
Design of Experiments (Math 556)

MWF 8:00am-9:30am, WH 329
May 2, Tuesday meet Friday class !!

Office: WH 132
Office hours: M, T 7-8pm. Through Zoom

https://binghamton.zoom.us/j/8265526594?pwd=d3l6OGx1cmZ4M3cxZEJwVGd1RGcrUT09
Meeting ID: 826 552 6594
Passcode: 031320

Textbook: Statistics for Experimenters (2nd ed.)
by George Box, J Stuart Hunter and William G. Hunter

Quiz: Once a week at a random day,
quiz problems: formulas for Math 447-448 (see my website)
Midterm: March 20 (M)
Final May 11 5:40-7:40pm CW 314 Changed to WH329 !!

Each is allowed to bring a piece of paper with anything you prefer on it.
Homework assigned during a week is due next Wednesday before 8:00am.

Email me at qyu@math.binghamton.edu before 8:00am on Wednesday.
HW is on my website: http://www.math.binghamton.edu/qyu/qyu personal

Remind me if you do not see it by Saturday morning !
Try to use Latex in homework. Otherwise, take a picture and convert it to a

pdf file.

There will be homework due this Friday, as well as quiz !!!

The lecture note is also on my website
http://www.math.binghamton.edu/qyu/qyu personal
note and note2 are updated one,

Grading Policy: 40% hw and quizzes +60% exams,
B = 70 ±

Chapter 1. Introduction
Self-reading.

Chapter 2. Basic
All concepts in this chapter have been introduced in 501,

except autocorrelation.
Recall

X and Y are random variables, with observations (Xi, Yi), i = 1, ..., n.
Population covariance and correlation:

Cov(X,Y ) = E(XY )− E(X)E(Y ),

ρ = ρX,Y = Cov(X,Y )
σXσY

,

Sample Covariance ˆCov(X,Y ) = XY −X · Y
Sample correlation ρ̂ = r = XY−X·Y

σ̂X σ̂Y
, where σ̂2

X = XX − (X)2,

Note that the sample variance of X is often refer to S2 = 1
n−1

∑n
i=1(Xi −X)2

(S2 is also denoted by s2 in the textbook. Which is a better notation ?)
Definition. The lag-k sample autocorrelation coefficient of Yi’s is

rk =

∑n
i>k(Yi − Y )(Yi−k − Y )

∑n
i=1(Yi − Y )2

, k = 1, 2, ...

It measures the serial dependence of the data in time.
If rk 6= 0, are the data i.i.d. ?

If rk > 0 significantly, are the data i.i.d. ?
> x=rnorm(20)
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> cor(x[1:19],x[2:20]) [1] -0.1431549
> cor.test(x[1:19],x[2:20])
t = -0.59639, df = 17, p-value = 0.5588
cor -0.1431549
Theorem 1. If X1, ..., Xn are i.i.d. from N(µ, σ2), then
(a) X ⊥ S2;
(b) X ∼ N(µ, σ2/n);
(c) (n− 1)S2/σ2 = nσ̂2/σ2 ∼ χ2(n− 1).

Chapter 3. Comparing Two Entities

3.1. Consider the test for the difference of the means of two random samples Xi’s
and Yj ’s.

Ho: µY − µX = δ v.s. H1: µY − µX > δ.
Two-samples test: Under the assumption that (1) two samples are independent,

(2) Xi’s are from N(µX , σ2) and (3) Yj ’s are N(µY , σ
2), then a common test

is
φ = 1(t > tα,nY +nX−2), where (1)

t =
Y −X − δ

sp
√

1/nX + 1/nY

and s2p =

∑nX

i=1(Xi −X)2 +
∑nY

j=1(Yj − Y )2

nY + nX − 2
.

This is due to
(a) T = N(0,1)√

χ2(ν)/ν
∼ distribution ?, where N(0, 1) ⊥ χ2(ν)

(b) t = Y−X−δ

σ
√

1/nX+1/nY

/
√

s2p/σ
2,

(c)

∑
nX

i=1
(Xi−X)2

σ2 ∼ χ2(nX − 1),

∑
nY

i=1
(Yi−Y )2

σ2 ∼ ?

(d)

∑
nX

i=1
(Xi−X)2

σ2 +

∑
nY

i=1
(Yi−Y )2

σ2 ∼ what distribution ?

The paired t-test: Under the paired random sample of size n from N(µY , σ
2
Y )

and N(µX , σ2
X), then a common test is

φp = 1(t > tα,n−1), where

t = Y−X−δ

s
√

1/n
and s2 = 1

n−1

∑n
i=1(Yi −Xi − Y −X)2.

Importance of the independent normally distributed assumptions in both
tests.

Chemical Example in Table 3.2. An experiment was performed on a factory
by making in sequence 10 batches of chemical using a standard production method
(A) followed by 10 batches of a chemical using a modified method (B). The data
are

A: 89.7, 81.4, ..., 84.5
B: 84.7, 86.1, ..., 88.5

See Table 3.1 on page 69.
Summary:

nA = nB = 10,
yA = 84.24,
yB = 85.54,
s2p = 10.8727,

Ho: µB − µA = 0, v.s. H1: µB − µA > 0.
yB − yA = 1.3.
Is it significant ? What does it mean ?

We need to
(1) set α (= 0.05), and
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(2) compute P( yB − yA ≥ 1.3) = ? what is it called ?
Then conclude that if P( yB − yA ≥ 1.3) < α ...

One often uses the two-sample t-test in Eq. (1), then the P-value is 19% here.
Is it significant ?
Do we reject Ho ?

Can we use paired t-test ?
Does the SD become larger or smaller if we use it ?

σ2/(2n− 2) v.s. σ2/(n− 1).

s2p =

∑
nX

i=1
(Xi−X)2+

∑
nY

j=1
(Yj−Y )2

nY +nX−2 v.s. S2
YB−YA

What is the conclusion if we use it ? P-value=P(T ≥ yB−yA

SE )
Introduce two alternative approaches next.
External Reference Distribution.
Old data. 210 batches of the chemical products recorded in time order before the
20 data:

x1, ...., x210

The old data (see p.120) provide an external reference distribution.
Under Ho, the 20 data can be viewed as a sample from the population of the 210
data.

Compute
Dt =

∑t+19
i=t+10 xi/10−

∑t+9
i=t xi/10, t = 1, ..., 191.

See the histogram Figure 3.3 on page 70.

P (yB − yA ≥ 1.3) = 9/191 ≈ 0.047. Is it significant ?
Recall that if one uses t-test, the P-value is 19%. Anything wrong ?

1. The lag-1 sample auto-correlation of the data is r1 = ρ̂1 = −0.29.
The data are not independent.
If one pretends independence, it leads to incorrect conclusion.

2. Normal assumption may not be valid (do we need to check it ?)

Internal Reference distribution. Random sampling distribution.
A randomized design in the comparison of standard and modified fer-
tilizer mixtures for tomato plants. 11 plants in a row. 5 with standard (A),
6 with modified (B). One way is to apply A to the first 5 and B to the next 6 in
a row. There are correlation between locations and it is not a good idea without
randomization.
Randomizing the order in the row (sample(1:11,5) = ?) resulting

location : 1 2 3 4 5 6 7 8 9 10 11
fertilizer : A A B B A B B B A A B

yield : 29.2 11.4 26.6 23.7 25.3 28.5 14.2 17.9 16.5 21.1 24.3
(1)

Remark: Role of a statistician:

(1) randomization before an experiment (DOE);

(2) make inferences after the experiment.
> x=c(29.2,11.4,26.6,23.7,25.3,28.5,14.2,17.9,16.5,21.1, 24.3)
> z=c(3,4,6,7,8,11)
> mean(x[z])-mean(x[subset=−z]) # results in yB − yA ≈ 1.69.
To test Ho: µB − µA = 0 against H1: µB − µA > 0.

Need to compute P (yB − yA ≥ 1.69) = ?
Rather than using t-test, which needs normal assumption, and equal variance,
we make use of the
Permutation distribution.
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Table (1) is one combination of selecting 5 out of 11.

1 2 3 4 5 6 7 8 9 10 11
A A A A A B B B B B B

29.2 11.4 26.6 23.7 25.3 28.5 14.2 17.9 16.5 21.1 24.3
(2)

is another combination under Ho: µB − µA = 0.
> mean(x[6:11])−mean(x[1:5]) # results in −2.82
Eq.(2) yields yB − yA ≈ −2.82; while
Eq.(1) yields yB − yA ≈ 1.69.

There are
(
11
5

)
= 11!

5!6! = 11 · 3 · 2 · 7 = 462 such combinations.
> P=combn(1:11,6)
> P[,1:10]

[, 1] [, 2] [, 3] [, 4] [, 5] [, 6] [, 7] [, 8] [, 9] [, 10]
[1, ] 1 1 1 1 1 1 1 1 1 1
[2, ] 2 2 2 2 2 2 2 2 2 2
[3, ] 3 3 3 3 3 3 3 3 3 3
[4, ] 4 4 4 4 4 4 4 4 4 4
[5, ] 5 5 5 5 5 5 6 6 6 6
[6, ] 6 7 8 9 10 11 7 8 9 10

Thus these 462 combinations yield 462 yB − yA values.
These 462 values form a (discrete) distribution called the permutation distribu-
tion.

x=c(29.2,11.4,26.6,23.7,25.3,28.5,14.2,17.9,16.5,21.1, 24.3)
Either use loop

N=choose(11,6) # =462
y=1:N
P=combn(1:11,6) # Can we use combn(1:11,5) ?
for(i in 1:N)

y[i]=mean(x[P[,i]])−mean(x[−P[,i]])
length(y[y>=1.69])/N # result is 0.3203463

Or without loop:
y=x[P]
dim(y)=c(6,462)
B=apply(y,2,sum)
y=B/6−(sum(x)−B)/5
length(y[y>=1.69])/N # result is 0.3203463

What is the conclusion of the test ?
library(jmuOutlier) (another codes)
y=runif(16,0,1)
x=runif(20,0,1)
perm.test(y,x,alternative=c(”two.sided”, ”less”, ”greater”), mu=0, paired=FALSE,

all.perms=TRUE, plot=FALSE, stat=sum)

The permutation distribution can also be simulated by the R code as follows.
x=c(29.2,11.4,26.6,23.7,25.3,28.5,14.2,17.9,16.5,21.1, 24.3)
N=10000
y=rep(0,N)
for(i in 1:N){

u=sample(x)
y[i]=mean(u[1:6])-mean(u[7:11])

}
length(y[y>=1.69])/N # result is 0.3209
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Figure 3.1. Histograms of permutation distribution v.s. simulation one

Should we use simulation here ?
Remark. The two-samples t-test P (tnA+nB−2 > 1.69

s
√

1
nA

+ 1
nB

) ≈ 0.34) for the

current data. If the normal assumption is not valid, the t-test is not applicable
(though it happens to be close to 0.32
The permutation distribution is based on a different sample space from the sample
space where the data come from. But if nA+nB is large, the permutation distribu-
tion of Y B − Y A is very close to tnA+nB−2, whereas the two-sample t-test may not
have the tnA+nB−2 distribution (e.g. if the random variables satisfyX1 = · · · = XnA

and Y1 = · · · = YnB
), thus they are not independent).

Can we say nA + nB is large here ?

Is it appropriate to apply randomization distribution in the chemical
example ?

Remark. In the fertilizer example, the data are resulted from randomization,
whereas in the previous chemical example, the data are in sequence.

A A A A A A A A A A B B B B B B B B B B
We use the External Reference distribution (old data) to get the P-value.
Can we use the permutation distribution to get the P-value in that ex-
ample ?

No. If they had done

sample(1:20,10)
for the order of 10 batches of chemical using method A, then the permutation
distribution would be valid.

3.2. Randomized paired comparison design: Boys shoes example. The
shoe soles can be made of two different materials, A and B. To find out whether
there is a difference between them, ten boys were chosen randomly to compare the
shoe wear. Each boy wore a special pair of shoes. The decision as to whether the
left or right sole was made with A or B was determined by

(1) convenience,
(2) by flipping a coin (or rbinom(n,1,0.5)).

Which result in a random sample ? (Took 2 steps in DOE. Which 2 ? )

The randomization results

(
boy : 1 2 3 4 5 6 7 8 9 10

material A L L R L R L L L R L

)

The experiment results in
x=(0.8,0.6,0.3,-0.1,1.1,-0.2,0.3,0.5,0.5,0.3) # yB − yA
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Then 10 yB − yA’s yield
mean(x) # yB − yA = 0.41

Should we use two-sample t-test or paired t-test ?
What assumptions do we need in order to use one of them ?
Another way to compute P-value for yB−yA ≥ 0.41 is the permutation distribution.
Under Ho: µB − µA = 0, a combination could be

(R L R L R L L L R L)
(

R L R L R L L L R L
real L L R L R L L L R L

)

Then the data become
x=(-0.8,0.6,0.3,-0.1,1.1,-0.2,0.3,0.5,0.5,0.3)

Compare to the real data:
x=(0.8,0.6,0.3,-0.1,1.1,-0.2,0.3,0.5,0.5,0.3)

The randomized reference distribution under Ho: µA = µB can be ob-
tained as follows.

x=c(0.8,0.6,0.3,-0.1,1.1,-0.2,0.3,0.5,0.5,0.3)
sum(x) # result=4.1
y=1:1024 # initialize y
for(i1 in 0:1)
for(i2 in 0:1)
for(i3 in 0:1)
for(i4 in 0:1)
for(i5 in 0:1)
for(i6 in 0:1)
for(i7 in 0:1)
for(i8 in 0:1)
for(i9 in 0:1)
for(i10 in 0:1){

i=c(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10)
h=0:9
y[i% ∗%(2 ∗ ∗h)
︸ ︷︷ ︸

+1]=sum(x*((-1)**i))

# i1∗20+i2∗21+i3∗22+· · ·+i10∗29, (0, ..., 0)(20, 21, ..., 29)′+1 = 1,
...

# Examples:
# binary number 1110 = 1 ∗ 23 + 1 ∗ 22 + 1 ∗ 21 + 0 ∗ 20 = 14
# ternary number 2101 = 2 ∗ 33 + 1 ∗ 32 + 0 ∗ 31 + 1 ∗ 30 = 64
# decimal number 2101 = 2 ∗ 103 + 1 ∗ 102 + 0 ∗ 101 + 1 ∗ 100

}
length(y[y>= 4.1])/1024 # result = 0.0068
hist(y); z=seq(-6,6,0.1);lines(z,dt(z,9))

The randomized reference distribution under Ho: µA = µB can be ap-
proximated by simulation as follows.

N=10000
y=rep(0,N)
x=c(0.8,0.6,0.3,-0.1,1.1,-0.2,0.3,0.5,0.5,0.3)
for (i in 1:N) {
s=rbinom(10,1,0.5)
z=(-1)**s
y[i]=sum(x*z)
}
length(y[y>=4.1])/N #0.0063
hist(y,xlim=c(-6,6), breaks=12, freq=F)
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Figure 3.2. Histograms of permutation distribution v.s. simulation one

One can see from Figure 3.2 that the simulation distribution is very close to the
true permutation distribution. The density of t9 is displayed at the top of Fig. 3.2.

The P-value using the 1-sided paired t-test is 0.4%.
Any thing wrong with the solution 0.0068 or 0.4 ?
Is it one sided test or two-sided test ?
Can we mimic P=combn(1:10, ?) to write a code to replace the 1st one ?

Bashar, Mohamed A. 2 Chaikin, Kassidy 3 Phillips, Bruce 4 Zhao, Zhongyuan
Chapter 10. Linear regression models.

10.1. Main assumption:

Y = β1X1 + · · ·+ βpXp + ǫ, or
E(Y |X) = β1X1 + · · ·+ βpXp, where

ǫ is unobservable random variable with E(ǫ|X) = 0 (no assumption on V (ǫ|X) yet),
βi’s are parameters,
Xi’s and Y are observable.
Given (independent) observations (Yi, xi1, ..., xip), i = 1, ..., n,

we shall make inference about βi’s.

Remark. A special case of the linear regression model is

Y = α+ βX + ǫ.
Least squares estimator (LSE) minimizes

S(β) =
∑n

i=1(Yi − β1xi1 − · · · − βpxip)
2 where β = (β1, ..., βp)

′.
Notice that S(β) can be written as a matrix form

S(β) = (Y−Xβ)′(Y−Xβ)
where Y′ = (Y1, ..., Yn),

X = (xij)n×p =






x11 · · · xp1

...
...

...
xn1 · · · xnp




 6= X

The LSE can be obtained by solving the normal equation
∂S
∂β = 0, a p× 1 zero vector. ∂S

∂β′
= ?

That is,
X′(Y−Xβ) = 0. (Why not (Y−Xβ)′X = 0 ?)

The LSE has the form
β̂ = (X′X)−1X′Y if X′X is invertible,

otherwise, the solution to LSE is not unique,
one often imposes further constraints to get a unique solution.
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If ǫ is normal, then β̂ is the MLE. Otherwise, it is a semi-parametric estimator.
Fitted value ŷi = (xi1, ...., xip)β̂. (= Ê(Y |x))
Residuals yi − ŷi, i = 1, ..., n.
If one further assumes that V (ǫi) = σ2 ∀ i, then

σ̂2 = 1
n−p

∑n
i=1(yi − ŷi)

2 is an unbiased estimator of σ2,

and conditional on X (if one assumes X is random),

V (β̂) = σ2(X′X)−1 or V (β̂|X) = σ2(X′X)−1 (are they both correct ??)

Is V (β̂) variance or covariance matrix ?

SE of β̂j is
√
v, where v is obtained by the j-th diagonal element of σ̂2(X′X)−1

(why not σ2(X′X)−1 ? SD = SE ? Are they r.v.’s ?)

Under NID a (1− α)100% CI of βj is β̂j ± tn−p,α/2SE

Example 0: Suppose that Yi =

{
−γ +Wi if i ∈ {1, ..., n−}
γ +Wi if i ∈ {n− + 1, ..., n, } n− > 1, and

W1, ..., Wn are i.i.d. from the exponential distribution and E(W1) = 1. γ and Wi;s
are unknown, though we know Wi ∼ Exp(1). Yi’s are observations. Derive the LSE
and the MLE of γ based on these regression data.
Discussion. The typical linear regression model is

Yi = β1Xi1 + · · ·+ βpXip + ǫi = X ′
iβ + ǫi with E(ǫi) = 0.

p = ?
Do we observe Yi ?
Do we observe (Xi1, ..., Xip) ?
Wi = ǫi ?
Do we know β ? or (β1, ..., βp) ?
If we rewrite th model as Yi = α+ γXi + ǫi, then α = ?
Do we need to estimate α ?

Homework 10.1. Find the MLE and the LSE of β under the assumptions above.

Polynomial model: Yi = β0 + β1xi + · · ·+ βkx
k
i + ǫi, i = 1, ..., n.

k can be as large as n− 1 if xi’s are all distinct.
Example 1. Data: (Xi, Yi): (1,2), (3,4). The LSE β̂ = (X′X)−1X′Y under the
models:

Y = β0 + ǫ, X = ?
Y = β1x+ ǫ, X = ?
Y = β0 + β1x+ ǫ. X = ?

If one fits model Y = β0 + β1x+ β2x
2 + ǫ. Then Y =

(
2
4

)

, X =

(
β0 β1 β2

1 1 1
1 3 9

)

rank of X′X is 2. X′X is not invertible. The LSE is not uniquely determined.
We say that the parameter is not identifiable.
Possible modification: Add a constraint to βi’s, e.g. β0 = 0 or β1 = β2, etc.:

models\X type : original in model X in LSE formula β
Y = β0 + ǫ 1, 3 1, 1 (1, 1)′ β0

Y = β1x+ ǫ 1, 3 1, 3 (1, 3)′ β1

Y = β0 + β1x+ ǫ 1, 3 (1, 1), (1, 3)

(
1 1
1 3

)

(β0, β1)
′

Y = β0 + β1x+ β2x
2 + ǫ 1, 3 (1, 1, 1), (1, 3, 9) ? (β0, β1, β2)

′

Y − 1 = β1x+ β2x
2 + ǫ 1, 3 (1, 1), (3, 9) ? (β1, β2)

′

Y = β0 + β1(x+ x2) + ǫ 1, 3 (1, 2), (1, 12) ? (β0, β1)
′

Example 2. One way anova table
Yij = µ+ αj + ǫij , i = 1, ..., 4, and j = 1, 2, 3.

Consider an example that there are three treatments A, B and C. There are I (=4)
groups, each consists of 3 patients. Total of 12 patients. In each group, the 3
patients receive 3 different treatments separately. The result for the jth patient in
the ith group is Yij .
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Is it a linear regression model ?

β = ?

LSE = (X′X)−1X′Y.

X = ? One possibility is based on Y = Xβ + e,













Y11

Y12

Y13
...

Y41

Y42

Y43













=













Y1

Y2

Y3
...

Y10

Y11

Y12













=













1 1 0 0
1 0 1 0
1 0 0 1
...
1 1 0 0
1 0 1 0
1 0 0 1


















µ
α1

α2

α3




+ e Yij = µ+ αi + ǫij

=





1 X11 X12 X13
...
1 Xn1 Xn2 Xn3










µ
α1

α2

α3




+ e = Xβ + e, e = (ǫ1, ..., ǫ12)

′,

Xi1=1(treatment=A for the i−th patient).
Xi2=1(treatment=B for the i−th patient).
Xi3=1(treatment=C for the i−th patient).

Notice that Xi1 +Xi2 +Xi3 = 1.

X′X is not invertible as

X =





1 X11 X12 X13
...

...
...

...
1 Xn1 Xn2 Xn3



 is of rank at most 3, not 4,

as





X11 +X12 +X13
...

Xn1 +Xn2 +Xn3



 =





1
...
1



 why ?

Thus the LSE for Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + ǫi is not unique.
(We say that the parameters are not identifiable).

Three modifications:
M1. Revise the model. Let Yi = β1Xi1 + β2Xi2 + β3Xi3 + ǫi with µ = 0,

β = (α1, α2, α3)
′, X =





X11 X12 X13
...

...
...

Xn1 Xn2 Xn3



, β̂ = (X′X)−1X′Y works.

R codes: lm(Y ∼ X1 +X2 +X3 − 1)

Interpretation: βi is the effect of treatment i (Ti).
M2. Impose a constraint α1 = 0 for the model

Yi = µ+ α1Xi1 + α2Xi2 + α3Xi3 + ǫi. Yi = (1, Xi2, Xi3)(µ, α2, α3)
′.

Let (β1, β2, β3) be as in M1.
Then βi = µ+ αi, i = 1, 2, 3.

e.g., if Xi1 = 1, then Yi = β1 + ǫi = µ+ α1 + ǫi, where α1 = 0, µ = β1, ...

i.e., µ is the effect of treatment 1, but αi is the additional effect of Ti to T1.

options(contrasts =c(”contr.treatment”, ”contr.poly”))

lm(Y ∼ X1 +X2 +X3).
M3. Impose another constraint

∑

i αi = 0 (α3 = −α1 − α2) for the model

Yi = µ+ α1Xi1 + α2Xi2 + α3Xi3 + ǫi
then µ+ αi = βi, i = 1, 2, 3. Yi = (1, Xi1 −Xi3, ????)(µ, α1, α2)

′

i.e., µ is the average treatment effect, αi is the additional effect of Ti.

options(contrasts =c(”contr.sum”, ”contr.poly”))

lm(Y ∼ X1 +X2 +X3)

Example 3 (a simulation study on the Two way anova table).
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Yij = µ+ ai + bj + ǫij , i ∈ {1, ..., 4}, j ∈ {1, ..., 6}
> y=rnorm(24)
> a=gl(4,6,24)
> b=gl(6,1,24)
> a
[1] 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 Levels: 1 2 3 4
> b
[1] 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 Levels: 1 2 3 4 5 6
> lm(y∼a+b−1) #1.
a1 a2 a3 a4 b2 b3 b4 b5 b6

0.266 0.235 0.246 −0.379 −0.102 −0.319 0.913 −0.227 −0.125

µ̂ and b1= ? (µ, a1, ..., a4, b1, ..., b6) = ?
> lm(y∼a+b) #2
# or
# lm(y∼a+b, contrasts =c(”contr.treatment”, ”contr.poly”))
(Intercept) a2 a3 a4 b2 b3 b4 b5 b6

0.268 −0.031 −0.020 −0.645 −0.102 −0.319 0.913 −0.227 −0.125

a1,b1 ?
> options(contrasts =c(”contr.sum”, ”contr.poly”)) #3.
> lm(y∼a+b)
(Intercept) a1 a2 a3 b1 b2 b3 b4 b5

0.115 0.174 0.143 0.154 −0.023 −0.125 −0.342 0.890 −0.250

a4, b6 ?
Relation between these three ?

Ê(Yij) = intercept+ai+ bj = same ?

1. int. = 0 b1 = 0
int a1 a2 a3 a4 b1 b2 b3 b4 b5 b6
0 0.27 0.24 0.25 −0.38 0 −0.10 −0.32 0.91 −0.23 −0.13
2. a1 = 0 b1 = 0

0.27 0 −0.03 −0.02 −0.65 0 −0.10 −0.32 0.91 −0.23 −0.13
3. a4 =? b6 =?

0.12 0.17 0.14 0.15 −0.46 −0.02 −0.13 −0.34 0.89 −0.25 −0.15

Ê(Y11) =

{
0 + 0.266 + 0 from #1
0.268 + 0 + 0 from #2
0.115 + 0.174− 0.023 = 0.266 from #3.

Are they the same ?

What is X, β and β̂ in the model Y = X ′β+ ǫ for lm(y ∼ a+ b) in Ex. 3 ?

X =




















1
1(a = 1)
1(a = 2)
1(a = 3)
1(a = 4)
1(b = 1)
1(b = 2)
1(b = 3)
1(b = 4)
1(b = 5)
1(b = 6)




















or
















1
1(a = 2)
1(a = 3)
1(a = 4)
1(b = 2)
1(b = 3)
1(b = 4)
1(b = 5)
1(b = 6)
















? β′ = (µ, a2, ..., a4, b2, ..., b6), and β̂′ = · · · ?

The sample size is n = 24, ŷ = X ′β̂ = 0.27 + 01(a = 1)− 0.031(a = 2)−
0.021(a = 3) + · · ·+ 01(b = 1) + · · · − 0.231(b = 5)− 0.131(b = 6)

What is β and X for β̂ = (X′X)−1X′Y ?
β = (µ, a2, a3, a4, b2, ..., b6)

′ and
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X =







int a2 a3 a4 b2 · · · b6

1 0 0 0 0 · · · 0
1 0 0 0 1 · · · 0
...
1 0 0 1 0 · · · 1







n×9

Why ??

a [1] 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4
b [1] 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Homework. 10.2. What is X and β for β̂ = (X′X)−1X′Y in lm(y ∼ a+ b−1)
in Example 3 ?

Example 3 (continued).
Another way to generate the same type of data:
> y=rnorm(24)
> a=rep(1,6)
> a=c(a,a+1,a+2,a+3)
> b=rep(1:6,4)
> lm(y∼a+b) # #A

(Output)
(Intercept) a b

> a=factor(a)
> b=factor(b)
> lm(y∼a+b) # #B

(Output)
(Intercept) a2 a3 a4 b2 b3 b4 b5 b6

What is X and β for β̂ = (X′X)−1X′Y in # A ?

What is X and β for β̂ = (X′X)−1X′Y in # B ?
What is the difference between outcomes # A and # B ?

> lm(y∼a+b−1) #1.
> lm(y∼a+b) #2
> options(contrasts =c(”contr.sum”, ”contr.poly”)) #3.
> lm(y∼a+b)

Which is the way same as in Example 3 ? #A or #B ?
What do you expect the estimates before seeing output ?

> summary(lm(y∼a+b)) # justify the answer to the question
Coefficients:

Estimate Std. Error t value Pr(> |t|)
How to find the P-value to justify the answer to the previous question?

Is it Pr(> |t|) ?
Homework 10.3.
1. Repeat Example 3 once yourself and answer the questions there.
2. Mimic Example 3 (continued) by inserting y=1+2*a+y right after b=rep(1:6,4)
(not before each lm(y∼a+b),as 2 ∗ factor(a) does not work).

Then ask yourself relevant questions and answer them.
Hw due Wednesday before class. Late hw -3, submit both .tex file and .pdf
file !

In regression analysis, there are several issues:
1. What is model for the data ? (LR, non-LR, Cox, Parametric) model ?
2. Can the model be simplifies ?
3. Does the model fit the data ?

Model checking
Question. Does a given set of data fits the given model (LR, non-LR, Cox,
Lehmann, Parametric) ?

11



Ans. Various diagnostic plots, QQplots, residual plots, and model tests.
For example, for question about the LR model, test

H0: Y = βX + ǫ v.s. H1: Y 6= βX + ǫ, X ∈ Rp.
Two common approaches.
1. A check of model fit. If there are replications in Xi’s, that is, the model

Yi = β′Xi + ǫi, i = 1, ..., n,
can be written as

Yij = βXij + ǫij , where
j = 1, ..., Ji,
i = 1, ..., m,
Xi1 = · · · = XiJi

, with Ji > 1 for some i,
and Xij 6= Xkh if i 6= k, e.g, (X1, ..., X6) = (2, 2, 2, 1, 3, 3).

then a model lack-of-fit test of H l
0: σL = σE v.s. H l

1: σL 6= σE

φ = 1(mL/mE > FdfL,dfE ,α), where
mE = 1

dfE

∑

i,j(Yij − Y i·)2, (unbiased estimator of σ2 under NID (E(Yij) = αi)

mL = 1
dfL

∑

i,j(Y i· − Ŷij)
2, (unbiased estimator of σ2 under NID and LR Model)

dfE =
∑

i(Ji − 1) (= n−m) and
dfL = m− p, df of residuals) = n− p− dfE = n− (p+ dfE)

Here, we make use of
∑

i,j Y
2
ij

=
∑

i,j(Yij −Y )2 +
∑

i,j Y
2

=
∑

i,j Y
2
ij − 2Y

∑

i,j Yij +
∑

i,j(Y )2 +
∑

i,j Y
2

=
∑

i,j(Yij − Ŷij)
2 +

∑

i,j(Ŷij − Y )2 +
∑

i,j Y
2

=
∑

i,j

(Yij − Y i·)
2

︸ ︷︷ ︸

relate to mE or mL?

+
∑

i,j

(Y i· − Ŷij)
2

︸ ︷︷ ︸

mE or mL?

+
∑

i,j(Ŷij − Y )2 +
∑

i,j Y
2
.

df: (n−m) +(m− p) +(p− 1)+1.
We also make use of NID.

Second way. If there is no replication, add another function to the model
Y = βX + ǫ,

e.g., consider a new model
Y = βX + θX2 + ǫ (or Y = βX + θg(X) + ǫ, e.g., g(x) = (x3, x2)),

and check whether θ = 0, where θ ∈ R (or Rq if g(X) ∈ Rq).
That is, set

Ht
0: θ = 0, v.s. Ht

1: θ 6= 0.
(a) One test is t-test (if q = 1):

φ = 1(|θ̂|/σ̂θ̂ > tn−p,α/2).
If n is large and p is not so, the statistic does not rely on ǫ ∼ N(µ, σ2).

(b) Another test is F-test:
Assuming E(Y |X) = β′X + θ′g(X), H0: θ = 0 v.s. H1: θ 6= 0.
Write Yn×1 = Zn×(p+q)γ + e, where Y = (Y1, ..., Yn)

′,

Z =





X ′
1 g(X1)

′

· · ·
X ′

n g(Xn)
′



,

X =





X ′
1

· · ·
X ′

n



,

γ =

(
β
θ

)

.

Let C = ( 0
︸︷︷︸

q×p

I
︸︷︷︸

q×q

), where I is an identity matrix.

The original H0 becomes
Hf

0 : Cγ = θ = 0.
γ̂ = (Z′Z)−1Z′Y,

β̂ = (X′X)−1X′Y,

12



SSE= Y′Y− γ̂′Z′Y (= ||Y− γ̂′Z||2), df= ?

SSW= Y′Y− β̂′X′Y (= ||Y− β̂′X||2), df= ?
An F test is

φ = 1(
SSW−SSE

q
SSE

n−p−q

> Fq,n−p−q,α),

where q is the dimension of θ, which is 1 most of the time.
F-test relies on NID.

3 tests are introduced: (1) Lack of fit test if there are ties in Xi’s, (2) t-test or
F-test.
Q: 1. If there exist ties in Xi’s, can we use all three approaches ?

2. If there do not exist ties in Xi’s, can we use all three approaches ?

Impurity data. An experiment to determine how the initial rate of formation of
an undesirable impurity (wu1dian3) Y depended on two factors:

(1) the concentration X0 of monomer, (dan1ti3)

(2) the concentration X1 of dimer. (shuang1ti3)
The relation is expected to be

Y = β0X0 + β1X1 + ǫ.
The data are as follows.

order in experiment X0 X1 Y i ij
3 0.34 0.73 5.75 1 11
6 0.34 0.73 4.79 2 12
2 0.58 0.69 5.44 3 21
4 1.26 0.97 9.09 4 31
1 1.26 0.97 8.59 5 32
5 1.82 0.46 5.09 6 41

why ordered ?
define X0 X1 Y

Can we use all three approaches for checking H0: E(Y |X) = β0X0 + β1X1 ?

Notice: n = 6, i = 4, J1 = J3 = 2 and J2 = J4 = 1.

mE = 1
dfE

∑

i,j(Yij − Y i·)2 = 1
2 (

(5.75−4.79)2

2 + (9.09−8.59)2

2 ) why ??

((5.75-4.79)**2+ (9.09-8.59)**2)/4

[1] 0.2929

mL = 1
dfL

∑

i,j(Y i· − Ŷij)
2 = ?

Ŷij = β̂Xi,j= ?

β̂ =

(
X′

0X0 X′
0X1

X′
0X1 X′

1X1

)−1 (
X′

0Y
X′

1Y

)

= 1

X′

0X0X
′

1X1−(X′

0X1)2

(
X′

1X1 −X′
0X1

−X′
0X1 X′

0X0

)(
X′

0Y
X′

1Y

)

Too tedious, thus use R
> x=c(0.34,0.73,5.75,

0.34,0.73,4.79,

0.58,0.69,5.44,

1.26,0.97,9.09,

1.26,0.97,8.59,

1.82,0.46,5.09)
> dim(x)=c(3,6)
# y=lm(x[3,]∼x[1,]+x[2,]−1)
> x=t(x)
> y=lm(x[,3]∼x[,1]+x[,2]−1)
> y

Coefficients:
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x[, 1] x[, 2]
1.207 7.123
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Fig. 10.1. QQ-plot data and rnorm(6) (3 times) Why do this ?
par(mfrow=c(2,2))
qqnorm(y$resid)
qqline(y$resid)
z=rnorm(6)
qqnorm(z)
qqline(z)
......

> anova(y)
Df Sum Sq Mean Sq F value Pr(> F )

x[, 1] 1 207.693 207.693 624.29 1.523e− 05 ∗ ∗ ∗
x[, 2] 1 58.901 58.901 177.05 0.0001844 ∗ ∗ ∗

Residuals 4 1.331 0.333
Lack of fit test φ = 1(F > FI−1,I(J−1),α).
> z=c(1,1,2,3,3,4)
#z=factor(x[,1])
> Y=lm(x[,3]∼x[,1]+x[,2]+factor(z)−1)
> anova(Y)

Df Sum Sq Mean Sq F value Pr(> F )
x[, 1] 1 207.693 207.693 709.0903 0.001407 ∗∗
x[, 2] 1 58.901 58.901 201.0966 0.004936 ∗∗

factor(z) 2 0.745 mL = 0.372 mL

nE
= 1.2717 0.440202 p− value > 0.05?

Residuals 2 0.586 mE = 0.293

f=1/1.27
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1-pf(f,2,2)

Conclusion Do not reject the model,
and the data fit the linear regression model.

Are we done ?
The second way: Ho: Y = βX + ǫ v.s. H1: Y = βX + θg(X) + ǫ with θ 6= 0.
> z=lm(x[,3]∼x[,1]+x[,2]+x[,1]*x[,2]−1)
> summary(z)

Estimate Std. Error t value Pr(> |t|)
x[, 1] 0.3844 0.5171 0.743 0.51120
x[, 2] 6.4990 0.5226 12.437 0.00112 ∗∗

x[, 1] : x[, 2] 1.6812 0.8668 1.939 0.14779 p− value > 0.05?

Conclusion ?
What else needs to be done ?
The third way:
> anova(z)

Df Sum Sq Mean Sq F value Pr(> F )
x[, 1] 1 207.693 207.693 1055.2702 6.411e− 05 ∗ ∗ ∗
x[, 2] 1 58.901 58.901 299.2726 0.0004209 ∗ ∗ ∗

x[, 1] : x[, 2] 1 0.740 0.740 3.7615 0.1477919 p− value > 0.05?
Residuals 3 0.590 0.197

Conclusion ?

Another code:
> anova(y,z)

Model 1: x[, 3] ∼ x[, 1] + x[, 2] - 1

Model 2: x[, 3] ∼ x[, 1] + x[, 2] + x[, 1] * x[, 2] - 1
Res.Df RSS Df Sum of Sq F Pr(> F )

1 4 1.33075
2 3 0.59044 1 0.74031 3.7615 0.1478

Example 4 (Growth rate data). The data in Table 10.7 is for the growth rate
of rats (denoted by Y ) fed various doses of a dietary supplement (denoted by X).
From similar investigation, it was believed that the relation could be roughly linear.
We shall test two models: a simple linear model and a quadratic model.

Ho: E(Y |X) = α+ βX v.s. H1: E(Y |X) 6= α+ βX.

y=c(73,78,85,90,91,87,86,91,75,65) # rate
x=c(10,10,15,20,20,25,25,25,30,35) # dose
a=factor(c(1,1,2,3,3,4,4,4,5,6))
#a=factor(x)
z=lm(y∼x)
plot(x,y)
v=(100:350)/10
u=z$coef[1]+z$coef[2]*v
lines(v,u,lty=2)
z=lm(y∼x+I(x2))
z=z$coef
u=z[1]+z[2]*v+z[3]*v2

lines(v,u,lty=3)
z=lm(y∼x+a)
anova(z) # lack of fit test

Df Sum Sq Mean Sq F value Pr(> F )
x 1 24.5 24.502 3.6299 0.12946
a 4 659.4 164.850 24.4222 0.00452 ∗∗

Residuals 4 27.0 6.750
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Conclusion: The linear regression model does not fit the data.

10 15 20 25 30 35
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90
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Now consider
Ho: E(Y |X) = β0 + β1X + β2X

2 v.s. H1: E(Y |X) 6= β0 + β1X + β2X
2

First way, lack of fit.
z=lm(y∼x+I(xˆ 2)+a)
anova(z)

Df Sum Sq Mean Sq F value Pr(> F )
x 1 24.50 24.50 3.6299 0.1294567

I(x2) 1 641.20 641.20 94.9933 0.0006207 ∗ ∗ ∗
a 3 18.19 6.06 0.8985 0.5156739

Residuals 4 27.00 6.75

Conclusion: The quadratic regression model does fit the data.
Second way: Ho: β3 = 0 v.s. H1: β3 6= 0.

assuming E(Y |X) = βo + β1X + β2X
2 + β3X

3.
z=lm(y∼x+I(xˆ 2)+I(xˆ 3))
summary(z)

Estimate Std.Error tvalue Pr(> |t|)
(Intercept) 24.007599 19.712021 1.218 0.2690

x 7.198068 3.179330 2.264 0.0642 .
I(x2) −0.222267 0.153348 −1.449 0.1974
I(x3) 0.001409 0.002276 0.619 0.5585

Conclusion ?

Third way: Ho: β3 = 0 v.s. H1: β3 6= 0.
> anova(z)

Df Sum Sq Mean Sq F value Pr(> F )
x 1 24.50 24.50 3.4608 0.1122

I(x2) 1 641.20 641.20 90.5674 7.677e− 05
I(x3) 1 2.71 2.71 0.3834 0.5585

Residuals 6 42.48 7.08

Conclusion ?

It seems that the data fit Y ∼ x2. How to check it ?
> Z=lm(y∼I(xˆ 2)+a)
> anova(Z)

Df Sum Sq Mean Sq F value Pr(> F )
I(x2) 1 91.42 91.421 13.544 0.021200
a 4 592.48 148.120 21.944 0.005533

Residuals 4 27.00 6.750

Conclusion ?

Compare to z=lm(y∼x+I(xˆ 2)+a)

Q: Is it true that
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the regression model fits the data if the regression curve fits the data well ?
The answer can be found from the next example.

Example 5. Consider the model logY ∼ N(0, 1).
x=1:5
y=exp(rnorm(5))
plot(x,y)
z=lm(y∼x+I(xˆ 2)+I(xˆ 3)+I(xˆ 4))
z=z$coef
v=(10:50)/10
u=z[1]+v*z[2]+z[3]*vˆ 2+z[4]*vˆ 3+z[5]*vˆ 4
lines(v,u,lty=2)

Then Ŷi = Yi for all i. However, the data do not fit the polynomial regression
model.
If we do it again the equation is totally different.
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Model checking: Given a regression data set (Xi, Yi)’s, to make statistical
inferences on µY , σY , Y = g(X) + ǫ etc. we need to assume a certain model:

parametric models: normal ? exponential ? uniform ? etc.,
semi-parametric models: LR, NLR, Cox, Lehmann, among others.
which of them is appropriate ? Or none of them is ?

For example, if one choose LR model, say

Yi = βXi + ǫi, and ǫ ∼ N(0, σ2), (1)

and we can fit the data to the model and get the LSE of β, FY |X , SE of β, CI of β,
and do testing about β and FY |X .
After these, we should ask

is the model in Eq. (1) appropriate for the data ?
is NID valid ? etc....

This is model checking. The tools are model diagnostic plots and model checking
tests.
Example 6. Simulation studies on testing H0: Y = βX+W (or with NID) v.s.
H1: H0 is not true (i.e. Y 6= βX +W or NID is not true) with the R codes
(summary(y∼x+I(sin(x)))$coef[3,4]> 0.05) # test φ = 1(p− value ≤ 0.05) (1)
Ideally it tests H0: Y = βX +W or with NID v.s. H1: Y 6= βX +W ,
actually it tests H ′

0: θ = 0 v.s. H ′
1: θ 6= 0, under the assumption

Y = βX + θ sinX +W and NID. (6.1)

Simulation 1.
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True model: Y = X + ǫ, where ǫ ∼ N(0, 1) and X ∼ bin(3, 0.5).
Questions:

Is H ′
1 true ? How about H1 ? Is H0 true ? How about NID ?

What do you expect for the test ?

Sample size= 50, replication= 1000, β = 1, β̂= 0.996, sd= 0.17
Rate of accepting rightH0 is 0.952, P̂ (H1|H0) = 0.048, P̂ (H ′

1|H0) = 0.048, P (H1|H0) =?
Does the test work as expected ?
What do you expect if n = 5000 ?
P̂ (H0|H1)= 0.952 ? = ?

Simulation 2.
True model: Y = sinX + ǫ, where X ∼ bin(3, 0.5) and ǫ ∼ N(0, 1).
H0: Y = βX +W , H1: Y 6= βX +W , H ′

1: θ 6= 0 under assumption (6.1).
Questions: Is H ′

1 true ? How about H1 ? Is H0 true ? How about NID ?
What do you expect for the test ?

Sample size= 50, replication= 100, β = 0, β̂ = −0.003, sd= 0.03
Rate of accepting wrong H0 is 0.33. P̂ (H0|H1) = ? P̂ (H0|H ′

1) = ?
P̂ (H1|H0) = 1− 0.33 ?
Does the test work in this case ?
What do you expect if n = 5000 ? P̂ (H0|H1) → 0 ? P̂ (H0|H1) → 1 ?

Simulation 3.
True model: Y = X1/2 + ǫ, where ǫ ∼ N(0, 1) and X ∼ bin(3, 0.5).
H0: Y = βX +W , H1: Y 6= βX +W , H ′

1: θ 6= 0 under assumption (6.1).
Questions: Is H ′

1 true ? How about H1 ? Is H0 true ? How about NID ?
What do you expect for the test ?

Sample size= 5000, replication= 100, β= 0, β̂= 0.5150, sd= 0.1761
Rate of accepting wrong H0 is 0.00. P̂ (H0|H1) = 0.00 ?? P̂ (H0|H ′

1) = 0.00 ??
It says that H ′

1 is true, the model is Y = α+ βX + θ sinX + ǫ.
Does the test work in this case ?
Both H0 and H ′

1 are wrong, though H1 is true. It happens to work.
Simulation 4.

True model Y = X1/2 + ǫ, where X ∼ B ∗ |W |, B ∼ U(0, 3), B ⊥ W , and ǫ
and W ∼ Cauchy.

H0: Y = βX +W , H1: Y 6= βX +W , H ′
1: Y = βX + θ sinX +W , θ 6= 0.

Questions: Is H ′
1 true ? How about H1 ? Is H0 true ? How about NID ?

What do you expect for the test ?

Sample size= 5000, replication= 100, β = 0, β̂= 0.0149, sd= 0.0141
rate of accepting wrong H0 is 0.96. P̂ (H0|H1) = 0.96 ? P̂ (H0|H ′

1) = 0.96 ?
Does the test work in this case ?
Remark. The homework solution is in my website. Quiz on 447 and 448 on

Friday.
The codes for simulations 1-4 are as follows.

n=5000 # need to adjust for input sample
beta=1
NN=100 # No. of simulation replication
swb = 1 # switch for binomial covariant
swn = 0 # switch for normal error
sww = 1 # switch for wrong LR model
p=0 # No. of accepting H0

b=0 # LSE
s=0 # SD of LSE
for (N in 1:NN) {

c=rbinom(n,3,0.5)
if (swb == 0)

c=abs(rcauchy(n))*c
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c=sort(c)
e=rcauchy(n)
if (swn == 1)

e=rnorm(n)
y=beta*c+e
if (sww == 1)

y=beta*sqrt(c)+e
z=lm(y∼c+I(sin(c)))
b=b+z$co[2]
s=s+z$co[2]*z$co[2]
p=p+(summary(z)$coef[3,4]>0.05) }

(p=p/NN)
(b=b/NN)
(s=sqrt(s/NN-b*b))
summary(z)$coef

Estimate Std. Error t value Pr(> |t|) (needs NID)
(Intercept) −4.8670290 3.324966 −1.4637829 0.14331617

c 2.8889273 1.472481 1.9619452 0.04982429
I(sin(c)) −0.5723319 3.625139 −0.1578786 0.87455884

Example 7. Simulation on testing
H0: Y = β sinX +W v.s. H1: H0 is false.

H ′
1: Y = β sinX + θX +W , with θ 6= 0, under NID.

The R codes
(summary(y∼x+I(sin(x)))$coef[2,4]> 0.05) # test φ = 1(p−value ≤ 0.05)
True model Y = X +W , where X ∼ bin(3, 0.5) and W ∼ |Cauchy|.

Questions:
Is H1 true ?
Is H ′

1 true ?
Is H0 true ?
What do you expect for the test ?
Sample size= 50, replication= 1000, θ = 1, θ̂= 2.324, sd= 47.06,
rate of accepting H0 is 0.795. P̂ (H0|H1) = 0.795 ? P̂ (H0|H ′

1) = 0.795 ?
P̂ (H1|H0) = 1− 0.795 ?
Summary on the simulation studies.
There are many regression models:

the linear regression models,
the logistic regression models,
the generalized linear (regression) models,
the generalized additive models, etc..

Given a data set, one needs to check which model fits the data. This is to test
H0: the data fits a given model, e.g., E(Y |X) = β′X, v.s. H1: H0 is false.

To implement, people design H ′
1 instead. If H0 and H ′

1 are not properly designed,
then the previous 3 model checking tests can be misleading as in simulations 3 and
4 of Ex. 6.
The existing model checking tests are the tests of
Ht

0: ξ(·) = 0, v.s. Ht
1: ξ(·) 6= 0, where ξ(X) = E(Y |X) − β′X has a certain form

with NID.
e.g., ξ = θg(X) in the 3 aforementioned model checking tests. In order to establish
the distribution theories for the tests, each of these tests imposes certain regularity
conditions on Fx,Y such as NID, which specifies a parameter space for Fx,Y , say
Θp, under which the test is valid. The Θp depends on the specific test and is a
certain common regression model that contains Θ0. For instance, in Example 6,

Θp = {Fx,Y : Y = α+ βX + θ sinX + ǫ, ǫ ∼ N(0, σ2), X ⊥ ǫ}.

Thus Θp 6= Θ, the family of all cdfs Fx,Y . If Fx,Y /∈ Θp, these tests are invalid in
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the sense that the (asymptotic) distributions specified for these tests are false.
In simulation 1, H0 is true and the model assumptions holds,

the test can either reject H0 or do not reject. But P (H1|H0) = 0.05.
In simulation 2, H1 is true, and the assumptions for the t-test hold.

The test rejects H0 with probability → 1 as n → ∞
(P (H0|H1) → 0, P (H0|H ′

1) → 0, a consistent test). P (H1|H0)= ?
In simulations 3 and 4, both H0 and H ′

1 are false, thus no P (H0|H ′
1).

The test can reject H0 with probability 0 or 0.96, i.e., P (H0|H1) can be ≈ 0
or 0.96.

In Example 7, both H0 and H ′
1 are false, as NID is false and E(W |X) does not

exist.

An estimate of P (H0|H1) is ≈ 0.8.

Remark. Type I error, denoted by H1|H0, implies that H0 is true. In Simulation
1 of Ex.6, it is true that P (H1|H0) = 0.05. It works as expected.
Type II error, denoted by H0|H1, implies that H1 is true. In Simulation 2 of Ex.6,
it is true that P (H0|H1) ≈ 0.33 → 0, as n → ∞. It works as expected.
In Simulations 3 and 4 of Ex.6 and in Example 7, neither H0 nor H ′

1 is true. Thus
neither P (H1|H0) nor P (H0|H ′

1) is a proper term. The test is based on invalid
assumption in (6.1) Thus the test is not valid. Just like a random guess. P̂ (H0|H1)
can be ≈ 0, 0.8, 1.

Interpretation of one way anova Yij = µ+ αi + ǫij , i = 1, 2, 3; j = 1, ..., 10.
Another way:

E(Yij |X) = µ+

3∑

i=1

αi1(Treatment= i for the ij−th person) (1)

There are 3 treatments, each is applied to 10 people. αi is the effect of treatment
i.
From Eq. (1), there are 3 equations and 4 unknown variables (due to i ∈ {1, 2, 3}.

E(Y1j |X) = µ+ α1,

E(Y2j |X) = µ+ α2,

E(Y3j |X) = µ+ α3, j=1,...,10.

(1) µ = 0. αi is the average effect of treatment i.

(2) α1 = 0. µ is the average effect of treatment 1. αi is the deviation effect of
treatment i from treatment 1. (Obviously α1 = 0).

(3)
∑3

i=1 αi = 0. µ is the average effect of the 3 treatments. αi is the deviation
effect of treatment i from the average.

x=1:3

x=rep(x,10)

y=4*x+rnorm(30)

lm(y∼x)

lm(y∼ factor(x)-1)

lm(y∼ factor(x))

options(contrasts =c(”contr.sum”, ”contr.poly”))

lm(y∼ factor(x))
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lm(y ∼ x) (Intercept) x

β̂ −0.5422 4.2430
β 0 4

lm(y ∼ factor(x)− 1) factor(x)1 factor(x)2 factor(x)3

β̂ 3.757 7.832 12.243
β 4 8 12

lm(y ∼ factor(x)) (Intercept) factor(x)2 factor(x)3

β̂ 3.757 ? 4.075 8.486
β 4 0 4 8

contr.sum
lm(y ∼ factor(x)) (Intercept) factor(x)1 factor(x)2

β̂ 7.9439 −4.1871 −0.1119 ?
β 8 −4 0 4

Remark.
Once contr.sum is applied, it remains there unless we apply
options(contrasts =c(”contr.treatment”, ”contr.poly”))

Chapter 4. Comparing a number of entities

4.1. Analysis of Variance (ANOVA)
One-way ANOVA is to check the difference between several samples, in contrast to

the t-test which is to check the difference between two samples.
Suppose that

Ytj = τt + ǫtj , t = 1, ...,I and j = 1, ..., J ,
where ǫtj ∼ N(0, σ2), and τt is the averages of the t−th sample (a parameter).

Ho: τ1 = · · · = τI v.s. H1: at least one inequality.
If I = 2, we use t− test.

Example 3. Let I = 3, J = 2,





Y11 Y12

Y21 Y22

Y31 Y32



, then n = 6, p = 3,

Y =










Y11

Y21

Y31

Y12

Y22

Y32










= Xβ + e, X =?? β = ??

Xtj = (Xtj1, Xtj2, Xtj3), where Xtjk = 1(t = k).
Remark. The model is E(Ytj) = τt, t ∈ {1, 2, 3}, j ∈ {1, 2}, which is often written
as

E(Ytj) = τt =η + αt (1)

E(Ytj) = τt =η + αt with α1 = 0 (2)

E(Ytj) = τt =η + αt with

3∑

j=1

αj = 0 (3)

E(Ytj) = τt =αt with η = 0 (4)

We say the parameters in Eq. (1) are not identifiable, as ∃ infinitely many solutions,
e.g.,

(η, α1, α2, α3) = (0, τ1, τ2, τ3),
(η, α1, α2, α3) = (τ1, τ1 − τ1, τ2 − τ1, τ3 − τ1)

(η, α1, α2, α3) = (τ , τ1 − τ , τ2 − τ , τ3 − τ) (τ =
∑3

t=1 τt/3)
are 3 solutions to Eq. (1).

Since the parameters in Eq. (1) are not identifiable, the LSE cannot be uniquely

determined. Thus we either set η = 0, or α1 = 0 or
∑I

t=1 αt = 0.
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For testing
Ho: τ1 = · · · = τI v.s. H1: Ho is false.

The test is φ = 1(F > FI−1,I(J−1),α), where F is given in the ANOVA table.

Source of variation sum of squares df mean square F
Between treatments ST =

∑

t,j(Y t,· − Y )2 νT = I − 1 mT = ST

νT

Within treatments SR =
∑

t,j(Ytj − Y t,·)2 νR = I(J − 1) mR = SR

νR

mT

mR

(hint) =
∑

i(Yi − Ŷi)
2 = n− p

Total about Y SD =
∑

i,j(Yij − Y )2 νD = IJ − 1

due to NID and
∑

t,j Y
2
tj =

∑

t,j

(Ytj − Y )2

︸ ︷︷ ︸

SD

+
∑

t,j Y
2
=

∑

t,j

(Y t· − Y )2

︸ ︷︷ ︸

?

+
∑

t,j

(Ytj − Y t·)
2

︸ ︷︷ ︸

?

+
∑

t,j Y
2
.

Blood Coagulation Time Example.
Table 4.1 gives coagulation times for sample blood drawn from 24 animals receiving
4 different diets A, B, C and D.
Question: Is there evidence to indicate any real difference between the mean coag-
ulation times for the four different diets ?
To randomized the outcomes, in addition to randomly select 24 animals,

one may randomly put them into four groups by (1) number them, and (2) use
> sample(1:24,replace=F)

[1] 7 11 19 16 20 2 — 8 5 9 23 1 21 — 3 12 15 22 24 13 — 6 17 10 14 4 18
(What is the output in the following Table ?)

The data are

A B C D
62(20) 63(12) 68(16) 56(23)

60(2) 67(9) 66(7) 62(3)

63(11) 71(15) 71(1) 60(6)

59(10) 64(14) 67(17) 61(18)

63(5) 65(4) 68(13) 63(22)

59(24) 66(8) 68(21) 64(19)

, I = 4, J = 6,

Source of variation sum of squares df mean square F
Between treatments ST = 228 νT = 3 mT = 76
Within treatments SR = 112 νR = 20 mR = 5.6 13.57

Between treatments ST =
∑

t,j(Y t,· − Y )2 νT = I − 1 mT = ST

νT

Within treatments SR =
∑

t,j(Ytj − Y t,·)2 νR = I(J − 1) mR = SR

νR

mT

mR

> x=c( 62 , 63 , 68 , 56, 60 , 67 , 66 , 62, 63 , 71 , 71 , 60, 59 , 64 , 67 , 61, 63 , 65
, 68 , 63, 59 , 66 , 68 , 64)
> (treatment=gl(4,1,24))

[1] 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Levels: 1 2 3 4

> (obj=lm(x∼treatment))
(Intercept) treatment2 treatment3 treatment4
6.100e+ 01 5.000e+ 00 7.000e+ 00 −9.999e− 15

Y 1· Y 2· − Y 1· Y 3· − Y 1· Y 4· − Y 1·
> anova(obj)

Df Sum Sq Mean Sq F value Pr(> F )
treatment 3 228 76.0 13.571 4.658e− 05 ∗ ∗ ∗
Residuals 20 112 5.6

Summary:
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Ho: τ1 = · · · = τ4 v.s. H1: at least one inequality.
Conclusion: Yes, reject Ho, as F is far away from 1 (where do we know it ?)

P-values is 0.00005.
There is real difference between the mean coagulation times for the four differ-

ent diets.

For one way anova (under control.sum):
Yij = η + αi + ǫij , i ∈ {1, ..., I}, j ∈ {1, ..., J},

∑

i αi = 0
=> Y = η + ǫ,

Y i· = η + αi + ǫi·, i ∈ {1, ..., I}. One can also explain by
(η̂, α̂1, ..., α̂I−1)

′ = (X′X)−1X′Y.
Blood Coagulation Time Example (continued).
> summary(lm(x∼treatment-1))

Estimate Std. Error t value Pr(> |t|)
treatment1 61.0000 0.9661 63.14 < 2e− 16 ∗ ∗∗
treatment2 66.0000 0.9661 68.32 < 2e− 16 ∗ ∗∗
treatment3 68.0000 0.9661 70.39 < 2e− 16 ∗ ∗∗
treatment4 61.0000 0.9661 63.14 < 2e− 16 ∗ ∗∗

> dim(x)=c(4,6); X=t(x)
> apply(X,2,mean)

[1] 61 66 68 61

> summary(lm(x∼treatment))

Estimate Std. Error t value Pr(> |t|)
(Intercept) 6.100e+ 01 9.661e− 01 63.141 < 2e− 16 ∗ ∗∗
treatment2 5.000e+ 00 1.366e+ 00 3.660 0.00156 ∗ ∗
treatment3 7.000e+ 00 1.366e+ 00 5.123 5.18e− 05 ∗ ∗∗
treatment4 −1.000e− 14 1.366e+ 00 0.000 1.00000

> treat=rep(c(1,2,3,1),6)
# what does 4→ 1 mean ? (see summary(lm(x∼treatment-1)))

> a=lm(x∼factor(treat))
> summary(a)

Estimate Std. Error t value Pr(> |t|)
(Intercept) 61.0000 0.6667 91.500 < 2e− 16 ∗ ∗∗

factor(treat)2 5.0000 1.1547 4.330 0.000295 ∗ ∗∗
factor(treat)3 7.0000 1.1547 6.062 5.14e− 06 ∗ ∗∗

> a=lm(x∼factor(treat)-1)
> summary(a) # compare “Estimate” in these two summaries.

Estimate Std. Error t value Pr(> |t|)
factor(treat)1 61.0000 0.6667 91.50 < 2e− 16 ∗ ∗∗
factor(treat)2 66.0000 0.9428 70.00 < 2e− 16 ∗ ∗∗
factor(treat)3 68.0000 0.9428 72.12 < 2e− 16 ∗ ∗∗

> anova(a) Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(> F )
factor(treat) 3 98532 32844 6158.2 < 2.2e− 16 ∗ ∗∗
Residuals 21 112 5

> qqnorm(a$resid)
> qqline(a$resid)
> b=rnorm(24)
> qqnorm(b)
> qqline(b) # repeat the last 3 lines one or two times why ?
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Two-way ANOVA is to check the difference between several samples, and between
blocks.
Suppose that

Ytj = η + τt + βj + ǫtj , t = 1, ...,k and j = 1, ..., n,
where ǫtj ∼ N(0, σ2), η, τt and βj are parameters, subject to

τ1 = 0 = β1 (or
∑

t τt =
∑

j βj = 0).
We shall do three tests:

H∗
o : τ1 = · · · = τk and β1 = · · · = βn v.s. H∗

1 : at least one inequality.
Ho: τ1 = · · · = τk v.s. H1: at least one inequality.
H ′

o: β1 = · · · = βn v.s. H ′
1: at least one inequality.

Source of variation sum of squares df mean squares F
Between blocks SB =

∑n
j=1(Y ·,j − Y )2 νB = n− 1 mB = SB

νB

mB

mR

Between treatments ST =
∑k

t=1(Y t,· − Y )2 νT = k − 1 mT = ST

νT

mT

mR

Within treatments SR = νR = mR = SR

νR

and blocks
∑

t,j(Yt,j − Y t,· − Y ·,j)2 (k − 1)(n− 1)

Total about Y SD =
∑

t,j(Ytj − Y )2 νD = kn− 1

H∗
0 SB + ST νB + νT

SB+ST
νB+νT

mR

∑

t,j Y
2
tj = SD +

∑

t,j Y
2
= SB + ST + SR +

∑

t,j Y
2
.

Blood Coagulation Time Example (continued).
H∗

o : τ1 = · · · = τk, β1 = · · · = βn v.s. v.s. H∗
1 : at least one inequality.

Ho: treatment effects: τ1 = · · · = τk v.s. H1: at least one inequality.
H ′

o: row effects β1 = · · · = βn v.s. H ′
1: at least one inequality.

> (row=gl(6,4,24))
[1] 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6
Levels: 1 2 3 4 5 6

> (tr=lm(x∼treatment+row))
(Intercept) treatment2 treatment3 treatment4 row2 row3
5.925e+ 01 5.000e+ 00 7.000e+ 00 1.285e− 14 1.500e+ 00 4.000e+ 00

row4 row5 row6 ↑
5.000e− 01 2.500e+ 00 2.000e+ 00 ↓

(Intercept) treatment2 treatment3 treatment4 row2 row3
Y 1· + Y ·1 − Y Y 2· − Y 1· Y 3· − Y 1· Y 4· − Y 1· Y ·2 − Y ·1 Y ·3 − Y ·1

Ŷ11 = ?
Ŷ21 = ?
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Y 2· + Y ·1 − Y
> summary(tr) Call: lm(formula = x ∼ treatment + row)

Estimate Std. Error t value Pr(> |t|)
(Intercept) 5.925e+ 01 1.328e+ 00 44.630 < 2e− 16 ∗ ∗∗
treatment2 5.000e+ 00 1.252e+ 00 3.995 0.00117 ∗ ∗
treatment3 7.000e+ 00 1.252e+ 00 5.593 5.14e− 05 ∗ ∗∗
treatment4 −1.088e− 14 1.252e+ 00 0.000 1.00000

row2 1.500e+ 00 1.533e+ 00 0.978 0.34335
row3 4.000e+ 00 1.533e+ 00 2.609 0.01973∗
row4 5.000e− 01 1.533e+ 00 0.326 0.74881
row5 2.500e+ 00 1.533e+ 00 1.631 0.12374
row6 2.000e+ 00 1.533e+ 00 1.305 0.21167

> u=lm(x∼1)
> anova(u,tr) # which null hypothesis does it test ?

Model 1: x ∼ 1
Model 2: x ∼ treatment + row

Res.Df RSS Df Sum of Sq F Pr(> F )
1 23 340.0
2 15 70.5 8 269.5 7.1676 0.0005797 ∗ ∗ ∗

> anova(tr)
Df Sum Sq Mean Sq F value Pr(> F )

treatment 3 228.0 76.0 16.170 5.745e− 05
row 5 41.5 8.3 1.766 0.1806

Residuals 15 70.5 4.7

how many tests ?

228+41.5
3+5 /4.7 = 7.167553 indent

> aov(x∼treatment+row)
treatment row Residuals

Sum of Squares 228.0 41.5 70.5
Deg. of Freedom 3 5 15

(see columns 1&2 of anova(tr))

Residual standard error: 2.167948 (=
√
4.7).

Ans: Reject H∗
0 and H0, but not H ′

0, the row effect is not significant, the model
should be x ∼ treatment

x = 61treatment[1 or 4] +66treatment[2]+ 68treatment[3]
(x = 61 · 1(treatment is type 1 or 4)+66 · 1(treatment is type 2)+68 · 1(treatment
is type 3)

Derive the LSE directly for two way anova:
Yij = η + αi + γj , i ∈ {1, ..., I}, j ∈ {1, ..., J},

∑

i αi =
∑

j γj = 0 (contr.sum) (the simplest way).

=>
∑

i

∑

j

Yij/n =
∑

i

∑

j

(η + αi + γj)/n = η +
∑

j

∑

i

αi/n+
∑

i

∑

j

γj/n.

Y = η, => η̂ = Y ; (due to MME).
Y i· = η + αi, i ∈ {1, ..., I}, => α̂i = Y i· − Y ;
Y ·j = η + γj , j ∈ {1, ..., J}, => γ̂j = Y ·j − Y ;

Ŷij = η̂ + α̂i + γ̂j = Y i· + Y .j − Y .

For instance, if (I, J) = (3, 2),Y =










Y11

Y21

Y31

Y12

Y22

Y32










, β =






η
α1

α2

γ1




,X =










1 1 0 1
1 0 1 1
1 −1 −1 1
1 1 0 −1
1 0 1 −1
1 −1 −1 −1










(η̂, α̂1, ..., α̂I−1, γ̂1, ..., γ̂J−1)
′ = (X′X)−1X′Y (contr.sum), lm(y ∼ row + col).

The LSE can also be derived by
(η̂, α̂2, ..., α̂I , γ̂2, ..., γ̂J )

′ = (X′X)−1X′Y (default), lm(y ∼ row + col).
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If (I, J) = (3, 2), Y =










Y11

Y21

Y31

Y12

Y22

Y32










, β =






η
α2

α3

γ2




, X =










1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1
1 1 0 1
1 0 1 1










How about (α̂1, α̂2, ..., α̂I , γ̂2, ..., γ̂J )
′ = (X′X)−1X′Y (default) (lm(y ∼ row+ col−

1)) ?
In two-way anova, Ŷij = η̂+ α̂i + γ̂j = Y i· +Y .j −Y is valid for the 3 models.

It is easiest to derive the LSE through control.sum model, then to yield the other
LSE’s.

lm(y ∼) (Intercept) r1 r2 r3 c1 c2
r + c Y 1· + Y ·1 − Y 0 Y 2· − Y 1· Y 3· − Y 1· 0 Y ·2 − Y ·1
sum Y Y 1· − Y Y 2· − Y Y 3· − Y Y ·1 − Y Y ·2 − Y

r + c− 1 0 Y 1· + Y ·1 − Y ? ? 0 Y ·2 − Y ·1

Key: Ŷij are the same in 3 forms. It is equivalent to the identifying the parameters
in E(Yij) = η + αi + γj :

η α1 α2 α3 γ1 γ2
i+ j E(Y1·) + E(Y·1)− E(Y··) 0 E(Y2·)− E(Y1·) E(Y3·)− E(Y1·) 0 E(Y·2)− E(Y·1)
sum E(Y··)

i+ j − 1 0

A simulation for understanding the estimates.
> y=rnorm(6)
> (col=gl(2,3,6))

[1] 1 1 1 2 2 2
> (row=gl(3,1,6))

[1] 1 2 3 1 2 3
> x=y
> dim(x)=c(3,2)
> (a=mean(x))

[1] -0.3406383
> mean(x[1,])-a

[1] 0.6422441
> mean(x[2,])-a

[1] -0.2224916
> mean(x[,1])-a

[1] -0.07302435
> options(contrasts =c(”contr.sum”, ”contr.poly”))
> lm(y∼row)

(Intercept) row1 row2
−0.3406 0.6422 −0.2225

Y Y 1· − Y Y 2· − Y
> lm(y∼col)

(Intercept) col1
−0.34064 −0.07302

Y Y ·1 − Y
> lm(y∼row+col)

(Intercept) row1 row2 col1
−0.34064 0.64224 −0.22249 −0.07302

Y Y 1· − Y Y 2· − Y Y ·1 − Y
> anova(lm(y∼row+col)) #What do you expect ?

Df Sum Sq Mean Sq F value Pr(> F ) σ̂
row 2 0.63053 0.315267 1.2241 0.4496 0.561
col 1 0.07823 0.078233 0.3038 0.6369 0.279

Residuals 2 0.51508 0.257542 0.507
row + col 3 0.708 0.236 ≈ 1− 0.486
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What is (p, β, σ) in lm(y∼row+col) ?
What are the conclusions about H0, H

′
0 and H∗

0 ?
Are these null hypotheses really true ?

4.2. Randomized Block Designs
Penicillin Yield Example.
Yield due to 4 variants of the process A, B, C and D was obtained.
The raw experiment material (corn steep liquor) varied considerably.
Each blend of materials can make 4 runs.
So n=5 blends were prepared (ideally, randomly select 5 blends from possible more
in storage), and k = 4 experiments were carried out for each blend.
First randomize the experiment by

rep(sample(1:4,replace=F),5)
which is the order to use processes A, B, C and D for the 5 blends. The data are

given as follows.

blends\treatments A B C D
1 89(1) 88(3) 97(2) 94(4)

2 84(4) 77(2) 92(3) 79(1)

3 81? 87? 87? 85?

4 87? 92? 89? 84?

5 79? 81? 80? 88?

x=c(89,84,81,87,79, 88,77,87,92,81, 97,92,87,89,80, 94,79,85,84,88)
dim(x)=c(5,4)

# x=matrix(c(89,84,81,87,79, 88,77,87,92,81, 97,92,87,89,80, 94,79,85,84,88),ncol=4)
T = factor(as.vector(col(x))) # T=gl(4,5,20)
B = factor(as.vector(row(x))) # B=gl(5,1,20)
options(contrasts =c(”contr.sum”, ”contr.poly”))
(obj=lm(as.vector(x)∼T+B))
anova(obj)

Consider 3 hypotheses:
Ho: τA = · · · = τD v.s. H1: at least one inequality.
H ′

o: γ1 = · · · = γ5 v.s. H ′
1: at least one inequality.

H∗
o : τA = · · · = τD and γ1 = · · · = γ5 v.s. H∗

1 : at least one inequality.

Df Sum Sq Mean Sq F value Pr(> F )
T 3 70 23.333 1.2389 0.33866
B 4 264 66.000 3.5044 0.04075 ∗

Residuals 12 226 18.833

F value = (70 + 264)/(3 + 4)/18.833 ≈ 2.5 P-value ?
> 1-pf(2.5,7,12)

[1] 0.07821256
Conclusion How many statements ?

> summary(obj)
Estimate Std. Error t value Pr(> |t|)

(Intercept) 86.0000 0.9704 88.624 < 2e− 16 ∗ ∗ ∗
T1 −2.0000 1.6808 −1.190 0.25708
T2 −1.0000 1.6808 −0.595 0.56292
T3 3.0000 1.6808 1.785 0.09956 .
B1 6.0000 1.9408 3.092 0.00934 ∗∗
B2 −3.0000 1.9408 −1.546 0.14812
B3 −1.0000 1.9408 −0.515 0.61573
B4 2.0000 1.9408 1.031 0.32310

Which
constraint ?

The model can be simplified.
Should the model be E(Y |X) = 86 + 61(B = 1) ? Or

> lm(x∼ factor(B==1))
(Intercept) factor(B == 1)1

88.25 −3.75
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Ê(Y |X) = 88.25− 3.75 1(B 6= 1)
︸ ︷︷ ︸

why not =??

.

4.3. is skipped.

4.4. Latin squares Latin squares deal with the case that there are 2 more equal-
level factors with the same level as the treatment. (R,C, T ) v.s. (R, T ).
Car Emissions Data. 4 drivers using 4 different cars to test the feasibility of
reducing air pollution by modifying a gas mixture with very small amounts of cer-
tain chemicals A, B, C and D. There are 4 cars and 4 drivers. For randomization,
randomly select cars and drivers. Then there are several ways to carry out the
experiments.

(1) Convenient way:

Drivers\cars 1 2 3 4
I A B C D
II A B C D
III A B C D
IV A B C D

car and treatment
effects are confounded

(2) Simple randomization:

Drivers\cars 1 2 3 4
I D A C B
II D A B C
III C B A D
IV A C D B

based on R output be-

low

> rep(sample(c(“A”,“B”,“C”,“D”)),4)
[1] “D” “A” “C” “B” “D” “A” “B” “C” “C” “B” “A” “D” “A” “C” “D” “B”

(3) Latin Square:

Drivers\cars 1 2 3 4
I A B C D
II B C D A
III C D A B
IV D A B C

,

which eliminates the block
effects of cars and drivers, as

each row and column
has A, B, C, D

Compare

1 2 3 4
I A B C D
II D A B C
III B C D A
IV C D A B

,

1 2 3 4
I A B C D
II C D A B
III B C D A
IV D A B C

,

1 2 3 4
I A B C D
II C D A B
III D A B C
IV B C D A

Relation between these 3 ?
The data are put in Table 2.

Drivers\cars 1 2 3 4
I A B D C

19 24 23 26
II D C A B

23 24 19 30
III B D C A

15 14 15 16
IV C A B D

19 18 19 16

which pattern of the above 3 ?

> y=c(19, 24, 23, 26, 23, 24, 19, 30, 15, 14, 15, 16, 19, 18, 19, 16)
> (col=gl(4,1,16))

[1] 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Levels: 1 2 3 4

> (row=gl(4,4,16))
[1] 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
Levels: 1 2 3 4

> T=c(A,B,D,C,D,C,A,B,B,D,C,A,C,A,B,D) # Does it work ?
> T=c(”A”,”B”,”D”,”C”,”D”,”C”,”A”,”B”,”B”,”D”,”C”,”A”,”C”,”A”,”B”,”D”)

28



> T=c(1,2,4,3,4,3,1,2,2,4,3,1,3,1,2,4)
> T=factor(T)
> (obj=lm(y∼col+row+T))
(Intercept) col2 col3 col4 row2 row3
2.000e+ 01 1.000e+ 00 −1.088e− 15 3.000e+ 00 1.000e+ 00 −8.000e+ 00

row4 T2 T3 T4
−5.000e+ 00 −4.000e− 01 3.000e− 01 1.000e+ 00

> anova(obj)
Df Sum Sq Mean Sq F value Pr(> F )

T 3 40 13.333 2.5 0.156490 < 0.5
col 3 24 8.000 1.5 0.307174 car
row 3 216 72.000 13.5 0.004466 ∗∗ driver

Residuals 6 32 5.333
> (40 + 24 + 216)/9/5.333

[1] 5.8
> 1−pf(5.8, 9, 6) what does it mean ?

[1] 0.023
> (ob=lm(y∼T))

(Intercept) T2 T3 T4
18 4 3 1

> anova(ob)

Df Sum Sq Mean Sq F value Pr(> F )
T 3 40 13.333 0.5882 0.6343 > 0.5

Residuals 12 272 22.667

Ho: τA = τB = τC = τD v.s. H1: Ho is false.
> summary(lm(y∼row))

Estimate Std. Error t value Pr(> |t|)
(Intercept) 23.000 1.414 16.26 1.54e− 09 ∗ ∗ ∗

row2 1.000 2.000 0.50 0.62612
row3 −8.000 2.000 −4.00 0.00176 ∗∗
row4 −5.000 2.000 −2.50 0.02792 ∗

Conclusion ? Based on anova(obj) or anova(ob) ?
Ans: Based on anova(obj). The P-value of T is smaller.
Also row effect is significant, the model can be simplified as

Ê(Y |X) = 23− 81(Drive3)− 51(Drive4) ? 1(Drive3) = 1(driver is #3)
> D=rep(1,4)
> D=c(D,D,D+2,D+3)
> D [1] 1 1 1 1 1 1 1 1 3 3 3 3 4 4 4 4
> summary(lm(y∼factor(D)-1))

Estimate Std. Error t value Pr(> |t|)
(Intercept) 23.5000 0.9707 24.209 3.37e− 12 ∗ ∗ ∗
factor(D)3 −8.5000 1.6813 −5.055 0.00022 ∗ ∗ ∗
factor(D)4 −5.5000 1.6813 −3.271 0.00608 ∗∗

The model is Ê(Y |X) = 23.5− 8.51(Drive3)− 5.51(Drive4).
Graeco-Latin Squares deal with the case that
there are 3 block factors with levels equal the level of the treatment factor (3+1),
whereas Latin squares deal with the case that

there are 2 equal-level factors with the same level as the treatment (2+1).
One may try to superimpose two Latin Squares together.
Which of the following two can eliminate confounding effect ?
1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

1 2 3 4
3 4 1 2
2 1 4 3
4 3 2 1

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3
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(1) latin sq., (2) replication, (3) permute 3 rows, (4) permute 2 rows, (5) different.
1− −2
11 22 33 44
22 11 44 33
33 44 11 22
44 33 22 11

1− −3
11 22 33 44
23 14 41 32
34 43 12 21
42 31 24 13

1− −4
11 22 33 44
23 14 41 32
32 41 14 23
44 33 22 11

1− −5
11 22 33 44
22 13 44 31
33 44 11 22
44 31 22 13

Conclusion ?

1. Permute 3 rows of Latin square (1) works;

2. Permute 2 rows of Latin square or superimpose (5) does not work !
How to tell ?

No pair of numbers occurs twice.
Hyper-Graeco-Latin Squares deal with the case that there are 4 block factors
with levels equal the level of the treatment factor (4+1).

A Hyper-Graeco-Latin Square used in a Martindale wear tester.
The martindale wear tester is a machine used for testing the wearing quality of
types of cloth or other such materials.

* 4 pieces of cloth may be compared simultaneously in one machine cycle.

* The response is the weight loss in tenths of a milligram suffered by the test piece
when it is rubbed again a standard grade of emory paper for 1000 revolutions
of the machine.

* Specimens of the four different types of cloth (treatments) A, B, C, D whose
wearing qualities are to be compared are mounted in 4 different specimen hold-
ers 1, 2, 3, 4.

* Each holder can be in any of the 4 positions P1, P2, P3, P4 on the machine.

* Each emory paper sheet α, β, γ, δ was cut into 4 quarters and each quarter
used to complete a single cycle c1, c2, c3 and c4 of 1000 revolutions.

The object of the experiment:
(1) to make a more accurate comparison of the treatments
(2) to discover how much a total variability was contributed by the various factors:

holders, positions, emory paper and cycles.
One replication has 16 df.
Under control-sum, 1 + (4 + 1)× (4− 1) = 16 dfs are needed, thus
two replications are needed why ??
Thus 4 additional cycles and 4 additional emory papers are needed.

So there are 32 experiments. It is important to consider randomizing the 32
experiments. In the first 16 runs, each run involves 5 conditions: (4+1) factors,
each with 4 levels.
How to order them for randomization ?

In each circle, 4 experiments are carried out simultaneously, it needs 4 types
of emory papers and 4 types of cloth. Each holder, position and circle are one unit,
respectively. Each cloth and emory paper are cut to 4 pieces. If the qualify of cloth
and emory papers are uniform, then no need to randomize (the textbook does not
bother). Otherwise, in each replication of 16 experiments, we can randomize as
follows.

for (i in 1:4) sample (1:4) (for 4 pieces of each emory paper in 4 circles),

for (i in 1:4) sample (1:4) (for 4 pieces of each type of cloth in 4 circles).
The data are as follows.

30



cycles\position P1 P2 P3 P4

c1 αA1 βB2 γC3 δD4
320 297 299 313

c2 βC4 αD3 δA2 γB1
266 227 260 240

c3 γD2 δC1 αB4 βA3
221 240 267 252

c4 δB3 γA4 βD1 αC2
301 238 243 290

c5 ǫA1 ξB2 θC3 κD4
285 280 331 311

c6 ξC4 ǫD3 κA2 θB1
268 233 291 280

c7 θD2 κC1 ǫB4 ξA3
265 273 234 243

c8 κB3 θA4 ξD1 ǫC2
306 271 270 272

replication I

Cycles: c1, c2, c3, c4

Treatments: A, B, C, D

Holders: 1, 2, 3, 4

Emory paper sheet: α, β, γ, δ

replication II

Cycles: c5, c6, c7, c8

Treatments: A, B, C, D

Holders: 1, 2, 3, 4

Emory paper sheet: ǫ, ξ, θ, κ

What is the property of the arrangement ?
Three Latin squares superimpose together twice.
αA1 pattern
111 222 333 444 1
234 143 412 321 234
342 431 124 213 34
423 314 241 132 4

, but not

αA1
111 222 333 444
222 111 444 333
333 444 111 222
444 333 222 111

Notice:
1. (α, A), (α, 1), (A, 1), etc. will not occur twice.

2. Rows 2, 3, 4 belongs to {(2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1)} in the order

111
234
34c
4ab

3. The element (a,b,c) in the table is uniquely determined.
It is easier to set the Hyper-Graeco-Latin Square this way:
1 2 3 4
2 1 4
3 4 1
4 1

→ LS=

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

→
1
234
34
4

→
111
234
34
4?

→
111
234
34?
42

→
111
234
342
42?

→
111
234
342
423

What does it mean ?

111 = (1st, 1st, 1st) row of LSquare
234 = (2nd, 3rd, 4th) row of LS
342 = (3rd, 4th, 2nd) row of LS
423 = (4th, 2nd, 3rd) row of LS

→
111 2 3 4
234 1 4 3
342 4 1 2
423 3 2 1

→

αA1
111 222 333 444
234 143 412 321
342 431 124 213
423 314 241 132

This may not work for other dimension, say 5.
Consider model

Y ∼ replication1 + cycle6 + position3 + Emory6 + holder3 + treatment3, or
Y = Xβ + ǫ, where Y is a 32× 1 vector, β is a vector in R23 (1 + 1 + 6 + 3 +

6 + 3 + 3 = 23), and X is a matrix of dimension 32× 23.

> y=c(320, 297, 299, 313, 266, 227, 260, 240, 221, 240, 267, 252, 301, 238, 243,
290)
> z=c(y, 285, 280, 331, 311, 268, 233, 291, 280, 265, 273, 234, 243, 306, 271, 270,
272)
> options(contrasts =c(”contr.sum”, ”contr.poly”))
> (P=gl(4,1,32))
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[1] 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Levels: 1 2 3 4

> r=gl(2,16,32) # replication index
> T=c(1,2,3,4,3,4,1,2,4,3,2,1,2,1,4,3)
> T=factor(c(T,T))
> H=c(1,2,3,4,4,3,2,1,2,1,4,3,3,4,1,2) # holder
> H=factor(c(H,H))
> (C1=c(rep(1,4),rep(0,8),rep(-1,4)))

[1] 1 1 1 1 0 0 0 0 0 0 0 0 -1 -1 -1 -1 # why −1 ?
> (C2=c(rep(0,4),rep(1,4),rep(0,4),rep(-1,4)))

[1] 0 0 0 0 1 1 1 1 0 0 0 0 -1 -1 -1 -1
> (C3=c(rep(0,8),rep(1,4),rep(-1,4)))

[1] 0 0 0 0 0 0 0 0 1 1 1 1 -1 -1 -1 -1
> C5=c(rep(0,16),C1)
> C6=c(rep(0,16),C2)
> C7=c(rep(0,16),C3)
> C1=c(C1,rep(0,16)) # C1 is a factor or numerical variable ?
> C2=c(C2,rep(0,16))
> C3=c(C3,rep(0,16))
> E1=c(1,0,0,-1,0,1,-1,0,0,-1,1,0,-1,0,0,1) # emory
# α, β, γ, δ, β, α, δ, γ, γ, δ, α, β, δ, γ, β, α
> E2=c(0,1,0,-1,1,0,-1,0,0,-1,0,1,-1,0,1,0)
> E3=c(0,0,1,-1,0,0,-1,1,1,-1,0,0,-1,1,0,0)
> E5=c(rep(0,16),E1)
> E6=c(rep(0,16),E2)
> E7=c(rep(0,16),E3)
> E1=c(E1,rep(0,16))
> E2=c(E2,rep(0,16))
> E3=c(E3,rep(0,16))
> obj=lm(z∼ T+H+P+C1+C2+C3 +C5+C6+C7 +E1+E2+E3+E5+E6+E7+r))

> (ob=lm(z ∼ T))

(Intercept) T1 T2 T3
271.469 −1.469 4.156 8.406

> obj

(Intercept) T1 T2 T3 H1 H2
271.4688 −1.4688 4.1563 8.4063 −2.5938 0.5313

H3 P1 P2 P3 C1 C2
2.5313 7.5312 −14.0938 2.9063 40.1250 −18.8750
C3 C5 C6 C7 E1 E2

−22.1250 25.9375 −7.8125 −22.0625 8.8750 −2.6250
E3 E5 E6 E7 r1

−17.6250 −19.8125 −10.5625 10.9375 −4.3438

(1)

Remark. LSE of treatment effects of two models are the same.

> C=c(C1,C2,C3,C5,C6,C7)
> dim(C)=c(32,6)
> E=c(E1,E2,E3,E5,E6,E7)
> dim(E)=c(32,6)
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>lm(z∼T+H+P+C+E+r) difference between Eq.(1) and Eq.(2) ?

(Intercept) T1 T2 T3 H1 H2
271.4688 −1.4688 4.1563 8.4063 −2.5938 0.5313

H3 P1 P2 P3 C1 C2
2.5313 7.5312 −14.0937 2.9063 40.1250 −18.8750
C3 C4 C5 C6 E1 E2

−22.1250 25.9375 −7.8125 −22.0625 8.8750 −2.6250
E3 E4 E5 E6 r1

−17.6250 −19.8125 −10.5625 10.9375 −4.3438

(2)

Main concern: Ho: τA = τB = τC = τD v.s. H1: Ho fails.
> anova(lm(z∼T))

Df Sum Sq Mean Sq F value Pr(> F )
T 3 1705.3 568.45 0.6429 0.5939

Residuals 28 24758.6 884.24
Conclusion ?

> anova(lm(z∼T+H+P+C+E+r))
Df Sum Sq Mean Sq F value Pr(> F )

T 3 1705.3 568.45 5.3908 0.021245
H 3 109.1 36.36 0.3449 0.793790
P 3 2217.3 739.11 7.0093 0.009925
C 6 14770.4 2461.74 23.3455 5.273e− 05
E 6 6108.9 1018.16 9.6555 0.001698
r 1 603.8 603.78 5.7259 0.040366

Residuals 9 949.0 105.45

Conclusion ?

> anova(lm(z∼T+P+C+E+r))
Df Sum Sq Mean Sq F value Pr(> F )

T 3 1705.3 568.45 6.4467 0.0075703 ∗∗
P 3 2217.3 739.11 8.3822 0.0028332 ∗∗
C 6 14770.4 2461.74 27.9181 2.221e− 06 ∗ ∗ ∗
E 6 6108.9 1018.16 11.5467 0.0002213 ∗ ∗ ∗
r 1 603.8 603.78 6.8474 0.0225196 ∗

Residuals 12 1058.1 88.18
> anova(lm(y∼T+r))

Df Sum Sq Mean Sq F value Pr(> F )
T 3 1705.3 568.45 0.6354 0.5987
r 1 603.8 603.78 0.6749 0.4185

Residuals 27 24154.8 894.62

Why different ?
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qqline(obj$resid)
z=rnorm(32)
qqnorm(z)
qqline(z)

Summary:
1. Hr

o : No difference in replication. ??
2. Hc

o : No difference in cycles. ??
3. HH

o : No difference in specimen holder. P-value = 0.8 > 0.05.
4. HP

o : No difference in positions. ??
5. He

o : No difference in emory papers. ??
6. Ho: τA = τB = τC = τD v.s. H1: Ho fails.

Is the p-value for T 0.594, or 0.021 or 0.008, or 0.599 ?
The difference is very significant.
Reject Ho, and the treatment effect are not equal.

Notice that without blocking factor P, C and E, the conclusion is
different, even with replications.

p-value for T is 0.59 > α = 0.05.

7. Preference of treatments (weight loss) D > A > B > C.
(Int) T1 T2 T3
271 −1 4 8

There are several models:
(1) lm(y∼T)
(2) lm(y∼T+r)
(3) lm(y∼T+H+P+C+E+r)
(4) lm(y∼T+P+C+E+r)

Which of them is appropriate ?
What is the connection between the previous question and goodness-of-fit test ?

Ho: E(Y |X) = β′X v.s. H1: E(Y |X) = β′X+ θg(X).
Model (1) is a special case of Models (2), (3) and (4).
Does anova suggests that it can be simplified ?

Which of them is better ?

> anova(obj,ob)
Model 1: z ∼ T + P + C+ E + r
Model 2: z ∼ T

Res.Df RSS Df Sum of Sq F Pr(> F )
1 12 1058.1
2 28 24758.6 −16 −23700 16.799 8.058e− 06

> summary(obj)
Estimate Std.Error tvalue Pr(> |t|)

(Intercept) 271.4688 1.8153 149.546 < 2e− 16 ∗ ∗ ∗
T1 −1.4688 3.1442 −0.467 0.651505
T2 4.1563 3.1442 1.322 0.218814
T3 8.4063 3.1442 2.674 0.025471 ∗
H1 −2.5938 3.1442 −0.825 0.430726
H2 0.5313 3.1442 0.169 0.869561
H3 2.5313 3.1442 0.805 0.441531
P1 7.5312 3.1442 2.395 0.040206 ∗
P2 −14.0937 3.1442 −4.483 0.001527 ∗∗
P3 2.9063 3.1442 0.924 0.379429
C1 40.1250 4.4465 9.024 8.35e− 06 ∗ ∗ ∗
...

Q: Under model lm(z ∼ T ) under control sum, if we write in the standard LR
model form Yi = βXi + ǫi, (Yi, Xi, β)= ?

Y = 271.5− 1.5T1 + 4.2T2 + 8.4T3 ?
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β =(T1,T2,T3) ?
Or try

lm(formula = z ∼ T - 1)

T1 T2 T3 T4
270.0 275.6 279.9 260.4

Yi = zi,
X ′

i = (1,1(T = 1),1(T = 2),1(T = 3),1(T = 4)), or more accurately,
X ′

i = (1,1(T is cloth A),1(T is cloth B),1(T is cloth C),1(T is cloth D)),

β′ = (β0, β1, β2, β3,−
∑3

i=1 βi).

β̂′ = (271.5,−1.5, 4.2, 8.4,−11.1).
Interpretation:

The mean wearing effect on the 4 cloths is 271.5 units,

effect on cloth A is 1.5 units lower,

effect on cloth B is 4.2 units higher,

effect on cloth C is 8.4 units higher,

effect on cloth D is 11.1 units lower.

Homework 4.1. 1. Suppose that each emory paper α, β, γ, δ can be cut into 8
pieces rather than 4 quaters and each piece is used to complete a single cicle c1, ...,
c8 of 1000 revolutions. That is (ǫ, ξ, θ, κ) are replaced by (α, β, γ, δ). Pretend the
data remain the same. Revise the codes and do data analysis again.

4.5. Balanced incomplete block designs. The Martindale wear tester example
is a complete block design. There are 4 treatment, and block size (Emory paper) is
also 4.
If # of treatments > block size, then we have incomplete block designs, e.g., if there
are 4 treatment, and block size (Emory paper) is 3, then it is an incomplete block
design.

A balanced incomplete block design:

A B C D
1 α β γ

circle of 2 β γ α
103 revolutions 3 γ α β

4 α β γ
Its properties:
1. Within block of cycles, every pair of treatments appears twice. e.g. (A,B) occurs
at blocks (circles) 1 and 2, and (A,D) occurs at blocks 2 and 3.
2. Every row contains each of α, β and γ.
3. Every column contains each of α, β and γ.
Thus each of α, β and γ block contains {A,B,C,D} and circle {1, 2, 3, 4}.

Youden Squares: A second wear testing example. There are 7 treatment,
and block size of emory paper is still 4, a balanced incomplete block design is as
follows.

cycles\treatment A B C D E F G
1 α627 β248 γ563 δ252 DG
2 α344 β233 δ442 γ226
3 α251 γ211 δ160 β297 DG
4 β337 δ537 γ195 α300 AB
5 γ520 δ278 β199 α595
6 γ369 δ196 α185 β606
7 δ396 β602 γ240 α273 AB

Within block of cycles, every pair of treatments appears twice.
e.g. In the block of cycles (A,B) occurs at blocks 4 and 7.
Each row and column contains α, β, γ, δ.
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Does

cycles\treatment A B C D E F G
1 α β γ δ
2 β γ δ α
3 γ δ α β
4 δ α β γ
5 α β γ δ
6 α β γ δ
7 α β γ δ

work ?

> y=c(627,248,563,252, 344,233,442,226, 251,211,160,297, 337,537,195,300,
520,278,199,595, 369,196,185,606, 396,602,240,273)

> T=c(”B”,”D”,”F”,”G”, ”A”,”C”,”F”,”G”, ”C”,”D”,”E”,”G”, ”A”,”B”,”E”,”G”,
”B”,”C”,”E”,”F”, ”A”,”D”,”E”,”F”, ”A”,”B”,”C”,”D”)

> e=c(”a”,”b”,”r”,”d”, ”a”,”b”,”d”,”r”, ”a”,”r”,”d”,”b”, ”b”,”d”,”r”,”a”,
”r”,”d”,”b”,”a”, ”r”,”d”,”a”,”b”, ”d”,”b”,”r”,”a”)

> c= gl(7,4,28)
[1] 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7

> (z=lm(y∼T)) # What is the LSE of TA ?
# What is the LSE of wearing effect on cloth A ?

(Intercept) TB TC TD TE TF TG
361.50 210.00 −111.00 −129.50 −176.75 190.00 −92.75

> (x=lm(y∼T+e+c))
(Intercept) TB TC TD TE TF
408.429 191.357 −111.571 −147.643 −184.500 188.429
TG eb ed er c2 c3

−87.571 −7.571 −44.857 −35.857 −72.429 −23.786
c4 c5 c6 c7

−23.929 −9.286 −11.429 8.357
> anova(x)

Df Sum q Mean Sq Fvalue Pr(> F )
T 6 589623 98271 96.4619 1.899e− 09 ∗ ∗ ∗
e 3 9846 3282 3.2217 0.06125 .
c 6 14570 2428 2.3837 0.09445 .

Residuals 12 12225 1019
Can we simplify ?

Delete e or c ?

e+ c 9 24416 2712.9 2.6623 0.0583
pf(2.67, 9, 12)

> anova(x,z)
Model 1: y ∼ T + e + c
Model 2: y ∼ T

Res.Df RSS Df Sum of Sq F Pr(> F )
1 12 12225
2 21 36641 −9 −24416 2.663 0.05828 .

> summary(z)
Estimate Std. Error t value Pr(> |t|)

(Intercept) 361.50 20.89 17.309 6.61e− 14 ∗ ∗ ∗
TB 210.00 29.54 7.110 5.17e− 07 ∗ ∗ ∗
TC −111.00 29.54 −3.758 0.001157 ∗∗
TD −129.50 29.54 −4.384 0.000259 ∗ ∗ ∗
TE −176.75 29.54 −5.984 6.13e− 06 ∗ ∗ ∗
TF 190.00 29.54 6.433 2.24e− 06 ∗ ∗ ∗
TG −92.75 29.54 −3.140 0.004943 ∗∗

> qqnorm(studres(z))
> qqline(studres(z))
> u=rnorm(28)
> qqnorm(u)
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> qqline(u)
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Summary:

Ho: τA = τB = τC = τD = τE = τF = τG v.s. H1: Ho fails.

p-value for T is < 0.001 < α = 0.05.

The treatments are significantly different.

Reject Ho, and the treatment effect are not equal.
Which of the two model is appropriate ?

(1) E(Y |X) = α+ β′
1T ,

(2) E(Y |X) = α+ β′
1T + β′

2e+ β′
3c

Preference in treatments: E > D > C > G > A > F > B. Why ?
Interpretation of α under model (1) ?

The average effect of the 7 treatments ?

The average effect of Treatment A ?
Interpretation of βi ?
Interpretation of α under model (2) ?

The average effect of the 7 treatments ?

The average effect of Treatment A ?
Interpretation of βi ?
> names(summary(z))

[1] ”call” ”terms” ”residuals” ”coefficients”

[5] ”aliased” ”sigma” ”df” ”r.squared”

[9] ”adj.r.squared” ”fstatistic” ”cov.unscaled”
> summary(lm(y∼T-1))$cov

TA TB TC TD TE TF TG
TA 0.25 0.00 0.00 0.00 0.00 0.00 0.00
TB 0.00 0.25 0.00 0.00 0.00 0.00 0.00
TC 0.00 0.00 0.25 0.00 0.00 0.00 0.00
TD 0.00 0.00 0.00 0.25 0.00 0.00 0.00
TE 0.00 0.00 0.00 0.00 0.25 0.00 0.00
TF 0.00 0.00 0.00 0.00 0.00 0.25 0.00
TG 0.00 0.00 0.00 0.00 0.00 0.00 0.25

Residual standard error: 41.77 on 21 degrees of freedom
> (U=summary(lm(y∼T))$cov)
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(Intercept) TB TC TD TE TF TG
(Intercept) 0.25 −0.25 −0.25 −0.25 −0.25 −0.25 −0.25

TB −0.25 0.50 0.25 0.25 0.25 0.25 0.25
TC −0.25 0.25 0.50 0.25 0.25 0.25 0.25
TD −0.25 0.25 0.25 0.50 0.25 0.25 0.25
TE −0.25 0.25 0.25 0.25 0.50 0.25 0.25
TF −0.25 0.25 0.25 0.25 0.25 0.50 0.25
TG −0.25 0.25 0.25 0.25 0.25 0.25 0.50

Why is there such a big difference ?
Under the model y ∼ T − 1,

β̂A =

∑
n

i=1
yi1(Ti=A)

∑
n

i=1
1(Ti=A)

, where n = ? 7 treatments and 4 blocks.

β̂B =

∑
n

i=1
yi1(Ti=B)

∑
n

i=1
1(Ti=B)

, ...

cov(β̂A, β̂B) = E(β̂A · β̂B)− E(β̂A)E(β̂B).
Under the model y ∼ T ,

β̂0 =

∑
n

i=1
yi1(Ti=A)

∑
n

i=1
1(Ti=A)

, β̂A = 0, β̂B =

∑
n

i=1
yi1(Ti=B)

∑
n

i=1
1(Ti=B)

− β̂0, ...

> summary(lm(y∼T-1))
Estimate Std. Error t value Pr(> |t|)

TA 361.50 20.89 17.309 6.61e− 14 ∗ ∗∗
TB 571.50 20.89 27.363 < 2e− 16 ∗ ∗∗
TC 250.50 20.89 11.994 7.35e− 11 ∗ ∗∗
TD 232.00 20.89 11.108 2.98e− 10 ∗ ∗∗
TE 184.75 20.89 8.846 1.59e− 08 ∗ ∗∗
TF 551.50 20.89 26.406 < 2e− 16 ∗ ∗∗
TG 268.75 20.89 12.868 1.99e− 11 ∗ ∗∗

Is U really a covariance matrix ?
Σ̂β̂ = σ̂2(X′X)−1

cov.unscaled=(X′X)−1.
> 0.25*41.77**2
[1] 436.1832
> 20.89**2
[1] 436.3921

Chapter 5. Factorial Designs at two levels
We shall look at 3 examples. Two are qualitative and one is quantitative.

5.2. Example 1: The effect of 3 factors on clarity of film.
An experiment to determine how the cloudiness of a floor wax is affected when
certain changes are introduced into the formula for its preparation.
1 response: cloudiness of a floor.
3 factors each with two levels:

amount of emulsifier A (low, high) or (-,+),
amount of emulsifier B (low, high) or (-,+),
catalyst concentration C (low, high) or (-,+).

There are 23 = 8 combinations and one needs 8 (random) runs of experiments.
They are called 23 factorial designs.

run# A B C results(N/Y ) or(−/+)
1 − − − No −
2 + − − No −
3 − + − Y es +
4 + + − Y es +
5 − − + No −
6 + − + No −
7 − + + Y es +
8 + + + Y es +

compare same as B
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Results can also be given as visual display in Figure 5.1 (in the textbook). One
can see from Figure 5.1 that cloudy is mainly due to high amount of emulsifier B.
Factors A nd C are called inert.
Is the run number the order of experiments ? Then ?

5.3. The effects of 3 factors on 3 physical properties of a polymer solution.
In the previous example, there is just one response.
There are 3 responses in the current experiment
3 responses: Is the polymer solution

milky ? (y1),
viscous ? (y2),
yellow color ? (y3).

3 factors each with two levels in the formulation of the solution:
amount of a reactive monomer (10,30)% or (−,+),
the type of chain length regulator (A,B) or (−,+),
amount of chain length regulator (1,3)% or (−,+).

run# 1 2 3 milky? viscous? yellow?
1 − − − Y − Y − N −
2 + − − N + Y − N −
3 − + − Y − Y − N −
4 + + − N + Y − Slightly ++
5 − − + Y − N + N −
6 + − + N + N + N −
7 − + + Y − N + N −
8 + + + N + N + Slightly ++

compare to columns 1 3 Y if 1&2 both ++
ow N

See Figures 5.2 and 5.3 for visual display of the results.
Pay attention to the row of “compare columns” to the figures.

Notice that the response is qualitative in the previous two examples.
The factorial design can tell which factor do what to which response.
5.4. A pilot investigation.
1 response: yields of the experiment (numerical).
3 factors: temperature T (160, 180) or (−,+),

concentration C (20,40) or (−,+),
type of catalyst K (A,B) or (−,+).

There are duplicate runs (8+8=16).

run# T C K average yields of 2 runs y
(order)
i1 y

(order)
i2

1 − − − 60 59(6) 61(13)

2 + − − 72 74(2) 70(4)

3 − + − 54 50(1) 58(16)

4 + + − 68 69(5) 67(10)

5 − − + 52 50(8) 54(12)

6 + − + 83 81(9) 85(14)

7 − + + 45 46(3) 44(11)

8 + + + 80 79(7) 81(15)

Table 5.3

Remark. Using average is only for the convenience of computing the main effects,
not for anova.
5.5. Calculation of main effect.
Definition: Main effect of each factor = y+ − y− (see the next tables).
Interpretation: the average difference between level 2 (+) of a factor and level 1 (-)
(same as control.treatment)
Main effect of T: Main effect of C:
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run# T C K y+ y− yields
1 − − − 60
2 + − − 72
3 − + − 54
4 + + − 68
5 − − + 52
6 + − + 83
7 − + + 45
8 + + + 80

y+ − y− = 23

run# T C K y+ y− yields
1 − − 60
2 − − 72
3 + − 54
4 + − 68
5 − + 52
6 − + 83
7 + + 45
8 + + 80

y+ − y− = −5

Main effect of K:

run# T C K y+ y− yields
1 − 60
2 − 72
3 − 54
4 − 68
5 + 52
6 + 83
7 + 45
8 + 80

y+ − y− = 1.5
Four ways to compute with R-code:

> y=c(60,72,54,68,52,83,45,80)
> (a=rep(c(-1,1),4))

[1] -1 1 -1 1 -1 1 -1 1
> (b=rep(c(-1,-1,1,1),2))

[1] -1 -1 1 1 -1 -1 1 1
> c=rep(-1,4)
> (c=c(c,-c))

[1] -1 -1 -1 -1 1 1 1 1
# First way to compute effects
> (v=c(y% *% a/4, y% *% b/4, y% *% c/4))

[1] 23.0 −5.0 1.5 # main effects
# 2nd way to compute effects
> W=lm(y∼a+b+c)
> W$coef[1:4]

(Intercept) a b c
64.25 11.50 −2.50 0.75

# model 1: y = µ+ β1a+ β2b+ β3c+ ǫ.

> c( 2*W$coef[2:4])
a b c

23.00 −5.00 1.50
# main effects

# 3rd way and the prefer way
> lm(y∼factor(a)+factor(b)+factor(c) )$coef[1:4]
(Intercept) factor(a)1 factor(b)1 factor(c)1

54.5 23.0 −5.0 1.5
# main effects

# factor(a)1 refers to 1(a=1)
#model 2: y = µ+ β11(T = +) + β21(C = +) + β31(K = +) + ǫ.
> mean(y)

[1] 64.25
The fourth way:
> options(contrasts =c(”contr.sum”, ”contr.poly”))
>U= lm(y∼factor(a)+factor(b)+factor(c))$coef[1:4]
(Intercept) factor(a)1 factor(b)1 factor(c)1

64.25 −11.50 2.50 −0.75
factor(a)1 refers to 1(a=-1)

#model 3: y = µ+ β1(1(T = −)− 1(T = +)) + β2(1(C = −)− 1(C = +))
+ β3(1(K = −)− 1(K = +)) + ǫ. (somewhat opposite to model 1).

> −2*U[2:4] # main effects
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Remark. Ŷ remains unchanged in the last three ways.
Homework problem 5.5: Given the LSE by the fourth way, how to get the LSE
under model 2 (the 3rd way) ?
5.6. Interaction.
Two-factor interaction for TC, Two-factor interaction for TK,
run# T C K y+ y− yields
1 − − 60
2 + − 72
3 − + 54
4 + + 68
5 − − 52
6 + − 83
7 − + 45
8 + + 80

y+ − y− = 1.5

run# T C K y+ y− yields
1 − − 60
2 + − 72
3 − − 54
4 + − 68
5 − + 52
6 + + 83
7 − + 45
8 + + 80

y+ − y− = 10

Two-factor interaction for CK, Three-factor interaction
run# T C K y+ y− yields
1 − − 60
2 − − 72
3 + − 54
4 + − 68
5 − + 52
6 − + 83
7 + + 45
8 + + 80

y+ − y− = 1.5

run# T C K y+ y− yields
1 − − − 60
2 + − − 72
3 − + − 54
4 + + − 68
5 − − + 52
6 + − + 83
7 − + + 45
8 + + + 80

y+ − y− = 0

R commands:

ab=a*b
ac=a*c

bc=b*c
abc=ab*c

a=factor(a)
b=factor(b)

c=factor(c)

ab=factor(ab) # why not ab=a*b ?
ac=factor(ac)

bc=factor(bc)
abc=factor(abc)

lm(y∼a+b+c+ab+ac+bc+abc)
5.7. Estimation of variance of replicate runs.
(1) Under the i.i.d. N(µ, σ2) assumption,

σ̂2 = 1
df

∑n
i=1(Yi − β̂Xi)

2 if df> 0, where βX
def
= β′X.

σ̂2 is the unbiased estimator using mean squared residuals, under the null hypothesis
Ho: E(Y |X) = βX.
If there is no replicate runs (r = 1 under the full model), then

∑n
i=1(Yi − β̂Xi)

2 = 0, as there are 8 parameters and 8 observations yij ’s.
Thus it is not a proper estimator in such case.
(2) If there are r replicate runs in a 23 factorial design, with responses

yij , i = 1, ..., 8 and j = 1, ..., r, let
s2i = 1

r−1

∑r
j=1(yij − yi·)

2, i = 1, ..., 8.
If r = 2,

s2i = (yi1−yi·)
2+(yi2−yi·)

2

2−1 = (yi1−yi2)
2

2 , i = 1, ..., 8,

where yi· =
yi1+yi2

2 .

s2 =
∑8

i=1 s
2
i /8 is an (unbiased) estimator of σ2.
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s2 = σ̂2?

Yes, if under the full model y ∼ a+ b+ c+ ab+ bc+ ac+ abc. (p = 8)
No, if under the submodel, e.g. y ∼ I(a ∗ b ∗ c) (p = 2).
(3) Is the Mean Sq in each row of anova(), unbiased estimator of σ2 ?

How about (Residual standard error)2 in summary(lm()) ?
How about Residual Mean Sq in anova() ?

Simulation example 5.7.1
> a=rep(c(-1,1),4)
> b=rep(c(-1,-1,1,1),2)
> c=rep(-1,4)
> c=c(c,-c)
> a=c(a,a)
> b=c(b,b)
> c=c(c,c)
> ab=a*b
> ac=a*c
> bc=b*c
> e=rnorm(16)
> y=a+2*b−3*c+16*ab+bc+e

> (z=lm(y∼a+b+c+ab+bc))

(
(Intercept) a b c ab bc

−0.12 0.98 2.34 −3.36 15.89 0.97

)

Let Y = β′X+ ǫ, where β ∈ Rp. p = ? β = ? β̂ = ?

> anova(z)












Df Sum Sq Mean Sq F value Pr(> F )
a 1 14.7 14.7 15.914 0.002562 ∗∗
b 1 47.1 47.1 51.107 3.109e− 05 ∗ ∗ ∗
c 1 159.6 159.6 173.258 1.219e− 07 ∗ ∗ ∗
ab 1 3994.3 3994.3 4335.153 1.590e− 14 ∗ ∗ ∗
bc 1 39.7 39.7 43.034 6.391e− 05 ∗ ∗ ∗

Residuals 10 9.2 0.92












5 possible null hypotheses:
Hi

o: βi = 0 for an i ∈ {1, ..., 5}.
Is Hi

o true ?
Is the model true (under the NID) ?
What can be said about the Mean Sq in anova table ??
Do they look like σ2 = 1 ?
> z=lm(y∼a+b+c)

> anova(z)








Df Sum Sq Mean Sq F value Pr(> F )
a 1 14.7 14.66 0.0435 0.8383
b 1 47.1 47.09 0.1398 0.7150
c 1 159.6 159.63 0.4738 0.5043

Residuals 12 4043.2 336.93








Three possible null hypotheses:
H1

o : β1 = 0.
H2

o : β2 = 0.
H3

o : β3 = 0.
Is Hi

o true ?
Is the model true (under the NID) ?
What can be said about the Mean Sq in anova table ??
Do they look like σ2 = 1 ?
> mean((y[1:8]-y[9:16])**2/2)

[1] 1.130107 # (= s2 ≈ σ2 ??)
Remark. If the model is wrong, s2 is an unbiased estimators of σ2,

but not σ̂2 and other mean squares in anova.
If the model is correct, both σ̂2 and s2 are unbiased.
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Simulation example 5.7.2
> y=rnorm(16)
> z=lm(y∼a+b+c)

> anova(z)








Df Sum Sq Mean Sq F value Pr(> F )
a 1 0.0212 0.02121 0.0282 0.869
b 1 0.8812 0.88119 1.1730 0.300
c 1 0.1444 0.14441 0.1922 0.668

Residuals 12 9.0148 0.75123








3 possible null hypotheses:
Hi

o: βi = 0 for an i ∈ {1, ..., 3}.
Is Hi

o true ?
Is the model true (under the NID) ?
What can be said about the mean squares in anova table ??
Do they look like σ2 = 1 ?

> z=lm(y∼a+b+c+ab+bc)
> anova(z)












Df Sum Sq Mean Sq F value Pr(> F )
a 1 0.0212 0.02121 0.0254 0.8765
b 1 0.8812 0.88119 1.0563 0.3283
c 1 0.1444 0.14441 0.1731 0.6861
ab 1 0.0176 0.01762 0.0211 0.8873
bc 1 0.6553 0.65531 0.7856 0.3963

Residuals 10 8.3419 0.83419












> mean((y[1:8]-y[9:16])**2/2)

[1] 0.986949

5 possible null hypotheses:
Hi

o: βi = 0 for an i ∈ {1, ..., 5}.
Is Hi

o true ?
Is the model true (under the NID) ?
What can be said about the mean squares in anova table ??
Do they look like σ2 = 1 ?
Remark. If the model is correct and Ho is correct, all mean squares are unbiased
estimators of σ2. But σ̂2 has smaller variance than the other Mean Sq., as its degree
of freedom (Df) is larger. νσ̂2/σ2 ∼ χ2(ν) (with mean = ν

2 · 2 (= αβ), variance
= αβ2 = ? Thus E(σ̂2) = σ2 and V (σ̂2) = 2σ4/ν.

Simulation example 5.7.3
> n=100
> a=rexp(n)
> b=rbinom(n,5,0.5)
> a=c(a,a)
> b=c(b,b)
> e=rnorm(2*n)
> y=2+a+b+e
> z=lm(y∼a)
> anova(z)






Df Sum Sq Mean Sq F value Pr(> F )
a 1 215.36 215.365 111.09 < 2.2e− 16 ∗ ∗∗

Residuals 198 383.86 1.939
σ2= 1± ??






Note: SS/σ2 ∼ χ2(Df) with Var 2 ∗Df . Thus 1± 2
√

2/Df ≈ 1± 0.2

> w=lm(y∼a+b)
> anova(w)
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






Df Sum Sq Mean Sq F value Pr(> F )
a 1 215.37 215.365 210.83 < 2.2e− 16 ∗ ∗∗
b 1 182.62 182.621 178.77 < 2.2e− 16 ∗ ∗∗

Residuals 197 201.24 1.022
σ2= 1??








> mean((y[1:n]-y[(n+1):(2 ∗ n)]) ∗ ∗2/2)
[1] 0.9183548 # (= s2)

σ2 = 1?

Conclusion:
1. If the model is correct, 1

n−p

∑

i(Yi − Ŷi)
2 is an unbiased estimator of σ2.

2. If the model is correct, βi = 0, the corresponding Mean Sq is unbiased.
3. If there are replications, s2 is unbiased.

If the model is incorrect, 1
n−p

∑

i(Yi − Ŷi)
2 is not an unbiased estimator of σ2.

This can be proved by a counterexample as follows.

Counterexample : Let
Yij = β1Xi + β2Zi + ǫij , j = 1, 2, and i = 1, ..., m,

where Xi, Zi and ǫij are independent ∼ N(0, σ2).

s2 = 1
m

∑m
i=1

(Yi1−Yi2)
2

2

= 1
m

∑m
i=1

(ǫi1−ǫi2)
2

2
= 1

m

∑m
i=1 (

ǫi1−ǫi2√
2σ

)2σ2.
∑m

i=1(
ǫi1−ǫi2√

2σ
)2 ∼ χ2(m).

=> E(s2) = σ2. (Abusing notation, treating s2 as a r.v.).
Now if the model is chosen incorrectly, say, consider model,

Yij = β1Xi +Wij , where Wij = β2Zi + ǫij ∼ N(0, (β2
2 + 1)σ2),

σ̃2 = 1
n−p

∑m
i=1

∑2
j=1(Yij − Ŷij)

2 is an unbiased estimator of (β2
2 + 1)σ2 6= σ2.

n = ? p = ?
Wi1 ⊥ Wi2 ???

E(W11W12) = E(β2
2Z

2
1 + β2Z1(ǫ11 + ǫ12) + ǫ11ǫ12) = E(β2

2Z
2
1 ) = β2

2E(Z2
1 )

E(W11)E(W12) = β2
2(E(Z1))

2. ...
Simulation example 5.7.4.
> a=rep(c(-1,1),4)
> b=rep(c(-1,-1,1,1),2)
> c=rep(-1,4)
> c=c(c,-c)
> n=80
> e=rnorm(n)
> a=rep(a,10)
> b=rep(b,10)
> c=rep(c,10)
> y=2*a−5*b+e
> a=factor(a)
> b=factor(b)
> c=factor(c)
> z=lm(y∼a+b+c)
> summary(z)

# Note that a, b and c are all factors.

Using Model: Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ ǫi
and under control treatment, Xi1= ?
What is β0 ?
What is β1 ?
Where to find β̂j’s ?
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Estimate Std. Error t value Pr(> |t|)
(Intercept) 3.2353?? 0.2014 16.064 < 2e− 16 ∗ ∗ ∗

a1 3.8619 0.2014 19.176 < 2e− 16 ∗ ∗ ∗
b1 −10.1350 0.2014 −50.323 < 2e− 16 ∗ ∗ ∗
c1 −0.2773 0.2014 −1.377 0.173

Residual standard error: 0.9007 on 76 degrees of freedom
Ŷ ≈ β0 = −2 + 5 = 3 if a = −1 = b = c under control.treat.
Ŷ ≈ β0 + β1 + β2 + β3 = 3+ 4− 10 + 0 = −3 if a = 1 = b = c under control.treat.

β0 ≈ 0 ≈ Y under control.sum.
> anova(z)

Df Sum Sq Mean Sq F value Pr(> F )
a 1 298.29 298.29 367.7073 < 2e− 16 ∗ ∗ ∗
b 1 2054.37 2054.37 2532.4402 < 2e− 16 ∗ ∗ ∗
c 1 1.54 1.54 1.8952 0.1727

Residuals 76 61.65 0.81

5.7.5. Homework. Carry out the simulations in §5.7 yourself with different pa-
rameters and rnorm(n, 1, 2), then summarize the results and address the questions.
5.8. Interpretation of results.
Under NID assumption and 23 factorial designs,

To = Y−β0√
s2/n

∼ tdf , (= N(0, 1)/
√

χ2(df)/df)

T =
β̂j−βj√

s2( 1
4r

+ 1
4r

)
∼ tdf , where

df = 2k(r − 1) for s2 in 2k factorial design with r replicates and under the full

model. β̂j refers to one of the 7 effects.
Remark. In the linear regression, if the model is correct, then we have

T =
β̂j−βj

σ̂j
∼ tn−p, where

σ̂2
j is the j−th diagonal element of σ̂2(X′X)−1, and

σ̂2 = 1
n−p

∑n
j=1(Yj − Ŷj)

2.

Notice n = 2kr and p = 2k in the previous case.
Example of pilot study in §5.4.
The data presented in §5.4 are the 8 averages of 2 replications in a 23 factorial
design. The 16 data rather than the averages are as follows.
> y=c(59,74,50,69,50,81,46,79, 61,70,58,67,54,85,44,81) # yield of experiments in
Table 5.3
> mean((y[1:8]-y[9:16])**2/2)

[1] 8 = s2

V (effect) = V (y+ − y−) = σ2( 1
4r + 1

4r )

SE =
√

8
4r + 8

4r ≈ 1.4.

For the data in Table 5.3, df=8, t8,0.025 ≈ 2.3, so a 95% confidence interval (CI) is

β̂j ± 2.3× 1.4 (or β̂j ± 3.2).

In practice, people prefer β̂j ± SE, i.e.,

β̂j ± 1.4, as it is more conservative (not relying on NID).

effects 70%CI
T 23.0± 1.4 temperature (160, 180)
C −5.0± 1.4 concentration (20, 40)
K 1.5± 1.4 catalyst (A,B)
TC 1.5± 1.4
TK 10.0± 1.4
CK 0.0± 1.4
TCK 0.5± 1.4

important ignorable if |effect| ≤ s nearly or too small
> z=lm(y∼a+b+c+ab+bc+ac+abc) #(a,b,c)=(T,C,K) (are factors)
> anova(z)
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Df Sum Sq Mean Sq F value Pr(> F )
a 1 2116 2116 264.500 2.055e− 07 ∗ ∗ ∗
b 1 100 100 12.500 0.007670 ∗∗
c 1 9 9 1.125 0.319813
ab 1 9 9 1.125 0.319813
bc 1 0 0 0.000 1.000000
ac 1 400 400 50.000 0.000105 ∗ ∗ ∗
abc 1 1 1 0.125 0.732810

Residuals 8 64 8 (= σ̂2 = s2)
Implication:
> w=lm(y∼a+b+ac)
> anova(w,z)

Model 1: y ∼ a + b + ac
Model 2: y ∼ a + b + c + ab + bc + ac + abc

Res.Df RSS Df Sum of Sq F Pr(> F )
1 12 83
2 8 64 419 0.5938 0.6772

> anova(w)
Df Sum Sq Mean Sq F value Pr(> F )

a 1 2116 2116.00 305.928 6.631e− 10 ∗ ∗ ∗
b 1 100 100.00 14.458 0.002519 ∗∗
ac 1 400 400.00 57.831 6.292e− 06 ∗ ∗ ∗

Residuals 12 83 6.92
Estimator of σ2 can be 6.92 rather than 8.
Summary. Recall that a, b, ..., abc are factors defined in §5.6.

What does the main effect mean ?
lm(y∼a+b+c+bc) <=>

E(Y |X) = β0 + β11(a = 1) + β21(b = 1) + β31(c = 1) + β41(bc = 1),
where X′ = (1,1(a = 1),1(b = 1),1(c = 1),1(b = c ∈ {−1, 1})) or
E(Y |X) = β0 + β−11(a = −1) + β11(a = 1) + β−21(b = −1) + β21(b = 1) + · · ·
X′ = (1,1(a = −1),1(a = 1),1(b = −1),1(b = 1), ...) with β−1 = 0 = β−2 = ...)
lm(y∼a+b*c) <=>

E(Y |X) = β0 + β11(a = 1) + β21(b = 1) + β31(c = 1) + β41(b ∗ c = 1),
where X′ = (1,1(a = 1),1(b = 1),1(c = 1),1(b = c = 1)). (Compare to bc).
> lm(y∼a+b*c)

(Intercept) a1 b1 c1 b1 : c1
5.450e+ 01 2.300e+ 01 −5.000e+ 00 1.500e+ 00 3.553e− 15

> lm(y∼a+b+c+bc)
(Intercept) a1 b1 c1 bc
5.450e+ 01 2.300e+ 01 −5.000e+ 00 1.500e+ 00 4.441e− 16

Remark. It is easier to see the difference through the next model.
> lm(y∼a+c+ac)

(Intercept) a1 c1 ac1
47.0 23.0 1.5 10.0

# 1(ac = 1) = 1(a = c ∈ {−1, 1})
> (z=lm(y∼a*c))

(Intercept) a1 c1 a1 : c1
57.0 13.0 −8.5 20.0

# 1(a : c = 1) = 1(a = c = 1)

> predict(z,newdata=data.frame(a=”-1”,c=”-1”))
57 # = 57 + 0 + 0 + 0

︸ ︷︷ ︸

y∼a∗c

= 47 + 0 + 0 + 10
︸ ︷︷ ︸

y∼a+c+ac

> predict(z,newdata=data.frame(a=”1”,c=”-1”))
70 # = 57 + 13 + 0 + 0 = 47 + 23 + 0 + 0

> predict(z,newdata=data.frame(a=”-1”,c=”1”))
48.5 # = 57 + 0− 8.5 + 0 = 47 + 0 + 1.5 + 0

> predict(z,newdata=data.frame(a=”1”,c=”1”))
81.5 # = 57 + 13− 8.5 + 20 = 47 + 23 + 1.5 + 10
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Observations:
(1) If one changes the model from y ∼ a+b+c+ab+ac+bc+abc) to y ∼ a+c+ac,

the LSE of (βa, βc), remains the same,
due to the vectors in the table of contrast are orthogonal.

(2) If one changes the model from y ∼ a+b+c+ab+ac+bc+abc) to y ∼ a+c+a : c),
the LSE of (βa, βc) may not be the same,
as (−1, 1,−1, 1,−1, 1,−1, 1)(−1,−1,−1,−1,−1, 1,−1, 1)′ 6= 0 (X ′

aXa:c 6= 0)






a = ( −1, 1, −1, 1, −1, 1, −1, 1)′

c = ( −1, −1, −1, −1, 1, 1, 1, 1)′ a′c = 0
a : c = ( −1, −1, −1, −1, −1, 1, −1, 1)′

a ∗ (a : c) = 1 −1 1 −1 1 1 1 1 = 4






(3) However, the prediction of Y remains the same.
Under control.treatment,
the intercept is the estimate of the mean response of Y at the low levels of factors.
The main effect is the est. of the change due to the factor changing from - to +.

The conclusion of the experiment: Y ≈ 47 + 23T − 8.5K + 20TK.
To get high yields of the product, set

1. the temperature T = 180 (high);
2. the concentration at C=20 (low);
3. It was thought that the suppliers of catalyst K do not matter and they were

supposed to produce the same type of catalyst. In fact c (or K) is not significant.
However, they now notice that TK is significant. Further study of the data yields

run# T C K outputs :
1 − − 60
2 + − 72
3 − − 54
4 + − 68
5 − + 52
6 + + 83
7 − + 45
8 + + 80

mean 48.5 57 70 81.5

They should select the better supplier (who supplies catalyst B (K+)).

Remark. A 22 factorial design

− − y1
− + y2
+ − y3
+ + y4

can be viewed as an additive model for

one-way ANOVA or two-way ANOVA.

For one-way anova: Yij = η + τi + ǫij , i, j ∈ {1, 2}, where (Y11, Y12, Y21, Y22) =
(y1, y2, y3, y4).

For two-way anova: Yij = η + τi + θj + ǫij , i, j ∈ {1, 2}.
In particular, under two-way anova, one can write

Yij = η + τi + θj + ǫij , i, j ∈ {0, 1}.

Yij = η + τ01(i = 0) + τ11(i = 1) + θ01(j = 0) + θ11(j = 1) + ǫij , i, j ∈ {0, 1}.

Yij = η + τ11(i = 1) + θ11(j = 1) + ǫij , i, j ∈ {0, 1}, under control.treatment.
Q: τ1 =? if (1) under default; (2) under control.sum with H0: τ0 = τ1.

47



5.9. Table of contrast.

Y ates number mean a b c ab ac bc abc
1 1 −1 −1 −1 1 1 1 −1
2 1 1 −1 −1 −1 −1 1 1
3 1 −1 1 −1 −1 1 −1 1
4 1 1 1 −1 1 −1 −1 −1
5 1 −1 −1 1 1 −1 −1 1
6 1 1 −1 1 −1 1 −1 −1
7 1 −1 1 1 −1 −1 1 −1
8 1 1 1 1 1 1 1 1
df 8 4 4 4 4 4 4 4

Notice that Y ′(a, b, c, ab, ac, bc, abc)/4 =(7 effects), where Y ′ = (y1, ..., y8)

5.10. Misuse of the ANOVA for 2k factorial experiments.
If there is no replicate runs (r = 1), then ANOVA may not be very helpful (see
explanation before Simulation example 5.7.1).
Skip the rest of the section.

5.11. Eyeing the data. In some special case, the interactions are negligible.
Then the main factors are orthogonal, and one can do contour eyeballing.

Example of Testing worsted yarn. (jing fang mao xian) Table 5.6 shows part of
the data from an investigation on the strength of the particular type of yarn under
cycles of repeated loading. This is a 23 factorial design with 3 factors:

Length of specimen (A) ((250,350) mm),
amplitude of load cycle (B) ((8,10) mm),
load (C) ((40,50) g).

Y ates # A B C durance y
1 28
2 36
3 22
4 31
5 25
6 33
7 19
8 26

Table 5.6

The effects are
mean A B C AB AC BC ABC
27.5 8 −6 −3.5 0 −0.5 −0.5 −0.5

Notice the interaction effects are all negligible (| − 0.5| ≤ |main effect|/7).
~A, ~B and ~C are essentially orthogonal.
The direction of steepest ascent is then (8,−6,−3.5).

The contour plane of a durance 25 is a hyperplane 25 = (8,−6,−3.5)





Ao

Bo

Co





where Ao = (x1−250)/(350−250), Bo = (x2−8)/(10−8), Co = (x3−40)/(50−40),
(see Figure 5.6). Where are (250,350) come from ?

The contour plane of a durance y is a hyperplane y = (8,−6,−3.5)





Ao

Bo

Co



 = f(~x)

5.12. Dealing with more than one response: A pet food experiment.
The manufacturer of pet food had received complaints that packages of food pellets
received by the customers contained an unsatisfactorily large amount of powder.
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The factory did a 23 factorial design to investigate it. All in two levels.
A. Conditioning Temperature: 80% at max, or max
B: Flow: 80% at max, or max
C: Compression zone: 2, or 2.5

Responses:
Y1 – powder in product;
Y2 – powder in plant;
Y3 – a measure of yield;
Y4 – energy consumed.

Y1 was obtained after the same process as if a customer would eventually get it.
They tried to find out

the relation between Y1 and Y2, as well as
how to control the response Y2 by adjusting the factors,
without losing too much in yield Y3 and energy Y4.

Responses in standard (Yates) order:
y1=c(132,107,117,122,102,92,107,104)
y2=c(166,162,193,185,173,192,196,164)
y3=c(83, 85, 99, 102, 59, 75, 80,73)
y4=c(235,224,255,250,233,223,250,249)

Rough estimates of errors are obtained through previous duplicated runs:
σ̂1 = 5.6 (for Y1),

σ̂effect1 = σ̂1

√
1
4 + 1

4 = σ̂1/
√
2 = 5.6/

√
2 = 4.0,

σ̂2 = ... σ̂3 = ... σ̂4 = ...

σ̂effecti =







4.0 if i = 1 (for Y1)
7.4 if i = 2 (for Y2)
4.9 if i = 3 (for Y3)
1.1 if i = 4 (for Y4)

Finding:
There is no serious correlation between Y1 and Y2 by plotting (Y1, Y2) and

> cor(y1,y2)
[1] -0.1686297

> summary(lm(y2∼y1))
Estimate Std.Error tvalue Pr(> |t|)

(Intercept) 199.7701 50.1472 3.984 0.00725
y1 −0.1893 0.4518 −0.419 0.68976

=> ŷ2 = 200+0× y1

powder in product powder in plant yield energy
Y1 Y2 Y3 Y4

σ̂i 4 7.4 4.9 1.1
temp,A −8.2 −6.3 3.5 −6.8∗
flow,B 4.3 11.3 13∗ 22.3∗

relate to zone, C −18.2∗ 4.8 −20.5∗ −2.3
powder AB 9.3∗ −13.7 −5.5 3.8∗
inert AC 1.7 −0.3 1 1.3
inert BC 4.3 −13.7 −3.5 −0.8
inert ABC −5.7 −11.7 −6 0.8

=> adjustment should set

{
zone at + or 2.5, from row C,
temp*flow at −, from row AB.

How to choose the levels from A and B ?

(AB)− energy(Ŷ4) Ŷ1 yield(Ŷ3)
(A+, B−) −6.8− 22.3 −8.2− 4.3
(A−, B+) 8.2 + 4.3 −3.5 + 13

If energy saving is more important: (A+, B−), which also decreases Y1,
otherwise (A−, B+) (Ŷ3, Ŷ1) = (−3.5 + 13, 8.2 + 4.3).
5.13. A 24 factorial design: Process development study
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Often there are more factors to be investigated than can conventionally be
accommodated within the time and budget available, but you will find that usually
you can separate genuine effects from noise without replication. In a pilot study,
if one plans 16 runs for a replicated 23 factorial design with 3 factors, it can be
replaced by a 24 factorial design with 4 factors.
A process development study.
Factors:

1. (a). Catalyst charge (lb) (10,15) or (−,+), (yongliang)

2. (b). Temperature (oC) (220,240) or (−,+),

3. (c). Pressure (psi) (50,80) or (−,+),

4. (d). Concentration (%) (10,12) or (−,+),
Table 5.10a. Data

Y ates run # 1 2 3 4 conversion(%) random order
1 − − − − 70 8
2 + − − − 60 2
3 − + − − 89 10
4 + + − − 81 4
5 − − + − 69 15
6 + − + − 62 9
7 − + + − 88 1
8 + + + − 81 13
9 − − − + 60 16
10 + − − + 49 5
11 − + − + 88 11
12 + + − + 82 14
13 − − + + 60 3
14 + − + + 52 12
15 − + + + 86 6
16 + + + + 79 7

x=c(70,60,89,81,69,62,88,81,60,
49,88,82,60,52,86,79)

a=rep(c(-1,1),8)
b=rep(c(-1,-1,1,1),4)
c=rep(-1,4)
c=c(c,-c,c,-c)
d=c(rep(-1,8),rep(1,8))
ab=a*b
ac=a*c
ad=a*d
bc=b*c
bd=b*d
cd=c*d
abc=ab*c
abd=ab*d
acd=ac*d
bcd=bc*d
abcd=ab*cd
mean(x)
lm(x∼factor(a))$coef[2] # = ?
sum(x*a)/8 # = ?
x%*%a/8 # = ?
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Figure 5.10
round(lm(x∼a*b*c*d)$coef[2:16],2)*2

The average is 72.25.
The effects are
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a b c d ab ac ad bc bd cd
−8.00 24.00 −0.25 −5.50 1.00 0.75 0.00 −1.25 4.50 −0.25

abc abd acd bcd abcd
−0.75 0.50 −0.25 −0.75 −0.25

In a 23 factorial design with r replicates,
σ2 is estimated by

σ̃2 = 1
23

∑23

i=1 s
2
i , where

s2i = 1
r−1

∑r
h=1(Yih − Y i·)2,

df of σ̃2 is 23(r − 1).
V (effect) = σ̃2( 1

4r + 1
4r ), as effect = y+ − y−.

A CI for effect is

effect ±tdf,0.025

√

σ̃2( 1
4r + 1

4r ).

In this example, there is no replication (16 runs with 16 parameters).
The 5 3-factor and 4-factor interaction effects can be viewed as errors.
A conservative estimate of the SE of effect (

√

V (effect) is
√

∑
15

i=11
effect2

i

5 ≈ 0.55 (treating each of the 5 effecti’s as a variation of the effect).

The CI of effect is then
effect ±t5,0.0250.55 (= 2.57 ∗ 0.55).

It can be justified by qq-plot.
The significant effects can be found out:

a b c d ab ac ad bc bd cd
−0.25 1.00 0.75 0.00 −1.25 −0.25

−8.00 24.00 −5.50 4.50 ∗∗
abc abd acd bcd abcd

−0.75 0.50 −0.25 −0.75 −0.25

Remark. Factor c and the interactions related to c are inert. It becomes a 23

factorial design, with replication c = 2. Thus we can use s2 to estimate σ2.

It is interesting to see from Figure 5.10 (see last page) that the significant
effects can be detected by the qq-plot against normal distribution.

It is also interesting to see from the following stem-and-leaf plot that all but
the 4 significant effects appear normal distribution.

Thus one may use all but 4 effects to estimate V(effect)
u=c(-8.00,24.00,-0.25,-5.50 ,1.00 ,0.75, 0.00, -1.25, 4.50,-0.25,-0.75, 0.50,-0.25,-0.75,-
0.25)
u=u[abs(u)<2] what is it ?
sort(u)

[1] -1.25 -0.75 -0.75 -0.25 -0.25 -0.25 -0.25 0.00 0.50 0.75 1.00
stem(u)

The decimal point is at the |
-1 | 3
-0 | 88
-0 | 3333
0 | 0
0 | 58
1 | 0

sqrt(mean(u*u))

[1] 0.6571287 what is it ?
> summary(lm(x∼a*b*d))
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Estimate Std. Error t value Pr(> |t|)
(Intercept) 7.225e+ 01 3.307e− 01 218.463 < 2e− 16 ∗ ∗ ∗

a −4.000e+ 00 3.307e− 01 −12.095 2.02e− 06 ∗ ∗ ∗
b 1.200e+ 01 3.307e− 01 36.285 3.65e− 10 ∗ ∗ ∗
d −2.750e+ 00 3.307e− 01 −8.315 3.30e− 05 ∗ ∗ ∗

a : b 5.000e− 01 3.307e− 01 1.512 0.169020
a : d −3.955e− 16 3.307e− 01 0.000 1.000000
b : d 2.250e+ 00 3.307e− 01 6.803 0.000137 ∗ ∗ ∗

a : b : d 2.500e− 01 3.307e− 01 0.756 0.471362

Residual standard error: 1.323 on 8 degrees of freedom.

Remark. s2 = 1.3232 = σ̂2. The 3rd σ̂effect = 1.332
√

1
4r + 1

4r What are the

first two ?
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How to explain ties ?

Interpretation of the data.

1. Conversion changes -8% if catalyst charge switches from 10 to 15.

2. Pressure is inert.

3. To increase conversion set catalyst charge at 10 lb, temperature at 240oC ,
concentration at 10%. It causes 33% increase.

4. Interaction between temperature and concentration can be seen from Figure
5.11 in the textbook.

5. It reduces to a duplicated 23 FD.

6. x = 72− 4a+12b− 2.75d+2.25bd. Do we need to run lm() again for the
LSE ?

(a). Catalyst charge (lb) (10,15) or (−,+), (yongliang)

(b). Temperature (oC) (220,240) or (−,+),

(d). Concentration (%) (10,12) or (−,+),

5.14. A first look at sequential assembly. The process of investigation includes
interactive deduction and induction. Running an experiment can gain improvement
on the production, but also indicates the possibility of even further advance and
shows where additional runs needed to be made. It is called sequential assem-
bly.
Experiment by Hill and Wiles (1975).
The object: to increase the disappointingly low yields of a chemical product.
3 factorial designs were run in sequence but only the first will be described here.
In phase I, a 23 factorial design was run.
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3 factors:
concentration C,
rate of reaction R,
temperature T.

run# C R T yi (yields)
phase I

1 − − −
2 + − −
3 − + −
4 + + −
5 − − +
6 + − +
7 − + +
8 + + +

> y=c(75.4,73.9,76.8,72.8,75.3,71.4,76.5,72.3)

 

 

75.4 73.9

76.8
72.8

75.3 71.4

76.5 72.3

Visual Display suggests that C is significant

> C=rep(c(-1,1),4), R=rep(c(-1,-1,1,1),2), c=rep(-1,4), T=c(c,-c)
> z=lm(y∼ C*R*T)$coef
> c(z[1],2*z[2:8]) # (no need to define factors) The effects are

y C R T CR CT RT CRT
74.3 −3.4 0.6 −0.85 −0.7 −0.65 0.45 0.55

intercept factors
76.3 ??

significant
Why ?

> H=lm(y∼ factor(C)) Do we need to update the estimates ?
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y

Fig. 1 QQplot Fig. 2 (plot(a,y))
> qqnorm(z[2:8])
> qqline(z[2:8])
> sqrt(mean((2*z[3:8])**2)) [1] 0.6454972 # σ̂ = 0.65 or σ̂effect = 0.65 ?
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> summary(H)$coef[2,2] [1] 0.6454972

> sqrt(anova(H)[2,3]/2) #
√

σ2( 14 + 1
4 ) [1] 0.6454972

Thus the model becomes Y = α+ β1(C = 1) + ǫ or Ŷ = 76.3− 3.41(C = 1).
In phase II since C is significant, 3 runs were further made.
Purpose: To check whether the next new model is appropriate:

lm(y∼ C) # ŷ = 74.3− 1.7C
Moreover, whether further improvement can be made.

run# C R T phase II
9 −2 0 0
10 0 0 0
11 2 0 0

> y=c(y,79,74,69)
> a=c(C,-2,0,2)
> plot(a,y) # See above Fig. 2. What does it suggest ?
> (u=lm(y∼a))

(Intercept) a

74.22 -2.10
fitted equation: Ŷu = 74.22− 2.1a.
Compare to the original simplified fitted equation:

Ŷ = 76.0− 3.41(C = 1) or Ŷ = 74.3− 1.7C.

Can we further improve the yield by reducing the concentration C ?
Possible further experiment design ?

Remark. The difference between

lm(y ∼ a+ b) and lm(y ∼ factor(a) + b), and 2k factorial designs.

> n=20
> a=rbinom(n,3,0.5)
> b=rbinom(n,3,0.5)
> y=74−2*a+rnorm(n,0,2)
> x=factor(a)
> lm(y∼a) # True model: E(Y |X) = (β0, β1)(1, a)

t = 74− 2a

(Intercept) a
74.011 −1.943

> lm(y∼x) # True model: E(Y |X) = (β1, ..., β4)X

= 74− 21(a = 1)− 41(a = 2)− 61(a = 3)

(Intercept) x1 x2 x3
73.764 −1.580 −3.824 −5.494

> lm(y∼x+b) # True model: Y = (β1, ..., β5)(1,1(a = 1),1(a = 2),1(a = 3), b)t+ǫ

= 74− 21(a = 1)− 41(a = 2)− 61(a = 3) + 0 · b+ ǫ

(Intercept) x1 x2 x3 b
73.5866 −1.6907 −3.9429 −5.4584 0.1777

The LSE and prediction are all different now.

5.16. Blocking the 2k factorial designs.

In a trial to be conducted using a 2k factorial design, one either use 2k different
batches of raw materials or one batch of the same material. Otherwise, one may
need blocking idea. Block sizes can be 2, 22, ..., 2k−1. e.g., for 23 FD, the block
sizes are 2 and 4.

Block of size 4 for 23 FD. If one batch of raw material is only enough for 4
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experiment, then partition according to 123 (or abc) = ±1.

mean a b c ab ac bc abc
1 1 −1 −1 −1 1 1 1 −1
2 1 1 −1 −1 −1 −1 1 1
3 1 −1 1 −1 −1 1 −1 1
4 1 1 1 −1 1 −1 −1 −1
5 1 −1 −1 1 1 −1 −1 1
6 1 1 −1 1 −1 1 −1 −1
7 1 −1 1 1 −1 −1 1 −1
8 1 1 1 1 1 1 1 1
df 8 4 4 4 4 4 4 4

1 1 −1 −1 −1 1 1 1 −1
4 1 1 1 −1 1 −1 −1 −1
6 1 1 −1 1 −1 1 −1 −1
7 1 −1 1 1 −1 −1 1 −1 block 1
2 1 1 −1 −1 −1 −1 1 1 block 2
3 1 −1 1 −1 −1 1 −1 1
5 1 −1 −1 1 1 −1 −1 1
8 1 1 1 1 1 1 1 1

It leads to two sets of the run #:
{1, 4, 6, 7} and {2, 3, 5, 8}

Drawback: It cannot estimate 3-factor interaction.
abc = block variable.

Advantage: See Figure 5.16
the batch I (1,4,6,7) and the batch II (2,3,5,8) are in 4 opposite vertices.

A

CB

1

4

7

6

3

2

5

8

A

CB

−−

−−

−−

−−

+

+

+

+

Remark. If we ignore the confounding effect, then what happans ? For example,
in the previous case, suppose Y = β11(a = 1) + β21(abc = 1) + ǫ, where β2 is the
confounding effect of different batch of raw materials and interaction abc. If we
ignore confounding effects, and set Y = β11(a = 1) + ǫm, then

σ2
ǫm = V ar(β21(abc = 1) + ǫ) = β2

2pq + σ2 Why ??

Hence NID fails. If β2
2 + σ2 > 2β1, then β1 is likely to become insignificant.
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Can we use ab, or ac, or bc ?

Yes, but it is often that abc is inert. Moreover, it is not like abc which form 2
pair of opposite vertices. e.g. bc leads to (1,2,7,8), v.s. (3,4,5,6).

Can we use a or b or c as a partition factor ?

No, we need to estimate the main effect, which is often more important than
other effects, do not let it be confounded with the block factor.

Block of size 2 for 23 FD. If a batch of raw material can only be used in two
experiments, partition according to (12,13) (or (ab,ac)).
It leads to 4 sets of the run due to −−, −+, +−, ++:
run # 1 2 3 4 = 12 5 = 13 block#

1 − − − + + IV
2 + − − − − I
3 − + − − + II
4 + + − + − III
5 − − + + − III Table 1
6 + − + − + II
7 − + + − − I
8 + + + + + IV

2 + − − − − I
7 − + + − − I
3 − + − − + II
6 + − + − + II
4 + + − + − III Table 2
5 − − + + − III
1 − − − + + IV
8 + + + + + IV

The two block positions can be viewed as factors 4 and 5, together with the original
3 factors 1, 2, and 3 (or a, b, c). Each pair is on the opposite vertex of the cube.
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CB

1

4

7

6

3

2

5

8

A

BC

4

2

1

3

3

1

2

4

Thus there is no confounding (main) effects.

runs
variable 5 + (3, 6) (1, 8)

− (2, 7) (4, 5)
− +

variable 4
The advantage of this approach is that the 3 factors a, b, c are all in different values
(see Table 2).
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How about let (4,5) = (12,23) ? or (13,23) ?

Patterns not to partition. (4,5)= (123,23) (or (abc,bc)), due to−−,+−,−+,++.

It leads to 4 sets of the run #:

run # 1 2 3 4 = 123 5 = 23 block#
1 − − − − + III
2 + − − + + IV
3 − + − + − II
4 + + − − − I
5 − − + + − II
6 + − + − − I
7 − + + − + III
8 + + + + + IV

∗ ∗
4 + + − − − I
6 + − + − − I
3 − + − + − II
5 − − + + − II
1 − − − − + III
7 − + + − + III
2 + − − + + IV
8 + + + + + IV

The drawback of this approach is that factor a is the same in each block.
Not to partition according to (1,123) (or (a,abc), due to −−,+−,−+,++.

It leads to 4 sets of the run #:

run # 1 2 3 4 = 123 block#
1 − − − − I
2 + − − + IV
3 − + − + III
4 + + − − II
5 − − + + III
6 + − + − II
7 − + + − I
8 + + + + IV

∗ ∗
1 − − − − I
7 − + + − I
4 + + − − II
6 + − + − II
3 − + − + III
5 − − + + III
2 + − − + IV
8 + + + + IV

The drawback of this approach is that factor a is the same in each block.

In the above two cases, the block factors confounded with a.

Generators and defining relations.

Recall the table of contrast:















I a b c ab ac bc abc

1 −1 −1 −1 1 1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 −1 1 −1 1
1 1 1 −1 1 −1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 −1 1 −1 1 −1 −1
1 −1 1 1 −1 −1 1 −1
1 1 1 1 1 1 1 1















.

It can be viewed as a 8× 8 matrix, with each column being an 8× 1 vector, say
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( I 1 2 3 12 13 23 123 ) or
(

I ~a ~b ~c ~ab ~ac ~bc ~abc
)
.

Then I=11=22=33=44=55,
1I = 1 = I1,
2I=2=I2, ...... , as how we get ab, ac, ...

Recall in R, a*a=(1, ..., 1)′ and a% ∗%a = ?

The defining relations 4=12 and 5=13 for two new factors in the previous cases
are also called generators.

Then I=2345 as 2345= 231213=I (=124135) and I=124=135
Namely, 45=23, or 4 and 5 are confounded with 23, 12, 13, 125, 134 (none is a
main effect), in the sense that each element in {4,5,45,23,12,13,125,134} is either
4 or 5 or 45.

On the other hand, if we let 4=123 and 5=23, and form 4 blocks (out of 8 runs)
by (4,5), then I=451 as I=1234235=451. Also I=1234=235.
That is, 45=1, or 4 and 5 are confounded with 123, 23, 1, 234, etc. (with one
main effect).

What happens to (4,5)=(12,23) or (13,23) ?

Finally, if we let 4=123 and form 4 blocks by (1,4),
Then 1 and 4 are clearly confounded with the block factor 1 (as well as, 4, 123,
23, 14 ). How about 4=13 and form 4 blocks by (1,4) ?

5.16.2. Homework. Answer the previous two question marks.
Connection between defining relations and blocking:

1. Use higher order interaction if possible.
2. The new defining factors have interaction of higher order.
For more details, see Table 5A.1 as follow.

Table 5A.1. Blocking Arrangements for 2k FD.
k block size block generator
3 4 123 how about

2 12, 13 21, 23?
4 8 1234

4 124, 134
2 12, 23, 34

5 16 12345
8 123, 345
4 125, 235, 345
2 12, 13, 34, 45

6 32 123456
16 1236, 3456
8 135, 1256, 1234
4 126, 136, 346, 456
2 12, 23, 34, 45, 56

Examples of 26 FD, with block size 8.
The first example (which is in the table).
Define B1 = 135, B2=1256 and B3=1234. Then

B1B2=1351256=236,
B1B3=1351234=245,
B3B2=12341256=3456,
B1B2B3=13512561234=146 (no replication of numbers).

Thus B1, B2 and B3 are confounded with 135, 1256, 1234, 236, 245, 3456, 146.
Interpretation:
These effects 135, 1256, 1234, 236, 245, 3456, 146 cannot be estimated.
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Their order (of interaction): 3+.
Another example (not in the table).
Define A1=12456, B2=1256 and B3=1234. Then

A1B2=4,

A1B3=356,

B3B2=3456,

A1B2B3=123.

Interpretation:
These effects 12456, 1256, 1234, 4, 356, 3456, 123 cannot be estimated.

Their order: 1+

Is it appropriate ?
How about (246, 1236, 2345) ?
The third example. Define A2=1245, B2=1256 and B3=1234. Then

A2B2=46,

A2B3=35,

B3B2=3456,

A2B2B3=1236.
Interpretation:
These effects 1245, 1256 1234, 46, 35, 3456, 1236 cannot be estimated.

Their order: 2+.
Is it appropriate ?
Which is the best among these three ?

Capter 6 Fractional Factorial Designs

We shall introduce the concept through examples.
6.1. Experiment on effects of 5 factors on six properties of films in 8
runs.

Factors : − +
A : catalyst(%) 1 1.5
B : additive(%) 0.25 0.5
C : emulsifier P (%) 2 3 ruhuaji
D : emulsifier Q (%) 1 2
E : emulsifier R (%) 1 2

Response : (qualitative)
y1 : hazy?
y2 : adhere?
y3 : grease on top of film ?
y4 : grease under film ?
y5 : dull, adjusted pH
y6 : dull, original pH

A standard FD in such a case is 25 design with n ≥ 32 experiments.
But it is done by a fractional factorial design in n=8 runs. The data are as follows.
run # 1 2 3 4 = 123 5 = 23 y1 y2 y3 y4 y5 y6

A B C E D
1 − − − − + no no yes no slightly yes
2 + − − + + no yes yes yes s yes
3 − + − + − no no no yes no no
4 + + − − − no yes no no no no
5 − − + + − yes no no yes no s-no
6 + − + − − yes yes no no no no
7 − + + − + yes no yes no s yes
8 + + + + + yes yes yes yes s yes
res y2 ↑ y1 ↑ y4 ↑ y3, y5, y6 ↑ C A D E D D

It is called a 25−2 design, or a quarter fraction of the full 25 design.
The results in the last row in the table are the purpose of the experiment:

which level yields the desired result.
The set-ups of the two quantitative levels are based on the experience of engineers.
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The values of the variables are not uniquely determined, at least in this experiment.
Notice: This is different from blocking, where (12,13) is used.
Justification: (High order) interactions are often negligible.
Can we choose 4=123 and 5=12 ?

Main difference between blocking factor and fractional FD:
The former tries to avoid confounding blocks with other effects.
The latter focuses on main effects assuming higher order interaction is insignificant.

Why FD and FFD ? There are two types of covariates: categorical and numerical.

Categorical variables are naturally factorial.

Numerical variable can also be specified as factor variables as in §6.1.
The purpose in FD is to find the tendency for desired results, not necessarily to find
the linear relation. The FFD is try to use less experiments to find the tendency of
more factors.
6.1.2. Homework. 1. Discuss a statistician what are the possible randomization
steps for the experiment in §6.1 using the fractional FD. Notice that the raw mate-
rials include films, catalysts, additives, emulsifiers, among others.
6.2. Stability of new product, 4 factors in 8 runs (a half fractional FD).
A chemist in a lab was trying to formulate a household liquid product using a new
process. The product had some nice properties but he had not found the value of
factors to achieve the desired value y of stability at 25 or above.
So he carried out another experiment as follows.

Factors : − +
A : acid concentration 20% 30%
B : catalyst concentration 1% 2%
C : temperature 100 150
D : monomer concentration : 25% 50%

Let D = 4 = 123. The data according to Yates order are

y=c(20,14,17,10,19,13,14,10).
It was disappointed that the value y ≥ 25 is not achieved in any of the cases.
However, the experiment provided a trend for it.

The main effects:
intercept A B C D
19.25 −5.75 −3.75 −1.25 0.75 0.25 0.75 −0.25
β̂0 β̂A β̂B β̂C β̂D

It occurs that the effect of D (or maybe C) is negligible,
> x=c(0.75,0.25,0.75,-0.25) (from the effects)
> round(2.33*sqrt(mean(x*x)),2) normal scores: 1.64 1.96 2.33 2.58

[1] 1.30
or as displayed in the qqnorm() of the 7 effects.

It is simplified to Ŷi = β̂o − 5.751(factor(Ai) = 1) − 3.751(factor(Bi) = 1) if
Ai ∈ {20, 30} & Bi ∈ {1, 2}.
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run # 1 2 3 4 = 123 y or R
A B C D

5 − − + + 19
1 − − − − 20
6 + − + − 13
2 + − − + 14
7 − + + − 14
3 − + − + 17
4 + + − − 10
8 + + + + 10
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Ignoring columns C and D, the first two columns become a replicate 22 factorial
design, as in Figure 6.1 (see Textbook p.238).
It seems from Figure 6.1 that one may simplify the relation as

y ≈ 20 + 19

2
︸ ︷︷ ︸

how?

−5.75
︸ ︷︷ ︸

where?

A− 20

10
︸ ︷︷ ︸

how?

−3.75(B − 1) (in the unit of %) (1)

y ≈y − 5.75

2

A− 25

5
− 3.75

2

B − 1.5

0.5
in control.sum with y = 14.625 (2)

Factors : − +
A : acid concentration 20 30
B : catalyst concentration 1 2

Eq. (1) is a guess, not from the LSE.
Roughly speaking, from Fig. 6.1,

if A=15 (%) and B = 0.5 (%), then Eq. (1) yields
y = 20+19

2 − (5.75 + 3.75)(−0.5) = 24.25.
Thus the stability value y = 25 can be reached if

acid concentration is set less than 15% and
catalyst concentration is set less than 0.5%.

The LSE:
> u=lm(y∼ a+b)$coef

(Intercept) a1 b1
19.37 −5.75 −3.75
6= 19.5 (see Eq.(1)

> v=c(1, 0,−0.5,−0.6,−0.7)
> u[1]+v*(u[2]+u[3]) 19.37− 5.75A−20

10 − 3.75(B − 1) ≥ 25?

[1] 9.875 19.375 24.125 25.075 26.025
A−20
10 = −0.6 => A=14

B − 1 = −0.6 => B = 0.4
The example illustrates:
1. How a fractional design was used for screening purposes to isolate 2 factors out
of 4.
2. How a desirable direction in which to carry out further experiment was found.
6.2.2. Homework. What is the set up for the further experiment to serve the
chemist’s original plan ? How many experiments would you suggest ? Why ?
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Factors : − +
A : acid concentration 20% 30%
B : catalyst concentration 1% 2%
C : temperature 100 150
D : monomer concentration : 25% 50%

6.3. Another Half-fraction FD example. The modification of a bearing.
A manufacturer of bearing tries to improve their product of bearing.
A project team conjectured that they might need to modify
4 factors:
A: a particular characteristic of the manufacturing process for balls in the bearing,
B: the cage design,
C: the type of grease,
D: the amount of grease.
A 24−1 half fractional FD was carried out with D corresponding to abc.

The results are
Y ates run # 1 2 3 4 5 6 7 8
failure rate y 16 7 14 5 11 7 13 4 %

R yields effects:
abc

A B C D ab ac bc
−7.7 −1.2 −1.7 −1.2 −1.3 1.2 0.7

The cube plots is
16 7

14
5

11 7

13 4

By experience, they suspected that interactions are inert (has little effect),
then it reduces to a 23 or duplicated 22 design (see Figure 6.2).
From this half fraction FD design experiment,

they found the major factors A and C to improve their bearing.

y = 14.37− 7.75factor(a)− 1.75factor(c)
Both should be set at the “+” level (why ?)

6.4. The anatomy of the half fraction.
A complete 24 factorial design can estimate 16 independent quantities:

average, 4 main effects: A, B, C, D, and the interaction effects: AB, ..., ABCD.
A half fraction design using ABC to accommodate factor D.
Thus the main effect of D cannot distinguished from ABC interaction.
The main effect D is really

lD = 1
4 (−1, 1, 1,−1, 1,−1,−1, 1) · (y1, ..., y8) (abc%*%y/4).

Thus lD is really estimate the sum of the effects D and ABC, denoted by
lD → D +ABC.

The reason we said lD is the main effect of D is that the 3-factor interactions are
often negligible. For instance, in the example of §6.3, knowing ABC is inert by
experience,
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effects estimates effects assuming 3-factor interactions are inert
A −7.7 A
B −1.2 B
C −1.7 C
D −1.2 D(&noise) (as ABCD=ABC(ABC)=I).

AB + CD −1.3 AB
AC +BD 1.2 AC
AD +BC 0.7 BC

The effects D and ABC are said to be confounded.
ABC is called an alias of D.
Under this design we also have

lA → A+BCD, lAB → AB + CD
lB → B +ACD, lAC → AC +BD
lC → C +ABD, lBC → BC +AD.

Table 1
Why ?
Recall AB represents interaction of A and B,

corresponding to their coordinates multiplying separately.
The AA corresponds to a vector with coordinates being all +1,
denoted by

I=AA=BB=CC=DD
Notice under the fractional factorial design

D=ABC (called the generating relation).

I=DD=ABCD,

combinations of ABCD in 2 groups
︷ ︸︸ ︷

A=BCD, B=ACD, C=ABD, AB=CD, AC=BD, AD=BC.

I=ABCD is also called the generating relation of the fractional FD.

The 24−1 fractional factorial design used here is said to be of resolution 4, as
the generating relation is

I=ABCD with 4 letters,
and no other products of less than 4 distinct letters lead to I.
It is also denoted by 24−1

IV or “2 to the four minus 1, resolution four”.
Remark. 2k−1 FFD may not be resolution k.
For instance, if the generating relation is

D=AB, (24−1)
then

I=ABD.
Also A=BD, B=AD, AC=BCD, BC=ACD, CD=ABC, I=ABD

︸ ︷︷ ︸

3 letters on the right

, C=ABCD
︸ ︷︷ ︸

4 letters

.

No other products of less than 3 distinct letters lead to I.
The half fraction FD has a resolution 3, and is a 24−1

III (not 24−1
IV ).

Thus 3-factor interaction may be confounded with 2-factor interaction. (AC=BCD)
If D=ABC, then 2-factor interaction is confounded with a 2-factor interaction (see
Table 1 ↑).
Projectivity. Look at the next example of 4-run design in factors A, B, C:

a b ab
run # A B C

1 − − +
2 + − −
3 − + −
4 + + +

a ab
A run # C
− 3 −
+ 2 −
− 1 +
+ 4 +
1 2

ab b
C run # B
− 2 −
+ 1 −
− 3 +
+ 4 +
1 2

or (C,B) as (1,2).

The design is a 23−1
III , as ABC=I.

If you drop one of the factor, you obtain a 22 FD in the remaining 2 factors.
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It is said of projectivity P=2. The 22 FD in the next table can be viewed as 23−1
III :

Y ates run # A B C
1 − − −
4 + + −
6 + − +
7 − + +

(as AB = −C, see also Fig. 6.3 (p.244))

In general,
P=resolution of the design−1.

Denoted by
P=R−1.

Remark 6.3. See the previous example of 24−1
IV in Figure 6.2 with generating

relation D=ABC. Then P=4− 1=3. The geometric interpretation is clear from the
figure, as well as the next table:

run # 1 2 3 4 = 123 y or R
A B C D
a b c

1 − − − − 20
2 + − − + 14
3 − + − + 17
4 + + − − 10
5 − − + + 19
6 + − + − 13
7 − + + − 14
8 + + + + 10

run # 1 2 3 4 = 123 y or R
A B C D
a b c

1 − − − − 20 front
6 + − + − 13
7 − + + − 14
4 + + − − 10
5 − − + + 19 back
2 + − − + 14
3 − + − + 17
8 + + + + 10

run # 1 2 3 4 = 123 y or R
A B C D
a b c

1 − − − − 20 bottom
4 + + − − 10
7 − + + − 14
6 + − + − 13
3 − + − + 17 top
2 + − − + 14
5 − − + + 19
8 + + + + 10

run # 1 2 3 4 = 123 y or R
A B C D

a b c
1 − − − − 20 L
4 + + − − 10
6 + − + − 13
7 − + + − 14
2 + − − + 14 R
3 − + − + 17
5 − − + + 19
8 + + + + 10

How to understand Figure 6.2 ? (see explanation figure on blackboard as well).

On the other hand, if the generating relation is D=AB, then P=3−1=2.
Dropping one variable does not always reduce to a 23 FD (see Table 3 below).

run # a b c ab
A B C D
1 2 3

1 − − − +
2 + − − −
3 − + − −
4 + + − +
5 − − + +
6 + − + −
7 − + + −
8 + + + +

run # a b c ab
A B C D

1 2 3
2 + − − −
3 − + − −
6 + − + −
7 − + + −
1 − − − +
4 + + − +
5 − − + +
8 + + + +

Yes

run # a b ab
A B D

1 − − +
2 + − −
3 − + −
4 + + +
5 − − +
6 + − −
7 − + −
8 + + +

? − − −

??

Dropping two variables does reduce to a (replicated) 22 FD (just need to con-
sider 2 cases: (1) keep D, (2) otherwise.
(1) Keep D:
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run # a b c ab
A B C D
1 2

3 − + − −
2 + − − −
1 − − − +
4 + + − +
7 − + + −
6 + − + −
5 − − + +
8 + + + +

run # a b c ab
A B C D

1 2
2 + − − −
3 − + − −
1 − − − +
4 + + − +
6 + − + −
7 − + + −
5 − − + +
8 + + + +

run # a b c ab
A B C D

1 2
2 + − − −
6 + − + −
1 − − − +
5 − − + +
3 − + − −
7 − + + −
4 + + − +
8 + + + +

(2) Otherwise ?
6.5. The 27−4

III design: a bicycle example.
7 Factors:

A: seat (up,down),
B: dynamo (generator) (off, on),
C: handlebars (up, down),
D: gear (low, median),
E: raincoat (on, off),
F: breakfast (yes, no),
G: tires (hard, soft),

Response: y, climb hill in seconds.

run # a b c ab ac bc abc y
A B C D E F G

1 − − − + + + − 69
2 + − − − − + + 52
3 − + − − + − + 60
4 + + − + − − − 83
5 − − + + − − + 71
6 + − + − + − − 50
7 − + + − − + − 59
8 + + + + + + + 88

Table 6.4

Estimates of effects:
lA = 3.5 seat (up,down),
lB = 12 dynamo (generator) (off, on),
lC = 2.5 handlebars (up, down), typo in the textbook
lD = 22.5 gear (low, median),
lE = 1 raincoat (on, off),
lF = 0.5 breakfast (yes, no),
lG = 1.0 tires (hard, soft),
Average=66.5

From previous experiments on the bicycle example, an estimate of the SD of re-
peated runs is 3. So the SE of the estimated effects is

√
32

4 + 32

4 = 2.1.

Thus there are only two factors which are distinguishable from noise. They are
dynamo B and gear D. Or roughly, one can determine by
> z=c( 3.5, 12.0, 2.5, 22.5, 1.0, 0.5, 1.0)
> qqnorm(z)
> qqline(z)

Or
> stem(z)
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The decimal point is 1 digit(s) to the right of the |
0 | 11134 [0,5)
0 | [5,10)
1 | 2 [10,15)
1 | [15,20)
2 | 2 [20,25)

This fractional design can reduce the number of runs and present a replicated
22 FD for factors B and D, which is not very clear before the experiment.

Notice that (ignoring interactions of order 3+)

lI → average.

lA → A+BD + CE + FG

lB → B +AD + CF + EG,

lC → C +AE +BF +DG,

lD → D +AB + EF + CG,

lE → E +AC +DF +BG,

lF → F +BC +DE +AG,

lG → G+ CD +BE +AF ,
How are they obtained ?
The Defining Relations. The 4 generators

D=AB, E=AC, F=BC, G=ABC
yield 4 defining relations:
(1)

(
4
1

)
= 4 I=ABD=ACE=BCF=ABCG.

which lead to A=BD=CE=ABCF=BCG (not lA).
To find all defining relations and to find all aliases, we need to add all words. There
are

∑4
i=1

(
4
i

)
= 15 defining relations: (from ABD=ACE=BCF=ABCG (=I)).

(1)
(
4
1

)
= 4: .....

(2)
(
4
2

)
= 6: (from ABD=ACE=BCF=ABCG (=I)),

I=(ABD)(ACE)=BCDE

I=(ABD)(BCF)=ACDF

I=(ABD)(ABCG)=CDG

I=(ACE)(BCF)=ABEF

I=(ACE)(ABCG)=BEG

I=(BCF)(ABCG)=AFG
(3)

(
4
3

)
= 4 from ABD=ACE=BCF=ABCG(=I),

I=DEF (=(ABD)(ACE)(BCF))

I=ADEG (=(ABD)(ACE)(ABCG))

I=BDFG (=(ABD)(BCF)(ABCG))

I=CEFG (=(ACE)(BCF)(ABCG))
(4)

(
4
4

)
= 1 from ABD = ACE = BCF = ABCG

︸ ︷︷ ︸

I=ABCDEFG

(=I)

I=ABCDEFG
Remark. (1) In each of the 15 words, the letters are all distinct.

(2) Now it is clear why

lA → A+BD + CE + FG
due to I=ABD=ACE =AFG =ABCG=ACDF=ABEF =ADEG=ABCEDFG

The shortest “word” in the 15 defining relations among (1) – (4) is 3.
It is called a 27−4

III FD.
Remark. This is different from the definition of resolution in half FD. But latter
can be rephraced as this new one.
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The 27−4
III can be viewed as a replicate 22 FD.

a b c ab ac bc abc y
new run # in (D,B)

2 − − − + + + − 69
1 + − − − − + + 52
3 − + − − + − + 60
4 + + − + − − − 83
6 − − + + − − + 71
5 + − + − + − − 50
7 − + + − − + − 59
8 + + + + + + + 88

Median 69 71 − − − − − − 83 88
| |
| |
| |

Gear,D | |
| |
| |
| |
| |

low 52 50 − − − − − − 60 59
off generator , B on

6.6. Eight-run designs Table 6.4 ignoring the response y can be used to produce
the 23, the 24−1

IV , or the 27−4
III designs.

The latter two (not the first one) are called nodal designs, in the sense that
for a given number of runs, the nodal design includes the largest number of

factors at a given resolution.
The resolution R = the smallest # of distinct letters in the product.
There are

7 factors in 27−4
III design (where R=3).

4 factors in 24−1
IV design (where R=4).

There are 3 24−1
III :

a b c ab ac bc abc
A B C D
A B C E
A B C F

Remark. It won’t matter whether one calls the factors A, B, C, D, or A, B, C, E.
These 3 24−1

III generating relations are I=ABD, I=ACE and I=BCF, respectively.

R=3 Why ?

24−1
IV

a b c ab ac bc abc
A B C G

The generating relation I=ABCG. R=4 Why ?
Between 27−4

III and 24−1
IV , we have 8-run 25−2

III and 26−3
III designs, but they are not

nodal designs.

For example, if one considers a 5-factor design 25−2, there are 6 of them:

67



run # a b c ab ac bc abc
A B C D E
A B C D F
A B C E F
A B C D G
A B C E G
A B C F G

1 − − − + + + −
2 + − − − − + +
3 − + − − + − +
4 + + − + − − −
5 − − + + − − +
6 + − + − + − −
7 − + + − − + −
8 + + + + + + +

Table 6.6.

Note that I=ABCG=BCF in the last row of Table 6.6.
R=4 or R=3 in Table 6.6 ?

In Table 6.6, each of the 6 FD has either ABD=I, or I=ACE, or I=BCF and no
product of two distinct letters = I, thus its resolution R=3.
Do we have 28−5

II design ?
run # a b c ab ac bc abc

A B C D E F G
H

Then resolution = 3 or 2 ?

Comments:
The fractional FG is used to screen out significant factors from a larger group

of factors.
It is hopeful to reduce to 2 factors by 27−4

III

It is hopeful to reduce to 3 factors by 24−1
IV

28−5
II can not even reduce to 1 factor, as G and H cannot be distinguished.

6.7. Using Table 6.6. An illustration.






a b c ab ac bc abc Projectivity P
23 A B C

24−1
IV A B C G 3
27−4
III A B C D E F G 2






For 24−1
IV design, ignoring 3-factor interaction,
lA → A,
lB → B,
lC → C,
lD → AB + CG, (due to ABCG=I)
lE → AC +BG,
lF → BC +AG,
lG → G.

For 27−4
III design, ignoring 3-factor interaction,
lA → A+BD + CE + FG,
lB → B +AD + CF + EG,
lC → C +AE +BF +DG,
lD → D +AB + EF + CG, (as discussed in §6.5)
lE → E +AC +DF +BG,
lF → F +BC +DE +AG,
lG → G+ CD +BE +AF .

An Experiment. In the early stages of a lab experiment, 5 factors are given as
follows.
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factors −1 +1
1 : concentration of γ 94 96%
2 : proportion of γ to α 3.85 4.15 mol/mol
3 : amount of solvent 280 310 cm3

4 : proportion of β to α 3.5 5.5 mol/mol
5 : reaction time 2 4 hr

The best conditions known at that time were thought to be far from optimal
and the main effects were believed to be dominant,
but the interaction AC were thought to be active and needs to be avoid.

So the column corresponds to AC needs to be dropped in section column from Table
6.6.

One way is to select columns A, B, C, D, G: G should be selected as abc is of
higher order of interaction. That is, the 5th factor is not denoted by E, but by G.

run # a b c ab ac bc abc
A B C D G y

1 − − − + + + − 77.1
2 + − − − − + + 68.9
3 − + − − + − + 75.5
4 + + − + − − − 72.5
5 − − + + − − + 67.9
6 + − + − + − − 68.5
7 − + + − − + − 71.5
8 + + + + + + + 63.7

The estimates are

lA lB lC lD lE lF lG
−4.5 0.2 −5.6 −0.8 1.0 −0.8 −3.4
s s s why?

Do we have factors E and F ?

lF can be viewed as a noise, then so does lE in view of lF .
The optimal yields might be obtained by moving in a direction such that the con-
centration of γ (A), the amount of solvent (C) and the reaction time (G) were all
reduced. A serious of further experiments lead to a yield of 84% (v.s. 77.1%) for
the chemical manufacturing process. What experiments to be considered ?

6.8. Sign switching, foldover and sequential assembly. Further runs may
needed when fractional designs yield ambiguity, i.e., confounding effects.

A strategy is Foldover:
A single column foldover:

multiply one selected column by −1, or switching sign of the column.
An example of Bicycle experiment, where B and D are significant effects.
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run # a b c ab ac bc abc y
A B C D E F G

1 − − − + + + − 69
2 + − − − − + + 52
3 − + − − + − + 60
4 + + − + − − − 83
5 − − + + − − + 71
6 + − + − + − − 50
7 − + + − − + − 59
8 + + + + + + + 88

switch ×(−1)
9 − − − − + + − 47
10 + − − + − + + 74
11 − + − + + − + 84
12 + + − − − − − 62
13 − − + − − − + 53
14 + − + + + − − 78
15 − + + + − + − 87
16 + + + − + + + 60

Effect: These 16 runs provide unaliased estimates of the main effect D and
all two-factor interactions involving D.

Reason:

1st 23 : lA lB lC lD lE lF lG lI
3.5 12 1 22.5 0.5 1.0 2.5 66.5

2nd 23 : l′A l′B l′C l′D l′E l′F l′G l′I
0.7 10.2 2.7 25.2 1.7 2.2 −0.7 68.125

The first 8 runs yield (ignoring higher order interactions):
lA → A+BD + CE + FG,
lB → B +AD + CF + EG,
lC → C +AE +BF +DG,
lD → D +AB + EF + CG,
lE → E +AC +DF +BG,
lF → F +BC +DE +AG,
lG → G+ CD +BE +AF ,

The second 8 runs yield (ignoring higher order interactions):
l′A → A−BD + CE + FG,
l′B → B −AD + CF + EG,
l′C → C +AE +BF −DG,
l′D → D −AB − EF − CG,
l′E → E +AC −DF +BG,
l′F → F +BC −DE +AG,
l′G → G− CD +BE +AF ,

Then ignoring three or high order interactions,
0.5(lA + l′A) = 2.1 → A+ CE + FG,
0.5(lB + l′B) = 11.1 → B + CF + EG,
0.5(lC + l′C) = 1.9 → C +AE +BF ,
0.5(lD + l′D) = 23.9 → D,
0.5(lE + l′E) = −0.6 → E +AC +BG,
0.5(lF + l′F ) = 1.6 → F +BC +AG,
0.5(lG + l′G) = 0.9 → G+BE +AF ,

In fact, 0.5(lA + l′A) = 2.1 → A+ CE + FG+BCG+BEF , as

0.5(lA + l′A) →[A+BD + CE + FG+BCG+BEF + CDF +DEG+BCDEFG

+(A−BD + CE + FG+BCG+BEF − CDF −DEG−BCDEFG)]/2

=A+ CE + FG+BCG+BEF

Recall for 27−4
III design, the 15 (=

∑4
i=1

(
4
i

)
) defining relations are

I=ABD =CDG =DEF =ACE=BCF =BEG=AFG
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=BCDE =ACDF =ADEG =BDFG =ABCG =ABEF =CEFG
=ABCDEFG

Foldover yields
I=−ABD =−CDG =−DEF =ACE=BCF =BEG=AFG

=−BCDE =−ACDF =−ADEG =−BDFG =ABCG =ABEF =CEFG
=−ABCDEFG

Average them yields
I=ACE=BCF =BEG =AFG =ABCG =ABEF =CEFG No D !

Moreover,
0.5(lA − l′A) = 1.4 → BD,
0.5(lB − l′B) = 0.9 → AD,
0.5(lC − l′C) = −0.9 → DG,
0.5(lD − l′D) = −1.4 → AB + EF + CG,
0.5(lE − l′E) = 1.1 → DF ,
0.5(lF − l′F ) = −0.6 → DE,
0.5(lG − l′G) = 1.6 → CD, why ???

0.5(lA − l′A) →[A+BD + CE + FG+BCG+BEF + CDF +DEG+BCDEFG

−(A−BD + CE + FG+BCG+BEF − CDF −DEG−BCDEFG)]/2

=BD + CDF +DEG+BCDEFG

(lD − l′D)/2 →[D +AB + EF + CG+BCE +ACF +AEG+BFG+ABCEFG

+(−D +AB + EF + CG+BCE +ACF +AEG+BFG+ABCEFG)]/2

=[AB + EF + CG+BCE +ACF +AEG+BFG+ABCEFG

(lD + l′D)/2 →[D +AB + EF + CG+BCE +ACF +AEG+BFG+ABCEFG

−(−D +AB + EF + CG+BCE +ACF +AEG+BFG+ABCEFG)]/2

=D

Notice that now D is not aliased with any 2 or 3-factor interaction ...
The column D foldover “de-alias” the main effect D and all its interaction with
other effects.
So, 0.5(lI + l′I) = 67.3 → average,

0.5(lI − l′I) = −1.6 → block effect (which blocks ?)
How to implement in R ?
> y=c(69, 52, 60, 83, 71, 50, 59, 88, 47, 74, 84, 62, 53, 78, 87, 60)
> a=rep(c(-1,1),4)
> b=rep(c(-1,-1,1,1),2)
> c=rep(-1,4)
> c=c(c,-c)
>z=lm(y[1:8]∼a*b*c)$coef
>(z=c(z[1],z[2:8]*2))

66.5 3.5 12.0 1.0 22.5 0.5 1.0 2.5
> D=−a*b
> E=a*c
> F=b*c
> G=a*F
>x=lm(y[9:16]∼a+b+c+D+E+F+G)$coef
>(x=c(x[1],x[2:8]*2))

68.125 0.750 10.250 2.750 25.250 −1.750 −2.250 −0.750
> (z+x)/2

67.3125 2.1250 11.1250 1.8750 23.8750−0.6250−0.6250 0.8750 (1)

> (z−x)/2
1.375 0.875−0.875−1.375 1.125 1.625 1.625−0.8125 1.375 0.875−0.875−1.375
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1.125 1.625 1.625
> a=c(a,a)
> b=c(b,b)
> c=c(c,c)
> D=c(−D,D) why not C(D,−D) ? (see D=−a*b)
> E=c(E,E)
> F=c(F,F)
> G=c(G,G)
> lm(y∼a+b+c+D+E+F+G)$coef[2:8]*2

2.125 11.125 1.875 23.875 −0.625 −0.625 0.875
lm(y∼factor(a)+factor(b)+factor(c)+factor(D)+factor(E)+factor(F)+factor(G))$coef[2:8]

2.125 11.125 1.875 23.875 −0.625 −0.625 0.875
Can we apply it to other column ?
The foldover is part of sequential process of scientific learning,

in contrast to the “one-shot” experiment we have learned so far.
In the previous example, the first 8 run is the first shot.
If we stop, then it is a one-shot experiment.
In experimental design, we have initial informed guesses:

what factors to include ?
what response to measure ?
where to locate the experimental region ?
by how much to vary the factors ?
after the data are available, how to proceed ?

We do not expect to find answers to all the question in one-shot.
We can try smaller experiment to reduce the unknown possibilities gradually by
making second guesses. Foldover is one of such strategy.

27−4 FD → 16-run design.
Does the total of the 16 runs consist of a 27−3 FD ? Where to find D ?
run # a b c ab ac bc abc y

A B C D E F G
1 − − − + + + − 69
2 + − − − − + + 52
3 − + − − + − + 60
4 + + − + − − − 83
5 − − + + − − + 71
6 + − + − + − − 50
7 − + + − − + − 59
8 + + + + + + + 88

switch ×(−1)
9 − − − − + + − 47
10 + − − + − + + 74
11 − + − + + − + 84
12 + + − − − − − 62
13 − − + − − − + 53
14 + − + + + − − 78
15 − + + + − + − 87
16 + + + − + + + 60

run # a b c ? ac bc abc y
A B C D E F G

9 − − − − + + − 47
2 + − − − − + + 52
3 − + − − + − + 60
12 + + − − − − − 62
13 − − + − − − + 53
6 + − + − + − − 50
7 − + + − − + − 59
16 + + + − + + + 60
1 − − − + + + − 69
10 + − − + − + + 74
11 − + − + + − + 84
4 + + − + − − − 83
5 − − + + − − + 71
14 + − + + + − − 78
15 − + + + − + − 87
8 + + + + + + + 88

16 runs FFD 27−3 FFD

6.9. Multiple-column foldover. Its effect is that all main effects can be unaliased
with two-factor interactions. (A single column (say D) foldover unaliases D with all
interactions).
Chemical plants experiment. A number of similar chemical plants in different
locations had been operated successfully for years. In a newly constructed plant
certain filtration cycle took twice as long as the other plants. In order to find the
reason, 7 factors are identified and a 27−4

III fractional design was carried out.
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Factors − +
A : water supply town reservoir well
B : raw material on site other
C : temperature low high
D : recycle yes no
E : caustic soda fast slow (kexingna)
F : filter cloth new old
G : holdup time low high

a b c ab ac bc abc y
run # A B C D E F G

1 − − − + + + − 68.4
2 + − − − − + + 77.7
3 − + − − + − + 66.4
4 + + − + − − − 81.0
5 − − + + − − + 78.6
6 + − + − + − − 41.2
7 − + + − − + − 68.7
8 + + + + + + + 38.7

foldover −a −b −c −ab −ac −bc −abc y
run # A B C D E F G

9 + + + − − − + 66.7
10 − + + + + − − 65.0
11 + − + + − + − 86.4
12 − − + − + + + 61.9
13 + + − − + + − 47.8
14 − + − + − + + 59.0
15 + − − + + − + 42.6
16 − − − − − − − 67.6

For the 27−4
III design, the defining relations:

I= ABD=ACE=BCF =CDG =BEG=AFG =DEF
=ABEF =ABCG=BCDE=ACDF =ADEG=BDFG=CEFG= ABCDEFG.

Estimates:
lA = −10.9 → A+BD + CE + FG,

due to I=ABD=ACE =AFG,
and ignoring high order interactions: +BCG +CDF +BEF +DEG +BCDEFG.

lB = −2.8 → B +AD + CF + EG,
due to I=ABD=BCF =BEG

lC = −16.6 → C +AE +BF +DG,
due to I=ACE=BCF =CDG

lD = 3.2 → D +AB + EF + CG,
due to I=ABD =CDG=DEF

lE = −22.8 → E +AC +DF +BG,
due to I=ACE =BEG=DEF

lF = −3.4 → F +BC +DE +AG,
due to I=BCF =AFG=DEF

lG = 0.5 → G+ CD +BE +AF ,
due to I=CDG=BEG=AFG.

The estimates and summary(y∼a*b+b*c+a*c) (why ignore ℓG ?) suggest that the
causes are factors A, C and E. To further investigate, another 8 runs were made.

The defining relation for the foldover is
I=−ABD=−ACE=−BCF =−CDG =−BEG=−AFG=−DEF = −ABCDEFG
=ABCG=BCDE=ACDF =ABEF =ADEG=BDFG=CEFG

l′A → A−BD − CE − FG,
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due to I=−ABD=−ACE =−AFG,
and ignoring high order interactions: BCG+CDF+BEF+DEG−BCDEFG

l′B → B −AD − CF − EG,
l′C → C −AE −BF −DG,
l′D → D −AB − EF − CG,
l′E → E −AC −DF −BG,
l′F → F −BC −DE −AG,
l′G → G− CD −BE −AF .
Then

0.5(lA + l′A) = −6.7 → A, ignoring BCG+CDF+BEF+DEG,
0.5(lB + l′B) = −3.9 → B,
0.5(lC + l′C) = −0.4 → C,
0.5(lD + l′D) = 2.7 → D,
0.5(lE + l′E) = −19.2 → E,
0.5(lF + l′F ) = −0.1 → F ,
0.5(lG + l′G) = −4.3 → G,
0.5(lI + l′I) = 63.6.
0.5(lA − l′A) = −4.2 → BD + CE + FG,
0.5(lB − l′B) = 1.1 → AD + CF + EG,
0.5(lC − l′C) = −16.2 → AE +BF +DG,
0.5(lD − l′D) = 0.5 → AB + EF + CG (no high order interaction, except

ABCEFG)
0.5(lE − l′E) = −3.6 → AC +DF +BG,
0.5(lF − l′F ) = −3.4 → BC +DE +AG,
0.5(lG − l′G) = 4.8 → CD +BE +AF ,
0.5(lI − l′I) = 3.0.

x=c(-6.7,-3.9,-0.4,2.7,-19.2,-0.1,-4.3,0.5,-3.6,1.1,-16.2, 4.8,-3.4,-4.2,3)
round(x,0)

[1] -7 -4 0 3 -19 0 -4 0 -4 1 -16 5 -3 -4 3
sort(x)

[1] -19.2 -16.2 -6.7 -4.3 -4.2 -3.9 -3.6 -3.4 -0.4 -0.1 0.5 1.1 2.7 3.0 4.8
stem(x)

−1 | 96
−1 |
−0 | 7
−0 | 4444300
+0 | 1133
+0 | 5

Thus it suggests that rather than A, C and E in the first 27−4
III FD, the multiple

foldover finds that the main causes are A, E and AE (why not BF+DG ?), C is
a noise.
On one hand, the stem and leaf plot suggests that

the main causes are E and AE, but A is also a noise.
On the other hand, the Analysis of Variance Table suggests that A is marginally
significant.

Model 1: y ∼ E + I(A * E)
Model 2: y ∼ A + E + I(A * E)
Res.Df RSS Df Sum of Sq F Pr(> F )

1 13 645.94
2 12 467.05 1 178.89 4.5962 0.05322 .

y = 63.6− 9.6E − 8.1AE + ǫ (or ŷ = 63.6− 9.6E − 8.1AE, where y = 63.6) ?
y = 63.6− 19.21(E = 1)− 16.21(AE = 1) + ǫ ?

Improvement can be obtained by E=+1 (caustic soda slow) and A=+1 (well water).

An economic alternative to total foldover.
The foldover took 8 runs to find out the previous conclusion,

74



but there were simpler ways to do it.
Since the 8-run 27−4

III experiment indicates that A, C and E are possibly not inert,
we can consider 23 FD with factor A, C and E.

A C E
1 − − +
2 + − −
3 − − +
4 + − −
5 − + −
6 + + +
7 − + −
8 + + +

run # a b c ab ac bc abc y
A C E

2 + − − 77.7
4 + − − 81.0

5 − + − 78.6
7 − + − 68.7

1 − − + 68.4
3 − − + 66.4

6 + + + 41.2
8 + + + 38.7

1 2 3
? − − −
2, 4 + − −
5, 7 − + −
? + + −
1, 3 − − +
? + − +
? − + +
6, 8 + + +

Then runs 1-8 can be treated as 4 pairs of replicates, leading to estimate of SD

s2 =

∑
4

i=1
d2
i /2

4 = 14.9 with df 4. (= V̂ (ǫ) ? or V̂ (effect) ? di = ?) (1)

Reason: Recall under model Y = β′X + ǫ with β ∈ Rp,
1

n−p

∑n
j=1(Yj − β̂′Xj)

2 has df n− p.

d2i /2 = 1
n−p

∑n
j=1(Yj − β̂′Xj)

2, under model Yj = µ+ ǫ, n = 2 and p = ?
Thus it has df =1.
Add 4 more runs (instead of 8) yields

run # a b c ab ac bc abc y
A C E

16 − − − 67.6
2, 4 + − − 77.7 81.0
5, 7 − + − 78.6 68.7
11 + + − 86.4
1, 3 − − + 68.4 66.4
13 + − + 47.8
10 − + + 65.0
6, 8 + + + 41.2 38.7

The 12 runs lead to estimates (through lm(y ∼ a ∗ c+ a ∗ e+ c ∗ e)$coef [2 : 7] ∗ 2)
lA lC lE lAC lAE lCE

−5.0 0.7 −21.7 −1.1 −17.3 −5.8
s s ?

with σ̂effect = s
√

1
6 + 1

6 = 2.23 (why /6 ?) and t0.025,4 ≈ 2.8. s is as in Eq.(1).

2.8× 2.23 ≈ 6.24.
The effect is not significant if |effect| < 6.24. (P-value =0.06).
Thus, the main causes are E and AE, same as the 16-run results. Moreover,
A, C and CE are not significant.
Remark. Notice that under the economic alternative design with 12 runs, lA etc.
are derived from lm(y ∼ · · ·), not from y+ − y−, as can be seen from the table.
> mean(y[c(2,4,11,13,6,8)])-mean(y[c(16,5,7,1,3,10)])

[1] -6.983333
la lc le lac lae lce

y+ − y− −6.98 −5.05 −22.08 −8.35 −17.05 −7.52
lm(y ∼ ·)$coef [-1] ∗ 2 −5.04 −0.71 −21.71 −1.11 −17.29 −5.83

foldover −6.7 −0.4 −19.2 −3.6 −16.2 −4.2
lA − l′A lC − l′C lE − l′E lE + l′E lC + l′C lA + l′A

Thus y+ − y− is not applicable in foldover. Moreover, unlike the 2k FD,
given lm(y∼a*c*e) the final model needs to be estimated again. See the next R
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outputs.
> lm(y∼factor(a) + factor(c) + factor(e) + factor(a*e)+factor(c*e))$coef
(Intercept) factor(a)1 factor(c)1 factor(e)1 factor(c ∗ e)1 factor(a ∗ e)1
90.39167 −5.03750 0.71250 −22.08333 −5.83750 −17.28750

> x=lm(y∼a*c+a*e+c*e)$coef
> c(x[1],x[−1]*2)
(Intercept) a c e a : c a : e c : e
65.89375 −5.03750 0.71250 −21.71250 −1.11250 −17.28750 −5.83750

It turns out to be different from y+ − y−.
> w=lm(y∼e+I(a*e)+I(c*e))$coef
> c(w[1],w[-1]*2)

(Intercept) e I(a ∗ e) I(c ∗ e)
65.625000 −22.083333 −17.050000 −7.516667

> V=lm(y∼e +I(a*e))$coef
> c(V[1],V[2:3]*2)

(Intercept) e I(a ∗ e)
65.62500 −22.08333 −17.05000

It turns out to be the same as y+ − y−.
> anova(h,z)

Analysis of Variance Table

Model 1: y ∼ e + I(a * e)

Model 2: y ∼ e + I(a * e) + I(c * e)
Res.Df RSS Df Sum of Sq F Pr(> F )

1 9 308.3
2 8 138.8 1 169.5 9.7672 0.01412 ∗

Thus the model is ŷ = 65.6− 22.1e− 17.1a ∗ e− 7.5c ∗ e.
R program for computing effects.
y1=c(68.4, 77.7, 66.4, 81.0, 78.6, 41.2, 68.7, 38.7)
a=rep(c(-1,1),4)
b=rep(c(-1,-1,1,1),2)
c=rep(-1,4)
c=c(c,-c)
z=lm(y1∼a*b*c)$coef
summary(lm(y1∼a*b+a*c+b*c))

Estimate Std.Error tvalue Pr(> |t|)
(Intercept) 65.0875 0.2625 247.952 0.00257 ∗∗

a −5.4375 0.2625 −20.714 0.03071 ∗
b −1.3875 0.2625 −5.286 0.11903
c −8.2875 0.2625 −31.571 0.02016 ∗

a : b 1.5875 0.2625 6.048 0.10432
a : c −11.4125 0.2625 −43.476 0.01464 ∗
b : c −1.7125 0.2625 −6.524 0.09683 .

Analysis of Variance Table

Model 1: y1 ∼ a * b + a * c + b * c

Model 2: y1 ∼ a + c + I(a * c)
Res.Df RSS Df Sum of Sq F Pr(> F )

1 1 0.551
2 4 59.575 −3 −59.024 35.691 0.1223

A=a
B=b
C=c
ab=a*b
ac=a*c
bc=b*c
abc=ab*c
a=−a
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b=−b
c=−c
ab=−ab
ac=−ac
bc=−bc
abc=−abc
y2=c(66.7, 65.0, 86.4, 61.9, 47.8, 59.0, 42.6, 67.6)
(x=lm(y2∼a+b+c+ab+ac+bc+abc)$coef)

(Intercept) a b c ab ac
62.125 −1.250 −2.500 7.875 1.125 −7.800
bc abc

1.650 −4.575
(x=lm(y2∼a*b*c)$coef) #Does it work ?

(Intercept) a b c a : b a : c
62.125 −1.250 −2.500 7.875 −1.125 7.800
b : c a : b : c

−1.650 −4.575
lm(y2∼ −A*B*C) #Does it work ?
u=round(z+x,1) # lA, lB , lC , lD, lE , lF , ......
v=round(z-x,1)

sort(c(v,u[1]/2,u[-1]))

a : c c a a : b : c a b
−19.2 −16.2 −6.7 −4.3 −4.2 −3.9
a : c b : c c b : c a : b b
−3.6 −3.4 −0.4 −0.1 0.5 1.1
a : b (Intercept) a : b : c (Intercept)
2.7 3.0 4.8 63.6

x=lm(y2∼a*b*c)$coef
u=round(z+x,1)
v=round(z-x,1)

sort(c(v,u[1]/2,u[-1]))

a : c c a a : b : c a b
−19.2 −16.2 −6.7 −4.3 −4.2 −3.9
a : c b : c c b : c a : b b
−3.6 −3.4 −0.4 −0.1 0.5 1.1
a : b (Intercept) a : b : c (Intercept)
2.7 3.0 4.8 63.6

d=c(1,2,16)
(s=sqrt(mean(x[-d]**2))) # treating the other estimates as noises.

[1] 3.526929
s*qt(0.975,13)

[1] 7.619468 # cut point for significance, which suggests that a= −6.7 is not
significant.

# Another way:
a=c(A,a)
c=c(C,c)
b=c(B,b)
ab=c(A*B,ab)
ac=c(A*C,ac)
bc=c(B*C,bc)
abc=c(A*B*C,abc)
y=c(y1,y2)

AA=c(A,A)
BB=c(B,B)
CC=c(C,C)
EE=AA*CC
sort(round(lm(y∼a+b+c+ab+ac+bc+abc +AA*BB*CC)$coef[-1]*2,1)) # effects
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after foldover
E AE A
ac CC a abc AA b AA : CC BB : CC

−19.2 −16.2 −6.7 −4.3 −4.2 −3.9 −3.6 −3.4
c bc AA : BB BB ab AA : BB : CC

−0.4 −0.1 0.5 1.1 2.7 4.8

round((lm(y∼ AA*BB*CC)$coef*2),1) # effects unchanged
(Intercept) AA BB CC AA : BB AA : CC BB : CC AA : BB : CC

127.2 −4.2 1.1 −16.2 0.5 −3.6 −3.4 4.8

(lm(y∼ e+a:e)$coef*2)

(Intercept) e e : a
127.2125 −19.2125 −16.1625

(lm(y∼ a+e+a:e)$coef*2)

(Intercept) a e a : e
127.2125 −6.6875 −19.2125 −16.1625

(lm(y∼a+c+e+AA+CC+EE)$coef*2)

(Intercept) a c e AA CC EE
127.2125 −6.6875 −0.4125 −19.2125 −4.1875 −16.1625 −3.6125

Analysis of Variance Table

Model 1: y ∼ a + c + e + AA + CC + EE

Model 2: y ∼ e + CC

Res.Df RSS Df Sum of Sq F Pr(> F )
1 9 344.03
2 13 645.94 −4 −301.91 1.9745 0.1822

Analysis of Variance Table

Model 1: y ∼ a + c + e + AA + CC + EE

Model 2: y ∼ a + e + CC

Res.Df RSS Df Sum of Sq F Pr(> F )
1 9 344.03
2 12 467.05 −3 −123.02 1.0728 0.4083

Analysis of Variance Table

Model 1: y ∼ e + CC

Model 2: y ∼ a + e + CC

Res.Df RSS Df Sum of Sq F Pr(> F )
1 13 645.94
2 12 467.05 1 178.89 4.5962 0.05322 .

An economic alternative:
d=c(16,11,13,10)
a=c(A,a[d])
c=c(C,c[d])
e=c(A*C,ac[d])
d=c(8,3,5,2) # d+8=c(16,11,13,10)
y=c(y1,y2[d])
x=lm(y∼a*c*e)
summary(x)
d=c(16,11,13,10)-8
a=c(A,-A[d])
c=c(C,-C[d])
e=c(A*C,-A[d]*C[d])
y=c(y1,y2[d])
x=lm(y∼a*c*e)
x=lm(y∼a*c*e)
summary(x)
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Estimate Std Error t value Pr(> |t|)
(Intercept) 65.8938 1.1816 55.764 6.19e− 07 ∗ ∗ ∗

a −2.5188 1.1816 −2.132 0.10003
c 0.3562 1.1816 0.301 0.77807
e −10.8562 1.1816 −9.187 0.00078 ∗ ∗ ∗

a : c −0.5562 1.1816 −0.471 0.66235
a : e −8.6438 1.1816 −7.315 0.00186 ∗∗
c : e −2.9188 1.1816 −2.470 0.06894 .

a : c : e −0.8062 1.1816 −0.682 0.53251
Residual standard error: 3.859 on 4 degrees of freedom

s =
√
14.9 = 3.86 computed by replications s2, and matching summary().

u=lm(y∼a*c+e*c+a*e)
summary(u)
anova(u,x)

Estimate Std Error t value Pr(> |t|)
(Intercept) 65.6250 1.0528 62.331 2.01e− 08 ∗ ∗ ∗

a −2.5188 1.1167 −2.256 0.073765 .
c 0.3562 1.1167 0.319 0.762610
e −10.8562 1.1167 −9.722 0.000196 ∗ ∗ ∗

a : c −0.5562 1.1167 −0.498 0.639536
c : e −2.9188 1.1167 −2.614 0.047457 ∗
a : e −8.6438 1.1167 −7.740 0.000575 ∗ ∗ ∗

Residual standard error: 3.647 on 5 degrees of freedom

If ignoring ace, σ̂ =
√

1
n−p

∑12
i=1(Yi − Ŷi)2 = 3.65 with df 5.

Analysis of Variance Table

Model 1: y ∼ a * c + e * c + a * e

Model 2: y ∼ e + I(a * e)
Res.Df RSS Df Sum of Sq F Pr(> F )

1 5 66.509
2 9 308.334 −4 −241.82 4.545 0.06398 .

Analysis of Variance Table

Model 1: y ∼ a * c + e * c + a * e

Model 2: y ∼ e + I(a * e) + I(c * e)
Res.Df RSS Df Sum of Sq F Pr(> F )

1 5 66.509
2 8 138.833 −3 −72.325 1.8124 0.2617

Analysis of Variance Table

Model 1: y ∼ e + I(a * e)

Model 2: y ∼ e + I(a * e) + I(c * e)
Res.Df RSS Df Sum of Sq F Pr(> F )

1 9 308.33
2 8 138.83 1 169.5 9.7672 0.01412 ∗ conclusion?

Conclusion: AE and E are significant and CE is significant.
Remark: There are three conclusion based on whether CE is significant:

(1) In last ANOVA (economic alternative), AE, E and CE are all significant.

(2) In full foldover, CE is on the boundary (p-value=0.053) (in contrast to the
conclusion in (1).

(3) In the ecomonic alternative, recall
lA lC lE lAC lAE lCE

−5.0 0.7 −21.7 −1.1 −17.3 −5.8
s s p− value = 0.06 using replications

The last conclusion (0.06 based on σ̂effect = 2.23) might be more reliable, as it
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relies on replications and does not rely on N(.,.).
Of course, if NID is true, statement (2) is more reliable, as it sample size is larger.

Estimation of SD of effects.
y1=c(68.4, 77.7, 66.4, 81.0, 78.6, 41.2, 68.7, 38.7)
a=rep(c(-1,1),4)
b=rep(c(-1,-1,1,1),2)
c=rep(-1,4)
c=c(c,-c)
(z=lm(y1∼a*b*c)$coef[-1]*2)

a b c a : b a : c b : c a : b : c
−10.875 −2.775 −16.575 3.175 −22.825 −3.425 0.525

s s s
x=z$coef[c(2,4,6,7)]
sqrt(mean(x**2)) # SD of effects

[1] 2.733587
x=lm(y1∼a*c)
summary(x)

Estimate Std.Error tvalue Pr(> |t|)
(Intercept) 65.087 1.364 47.702 1.16e− 06 ∗ ∗ ∗

a −5.437 1.364 −3.985 0.01633 ∗
c −8.287 1.364 −6.074 0.00371 ∗∗

I(a ∗ c) −11.412 1.364 −8.364 0.00112 ∗∗
2× effects −10.8 2.734

−16.57 2.734
−22.82 2.734

SDeffects

Residual standard error: 3.859 on 4 degrees of freedom

3.859
√

1
4 + 1

4 = 2.734

sqrt(2*mean(x**2)) # compare to Residual standard error in summary
[1] 3.865876 # SD of errors.
Effect =y+ − y−.
V ar(effect) = σ2

ǫ (
1
4 + 1

4 ).
Recall that runs 1-8 can be treated as 4 pairs of replicates corresponding to

factors a and c, leading to estimate of SD

Ŝ2
ǫ = s2 =

∑
4

i=1
d2
i /2

4 = 14.9 with df 4 and
√
14.9 = 3.86.

Remark related to homework 6.2.2. EQ.(2) is the equation for the contour
plane.

y ≈ 14.63− 5.75

2

A− 25

5
− 3.75

2

B − 1.5

0.5
in control.sum (2)

(A,B) = (14, 0.4) is a point on the contour plane

25.075 = 14.625− 5.75

2

A− 25

5
− 3.75

2

B − 1.5

0.5

It is a straght line on the AB plane (with A-axis and B-axis). (A,B) = (20, 1.5) is
a point on the contour plane 0 = 5.75

2
A−25

5 + 3.75
2

B−1.5
0.5 or B = 1.5− 5.75

3.75
A−25
10 (from

14.625 = 14.625− 5.75

2

A− 25

5
− 3.75

2

B − 1.5

0.5
).

It is another straght line on the AB plane.

6.10. Increasing design resolution from III to IV by foldover.
The foldover in §6.9 increases the resolution from III to IV .

Before multiple column foldover, there are 15 defining relations:
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I=ABD =ACE=BCF =CDG =DEF =BEG=AFG =ABCDEFG
=ABCG =BCDE =ACDF =ADEG =BDFG =ABEF =CEFG

Adding the foldover, only 4-letter defining relations remain and the resolution be-
comes 4.
I= ABCG=BCDE=ACDF =ABEF =ADEG=BDFG=CEFG (total of 7).
If we choose 3 letters from ABCG (=I), we can form a replicated 23 FD, based on
I=ABCG. i.e., (A,B,C), (A,B,G), (A,C,G), (B,C,G)
So total of 4× 7 = 28 combinations,

out of total of
(
7
3

)
= 35.

This is the advantage of such an approach.
Notice that a single column foldover yield defining relation

I=ACE=BCF =BEG =ABCG =ABEF =CEFG
The resolution is ?

Recall that the single column foldover results in a 27−3
III design.

Look at the previous 16-run experiment. Is it a 27−3 design ? If so, it is a 27−3
IV

design.

Original order

run # a b c ab ac bc abc y (table of contrast)
A B C D E F G (defining factors)

1 − − − + + + − 68.4
2 + − − − − + + 77.7
3 − + − − + − + 66.4
4 + + − + − − − 81.0
5 − − + + − − + 78.6
6 + − + − + − − 41.2
7 − + + − − + − 68.7
8 + + + + + + + 38.7

run # −a −b −c −ab −ac −bc −abc y
9 + + + − − − + 66.7
10 − + + + + − − 65.0
11 + − + + − + − 86.4
12 − − + − + + + 61.9
13 + + − − + + − 47.8
14 − + − + − + + 59.0
15 + − − + + − + 42.6
16 − − − − − − − 67.6

Reverse the last 8

a b c −ab −ac −bc abc
16 − − − − − − − 67.6
15 + − − + + − + 42.6
14 − + − + − + + 59.0
13 + + − − + + − 47.8
12 − − + − + + + 61.9
11 + − + + − + − 86.4
10 − + + + + − − 65.0
9 + + + − − − + 66.7

Columns A B C G form a replicated 23 FD, (see a, b, c, abc cloumns), not a 24 FD.

The main component of 24 (or 27−3) FD: a,b,c,d columns.
Replacing G by other 3 choices from I=ABCG: A B C D, A B C E and A B C F.

Is A B C D 24 FD ? Try order 16,2,3,13,12,6,7,9, 1,15,14,4,5,11,10,8.
Are A B C E and A B C F 24 FD ? Note these 3 are related to ABCG=I

run # a b c ab ac bc abc y (table of contrast)
A B C D E F G (defining factors)
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Are these 24 FD ?

A B C E
16 − − − −
2 + − − −
14 − + − −
4 + + − −
5 − − + −
11 + − + −
7 − + + −
9 + + + −
1 − − − +
15 + − − +
3 − + − +
13 + + − +
12 − − + +
6 + − + +
10 − + + +
8 + + + +

A B C F
16 − − − −
15 + − − −
3 − + − −
4 + + − −
5 − − + −
6 + − + −
10 − + + −
9 + + + −
1 − − − +
2 + − − +
14 − + − +
13 + + − +
12 − − + +
11 + − + +
7 − + + +
8 + + + +

I=ABCG

What are the FD patterns for the cases by replacing one letter from

ABCG=BCDE=ACDF =ABEF =ADEG=BDFG=CEFG (=I) ?

Like ABCG, they are not 24 FD, but replicated 24−1 fractional FD:

I=ABCG

A B C G
16 − − − −
15 + − − +
14 − + − +
13 + + − −
12 − − + +
11 + − + −
10 − + + −
9 + + + +
1 − − − −
2 + − − +
3 − + − +
4 + + − −
5 − − + +
6 + − + −
7 − + + −
8 + + + +

1 2 123 3
A B C G

16 − − − −
11 + − + −
10 − + + −
13 + + − −
12 − − + +
15 + − − +
14 − + − +
9 + + + +
1 − − − −
6 + − + −
7 − + + −
4 + + − −
5 − − + +
2 + − − +
3 − + − +
8 + + + +

(A,C,G) = (1, 2, 3)
(B,C,G) = (1, 2, 3)

?

82



I=ABEF

run # 1 2 123 3
A B C D E F

16 − − −
15 + − −
10 − + −
9 + + −
12 − − +
11 + − +
14 − + +
13 + + +
5 − − −
6 + − −
3 − + −
4 + + −
1 − − +
2 + − +
7 − + +
8 + + +

I=ADEG

run # 1 2 3 123
A D E F G

16 − − − −
9 + − − +
14 − + − +
11 + + − −
12 − − + +
13 + − + −
10 − + + −
15 + + + +
7 − − − −
2 + − − +
5 − + − +
4 + + − −
3 − − + +
6 + − + −
1 − + + −
8 + + + +

or I=BCDE=ACDF =BDFG=CEFG

This is a 27−3
IV design. It can scan 3 out of 7 factors to form a replicated 23 FD

for all
(
7
3

)
= 35 patterns, though 7× 4 = 28 of them cannot form 24 FD.

6.10.1. Homework. Are A D E F, B D E F, C D E F 24 FDs ? Prove or disprove
it.

6.10.2. Homework. Prove or disprove it. Can (B, D, F) be chosen as (a,b,c) ?
How about (A,B,D) ?

6.11. 16-run design.
For computation purpose, instead define the orthogonal array in Table 6.14a, one
can use

z=lm(y∼ a*b*c*d)

2*z$coef[2:16]
where y is the response variable and a, b, c, d are variables defined as follows.

a=c(−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1)

b=c(−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1)

c=c(−1,−1,−1,−1, 1, 1, 1, 1,−1,−1,−1,−1, 1, 1, 1, 1)

d=c(−1,−1,−1,−1,−1,−1,−1,−1, 1, 1, 1, 1, 1, 1, 1, 1)

nodal
designs a b c d ab ac ad bc bd cd abc abd acd bcd abcd

24 A B C D

25−1
V A B C D P

28−4
IV A B C D L M N O

215−11
III A B C D E F G H J K L M N O P

24 is not a nodal design. Neither is the 27−3
IV in §6.10. Note that for convenience,

in 25−1
V design, the 5-th factors are denoted by P, instead of by E.

I is not used as it denote columns with all +’s.

The alias structure for 16-run nodal designs are given in Table 6.14c.
Table 6.14c. Alias Structure for Sixteen Run Nodal Designs
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




























25−1
V 28−4

IV 215−11
III

a A A A+BE + · · ·
b B B B +AE + · · ·
c C C C +AF + · · ·
d D D D +AG+ · · ·
ab AB AB + CL+DM +NO E +AB + · · ·
ac AC AC +BL+DN +MO F +AC + · · ·
ad AD AD +BM + CN + LO G+AD + · · ·
bc BC AL+BC +DO +MN H +AL+ · · ·
bd BD AM +BD + CO + LN J +AM + · · ·
cd CD AN +BO + CD + LM K +AN + · · ·
abc DP L L+AH + · · ·
abd CP M M +AJ + · · ·
acd BP N N +AK + · · ·
bcd AP O O +AP + · · ·
abcd P AO +BN + CM +DL P +AO + · · ·






























Notice that the higher order interactions are ignored in the table.
It is due to the defining relation:

25−1
V : I=ABCDP,
28−4
IV : I=ABCL=ABDM=ACDN=BCDO

︸ ︷︷ ︸

(41)

=... = ADLO
︸ ︷︷ ︸

(42)

=ALMN = ... = DMNO
︸ ︷︷ ︸

(43)

=ABCDLMNO
︸ ︷︷ ︸

(44)

, total of 24 − 1 = 15.

215−11
IV : I=ABE=..., total of

(
11
1

)
+
(
11
2

)
+ · · ·+

(
11
11

)
= 211 − 1

6.12. The nodal half replicate of 25 FD.
Reactor example. Table 6.15 shows the data and estimates from a complete 25

factorial design in factor A, B, C, D, E.
factor − +
A : feed rate (L/min) 10 15
B : catalyst(%) 1 2
C : agitation(rpm) 100 120 jiaodong
D : temperature(oC) 140 180
E : concentration 3 4

a=c(a,a)
b=c(b,b)
c=c(c,c)
d=c(d,d)
e=rep(-1,16)
e=c(e,-e)
y=c(61, 53, 63, 61, 53, 56, 54, 61, 69, 61, 94, 93, 66, 60, 95, 98,

56, 63, 70, 65, 59, 55, 67, 65, 44, 45, 78, 77, 49, 42, 81, 82)
(x=sort(round(lm(y∼a*b*c*d*e)$coef[2:32]*2,1)))
d : e e a : c : e a : b : e a a : d a : c : d b : c : d : e

−11.00 −6.25 −2.50 −1.87 −1.37 −0.88 −0.75 −0.63
c a : b : c : d : e b : d : e a : b : c : d a : e b : c : e c : d : e a : b : d : e

−0.62 −0.50 −0.25 0.00 0.12 0.13 0.13 0.62
a : d : e a : c b : c c : e a : c : d : e b : c : d a : b a : b : d
0.63 0.75 0.87 0.87 1.00 1.13 1.37 1.38

a : b : c a : b : c : e b : e c : d d b : d b
1.50 1.50 2.00 2.12 10.75 13.25 19.50

stem(x)
−1 ‖ 1
−0 ‖ 6
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−0 ‖ 321111110
+0 ‖ 00001111111112222
+0 ‖
+1 ‖ 13
+1 ‖
+2 ‖ 0
The stem and leaf plot or the normal plot (Fig.6.7a) of the 31 LSEs indicates that
over the ranges studied, only the estimates of the main effects B, D and E, and the
interactions BD and DE are distinguishable from the noise.
summary(lm(y∼b*d*e))

Estimate Std. Error t value Pr(> |t|)
(Intercept) 65.5000 0.5774 113.449 < 2e− 16 ∗ ∗ ∗

b 9.7500 0.5774 16.887 8.00e− 15 ∗ ∗ ∗
d 5.3750 0.5774 9.310 1.95e− 09 ∗ ∗ ∗
e −3.1250 0.5774 −5.413 1.47e− 05 ∗ ∗ ∗

b : d 6.6250 0.5774 11.475 3.14e− 11 ∗ ∗ ∗
b : e 1.0000 0.5774 1.732 0.0961 .
d : e −5.5000 0.5774 −9.526 1.26e− 09 ∗ ∗ ∗

b : d : e −0.1250 0.5774 −0.217 0.8304

z=lm(y∼b*d*e)
w=lm(y∼b*d+d*e)
anova(w,z) Analysis of Variance Table

Model 1: y ∼ b * d + d * e

Model 2: y ∼ b * d * e

Res.Df RSS Df Sum of Sq F Pr(> F )
1 26 288.5
2 24 256.0 2 32.5 1.5234 0.2383

Final Model: E(Y |X) = 65.5 + 9.8b+ 5.4d− 3.1e+ 6.6b ∗ d− 5.5d ∗ e; or
E(Y |X) =??+19.6I(b=1)+10.8I(d=1)-6.2I(e=1)+13.2I(b*d=1)-11.0I(d*e=1).

Thus the experiment screens out 3 factors from 5. It turns out that one can
use 25−1 nodal design to surve the purpose.
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run # A B C D E
1 − − − − − 1 17∗ +
2∗ + − − − − −
3∗ − + − − − −
4 + + − − − 4 20∗ +
5∗ − − + − − −
6 + − + − − 6 22∗ +
7 − + + − − 7 23∗ +
8∗ + + + − − −
9∗ − − − + − −
10 + − − + − 10 26∗ +
11 − + − + − 11 27∗ +
12∗ + + − + − −
13 − − + + − 13 29∗ +
14∗ + − + + − −
15∗ − + + + − −
16 + + + + − 16 32∗ +
17∗ − − − − + 17 +
18 + − − − + −
19 − + − − + −
20∗ + + − − + 20 +
21 − − + − + −
22∗ + − + − + 22 +
23∗ − + + − + 23 +
24 + + + − + −
25 − − − + + −
26∗ + − − + + 26 +
27∗ − + − + + 27 +
28 + + − + + −
29∗ − − + + + 29 +
30 + − + + + −
31 − + + + + −
32∗ + + + + + 32 +

new design of 25−1
V a b c d replace E by e = abcd

Table 6.15

The full 25 requires 32 runs. If the experimenter had chosen instead to just
make the 16 runs marked with asterisks in Table, 6.15, then
only the data of the next Table would have been available.

y1 ∼ y16 53 63 53 61 69 93 60 95
runs 2 3 5 8 9 12 14 15

y17 ∼ y32 56 65 55 67 45 78 49 82
runs 17 20 22 23 26 27 29 32

The generating relation is E=ABCD. The defining relation is I=ABCDE.

s=c(2,3,5,8,9,12,14,15,17,20,22,23,26,27,29,32)
(x=round(lm(y[s]∼a[s]*b[s]*c[s]*d[s])$coef[2:16]*2,1))

a b c d a : b a : c b : c a : d b : d c : d
−2.0 20.5 0.0 12.2 1.5 0.5 1.5 −0.7 10.8 0.3

B D BD
a : b : c a : b : d a : c : d b : c : d a : b : c : d
−9.5 2.2 1.2 1.2 −6.2
DE E

Note that the main effects and 2-factor interaction effects are not very different
from those from the full 25 design.
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a b c d a : b a : c b : c a : d b : d c : d
25 : −1.4 19.5 −0.6 10.8 1.4 0.7 0.9 −0.9 13.2 2.1

25−1 : −2.0 20.5 0.0 12.2 1.5 0.5 1.5 −0.7 10.8 0.3
B D BD

d : e a : b : c a : b : d a : c : d b : c : d e · · ·
25 : (−11 + 1.5) 1.4 −0.7 1.1 −6.2 · · ·

25−1 : (=) −9.5 2.2 1.2 1.2 −6.2 ?
DE ABCD

ABC is aliased with DE due to I=ABCDE.
Moreover, the normal plot shows the similar pattern.
stem(x,3)

-0 | 06
-0 | 21
0 | 00111222
0 |
1 | 12
1 |
2 | 1

sort(x)
DE E

a : b : c a : b : c : d a a : d c c : d a : c a : c : d b : c : d a : b
−9.5 −6.2 −2.0 −0.7 0.0 0.2 0.5 1.3 1.3 1.5
b : c a : b : d b : d d b
1.5 2.2 10.7 12.2 20.5

(u=summary(lm(y1∼b*d+e+a*b*c))) # redefine y1, a, b, c, d
# summary(lm(y1∼b*d+e+I(a*b*c)))

Estimate Std. Error t value Pr(> |t|)
(Intercept) 6.525e+ 01 6.638e− 01 98.298 2.07e− 09 ∗ ∗ ∗

b 1.025e+ 01 6.638e− 01 15.441 2.07e− 05 ∗ ∗ ∗
d 6.125e+ 00 6.638e− 01 9.227 0.000251 ∗ ∗ ∗
e −3.125e+ 00 6.638e− 01 −4.708 0.005300 ∗∗
a −1.000e+ 00 6.638e− 01 −1.506 0.192295
c 5.412e− 16 6.638e− 01 0.000 1.000000

b : d 5.375e+ 00 6.638e− 01 8.097 0.000466 ∗ ∗ ∗
b : a 7.500e− 01 6.638e− 01 1.130 0.309803
a : c 2.500e− 01 6.638e− 01 0.377 0.721908
b : c 7.500e− 01 6.638e− 01 1.130 0.309803

b : a : c −4.750e+ 00 6.638e− 01 −7.156 0.000828 ∗ ∗ ∗
Residual standard error: 2.655 on 5 degrees of freedom

Multiple R-squared: 0.9894, Adjusted R-squared: 0.9683

F-statistic: 46.75 on 10 and 5 DF, p-value: 0.0002622
v=summary(lm(y1∼b*d+e+I(a*b*c)))
anova(u,v)
The 25−1

V can be used as a factor screen. In this example, factors A and C are
inert. They can be checked from the half fraction factorial design. It is called a
factor screen of order [16,5,4] (16 runs, 5 factors and projectivity 4). If one wants
the full design, it can be obtained by foldover (on which factors ?)

6.13. The 28−4
IV nodal 16th fraction of a 28 factorial. This design is useful to

screen 3 out of 8 factors in this 16-run design. A [16, 8, 3] factor screen for 16 runs,
8 factors at projectivity 3. There are

(
8
3

)
= 56 ways.

nodal
designs a b c d ab ac ad bc bd cd abc abd acd bcd abcd
28−4
IV A B C D L M N O

A B C D E F G H ??
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There are (
(
4
1

)
+

(
4
2

)
+
(
4
3

)
+
(
4
4

)
= 15) defining relations:

I = ABCL = ABDM = ACDN = BCDO
︸ ︷︷ ︸

(41)
= CDLM = BDLN = ADLO = BCMN = ACMO = ABNO

︸ ︷︷ ︸

(42)
= ALMN = BLMO = CLNO = DMNO

︸ ︷︷ ︸

(43)

= ABCDLMNO

A Paint trial. In developing a paint for certain vehicles a customer required that
the paint have high glossiness (y1 on a scale 1 to 100) (guang-ze-du) and acceptable
abrasion resistance (y2 on a scale of 1 to 10) (nai-mo-xing). They believe that there
are two main factors, say A and B. However, the factors A and B

either produce high glossiness but low abrasion,
or produce low glossiness but acceptable abrasion,

For instance,

A − + − + − + − +
B − − + + − − + + ideal
y1 : 53 78 48 78 68 61 70 65 ≥ 65
y2 : 6.3 2.1 6.9 2.5 3.1 4.3 3.4 3.0 ≥ 5

According to the paint technologist, there are 6 more factors, C, D, E, F, G, H.
They want to find out how to select the factors to obtain high glossiness and high
abrasion, The experiments results in data as follows.

y1 = c(53,60,68,78,48,67,55,78,49,68,61,81,52,70,65,82)
y2 = c(6.3,6.1,5.5,2.1,6.9,5.1,6.4,2.5,8.2,3.1,4.3,3.2,7.1,3.4,3.0,2.8)
lm(y1 ∼ a*b*c*d)$coef[2:16]*2

Effects are
A B C D E F G H

y1 16.6 12.6 −0.1 2.6 −0.1 −0.9 −3.6 1.9 0.9 2.6 1.9 −1.9 −0.1 2.6 −0.4
y2 -2.4 -2.0 −0.2 −0.7 0.1 1.6 0.6 −0.3 0.3 0.0 −0.1 0.1 −0.1 −0.4 −0.2

Sorting the effects of y1:
-3.6 -1.9 -0.9 -0.4 -0.1 -0.1 -0.1 0.9 1.9 1.9 2.6 2.6 2.6 12.6 16.6;
-0 | 4210000
0 | 122333
0 |
1 | 3
1 | 7

Sorting the effects of y2:
-2.4 -2.0 -0.7 -0.4 -0.3 -0.2 -0.2 -0.1 -0.1 0.0 0.1 0.1 0.3 0.6 1.6
-2 | 40
-1 |
-1 |
-0 | 7
-0 | 432211
0 | 0113
0 | 6
1 |
1 | 6

Analysis of Variance Table
Model 1: y[1, ] ∼ a + b + I(a * b * d)
Model 2: y[1, ] ∼ a * b * d

Res.Df RSS Df Sum of Sq F Pr(> F )
1 12 181.25
2 8 136.50 4 44.75 0.6557 0.6394

The ANOVA and stem-and-leaf plot suggest that
effects on y1 are not significant different from error if y1 ∈ (−3.6, 2.6),
effects on y2 are not significantly different from error if y2 ∈ (−0.7, 0.6).
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Thus in addition to factors A and B, factor F is also an important factor.
Hence we screen 3 factors out of 8.

x=lm(y[1,]∼a+b+I(a*b*d))

summary(x)

Estimate Std Error t value Pr(> |t|)
(Intercept) 64.6875 0.9413 68.719 < 2e− 16 ∗ ∗ ∗

a 8.3125 0.9413 8.831 7.46e− 07 ∗ ∗ ∗
b 6.3125 0.9413 6.706 1.46e− 05 ∗ ∗ ∗

I(a ∗ b ∗ d) −0.4375 0.9716 −0.450 0.661
Y1 = 64.7 + 8.3a+ 6.3b+ ǫ.
Y1 = 50.1 + 16.6× 1(a = 1) + 12.6× 1(b = 1) + ǫ how?

x=lm(y[2,]∼a+b+I(a*b*d))

summary(x)

Estimate Std Error t value Pr(> |t|)
(Intercept) 4.7500 0.1647 28.842 1.88e− 12 ∗ ∗ ∗

a −1.2125 0.1647 −7.362 8.71e− 06 ∗ ∗ ∗
b −1.0250 0.1647 −6.224 4.42e− 05 ∗ ∗ ∗

I(a ∗ b ∗ d) 0.8000 0.1647 4.858 0.000393 ∗ ∗ ∗
Y2 = 4.8− 1.2a− 1.0b+ 0.8a ∗ b ∗ d+ ǫ.
Y2 = 6.2− 2.4× 1(a = 1)− 2.1× 1(b = 1) + 1.6× 1(a ∗ b ∗ d = 1) + ǫ.

How to obtain high y1 (≥ 65) and acceptable y2 (≥ 5) if A and B can be numerical?
The contour plots (based on Eq.s (1) and (2)) in Figure 6.9 (in the textbook) suggest

that at + level of A, at − level of B and + level of F (i.e. - level of d)
would make possible of substantial improvement in (high) glossiness y1 (≥ 65) while
maintaining an acceptable level of abrasion resistance y2 (≥ 5).

Y1 = 64.7 + 8.3a+ 6.3b+ ǫ. Y1(1,−1, 1) = 66.7
Y2 = 4.8− 1.2a− 1.0b+ 0.8a ∗ b ∗ d+ ǫ. Y2(1,−1, 1) = 5.4.
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Fig. 6.13.

a,b-axis, (F=abd= ±1)

A=c(-1,1)
x=lm(y[1,]∼a+b+I(a*b*d))$coef
B=(65-x[1]-x[2]*A+x[4])/x[3] # (65=x[1]+x[2]*A +x[3]*B -x[4])
plot(A,B, ylim=c(-1,1), type=”l”, lty=1)
B=(70-x[1]-x[2]*A+x[4])/x[3]
lines(A,B, type=”l”, lty=2)
text(0.8,-1,”(F=-1)”) # (a,b,d)∈ {(1,−1,−1), (−1, 1,−1)}
text(0.8,0.5,”y1>70”)
B=(65-x[1]-x[2]*A-x[4])/x[3] #+level
plot(A,B, ylim=c(-1,1), type=”l”, lty=1)
B=(70-x[1]-x[2]*A-x[4])/x[3]
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lines(A,B, type=”l”, lty=2)
text(0.8,-1,”(F=1)”) # (a,b,d)∈ {(1,−1, 1), (−1, 1, 1)}
text(0.8,0.5,”y1>70”)
x=lm(y[2,]∼a+b+I(a*b*d))$coef
B=(5-x[1]-x[2]*A+x[4])/x[3]
plot(A,B, ylim=c(-1,1), type=”l”, lty=1)
B=(6-x[1]-x[2]*A+x[4])/x[3]
lines(A,B, type=”l”, lty=2)
text(0.8,-1,”(F=-1)”)
text(0.0,0.0,”y2<5”)
B=(5-x[1]-x[2]*A-x[4])/x[3] #+level
plot(A,B, ylim=c(-1,1), type=”l”, lty=1)
B=(6-x[1]-x[2]*A-x[4])/x[3]
lines(A,B, type=”l”, lty=2)
text(0.8,-1,”(F=1)”)
text(-0.5,-0.5,”y2>6”)

6.13.2. Homework. Draw the contour plots for the region in (A,B) with F = +1
such that both y1 and y2 acceptable.

6.14. 215−11
III design. It can be used to screen for two factors amount 15 factors.

A speedometer casing example. Postextrusion shrinkage of a speedometer cas-
ing had produced undesirable noise. The objective of the experiment was to find a
way to reduce the shrinkage.
A considerable length (in > 300 meters) of product was made during each run and
measurements were made at 4 equally spaced points, the responses are

the averages and log variances of the 4 measurements.
y=c(48.5,57.5,8.8,17.5,18.5,14.5,22.5,17.5,12.5,12,45.5,53.5,17,27.5,34.2,58.2) #mean

s=c(-0.8,-0.8,0.4,0.3,-0.2,0.1,-0.3,1.1,-0.1,-0.2,0.7,-0.9,0.7,-0.9,0.1,0.7,0.6) #run log vari-
ance
The 15 factors are

A: liner tension, (chen ban zhangli)
B: liner line speed, (ban lun xian speed)
C: liner die, (ban lun mo ju)
D: liner outsider diameter, (chen guan outsider diameter)
E: melt temperature,
F: coating material,
G: liner temperature,
H: braid tension, (bian zhi tension)
J: wire braid type, (xian bian zhi lei xing)
K: liner material,
L: cooling method,
M: screen pack,
N: coating die type, (tu cheng mo ju lei xing)
O: wire diameter,
P: line speed.

x=lm(y∼a*b*c*d)$coef[2:16]*2
a b c d a : b a : c b : c a : d b : d c : d
6.3 6.2 −5.7 6.9 2.6 0.0 7.5 4.2 24.4 9.1
A B C D E F G H J K

a : b : c a : b : d a : c : d b : c : d a : b : c : d
0.5 2.9 6.7 −14.2 0.7
L M N O P
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The second normal plot about s did not reveal any important factors.
The 1st normal plot and stem-and-leaf plot of y reveals important factors.
−1| 4
−0| 6
−0|
+0| 011334
+0| 667789
+1|
+1|
+2| 4
It turns out from the normal plot of the effects due to averages that

the factors O, J and C are important factors.
nodal c bd bcd
designs a b c d ab ac ad bc bd cd abc abd acd bcd abcd
215−11
III A B C D E F G H J K L M N O P

> J=b*d
> O=J*c
> x=lm(y∼factor(c)+factor(J)+factor(O))
> summary(x)

Estimate Std.Error tvalue Pr(> |t|)
(Intercept) 26.863 5.351 5.020 0.000299 ∗ ∗ ∗
factor(c)1 −5.737 5.351 −1.072 0.304693 O ∗ J
factor(J)1 24.388 5.351 4.558 0.000657 ∗ ∗ ∗ b ∗ d
factor(O)1 −14.163 5.351 −2.647 0.021305 ∗ J ∗ c

(1)

Residual standard error: 10.7 on 12 degrees of freedom

Multiple R-squared: 0.7068, Adjusted R-squared: 0.6335

F-statistic: 9.643 on 3 and 12 DF, p-value: 0.001612
anova(u,w)

Model 1: y ∼ J*O

Model 2: y ∼ J + O
Res.Df RSS Df Sum of Sq F Pr(> F )

1 12 1374.3
2 13 1506.0 −1 −131.68 1.1497 0.3047

Notice that C is alias with the interaction of OJ, i.e., I=OJC, as O=bcd and J=bd.
Conclusion: The model is

y = 26.87 + 24.38× 1(J = 1)− 14.16× 1(O = 1) (see (1) above) ? Or
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y =

26.87−5.74/2=
︷ ︸︸ ︷

23.99 +24.38× 1(J = 1)− 14.16× 1(O = 1), or

y = 29.11
︸ ︷︷ ︸

=23.99+12.19−7.08

+12.19× J − 7.08×O, J,O = ±1.

In order to reduce the shrinkage, set factors J and O at levels -1 and +1, respectively.

Remark. The results using summary(lm( y ∼ factor(c) + factor(J) + factor(O)))
can be derived directly as follows. The 215−11

III design can be viewed as a 4 replicated

22 factorial design with (1,2) = (J,O),
j − + − +
o − − + +

type # 1 2 3 4
with their average

of yi’s.

From the table of contract of 215−11
III , we have

J + + − − + + − − − − + + − − + +
O − − + + + + − − + + − − − − + +

types 2 2 3 3 4 4 1 1 3 3 2 2 1 1 4 4
run # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

> s=c(7,8,13,14,1,2,11,12,3,4,9,10,5,6,15,16) # where are they come from ?
> mean(y[s[1:4]) # 21.1
> mean(y[s[5:8]) # 51.3
> mean(y[s[9:12]) # 12.7
> mean(y[s[13:16]) # 31.4
> mean(y)

[1] 29.10625

The results lead to
O+ 12.7 31.4
O− 21.1 51.3

J− J+

=>

β̂J = 24.45 yj− yj+
O+ 12.7 31.4 yo+
O− 21.1 51.3 yo−

J− J+ −14.15 = β̂O

> sqrt((var(y[s[1:4]])+var(y[s[5:8]])+var(y[s[9:12]])+var(y[s[13:16]]))/4)

[1] 10.70166 # estimating residual SD directly, same as in summary(x)
> y=c(21.1,51.3,12.7,31.4)
> v=lm(y∼J+O)$coef
> c(v[1],2*v[2:3])

(y) J O
29.10625 24.38750 −14.16250

So the 215−11
III fractional FD successfully screens 2 factors from 15 factors.

6.15. Constructing other two-level fractions. Adding a factor to a nodal
design. Recall Table 6.14b for 16-run nodal designs. How many ? Consider for
example, 28−4

IV . One can choose a factor which is most likely to be inert and it is
likely to be factor P.

nodal
designs a b c d ab ac ad bc bd cd abc abd acd bcd abcd

24 A B C D
25−1
V A B C D P
28−4
IV A B C D L M N O

215−11
III A B C D E F G H J K L M N O P

non− nodal
29−5
III A B C D L M N O P

The alias structure :
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28−4
IV 1st 29−5

III

a A A+OP
b B B +NP
c C C +MP
d D D + LP
ab AB + CL+DM +NO
ac AC +BL+DN +MO
ad AD +BM + CN + LO same
bc AL+BC +DO +MN as
bd AM +BD + CO + LN 28−4

IV

cd AN +BO + CD + LM
abc L L+DP
abd M M + CP
acd N N +BP
bcd O O +AP
abcd AO +BN + CM +DL P +AO +BN + CM +DL

6.15.2. Remark. The previous non-nodal 29−5 design is of resolution III. The reason
is as follows.

The generating relation is I=ABCDP, together with 4 generating relations from
28−4
IV FFD. There are 25− 1 = 31 defining relations. 15 of them are the same as the
28−4
IV FFD, which has either 4 letters or 8 letters.
28−4
IV : I=ABCL=ABDM=ACDN=BCDO

︸ ︷︷ ︸

(41)

=... = ADLO
︸ ︷︷ ︸

(42)

=ALMN = ... = DMNO
︸ ︷︷ ︸

(43)

=ABCDLMNO
︸ ︷︷ ︸

(44)

, total of 24 − 1 = 15.

Another 15 are due to ABCDP times each of the previous 15. Since each of
these 4-letter words does not contain all of ABCD, their products with ABCDP
have lengths ≥ 3. e.g., The 1st one is ABCL. ABCDP(ABCL)=DLP. Moreover,
ABCDP(ABCDLMNO)=LMNOP.

Are there other non-nodal 29−5 design of resolution III ? Consider the next
example.
(1) I =ABCL=ABDM=ACDN=BCDO =ABE (E=AB replacing P=ABCD).

It’s resolution is III, the reason is as follows.
There are 31 defining relations, which consists of original 15 from the 28−4

IV FFD +
ABE, and ABE times each of the original 14 4-letter words, which do not contain E.
Thus, the shortest one of the latter 15 products is ABE(ABXY)=EXY. Moreover,

ABCDLMNO(ABE)=DELMNO.
6.16. Elimination of block effects. Fractional designs may be run in blocks
with suitable contrast used as “block variable”. A design in 2q blocks is defined by
q independent contrast. All effects (including aliases) associated with these chosen
contrasts and all their interactions are confounded with blocks. Consider the 25−1

V
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design as follows.

run # a b c d e = abcd ab ac ad bc abc
1 − − − − + + + + + −
2 + − − − − − − − + +
3 − + − − − − + + − +
4 + + − − + + − − − −
5 − − + − − + − + − +
6 + − + − + − + − − −
7 − + + − + − − + + −
8 + + + − − + + − + +
9 − − − + − + + − + −
10 + − − + + − − + + +
11 − + − + + − + − − +
12 + + − + − + − + − −
13 − − + + + + − − − +
14 + − + + − − + + − −
15 − + + + − − − − + −
16 + + + + + + + + + +

q = 1. A 25−1
V in two blocks of either runs. (e.g. male or female patients). If one

believes that AC is most likely to be negligible, then 21 blocks can be decided
as follows.
1. the 8 runs 2, 4, 5, ..., 15, having − in the AC column;
2. the other 8 runs having + in the AC column.
The block contrast is AC. AC is confounded with the block factor, say 6, with
2 levels.

q = 2. A 25−1
V design in 4 blocks of 4 runs. (e.g. a pack of raw material enough for 4

runs). If one uses AC and BC to define blocks, then the sign (- -), (- +), (+ -)
and (+ +) can be the 4 blocks.
(−−): runs 4, 5, 12, 13;
(−+): runs 2, 7, 11, 15;
......
In this case, AC and BC are confound with the block factor 6 with 4 levels (or
2 new block factors F=AC and G=BC.

run # a b c d abcd ab ac ad bc abc
8 + + + − − + + + +
9 − − − + − + + + −
16 + + + + + + + + +
1 − − − − + + + + −
2 + − − − − − − + +
15 − + + + − − − + −
7 − + + − + − − + −
10 + − − + + − − + +
14 + − + + − − + − −
3 − + − − − − + − +
6 + − + − + − + − −
11 − + − + + − + − +
12 + + − + − + − − −
13 − − + + + + − − +
4 + + − − + + − − −
5 − − + − − + − − +

q = 3 . Is it possible to use ab, ac, bc for the case of q = 3 ?
How about other combinations ?
Ans. (ab, ac, ad) works; and (ab, ac, abc) works.
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Minimum-Aberration 2k−p designs. Before given its definition, consider first
the three 27−2

IV designs in the following table.
Table 6.21. 3 choices for a 27−2

IV fractional FD

design(a) design(b) design(c)
share 2 # share 1 # share 3 #

2 generators 6 = 123, 7 = 234 6 = 123, 7 = 145 6 = 1234, 7 = 1235
3 defining I = 1236 = 2347 = 1467 I = 1236 = 1457 I = 4567
relations = 234567 = 12346 = 12357

(
4
2

)
alliases from 1st 12 + 36 12 + 36 45 + 67
(with 2 letters) 13 + 26 13 + 26 46 + 57

16 + 23 16 + 23 47 + 56
(
4
2

)
alliases from 2nd 23 + 47 14 + 57
(with 2 letters) 24 + 37 15 + 47

27 + 34 17 + 45
(
4
2

)
alliases from 3rd 14 + 67
(with 2 letters) 16 + 47

17 + 46

distinct patterns 12 + 36 12 + 36 45 + 67
13 + 26 13 + 26 46 + 57

16 + 23 + 47 16 + 23 47 + 56
14 + 57

24 + 37 15 + 47
27 + 34 17 + 45
14 + 67
17 + 46

total # words: 15 12 6

How about 6=12345 and (7 = 12
︸ ︷︷ ︸

R<IV

or 7 = 123
︸ ︷︷ ︸

R=IV

or 7 = 1234
︸ ︷︷ ︸

R<IV

) ? (Resolution)

The 4-th and the 6-the have resolution <IV, which is not desirable, and
the 5-th: 6=12345 and 7=123 => I=123456=1237=4567 is similar to design (b).
Which pattern has the least # of shortest words among defining relations ?
Definition. The minimum-aberration design is the one that minimizes the number
of words in the defining relation having minimum length with the largest resolution.

Note: 123456, 1237, 4567 are all called words.
See for examples, 27−2

V , 26−1
V I and 25 designs as follows.

27−2
IV fractional FD design: There are several types of them. In each type, Factors
1, 2, 3, 4, 5 (as well as 6, 7) are aliased with 3-factor or high order interactions,
Table 6.21 above gives an example of each of three types, where 2-factor interactions
which are aliased with (only) 2-factor interactions are given there.
Which design is better ?

Design 4 or 6 is not of resolution IV, and is out of consideration.
Design (b) or (a) has 2 or 3 words of length 4.

Design (c), as it has the least number of 2 factor interactions.
Design (c) is the minimum-aberration 27−2

IV design, with 1 word of length 4.
Is it the unique minimum-aberration 27−2

IV design ?
Remark. 27−2 minimum-aberration design is not defined for 27−2

III , as it is not as
good as 27−2

IV design.
25 FD. 6 ∃ defining generator. So it is also a minimum-aberration 25 design.
26−1
V fractional FD designs: There is just one (a nodal design), with a unique

defining generator 6 = 12345. So it is the minimum-aberration 26−1
V I design.

There are also 27−2
V , ..., 231−16

?? designs.
Table 6.22 is for general 2k−p FD with Table 6.21 as the special case.
Explain it via the next table.
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# of variables k (or factors)
# of runs 5 6

4
8 1

4 Fractional FD of 25 1
8 Fractional FD of 26

16 1
2 Fractional FD of 25 1

4 Fractional FD of 26

32 1 FD of 25 1
2 Fractional FD of 26

64 2 replicated FD of 25 1 FD of 26

128 4 replicated FD of 25 2 replicated FD of 26

12345678910 = ABCDEFGHJK
What are the nodal designs in row 1 ?
What are the nodal designs in row 2 ?
What are the nodal designs in row 3 ?

Chapter 7. Additional Fractionals and Analysis
7.1. Plackett and Burman designs. For screening a large number of factors,
one can use 2k factorial designs. The number of runs are

n= 4, 8, 16, 32, 64, 128, 256, ...
The gaps are getting wider fast.
The Plackett and Burman (PB) designs has the advantage that it slows down the
pace.

n=12, (24), 20, 24, 28, (25), ..., a multiple of 4 (skipped 2k).
If n = 2k, it is just FD. Otherwise, it is generated by the first row. For example,

a 12-run PB design (PB12) is constructed as follows.
+−+−−−+++
︸ ︷︷ ︸

∗∗

−
︸︷︷︸

∗

+

++−+−−−+++
︸ ︷︷ ︸

∗∗

−
︸︷︷︸

∗
−

︸︷︷︸

∗

++−+−−−+++
︸ ︷︷ ︸

∗∗
+−++−+−−−++
++−++−+−−−+
+++−++−+−−−
−+++−++−+−−
−−+++−++−+−
−−−+++−++−+
+−−−+++−++−
−+−−−+++−++
−−−−−−−−−−−
A B C D E F G H J K L

Table 7.1
Thus the PB design is determined by the first row (except 2k FD).
This can be done in R as follows.
> x=rep(0,132)
> dim(x)=c(12,11)
> x[1,]=c(1,-1,1,-1,-1,-1,1,1,1,-1,1) # (the first row of PB design)
> for(i in 1:10)
> x[i+1,]=c(x[i,11],x[i,1:10])
> x[12,]=rep(-1,11)

a b c d e f g h j k l
+−+−−−+++−+
++−+−−−+++−
−++−+−−−+++
+−++−+−−−++
++−++−+−−−+
+++−++−+−−−
−+++−++−+−−
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−−+++−++−+−
−−−+++−++−+
+−−−+++−++−
−+−−−+++−++
−−−−−−−−−−−

Notice that
neither of f,g,h,j,k,l are two-factor products of a, b, c, d, e,
no vector is of the pattern −+−+−+−+...
but these 11 vectors together with I form a basis of the space.
t(x[, 1 : 11])% ∗%x[, 1 : 11] is a 11× 11 diagonal matrix (12)I.

> y1=c(56,93,67,60,77,65,95,49,44,63,63,61)
> a=c(1,2,4,5,6,10) # from the first column of the PB12 design matrix (with +).
> 0.5*(mean(y1[a])-mean(y1[-a]))
> lm(y1∼x[,1:3]) # lm(y1∼x[,1]+x[,2]+x[,3])
> lm(y1∼x[,1]*x[,2]*x[,3])
(y+ − y−)/2 2.916667
(Intercept) x[, 1 : 3]1 x[, 1 : 3]2 x[, 1 : 3]3

66.083 2.917 10.583 −0.750
(Intercept) x[, 1] x[, 2] x[, 3] x[, 1] : x[, 2] x[, 1] : x[, 3] x[, 2] : x[, 3] x[, 1] : x[, 2] : x[, 3]
64.5625 3.1875 8.9375 −1.3125 −1.6875 −4.9375 0.8125 −4.5625

Notice that the first 3 effects are all different in the models y1∼x[,1]*x[,2]*x[,3])
and y1∼x[,1:3]) and they do not differ from the main effects by a factor of 2.
Advantage of PB design.
PB12 is a [12, 11, 3] screen, producing 1 1

2 replicated 23 factorial design (for its

meaning, see Figure 7.1 below) for any of
(
11
3

)
= 165 choices.

2 1

1
2

1 2

2 1

C

E

F

Fig. 1

For instance, choose C, E, F again.
run # C EF

1 +− + − −− +++−+
2 ++ − + −− −+++−
3 −+ + − +− −−+++
4 +− + + −+ −−−++
5 ++ − + +− +−−−+
6 ++ + − ++ −+−−−
7 −+ + + −+ +−+−−
8 −− + + +− ++−+−
9 −− − + ++ −++−+
10 +− − − ++ +−++−
11 −+ − − −+ ++−++
12 −− − − −− −−−−−

shuffled as

run # CEF
2 −−− 1
12 −−− ∗
1 +−− 2
5 −+− 3
3 + +− 4
8 + +− ∗
11 −−+ 5
7 +−+ 6
4 +−+ ∗
9 −++ 7
10 −++ ∗
6 + + + 8

Now compare PB12 to a 28−4
IV (nodal) design. 28−4

IV design is a [16,8,3] screen, that
is, it projects a duplicated 23 factorial for any one of the

(
8
3

)
= 56 choices.
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For instance, pick C, E, F factors from 28−4
IV fractional design. By rearrangement,

it becomes clear that it is a duplicated 23 FD.
28−4
IV C F E

run # a b c d abd ab ac bc abc
1 − − − − − + + + − 1
2 + − − − + − − + + 7
3 − + − − + − + − + 7
4 + + − − − + − − − 1
5 − − + − − + − − + 4
6 + − + − + − + − − 6
7 − + + − + − − + − 6
8 + + + − − + + + + 4
9 − − − + + + + + − 5
10 + − − + − − − + + 3
11 − + − + − − + − + 3
12 + + − + + + − − − 5
13 − − + + + + − − + 8
14 + − + + − − + − − 2
15 − + + + − − − + − 2
16 + + + + + + + + + 8

shuffled as

run # C E F
1 − − − 1
4 − − −
14 + − − 2
15 + − −
10 − + − 3
11 − + −
5 + + − 4
8 + + −
9 − − + 5
12 − − +
6 + − + 6
7 + − +
2 − + + 7
3 − + +
13 + + + 8
16 + + +

The PB12 is a [12,11,3] screen. The PB16 is the same as 24 FD. Among PB16,
the 28−4

IV (nodal design) is a [16,8,3] screen,
the 215−11

III (nodal design) is a [16,15,2] screen.
Is something strange ?

12-run PB12 is a [12,11,3] screen.
(
11
3

)
= 165.

16-run 28−4
IV is a [16,8,3] screen.

(
8
3

)
= 56. (8 < 11)

16-run 211−7
III is a [16,11,2] screen. (2 < 3)

16-run 215−11
III is a [16,15,2] screen.

Should we have more choices for screening 3 factors in PB16 than in PB12 ?
Ans. Yes, as explained as follows. PB16 = 24 FD and

28−4
IV design, 211−7

III design and 215−11
III design are special cases of PB16 design.

nodal
designs a b c d ab ac ad bc bd cd abc abd acd bcd abcd
25−1
V A B C D P
28−4
IV A B C D L M N O

215−11
III A B C D E F G H J K L M N O P

215−11
III FD:

a. (1, 2, (12)) (or (a,b,ab)) is 4-duplicated tetrahedral design (see 1 in Fig. 1)
(
(
15
2

)
= 105 of them). That is, choose 2 from 15 factors, and the third one is

uniquely determined by the first two, e.g., (1234), (12), (34) (or P, E, K, and
PEK=I) (see the next Table).

b. (1,2,(13)) (or (a,b,ac)) is a duplicated 23 FD (
(
4
2

)(
5
1

)
= 30 many of them and

(1)(2)(13) 6=I, i.e., choose 2 from (a,b,c,d) (say a, b), choose 1 from 5
(the possible remainings from (ab, ac, ad, bc, bd, cd) \ ab) (see the next Table).

c. Choose 3 from 1, 2, 3, 4, (123), (124), (134), (234) form the 28−4
IV design.

(
(
8
3

)
= 56 of them).

d. The other combinations (not in cases (a), (b) and (c)) of selecting 3 out the
15 factors can also be screened out, as there is no more cases that I=3-letter
product as in (a).

Totally, it can screen
(
15
3

)
−
(
15
2

)
= 350 (> 165 screened by PB12).

What is the difference between case b and case a ?
12(12) =I (or xy(xy) =I), but 12(13) 6=I.
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run# a b ab vertex
1 − − + 5
5 − − + 5
2 + − − 2
6 + − − 2
3 − + − 3
7 − + − 3
4 + + + 8
8 + + + 8

9 − − + 5
13 − − + 5
10 + − − 2
14 + − − 2
11 − + − 3
15 − + − 3
12 + + + 8
16 + + + 8

24

run# a b ac
1 − − +
2 + − −
3 − + +
4 + + −
5 − − −
6 + − +
7 − + −
8 + + +
9 − − +
10 + − −
11 − + +
12 + + −
13 − − −
14 + − +
15 − + −
16 + + +

24

run# a b ac
13 − − − 1
5 − − −
2 + − − 2
10 + − −
7 − + − 3
15 − + −
4 + + − 4
12 + + −
1 − − + 5
9 − − +
14 + − + 6
6 + − +
3 − + + 7
11 − + +
8 + + + 8
16 + + +

Should PB16 have more choices for screening 3 factors than PB12 ?
Ans. It indeed screens more combinations of 3 factors (350 of them) than PB12

(which has
(
11
3

)
= 165 of them),

but not all
(
15
3

)
(= 455).

However, PB12 screens all
(
11
3

)
.

Generator rows for constructing PB design.
PB12 ++−+++−−−+−, a [12,11,3] screen.
PB20 ++−−++++−+−+−−−−++−, a [20,19,3] screen.
PB24 +++++−+−++−−++−−+−+−−−−, a [24,23,3] screen.

Table 7.2

Remark. The PB20 and PG24 can be generated as PB12, with all −’s in the last
row.
Remark. The PB12 in Table 7.2 is different from the one in Table 7.1.

+−+−−−+++−+, (the old one)
+ +−+++−−−+− (the new one).
−+−+++−−−+− old ×(−1) 6= new.

The projective properties of the PB20 design. (Plackett and Burman)
Table 7.3 displays a PB20 design, where for convenience,
row and column operations are made, as well as products of columns, so that
the variables A and B are renamed to reproduce a 22 factorial replicated 5 times,
the last 5 columns are replaced by products of the original columns.

Thus its first and last rows are not the same as in Table 7.2.
and none of its row are all −’s.

Attach Table 7.3 AB CDEF GHJK LMNO PQRS T
There are two cases in PB20.
If one chooses A, B together with any column except T, say C (see the next table),

it is a duplicated 23 FD with a tetrahedral design.

run
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A + + + + + + + + + + − − − − − − − − − − c
B + + + + + − − − − − + + + + + − − − − − b
C + − − − + + − + − + − − + + + − − + + − a

23 8 7 6 5 3 4 1 2
23 7 8 6 5 3 4 1 2
te 7 6 4 1
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It is easy to see the 2 23 FD from the next table:
1sr 23 2nd 23 tetrahedral
run# C B A run# run#
16 − − − 17 20
19 + − − 18
11 − + − 12
14 + + − 13 15
7 − − + 9
6 + − + 8 10
2 − + + 3 4
1 + + + 5

Two 23 factorial designs above and one with * tetrahedral design.
Otherwise,, it is one 23 FD plus a 23−1

III design replicated 3 times. The next table
shows that the transpose of the first 3 columns of Table 7.3 or A, B, T.

run
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A + + + + + + + + + + − − − − − − − − − − c
B + + + + + − − − − − + + + + + − − − − − b
T − − − − + + + + + − + + + + − − − − − + a

23 7 8 6 5 4 3 1 2
3 te 7 7 7 6 6 6 4 4 4 1 1 1

One 23 factorial designs and the tetrahedral design replicates 3 times.
It turns out among

(
19
3

)
= 969 choices of choosing 3 factors out of 19,

only 57 (19× 3) produce the latter patterns, the rest are all 2 1
2 replicates.

Since each pattern contains at least one 23 FD, it can screen 3 factors.

A

B

C

3

3

3

3

2

2

2

2

A

B

C

t

t

t

t

Fig. 7.2.

Analysis of PB12 design with 5 factors. For 2k designs, every main effect
and 2-factor interaction only occur once. For the case for PB designs, the 2-factor
interactions occur more than once. Using Table 7.1 (the standard table for PB12

design, then the alias structure is given in Table 7.4. In particular,
lA → A+ 1

3 (−BC +BD +BE − CD − CE −DE),
lB → B + 1

3 (−AC +AD +AE − CD + CE −DE),
lC → C + 1

3 (−AB −AD −AE −BD +BE −DE),
lD → D + 1

3 (+AB −AC −AE −BC −BE − CE),
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lE → E + 1
3 (+AB −AC −AD +BC −BD − CD),

lF → 1
3 (−AB +AC −AD +AE +BC −BD −BE + CD − CE −DE),

lG → 1
3 (−AB −AC −AD +AE −BC +BD −BE + CD − CE +DE),

lH → 1
3 (+AB +AC −AD −AE −BC −BD −BE − CD + CE +DE),

lJ → 1
3 (−AB −AC −AD −AE +BC +BD −BE − CD − CE −DE),

lK → 1
3 (−AB −AC +AD −AE −BC −BD −BE + CD + CE −DE),

lL → 1
3 (−AB +AC +AD −AE −BC −BD +BE − CD − CE +DE).

Table 7.4

ABC = (−1,−1,−1,−1,−1, 1,−1, 1,−1, 1, 1,−1)t =






















−1
−1
−1
−1
−1
1
−1
1
−1
1
1
−1






















. BC =






















−1
−1
−1
−1
−1
1
−1
1
−1
1
1
−1






















A.

ABC here is a vector of ±1 with 1/3 being +1. (→A+−1
3 BC).

Recall I=ABC yields A = BC (ℓA → A+BC · · ·).

> x[,1]*x[,2]*x[,3] # ABC
[1] -1 -1 -1 -1 -1 1 -1 1 -1 1 1 -1
> x[,1]*x[,2]*x[,4] # ABD
[1] 1 1 1 -1 1 -1 -1 1 1 1 1 -1 ABD here is a vector of ±1 with 1/3 being −1.
(A+ 1

3BD).

Revisit Reactor Example in Table 6.15 in §6.12. Table 6.15 is a 25 factorial
design in 5 factors, A, B, C, D, E.

factor − +
A : feed rate (L/min) 10 15
B : catalyst(%) 1 2
C : agitation(rpm) 100 120 jiaodong
D : temperature(oC) 140 180
E : concentration 3 4

The analysis for the full 32-run design led to the conclusion that
the effects B, D, BD, E and DE are likely significant.

Later it was shown that the 16-run 25−1
V design led to the same conclusion.

Question: Can it be done by PB8 ?

PBn starts with n=12, (16), 20, ... Moreover, it is (2k, 2k − 1, 2) screen design
Question: Can it be done by PB12 ?

We rewrite Table 7.5 as follows.
run # in PB12 1 2 3 4 5 6 7 8 9 10 11 12
run # in 25 6 12 23 14 28 24 15 29 25 18 3 1

by comparing the designs about A, B, C, D, E.
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run A B C D E
6 1 −1 1 −1 −1
12 1 1 −1 1 −1
23 −1 1 1 −1 1
14 1 −1 1 1 −1
28 1 1 −1 1 1
24 1 1 1 −1 1
15 −1 1 1 1 −1
29 −1 −1 1 1 1
25 −1 −1 −1 1 1
18 1 −1 −1 −1 1
3 −1 1 −1 −1 −1
1 −1 −1 −1 −1 −1

a b c d e f g h j k l
+ − + − − − + + + − +
+ + − + − − − + + + −
− + + − + − − − + + +
+ − + + − + − − − + +
+ + − + + − + − − − +
+ + + − + + − + − − −
− + + + − + + − + − −
− − + + + − + + − + −
− − − + + + − + + − +
+ − − − + + + − + + −
− + − − − + + + − + +
− − − − − − − − − − −

They yield (ordered) effects in Table 7.0 below:
e l h f c k g a d j b

PD12 : −10.5 −9.8 −8.8 −2.2 −1.5 −0.5 2.2 5.8 7.2 7.2 21.2
25 or 25−1

V : E D B

stem(x,3)

-1 | 10
-0 | 9
-0 | 221
0 | 2
0 | 677
1 |
1 |
2 | 1

The plot suggests that effects B and E, or maybe D, J and L or H are real, (versus
B, E, D, BD and DE in 25 FD). What is the reason for the difference ?

PB12 25

lB → B + 1
3 (−AC +AD +AE − CD + CE −DE) 21.2 19.5

lD → D + 1
3 (+AB −AC −AE −BC −BE − CE) 7.2 10.8

lE → E + 1
3 (+AB −AC −AD +BC −BD − CD) −10.5 −6.3

lH → 1
3 (+AB +AC −AD −AE −BC −BD −BE − CD + CE +DE) −8.8

lJ → 1
3 (−AB −AC −AD −AE +BC +BD −BE − CD − CE −DE) 7.2

lL → 1
3 (−AB +AC +AD −AE −BC −BD +BE − CD − CE +DE) −9.8

Part of Table 7.4

From design 25, BD= 13.25 and DE=−11.0 are significant.
One way to modify is to notice from Table 7.4 that

the first 5 effects are single factor effects, and the others are 2-factor effects.
Among the 5 factors, B, D, E are indeed larger than the other two.

So try the model summary(lm(y ∼ b ∗ d ∗ e+ h+ j + l)) (11− 1 parameters).
Estimate Std.Error tvalue Pr(> |t|)

(Intercept) 66.0833 0.4488 147.256 4.61e− 05 ∗ ∗ ∗
b 9.4583 0.5262 17.974 0.00308 ∗∗
d 3.4583 0.5017 6.893 0.02041 ∗
e −3.3333 0.5262 −6.334 0.02403 ∗
h −1.5000 0.6346 −2.364 0.14188
j 0.4167 0.7773 0.536 0.64556
l −1.7500 0.7773 −2.251 0.15320

b : d 5.7500 0.8244 6.975 0.01994 ∗
b : e −0.3750 0.6731 −0.557 0.63349
d : e −3.3750 0.8244 −4.094 0.05481 .

b : d : e NA NA NA NA
And try the model lm(y ∼ b ∗ d ∗ e+ j + l)
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Estimate Std.Error tvalue Pr(> |t|)
(Intercept) 66.0833 0.7136 92.602 2.78e− 06 ∗ ∗ ∗

b 9.0833 0.7979 11.385 0.00145 ∗∗
d 3.4583 0.7979 4.335 0.02265 ∗
e −2.9583 0.7979 −3.708 0.03409 ∗
j −0.3333 1.1283 −0.295 0.78694 see PB12 7.2
l −1.0000 1.1283 −0.886 0.44075 see PB12 −9.8

b : d 6.8750 1.0704 6.423 0.00765 ∗∗ (Table 7.0 above)
b : e −0.3750 1.0704 −0.350 0.74925
d : e −4.5000 1.0704 −4.204 0.02457 ∗

b : d : e NA NA NA NA

It seems that the model can be simplified by lm(y1∼b*d+d*e)

Estimate Std.Error tvalue Pr(> |t|)
(Intercept) 66.0833 0.6855 96.402 8.4e− 11 ∗ ∗ ∗

b 9.0000 0.7271 12.378 1.7e− 05 ∗ ∗ ∗
d 3.5833 0.6855 5.227 0.001962 ∗∗
e −2.8750 0.7271 −3.954 0.007502 ∗∗

b : d 7.1250 0.7271 9.799 6.5e− 05 ∗ ∗ ∗
d : e −4.7500 0.7271 −6.533 0.000614 ∗ ∗ ∗

Analysis of Variance Table

Model 1: y ∼ b * d * e + h + j + l

Model 2: y ∼ b * d + d * e

Res.Df RSS Df Sum of Sq F Pr(> F )
1 2 4.833
2 6 33.833 −4 −29 3 0.2653

The analysis suggests that the effect B, E, D BD and DE are significant, which is
consistent with the previous 25−1

V conclusion.

y = 66.083 + 9b+ 3.583d− 2.875e+ 7.125bd− 4.750de

y = 66.341 + 9b+ 3.841d− 3.068e+ 7.318bd− 4.750de+ 0.773bac
Note that the estimates are not exact the same under a different model, even it
implies the final model.

Estimate Std.Error tvalue Pr(> |t|)
(Intercept) 66.3409 0.7617 87.097 3.78e− 09 ∗ ∗ ∗

d 3.8409 0.7617 5.043 0.003958 ∗∗
e −3.0682 0.7762 −3.953 0.010820 ∗
b 9.0000 0.7432 12.111 6.78e− 05 ∗ ∗ ∗

d : e −4.7500 0.7432 −6.392 0.001389 ∗∗
d : b 7.3182 0.7762 9.428 0.000227 ∗ ∗ ∗

I(b ∗ a ∗ c) 0.7727 0.8963 0.862 0.428006
Chapter 8. Factorial designs and data transformation.

In a 2k factorial design, we have k factors and each has two levels. In contrast
to 2-level factorial designs, there are multi-level factorial designs, namely, the level
of some factor can be 3 or more, such as Latin Squares.
8.1. A two-way (factorial) design.
Taxic agents. Data: Survival time (in 10 hrs) of animals, which is randomly
allocated to each of 12 combinations of 3 poisons (I, II III), and 4 treatments (A, B,
C, D). Each combination has 4 replications. Thus we have two factors here: poison
and treatment, with 3 and 4 levels, respectively. The data are as follows.
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treatment A B C D
I 0.31 0.82 0.43 0.45
I 0.45 1.10 0.45 0.71
I 0.46 0.88 0.63 0.66
I 0.43 0.72 0.76 0.62
II 0.36 0.92 0.44 0.56

poison II 0.29 0.61 0.35 1.02
II 0.40 0.49 0.31 0.71
II 0.23 1.24 0.40 0.38
III 0.22 0.30 0.23 0.30
III 0.21 0.37 0.25 0.36
III 0.18 0.38 0.24 0.31
III 0.23 0.29 0.22 0.33

or

P\T 1 2 3 4
1 0.31 · · ·
1
...
...
...
...
...
...
...

This is formulated by the two-way anova model
Ytij = η + τt + πi + ωti + ǫtij , t = 1, ..., N, i = 1, ..., k, j = 1, ..., m. (N,k,m)= ?
Or Y = Xβ (i.e., Yh = β′Xh + ǫh, h = 1, ..., n (=?))
What are the parameters ? degree of freedom =? observations ?

(Xh, Yh) ? β =? Is Xh numerical or a factor ? How about Th or Ph ?

Yh = η +

N∑

t=1

τt1(Th = t) +

k∑

i=1

πi1(Ph = i) +

k∑

i=1

N∑

t=1

ωti1(Th = t)1(Ph = i) + ǫh,

Which of the next 2 commands is convenient ?
lm(Y∼X)
lm(Y∼T*P)

In the R codes in §8.1, lm(x ∼ t ∗ p).
Analysis of Variance Table (ANOVA).

yti· − y = (y·i· − y) + (yt·· − y) + (yti· − yt·· − y·i· + y),
where y = 1

mkN

∑

t,i,j Ytij , ...

source of variation sum of squares df mean sq.
poisons

∑

t,i,j(y·i· − y)2 k − 1

treatments
∑

t,i,j(yt·· − y)2 N − 1

interactions
∑

t,i,j(yti· − yt·· − y·i· + y)2 (k − 1)(N − 1)

between group
∑

t,i,j(yti· − y)2 kN − 1

within group
∑

t,i,j(ytij − yti·)
2 (m− 1)× k ×N

∑

t,i,j(Ytij − y)2

=
∑

t,i,j(Ytij − yti· + yti· − y)2

=
∑

t,i,j ](Ytij − yti·)
2 + (yti· − y)2]

=
∑

t,i,j [(Ytij − yti·)
2 + (yti· − yt·· − y·i· + y + yt·· − y + y·i· − y)2]

=
∑

t,i,j [(Ytij − yti·)
2 + (yti· − yt·· − y·i· + y)2 + (yt·· − y)2 + (y·i· − y)2]

> (x=read.table(”toxic.txt”))
> x=unlist(x)
> (t=gl(4,12,48)) # treatment

[1] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4
[39] 4 4 4 4 4 4 4 4 4 4
Levels: 1 2 3 4

> (p=rep(gl(3,4,12),4)) #poison
[1] 1 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 2 2 2 2 3 3 3 3 1 1
[39] 1 1 2 2 2 2 3 3 3 3
Levels: 1 2 3

> (z=lm(x∼t*p))
Ytij = ηti = η + τt + πi + ωti + ǫtij ,

Yh = η +

N∑

t=1

τt1(Th = t) +

k∑

i=1

πi1(Ph = i) +

k∑

i=1

N∑

t=1

ωti1(Th = t, Ph = i) + ǫh,
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h = 1, ..., N ∗ k ∗m. Notice that the parameters in the above equation are
not uniquely determined, i.e., not identifiable.

Yh = β′Xh + ǫh, ǫ ⊥ X.
> summary(z)

Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.41250 0.07457 5.532 2.94e− 06 ∗ ∗ ∗

t2 0.46750 0.10546 4.433 8.37e− 05 ∗ ∗ ∗
t3 0.15500 0.10546 1.470 0.1503
t4 0.19750 0.10546 1.873 0.0692 .
p2 −0.09250 0.10546 −0.877 0.3862
p3 −0.20250 0.10546 −1.920 0.0628 .

t2 : p2 0.02750 0.14914 0.184 0.8547
t3 : p2 −0.10000 0.14914 −0.671 0.5068
t4 : p2 0.15000 0.14914 1.006 0.3212
t2 : p3 −0.34250 0.14914 −2.297 0.0276 ∗
t3 : p3 −0.13000 0.14914 −0.872 0.3892
t4 : p3 −0.08250 0.14914 −0.553 0.5836

Understanding the model and the summary(z):

τ1 = ?

π1 = ?

wt1 = ?

w1i = ?

E(Yh|Xh) = β̂′Xh ?

Ê(Yh|Xh) = ? (numerically) if h = 1 ((t, p) =(1,1))

Ê(Yh|Xh) = ? (numerically) if h =39 ((t, p) =(4,1))

Ê(Yh|Xh) = ? (numerically) if h = 36. ((t = p =3).
> v=lm(x∼I(t==2)*I(p==3))
> anova(v,z)

Model 1: x ∼ I(t == 2) * I(p == 3)

Model 2: x ∼ t * p
Res.Df RSS Df Sum of Sq F Pr(> F )

1 44 1.23851
2 36 0.80072 8 0.43779 2.4603 0.0308 ∗

> anova(z)
Df Sum Sq Mean Sq F value Pr(> F )

t 3 0.92121 0.30707 13.8056 3.777e− 06 ∗ ∗ ∗
p 2 1.03301 0.51651 23.2217 3.331e− 07 ∗ ∗ ∗

t : p 6 0.25014 0.04169 1.8743 0.1123
> w=lm(x∼t+p)
> summary(w)

Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.45229 0.05592 8.088 4.22e− 10 ∗ ∗ ∗

t2 0.36250 0.06458 5.614 1.43e− 06 ∗ ∗ ∗
t3 0.07833 0.06458 1.213 0.23189
t4 0.22000 0.06458 3.407 0.00146 ∗∗
p2 −0.07313 0.05592 −1.308 0.19813
p3 −0.34125 0.05592 −6.102 2.83e− 07 ∗ ∗ ∗

> anova(w,z)

Model 1: x ∼ t + p

Model 2: x ∼ t * p
Res.Df RSS Df Sum of Sq F Pr(> F )

1 42 1.05086
2 36 0.80072 6 0.25014 1.8743 0.1123

> s=lm(x∼I(t==2)+I(t==4)+I(p==3))
> anova(s,z)
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Res.Df RSS Df Sum of Sq F Pr(> F )
1 44 1.13046
2 36 0.80072 8 0.32973 1.8531 0.09888 .

> summary(s)
Estimate Std. Error t value Pr(> |t|)

(Intercept) 0.45490 0.03658 12.435 5.34e− 16 ∗ ∗ ∗
I(t == 2)TRUE 0.32333 0.05667 5.706 9.13e− 07 ∗ ∗ ∗
I(t == 4)TRUE 0.18083 0.05667 3.191 0.00262 ∗∗
I(p == 3)TRUE −0.30469 0.04908 −6.208 1.67e− 07 ∗ ∗ ∗

Are these effects ?
So the final model is

Y = 0.45 + 0.321(T = 2) + 0.181(T = 4)− 0.31(P = 3) + ǫ.

Or Y = 0.45 + 0.321(T = B) + 0.181(T = C)− 0.31(P = 3) + ǫ.

8.2. Simplification and increased sensitivity from transformation. The
analysis in §8.1 is based on the assumption that Y = β′X+ǫ, where ǫ ∼ N(0, σ2) and
X ⊥ ǫ. The residual plot (yti·, ytij − yti·)’s in Fig. 8.1 (see panel (1,1)) has a funnel
shape. If σY |x is a function of η = E(Y |X) (Y > 0), say

σY |x ∝ ηα (or lnσY |x ≈ c + αlnη), then g(Y ) =

{

Y λ if λ = 1− α 6= 0
logY if λ = 1− α = 0

is

the variance stabilizing transformation. α can be estimated by the slope of the
regression line lm(lnσ̂Y ∼ lnµ̂Y ), where µ̂Y and σ̂Y are estimates, which are avail-
able if there are replications such as in the Taxic agents data (see Fig. 8.1), with
(u, v) = (µ̂, σ̂Y ) = (yti, syti

) (the mean and SD of the 4 (t, i) replicates).
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Fig. 8.1. ((y, z, u, v) is given in the R codes)

For the Taxic agents data, the top two panels in Fig. 8.1 are plots (fitted, residuals)
and (yti·, sti·). From panel (1,2) in Fig. 8.1, (−1.5,−0.4) and (0,−1) leads to the
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slope α̂ ≈ −1−(−4)
0.0−(−1.5) = 2 and λ̂ = −1. Thus it is appropriate to let the variance

stabilizing transformation be g(Y ) = 1/Y . The bottom two panels of Fig. 8.1 are
plots (fitted, residuals) and (1/yti·, sti·) after y is replaced by y−1. The slope ≈ 0.
Variance stabilizing transformations when σY |x ∝ ηα, where η = E(Y |X).

dependency variance
of stabilizing
on η α λ = 1− α transformation example
σ ∝ η2 2 −1 reciprocal
σ ∝ η3/2 3/2 −1/2 reciprocal square root
σ ∝ η 1 0 log

σ ∝ η1/2 1/2 1/2 square root poisson frequency
σ ∝ const 0 1 no transformation

The codes to produce Fig. 8.1 are given below.
func1= function(x) {

z=lm(x∼t*p) plot(fitted(z),resid(z))
y=x
dim(y)=c(4,12)
u=apply(y,2,mean)
v=apply(y,2,sd)
z=lm(log(v)∼log(u))
plot(log(u),log(v))
abline(z)

}
par(mfrow=c(2,2))
func1(x)
x=1/x
func1(x)
w=lm(x∼t*p)
summary(w)

Estimate Std. Error t value Pr(> |t|)
(Intercept) 2.48688 0.24499 10.151 4.16e− 12 ∗ ∗ ∗

t2 −1.32342 0.34647 −3.820 0.000508 ∗ ∗ ∗
t3 −0.62416 0.34647 −1.801 0.080010 .
t4 −0.79720 0.34647 −2.301 0.027297 ∗
p2 0.78159 0.34647 2.256 0.030252 ∗
p3 2.31580 0.34647 6.684 8.56e− 08 ∗ ∗ ∗

t2 : p2 −0.55166 0.48999 −1.126 0.267669
t3 : p2 0.06961 0.48999 0.142 0.887826
t4 : p2 −0.76974 0.48999 −1.571 0.124946
t2 : p3 −0.45030 0.48999 −0.919 0.364213
t3 : p3 0.08646 0.48999 0.176 0.860928
t4 : p3 −0.91368 0.48999 −1.865 0.070391 .

anova(w)

Df Sum Sq Mean Sq F value Pr(> F )
t 3 20.414 6.8048 28.3431 1.376e− 09 ∗ ∗ ∗
p 2 34.877 17.4386 72.6347 2.310e− 13 ∗ ∗ ∗

t : p 6 1.571 0.2618 1.0904 0.3867
Residuals 36 8.643 0.2401

The analysis is more sensitive than the one gets from §8.1.
> u=lm(x∼t+p)
> summary(u)
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Estimate Std. Error t value Pr(> |t|)
(Intercept) 2.6977 0.1744 15.473 < 2e− 16 ∗ ∗ ∗

t2 −1.6574 0.2013 −8.233 2.66e− 10 ∗ ∗ ∗
t3 −0.5721 0.2013 −2.842 0.00689 ∗∗
t4 −1.3583 0.2013 −6.747 3.35e− 08 ∗ ∗ ∗
p2 0.4686 0.1744 2.688 0.01026 ∗
p3 1.9964 0.1744 11.451 1.69e− 14 ∗ ∗ ∗

So the final model is
1/y = 2.7−1.71(T = 2)−0.61(T = 3)−1.41(T = 4)+0.51(P = 2)+2.01(P = 3)+ǫ
v.s. Y = 0.45+0.321(T = B)+0.181(T = C)−0.31(P = 3)+ǫ from the end of §8.1:

anova(w)

Df Sum Sq Mean Sq F value Pr(> F )
t 3 0.92121 0.30707 13.8056 3.777e− 06 ∗ ∗ ∗
p 2 1.03301 0.51651 23.2217 3.331e− 07 ∗ ∗ ∗

t : p 6 0.25014 0.04169 1.8743 0.1123 v.s. 0.3867
Remark. The variance stabilizing transformation is actually the boxcox method.
library(MASS)
boxcox(x∼t*p)
b=boxcox(x∼t*p)
I=which(b$x==max(b$x))
b$x[I]
[1] 2 (= α = 1− λ)
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It suggests that λ = 1− α ≈ −1 too.

Another simulation example.
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library(MASS)

n=20

x=1:20

y=x**2+rnorm(n)

W=lm(y∼ x)

# y1/2 = x+ e

par(mfrow=c(3,2))

plot(x,y)

boxcox(W,plotit=T)

boxcox(W,plotit=T,lambda=

seq(0.4,0.6,by=0.01))

b=boxcox(y∼ x)

I=which(b$y==max(b$y))

b$x[I]

[1] 0.5050505 (= α)

plot(x,y**0.5)

plot(x**2,y)
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A consultant problem (see the attached fd.pdf).

Comment: There are two types of set-up: 1. Numerical: The box on the
right represents numerical in 1, 2, 3, 4 ppb. 2. Factor: The rest are factors.

Q: 1. How many factor variables ? 2 or else ?

2. What are the levels of each variable ?
If the 4 variables are treated as linear variables, then the inputs for the right group
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is ...
Otherwise, one may check whether it is quadratic relation.
i∗(1,0,0,0,0 ...), i ∈ {1, 2, 3, 4} i∗(0,1,0,0,0 ...), i ∈ {1, 2, 3, 4}
i∗(0,0,1,0,0 ...), i ∈ {1, 2, 3, 4} i∗(0,0,0,1,0 ...), i ∈ {1, 2, 3, 4}

For measurement 1 ppb, there are 4 pollutants factors: A, B, C, D, each having
2 levels (−,+) or (control, 1 ppb). The standard table of contrast is

a b c d ab ac ad bc bd cd abc abd acd bcd abcd
− − − −
+ − − −
− + − −
+ + − −
− − + −
+ − + −
− + + −
+ + + −
− − − +
+ − − +
− + − +
+ + − +
− − + +
+ − + +
− + + +
+ + + +
Use factor(), it becomes −1 → 0, +1 → 1, thus the table becomes
a b c d ab ac ad bc bd cd abc abd acd bcd abcd
0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0
1 0 1 0
0 1 1 0
1 1 1 0
0 0 0 1
1 0 0 1
0 1 0 1
1 1 0 1
0 0 1 1
1 0 1 1
0 1 1 1
1 1 1 1
Note (−1)(−1) = +1 but factor(-1)*factor(-1)=0. There are 4+6+4+1 df,

together with average effect, total of 16 df.
The enviromental variable is a 3-level factor, say take values E1, E2 and E3,

total of 2 df. Now together with the 4 pollutant factors,
there are 4+2 main effects,
2×4 2-factors interactions,
2×6 3-factors interactions,
2×4 4-factors interactions,
2×1 5-factors interactions,
1 intercept parameter.
The total df is 6+8+12+8+2+1=37. Let e and f denote the 2nd and 3rd

enviromental treatments.
run e f a b c d

The model is Y = Xβ, where n = 48 (= 24 × 3), β is a 37 × 1 vector, X is a
48× 37 matrix with the coordinate of the first column always being 1.
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ea eb ec ed eab eac ead ebc ebd ecd eabc eabd eacd ebcd eabcd

fa fb fc fd fab fac fad fbc fbd fcd fabc fabd facd fbcd fabcd

X without the 1st column is

run e f a b c d ea eb ec ed eab eac ead ebc · · · eabcd fa fb · · · fabcd
1 0 0 0 0 0 0
2 0 0 1 0 0 0
3 0 0 0 1 0 0
4 0 0 1 1 0 0
5 0 0 0 0 1 0
6 0 0 1 0 1 0
7 0 0 0 1 1 0
8 0 0 1 1 1 0
9 0 0 0 0 0 1
10 0 0 1 0 0 1
11 0 0 0 1 0 1
12 0 0 1 1 0 1
13 0 0 0 0 1 1
14 0 0 1 0 1 1
15 0 0 0 1 1 1
16 0 0 1 1 1 1
17 1 0 0 0 0 0
...
32 1 0 1 1 1 1
33 0 1 0 0 0 0

...
48 0 1 1 1 1 1

Chapter 12. Some Application of Response Surface Methods

Response surface methodology (RSM) is a collection of mathematical and sta-
tistical techniques for empirical model building. By careful design of experiments,
the objective is to optimize a response (output variable) which is influenced by
several independent variables (input variables).

12.1. Iterative experimentation to improve a product design.

An experiment is a series of tests, called runs, in which changes are made in the
input variables in order to identify the reasons for changes in the output response.
In an experiment, choices of

different factors,
different ranges for the factors,
different qualitative and blocking factors,
transformations for the factors,
responses and their metrics,
models,

will make a difference in the conclusions.
However, in an iterative sequence of experiments, they may nevertheless arrive at
a similar or equally satisfactory solutions.

A paper helicopter design experiment.
Initial experiment.
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Factor −1 +1
P : paper type x1 regular bound
l : wing length x2 3in 4.75 x2 = (l − 3.875)/0.875 = ±1
L : body length x3 3in 4.75 x3 = (L− 3.875)/0.875 = ±1
W : body width x4 1.25in 2in x4 = (W − 1.625)/0.375 = ±1
F : fold x5 No Y es
T : taped body x6 No Y es no need to adjust
C : paper clip x7 No Y es
M : taped wing x8 No Y es

(1)

Let yi and si be the data from repeated flight times of the 16 helicopters made
according to the 28−4

IV design (what are the generating relations ?)

y=c(236,185,259,318,180,195,246,229,196,203,230,261,168,197,220,241) # (yi)

s=c(2.1,4.7,2.7,5.3,7.7,7.7,9,3.2,11.5,10.1,2.9,15.3,11.3,11.7,16,6.8)

a=rep(c(-1,1),8)

b=rep(c(-1,-1,1,1),4)

c=rep(c(rep(-1,4),rep(1,4)),2)

d=c(rep(-1,8),rep(1,8))
Q: Are a, b, c and d factors ?

P l L W F T C M
5.87 27.75 −13.25 −8.25 3.75 1.37 −10.88 −3.88
σeffect ≈ 4.5.

From the output and statistics analysis (try yourself), l, L, W and C are real.

Since C, the paper clip factor, reduces the flight time,
any further experiment does not add paper clip.

Then the model is simplified as

y = 223 + 28x2 − 13x3 − 8x4 # from lm(y∼ x2+x3+x4)

Another 5 helicopters were made roughly according to the steepest ascent direction.
= ?

helicopter 1 2 3 4 5
l : wing length 4 4.75 5.5 6.25 7
L : body length 3.82 3.46 3.10 2.75 2.39
W : body width 1.61 1.52 1.42 1.33 1.24

y 275 304 347 275 227
s 9.4 13.5 20 57.3 38.9

(the optimal value y ≈ 347).

Note that l increases by 0.75 each time,

L decreases by 0.36, 0.36, 0.35, 0.36,

W decreases by 0.1 roughly each time.
Why this way ?

a=c(28,-13,-8) (see l, L, W)
b=c(4,3.82,1.61) (see 1st column of above table)
d=c(4.75,3.46,1.52) (see 2nd column ...)
e=c(3.875,3.875,1.625) (see Eq. (1) above)
r=c(0.875,0.875,0.375) (see Eq. (1) above)
x=a/sum(a)
y=(b-e)/r
x/y

[1] 28.00000 29.54545 28.57143
y=(d-e)/r
x/y

[2] 4.000000 3.915663 4.081633
What is in common in [1] and [2] ?

The engineers suggest that the wing area (lw) and the wing length ratio (l/w)
may be factors that has impact on the flight time. So another set of 18 experiments
were run.

113



Factor −1 0 +1
A : wing area (lw) 11.8 12.4 13
R : wing length ratio 2.25 2.52 2.78
W : body width 1 1.25 1.5
L : body length 1.5 2 2.5

Note. The estimates are based on numerical covariates, but not factors.
To allow for the fitting of a second-order model, 2+12 additional runs were

added. Now total of 24 + 2 + 12 = 30 runs.
> lm(y∼a+b+c+d+I(a*a)+I(b*b)+I(c*c)+I(d*d)+I(a*b)+I(a*c)

+I(a*d)+I(b*c)+I(b*d)+I(c*d))

ŷ =370.83

− 0.08x1 + 5.08x2 + 0.25x3 − 6.08x4

− 1.79x2
1 − 1.42x2

2 − 2.29x2
3 − 0.08x2

4 (12.2)

− 2.88x1x2 − 3.75x1x3 + 4.38x1x4

+ 4.63x2x3 − 1.50x2x4 − 2.13x3x4

By eliminating the inert effects, the equation can be simplified as

ŷ =370.83

5.08x2 − 6.08x4

− 1.79x2
1 − 2.29x2

3 (12.3)

− 2.88x1x2 − 3.75x1x3 + 4.38x1x4

+ 4.63x2x3 − 2.13x3x4

Note: The fitted equation (12.3) is not the same as the output from R program,
unless adjust the values of intercept and squared terms. See codes below.
> lm(y∼b+d+I(a*a)+I(c*c)+I(a*b)+I(a*c) +I(a*d)+I(b*c)+I(c*d))

ŷ =369.5

+ 5.08x2 − 6.08x4

− 1.66x2
2 − 2.13x2

3

− 2.88x1x2 − 3.75x1x3 + 4.38x1x4

+ 4.63x2x3 − 2.13x3x4

> w=lm(y b+d+I(a*a)+I(c*c)+I(a*b)+I(a*c)+I(a*d)+I(b*c)+I(c*d))
> anova(z,w)
Model 1: y a + b + c + d + I(a * a) + I(b * b) + I(c * c) + I(d * d)

+ I(a * b) + I(a * c) + I(a * d) + I(b * c) + I(b * d) + I(c * d)
Model 2: y b + d + I(a * a) + I(c * c) + I(a * b) + I(a * c)

+ I(a * d) + I(b * c) + I(c * d)
Res.Df RSS Df SumofSq F Pr(> F )

1 15 194.17
2 20 289.17 −5 −95 1.4678 0.2579

Based on Eq.(12.2), we can have canonical form

ŷ = 371.4− 4.66X2
1 − 3.81X2

2 − 3.27X2
3 − 1.2X2

4 (12.4)

where X1 = (0.39,−0.45, 0.8,−0.07)(x1, x2, x3, x4)
′,

X2 = (−0.76,−0.5, 0.12, 0.39)(x1, x2, x3, x4)
′,

X3 = (0.52,−0.45,−0.45, 0.57)(x1, x2, x3, x4)
′,

X4 = (−0.04,−0.58,−0.37,−0.72)(x1, x2, x3, x4)
′.
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Appendix. The marginal distribution (MD) approach. The MD approach
consists a speical type of graphing and tests for model checking. Notice that existing
model checking tests for testing

H0: Y = βX +W and X ⊥ W v.s. H1: H0 is false. (1.1)

like the F-test and t-test tests are valid if
(1) Y = βX + θg(X) + ǫ is true, (it changes H1 to Ho

1 : θ 6= 0).
(2) X ⊥ ǫ,
(3) ǫ ∼ N(0, σ2).
If (1) or (3) fails, the existing tests are not valid, and can be worse than random

guessing, let alone being consistent. Of course, if no better choice, something is
better than no choice.

We shall introduce a new approach for model checking. It can be applied to
various models, including the LR models. It is always consistent for testing H0:
Y = βX +W and X ⊥ W v.s. H1: H0 is false.
A.1. Preliminary. We assume that

(X1, Y1), ..., (Xn, Yn) are i.i.d. observations from Fx,Y , with density function
fx,Y , where X is a p-dimensional random vector and Y is a response variable.
Let FY |x be the conditional cdf with density function fY |x.
Denote Fo = FY |x(·|0), which is called the baseline cdf of FY |x.
The LR model is often formulated by

Y = α+ β′X+ ǫ, where E(ǫ|X) = 0. (1.2)

If the conditional variance V ar(W |X) does not depend on X, it is called an ordinary
linear regression (OLR) model, otherwise, it is called a weighted linear regression
(WLR) model. Q: Does WLR model satisfy H0 in (1.1) ?
Remark 1. Advantages that the LR model is specified by Eq. (1.1) rather than
(1.2) are as follow:

(1) Eq. (1.2) but not (1.1) requires that E(Y |X) exists;
(2) In general, β but not α is identifiable under censorship models;
(3) It is often less important to estimate α than β, the effect of X on Y .

Under the OLR model, there are several consistent estimators of β if Fx,Y ∈ Θlse,

where Θlse = {Fx,Y : Σx is non-singular and Cov(X, Y ) exists}, (1.3)

and Σx is the p× p covariance matrix of X. They include
the semi-parametric MLE (SMLE) Y&W (2003) (if Fo is discontinuous),
the modified SMLE (MSMLE) (see Y&W (2002)), (L =

∏

i f(Yi − βXi))
the least squares estimator (LSE) and
the quantile or median regression estimator.

Yu and Wong (2002) show that
the MSMLE is still consistent if E(lnfW (W )) exists, and
the MSMLE (or SMLE) β̃ satisfy P (β̃ 6= β infinitely often) = 0 if FW isn’t cts.

However, the LSE is inconsistent if E(|Y ||X) = ∞.
Given Fx,Y ∈ Θ (the family of all joint cdf of (X, Y )), Fo = FY |x(·|0) is

well defined, even if (X, Y ) does not satisfy the linear regression model in H0:
Y = β′X+W , where E(W ) may not exist. Let

Θ0 = {Fx,Y : Y = β′X+W , where W ⊥ X, β and FW are unknown} (2.1)

(FW = Fo). Then Eq. (1.1) can be specified as H0: Fx,Y ∈ Θ0. The next lemma
characterizes various LR models and motivating the MD approach for the LR model.

Lemma 1. FY |x is a function of (Fo, β) and FY (t) = E(FY |x(t|X)). Moreover, if
Fx,Y ∈ Θ0, then FY |x(t|x) = Fo(t− β′x).
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For convenience, we write FY (t) = FY (t;β), as FY is a function of the parameter β
if FX,Y ∈ Θo. Given β and Fx,Y , which may or may not belong to the LR model,
define another r.v..

Y ∗ = β′X+W ∗, where FW∗(·) = FY |x(·|0) and X ⊥ W ∗. (2.2)

By Lemma 1, the cdf of Y ∗ is

FY ∗(t) = E(Fo(t− β′X)) (denoted also by FY ∗(t;β)). (2.3)

Q: Is FY ∗ related to Fx,Y ?
Theorem 1. If Fx,Y ∈ Θ0 (see Eq. (2.1)), then

(a) Fo(·) = FY |x(·|0) = FY∗|x(·|0),
(b) FY |x = FY ∗|x, and
(c) FY = FY ∗ .

If Fx,Y ∈ Θ \Θ0, then
(e) Fo(·) = FY |x(·|0) = FY∗|x(·|0), and
(d) FY |x 6= FY ∗|x.
Notice that if Fx,Y ∈ Θ0 as in (2.1), E(Y |X) may not exist.

Corollary 1. (1) Fx,Y ∈ Θ0 iff FY |x = FY ∗|x;
(2) Fx,Y ∈ Θ0 => FY = FY ∗ .
Corollary 1 motivates the MD plot and the MD test. Given data (Xi, Yi)’s

from Fx,Y , if Fx,Y ∈ Θ0 in (2.1), then β in FY ∗(t;β) is uniquely determined by
Fx,Y . It is often that β in FY ∗(t;β) can also be uniquely determined by Fx,Y even
if Fx,Y /∈ Θ0, such as in the case that Fx,Y ∈ Θlse (see (1.3)). One estimates β by
the LSE if one feels confident that Θp = Θlse, or by the modified semi-parametric
MLE (MSMLE) otherwise. In this course, we only use the LSE for illustration.
A.2. The MD plot. The edf of FY (t) is F̂Y (t) =

1
n

∑n
i=1 1(Yi ≤ t). We call the

95% pointwise confidence interval of FY (t), i.e., F̂Y (t)±1.96

√

F̂Y (t)(1− F̂Y (t))/n,

the confidence band (CB) of FY . The MD plot is
to plot y = F̂Y ∗(t) and y = F̂Y (t), or together with the 95% CB of FY ,

or to plot y = ŜY ∗(t) and y = ŜY (t), or the CB of SY ,
where SY = 1− FY , ŜY = 1− F̂Y (t), etc.

F̂Y ∗(t) = 1
n

∑n
i=1 F̂o(t− β̂Xi),

β̂ is a consistent estimator of β,
F̂o(t) → Fo(t) a.s.

If the two curves are close, e.g, the curve of y = F̂Y ∗(t) lies within the CB of FY ,
then it suggests that the model does fit the data.

If most of the curve of y = F̂Y ∗(t) lies outside the CB of FY ,
then it suggests that the model does not fit the data.
The key of our new approach is to construct an estimator of the baseline cdf

Fo, say F̂o, which satisfies that for each t, F̂o(t)
P→Fo(t) ∀ Fx,Y ∈ Θ.

We now explain how to construct the estimators F̂o and F̂Y ∗ .
For simplicity, we first explain in the case that

X ∈ R and Y = βX +W , where fX(0) > 0. (2.4)

Then, there are observations X1, ..., Xm satisfying |Xi| < δn for some δn = cn−1/3.
If n ≈ 100 then ideally choose c so that m ≥ 20.

F̂o(t) =
1

m

m∑

i=1

1(Yi ≤ t) → Fo(t) (= FY |X(t|0)) if n → ∞ (2.5)

F̂Y ∗(t) =
1

n

n∑

i=1

F̂o(t− β̂Xi) =
1

mn

n∑

i=1

m∑

j=1

1(Yj + β̂Xi ≤ t)

=
1

mn

n∑

i=1

m∑

j=1

1(W ∗
j + β̂Xi ≤ t),
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where β̂ is a consistent estimator of β e.g. the LSE based on (Xi, Yi)’s. One can

replace F̂Y ∗ by F̃Y ∗ , the edf based on n “observations” Y ∗
i = β̂Xi + W ∗

i , i = 1,
..., n, W ∗

i ’s are n samples with replacement from {Y1, ..., Ym} (where Xi ≈ 0 and
W ∗

i ⊥ X). If (2.4) fails (fX(0) 6= 0), then ∃ a mode of fX , denoted by a. Since

β′X+W = β′(X− a)
︸ ︷︷ ︸

=X̌

+β′a+W
︸ ︷︷ ︸

=W̌

, and W ⊥ X iff W − β′a ⊥ (X− a), (2.6)

we can replace Xi by X̌i = Xi − a, i = 1, ..., n.
Eq. (2.5) remains the same, treating X̌i as Xi, where |X̌i| < δn for i = 1, ..., m.
Remark 3. In application, a can be the center of an interval where Xi’s are most
concentrated.

Without loss of generality (WLOG), we shall assume hereafter that the zero
vector satisfies

fx(0) > 0 and Y1, ..., Ym are the Yi’s where ||Xi|| ≤ δn, δn → 0 (e.g., δn = cn
−1

3p

(2.7)
c = r/2 and r = maxi,j ||Xi −Xj ||) and || · || is a norm.
Remark 4. One may wonder whether a naive estimator of Fo is the edf F̌o based
on Ŵi’s (= Yi− β̂′Xi). This F̌o is a consistent estimator of Fo if H0 in Eq. (2.1) is
true. The drawback of this naive approach is that if H0 in Eq. (2.1) is false then F̌o

is not consistent. We shall present 2 examples that F̌Y ∗ based on such F̌o suggests
that the data fit the incorrect models Θ0. Thus it does not serve our purpose of a
diagnostic tool.

If the curve of F̂Y ∗(t) lies either entirely outside or entirely inside the confidence
band of F̂Y (t), then the indication is quite clear. Otherwise, it is quite subjective to
say whether the two curves are close. Thus it is desirable to derive certain statistical
tests.
A.3. The MD test The MD plotting method leads to a class of tests of H0:
Fx,Y ∈ Θ0, as follows.

T1 =

∫

|F̂Y (t)− F̂Y ∗(t)|dF̂Y (t) =
∑

t

|F̂Y (t)− F̂Y ∗(t)|f̂Y (t), (2.8)

or T2 = supt |F̂Y (t)− F̂Y ∗(t)|,
T3 =

∫
W(t)(F̂Y (t)− F̂Y ∗(t))dG(t),

or T4 =
∫
W(t)|F̂Y (t) − F̂Y ∗(t)|kdG(t), where k ≥ 1, W(·) is a weight function,

and dG is a measure, e.g., dt, dF̂o, dF̂Y and dF̂Y ∗(t). These tests are really testing

HMD
0 : FY = FY ∗ , v.s. HMD

1 : FY 6= FY ∗ , where Y ∗ is defined in Eq. (2.2).

Recall H0: Y = βX +W and X ⊥ W v.s. H1: H0 is not true.
Or v.s. Ho

1 : Y = βX + θG(x) + ǫ, θ 6= 0 and under NID.
Definition. The tests T1, ..., T4 in Eq. (2.8) are called the MD tests.

The percentiles of these Tj ’s can be estimated by resampling as follows.
b1. In view of Remark 3 and Eq. (2.6), WLOG, we can assume that (2.7) holds.

OW, let X̌i = Xi − a, where a is specified in Remark 3.
b2. Obtain β̂, an estimator of β based on (Xi, Yi)’s under H0, such as the LSE if it

is sure that Fx,Y ∈ Θlse, or the SMLE if there exist ties in the data, otherwise,
the MSMLE.

b3. Take a random sample of size m from the Xi’s in a neighborhood of 0, say
Neib(0, δn), where m and δn are as in (2.7), and take another random sample
of size n−m from the Xi’s outside Neib(0, δn). It yields a sample of Xi’s, say

X
(1)
1 , ..., X(1)

n .

b4. Generate a random sample of size n from F̂o, say, W
(1)
1 , ......, W

(1)
n .
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b5. Let Y
(1)
i = β̂′X(1)

i +W
(1)
i , i = 1, ..., n.

b6. Now, obtain a value of T1, say T
(1)
1 , based on (X

(1)
i , Y

(1)
i )’s and Eq. (2.8).

b7. Repeat the steps b3, ..., b6 a large number of times, say 100 times, obtain T
(j)
1

for j = 2, ......, 100. Thus the desired percentile can be estimated by the edf of
these T (j)’s.

Remark 5. The MD tests are valid tests of

HMD
0 : FY = FY ∗ against HMD

1 : FY 6= FY ∗ .
It is worth mentioning that even when H0 in Eq. (2.1) fails and E(|Y ||X) = ∞,

the asymptotic distribution of the MD test still holds.
In particular, if H0 is not true but FY ∗ = FY ,
the MD test would make type I error for testing HMD

o with probability (w.p.) po
and type II error for testing H0: Y = βX +W in (2.1) w.p.(1− po), where po is the
size of the MD test. This is not the case for all existing tests.

For instance, the goodness-of-fit test tests H0: σL = σE under NID.

The t-test tests Ho: θ = 0 with Y = βX + θg(X) + ǫ under NID.

If the assumption fails, the type II error depends on the real model and 6= 1−α.

Remark 6. A valid test for H0: Y = βX +W v.s. H1: Y 6= β′X+W is based on
F̂x,Y − F̂x,Y ∗ , where FY,Y ∗ is the joint distribution function, Y ∗ is defined as in

(2.2), and F̂x,Y ∗ is its edf. However, it is more convenient to use the MD approach,
as it has a diagnostic plot and most of the time FY 6= FY ∗ if H1 is true.

Example 2.1. We generated data (Xi, Yi), i = 1, ..., n from the Cox model

hT |X(t|x) = ho(t) exp(x), where ho = 1(t ≥ 0), i.e., ST |X(t|x) = e−tex1(t>0),
Y = T − E(T |X), X ∼ U(−4/k, 4), k ≈ n0.7, and n is between 60 and 300.

n=100

k=n**0.7

x=runif(n,-4/k,4)

y=rexp(n,exp(x))-exp(-x) #so that E(Y|X)=0

We fitted the data to the OLR (or WLR model), that is,

H0: Y = βX +W (& X ⊥ W ).
The Cox model does not belong to any LR model. We compare the MD test

to two existing tests in the literature: gam test and SS-test.
The gam test is invalid, as X 6⊥ Y − βX − E(Y |X), violating its required assump-
tion.
The t-test and the goodness-of-fit test are also invalid, as no NID.
The SS-test is valid under the assumption in this example (it only requires finite
E(Y |x)).

For such data with a sample size n = 200, the residual plots (see panels (1,2)
and (1,3) in Figure 1) and the MD plot (see panel (2,1)) suggest that the OLR model
may not fit the data, but the residual plot in panel (2,2) suggests that a WLR model
with a weight function

√

|(X − 4)31(X < 3.7) + (X − 4.5)31(X ≥ 3.7)|might work.
However, the MD plot (see panel (2,3)) suggests that the WLR model does not fit
the data neither. Thus the MD plots are better.

The simulation results suggest that the MD test T1 performs very well for
testing the incorrect OLR model, even when n = 60. The MD test can detect that
the data do not fit the WLR model for large sample sizes such as n ≥ 200.

For comparison sake, we also generated random samples from another WLR
model:

Y = X +W , where W = 1 + ǫ
√
X + 0.3, ǫ ⊥ X, ǫ ∼ N(0, 1), X ∼ U(0, 2),

Under this model, we carried out two sets of simulation studies. We first fitted the
data to the OLR model Y = βX + W , where W ⊥ X. The residual plots (see
panels (3,2) and (3,3)) and the MD plot (see panel (4,1)) of Figure 1 suggest that
the OLR model does not fit the data, but a WLR model might work (see panels
(4,2) and (4,3)).
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The naive estimator Š∗ (= 1− F̌Y ∗ see Remark 4) suggests that the data from
the Cox model and from the WLR model all fit the OLR model (see panels (1,1)
and (3,1)). Thus it is useless. We also applied the same three tests to the WLR
model. Since the data were from the WLR model, thus we estimated P (H0|H1)
for fitting the OLR model and P (H1|H0) for fitting the WLR model, where H2

0 :
the model is the WLR model v.s. H2

1 : H2
0 is not true. The simulation results are

presented in the bottom half of Table 1.
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Figure 1. Residuals and MD plots under the Cox Model or the WLR model

Model: | OLR | WLR
Data Test: | T1 SS gam | T1 SS gam

n | p̂0|1 p̂0|1 p̂0|1 | p̂0|1 p̂0|1 p̂0|1
Cox 60 | 0.01 0.06 1.00 | 0.78 0.96 1.00

200 | 0.00 0.00 1.00 | 0.19 0.95 1.00
300 | 0.00 0.00 1.00 | 0.02 0.94 1.00

| p̂0|1 p̂0|1 p̂0|1 | p̂1|0 p̂1|0 p̂1|0
WLR 60 | 0.03 0.00 0.59 | 0.04 0.05 0.08

120 | 0.00 0.00 0.60 | 0.04 0.05 0.07
p̂0|1 is the estimate of P (H0|H1) and p̂1|0 is the estimate of P (H1|H0)

Table 1. Simulation Results in Example 2.1

Homework. 1. Write the R codes to recover panels in Figure 1, except [2,3] and
[4,3].
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2. Write the R codes to recover the first column of Table 1, the results on MD
test based on T1 statistic. Then make comparison to the t− test for those 5 cases.
You should use the same data to do the two tests.

In the original MD method, F̂ (t) is a smooth version of the edf. So we discuss
as follows.
Remark. The idea for generating random numbers for a continuous distribution
FX : FX(X) ∼ U(0, 1). Let Y ∼ U(0, 1), F−1

X (Y ) ∼ FX .
Example 8. Suppose that F is a piecewise uniform distribution on (0, 1) and (3, 4)
with weights 1/4 and 3/4. A pseudo random number of n = 10 can be generated
as follows.

> n=10
> x=runif(n)
> m=length(x[x<0.25])
> y=runif(m)
> z=runif(n-m)+3
> y [1] 0.08246115 0.76996953
> z [1] 3.848005 3.442600 3.142384 3.670791 3.537500 3.897043 3.558773 3.388922
Example 9. Suppose that F is piecewise uniform on (0, 0.5) and (3, 6) with weights

1/5 and 3/5 and F (x) = 1−0.2e−x+7 if x > 7. That is F (x) =







0 if x < 0
0.4x if x ∈ [0, 0.5]
0.2 if x ∈ (0.5, 3)
0.2 + 0.2(x− 3) if x ∈ [3, 6]
0.8 if x ∈ (6, 7)
1− 0.2e−x+7 if x > 7

Thus F−1(t) =







t/0.4 if t ∈ [0, 0.2]
t−0.2
0.2 + 3 if t ∈ (0.2, 0.8]

7− ln 1−t
0.2 if t ∈ (0.8, 1]

9 pseudo random numbers can be generated as follows.

> (x=sort(runif(9)))
[1] 0.01509044 0.03312090 0.19840396 0.28440890 0.33304866 0.35577466 0.48100012
[8] 0.59806993 0.85603151

> y=x
> (k=ceiling(x*5)) # Why ×5 ?

[1] 1 1 1 2 2 2 3 3 5
> (u=x[k==1]*2.5)

[1] 0.03772610 0.08280224 0.49600990
> (v=7-log(5*(1-x[k==5])))

[1] 7.328723
> (x=x[k>1&k<5])

[1] 0.2844089 0.3330487 0.3557747 0.4810001 0.5980699
> round(c(u,(x-0.2)*5+3,v),2)

[1] 0.04 0.08 0.50 3.42 3.67 3.78 4.41 4.99 7.33
> y=c(y[k==1]*2.5, 5*(y[k>1&k<5]-0.2)+3, 7-log(5*(1-y[k==5])))
> round(y,2)

[1] 0.04 0.08 0.50 3.42 3.67 3.78 4.41 4.99 7.33
Remark. Given a n distinct Yi, their edf is F̂ (t) = 1

m

∑m
i=1 1(Yi ≤ t). WLOG,

assume that Y1 < · · · < Ym. A linear interpolation to the discrete F̂ is

F̃ (t) =
1

m

m∑

i=1

[
t− (Yi − ǫ)

ǫ
1(t ∈ (Yi − ǫ, Yi)) + 1(Yi ≤ t)]

=

{
j−1
m +

t−Yj+ǫ
mǫ if t ∈ (Yj − ǫ, Yj ], j ∈ {1, ...,m}

· · · if · · ·,
where ǫ = mini<j≤m |Yi − Yj |,

121


