xn. (a) f(x; θ) = 1(x− θ ∈ (−0.5, 0.5)). (b) F (X; θ) = 2x2/θ21(x ∈ (0, θ)).

Sol. (a) The MSS of θ is (X(1), X(n)),
as fX(x) = 1(X(1) > θ − 0.5, X(n) < θ + 0.5).

T = X(n) − θ is a pivotal.

FT (t) = (t+ 0.5)n1(t ∈ −0.5, 0.5) + 1(t ≥ 0.5).
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fT (t) = n(t+ 0.5)n−1, t ∈ (−0.5, 0.5), with mode at 0.5.

Choose b = 0.5 and (a+ 0.5)n = α. That is, a = (α)
1
n − 0.5.

a ≤ X(n) − θ ≤ 0.5

X(n) − 0.5 ≤ θ ≤ X(n) − (α)
1
n + 0.5.

Question: Can we choose (FT (b), FT (a)) = (1− α/2, α/2) ?

(b) X(n) is the MSS. T = X(n)/θ is a pivatol.
FT (t) = (t)2n1(t ∈ (0, 1).
fT (t) = 2nt2n−1, t ∈ (0, 1).

Choose b = 1 and FT (a) = a2n = α. => a = α
1
2n .

a ≤ X(n)/θ ≤ 1

X(n) ≤ θ ≤ X(n)/α
1
2n .

Additional. before Chapter 9
(b) Redo the folllowing problem and compute P (H0|H1) explicitly:
Carry out the following simulation project.
1.b.1. Use R to generate 5 observations from N(1, 1). Now pretend that you only known that the data
were from N(µ, σ) without knowing µ and σ, use t-test to test H0: µ = 0

︸︷︷︸

=µo

v.s. H1: µ 6= 0 with a size

0.1.

Sol. The LRT test is φ = 1(|T | > tn−1,0.05), where T = X−µo

S/
√
n

(see Ex 3 in §8.2)
Since X ∼ N(1, 1),

X ∼ N(1, 1/
√
5),

4S2 ∼ χ2(4) = Gamma(2, 2),
X ⊥ S2.
fS2(t) = 1

4
(t/4
22 e−t/8, t > 0.

P (H0|H1) = P (T ∈ [−t4,0.05, t4,0.05])
= P (X ∈ [−t4,0.05S/

√
5, t4,0.05S/

√
5])

=
∫∞
0

∫ t4,0.05
√

y/5

−t4,0.05
√

y/5
fX(x)fS2(y)dydx

=
∫ t4,0.05
−t4,0.05

fT (y)dy where fT is given in #8.35(b)

X−µo

S/
√
n

is called non-central t-distribution with parameter µ and df n− 1.

It can be obtained numericall in R:
> n=5
> df =n-1
> sigma=1
> mu=1
> ncp = mu * sqrt(n)/sigma #ncp = (µ− µo)

√
n/σ.

> q=qt(0.05, df, ncp=0, lower.tail = F)
> b=pt(q, df, ncp, lower.tail = TRUE)
> a=pt(-q, df, ncp, lower.tail = TRUE)
> b-a
[1] 0.4200955 # = P (H0|H1)
> z=0
> m=10000
> for (i in 1:m) {
+ x=rnorm(n)+mu
+ y=t.test(x)
+ z=z+as.numeric(y$p.value > 0.1)
+ }
> z/m
[1] 0.4189 # = P̂ (H0|H1)
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[1] 0.4156 # = P̂ (H0|H1)
For m = 100, it results 0.36, 0.43, 0.44, 0.53, ...

Recall the SLLN. X → E(X) a.s. Xi= ??
For submitting homework in simulation,

1. Put the command in a file called hw8.r

2. R −−vanilla < hw8.r > output8

3. Edit the file called output8 by answering the question in the problem.

4. mail qyu@math.binghamton.edu < output8

A.1. Discuss whether the following solutions are correct for

7.12. Compare the MLE θ̂ = min{X, 1/2} and the MME θ̃ = X.

Sol (1). MSE(θ̂) =

{

E((X − θ)2) if θ̂ = X

E((θ − 1/2)2) if θ̂ = 1/2
=

{

θ(1− θ)/n if θ̂ = X

(θ − 1/2)2 if θ̂ = 1/2

MSE(θ̂)−MSE(θ̃) =

{

0 if θ̂ = X
(θ − 1/2)2 − θ(1− θ)/n if θ̂ = 1/2

{
> 0 if θ = 0
< 0 if θ = 1/2
... otherwise

Thus none of them is better than the other in terms of MSE.

Sol (2). MSE(θ̃) = θ(1−θ)
n =

∑n
i=0(

i
n − θ)2

(
n
i

)
θi(1− θ)n−i.

MSE(θ̂) =
∑

i≤n/2(
i
n − θ)2

(
n
i

)
θi(1− θ)n−i +

∑

i>n/2(
1
2 − θ)2

(
n
i

)
θi(1− θ)n−i.

MSE(θ̂)−MSE(θ̃) =
∑

i>n/2

[(
1

2
− θ)2 − (

i

n
− θ)2]

(
n

i

)

θi(1− θ)n−i

{
= 0 if θ = 0
< 0 if θ ∈ (0, 1/2]

Thus the MLE is better than the MME in terms of MSE.

Answer:

MSE(θ̂) =

{

E((X − θ)2) if θ̂ = X

E((θ − 1/2)2) if θ̂ = 1/2
(1)

Comment: Eq.(1) => E((θ̂ − θ)2) is a random variable. This is wrong !

E((θ̂ − θ)2) is a function of θ.

e.g. if X ∼ N(µ, 1), then E(X) = µ is not a random variable.

E(X) =







µ if X ∈ A (a set)
2 if µ = 2
µ if θ = 2
2 if θ = µ = 2

A.2. Question related to #7.14. Recall W ∼ bin(1, p), with df. f(t) = P (W = t) =

{
p if t = 1
q if t = 0

. Answer

the following questions:
f(t) = p if t = 1. Yes, No ?
f(t) = p if W = 1. Yes, No ?
P (W = t) = p if W = 1. Yes, No ?
P (W = t) = p if t = 1. Yes, No ?
P ({ω ∈ Ω : W (ω) = t}) = P (W = t) = p if W = 1. Yes, No ?
P ({ω ∈ Ω : W (ω) = t}) = P (W = t) = p if t = 1. Yes, No ?

Notice that Z =
{
X if W = 1
Y if W = 0.

P (Z ≤ t) = 1− P (Z > t) = 1− P (X > t, Y > t) = 1− P (X > t)P (Y > t).

P (Z ≤ t,W = a) = P (X ≤ t,W = 1) if a = 1 Yes, No ?

P (Z ≤ t,W = a) = P (X ≤ t,W = 1) if W = 1 Yes, No ?

P (Z ≤ t,W = a) = P (X ≤ 1,W = 1) if t = 1 = a Yes, No ?
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P (Z ≤ t,W = a) = P (X ≤ t,W = 1) if Z = X Yes, No ?

Answer: f(t) = P (W = t) = P (ω ∈ Ω : W (ω) = t) =

{
p if t = 1
q if t = 0

is not a random variable, but a

function of t.

f(t) =







q if t = 0
f(t) if W = 1
f(t) if ω = 1
f(x) if t = x
f(t) if a = 1

A.3. What is the connection between A.1 and A.2 ?
Given random variable X,
E(X) and P (X ∈ A) are constant, not random variables.
They do not change accoring to values of X, as in
Sol(1) in A.1 and the statement “f(t) = 0 if W = 1”.
Homework Solution

6.9b. Find MSS for θ, where f(x; θ) = e−(x−θ), x > θ.
Sol. Two solutions:
1. fX(x) =

∏n
i=1 e

−xi+θ1(xi > θ)

= e−nxenθ1(x(1) > θ).
T = X(1) is MSS, as

fX(x)

fX(y)
= e−n(x−y)1(x(1) > θ)

1(y(1) > θ)
is independent of θ iff x(1) = y(1). (1)

2. fX(x) =
∏n

i=1 e
−xi+θ1(xi > θ).

T (X) = X is MSS, as

fX(x)

fX(y)
=

∏n
i=1 e

−xi+θ1(xi > θ)
∏n

i=1 e
−yi+θ1(yi > θ)

is independent of θ iff x = y. (2)

Anything Wrong ??

Eq. (1) is correct, but needs justification as follows.
If x(1) = y(1) then

fX(x)/fX(y) = e−n(x−y)1(x(1)>θ)

1(y(1)>θ)
= e−n(x−y) is independent of θ. OW,

fX(x)

fX(y)
= e−n(x−y)1(x(1) > θ)

1(y(1) > θ)
=

{

e−n(x−y) > 0 if θ = [x(1) ∧ y(1)]− 1

∞1(y(1) < x(1)) if θ =
x(1)+y(1)

2

where 0×∞ = 0 and 0
0 = 1, 1

0 = ∞.
Eq. (2) is incorrect and a counterexample is as follows.

fX(x)/fX(y) = e−n(x−y)1(x(1)>θ)

1(y(1)>θ)
= e−n(x−y) is independent of θ if x(1) = y(1) and x(2) = y(2) + 1 and

thus if x 6= y.
Thus X is not a MSS.

# 6.9. (c) Let X1, ..., Xn ∼ f(x− θ), where f(x− θ) = exp(−(x−θ))
(1+exp(−(x−θ)))2 . Show

T = (X(1), ..., X(n)) is MSS.
Proof. WLOG, assume x1 < · · · < xn and y1 < · · · < yn.∏n

i=1 f(xi; θ) = exp(−∑n
i=1 xi + nθ)

∏n
i=1(1 + exp(−(xi − θ)))−2

Since
∏n

i=1 f(xi; θ)/f(yi; θ) = en(y−x)
∏n

i=1
(1+exp(−(y(i)−θ)))2

(1+exp(−(x(i)−θ)))2
∏n

i=1 f(xi; θ)/f(yi; θ) does not depend on θ iff x(i) = y(i) i ∈ {1, ..., n} Done ?
Need a proof !
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∏n
i=1 f(x(i); θ)/f(y(i); θ) = c;

iff
∏n

i=1
(1+exp(−(y(i)−θ)))2

(1+exp(−(x(i)−θ)))2 = c;

iff
∏n

i=1
(1+exp(−(y(i)−θ)))

(1+exp(−(x(i)−θ))) =
√
c ∀ θ;

iff
∏n

i=1
1+exp(−y(i))e

θ

1+exp(−x(i))eθ
=

√
c ∀ θ;

iff
∏n

i=1
(exp(y(i))+eθ)

(exp(x(i))+eθ)
= exp(ny − nx)

√
c = a ∀ θ;

(a = limθ→∞
∏n

i=1
y(i)+θ

x(i)+θ = 1, where (ti = exi , si = eyi , η = eθ));

iff
∏n

i=1
s(i)+η

t(i)+η = 1 ∀ η, si, ti > 0;

iff
∏n

i=1(s(i) + η) =
∏n

i=1(t(i) + η) ∀ η, si, ti > 0
(both are polynomial of degree n in η);

iff t(i) = s(i) ∀ i; iff x(i) = y(i) ∀ i.
Previous proofs make use of two results in complex analysis:
(1)

∑n
i=0 aix

i =
∑n

i=0 bix
i iff ai = bi for all i.

(2)
∑n

i=0 aix
i = c

∏n
i=1(x− ci), where c1, ..., cn, c ares uniquely determined complex numbers.

Additional homework.
A1. Let X ∼ N(0, 1),

W ∼ bin(2, 0.1),
Y ∼ bin(1, 0.5).
X, W and Y are independent.

Z =
{
X if Y = 1
W if Y = 0.

P (Z ≤ t) = P (X ≤ t, Y = 1) + P (W ≤ t, Y = 0) if Y = 1. Yes, No ?

P (Z ≤ t, Y = a) =

{
P (X ≤ t, Y = 1) if a = 1
P (W ≤ t, Y = 0) if a = 0

Y es,No?

= P (X ≤ t, Y = a = 1) + P (W ≤ t, Y = a = 0) Yes, No ?
P (Z ≤ t, Y = a) 6= P (X ≤ t, Y = 1) if Y = 1. Yes, No ?
P (Z ≤ t, Y = a) = P (X ≤ t, Y = 1) if a = 1. Yes, No ?
Are statements 3 and 4 equivalent ? Yes, No.
3. {w : w ∈ (0, 3)} if w > 2
4. {w : w ∈ (0, 3), w > 2}
Are the sets in 3 and 7 the same ? Yes, No.
7. {u : u ∈ (0, 3)} if t > 2
Are the sets in 3 and 8 the same ? Yes, No.
8. {x : x ∈ (0, t)} if t = 3
9. P (Z ≤ t) = P (ω : Z(ω) ≤ t) = P (ω : X(ω) ≤ t) if Y = 1. Yes, No ?

# 6.5. X1, ..., Xn are independent. fXi
(x) =

1(x∈(−i(θ−1),i(θ+1)))

2iθ . A two-dimensional sufficient statistic for θ ?
Sol.

L(θ) =[

n∏

i=1

1

2iθ
]1(Xi∈(−i(θ−1),i(θ+1))): i∈{1,...,n})

=[

n∏

i=1

1

2iθ
]1

(
Xi
i ∈(−(θ−1),(θ+1))): i∈{1,...,n})

=[

n∏

i=1

1

2iθ
]1

(
Xi
i −1∈(−θ,θ)): i∈{1,...,n})

=[
n∏

i=1

1

2iθ
]1

(maxi |Xi
i −1|∈(0,θ)))

Thus T = (maxi |Xi

i − 1|, 0). In fact, maxi |Xi

i − 1| is MSS for θ.
Solution to Additional Homework.
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# 6.8. Let X1, ..., Xn be i.i.d. ∼ f(x− θ), where f(·) is a df. Show T = (X(1), ..., X(n)) is MSS.
Sol. Discuss whether the following two solutions are correct (give your reasoning).
Solution 1. Let f = 1

2 exp(−|x|), then it is shown in Exercise 6.9.e that T is MSS for f(t− θ).
Solution 2. The statement is a wrong statement. It suffices to give a counterexample as follows.
Let Xi ∼ N(θ, 1), then Xi ∼ f(x − θ) with f(x) = 1√

2π
exp(−x2/2). An MSS is X, T is not a function of

X. Thus T is not MSS.
Correct solution. There are two interpretations of the problem.
(1) Only θ is a parameter, though f is an arbitrary given density. (T is MSS for θ).
(2) Both f and θ are parameters. (T is MSS for (f, θ)).

In case (1), it is a wrong statement. Thus Solution 2 but not 1 is correct.
In case (2), it is a correct statement. Thus Solution 1 but not 2 is correct.

It suffices to show that given T (x) 6= T (y), we can find (f1, θ1) and (f2, θ2) such that

∏n

i=1
f1(x(i)−θ1)

∏n

i=1
f1(y(i)−θ1)

6=
∏n

i=1
f2(x(i)−θ2)

∏n

i=1
f2(y(i)−θ2)

. In particular, let f1 = f2 = 1
2 exp(−|x|) and let θ1 and θ2 be as in #8.9.c.

# 6.8. Let X1, ..., Xn be i.i.d. ∼ f(x− θ), where f(·) is a df. Show T = (X(1), ..., X(n)) is MSS.
Sol. There are two interpretations of the problem.
(1) f is not a parameter, but θ is. (T is MSS for θ).
(2) Both f and θ are parameters. (T is MSS for (f, θ)).

In case (1), it is a wrong statement. Counterexample.
Let Xi ∼ N(θ, 1), then Xi ∼ f(x− θ) with f(t) = 1√

2π
exp(−x2/2). An MSS is X, T is not a function of X.

Thus T is not MSS.
In case (2), it is a correct statement.

It suffices to show that given T (x) 6= T (y), we can find (f1, θ1) and (f2, θ2) such that

∏n

i=1
f1(x(i)−θ1)

∏n

i=1
f1(y(i)−θ1)

6=
∏n

i=1
f2(x(i)−θ2)

∏n

i=1
f2(y(i)−θ2)

. In particular, let f1 = f2 and let θ1 and θ2 be as in #6.9.c or d, or e.

# 6.9. e. ⊢: Let X1, ..., Xn ∼ f = 1
2e

−|x−θ|. T = (X(1), ..., X(n)) is MSS.

Proof. fX|T (x|t) = 1
n! , thus T is sufficient by the definition.

It is easy to show that if T (x) = T (y), then
fX(x;θ)

fX(y;θ) = 1 for each θ.

Need to show that if T (x) 6= T (y), then there exist θ1 and θ2 such that

fX(x; θ1)

fX(y; θ1)
6= fX(x; θ2)

fX(y; θ2)
(1)

Discuss whether the following two approaches are correct.
Approach 1. If T (x) 6= T (y), without loss of generality (WLOG), one can assume x(i) = y(i) for i 6= j

and x(i) < y(i) for i = j. Then

fX(x; θ)

fX(y; θ)
=

∏

i

e−|x(i)−θ|

e−|y(i)−θ|

=
e−|x(i)−θ|

e−|y(i)−θ| =

{
e−x(i)−y(i) if θ < x(j)

e+x(i)+y(i)−2θ if θ ∈ (x(j), y(j))

Letting θ1 = x(j) − 1 and θ2 = (x(j) + y(j))/2 yields Ineq. (1).
Approach 2. If T (x) 6= T (y), then there exists j ∈ {1, ..., n} such that x(i) = y(i) for i < j and

x(i) 6= y(i) for i = j. Without loss of generality, assume that x(j) < y(j). Let t = y(j) ∧min{x(k) : x(k) >
x(j), k > j} (where x(n+1) = ∞).
WLOG, assume x(j+1) > x(j) and t = y(j) ∧ x(j+1).
Let θ ∈ [x(j), t]. Then

fX(x; θ)

fX(y; θ)
=

∏

i

e−|x(i)−θ|

e−|y(i)−θ|
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= (
∏

i<j

e−|x(i)−θ|

e−|y(i)−θ| )(
∏

i=j

e−|x(i)−θ|

e−|y(i)−θ| )(
∏

i>j

e−|x(i)−θ|

e−|y(i)−θ| )

=
ex(j)−θ

e−y(j)+θ
(
∏

i>j

e−(x(i)−θ)

e−(y(i)−θ)
)

= ex(j)+y(j)−2θ(
∏

i>j

e−(x(i))

e−(y(i))
)

Letting θ1 = x(j) and θ2 = t, we get inequality (1). Thus T is MSS.
Discuss whether the proofs are correct.

6.9(d) Let X1, ..., Xn ∼ f(x− θ), where f(x) = 1
π(1+x2) . Show

T = (X(1), ..., X(n)) is MSS.
Sol.

∏n
i=1 f(x(i); θ)/f(y(i); θ) = c;

iff
∏n

i=1(1 + (x(i) − θ)2)/(1 + (y(i) − θ)2) = c → 1 if θ → ∞
(both are polynomial of degree 2n in θ);

approach 1:
iff their coefficients are the same.
iff x(j) = y(j) ∀ j.

approach 2: (1 + (x− θ)2) = (1− i(x− θ))(1 + i(x− θ))
= (1− ix+ iθ)(1 + ix− iθ)
= −(i+ x− θ)(i− x+ θ).
∏n

i=1 f(x(i); θ)/f(y(i); θ) = 1;
iff

∏n
j=1[−(i+ y(j) − θ)(i− y(j) + θ)] =

∏n
j=1[−(i+ x(j) − θ)(i− x(j) + θ)] ∀ θ;

(both are polynomial of degree 2n in θ);
iff their 2n roots are the same
iff x(j) = y(j) ∀ j.

prove by induction on j: WLOG, assume x1 < · · · < xn and y1 < · · · < yn.
j = 1. θ = i+ y1 => x1 = y1.
j = k (< n). Assume xh = yh for h < k.
j = k + 1. By induction,
∏n

j=k+[−(i+ y(j) − θ)(i− y(j) + θ)] =
∏n

j=k+1[−(i+ x(j) − θ)(i− x(j) + θ)] ∀ θ;
θ = i+ yk+1 => xk+1 = yk+1.

Homework Solution
6.10. Let Xi’s be i.i.d. from U(θ, θ + 1). Show T = (X(1), X(n)) is not complete.
A wrong proof:

(1) Let g(T ) = X(n) −X(1) − E(X(n) −X(1)).
(2) Then E(g(T )) = 0 ∀ θ.
(3) But g(T ) is a non-zero function.

Thus T is not complete.
What is wrong ?

Should add “g(T ) is a statistic” in (1);
Replace (3) by “P (g(T ) = 0) = 1 ∀ θ ∈ Θ.”

Reason 1:
Let T ∼ Exp(1) and g(T ) = 1(X = 1) is non-zero. P (g(T ) = 0) = ??

Reason 2. If it works, then we can show that
compete statistic T is not complete!!

Let X1, ..., Xn be i.i.d. ∼ N(θ, 1), then T =
∑n

i=1 Xi is complete Why ??

fX(x) ∝ exp(−1

2
[x2 − 2 µ

︸︷︷︸

w1(θ)

x
︸︷︷︸

t1(x)

])

{w1(θ) : θ > 0} = (0,∞) contains an open set in R1.
Let g(T ) = T − E(T ).
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Then E(g(T )) = 0 ∀ θ.
But P (g(T ) = 0) = 0 < 1 ∀ θ.

Thus T is not complete. Anything wrong ?
A Correct proof.

E(X(1)) =
∫
tfX(1)

(t)dt = θ + 1
n+1 ,

E(X(n)) =
∫
tfX(n)

(t)dt = θ + n
n+1 ,

Since E(X(n) −X(1)) =
n−1
n+1 is independent of θ,

let g(T ) = X(n) −X(1) − E(X(n) −X(1)).

That is, g(x, y) = y − x− n−1
n+1 .

Then E(g(T )) = 0 ∀ θ.
But P (g(T ) = 0) = 0 < 1 ∀ θ.
Thus T is not complete. .

#7.14. Let X ⊥ Y , Y ∼ f(x;µ) ∝ e−x/µ, x > 0, X ∼ f(x;λ). We observe (Z,W ), where Z = min(X,Y )
and W = 1(X≤Y ). If (Zi,Wi), i = 1, ..., n are i.i.d. from (Z,W ), MLE of (µ, λ) ?
Sol. L(θ) = ∏n

i=1 fZ,W (Zi,Wi) = ??
L(θ) = ∏n

i=1[(fZ,W (Zi, 0)
︸ ︷︷ ︸

=?

)1−Wi(fZ,W (Zi, 1)
︸ ︷︷ ︸

=?

)Wi ],

(recall fW (t) = (fW (0))1−t(fW (1))t =

{
fW (0) if t = 0
fW (1) if t = 1

)

fZ,W (z, 0) = ∂
∂zFZ,W (z, 0).

FZ,W (z, 0) = P (X ∧ Y ≤ z,X > Y )
= P (Y ≤ z,X > Y )
= P (X > Y )− P (X > Y > z)
= P (X > Y )−

∫∞
z

∫ x

z
fX(x)fY (y)dydx

fZ,W (z, 0) =− (−∂z

∂z
)

∫ z

z

fX(z)fY (y)dy −
∫ ∞

z

[
∂

∂z

∫ x

z

fX(x)fY (z)dy]dx why?

∂
∂z

∫ b(z)

a(z)
g(x, z)dx = b′(z)g(b(z), z)− a′(z)g(a(z), z) +

∫ b(z)

a(z)
∂
∂z g(x, z)dx

fZ,W (z, 0) =

∫ z

z

fX(z)fY (y)dy +

∫ ∞

z

fX(x)fY (z)dx

=
1

µ
e−z/µe−z/λ, z > 0.

Likewise, fZ,W (z, 1) = 1
λe

−z/λe−z/µ, z > 0.

=> fZ,W (z, w) =

{
1
λe

−z/λe−z/µ if w = 1
1
µe

−z/λe−z/µ if w = 0

=(
1

λ
e−z/λe−z/µ)w(

1

µ
e−z/λe−z/µ)1−w, z > 0.

L(θ) = ∏n
i=1 fZ,W (Zi,Wi)

=
∏n

i=1[(
1
µe

−Zi(1/µ+1/λ))1−Wi(e−Zi(1/µ+1/λ) 1
λ )

Wi ]

= [( 1µ )
(1−W )e−Z(1/µ+1/λ))( 1λ )

W ]n

H = 1
n lnL
= −(1−W )lnµ− lnW lnλ− Z( 1µ + 1

λ )

= −(1−W )lnµ− Z
µ − lnW lnλ− Z

λ )
It suffices to maximize µ and λ seperately.
If W /∈ {0, 1}, then
∂H
∂µ = − 1−W

µ + Z/µ2 = 0 => µ̂ = Z/(1−W ),

as H(0, λ) = H(∞, λ) = −∞.
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Similarly, λ̂ = Z/W .

Otherwise, if W = 1, the observations are all from X and thus µ̂ = X. λ̂ = 1 (or any number).

If W = 0, then λ̂ = Y and µ̂ = 1 (or any number).

Recall W ∼ bin(1, p), with df. f(t) = P (W = t) =

{
p if t = 1
q if t = 0

.

f(t) = p if t = 1. Yes, No ?
f(t) = p if W = 1. Yes, No ?
P (W = t) = p if W = 1. Yes, No ?
P (W = t) = p if t = 1. Yes, No ?
P ({ω ∈ Ω : W (ω) = t}) = P (W = t) = p if W = 1. No
P ({ω ∈ Ω : W (ω) = t}) = P (W = t) = p if t = 1. Yes

Notice that Z =
{
X if W = 1
Y if W = 0.

P (Z ≤ t) = 1− P (Z > t) = 1− P (X > t, Y > t) = 1− P (X > t)P (Y > t).
P (Z ≤ t,W = a) = P (X ≤ t,W = 1) if a = 1 Yes, No ?
P (Z ≤ t,W = a) = P (X ≤ t,W = 1) if W = 1 Yes, No ?
P (Z ≤ t,W = a) = P (X ≤ 1,W = 1) if t = 1 = a Yes, No ?
P (Z ≤ t,W = a) = P (X ≤ t,W = 1) if Z = X Yes, No ?

7.2. Let Xi’s be i.i.d. from G(α, β). f(x) ∝ xα−1e−x/β , x > 0. MLE of (α, β) ?
Sol. (a) If α is given, the MLE of β = X/α.
(b) Three ways for numerical solutions of the MLE:

(1) Plot y = L(x), where x ∈ Θ, looking for ?

(2) Plot y = dlnL(x)
dx and y = 0 looking for ?

(3) Newton-Raphson method

xnew = xold − (
dlnL(x)

dx
/
d2lnL(x)

dx2
)|x=xold untill |xnew − xold| < ǫ.

L =
∏n

i=1
Xα−1

i
e−Xi/β

Γ(α)βα

=
(
∏

i
Xi)

α−1

Γ(α)n
exp(−nX/β)

βnα

=
(
∏

i
Xi)

α−1

Γ(α)n
exp(−nα)

(X/α)nα

=
(
∏

i
Xi)

α−1

Γ(α)n ( α

Xe
)nα

= (
∏

i Xi)
α−1(

( α

Xe
)α

Γ(α) )n.

# R program for hw7.2

x=c(22,23.9,20.9,23.8,25,24,21.7,23.8,22.8,23.1,23.1, 23.5,23,1)
n=length(x)
(mean(x)/sd(x))**2 # MME: α̃ = (X)2/σ̂2.

# as E(X) = αβ and V (X) = αβ2.
[1] 12.87023
a=(1:170)/10 # possible range of α (in view of MME).
y=((prod(x))**(a-1))*((a/(exp(1)*mean(x)))**(a*n))/((gamma(a))**n)
(z=a[y==max(y)])
[1] 3.4 #MLE of α

sum(x)/(n*z)
[1] 6.336134 # (MLE of β))
plot(a,y)

The second and third approach need to compute Γ(α)′

=
∫∞
0

tα−1(lnt)e−tdt = d
da

∫∞
0

tα−1(lnt)e−tdt.
Why not x=c(22,23.9,20.9,23.8,25,24,21.7,23.8,22.8,23.1,23.1, 23.5,23,23) ?
Compare to x=c(22,23.9,20.9,23.8,25,24,21.7,23.8,22.8,23.1,23.1, 23.5,23,1)
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MME: α̃ = (X)2/σ̂2 ≈ 485.1. It is too large for computing Γ(α).
Q: What else ??

Since α̃ = 485.1 >> 100, use Stirling’s formula n! ≈
√
2πnn+1/2e−n.

If α = m, then

L ≈ (
∏

i Xi)
m−1(

( m

eX
)m

√
2π(m−1)m−1/2e−(m−1)

)n

≈ (
∏

i Xi)
m−1(( 1

X
)m 1√

2π
( m
m−1 )

m−1/2m1/2e−m+m−1)n

≈ (
∏

i Xi)
m−1(( 1

X
)m 1√

2π
m1/2)n

≈ (
∏

i Xi/(X)n)m−1(( 1

X
)
√

m
2π )

n

#Use Stirling’s formula
n=14
x=c(22,23.9,20.9,23.8,25,24,21.7,23.8,22.8,23.1,23.1, 23.5,23,23)
a=1:600
y=((prod(x)/mean(x)**n)**(a-1))*((sqrt(a/(2 *pi))/mean(x))**(n))
z=a[y==max(y)]
z

[1] 514
sum(x)/(n*z)

[1] 0.04496943

7.6. Let Xi’s be i.i.d. from f = x−21(x > θ). MME of θ ?

Sol. MME: E(Xi) = Xi, i is an integer.
(E(1/X) = 1/X.

E(1/X) =
∫∞
θ

x−3dx = 1
−2x |∞θ = 1/(2θ).

θ̂ = 1/(2X).

#7.10. X1, ..., Xn ∼ f(x|θ) = α
βαx

α−11(0<x<β), θ = (α, β). MLE of θ)

Solution: Note that L(θ) = αn

βnα (
∏n

i=1 xi)
α−11(0 < x(1), x(n) < β).

There are three ways to solve the problem.
The first way (bivariate):

∂lnL
β = −αn

β < 0, thus no stationary points.
The MLE must be on the boundary: α = 0 or ∞, or β = x(n) or ∞, which are 4 straight line on the

plane. Verify
θ : α = 0 α = ∞ β = ∞ β = x(n)

L(θ) : 0 0 0 see below
∂lnL
α = n

α − nlnβ + ln
∏n

i=1 xi =
n
α − nlnx(n) + ln

∏n
i=1 xi at β = x(n).

Thus ∂lnL
α |β=x(n)

= 0 yields the stationary point α̂ = 1

lnx(n)−lnx
on the line β = x(n).

Verify the boundary points and stationary point on the line β = x(n):
θ = (α, x(n)) : α = 0 α = ∞ α = α̂

L(θ) : 0 0 > 0
Thus ( 1

lnx(n)−lnx
, x(n)) is the MLE of θ.

The second way (one-by-one):
∂lnL
β = −αn

β < 0, thus for each α, the maximum of L(α, β) over β is at β = x(n), denoted by β̂. Thus it

suffices to maximize L(α, β̂) over α.
∂lnL(α,β̂)

α = 0 yields α̂ = 1/(lnx(n) − lnx).
Verify the boundary points and stationary point:
θ = (α, x(n)) : α = 0 α = ∞ α = α̂

L(θ) : 0 0 > 0
Thus (α̂, x(n)) is the MLE of θ.

The third way (one-by-one):
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For each β, ∂lnL(α,β)
α = 0 yields α̂ = α̂(β) = 1/(β − lnx). Since ∂2lnL(α,β)

α2 = − n
α2 < 0, for each β,

L(α̂(β), β) reaches its maximum at α = α̂.
Thus it suffices to maximize L(α̂(β), β) over β. Now

L(α̂(β), β̂) = (
1

lnβ − lnx
)nβ

− n

β−lnx (

n∏

i=1

xi)
1

b−lnx
−1

.

It can be shown that dlnL(β̂(β),β)
dβ < 0, thus the maximum is obtained at β = x(n). That is the MLE of

β is β̂ = x(n) and α̂(β̂) is the MLE of α.
Homework Solutions, week 4

Additional Problem
Let X1, ..., Xn be i.i.d. ∼ bin(1, p), and p ∼ U(0, 1). Are Xi’s i.i.d. ?

Sol.
fX1

(x) = 0.5 if x ∈ {0, 1}.
If x1 = · · · = xn = 1.

fX(x) =

∫ 1

0

n∏

i=1

pxi(1− p)1−xidp

=

∫ 1

0

pndp =
1

n+ 1

Ans: No !

7.1. There are two MLEs, and one is θ̂ =
{
1 if x ∈ {0, 1}
3 if otherwise.

#7.21. Assume Yi = xiβ + ǫi, where ǫi’s are i.i.d. r.v. and xi and β are constant. Compare the three
estimators
β̂1 =

∑

i xiYi/
∑

i x
2
i ,

β̂2 =
∑

i Yi/
∑

i xi,

β̂3 = 1
n

∑

i
Yi

xi
.

Sol.
σ2
1 = V (

∑

i xiYi/
∑

i x
2
i ) =

σ2

n /x2,

σ2
2 = V (

∑

i Yi/
∑

i xi) =
σ2

n /(x)2,

σ2
3 = V ( 1n

∑

i
Yi

xi
) = σ2

n x−2,
1
n

∑

i(xi − x)2 = x2 − (x)2 ≥ 0 ⇒ x2 ≥ (x)2 ⇒ σ2
1 ≤ σ2

2 .

n2 = (
∑

i xi
1
xi
)2 ≤ ∑

i x
2
i

∑

i
1
x2
i

⇒ 1

x2
≤ x−2 ⇒ σ2

1 ≤ σ2
3 .

Other relation ?
1/(x)2 ≤ x−2 ?
1/(x)2 ≥ x−2 ?
1/(x)2 ≤ x−2 ? Try x = 0+ but xi 6= 0.
1/(x)2 ≥ x−2 ? Try one xi = 0+ but x 6= 0.

7.23. If Xi’s are a random sample from N(µ, σ2), S2 ∼ σ2

n−1V = h(V ), where V ∼ χ2(n − 1). If Y = σ2 has

prior f(y;α, β) = 1
Γ(α)βα

1
yα+1 e

−1
βy , y > 0. Bayes estimator of σ2 ?

Sol. S2 = σ2

n−1V = h(V ) (= T ), where V ∼ χ2(n− 1).

h−1(T ) = n−1
σ2 T .

Let Y = σ2.

fT |Y (t|y) = fS2|σ2(t|y) = fV (h
−1(t)|J | = (n−1

y t)
n−1
2

−1e
−(

n−1
y

t)/2

Γ(n−1
2 )2

n−1
2

n−1
y , t > 0.

π(y|t) = fσ2|S2(y|t) ∝ 1

y
n−1
2

−1
exp( −1

2
(n−1)t

y
)y−1 · y−α−1exp(−1

βy )
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= y−α−1−n−1
2 +1−1 exp( −1

2
(n−1)t

y
+ −1

βy )

= 1
yα∗+1 exp(

−1
β∗y ), where ...

E(Y ) =
∫∞
0

t 1
Γ(α)βα

1
tα+1 e

−1
βt dt

=
∫∞
0

1
Γ(α)βα

1
tα−1+1 e

−1
βt dt

= Γ(α−1)βα−1

Γ(α)βα

∫∞
0

1
Γ(α−1)βα−1

1
tα−1+1 e

−1
βt dt

= 1
(α−1)β .

E(Y |T ) = ...

7.12. Compare the MLE θ̂ = min{X, 1/2} and the MME θ̃ = X.

Sol. MSE(θ̃) = θ(1−θ)
n =

∑n
i=0(

i
n − θ)2

(
n
i

)
θi(1− θ)n−i.

MSE(θ̂) =
∑

i≤n/2(
i
n − θ)2

(
n
i

)
θi(1− θ)n−i +

∑

i>n/2(
1
2 − θ)2

(
n
i

)
θi(1− θ)n−i.

MSE(θ̂)−MSE(θ̃) =
∑

i>n/2

[(
1

2
− θ)2 − (

i

n
− θ)2]

(
n

i

)

θi(1− θ)n−i

{
= 0 if θ = 0
< 0 if θ ∈ (0, 1/2]

Homework Solutions, week 5
§7.57. Let Xi’s be i.i.d. ∼ bin(1, p). h(p) = P (

∑n
i=1 Xi > Xn+1). UMVUE of h(p) ?

Sol. Let p̃ = 1(
∑n

i=1
Xi>Xn+1)

. p̂ = E(p̃|T ), where T =
∑n+1

i=1 Xi ∼ bin(n+ 1, p). Then p̂ is the UMVUE of

h(p).
E(p̂) = P (

∑n
i=1 Xi > Xn+1) = h(p).

p̂ = 0 · P (p̃ = 0|T ) + 1 · P (p̃ = 1|T ) = P (p̃ = 1|T ).
P (p̃ = 1|T = t) = ?
If t = 0, P (p̃ = 1|T = t) = 0.
If t > 2, P (p̃ = 1|T = t) = 1.
If t = 1, P (p̃ = 1|T = t) = P (

∑n
i=1 Xi = 1, Xn+1 = 0)/P (T = 1).

If t = 2, P (p̃ = 1|T = t) = P (
∑n

i=1 Xi = 2, Xn+1 = 0)/P (T = 1).

The p̂ = E(p̃|T ) =
{
0 if T = 0
· · · · · ·
1 if T > 2.

Homework Solutions, week 6
D. Assume that X1, ..., X100 are i.i.d. from N(0, 1). T = X ∨ 0, Y = 1(T > 1). Check which of the

following equations are correct. If so, given the explicit expressions of the density functions involved
and complete the calculation; otherwise, make proper corrections based on the given density functions.

D.1 E(Y − 1) =
∑

x xfY−1(x)
D.2 E(Y − 1) =

∫
(x− 1)fY (x)dx.

D.3 E(Y − 1) =
∫
(x ∨ 0)− 1)fX(x)dx.

D.4 E(Y − 1) =
∫∞
1

(x− 1)fT (x)dx.
D.5 E(Y − 1) =

∫
· · ·

∫
(1(x ∨ 0)− 1)fX(x)dx1 · · · dxn.

Sol. Formula:

E(g(Y )) =







∑

t g(t)fY (t) =
∑

t tfg(Y )(t) if Y and g(Y ) are discrete
· if ·
∫
g(t)fY (t)dt =

∫
tfg(Y )(t)dt if Y and g(Y ) are continuous

Y − 1
︸ ︷︷ ︸

g(Y )

= 1(T > 1)− 1
︸ ︷︷ ︸

g(T )

= 1((X ∨ 0) > 1)− 1
︸ ︷︷ ︸

g(X)

= 1(
X1 + · · ·+Xn

n
∨ 0) > 1)− 1

︸ ︷︷ ︸

g(X)

.

D.1 Y ∈ {0, 1}, Y − 1 ∈ {−1, 0}, fY−1(t) = P (Y − 1 = t).
E(Y − 1) =

∑

x xfY−1(x) = 0P (Y − 1 = 0)− 1P (Y − 1 = −1)

= −P (Y = 0) = −P (T ≤ 1) = −P ((X ∨ 0) ≤ 1) = −(1− P (X > 1)) = −1 + 1− Φ(10)
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E(Y − 1) ≈ −1.

D.2 E(Y − 1) =
∑

x(x− 1)fY (x) = (0− 1)P (Y = 0)+ (1− 1)P (Y = 1) 6=
∫
(x− 1)fY (x)dx, as Y is discrete.

D.3 E(Y − 1) =
∫
(1((x ∨ 0) > 1)− 1)fX(x)dx 6=

∫
((x ∨ 0)− 1)fX(x)dx, where X ∼ N(0, 1/100).

D.4 E(Y − 1) =
∫
(1(x > 1)− 1)fT (x)dx+ (0− 1)fT (0) =

∫∞
0

fT (x)dx− 1

6=
∫∞
1

(x− 1)fT (x)dx,
where

fT (t) = 0.51(t=0)(fX(t))1(t>0)

D.5 E(Y−1) =
∫
· · ·

∫
(1((

∑n

i=1
xi

n ∨0) > 1)−1)fX(x)dx1 · · · dxn 6=
∫
· · ·

∫
(1((

∑n

i=1
xi

n ∨0))−1)fX(x)dx1 · · · dxn.

7.49.
1. Find an unbiased estimator of λ based only on Y = min(Xi)
2. Find a better estimator than the one in part (a), prove it is better.
3. The following data are high stress failure times (in hours) of Kevlar/expoxy spherical vessels used in a
sustained pressure environment on the space shuttle:

50.1, 70.1, 137.0, 166.9, 170.5, 152.8, 80.5, 123.5, 112.6, 148.5, 160.0, 125.4

Failure times are often modeled with the exponential distribution. Estimate the mean failure time using the
stimators from part (a) and (b)

Sol. 1. Y = X(1) ∼ Exp(λ/n). We have E(nY ) = λ. The λ̂ = nY , as E(nY ) = nλ/n = λ.

2. We know Xi belong to an exponential family. Therefore by Theorem 6.2.25 we know
∑

Xi is a
sufficient and complete statistic. By Theorem 7.3.23 we know X is the best unbiased estimator. Theorefore
it must be better than T = nY since theorem 7.3.23 dictates the UMVUE in this situation is unique.
P (nX(1) = X) = 0. Thus V ar(T ) > V ar(X).

In fact, V (T ) = λ2 < λ2/n = V (X).

3. We have nY = 601.2 and X = 128.8
Something looks fishy.

Compare the empirical distribution function edf to the MLE of cdf, where the edf F̂ (t) = 1
n

∑n
i=1 1(Xi ≤

t).

Compare the edf of pseudo random numbers to the MLE of cdf.

From the figure, we can conclude that the data does not fit the expnential distribution. No wonder the
two estimates differ so large !
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7.46. X1, X2, X3 i.i.d. from U(θ, 2θ), θ > 0.

a. MME θ̂ = 2
3X.

b. MLE induces unbiased estimator θ̃ = 4
7X(3).

c. Which of the two estimators can be improved by sufficiency ?
How ?

Sol. Which ? T = (X(1), X(3)) is sufficient for θ.

E(θ̃|T ) = θ̃, thus θ̃ cannot be improved.

⊢: E(θ̂|T ) = 2
3

X(1)+X(3)

2 .
Two ways to prove:

E(θ̂|T ) = 2
3E(X1+X2+X3

3 |T ) = 2
3E(X1|T ) = 2

3

X(1)+X(3)

2 .

E(θ̂|T ) = 2
3E(

X(1)+X(2)+X(3)

3 |T )
= 2

3·3 [E(X(1) +X(3)|T ) + E(X(2)|T )]
= 2

3·3 [(X(1) +X(3)) +
X(1)+X(3)

2 ]

= 2
3

X(1)+X(3)

2 .

fX(2)|X(1),X(3)
(x|y, z) =

fX(2),X(1),X(3)
(x, y, z)

fX(1),X(3)
(y, z)

=
3!

1!1!1! (fX(x))1(fX(y))1(fX(z))1

3!
1!1!1! (fX(x))1(FX(z)− FX(y))1(fX(z))1

=
1(x ∈ (y, z))

z − y

Thus θ̂ can be improved.
HOW ?

either compare V (θ̂) and V (E(θ̂|T )),
or show E(V (θ̂|T )) > 0, as V (θ̃) = +E(V (θ̃|T )).
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V (E(θ̂)|T ) = V ( 23
X(1)+X(3)

2 ).

V (X(1)) =
∫ 2θ

θ
t23(1− FX(t))3−1fX(t)dt− (θ + 1

4θ)
2.

V (X(3)) =
∫ 2θ

θ
t23(FX(t))3−1fX(t)dt− (θ + 3

4θ)
2.

Cov(X(1), X(3))

=
∫ 2θ

θ

∫ y

θ
xy3 · 2fX(x)(FX(y)− FX(x))3−2fX(y)dxdy − (θ + 1

4θ)(θ +
3
4θ).

Sol to d. Estimates based on data using R:
x=c(1.29,.86,1.33)
2*mean(x)/3
4*max(x)/7

7.51. Let Xi’s be i.i.d. N(θ, θ2), θ > 0. T = {T : T = a1X + a2(cS)}, where E(cS) = θ.
(a) Solve T ∗ = argminT∈T MSE(T ).
(b) Show MSE(T ∗) < MSE(T o) from #7.50
(c) Show that MSE(T ∗) < MSE(T ∗+), where T ∗+ = T ∨ 0.
(d) Is θ a scale or location parameter ?

Sol. Since X ⊥ S2,
MSE(T ∗) = V (T ∗) + (bias(T ∗))2 = a21V (X) + a21V (cS) + ((a1 + a2 − 1)θ)2

= θ2(a21/n+ a22(c
2 − 1) + (a1 + a2 − 1)2) = θ2g(a1, a2).

∂g
∂ai

= 0 yields

a∗1 = n(c2−1)
(n+1)c2−n and a∗2 = 1

(n+1)c2−n .

Check: 1 point (a∗1, a
∗
2) and 4 boundary lines ai = ±∞.

Since g(a1, a2) → ∞ if ai → ±∞,
(a∗1, a

∗
2) is the unique minimum point and T ∗ = a∗1X + a∗2(cS).

(b) MSE(T ∗) < MSE(T o), as
(1) T o ∈ T , where ao2 = a∗2 and ao1 = 1− ao2,
(2) P (T ∗ 6= T o) = 1,
(3) T ∗ is the unique minimum point in T .

(c) Find the correct solutions among the following approaches:
(c.1) MSE(T ∗) = E((T ∗ − θ)2)

= E((T ∗ − θ)21(T ∗ < 0)) + E((T ∗ − θ)21(T ∗ ≥ 0))
≥ E((T ∗ − θ)21(T ∗ ≥ 0)) = MSE(T ∗ ∨ 0)

(c.2) MSE(T ∗) = E((T ∗ − θ)2)
= E((T ∗ − θ)21(T ∗ < 0)) + E((T ∗ − θ)21(T ∗ ≥ 0))
> E((T ∗ − θ)21(T ∗ ≥ 0)) as P (T ∗ < 0) > 0
= MSE(T ∗ ∨ 0).

In fact, P (T ∗ < 0) =
∫∞
0

∫ −ao
2y/a

o
1

−∞ fX(x)fcS(y)dxdy > 0,
as fcS(y) > 0 on (0,∞) and fX(x) > 0 ∀ x.

(c.3) If T ∗ ≥ 0, then T ∗ = T ∗+, thus their MSE’s are the same. Otherwise, T ∗ < 0 = T ∗+,
then (T ∗+ − θ)2 = θ2 and (T ∗ − θ)2 > θ2, thus MSE(T ∗) > MSE(R∗+).

(c.4) If T ∗ < 0, MSE(T ∗+) = (0− θ)2 ≤ E((T ∗ − θ)2) as θ > 0,
otherwise, they are the same.

(d) ⊢: θ is not a location parameter.
If θ is a location parameter, then it is possible that θ = −1, but θ > 0. A contradiction.

⊢: θ is a scale parameter.
X ∼ N(θ, θ2),

=> fX(t) = 1
θ
√
2π

e−( t
θ−1)2/2

=> fX(t) = 1
θfY (t/θ), where fY (t) =

1√
2π

e−(t−1)2/2, Y ∼ N(1, 1)

7.52. (2) Prove the rather remarkable identity E(S2|X) = X if X ∼ Poisson(λ).

That is, prove directly E(S2|X) = X if X ∼ Poisson(λ).
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(3) Use completeness, form a general theorem ...

Possible approach: (1) Find fS2|X= ? (2) fX|X = ? (3) first simplify E(S2|X).

Recall S2 = n
n−1 [X

2 − (X)2].
Let T =

∑

i Xi, then
E(S2|X = v) = E(S2|T = t), where t = nv.

Consider the case n = 2.
E(S2|X = v) = 2[E(X2|X = v)− (v)2].
fX1|X1+X2

(x|t) = P (X1 = x,X2 = t− x)/P (X1 +X2 = t)

= (e−λλx/x!)(e−λλt−x/(t−x)!)
(e−2λ(2λ)t/t!)

=
(
t
x

)
0.5t

E(X2
1 +X2

2 |T = t) = 2E(X2
1 |T = t) = 2(tpq + (tp)2) = 2(t/4 + t2/4).

E(S2|X = v) = 2[ 122(t/4 +
2 /4)− v2] = t/2 + t2/4− v2 = v, as v = t/2.

In general, n ≥ 2.

Xi|
∑

i Xi ∼ bin(t, 1/n), i = 1, ..., n.
Let t = nv.
E(S2|X = v) = E(S2|X = v)

= n
n−1E(X2 − (X)2|X = v)

= n
n−1E(X2 − (t/n)2|X = v)

= n
n−1E(X2|X = v)− (t/n)2

= n
n−1 (E(X2

1 |X = v)− (v)2)
fX1|X(x|v)

=
P (X1=x,

∑n

i=1
Xi=nv)

P (
∑n

i=1
Xi=nv)

= P (X1=x,T=t)
P (T=t) , where t = nv,

=
P (X1=x,

∑n

i=2
Xi=t−x)

P (T=t)

=
(
t
x

)
( 1n )

x(1− 1
n )

t−x, x = 0, ..., t.

X1|
∑

i Xi ∼ bin(t, 1/n),

E(S2|X = v)
= n

n−1 (t
1
n (1− 1

n ) + (t/n)2 − (t/n)2)
= t/n = v

Thus E(S2|X) = X.
E(S2|T = t)

= n
n−1E(X2 − (X)2|T = t)

= n
n−1E(X2 − (t/n)2|T = t)

= n
n−1 (E(X2

1 |T = t)− (t/n)2)

= n
n−1 (t

1
n (1− 1

n ) + (t/n)2 − (t/n)2)
= t/n

(3) A general formula is E(τ̂ |W ) = W if W is a sufficient and complete statistic and if E(W ) = τ and
E(τ̂) = τ .

Q: Is E(S2|X1) random variable ?
Is E(S2|X1) a statistic ?
E(S2|T ) is a statistics if T is sufficient. Why ?

7.59. Xi’s are i.i.d. from N(µ, σ2), UMVUE of σp, where p > 0.
Sol. It is known that T = (X,S2) is suf and complete for θ = (µ, σ2) (due to exponential family). Y =

(n−1)S2

σ2 ∼ χ2(n− 1).
χ2(d) = G(d/2, 2).
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E(Y p/2) =
∫∞
0

yp/2 1
Γ(α)βα y

α−1e−y/βdy

=
Γ(n−1

2 +p/2)2
n−1
2

+p/2

Γ(n−1
2 )2

n−1
2

=
Γ(n+p−1

2 )2p/2

Γ(n−1
2 )

= c.

σ̂p = ((n−1)S2)p/2

c is UMVUE of σp.

7.44 X ∼ N(θ, 1/n),
V ((X)2 − 1/n) = V ((X)2) = E((X)4)− (E((X)2))2.

E((X)4) = E((X)3(X − θ)) + θE((X)2(X − θ)) + θ2E((X)2)
= 1

n [E(3(X)2) + θE(2X))] + θ2E((X)2)

= ( 3n + θ2)E((X)2) + 2θ
n E(X)).

V ((X)2 − 1/n) = E((X)4)− (E((X)2))2

= ( 3n + θ2)E((X)2)− (E((X)2))2 + 2θ
n E(X))

= ( 3n + θ2 − 1
n − θ2)( 1n + θ2) + 2θ2

n

= 2
n (

1
n + θ2) + 2θ2

n

= 2
n2 + 4θ2

n .
7.60 Xi’s are i.i.d. from G(α, β) with α known. UMVUE of θ = 1/β ?
Sol. T =

∑

i Xi is suf and complete.
T ∼ G(nα, β),
E(T ) = nαβ.
Try Y = nα

T .

If E(Y ) = c/β, then θ̂ = nα

c
∑

i
Xi

is the UMVUE of θ.

In fact, E(Y ) =
∫∞
0

nαt−1 tα−1e−t/β

Γ(α)βα dt

= nαΓ(α−1)β−α−1

Γ(α)βα .

Homework solutions for week 7
Additional questions:
Remark. For a test φ = 1(θ̂ ∈ RR) with estimate θ̂ = t and H0: θ = θo,

the P-value =







P (θ̂ > t) if right-sided test (H1)

P (θ̂ < t) if left-sided test (H1)

P (|θ̂ − θo| > |t− θo|) if two-sided test

.

2. Carry out the following simulation project.
2.1. Use R to generate 5 observations from N(1, 1). Now pretend that you only known that the data
were from N(µ, σ) without knowing µ and σ, use t-test to test H0: µ = 0 v.s. H1: µ 6= 0 with a size
0.2. Record the P-value.
What is a correct decision here (in terms of rejecting H0 or not) ?

Do you think that you will accept H0 based on data ? Why ?
2.2. Repeat procedure 2.1 100 times. That is, record 100 P-values.

How many times, say z, would you reject H0 ?
Question: What does the number z tell you about P (H0|H1) ?

Sol. 2.1. It is a correct decision to reject H0,
but we may not reject as the test statistic is random.

2.2. One record is z=73.
z would tell me that P (H0|H1) ≈ 1 − z/100 = 0.27. In fact P (H0|H1) = P ( |X|

S/
√
n
< t0.1,n−1, µ = 1) ≈

0.24.
2. Carry out the following simulation project.

2.1. Use Splus to generate 5 observations from N(1, 1). Now pretend that you only known that the
data were from N(µ, σ) without knowing µ and σ, use t-test to test H0: µ = 0 v.s. H1: µ 6= 0 with a
size 0.2. Record the P-value. Splus commands are :
x < −rnorm(5) + 1
y=t.test(x)
y$p.value
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2.2. Repeat procedure 2.1 20 times. That is, record 20 P-values.
a. What is a correct decision here (in terms of rejecting H0 or not) ?
b. How many times you will reject H0 ?
c. What does the number tell you about P (H0|H1) ?
d. Do you think that you will accept H0 based on data ? Why ?

Hint: Figure out how to use t.test using ?t.test in this case. Notice t-test: φ = 1(|X−µ0

S/
√
n
| > tα/2, where

µ0 = 0 and α = 0.2.
t.test(x, alternative=”two.sided”, mu=0) ”greater”, ”less”

Answer:
a. Correct decision is to reject H0, as the data are from N(1, 1), not N(0, 1).
b. reject H0 15 times (in one study).
c. An estimate of P (H0|H1) is 1− 15/20.
d. No. not necessary. Remember we only observe one sample in reality. Due to type II error, the t.test

may suggest incorrectly to accept H0.

3. Carry out the following simulation project.
3.1. Use Splus to generate 5 observations from N(1, 1). Now pretend that you only known that the
data were from N(µ, σ) without knowing µ and σ, use t-test to test H0: µ = 1 v.s. H1: µ < 1 with a
size 0.05. Figure out how to use t.test in this case. Record the P-value.
3.2. Repeat procedure 3.1 20 times. That is, record 20 P-values.

a. What is a correct decision here (in terms of rejecting H0 or not) ?
b. How many times you will reject H0 ?
c. What does the number tell you about P (H1|H0) ?
d. Do you think that you will accept H0 based on data ? Why ?

Answer:
a. Correct decision is to accept H0, as the data are from N(1, 1).
b. reject H0 2 times (in one study).
c. An estimate of P (H1|H0) is 2/20.
d. No, due to type I error, the t.test may suggest incorrectly to reject H0 approximately 1 time (20×0.05),

though we shall not reject H0, as the data are from N(1, 1).
8.1 Solution without using LRT. 5 elements of a test:

1,2,3. H0: p = 0.5, v.s. H1: p 6= 0.5.
A natural estimate of p is X/n.

4. Test Statistic 1(X/n/∈(a,b)), where X ∼ bin(n, p) and n = 1000.
RR X/1000 /∈ (a, b).
R
> p=2*pbinom(440,1000,0.5)

5. Since p-value < 0.0001, reject H0.
8.2. In a city the number of auto accidents used to follow Poisson(15). If this year the # is 10, is it justified

that the # dropped?
Ans. 5 elements of a test.
1. 2. H0: µ = 15, vs. H1: µ < 15.

Note that the sample size n = 1 and the observation is X = 10.
LRT:
MLE: µ̂0 = 15, and µ̂ = X.
λ = ...

3. test statistic reduces to φ = 1(λ≤co) = 1(X≤c).
4. α:

R
> round(ppois(5:11,15),2)
[1] 0.00 0.01 0.02 0.04 0.07 0.12 0.18
If we take α = 0.07, then φ = 1(X≤9).
(If we take α = 0.01, then φ = 1(X≤6).)
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P-value= P(X ≤ 10) =
∑10

i=0 e
−15(15)i/i! = 0.12 > 0.05.

5. Conclusion: It is not justified that the # dropped this year.
8.5. Suppose X1, ..., Xn are iid with

fX(x) = θνθ

xθ+11(ν ≤ x < ∞), θ > 0, ν > 0.
a. Find the MLE of θ and ν.
b. Show that the LRT of

H0: θ = 1, ν unknown vs. H1: θ 6= 1, ν unknown,

is φ = 1(T /∈ (c1, c2)), where T = log

[ ∏n

i=1
Xi

(mini Xi)n

]

.

c. Show that under H0, 2T has a χ2 distribution.
Question: Why ask question c ?
Answer: Among the 5 elements of a test, we need to choose α, and for φ = 1(λ≤t), we need to know t = ?
Otherwise, it is not a test.
One approach. Let Y = logX, then h−1(y) = ey and |J | = ey.

fY (y) = fX(ey)ey = νe−y, y > ν.
Reorder (Y1, ..., Yn) as (Ỹ1, ..., Ỹn) such that
Ỹ1 = Y(1) and (Ỹ2, ..., Ỹn) the rest Yj ’s.
Then fỸ1,...,T̃n

(y) = nfY (y1)
∏n

j=2 fY (yj), y1 < yj for j ≥ 2. ??? need a proof.

Under certain condition, fY (t) =
∑

i fX(g−1
i (t))|∂g

−1
i

∂t |, where
(a) gi is a 1-1 map from Ai to g(Ai),
(b) A1, ..., Ak are disjoint and
(c) P (X ∈ ∪iAi) = 1.

What are Ai here ?
Ỹ1 = Y(1) and

(Ỹ2, ..., Ỹn) = (Y2, ..., Yn) if Y1 = Y(1),

(Ỹ2, ..., Ỹn) = (Y1, Y3, ..., Yn) if Y2 = Y(1),
......
(Ỹ2, ..., Ỹn) = (Y1, Y2, ..., Yn−1) if Yn = Y(1),

Sol.
a. L(θ, ν) = θnνnθ(

∏

i Xi)
−θ−11(ν ≤ X(1)).

For each θ, L ↑ in ν for ν ≤ X(1). Thus L(θ, ν) ≤ L(θ,X(1)). That is, the MLE of ν is ν̂ = X(1), which

does not depend on θ. To find the MLE of θ, it suffices to maximize L(θ,X(1)).
∂lnL
∂θ = n

θ + nlnX(1) −∑

i lnXi = 0 yields

θ̂ = 1/(lnX − lnX(1)) = n/ln(
∏

i

Xi/X
n
(1)) = n/T.

∂2lnL
∂θ2 = − n

θ2 < 0 implies that (θ̂, ν̂) is the MLE of (θ, ν).

b. It is easy to show that the MLE under H0 is (θ̂o, ν̂o) = (1, X(1)). Thus

λ = (θ̂)−n(

∏

i Xi

Xn
(1)

)θ̂−1 = (n/T )−n(eT )
n
T −1 = n−nTnen−T .

φ = 1(λ ≤ c) = 1(Tne−T ≤ c1)

Let g(T ) = ln(Tne−T ), g′ = n
T − 1 and g′′ = − n

T 2 < 0.
Thus g is concave down with maximum point T = n. It follows that

φ = 1(λ ≤ c) = 1(Tne−T ≤ co) = 1(T /∈ (c1, c2))

where c1e
−c1/n = c2e

−c2/n and P{c1 < T < c2) = 1− α.
8.5.c. Suppose X1, ..., Xn are iid with

fX(x) = θνθ

xθ+11(ν ≤ x < ∞), θ > 0, ν > 0. (Pareto Distribution).
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Show that under H0 (θ = 1), 2T has a χ2 distribution,

where T = log

[ ∏n

i=1
Xi

(mini Xi)n

]

.

Question: Why ask question c ?
Answer: Among the 5 elements of a test, we need to choose α, and for φ = 1(λ≤t), we need to know t = ?
Otherwise, it is not a test.
Under H0, f(x) =

ν
x21(x ≥ ν) and F (x) = 1− ν

x , if x/ν ≥ 1.
Notice that Z = X/ν is a pivatol, as FZ(t) = 1− 1

t , t ≥ 1.

T = log(

∏n
i=1 Xi

(X(1))n
) = log

n∏

i=1

X(i)

X(1)
= log

n∏

i=1

Z(i)

Z(1)
︸ ︷︷ ︸

Z(i)=X(i)/ν

=
n∑

i=1

log
Z(i)

Z(1)
=

n∑

i=2

Y(i)

where Y(i) = log(
Z(i)

Z(1)
), i ≥ 1. Notice that Y(1) = 0.

fX(2),...,X(n)|X(1)
(x2, ..., xn|x1) =

fX(1),...,X(n)
(x1,...,xn)

fX(1)
(x1)

= n!f(x1)···f(xn)

(n1)f(x1)(1−F (x1))n−1

=
(n−1)!xn−1

1

(
∏n

i=2
xi)2

, ν ≤ x1 ≤ · · · ≤ xn.

Notice that fZ(i)
does not depend on ν, as

fZ(2),...,Z(n)|Z(1)
(x2, ..., xn|x1) =

(n−1)!xn−1
1

(
∏n

i=2
xi)2

, 1 ≤ x1 ≤ · · · ≤ xn.

Then z(i) = z(1)e
y(i) , i ≥ 2, |J | = xn−1

1 exp(
∑n

i=2 yi) and
fY(2),...,Y(n)|Z(1)

(y2, ..., yn|x1)
= fZ(2),...,Z(n)|Z(1)

(x1e
y2 , ..., x1e

yn |x1)|J |
= (n− 1)! exp(−∑n

i=2 yi), 0 ≤ y2 ≤ · · · ≤ yn.
Thus, Y(2), ..., Y(n) are order statistics of i.i.d. Y2, ..., Yn ∼ Exp(1).

T = log(

∏n
i=1 Xi

(X(1))n
) = log(

∏n
i=1 Zi

(Z(1))n
) = log(

∏n
i=2 Z(i)

(Z(1))n−1
) =

n∑

i=2

Y(i) =

n∑

i=2

Yi

∼ Gamma(n− 1, 1).
χ2(m) = Gamma(m/2, 2).

Thus 2T ∼ χ2(2(n− 1)).
Summary:

H0: θ = 1, vs. H1: θ 6= 1
α = 0.05 = Eθo(φ)
φ = 1(λ ≤ a) = 1

(W
2 e−

W
2n ≤c)

= 1(W /∈(a,b), where

W = 2T , a
2 exp(− a

2n ) =
b
2 exp(− b

2n ), and FW (b)− FW (a) = 1− α.
Question: If n = 3 and 2T = W = 8. What is the conclusion ?
Ans: Need to find out (a, b) !
Note 2T ∼ χ2(4), E(2T ) = 4 and V (2T ) = 8.

Solve numerically
g(a) = a

2 exp(− a
2n )− b

2 exp(− b
2n ) = 0, where b = F−1

W (FW (a) + 1− α).
R
x=(1:499)/10000 # probabilities in (0,0.05)
df = 4
a=qchisq(x) # t1, quantile of Exponential at x
b=qchisq(pchisq(a,df)+0.95,df) # t2,
g=(a/2)*exp(-(a/6))-(b/2)*exp(-(b/6))
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plot(a,g,type=”l”)
abline(h=0) # check whether the curve cross the x-axis

a

g

0.0 0.01 0.02 0.03 0.04

−
0.

15
−

0.
10

−
0.

05
0.

0

(l=max(a[g<=0]))
(r=max(b[g<=0]))
pchisq(l,df)
[1] 0.7075065
[1] 20.48774
[1] 0.0496 # < 0.0499, make change if >0.0499
Ans: Do not reject H0.

Additonal.
1. (a) Under each of the assumptions in 8.5 and 8.7, generate 10 observations from R, and do the

tests.
Remark. There are two issues:

(1) How to generate 10 observations ?
(2) How to determine RR or c in 1(λ ≤ c) ?

8.5. Suppose X1, ..., Xn are iid with

fX(x) = θνθ

xθ+11(ν ≤ x < ∞), θ > 0, ν > 0, ν unknown, (Pareto Distribution).
The LRT of
H0: θ = 1 vs. H1: θ 6= 1.

(1) Data generation.
x=rnorm(10) # ?
x=rexp(10) ?
x=1/(1-runif(10)) # Pareto

Reason: F−1(X), where X ∼ U(0, 1).

f(x) = θvθ

xθ+11(x > v), θ > 0 and v > 0.
Since H0: θ = 1, v.s. H1: θ 6= 1.
Select (θ, v), say θ = v = 1.

F (t) =
∫ t

0
f(x)dx = −1/x

∣
∣
t

0
= 1− 1/t, t > 0.

F−1(y) = 1
1−y , y ∈ (0, 1).

Reason: F−1(X), where X ∼ U(0, 1).
(2) RR= ?

φ = 1(λ(W ) ≤ c) = 1(W /∈ (a, b)),

97



where λ = n−n(W2 )nen−(W
2 ),

W = 2ln

∏n

i=1
Xi

(Xn
(1)

∼ χ2(2(n− 1)),

λ(a) = λ(b), and
FW (b)− FW (a) = 1− α.

Question: Some students use t.test(x). Can we ?
Are these right ”
φ = 1(λ ≤ c

︸︷︷︸

=0.05

) ?

φ = 1(λ ≤ c) = 1(W /∈ (χ2
2n−2,0.975, χ

2
2n−2,0.025)) ?

φ = 1(λ ≤ c) = 1(W > χ2
2n−2,0.05) ?

The R program is given, but you need to provide data as in step (1)

Second approach:

E(e2Tt) =E(exp(2t log(

∏n
i=1 Xi

(X(1))n
)))

=E(exp(log([

∏n
i=1 Xi

(X(1))n
]2t)))

=E([

∏n
i=1 Xi

(X(1))n
]2t)

=E(E([

∏n
i=1 Xi

(X(1))n
]2t|X(1)))

=E(E([

∏n
i=2 X(i)

(X(1))n−1
]2t|X(1)))

=E(E([

∏n
i=2 Xi

(X(1))n−1
]2t|X(1))) ???

Not easy to proceed.

Third approach: It is easy to simplify 2T as follows.

2T =

n∑

i=1

2lnXi − 2nlnmin
i

Xi =

n∑

i=1

(
2lnXi −min

j
(2lnXj)

)

Define Yi = 2lnXi and Zi = Yi − Y(1).

2T =

n∑

i=1

(Yi − Y(1)) =

n∑

i=2

(Y(i) − Y(1)) =

n∑

i=2

Z(i),

Since X1, ..., Xn are i.i.d, so is Y1, ..., Yn. Note Z(1) = 0. We shall show

Z(2), ..., Z(n) have the same distribution as U(1), ..., U(n−1), (1)

which are the order statistics of (n− 1) i.i.d. r.v.s from Gamma(1,2), and

2T =

n∑

i=2

Z(i) =

n−1∑

i=1

U(i) =

n−1∑

i=1

Ui ∼ Gamma(n− 1, 2) = χ2(2(n− 1)).
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To this end, notice that Z(i) = Y(i) − Y(1), i = 1, ..., n.

2T = h(Z(2), ..., Z(n)) and (Z(2), ..., Z(n)) = H(Y1, ..., Yn). h = ?? H = ??

fY ⇒ fZ ⇒ f2T . We first show that

Yi has a density function fY (y) =
θνθ

2
e−yθ/2, y > 2ln(ν), θ > 0, (2)

and
fY (y) =

ν

2
e−y/2, y > 2ln(ν) under H0. (3)

To prove Eqs. (2) and (3), set y = G(x) = 2lnx and G−1(y) = ey/2.

fY (y) = fX(G−1(y))|dG
−1

dy
| = θνθ

2
e−yθ/2, y > 2ln(ν) (which is (2)).

Thus, under H0, θ = 1 and Eq. (3) holds.
Moreover, recall Z(i) = Y(i) − Y(1). (Z(2), ..., Z(n)) = H(Y1, ..., Yn).
Given fY, we can find fZ by two ways:

1. fZ(z) = fY(H−1(z))|Jacobian| (not applicable!)
2. FZ(z) = P (H(Y) ≤ z) and fZ = F ′

Z.
In method 2, we can either compute

P{Z(2) ≤ z2, · · ·Z(n) ≤ zn} directly

or
P{z1 < Z(2) ≤ z2 < · · · ≤ zn−1 < Z(n) ≤ zn}

and then identify its distribution. We take the latter approach.
For z0 = 0 < z1 < z2 < · · · < zn, We first compute an preliminary result.

P{zj−1 < Yj − y ≤ zj , y < Yj}
=P{zj−1 < Yj − y ≤ zj , 0 < Yj − y}
=P{zj−1 < Yj − y ≤ zj} (as z1 > 0)

=

∫ zj+y

zj−1+y

ν

2
e−x/2dx (by (3))

=(e−zj−1/2 − e−zj/2)νe−y/2 (4)

P{z1 < Z(2) ≤ z2 < · · · ≤ zn−1 < Z(n) ≤ zn}
=P{z1 < Z(2) ≤ z2 < · · · ≤ zn−1 < Z(n) ≤ zn, Y(1) ∈ {Y1, ..., Yn}}

=

n∑

i=1

P{z1 < Z(2) ≤ z2 < · · · ≤ zn−1 < Z(n) ≤ zn, Y(1) = Yi}

(mutually exclussive)

=nP{z1 < Z(2) ≤ z2 < · · · ≤ zn−1 < Z(n) ≤ zn, Y(1) = Y1} (as Yis are i.i.d.)

=nP{z1 < Z(2) ≤ z2 < ...zn−1 < Z(n) ≤ zn, Y1 < Yj , j ≥ 2}
=n!P{z1 < Z2 ≤ z2, ..., zn−1 < Zn ≤ zn, Y1 < Yj , j ≥ 2}
=n!P{z1 < Y2 − Y1 ≤ z2, ..., zn−1 < Yn − Y1 ≤ zn, Y1 < Yj , j ≥ 2}
=n!E(1{z1 < Y2 − Y1 ≤ z2, ..., zn−1 < Yn − Y1 ≤ zn, Y1 < Yj , j ≥ 2})
=n!E(E(1{z1 < Y2 − Y1 ≤ z2, ..., zn−1 < Yn − Y1 ≤ zn, Y1 < Yj , j ≥ 2}|Y1))
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=n!

∫

(E(1{z1 < Y2 − y ≤ z2, ..., zn−1 < Yn − y ≤ zn, y < Yj , j ≥ 2}|Y1 = y)fY1
(y)dy

=n!

∫

E(1{z1 < Y2 − y ≤ z2, ..., zn−1 < Yn − y ≤ zn, y < Yj , j ≥ 2})fY1
(y)dy

by i.i.d.

=n!

∫

P{z1 < Y2 − y ≤ z2, ..., zn−1 < Yn − y ≤ zn, y < Yj , j ≥ 2}fY (y)dy

=n!

∫ n∏

j=2

P{zj−1 < Yj − y ≤ zj , y < Yj}fY (y)dy (as Yis are independent)

=n!

∫ n∏

i=2

(
(e−zj−1/2 − e−zi/2)νe−y/2

)
fY (y)dy (by (4))

=n!

n∏

i=2

(e−zj−1/2 − e−zi/2)

∫

νn−1e−(n−1)y/2fY (y)dy

=n!
n∏

i=2

(e−zj−1/2 − e−zi/2)

∫ ∞

2lnν

νn−1e−(n−1)y/2 ν

2
e−y/2dy

=(n− 1)!

n∏

i=2

(e−zj−1/2 − e−zi/2)

∫ ∞

2lnν

νne−ny/2d
ny

2

=(n− 1)!
n∏

i=2

(e−zj−1/2 − e−zi/2)

∫ ∞

nlnν

νne−tdt (t = ny
2 )

=(n− 1)!

n∏

i=2

(e−zj−1/2 − e−zi/2)

∫ ∞

nlnν

e−t+nlnνdt νn = enlnv

=(n− 1)!

n∏

i=2

(e−zj−1/2 − e−zi/2)

=(n− 1)!

n∏

i=2

∫ zi

zj−1

1

2
e−x/2dx

Verify that if U1, ...., Un−1 are iid from G(1,2), then

P{U(i) ∈ (zi, zi+1], i = 1, ..., n− 1} = (n− 1)!

n∏

i=2

∫ zi

zj−1

1

2
e−x/2dx.

In other words, statement (1) holds and thus
2T =

∑n
i=2 Z(i) ∼ G(n−1

2 , 2) = χ2(2n− 2).
Additonal.
1. (a) Under the assumptions in 8.7, generate 10 observations from R, and do the tests.

8.7.(a) Find the LRT for testing H0: θ ≤ 0 v.s. H1: θ > 0, based on a sample X1, ..., Xn from a density

fX(x) = 1
β e

− x−θ
β , x > θ and β > 0, where β and θ are unknown.

There are two issues:
(1) How to generate 10 observations ?
(2) How to determine RR ?

(1) Are these right ?
x=rnorm(10) # ?
x=rexp(10) ?

(2) RR
8.7.(a) Find the LRT for testing H0: θ ≤ 0 v.s. H1: θ > 0, based on a sample X1, ..., Xn from a density

fX(x) = 1
β e

− x−θ
β , x > θ and β > 0, where β and θ are unknown.
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Sol. L(µ, β) = β−nexp(−∑

i(Xi − θ)/β)1(θ ≤ X(1))

= β−nexp(−n(X − θ)/β)1(θ ≤ X(1)).
MLE under Θ: For each β, L ↑ in θ for θ ≤ X(1).

Thus the MLE of θ is always θ̂ = X(1).
It is easy to check that
the MLE β̂ = X −X(1) under Θ

MLE under Θ0:
It turns out that the MLE θ̂o = min{θ̂, 0} and β̂o = X − θ̂o under Θ0.

λ =

{

1 if X ≤ 0,

(
X−X(1)

X
)n otherwise.

=

{

1 if X ≤ 0,

(1− X(1)

X
)n otherwise.

(1)

Thus the LRT test is 1(λ ≤ c) = 1((1− X(1)

X
)n ≤ c and X > 0).

Are we done ?
No ! We need to know c = ?

In view of Eq. (1), if c = 1, E(φ) = 1 > α. Thus, c ∈ [0, 1) and we can assume X > 0,

(1− X(1)

X
)n ≤ c ⇔ X(1)

X
≥ c1 ⇔ X

X(1)
≤ c2

⇔
∑n

i=1
Xi

X(1)
≤ c3 ⇔

∑n

i=1
X(i)

X(1)
≤ c3

⇔
∑n

i=2
X(i)

X(1)
≤ c4 ⇔

∑n

i=2
X(i)−(n−1)X(1)

X(1)
≤ c5

⇔
∑n

i=2
T(i)−(n−1)T(1)

T(1)+θ ≤ c5
where

T =
X − θ

β
= h(X), (2)

then h−1(t) = βt+ θ,
fT (t) = fX(βt+ θ)|(h−1(t))′| = 1

β e
−tβ = e−t, t > 0.

Notice that T > 0 w.p.1. Let

W =

n∑

i=2

T(i) − (n− 1)T(1). (3)

Thus by Eq. (1), the LRT test is
φ = 1( W

T(1)+θ≤b) (first way) or

φ = 1({W/b≤T(1)θ}) (second way).
It can be shown (see #8.5) that under Ho,

(1) T(1) ∼ Gamma(1, 1/n);
(2) W ∼ Gamma(n− 1, 1);
(3) W ⊥ T(1).

Thus we need to find (fW , fT(1)
) or (FW , FT(1)

) assuming θ ≤ 0 due to H0. Then find b by

the first way: α =
∫ b

0
f W

T(1)+θ
(x)dx = ...

the 2nd way: α = E(E(1(W/b ≤ T(1) + θ)|W )).

α =sup
θ≤0

E(E(1(W/b ≤ T(1) + θ)|W ))

= sup
θ≤0

∫ ∞

0

e−
nw
b +θfW (w)dw

=

∫ ∞

0

e−
nw
b fW (w)dw

=

∫ ∞

0

e−
nw
b
wn−1−1e−w

Γ(n− 1)
dw
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=

∫ ∞

0

wn−1−1e−w(1+n
b )

Γ(n− 1)
dw

=(1 +
n

b
)n−1A mistake. Should be = (1 +

n

b
)−(n−1)

b =
n

α
1

n−1 − 1
Should be b = (

n

α
−1
n−1 − 1

)−1

φ = 1(λ ≤ c) = 1(

∑n

i=2
X(i)−(n−1)X(1)

X(1)
≤ n

α
1

n−1 −1
),

Wrong, should be 1(

∑n

i=2
X(i)−(n−1)X(1)

X(1)
≤ n

α
−1
n−1 −1

), or

φ = 1(

∑n

i=2
X(i)

X(1)
≤ n

α
−1
n−1 −1

+ n− 1)

⊢: (1) T(1) ∼ Gamma(1, 1/n).
Notice: Let T = X/β = h(X), then h−1(t) = βt,
fT (t) = fX(βt)|(h−1(t))′| = 1

β e
−tβ = e−t, t > 0.

For t > 0, P (T(1) > t) = (P (T > t))n = (e−t)n, thus ...
P (Gamma(n, 1) r.v. > t) = P (Poiss(t) r.v. ≤ n− 1).

⊢: (2) W ∼ Gamma(n− 1, 1) and (3) W ⊥ T(1).
Proof. Let Y1 = T(1), Yj = T(j) − T(1), j = 2, ..., n. (Y = g(T)) ?

T(1) = Y1, T(j) = Yj + Y1, j = 2, ..., n. (Y = g−1(T)) ?

fT(t) = n!e−
∑n

i=1
ti , 0 < t1 < · · · < tn.

fY(y) = fT(g−1(y))|J |=......
= n! exp(−(ny1 + y2 + · · ·+ yn)), y1, 0 < y2 < · · · < yn.

Thus Y1 ⊥ (Y2, ..., Yn) and (Y2, ..., Yn) are order statistics of n-1 Exp(1) r.v.’s.
W =

∑n
i=2 Yi ∼ Gamma(n− 1, 1).

Another proof. Let U =
∑n

i=2 T(i) =
∑n

i=2 X(i)/β and V = T(1) = X(1)/β then W = V/U . Thus WLOG,
we can assume that β = 1 and θ = 0.
Notice fX1

⇒ fX =
∏n

i=1 fXi
.

⇒ fX(1),...,X(n)
(x1, ..., xn) = n!fX(x1, ...., xn), where x1 < · · · < xn.

⇒ fU,V ⇒ fW .
(1) fU,V = ? (2) fW = ?

Typically two ways: (1) cdf (2) Jacobian.

We use cdf approach for fU,V as follows. fU,V =
∂2FU,V

∂u∂v

or fU,V (u, v) = −∂2P (U≤u,V >v)
∂u∂v . We use the latter one.

Typically, let n = 3.
Note P (U ≤ u, V > v) = 0 if u < v(n− 1). Thus we can assume u > v(n− 1).

P{U ≤ u, V > v}
=P{X(2) + · · ·+X(n) ≤ u,X(1) > v}
=n!P{X2 + · · ·+Xn ≤ u,Xn > · · · > X2 > X1 > v}
=n!P{v < X1 < X2, X2 < X3 ∧ (u−X3 − · · · −Xn),

· · · , Xn−1 < Xn ∧ (u−Xn), Xn ≤ u}
=n!P{v < X1 < X2, X2 < X3 ∧ (u−X3), X3 ≤ u}
=n!P{v < X1 < X2, X2 < X3, X3 < u/2, X3 ≤ u}
+ n!P{v < X1 < X2, X2 < u−X3, X3 ≥ u/2, X3 ≤ u}

=n!P{v < X1 < X2 < X3 < u/2}
+ n!P{v < X1 < X2 < u−X3, u/2 ≤ X3 ≤ u}
Should we further simplify ??
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=n!P{v < X1 < X2 < X3 < u/2}
+ n!P{v < X1 < X2 < u−X3, v < u−X3 < u/2, u/2 ≤ X3 ≤ u}

=n!P{v < X1 < X2 < X3 < u/2}
+ n!P{v < X1 < X2 < u−X3, X3 < u− v, u/2 ≤ X3 ≤ u}

=n!P{v < X1 < X2 < X3 < u/2}
+ n!P{v < X1 < X2 < u−X3, u/2 ≤ X3 < u− v}

=n!(

∫ u/2

v

∫ x3

v

+

∫ u−v

u/2

∫ u−x3

v

)

∫ x2

v

e−x1−x2−x3dx1dx2dx3

=n!(

∫ u/2

v

∫ x3

v

+

∫ u−v

u/2

∫ u−x3

v

)[e−v−x2−x3 − e−2x2−x3 ]dx2dx3

=6(

∫ u/2

v

∫ x3

v

+

∫ u−v

u/2

∫ u−x3

v

)[e−v−x2−x3 − e−2x2−x3 ]dx2dx3

=6

∫ u/2

v

∫ x3

v

e−v−x2−x3dx2dx3 − 6

∫ u/2

v

∫ x3

v

e−2x2−x3dx2dx3

+ 6

∫ u−v

u/2

∫ u−x3

v

e−v−x2−x3dx2dx3 − 6

∫ u−v

u/2

∫ u−x3

v

e−2x2−x3dx2dx3,

0 < v <
u

n− 1
.

fU,V (u, v) = −6
∂2

∂u∂v
P{U ≤ u, V > v}

=− 6
∂

∂u
{[−

∫ v

v

e−v−x2−vdx2 −
∫ u/2

v

e−v−v−x3dx3

−
∫ u/2

v

∫ x3

v

e−v−x2−x3dx2dx3] + [

∫ v

v

e−2x2−vdx2

+

∫ u/2

v

e−2v−x3dx3] + [−
∫ v

v

e−v−x2−(u−v)dx2

−
∫ u−v

u/2

e−v−v−x3dx3 −
∫ u−v

u/2

∫ u−x3

v

e−v−x2−x3dx2dx3]

+ [

∫ v

v

e−2x2−(u−v)dx2 +

∫ u−v

u/2

e−2v−x3dx3]}

=− 6
∂

∂u
{−

∫ u/2

v

∫ x3

v

e−v−x2−x3dx2dx3 −
∫ u−v

u/2

∫ u−x3

v

e−v−x2−x3dx2dx3}

=− 6{−(1/2)

∫ u/2

v

e−v−x2−u/2dx2 −
∫ u−(u−v)

v

e−v−x2−(u−v)dx2

− (−1/2)

∫ u−u/2

v

e−v−x2−u/2dx2} −
∫ u−v

u/2

e−v−(u−x3)−x3dx3}

=6{(1/2)
∫ u/2

v

e−v−x2−u/2dx2 − (1/2)

∫ u−u/2

v

e−v−x2−u/2dx2

+

∫ u−v

u/2

e−v−udx3}

=6

∫ u−v

u/2

e−v−udx3

=6(
u

2
− v)e−v−u, 0 < v <

u

2
.
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After finding fU,V , we can find fW again by two ways:

1. Let (u,w) = g(u, v), then fU,W (u,w) = fU,V (g
−1(u,w))|( ∂g−1

∂(u,w) )2×2| ⇒ fW .

2. FW (w) =
∫ ∫

u
v ≤w

fU,V (u, v)dudv. fW (w) = F ′
W (w).

Now (u,w) = (u, v/u) = g(u, v), thus (u, v) = (u, uw) = g−1(u,w).

∂

∂(u,w)
g−1 =

(
1 w
0 u

)

fU,W (u,w) =6u(
u

2
− uw)e−uw−u, 0 < w < 1/2 & u > 0.

fW (w) =

∫ ∞

0

6u2(
1

2
− w)e−u(w+1)du

=6(
1

2
− w)

∫ ∞

0

u3−1e−u(w+1)du

=6(
1

2
− w)(2)(

1

w + 1
)3, w ∈ (0, 1/2).

Summary: H0: θ ≤ 0, vs H1: θ > 0
α = 0.05;
φ = 1(W≥c), where

0.05 =

∫ 1
(n−1)

c

fW (w)dw.

If we set n = 4, the derivation is more tedious.

P{U ≤ u, V > v}
=P{X(2) + · · ·+X(n) ≤ u,X(1) > v}
=n!P{X2 + · · ·+Xn ≤ u,Xn > · · · > X2 > X1 > v}
=n!P{v < X1 < X2, X2 < X3 ∧ (u−X3 − · · · −Xn),

· · · , Xn−1 < Xn ∧ (u−Xn), Xn ≤ u}
=n!P{v < X1 < X2, X2 < X3 ∧ (u−X3 −X4), X3 < X4 ∧ (u−X4), X4 ≤ u}
=n!P{v < X1 < X2, X2 < X3, X3 < (u−X4)/2, X3 < X4, X4 ≤ u/2, X4 ≤ u}

+ n!P{v < X1 < X2, X2 < u−X3 −X4, X3 ≥ (u−X4)/2, X3 < X4, X4 ≤ u/2, X4 ≤ u}
+ n!P{v < X1 < X2, X2 < X3, X3 < (u−X4)/2, X3 < u−X4, X4 > u/2, X4 ≤ u}
+ n!P{v < X1 < X2, X2 < u−X3 −X4, X3 ≥ (u−X4)/2, X3 < u−X4, X4 > u/2, X4 ≤ u}

=n!P{v < X1 < X2, X2 < X3, X3 < (u−X4)/2, X3 < X4 ≤ u/2}
+ n!P{v < X1 < X2, X2 < u−X3 −X4, X3 ≥ (u−X4)/2, X3 < X4 ≤ u/2}
+ n!P{v < X1 < X2, X2 < X3, X3 < (u−X4)/2, u/2 < X4 ≤ u}
+ n!P{v < X1 < X2, X2 < u−X3 −X4, (u−X4)/2 ≤ X3 < u−X4, u/2 < X4 ≤ u}

Homework solutions for week 8
8.24. Is the LRT for the simple hypotheses equivalent to the one obtained by NPL ?
Sol. Let Ho: θ = θo v.s. H1: θ = θ1.
The LRT test is φ = 1(λ ≤ c), where λ = λ(x) = f(x;θo)

f(x;θo)∨f(x;θ1)
.

Let αo = Eθo(φ).
The MP test from NPL is

φ1 =







1 if f(x; θ1) > kf(x; θo)
p(x) if f(x; θ1) = kf(x; θo)
0 if f(x; θ1) < kf(x; θo)

(1)
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where k ≥ 0 and Eθo(φ1(X)) = α.

φ1 = 1(
f(x; θ1)

f(x; θo)
> k) + p(x)1(

f(x; θ1)

f(x; θo)
= k) where

0

0
= 1.

Two understandings of the question:
(a) Given φ, does φ = φ1 for a φ1 of form Eq. (1) ?
(b) Given φ1, does φ1 = φ for a LRT φ ?

(a) Yes iff Eθo(φ) = Eθo(φ1). Need a proof.

(b)

{

Y es if P (f(X, θ1) = kf(X, θ0)) = 0
No in general otherwise

Need a proof.

Proof in Case (a). 3 cases of “if”: (1) c = 0, (2) c ∈ (0, 1), (3) c = 1.
In case (a.1), λ(x) ≤ c = 0 implies that
f(x; θo) = 0 < f(x; θ1) (i.e. 1/λ(x) = ∞),

otherwise, x is not of concern why ?
Define k = ∞ = 1/0 and ∞× 0 = 0, then

φ = 1(λ = 0) = φ1 with k = ∞ and p(x) = 0 and αo = 0 = Eθo(φ1).
In case (a.2), φ = φ1 as in Eq. (1) with k = 1/c > 1 and p(x) = 1. It is a MP level αo test.
In case (a.3), φ = φ1 as in Eq. (1) with k = 0 ( 6= 1 = 1/c) and p(x) = 1. αo = 1. It is a MP level αo test.
Not of practical interest !
Proof in Case (b). The answer in general is ”No”. A counterexample for discrete case: X ∼ bin(1, p).
H0: p = 0.5 v.s. H1: p = 0.4. φ1 = 1

101(X = 0) satisfies Eq. (1), but it is not a LRT φ.

#8.22. Let X1 ,..., X10 be i.i.d. from bin(1,p). For testing H0: p = 1/2 vs. H1: p = 1/4. A UMP size
0.0547 test is φ = 1(

∑

i
Xi≤2).

Question c: For what α level does there exist a UMP test of H0: p = 1/2 vs. H1: p = 1/4 ?
Answer: Two points of view:

(1) Theoretical point of view: α ≤ 1.
(2) Pratical point of view: α < 1/2.

Since T =
∑10

i=1 Xi is the sufficient statistic and has ↑ MLR, the UMP test of level α is

φ =

{
1 if T < i
γ if T = i
0 if T > i,

(1)

where

α = [
∑

j<i

(
10

j

)

+ γ

(
10

i

)

]0.510, i ∈ {0, 1, 2, 3, 4, 5}.

α ∈ [0, 0.5).
For instance, for α = 0.05, take i = 2 and

γ = [α−
1∑

j=0

(
10

j

)

0.510]/[

(
10

2

)

0.510] = 0.8933333

φ =

{
1 if T < 2
0.8933333 if T = 2
0 if T > 2,

R commands:
x=0:5
round(pbinom(x,10,0.5),4)
[1] 0.0010 0.0107 0.0547 0.1719 0.3770 0.6230
(0.05-pbinom(1,10,0.5))/dbinom(2,10,0.5)
[1] 0.8933333
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Question related to 8.29, where X ∼ Cauchy(θ). If X ∈ bin(10, θ), let φi = 1(X ∈ RRi), where
RR1 = {X ∈ [0, 2], RR2 = [0, 1] and RR3 = [0, 1.5].

1. φ1 6= φ2 as RR1 6= RR2. Yes, No, DNK.
2. φ3 6= φ2 as RR3 6= RR2. Yes, No, DNK.
3. φ3 = φ2 as P ((RR3 \RR2) ∪ (RR2 \RR3) = 0. Yes, No, DNK.
4. φ1 6= φ2 as P ((RR1 \RR2) ∪ (RR2 \RR1) > 0. Yes, No, DNK.

8.29. Let X ∼ f(x; θ) = 1
π(1+(x−θ)2 . φ = 1(1 < X < 3).

(b) ⊢: φ is UMP level α test for Ho: θ = 0 v.s. H1: θ = 1.
(c) ⊢: Prove of disprove: φ is the UMP level Eθo(φ) test for testing

Ho: θ ≤ 0 v.s. H1: θ > 0.
(d) What can be said about in general.

Proof. (b) Let g(x) = f(x; 1)/f(x; 0) = 1+x2

1+(x−1)2 . Since g(1) = g(3) = 2, by the NPL, a UMP level α test

is φo = 1(g(X) > 2) with α = Eθ=0(φo).

g(x) > 2 <=> 1+x2

1+(x−1)2 > 2 <=> 1 + x2 − 2(1 + (x− 1)2) > 0 <=> 1 < x < 3.

By the NPL, φ = φo is the UMP test of level α.
(d). In genenal, we can show that a test of the form φ = 1(X ∈ (u, v)) is a UMP level α test for testing Ho:
θ = θo, v.s. H1: θ = θ1 6= θo, where (u, v) depends on (θo, θ1) and α.

It suffices to show that φ = 1(X ∈ (u, v)) = 1( f(X;θ1)
f(X;θo)

> k) for some k > 1.

In fact, since α = Eθo(φ(X)) ↓ 0 as k ↑ ∞,
f(x;θ1)
f(x;θo)

= 1+(x−θo)
2

1+(x−θ1)2
> k (> 1).

<=> 1 + (x− θo)
2 − (1 + (x− θ1)

2)k > 0
<=> ax2 + bx+ c ≡ x2(1− k)− 2x(θo − kθ1) + θ2o − kθ21 + 1− k > 0
<=> u < x < v
where u and v are −b±

√
b2−4ac
2a .

(c) ⊢: φ is not UMP level α test for Ho: θ ≤ 0 v.s. H1: θ > 0.
Proof 1. Take θ = 2 and let

G2(x) = f(x; 2)/f(x; 0) =
1 + x2

1 + (x− 2)2
(1)

G2(1) =
1+1
1+12 6= 1+32

1+12 = G2(3)
Thus φ is not UMP level α test.

Is it correct ?
Example: Suppose that Θ = {0, 1}. α = 0.2.

f(x; θ) is given by the table:





x : 1 2 3
f(x; 1) : 0.3 0.4 0.3
f(x; 0) : 0.5 0.2 0.3





Prove or disprove that φ = 1(1 < X < 3) is the UMP level 0.2 test.
Disroof. Let G(x) = f(x; 1)/f(x; 0).

Then G(1) = 3/5 6= 1 = G(3). α = Eθ=0(φ).
Thus φ is not a UMP level α test.

Proof. φ is the UMP level 0.2 test by the NPL, as
Eθ=0(φ) = 0.2 and

φ = 1(1 < X < 3) = 1(X = 2) =

{
1 if f(X; 1) > 1.1f(X; 0)
0 if f(X; 1) < 1.1f(X; 0).

What does the example mean ?
8.29 (c) (continued). How to correct proof 1?

Ans: Find the UMP level α test φ2 with θ1 = 2 and
show either P (φ(X) = φ2(X)) < 1 or βφ(2) < βφ2

(2).
In fact, by the conclusion in part (d), the UMP level α test is

φ2 = 1(X ∈ (u, v)) and G(u) = G(v).
Recall φ = 1(X ∈ (1, 3)).
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Since G2(1) 6= G2(3),
(u, v) 6= (1, 3) and P (X ∈ A) > 0 for each nonempty open interval A,

P (φ(X) 6= φ2(X)) > 0.
Additional Homework solutions for week 8

1. The Weibull random variable has a pdf f(x; θ) = θxθ−1e−xθ

, x, θ > 0.
(1) Find a MP test of size α = 0.1 for testing

H0: θ = 1 versus H1: θ = 2.
(2) Compute the Type II Error probability.
(3) If X = 1.2 is observed, what is your conclusion ?

Sol. H0: θ = 1, v.s. H1: θ = 2. α = 0.1.
A MP test is φ = 1(r≥k), where E(φ(X)) = 0.1 and

r = f(x;θ1)
f(x;θ0)

= 2xe−x2+x

{

↑ if x ∈ (0, 1)
↓ if x ≥ 1

.

Thus φ = 1(X∈(a,b)), (or 1(X∈[a,b]), or 1(X∈(a,b]), or 1(X∈[a,b))), and
∫ b

a
e−xdx = 0.9, i.e.,

e−a − e−b = 0.9. (1)

2ae−a2+a − 2be−b2+b = 0. (2)

Substituting b = g(a) to Eq. (2) yielding

w(a) = 2ae−a2+a − 2g(a)e−(g(a))2+g(a) = 0. (3)

x=(1:200)/100
w=w(x)
plot(x,w)
abline(h=0)
It turns out (a, b) = (0.87, 1.13). Thus do not reject H0, as X = 1.2.
Additonal.

1. The Weibull random variable has a pdf f(x; θ) = θxθ−1 exp(−xθ), x, θ > 0.
(1) Find a MP test of size α = 0.1 for testing H0: θ = 1 versus H1: θ = 2.
(2) Compute the Type II Error probability.
(3) If X = 1.2 is observed, what is your conclusion ?

Sol. The LR

g(x) =
f(x; 2)

f(x; 1)
= 2xex−x2

g′ = 2(2x+ 1)(−x+ 1)

x : 0 1 2
g : ր max ց

ր ց
g(x) > k <=> x ∈ (a, b).

Thus the MP test of level α is φ = 1(X∈(a,b)), where

0.1 = α =

∫ b

a

e−xdx = e−a − e−b

or 0.1 = pexp(b)− pexp(a).

g(a) = g(b) <=> aea−a2

= beb−b2

Solve the equations using R:

h(a) = aea−a2 − beb−b2 = 0, where b = −ln(e−a − 0.1)
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x=(1:150)/200

a=qexp(x)

b=-log(exp(-a)-0.1)

# or b= qexp(0.1+pexp(a))

y=a*exp(a-a*a)-b*exp(b-b*b)

plot(a,y,type=”l”)

max(a[y<=0])

max(b[y<=0])

[1] 0.8556661 [1] 1.12393

a

y

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−
0.

2
0.

0
0.

2
0.

4

8.13. Let X1, X2 be i.i.d. ∼ U(θ, θ + 1), φ2 = 1(X1 +X2 > C), find a test which is more powerful than φ2.
Sol. Note C = 2−

√
2α.

How to get a better test ?
By NPL, for testing Ho: θ = θo = 0 v.s. H1: θ = θ1 = 1−√

α, the UMP test of size α is

φ =

{
1 if f(x, y; θ1) = 1 > 0 = f(x, y; θo) i.e., x or y ≥ 1
0 if f(x, y; θ1) = 0 < 1 = f(x, y; θo) i.e., x, y < 1−√

α

with Eθ0(φ) = α. If α = 0.05, C − 1 = 0.68 and 1−√
α = 0.78.
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Candidate φ = 1(X ∈ RR), where
RR = {X1 ≥ 1 or X2 ≥ 1} ∪ {X1, X2 ≥ 1−√

α} Why ?
Are we done ?

No, we need a proof.
Consider 3 cases:

(1) θ ∈ [0, C − 1];

(2) θ ∈ (C − 1, 1−√
α);

(3) θ ∈ [1−√
α,∞).

Since φ ≥ φ2 on the region {X1 ≥ 1 or X2 ≥ 1}, it is easy to check that βφ(θ) ≥ βφ2
(θ) ∀ θ in cases (1)

and (3).

In case (2) P (φ = 1, X1, X2 < 1) = α, but P (φ2 = 1, X1, X2 < 1) < α, thus βφ(θ) ≥ βφ2
(θ) ∀ θ in case

(2).

For testing H0: θ ∈ Θ0 v.s. H1: θ ∈ Θc
0,

LRT φ = 1(λ ≤ c), where

λ =
supθ∈Θ0

L(θ|x)
supθ∈Θ L(θ|x) =

L(θ̂0|x)
L(θ̂|x)

L(θ|x) = ∏n
i=1 f(xi; θ),

θ̂ is the MLE of θ under Θ,
θ̂0 is the MLE of θ under Θ0,
c is determined by α = supθ∈Θ0

P (λ ≤ c), or
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otherwise,
c = sup{t : α ≥ sup

θ∈Θ0

P (λ ≤ t)}.

8.35.(c) Show that the pdf of the noncentral t dostribution T ′ has an MLR in its noncentrality parameter
δ = |µ|.
Sol. T = X/

√

Y/ν, X ∼ N(µ, 1) and Y ∼ χ2(ν). Let |µ2 > |µ1|

FT (t, δ) =

∫ ∞

0

∫ t
√

y/ν

0

1√
2π

e−(x−µ)2/2dx
yν/2−1e−y/2

Γ(ν/2)2ν/2
dy

fT (t, δ) =

∫ ∞

0

√

y/ν
1√
2π

e−(t
√

y/ν−µ)2/2 y
ν/2−1e−y/2

Γ(ν/2)2ν/2
dy

fT (t, δ2)

fT (t, δ1)
=

∫∞
0

√

y/ν 1√
2π

e−(t
√

y/ν−µ2)
2/2 yν/2−1e−y/2

Γ(ν/2)2ν/2 dy
∫∞
0

√

y/ν 1√
2π

e−(t
√

y/ν−µ1)2/2 yν/2−1e−y/2

Γ(ν/2)2ν/2 dy

( fT (t,δ2)
fT (t,δ1)

)′t

= 1
c2 [

∫∞
0

y/ν
−(t

√
y/ν−µ2)√
2π

e−(t
√

y/ν−µ2)
2/2 yν/2−1e−y/2

Γ(ν/2)2ν/2 dy
∫∞
0

√

y/ν 1√
2π

e−(t
√

y/ν−µ1)
2/2 yν/2−1e−y/2

Γ(ν/2)2ν/2 dy

−
∫∞
0

√

y/ν 1√
2π

e−(t
√

y/ν−µ2)
2/2 yν/2−1e−y/2

Γ(ν/2)2ν/2 dy
∫∞
0

y/ν
−(t

√
y/ν−µ1)√
2π

e−(t
√

y/ν−µ1)
2/2 yν/2−1e−y/2

Γ(ν/2)2ν/2 dy] > 0

∫∞
0

y/ν
−(t

√
y/ν−µ2)√
2π

e−(t
√

y/ν−µ2)
2/2 yν/2−1e−y/2

Γ(ν/2)2ν/2 dy
∫∞
0

√

y/ν 1√
2π

e−(t
√

y/ν−µ2)2/2 yν/2−1e−y/2

Γ(ν/2)2ν/2 dy

>

∫∞
0

y/ν
−(t

√
y/ν−µ1)√
2π

e−(t
√

y/ν−µ1)
2/2 yν/2−1e−y/2

Γ(ν/2)2ν/2 dy
∫∞
0

√

y/ν 1√
2π

e−(t
√

y/ν−µ1)2/2 yν/2−1e−y/2

Γ(ν/2)2ν/2 dy

g(t) = The ratio of the intergrants =
e−(t

√
y/ν−µ2)

2/2

e−(t
√

y/ν−µ1)2/2
= e

1
2 (2t

√
y/ν−µ2−µ1)(µ2−µ1)

If µ2 > 0, then µ2 − µ1 > 0, g(t) ↑ in t, and fT (t,δ2)
fT (t,δ1)

↑ in t too.

If µ2 < 0, then µ2 − µ1 < 0, g(t) ↑ in t, and fT (t,δ2)
fT (t,δ1)

↑ in t too.

Homework solutions for week 10
Additional problem.

3. Carry out the following simulation project.
3.1. Use Splus to generate 10 observations from N(1, 4).
3.2. Now pretend that you only known that the data were from N(µ, σ) without knowing µ and construct
a 80% confidence interval for µ.
3.3. Repeat Steps 3.1 and 3.2 100 times.
Splus commands are :
y=rep(0,200)
dim(y)=c(100,2)
z=qnorm(0.9)
for(i in 1:100) {
x=rnorm(10,1,2)
u=mean(x)
y[i,1]=u-z*2/sqrt(10)
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y[i,2]=u+z*2/sqrt(10)

}
plot(1:100,y[1:100,2], xlim=c(0,100), ylim=c(-2,5))

par(new=T)

plot(1:100,y[1:100,1], xlim=c(0,100), ylim=c(-2,5))

for(i in 1:100) {
par(new=T)

plot(c(i,i),y[i,1:2],type=”l”, xlim=c(0,100), ylim=c(-2,5))

}
a. In the above approach, what assumption is made on σ ?

b. What is the proportion that the CIs contain the true mean?

c. What is the relation between the proportion and the confidence coefficient?

d. Compare the lengths of the interval between those in problems 2 and 3 and make comments on the
lengths and discuss why there is a difference.

Sol. c. The proportion ≈ the confidence coefficient 80%.
d. The mean length of the CI in #2 is longer than the length of CI in # 3,
as we have more accurate information in # 3 than in # 2. In fact,

in #2 the 80% CI is X ± 1.53S/
√
5,

in #3 the 80% CI is X ± 1.28σ/
√
5 (noting E(S2) = σ2)).

x=(1:150)/200

a=qexp(x)

b=-log(exp(-a)-0.1)

y=a*exp(a-a*a)-b*exp(b-b*b)

plot(a,y,type=”l”)

max(a[y<=0])

max(b[y<=0])

9.2. Suppose X ⊥ X.

P (X ∈ [x− 1.96/
√
n, x+ 1.96/

√
n])

= Φ(x+ 1.96/
√
n)− Φ(x− 1.96/

√
n) ?

P (X ∈ [X − 1.96/
√
n,X + 1.96/

√
n])

= Φ(X + 1.96/
√
n)− Φ(X − 1.96/

√
n) ?

P (X ∈ [X − 1.96/
√
n,X + 1.96/

√
n])

= P (−1.96/
√
n ≤ X −X ≤ 1.96/

√
n]) ?

X −X ∼ ?

P (X ∈ [X − 1.96/
√
n,X + 1.96/

√
n]) = P (

|X −X|
√

1 + 1/n
| ≤ 1.96/

√
n

√

1 + 1/n
).

Howmework week 9 and 10

Additonal.

1. A tire company guarantees that a particular brand of tire has a mean lifetime of 42 thousand miles or more.
A consumer test agency collected 10 observations as follows: 42, 36, 46, 43, 41, 35, 43, 45, 40, 39. Assume
the lifetime has an exponential distribution. Use these data to determine a 95% and a 99% confidence
intervals for the mean lifetime of a tire using the pivotal method and the LRT method, separately.

Sol. The LRT method depens on H1.
H1: µ 6= 42 or µ < 42 ???

The LRT test leads to RR: {X < a}.
The CI is

2
∑n

i=1
Xi

χ2

2n, 1− α
︸ ︷︷ ︸

right−tail

< µ or (21.1,∞).

The pivotal T = 2
∑n

i=1 Xi/µ ∼ χ2
2n. The CI is
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2
∑n

i=1
Xi

χ2

2n, 1− α
︸ ︷︷ ︸

right−tail

< µ (common sense),

or a shortest one, but how ?
It is not obvious to use T , as T leads to

[
2
∑

i
Xi

b ,
2
∑

i
Xi

a ] with FT (b)− FT (a) = 0.95.

Let W = 1/T .
FW (w) = P (W ≤ w) = P (T ≥ 1/w) = 1− FT (1/w) and
fW (w) = fT (1/w)1/w

2, w > 0.

T ∼ χ2
2n with df fT (t) =

t
2n
2

−1e−t/2

Γ(n)2n , t > 0.

The shortest CI is [2
∑n

i=1 Xia, 2
∑n

i=1 Xib], where
FW (b)− FW (a) = 1− α and fW (a) = fW (b).

9.3. X1, ..., Xn are i.i.d. from F (x) = ( xβ )
α if x ∈ (0, β) and α is given. 95% upper confidence limit for β,

where X(n) = 25, α = 12.59, n = 14.

Sol. f(x;β) = (α/β)(x/β)α−1, x ∈ (0, β).
H0: β = βo, v.s. H1: β 6= βo.
MLE: β̂0 = βo, β̂ = X(n).
LRT leads to
Acceptance region : {x : λ(x) > c}, where
λ = L(x;θ̂o)

L(x;θ̂)
=

∏n
i=1

(
Xi
β0

)α

(
Xi

X(n)
)α

= (
X(n)

β0
)nα.

Notice that T = X(n)/β is a pivotal random variable, as
P (T ≤ t) = tnα if t ∈ [0, 1].

The acceptance region leads to
P (a ≤ T ) = 0.95 = 1− anα ?? or
P (a ≤ T ≤ 1) = 0.95 = 1− anα ??

a = 0.05
1

nα and b = 1.
a ≤ X(n)

β ≤ 1,
X(n)

1 ≤ β ≤ X(n)

a .
95% CI for β is

[25, 25.43] or (0, 25.43] ??
# 9.4. Use LRT to derive CI for λ, where

X1, ..., Xn ∼ N(0, σ2
X)

Y1, ..., Ym ∼ N(0, σ2
Y )

λ = σ2
Y /σ

2
X ,

A2. Then generate a set of data with n = 9 and m = 16 from normal distributions and derive the LRT
based 90% CI of λ using numerical method. Report the sufficient statistics.
Sol. H0: λ = λo, v.s. H1: otherwise.

a. MLE under Θ: σ̂2
X =

∑

i X
2
i /n, σ̂

2
Y =

∑

i Y
2
i /m, λ̂ = σ̂2

Y /σ̂
2
X .

MLE under H0: σ̃
2
X =

∑

i
X2

i +
∑

j
Y 2
j /λo

n+m , σ̃2
Y = λoσ̃

2
X , λ̃ = λo,

L =(2πσ2
X)−n/2 exp(−1

2

∑

i

X2
i /σ

2
X)(2πσ2

Y )
−m/2 exp(−1

2

∑

i

Y 2
i /σ

2
Y )

=(2πσ2
X)−n/2(2πσ2

Y )
−m/2 exp(−1

2
[
∑

i

X2
i /σ

2
X) +

∑

i

Y 2
i /σ

2
Y ])

=(2πσ2
X)−n/2(2πσ2

Y )
−m/2 exp(−1

2

∑

i X
2
i +

∑

i Y
2
i /λ

σ2
X

)
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LR ∝ (σ̃2
X)−n/2(σ̃2

Y )
−m/2

(σ̂2
X)−n/2(σ̂2

Y )
−m/2

=(
n

n+m

∑

i X
2
i +

∑

j Y
2
j /λo

∑

i X
2
i

)−n/2(
m

n+m

∑

i X
2
i +

∑

j Y
2
j /λo

∑

i Y
2
i

)−m/2

∝(1 +

∑

j Y
2
j /λo

∑

i X
2
i

)−n/2(
λo

∑

i X
2
i

∑

j Y
2
j

+ 1)−m/2, T =

∑

j Y
2
j /λo

∑

i X
2
i

∝(1 + T )−n/2(1 +
1

T
)−m/2

=(1 + T )−n/2−m/2(T )m/2

(lnLR)′T = −n/2+m/2
1+T + m/2

T

{
= +∞ if T = 0+
< 0 if T ≈ ∞ but T 6= ∞

and has a unique zero point. Thus LR first ↑, then ↓
Acceptance region a < T < b, where (LR(a) = LR(b)).

Notice F =

∑m

j=
Y 2
j /(mσ2

Y )
∑n

i=1
X2

i
/(nσ2

X
)
= n

mT ∼ Fm,n.

Acceptance region can be written as

a <
Y 2

X2λo

< b, where Fm,n(b)− Fm,n(a) = 1− α, LR(am/n) = LR(bm/n).

CI : (
Y 2

X2

b ,
Y 2

X2

a ),
Question: How to find (a, b) numerically by R-program ?
Numerical method for given Y 2/X2:

LR ∝ g = (1 + T )−(n+m)/2(T )m/2

Assign α, say α = 0.05,
t = Fm,n,1−α,
a =(1:999)/1000
a = t ∗ a
p = Fm,n(a)
b = Fm,n,(α−p) (critical value, i.e., 1− Fm,n(b) = α− p)
solve LR(am/n)− LR(bm/n) = 0.

Then a < Y
2

X
2
λ
< b yields

the (LRT method) CI Y
2

X
2
b
< λ < Y

2

X
2
a
, where LR(am/n)− LR(bm/n) = 0.

An approximate CI: (
Y 2

X2

Fm,n,α/2
,

Y 2

X2

Fm,n,1−α/2
) if n and m are large.

But it is not the LRT CI !

R program for #9.4 m=10
n=15
x=rnorm(n)
y=rnorm(m,0,3)
f=mean(y**2)/mean(x**2)
f # [1] 10.5161
t=qf(0.05,m,n)
a=(1:999)/1000
a=t*a
p=pf(a,m,n)
b=qf(1-0.05+p,m,n)
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r=m/n
y=(1+r*b)**(-(n+m)/2)*(r*b)**(m/2)
x=(1+r*a)**(-(n+m)/2)*(r*a)**(m/2)
z=y-x
u=z[z>=0]
s=min(u)
f/b[z==s]
f/a[z==s]

Simulation result: The 95% CI is [ 3.359162, 36.13342]
A different numerical method for given Y 2/X2:

1. Generate a sequence of λ. For each λ: (note λ is not LR)
2. find cλ for the RR: LR ≤ cλ;
3. λ ∈CI if λ is not rejected.
This can be done as follows:
Treat Y 2/X2 as one of a or b and find the other one.
Compute the P (a < T < b), if it is < 1− α, then p ∈ CI.

9.6. 90% CI of p based on two-tailed test with X = X1 ∼ bin(n, p).
A3. Do #9.6. Then generate a r.v. from bin(n, p) with your (n, p), report the sufficient statistic values

and derive the LRT based 90% CI of p using numerical method.
Sol. H0: p = po v.s. H1: p 6= po.

MLE: p̂0 = po and p̂ = X/n.

λ =
pX
o (1−po)

n−X

(X/n)X(1−X/n)n−X .

LRT φ = 1(λ≤c)

lnλ = xlnpo + (n− x)ln(1− po)− xlnx+ xlnn− (n− x)ln(1− x/n)

(lnλ)′x = lnpo − ln(1− po)− ln(x/n)− x/x+ ln(1− x/n) + (n− x)
1/n

1− x/n

= ln
po

1− po
+ ln

1− x/n

x/n
=

{
+ if x = 0
− if x = n

RR: X ≤ a or X ≥ b
AR: a < X < b, where λ(a) = λ(b).
Notice that in LRT φ = 1(λ≤c), c depends on po, thus write

φ = 1(λ≤cpo )
.

where cpo
satisfies that (1) Epo

(φ) ≤ α,
(2) Epo

(φ) + Ppo
(X ∈ (a, a+ 1]) > α and (3) Epo

(φ) + Ppo
(X ∈ [b− 1, b)) > α.

Then a CI for p is {p : pX(1−p)n−X

(X/n)X(1−X/n)n−X > cp}, where Pp(λ ≤ cp) ≤ α, Ep(φ) +Pp(X ∈ (a, a+1]) > α and

Ep(φ) + Pp(X ∈ [b− 1, b)) > α.

In other words, the test is φ = 1(X/∈(a,b)), where
lnλ(a) = lnλ(b),
Ppo

(λ(X) ≤ λ(a)) ≤ α and Ppo
(λ(X) ≤ λ(a+ 1)) > α.

That is, observe X = x,
we do not reject Ho if the p-value Ppo

(λ(X) ≤ λ(x)) > α.
(1− α) CI : {p : Pp(λ(X) > λ(x)) < 1− α}.

The idea of deriving CI numerically is as follows.
1. Generate a sequence of p. For each p:
2. find cp;
3. p ∈CI if p is not rejected.

114



# R for 9.6.

n=10

x=rbinom(1,n,0.2)

x

[1] 8 # an observation for testing

p=(1:1000)/1001

z=rep(0,1000) # 1(p is accepted)

for (j in 1:1000){
y=1:(n-1)

g= y*log(p[j]) +(n-y)*log(1-p[j]) -y*log(y/n) -(n-y)*log(1-(y/n)) # ln λ

g=c(n*log(1-p[j]),g,n*log(p[j]))

u = 0

for(i in 1:(n+1)) {
if( g[i] > g[x]) u=u+dbinom(i,n,p[j])

}
if (u < 0.9) z[j] =1

}
min(p[z==1])

max(p[z==1])

CI: [0.5004995, 0.9450549]

# not a LRT CI

n=10

m=1000

t=0.4

x=rbinom(1,n,t)

x=8

q=(1:m)/m

p=1:m

for (i in 1:m){
y=binom.test(x,n,q[i])

p[i] = y$p.value

}
q=q[p>=0.1]

min(q)

max(q)

[1] 0.5

[1] 0.945

9.13 (b). Let X ∼ Beta(θ, 1). Find a pivotal quantify and a CI of size e−1/2 − e−1.

Sol. fX(x) = θxθ−1, x ∈ (0, 1). Let T = −log(Xθ) = −θ logX. X = e−T/θ, dx
dt = 1

θ e
−t/θ, fT (t) =

θexp(−(t/θ)(θ − 1)) 1θ e
−t/θ = e−t, t > 0.

e−0.5 − e−1 = P (T ≤ b) = 1− e−b. 0 ≤ −θ log(X) ≤ b. 0 ≤ θ ≤ b
− logX .

It is the shortest CI with the confidence coefficience (due to fT (a) = fT (b)).

9.12. Assume X1, ..., Xn are i.i.d. from N(θ, θ). Construct a 95% CI for θ.

Sol. 3 approaches:
(1) Pivotal method,
(2) LRT method,
(3) X ± tn−1,α/2S/

√
n (not a good one), Why ??

(1a) A pivotal T = X−θ√
θ/n

∼ N(0, 1). It leads to

|X − θ
√

θ/n
| ≤ 1.96 (and θ > 0).
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or (X − θ)2 ≤ 1.962θ/n.
θ2 − 2Xθ + (X)2 − 1.962θ/n ≤ 0.

θ2 − 2(X + 1.962

2n )θ + (X)2 ≤ 0.

Two solutions to the equation: θ2 − 2(X + 1.962

2n )θ + (X)2 = 0:

θ = X + 1.962

2n ± c, if 2X + 1.962

2n ≥ 0, where

c =
√

(X + 1.962

2n )2 − (X)2.

[X + 1.962

2n − c,X + 1.962

2n + c]. It is right ???

[0 ∨ (X + 1.962

2n − c), 0 ∨ (X + 1.962

2n + c)]. It is right ???
Solutions 95% CI for θ:

{

[0 ∨ (X + 1.962

2n − c), 0 ∨ (X + 1.962

2n + c)] if 2X + 1.962

2n ≥ 0

{0} if 2X + 1.962

2n < 0

Q: Why {0} is a 95% CI for θ in the latter case ?

Hint: Compute the coverage probability.

(1b) Another pivotal Y = (n−1)S2

θ ∼ χ2(n− 1). Not a good one. Thus
P (a ≤ Y ≤ b) = 1− α

=> 95% CI is [(n− 1)S2/b, (n− 1)S2/a],
where fY (a) = fY (b) gives the shortest CI of this type.
(2) LRT method

fX(x; θ) =
∏n

i=1 f(xi; θ) =
1√

2πθ/n
e−

∑n

i=1

(xi−θ)2

2θ .

lnfX(x, θ) = c+ −n
2 lnθ−n

2 (
x2

θ − 2x+ θ).

lnfX(x, θ)′ = − n
2θ − n

2 (−x2

θ2 + 1) = 0.

θ2 + θ − x2 = 0.

θ = −1±
√

1+4x2

2 .

=> θ̂ = −1+
√

1+4x2

2 > 0.

Check:
θ : 0 θ̂ ∞

lnfX : −∞ finite −∞ .

The MLE is θ̂ =
√

x2 + 1
4 − 1/2.

The derivation of the CI is more complicated and is skipped here.
We consider a special case as follows.

A4. 9.12. Generate a random variable X1 from N(θ, θ) using R (n = 1) and report the sufficient statistic
value. Use the LRT approach to derive a 90% CI for θ by numerical method.

Sol. LRT based on Y ∼ N(θ, θ) with n = 1.

fY (y, θ) =
1√
2πθ

e−
(y−θ)2

2θ

lnfY (y, θ) = c+ −1
2 lnθ− 1

2 (
y2

θ − 2y + θ).

(lnfY (y, θ))
′ = − 1

2θ − 1
2 (−

y2

θ2 + 1) = 0.
θ2 + θ − y2 = 0.

θ =
−1±

√
1+4y2

2 . =>

θ̂ =
−1 +

√

1 + 4y2

2
> 0. (1)

Check:
θ : 0 θ̂ ∞

lnfY : −∞ finite −∞ .

The MLE is θ̂.
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λ =
1√
θ0

e
−

(y−θ0)2

2θ0

1√
θ̂
e
−

(y−θ̂)2

2θ̂

The 95% CI of θ induced by the LRT is {θ :
1√
θ
e
−

(y−θ)2

2θ

1√
θ̂(y)

e
−

(y−θ̂(y))2

2θ̂(y)

> cθ}, or

{θ :

√

θ̂(y)
√
θ

exp(− (y − θ)2

2θ
+

(y − θ̂(y))2

2θ̂(y)
) > cθ},

Notice that in # 9.23, the function λ(x, θ) is concave down,
but the function λ(y, θ) here may not be concave down,
and the acceptance region may not be an interval.

Sketch of a numerical solution for given Y = y:
1. Give a range of θ, say (0, y + 3

√
y) (why ?)

2. For each θ ∈ (0, y + 3
√
y), it belongs to the CI if θ is not rejected.

This can be done in two ways:
a. Find cθ for each θ. Check λ(x, θ) > cθ ?
b. Compute the p-value. Check p-value > α?
Or Compute 1−p-value. Check 1−p-value < 1− α?
If the acceptance region (AR) is [a, b], and X is cts,1− p = F (b)− F (a).
If the AR is [a, b] and X is discrete, 1− p = F (b)− F (a− 1).
If the AR is not an interval, 1− p =

∫
1(λ(x, θ) ≥ λ(xo, θ))dF (x; θ).

−1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

G

Graph of y = λ(x, θ) with θ = 4 and observation X = y = 0.557788.
y=rnorm(1,1,1)
# y=1.457788
y
m=2000 # for Y
k=1000
p=(1:k)/100
z=rep(0,k)
u=(3:(m-3))/m # partition (0,1) into 2000 parts
for (j in 1:k){
q=p[j]
t=sqrt(y*y+0.25)-0.5 # MLE based on observation
g=sqrt(t/q)*exp(-(y-q)**2/(2*q)+(y-t)**2/(2*t)) # λ
x=qnorm(u,q,sqrt(q)) # quantiles
t=sqrt(x*x+0.25)-0.5 # MLE for x
G=sqrt(t/q)*exp(-(x-q)**2/(2*q)+(x-t)**2/(2*t)) # λ
x=x[G>=g]
w=length(x)/m #

∫
1(λ(x, θ) ≥ λ(xo, θ))dF (x; θo).
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if (w < 0.95) z[j] =1

}
z # check whether adjustment is need for p.

a=min(p[z==1])

b=max(p[z==1])

c(a,b)
[1] 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
[371] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[408] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[445] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[482] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[519] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[556] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[593] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[630] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[667] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[704] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[741] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[778] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[815] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[852] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[889] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[926] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[963] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[1000] 0

[1] 0.04 3.61

(2) LRT based on sufficient statistic Y = X ∼ N(θ, θ/n).
There is a mistake in the following approach.

fY (y, θ) =
1√

2πθ/n
e−

(y−θ)2

2θ/n

lnfY (y, θ) = c+ −1
2 lnθ−n

2 (
y2

θ − 2y + θ).

(lnfY (y, θ))
′ = − 1

2θ − n
2 (−

y2

θ2 + 1) = 0.
θ2 + θ/n− y2 = 0.

θ =
−1
n ±

√
1
n2 +4y2

2 .

=> θ̂ =
−1
n +

√
1
n2 +4y2

2 > 0.

Check:
θ : 0 θ̂ ∞

lnfY : −∞ finite −∞ .

The MLE is θ̂ =
√

(X)2 + 1
4n2 − 1

2n .
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λ =

1√
θ0
e
− (y−θ0)2

2θ0/n

1√
θ̂
e
− (y−θ̂)2

2θ̂/n

The 95% CI of θ induced by the LRT is {θ :
1√
θ
e
−

(y−θ)2

2θ/n

1√
θ̂
e
−

(y−θ̂)2

2θ̂/n

> c}, or

{θ :

√

θ̂√
θ
exp(− (y − θ)2

2θ/n
+

(y − θ̂)2

2θ̂/n
) > c}, where θ̂ =

√

y2 + 1
4n2 − 1

2n .

Sketch of a numerical solution for given X = y:
1. Give a range of θ, say (0, y + 3

√

y/n).

2. For each θ ∈ (0, y + 3
√

y/n), it belongs to the CI if θ is not rejected.
Remark. There is an error in the previous discussion unless n = 1. The sufficient statistics is not X, but
(X,X2). Thus the derivation is not correct.
# 9.23. X1, ..., Xn ∼ Poisson(θ), derive a 90% CI based on Formula (9.2.17) in page 435 and LRT.

x=c(155,104,66,50,36,40,30,35,42)
Sol. (1) Method from Formula (9.2.17) in page 435.

[
1

2n
χ2
2yo,1−α/2,

1

2n
χ2
2(yo+1),α/2].

Here yo = 558. α = 0.1
a=qchisq(0.05,2*y)/(2*n)
b=qchisq(0.95,2*(y+1))/(2*n)
c(a,b)
[1] 57.74689 66.49441

(2) LRT method. H0: θ = θo v.s. H1: θ 6= θo
Sufficient and complete statistic Y =

∑

i Xi ∼ Poisson(nθ).

fY (y; θ) = e−nθ(nθ)y/y!

MLE: θ̂ = Y/n, θ̂0 = θo.

λ =
e−nθo(nθo)

y

e−yyy
= ey−nθo(nθo/y)

y

lnλ = y − nθo + yln(nθo)− ylny

(lnλ)′y = 1 + ln(nθo)− lny − 1

Thus λ first ↑ and then ↓.
φ = 1(y/∈(a,b)), where λ(a) = λ(b) and Eθo(φ) ≤ α,
Eθo(φ) + Pθo(Y ∈ [a, a+ 1)) > α, Eθo(φ) + Pθo(Y ∈ (b− 1, b]) > α.
The 95% CI of θ is {θ : λ > cθ}.
θ ∈ CI if

{
FY (y; θ)− F (b− 1, θ) < 1− α if b < y,
FY (b; θ)− FY (y − 1; θ) < 1− α if b ≥ y

, where

{b, y} = {min(A),max(A)} and
A = {Y : log(λ(Y ; θ)) ≥ log(λ(y; θ))}.

x=c(155,104,66,50,36,40,30,35,42)
y=sum(x) #y=558
n=9 # sample size
k=1000
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z=(y-200):(y+200) # selected Y values
q=((-k):k)/10
q=q+y # selected nθ range: y ± 100, separation by 0.1
v=q # initialize v
for (i in 1:(2*k+1)) {
p=q[i]
g=y-p+y*log(p)-y*log(y) # log(λ(y))
G=z-p+z*log(p)-z*log(z) # log(λ(Y ) for selected Y values)
t=z[G>=g]
m=length(t)
if (t[1] < 2) u=as.numeric(ppois(t[m],p)<0.95) else # left end of t = 0?
u=as.numeric(ppois(t[m],p)-ppois(t[1]-1,p)<0.95)
v[i]=u
}
v
x=q[v == 1]
x[c(1, length(x))]/n
[1] 57.04444 67.25556

Additional 8.2. (b) Redo the following problem and compute P (H0|H1):
Carry out the following simulation project.
1.b.1. Use R to generate 5 observations from N(1, 1). Now pretend that you only known that the data
were from N(µ, σ) without knowing µ and σ, use t-test to test H0: µ = 0 v.s. H1: µ 6= 0 with a size
0.2. Record the P-value. R commands are :

x < −rnorm(5) + 1
y=t.test(x)
y$p.value

What is a correct decision here (in terms of rejecting H0 or not) ?
1.b.2. Repeat procedure 2.1 100 times. That is, record 100 P-values.

How many times, say z, would you reject H0 ?
Question: What does the number z tell you about P (H0|H1) ?

Sol. Under given condition, X ∼ N(1, 1) and X
S/

√
n
∼ non-central t-distribition with degree freedom n = 5

and non-central parameter

(µσ2/
√
n = 1×√

n). P (Ho|H1) = P (| X
S/

√
n
| < tn−1,α/2) = 0.2391

(see R program below).
The number z = 74 tells us 1− z/100 = 0.26 ≈ P (Ho|H1).
R:

n=5
q=qt(0.9,n-1)
pt(q, n-1, sqrt(n))-pt(-q, n-1, sqrt(n))
[1] 0.2391017

8.47. Consider two independent normal sample with equal variance. ⊢: The LRT for H−
o : µX −µy ≤ −δ v.s.

H−
1 : µX − µy > −δ is

φ = 1(T− > tm+n−2,α), where T− = X−Y−(−δ)√
( 1
m+ 1

n )S2
p

Sol. Since X and Y are the sufficient statistics of (µx, µy) and the parameter of interest is θ = µx − µy, it
suffices to consider the likelihood of X − Y ∼ N(θ, σ2( 1

m + 1
n )). ......

Homework solutions for week 11
Additional. R project:
A.1. Generate n=9 observations from a N(µ0, σ

2).
2. Perform a t-test for H0: µ = µ0 against H1: µ 6= µ0.
3. Repeat Steps 1 and 2 400 times, count the number mk of rejections among the first k times for k = 1,

2, 3, ..., 400.
4. plot(mk/k,k) for k ∈ {1, ..., 400}.
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5. Make comment on {mk/k}k≥1 and α, the size of the test.

Ans. to A.5: mk/k
a.s.−→α (= P (H1|Ho) by the SLLN.

B.1. Generate n=9 observations from a discrete random variable X, with X = a, b, c w.p. 1/6, 2/6, 3/6, and
with mean and variance the same as in part A (you need to determine a, b, c and check ?sample
in R).

2. Perform a t-test for H0: µ = µ0 against H1: µ 6= µ0.
3. Repeat Steps 1 and 2 400 times, count the number mk of rejections among the first k times for k = 1,

2, 3, ..., 400.
4. plot(mk/k,k).
5. Make comment on {mk/k}k≥1 and α, the size of the test.

Ans.: mk/k
a.s.−→P (H1|Ho) by the SLLN. Notice that it is most likely that α 6= P (H1|Ho), as

the distribution is not normal.
C. Let n = 80 and repeat A and B. Is there any difference on your comments. If there is one, why ?

Ans.: Under the assumption in A, compare the two curves of (mk/k, k), the variation is

smaller for n = 80, about
√
9/
√
80 ≈ 1/3 variation for n = 9. mk/k

a.s.−→P (H1|Ho) by the SLLN.
Notice that P (H1|Ho) = α, as the distribution is normal.
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Under the assumption in B mk/k
a.s.−→P (H1|Ho) by the SLLN. Notice that P (H1|Ho) ≈ α, as

the distribution is approximately normal by the CLT.
myfun=function(n){
z=0
N=1000
m=1:N
for (i in 1:N){
x=rnorm(n)+1
y=t.test(x, mu=1)
z=z+(y$p.value<0.05)
m[i]=z/i
}
i=1:N
plot(i,m, xlim=c(0,N), ylim=c(0.0,0.10), type=”l”,lty=1)
abline(h=0.05)
}
makepsfile = function() {
ps.options(horizontal = F)
ps.options(height=9.0, width=6.5)
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postscript(”fighw.ps”)
par(mfrow=c(1,2))
n=9
myfun(n)
n=80
myfun(n)
dev.off()
}
makepsfile()

Additional.
A6.
1. Generate n=4 observations from a discrete random variable X, with X = a, b, c w.p. 1/6, 2/6, 3/6,

and with mean and variance the same as in part A5 (you need to determine a, b, c and check
help(sample) in R).

2. Perform a t-test for H0: µ = µ0 against H1: µ 6= µ0 with α = 0.1
3. Repeat Steps 1 and 2 400 times, count the number mk of rejections among the first k times for k = 1,

2, 3, ..., 400.
4. Plot(k,mk/k).
5. Do you believe the size of the test is 0.1 based on mk/k ?
6. Compute the size of the test P (H1|H0) here. Make comment on the relation between {mk/k}k≥1, α,

and the size of the test.

Sol. (6) The size P (H1|H0) = P ( |X−µo|
S/

√
n

> tα/2,n−1) = ?

> qt(0.05,3) # why ?
[1] -2.353363

t-test: φ = 1( |X−µo|
S/

√
n

> 2.35).

The size P (H1|H0) = P ( |X−µo|
S/

√
n

> 2.35) = ?

P ((X1, ..., X4) ∈ A) =

{∫
· · ·

∫

A
fX(x)dx if cts

∑

x∈A fX(x) if discrete
. X = ?

The size P (H1|H0)

=
∑

x1,x2,x3,x4

1(
|x− µo|
S/

√
4

> 2.35)f(x1)f(x2)f(x3)f(x4)

=
∑

x1,x2,x3,x4

(1− 1(x1 = · · · = x4))1(
|x− µo|
s/
√
4

> 2.35)
4∏

i=1

f(xi) +
1

64
+

1

34
+

1

24

=.......

where f(x) =







1/6 if x = a
2/6 if x = b
3/6 if x = c,

E(X) = µo and V (X)= σ2 for (µo, σ) in A5.

Ans. α = 0.1 6= P (H1|H0), size of the test.

mk/k = Z = 1(reject correct Ho)
a.s.−→P (H1|H0) due to SLLN

A8. Assume the assumption as in #10.1.
(a) Select a parameter (say θo = 0.5), and generate a random sample of 25, say O, through

n=25
O= runif(n)
O = F−1

X (O), # convert F−1
X to R formula.

where FX(t) = 1(t ∈ [−1, 1))
∫ t

−1
1
2 (1 + θy)dy + 1(t ≥ 1).

(b) Derive the likelihood function L(θ,O) and the MLE using numerical method, e.g., plotting (θ, L(θ,O)).
(c) Show that the MLE is consistent by verifying (A1) – (A5) in Theorem 1 of §10.1.
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(d) Estimate the asymptotic variances of the MLE and the MME with given O. Which is smaller ?

Sol. (a) fX(x) = 0.5(1 + θx), x ∈ (−1, 1), |θ| < 1.
Recall that

Y = FX(X) ∼ U(0, 1) if X is a cts r.v..
Thus pseudo random number can be derived by R through F−1

X (Y ).
Here F−1

X is given by
y =

∫ x

−1
1+θt
2 dt = (0.5t+ 0.125t2)|x−1 = 0.125x2 + 0.5x+ 0.375.

0.125x2 + 0.5x+ 0.375− y = 0.

x =
−0.5±

√
0.52−4(0.125)(0.375−y)

2∗0.125 =
−0.5±

√
0.5(0.125+y)

0.25 .

F−1
X (y) =

−0.5 +
√

0.5(0.125 + y)

0.25

n=25
y=runif(n)
x=4*(-0.5 + sqrt(0.5*(0.125+y)))
round(x,2)
[1] 0.35 0.80 0.64 0.93 0.94 0.88 0.46 0.07 0.99 0.97 -0.73 0.74
[13] -0.74 0.60 0.90 0.54 0.68 -0.75 0.02 0.30 -0.19 -0.94 -0.24 0.64
[25] 0.06

(b) MLE θ̂ = ?
Usual approaches:

(1) Solve ∂lnL(x;θ)
∂θ = 0 if feasible, such as N(µ, σ2).

(2) Compare L(x; θ), θ ∈ Θ if the latter is finite, such as Θ = {θ0, θ1}
Neither works here !

Two numerical methods:
(1) graph L(θ) to find the maximum point, L(θ) ∝ ∏n

i=1(1 + θxi)
(2) Newton-Raphson method.

θnew = θold − (
dlnL(θ)

dθ
/
d2lnL(θ)

dθ2
)|θ=θold until |θnew − θold| < ǫ.

t=-1+(1:2000)/1000
L=rep(0,2000)
for (i in 1:2000)
L[i]=prod(1+t[i]*x)
plot(t,L,lty=”l”) # bell-shape
plot(t[500:2000],L[500:2000],type=”l”)
h=max(L)
t[L==h]
[1] 0.517 # MLE of θ

(d) σ2
θ̂
is not easy to derive.

But σ̂2
θ̂
can.

σ̂2
θ̂
= (τ(θ̂)′)2

In(θ̂)
or (τ(θ̂)′)2/În(θ̂) or CLT or Delta method.

τ(θ) = ??

In(θ) = nI1(θ) I1(θ) = E((∂lnf(X;θ)
∂θ )2) = −E(∂

2lnf(X;θ)
∂θ2 ).

ln(X; θ) = ln[0.5(1 + θX)]

În(θ̂) =
∑n

i=1(
Xi

1+θ̂Xi
)2

I1(θ) = E((∂lnf(X;θ)
∂θ )2)
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= E(( X
1+θX )2)

=
∫ 1

−1
( t
1+θt )

2 1+θt
2 dt

=
∫ 1

−1
t2

1+θtdt/2

=
∫ 1

−1
t2

θ−1+tdt
1
2θ

=
∫ 1

−1
t2+2θ−1t+θ−2−2θ−1(t+θ−1)+θ−2

θ−1+t dt 1
2θ

=
∫ 1

−1
t+ θ−1 − 2θ−1 + θ−2

θ−1+tdt
1
2θ

=
[
t2/2− θ−1t+ θ−2ln(t+ θ−1)

]1

−1
1
2θ

= [−2θ−1 + θ−2ln 1+θ−1

−1+θ−1

]
1
2θ

= −θ−2 + 0.5θ−3ln 1+θ
1−θ

σ̂2
θ̂
= 0.10

MME: E(X) =
∫ 1

−1
x(0.5) + 0.5θx)dx = (x

2

4 + x3θ
6 )|1−1 = θ/3

θ/3 = X => θ̌ = 3X.

σ̂2
θ̌
= 9S2/n = 9(X2 − (X)2)/(n− 1).

σ̂2
θ̌
= 0.13.

Which of σ̂2
θ̂
and σ̂2

θ̌
is smaller ?

Why ??

(c) Verifying (A1)-(A5) for f(x; θ) = 0.5(1 + xθ), x, θ ∈ (−1, 1).

(A1) X1, ..., Xn are i.i.d. with f(·; θo), θo ∈ Θ;
(A1): It is true with θo = 0.5 ∈ (−1, 1) = Θ.

(A2) f(·; θ) 6= f(·; θ∗) ∀ θ 6= θ∗ and θ, θ∗ ∈ Θ (identifiability);
(A2): f(·; θ) = f(·; θ∗)
=> 0 = f(0.2; θ)− f(0.2; θ∗) = 0.5(θ − θ∗)× 0.2
=> θ = θ∗.

(A3) {x : f(x; θ) > 0} does not depend on θ and ∂
∂θf(x; θ) exists;

(A3): {x : f(x; θ) > 0} = (−1, 1) does not depend on θ
∂
∂θf(x; θ) = 0.5x if x, θ ∈ (−1, 1).

(A4) Θ contains an open set O and θo ∈ O;

(A4) Θ = (−1, 1) is open and θo = 0.5 ∈ (−1, 1).

(A5) τ = τ(θ) is a continuous function of θ.

(A5): τ(θ) = θ is continuous in θ.

Additional. A4 ⊢: If Yn
D−→a and Xn

D−→X, then Yn/Xn
D−→a/X.

Proof. Disprove unless P (X = 0) = 0. In view of Slutsky’s Theorem, it suffices to disprove

Zn = 1/Xn
D−→1/X = Z, unless P (X = 0) = 0.

Notice that t is a continuous point of a cdf FW (t) iff P (W = t) = 0.
Define 1/0 = +∞.
FZn

(0) = P (1/Xn ≤ 0) = P (Xn < 0) + P (Xn = ∞) = FXn
(0−).

If t < 0, then
FZn

(t) = P (Zn ≤ t)
= P (1/Xn ≤ t)
= P (Xn < 0 & 1 ≥ Xnt)
= P (Xn < 0 & 1/t ≤ Xn)
= P (1/t ≤ Xn < 0)
= FXn

(0−)− FXn
(s−), where s = 1/t.

If t > 0, then
FZn

(t) = P (Zn ≤ t)
= P (1/Xn ≤ t)
= P (Xn < 0 & 1/Xn ≤ t) + P (Xn ≥ 0 & 1/Xn ≤ t) + P (Xn = 0 & 1/Xn ≤ t)
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= P (Xn < 0) + P (Xn > 0 & Xn ≥ 1/t)
= P (Xn < 0) + P (Xn ≥ 1/t)
= FXn

(0−) + 1− FXn
(s−).

FZn
(t) =







FXn
(0−)− FXn

(s−) if t < 0 and s = 1/t
FXn

(0−) if t = 0
FXn

(0−) + 1− FXn
(s−) if t > 0 and s = 1/t,

=







FX(0−)− FX(s−) if t < 0 and s = 1/t
FX(0−) if t = 0
FX(0−) + 1− FX(s−) if t > 0 and s = 1/t,

if s is a continuous point of FX and P (X = 0) = 0. Notice that if P (X = 0) = 0, then 0 is a continuous
point of FX . Moreover, if t 6= 0, then t is a continuous point of FX iff s = 1/t is a continuous point of F1/X .

Moreover, 1/Xn
D−→1/X,

A second proof. Zn = 1/Xn
D−→1/X = Z.

Notice g(x) = 1/x with the domain R is not a continuous function. If P (X = 0) = 0, by letting
X∗ = X1(X 6= 0) + 1(X = 0), WLOG, we can assume that {X = 0} = ∅. Then g(x) with the domain

R \ {0} is a continuous function. Thus g(Xn) = Zn = 1/Xn
D−→1/X = Z.

⊢: Let P (X = 0) > 0, let FX(t) =

{
0 if t < 0
0.5 + 0.5t if t ∈ [0, 1]
1 if t > 1

for n is even.

FXn
(t) =







FX(t) if n is even






0 if t < −1/n
0.5 t ∈ [−1/n, 0]
0.5 + 0.5t if t ∈ (0, 1]
1 if t > 1

if n is odd.

Xn
D−→X.

Notice that F1/X(t) = 0 ∀ t < 0 and thus F1/X is continuous for all t < 0.

If t < 0, then
FZn

(t) = FXn
(0−)− FXn

(s−), where s = 1/t.
If n is odd, FZn

(t) = 0.5 if s = 1
t < −1/n,

Thus 1/Xn
D−→1/X is not true.

# 10.5. Let X1, ..., Xn be i.i.d. sample from N(µ, σ2), then

√
n(

1

X
− 1

µ
)

D−→N(0, τ2). (1)

This means that roughly speaking, V ar(Tn) ≈ τ2, where Tn =
√
n

X
.

Setting g(µ) = 1/µ, using delta method,
τ2

= g′(µ)σ2g′(µ)
= −1

µ2 σ
2−1
µ2

= σ2/µ4 < ∞ if µ 6= 0.
That is,

V ar(Tn) ≈ σ2/µ4 < ∞. (2)

(a) However,
V ar(Tn) = ∞ ∀ n, (3)

as E(T 2
n) =

∫
n

x2
√

2πσ2/n
e
− (x−µ)2

2σ2/n dx

≥
∫ c

−c
n
x2 dxmin{ 1√

2πσ2/n
e
− (x−µ)2

2σ2/n : x ∈ [−c, c]} = ∞.

Another proof: limx→0
1
x = ∞ =>

∫
1
xfX(x)dx = ∞ ????
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Let fT (t) = ct21(|t| < 1). Then
∫

1
x2 fT (x)dx < ∞.

Question: What do Eq. (2) and (3) mean ?
V ar(Tn) ≈ σ2/µ4 is only in the sense of Eq. (1).

It does not really mean that
V ar(Tn) → τ .

This example serves as a counterexample.
(b) ⊢: In view of Eq. (1), µ 6= 0. If we delete interval (−δ, δ) from the sample space (of X), then

V (Tn) < ∞ (4)

Q: Does Eq. (4) contradict Eq. (3) ?

V (Tn1(|X| ≥ δ)) < ∞ (5)

Exercise 10.4. Go over it after #10.5
Yi = βXi + ǫi, i = 1, ..., n. Observe (Xi, Yi)s. Assume independence, Xi ∼ N(µX , τ2), ǫi ∼ N(0, σ2).
Approximate the mean and variance of

(a) β̌ =
∑

i XiYi/
∑

j X
2
j ;

(b) β̃ =

∑

i
Yi

∑

j
Xi

;

(c) β̂ = Y/X.

Sol. Q: What does it mean ? (1) σ̂2
β̂
≈ V (β̂) ? Or (2) β̂−β

σ̂β̂

D−→N(0, 1).

Ans.: Most of the time, (2).
Q: Can we write E(ǫǫ) ≈ E(ǫ)E(ǫ) = 0 ??
∑

i XiYi/
∑

j X
2
j = β +

∑

i
Xiǫi

∑

j
X2

j

= β +Xǫ/X2.

About the formulas in page 245.

E(X/Y ) ≈ µX/µY and V ar(X/Y ) ≈ (
µX

µY
)2(

σ2
X

µ2
X

+
σ2
Y

µ2
Y

− 2
Cov(X,Y )

µXµY
)

Counterexample. Let X = 1 and Y ∼ Exp(1).
E(X/Y ) =

∫∞
0

y−1e−ydy = ∞ ≈ 1
1 ???

It really means: E(Xn

Yn
) ≈ µXn

/µYn
, in the sense that

√
n[(Xn/Yn)− (µXn

/µYn
)]

D−→N(0, σ2), if the latter equation holds.

For instance, let X1, X2, ... be i.i.d. from Exp(1). Yn = 1/X = n/
∑n

i=1 Xi, then

E(Yn) =

∫ ∞

0

n

y

yn−1e−y

Γ(n)
dy = n

Γ(n− 1)

Γ(n)
=

n

n− 1

Thus E(Yn) ≈ 1 = E(1)
E(X) if n ≈ ∞, but

E(Y1) = ∞ 6≈ 1.
E(Y2) = 2 6≈ 1.
E(Y20) = 1 1

19 ≈ 1.

E(

∑

i XiYi
∑

j X
2
j

) = β +
∑

i

E(ǫi(
Xi

∑

j X
2
j

)) = β +
∑

i

E(ǫi)E(
Xi

∑

j X
2
j

)

︸ ︷︷ ︸

as ǫ⊥X

= β.

To approximate variance, use the delta method.
V (g(θ̂)) ≈ ▽g(θ̂)Σ̂θ̂ ▽ g(θ̂),
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or V (g(W)) ≈ ▽g(w)tCOV (W)▽ g(w)|w=E(W).
∑

i XiYi/
∑

j X
2
j = β + ǫX/X2 = g(ǫX,X2),

where g(v, x) = β + v/x.
√
n(

(
ǫX
X2

)

−
(

0
µ2
X + σ2

X

)

)
D−→N(0,Σ),

where Σ = COV (
ǫX
X2 ).

V ar(
∑

i XiYi/
∑

j X
2
j ) ≈ (1/x,−v/x2)COV (

ǫX
X2 )

(
1/x

−v/x2

) ∣
∣
∣
∣
v=0,x=µ2

X
+σ2

X

= (1/x, 0)COV (
ǫX
X2 )

(
1/x
0

) ∣
∣
∣
∣
v=0,x=µ2

X
+σ2

X

= 1
nx2V (ǫX)

∣
∣
x=µ2

X
+σ2

X

= 1
nx2E((ǫX)2)

∣
∣
x=µ2

X
+σ2

X

= 1
nx2σ

2x
∣
∣
x=µ2

X
+σ2

X

Question: V ar(
∑

i XiYi/
∑

j X
2
j ) =

1
nx2σ

2x
∣
∣
x=µ2

X
+σ2

X

?

Why approximation ?
(1) It is difficult to compute V (β̂), where β̂ =

∑

i XiYi/
∑

j X
2
j ;

(2) Need in β̂−β
σ̂2

β̂

.

V ar(

∑

i
XiYi

∑

j
X2

j

) ≈ 1
nx2 σ̂

2x
∣
∣
x=X2 and σ̂2 = ǫ̂2, where ǫ̂ = Y − β̂X.

V ar(

∑

i XiYi
∑

j X
2
j

) ≈ 1

n
(
1

x
,− v

x2
)(ZZ ′ − Z(Z)′)

(
1
x

− v
x2

) ∣
∣
∣
∣
v=ǫX,x=X2,Z=

(
ǫX
X2

)?

V ar(

∑

i XiYi
∑

j X
2
j

) ≈ 1

n
(
1

x
,− v

x2
)(ZZ ′ − Z(Z)′)

(
1
x

− v
x2

) ∣
∣
∣
∣
v=ǫ̂X,x=X2,Z=

(
ǫ̂X
X2

)?

10.4.b. Y

X
= βX

X
+ ǫ

X
= β + ǫ

X
= g(ǫ,X). g(v, x) = ?

V ar(Y /X) = (1/x, 0)COV (
ǫ
X

)

(
1/x
0

) ∣
∣
∣
∣
v=0,x=µX

V ar(Y /X) = V ar(ǫ/X) ≈ σ2

nµ2
X

≈ σ̂2

n(X)2
using delta method.

Question: Notice in 10.4. a&b V ( Y
X
) ≈ V (Y )

(EX)2
, is it true in general ?

Counterexample. See #10.5. Xi ∼ N(µ, σ2
X).

√
n(

1

X
− 1

µ
)

D−→N(0, τ2). (1)

V (1/X) ≈ σ2
X

nµ4
X

in the sense of Eq. (1) if Eq. (1) holds. Note that V (1)/(E(X))2 = 0.

In fact, it is proved in #10.5 that
V (1/X) = ∞. (2)

Let Yi = 1,

V ( Y
X
) = V (Y )

(µX)2 ??

10.4c. V (Y/X) = ?
Sol. Notice that Y/X = Xβ+ǫ

X = β + ǫ
X ,

V (Y/X) = V (ǫ/X).
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Standard approach: CLT.
√
n(Z − E(Z))

D−→N(0, τ2), where Z = Y/X and τ2 = V (Y/X) = V (ǫ/X) =
V (ǫ/X)/n.

Let Z = Y/X, then V (Y/X) ≈ σ̂2
Z/n and σ̂2

Z = Z2 − (Z)2. ???
Note that the CLT does not work here, as σ2

Y/X is not finite.

Question: V ar(ǫ/X) ≈ σ2

nµ2 => V ar(ǫ/X) ≈ σ2

µ2 ??

Remark. V ( ǫ
X ) = E(( ǫ

X )2) = E(ǫ2)E( 1
X2 ) = ?

Counterexample. See #10.5. Xi ∼ N(µ, σ2
X) and Eq. (2).

Also, it can be checked by numerical calculation in R
mu=2.0
e=rnorm(100000)
x=rnorm(100000)+mu
var(e/x)/n
[1] 7.725 # v(e/x)= 5.725× 100000

1/(mu*mu+1) # =
σ2
e

µ2
X

[1] 0.2
σ2
e

µ2
X

= 0.2 6= 7.725 ∗ n ≈ V ( e
X ) = E( e2

X2 ).

E(ǫ2)E( 1
X2 ) = ∞ Why ?

Ans. See Exercise 10.5a.

But if X ∼ N(µ, 1), then E(1/X) does not exist, as E(1/|X|) = ∞ (see #10.5).

10.31.c. Prove:
√
n(p̂1 − p̂2)

D−→N(0, τ2).
Two independent bin(n1, p1) and bin(n2, p2). n = n1 + n2. min{n1, n2} → ∞.

Under Ho: p1 = p2 = p.

Let Yn = (p̂1, p̂2)
′, qi = 1− pi, p = (p1, p2)

′, ΣYn
=

(
p1q1/n1 0

0 p2q2/n2

)

and g(Yn) = p̂1 − p̂2, Notice that

Σ̂
−1/2
Yn

(Yn − p)
D−→N(0, I2×2) Why ??

Since v̂2 = (▽g(θ̂))tΣ̂Yn
▽ g(θ̂) = p̂q̂

n1
+ p̂q̂

n2
, where q̂i = 1− p̂i.

g(Yn)− g(p)
√

v̂2
=

p̂1 − p̂2
√

1
n1

p̂1(1− p̂1) +
1
n2

p̂2(1− p̂2)

D−→N(0, 1) Why ??

Homework Solutions, week 13
10.31(a,b). a. Two independent bin(n1, p1) and bin(n2, p2). H0: p1 = p2. Show a test has RR

(p̂1−p̂2)
2

( 1
n1

+ 1
n2

)p̂(1−p̂)
> χ2

1,α. That is,

(p̂1 − p̂2)
2

( 1
n1

+ 1
n2

)p̂(1− p̂)

D−→χ2
1.

Proof.
Proof 1. MLE: With two independent binomials, thus AS1-AS7 are satisfied. The MLE of )p1, p2) is (p̂1, p̂2).

p̂1 − p̂2 is the MLE of p1 − p2.
p̂1 − p̂2 has mean 0 and variance p(1− p)/n1 + p(1− p)/n2. Thus

p̂1 − p̂2
√

p(1− p)/n1 + p(1− p)/n2

D−→N(0, 1).

(p̂1 − p̂2)
2

( 1
n1

+ 1
n2

)p(1− p)

D−→χ2
1.

p̂ = S1+S2

n

a.s.−→p if p1 = p2 = p, where n = n1 + n2.

p̂(1− p̂)

p(1− p)

(p̂1 − p̂2)
2

( 1
n1

+ 1
n2

)p̂(1− p̂)

D−→χ2
1
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by Slutsky’s theorem.
Proof 2. Suppose that MXn

(t) = E(eXnt) and MX(t) = E(eXt) exist.

Xn
D−→X iff MXn

(t) → MX(t) for t ∈ [0, c), c > 0.
Let Xn1

= p̂1−p√
p(1−p)/n1

and Yn2
= p̂2−p√

p(1−p)/n2

, then

Xn1

D−→N(0, 1)

Yn2

D−→N(0, 1)

MXn1
(t) → exp(t2/2), and MYn2

(t) → exp(t2/2).

Un =

√
1
n1

Xn1
−
√

1
n2

Yn2

√
1
n1

+ 1
n2

, n = n1 + n2.

MUn
(t) = E(exp(

√
1
n1

Xn1
−

√
1
n2

Yn2

√
1
n1

+ 1
n2

t))

= E(exp(

√
1
n1

Xn1

√
1
n1

+ 1
n2

t))E(exp(−

√
1
n2

Yn2

√
1
n1

+ 1
n2

t))

= E(exp(Xn1

√
1
n1

√
1
n1

+ 1
n2

t))E(exp(Yn2

−
√

1
n2

√
1
n1

+ 1
n2

t))

→ exp((

√
1
n1

√
1
n1

+ 1
n2

t)2/2) exp((−

√
1
n2

√
1
n1

+ 1
n2

t)2/2) = exp(t2/2).

That is, Un
D−→N(0, 1). The rest is the same as in the MLE approach.

Proof 3. Assume ni/n = ni/(n1 + n2) → pi∗ ∈ (0, 1). Then

√
n[(p̂1 − p̂2)− (p1 − p2)] =

√

n/n1
√
n1(p̂1 − p1)−

√

n/n2
√
n2(p̂2 − p2).

Let g(x, y) = x− y. Since

√
n(p̂i − pi) =

√

n/ni
√
ni(p̂i − pi)

D−→N(0, pi(1− pi)/pi∗), i = 1, 2,

by Slutsky’s theorem. Then by the delta method,

√
n[(p̂1 − p̂2)− (p1 − p2)] =

√
n(g(p̂1, p̂2)− g(p1, p2))

D−→N(0, p1(1− p1)/p1∗ + p2(1− p2)/p2∗).

Thus √
n

(p̂1 − p̂2)− (p1 − p2)
√

p1(1− p1)/p1∗ + p2(1− p2)/p2∗

D−→N(0, 1).

The conclusion then follows from Slutsky’ theorem and the assumption p1 = p2 = p, as p̂ is the consistent
estimator of p1 = p2 = p and ni/n is the consistent estimator of pi∗.

10.47. Shortest CI with form (
χ2
d,1−α−c

2
∑

i
xi

,
χ2
d,c

2
∑

i
xi
), c ∈ [0, α] ?
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Sol. Write ( t

2
∑

x
, b

2
∑

x
) = (

χ2
d,1−α−c

2
∑

i
xi

,
χ2
d,c

2
∑

i
xi
).

It suffices to minimize
l = b− t, (1)

where b = b(t) is determined by
F (b)− F (t) = 1− α. (2)

Eq. (1) => l′t = b′t − 1 = 0 => b′t = 1.
Eq. (2) => F ′(b)b′t − F ′(t)t′t = 0 => f(b)b′t − f(t) = 0.

Thus f(b) = f(t).
In other word, if f(t) = f(b) and F (b)− F (t) = 1− α, then we have the shortest CI of the form given.

4. Addtional A3. 1. As in Example 10.3.4, set
H0: p1 = p2 = p5, p3 = 0.5 v.s. H1: H0 is not true.
a. Derive the likelihood ratio test.
b. Give an estimate of P (Ho|H1) when p1 = p2 = p5, p3 = 0, n = 100, using simulation. Present the
program.
m=1000
n=100
x=rmultinom(m,n, prob=c(1/8,1/8,0,5/8,1/8))
reject Ho if −2logλ > χ2

3,α Why not χ2
1,α ?

Remark. In compute −2 log(λ), use 00 rather log(00) = 0 log 0 in R codes.
P (H0|H1) can be estimated by frequency of acceptance Why ?
x=sample(c(1,2,3,4,5),100,replace=T,prob=c(1/8,1/8,0,5/8,1/8))
Can we estimate P (H1|Ho) with the previous codes ?

#10.41. Let X1, ..., Xn be i.i.d. negative binomial(r,p).
a. Calculate Wilks’ approximation (10.4.1) i.e., the score function form, and show how to construct some

approximate intervals with this expression.
b. Find an approximate 1−α confidence interval for the mean of the negative binomial distribution. Show

how to incorporate the continuity correction into your interval.
Sol. (a) Assuming r is known,

S(p) = ∂
∂p log p

nr(1− p)nX = nr
p − nX

1−p ,

−∂S(p)
∂p = nr

p2 + nX
(1−p)2 .

E(−∂S(p)
∂p ) = nr

p2 + nrq/p
(1−p)2 = nr

p2 + nr
qp = nr

p2q .

It is easy to derive the CI is

{p :
∣
∣

nr
p − nX

1−p
√

nr
p2q

∣
∣ ≤ zα/2} (3)

Solving
(nr

p − nX
1−p )

2

nr
p2p

= z2α/2 yields

2Xr + z2α/2
r
n ±

√

(
rz2

α/2

n )2 + 4Xr
n z2α/2(r +X)

2(X)2

Sol. (b) In both (a) and (b), if r is a parameter, estimate it by the MLE r̂.

Recall L(p, r) = pnr(1− p)
∑n

i=1
Xi

∏n
j=1

(
r+Xj−1

Xj

)
.

The MLE of p: p̂ = nr

nr+nX

due to L′ = 0 or nr
p − nX

1−p = 0,

r̂ = argmaxrL(p̂, r) (4)

Since E(X) = rq/p and V (X) = rq/p2, Solving p through θ = r(1− p)/p, Eq.(3) yields

(θ −X)2nr

rθ + θ2
≤ z2α/2
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The (1− α) CI is
2rnX+zα/2r±

√
(2nrX+zα/2r)2−4(n2r−zα/2n)r(X)2

2(nr−zα/2)
.

Write the (1− α) CI as [aX + b, cX + d].
Continuity correction:
[a(X − 0.5

n ) + b, c(X + 0.5
n ) + d] Why ?

10.41.c. Use the data in #9.23 to construct an approximate 90% CI for the mean of the negative binomial. The
data: x=c(155,104,66,50,36,40,30,35,42)

Sol. There are 9 data in #9.23. Thus it may not be appropriate to use the approximation.
However, if Y1 ∼ bin(25, p), P (Y1 ≤ t) ≈ N(25p, 25pq). Why ??
Since each Xi is large (that is, each corresponds to an experiment with more than 20 independent Bernoulli
trials), thus there are large number of Bernoulli trials and it is fine to use normal approximation.
There are several ways:
(1) MLE µ̂± 1.64σ̂µ̂/

√
n,

(2) MME X ± 1.64(X2 − (X)2)/
√
n.

(3) X ± 1.64σ̂/
√
n, where σ̂2 = X/p̂,

as E(X) = rq/p and V (X) = rq/p2,

The MLE of p: p̂ = nr

nr+nX

due to L′ = 0 or nr
p − nX

1−p = 0,
where r can be estimated by its MLE.

How to find the MLE of r ?
The likelihood L(p, r) = pnr(1− p)

∑n

i=1
Xi

∏n
j=1

(
r+Xj−1

Xj

)
.

Fixed r, L is maximized by
p̂ = nr

nr+nX
= 1

1+X/r
(= g(X)),

due to L′ = 0 or nr
p − nX

1−p = 0, after checking !
It is the MLE of p if r is given.
Otherwise, the MLE of r is

r̂ = argmaxrL(p̂, r), where

L = (
nr

nr + nX
)nr(1− nr

nr + nX
)
∑n

i=1
Xi

n∏

j=1

(
r +Xj − 1

Xj

)

Since E(X) = rq/p and V (X) = rq/p2,
the MLE µ̂ = r̂q̂/p̂ = r̂( 1p̂ − 1) = r̂h(X).

In fact, µ̂ = r̂(1 +X/r̂ − 1) = X.
σ2
µ̂ = r̂q̂/p̂2 = X/p̂.

So the CI of µ is X ± zα/2

√
X
p̂n .

L(r + 1)/L(r) =
( 1

1+X/(r+1)
)n(r+1)( X/(r+1)

1+X/(r+1)
)nX

∏n
j=1

(
(r+1)+Xj−1

Xj

)

( 1

1+X/r
)nr( X/r

1+X/r
)nX

∏n
j=1

(
r+Xj−1

Xj

)

=

(X/(r+1))nX

(1+X/(r+1))n(r+1)+nX

(X/r)nX

(1+X/r)nr+nX

r−n
n∏

i=1

(r +Xi)

=

(X)nX

(r+1+X)n(r+1)+nX

(X)nX

(r+X)nr+nX

r−n
n∏

i=1

(r +Xi)

=(
r +X

r + 1 +X
)nr+nX(r + 1 +X)−nr−n

n∏

i=1

(r +Xi)
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No easy way to solve.

σ̂2
µ̂ = r̂|h′(µ̂)|

√
r̂q̂
np̂

Eq.(3) yields

a. X−µX

σX/
√
n
=

X− rq
p√

rq

p2

=> {p : | X− rq
p√

rq

np2

| ≤ zα/2}.

(X − rq
p )2 = rq

np2 z
2
α/2}.

(pX − rq)2 = rq
n z2α/2}.
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