Design of Experiments (Math 556)

MWF 8:00am-9:30am, WH 329
May 2, Tuesday meet Friday class !!
Office: WH 132
Office hours: M, T 7-8pm. Through Zoom
https://binghamton.zoom.us/j/82655265947pwd=d3160Gx1cmZ4M3cxZEJwVGd1RGerUTO09))
Meeting ID: 826 552 6594
Passcode: 031320
Textbook: Statistics for Experimenters (2nd ed.)
by George Box, J Stuart Hunter and William G. Hunter
Quiz: Once a week at a random day,
quiz problems: formulas for Math 447-448 (see my website)
Midterm: March 20 (M)
Final May 11 5:40-7:40pm CW 314 Changed to WH329 !!
Each is allowed to bring a piece of paper with anything you prefer on it.
Homework assigned during a week is due next Wednesday before 8:00am.
Email me at gyu@math.binghamton.edu before 8:00am on Wednesday.
HW is on my website: http://www.math.binghamton.edu/qyu/qyu_personal
Remind me if you do not see it by Saturday morning !
Try to use Latex in homework. Otherwise, take a picture and convert it to a
pdf file.

There will be homework due this Friday, as well as quiz !!!

The lecture note is also on my website
http://www.math.binghamton.edu/qyu/qyu_personal
note and note2 are updated one,

Grading Policy: 40% hw and quizzes +60% exams,

B =70+

Chapter 1. Introduction
Self-reading.
Chapter 2. Basic

All concepts in this chapter have been introduced in 501,
except autocorrelation.
Recall

X and Y are random variables, with observations (X;,Y;), i =1, ..., n.
Population covariance and correlation:

Cov(X,Y)=E(XY)—- E(X)E(Y),

_ _ Cov(X)Y)
P=PXY = “Goxoy 7
Sample Covariance (X, Y)=XY -X-Y
Sample correlation p = r = %, where 6% = XX — (X)?,

Note that the sample variance of X is often refer to 52 = —L- 3" (X, — X)?
(8?2 is also denoted by s? in the textbook. Which is a better notation ?)
Definition. The lag-k sample autocorrelation coefficient of Y;’s is

S = V)Y - 1)

i>k
TR = - — ,k=1,2,..
2im (Yi—Y)?

It measures the serial dependence of the data in time.
If r, # 0, are the data i.i.d. 7

If r;, > 0 significantly, are the data i.i.d. ?
> x=rnorm(20)



> cor(x[1:19] x[2:20]) [1] -0.1431549
> cor.test(x[1:19],x[2:20])
t = -0.59639, df = 17, p-value = 0.5588
cor -0.1431549
Theorem 1. If X, ..., X, are i.i.d. from N(p,0?), then
(a) X L S%
(b) X ~ N (s, % /n);
(c) (n—1)S?/0? =n6? /0% ~ x*(n —1).
Chapter 3. Comparing Two Entities

3.1. Consider the test for the difference of the means of two random samples X;’s
and Yj’s.
H,: py —pux =6 v.s. Hi: py —ux > 0.
Two-samples test: Under the assumption that (1) two samples are independent,
(2) X;’s are from N(ux,o?) and (3) Y;’s are N(uy,0?), then a common test
is
¢ =1(t > tamny+nx—2), Where (1)
, Y-X-6 42— Zim (X = X 45, (Y Y
= and s; = .
Sp\/l/nx—f—l/ny P ny +nx — 2
This is due to

(a) T = \/% ~ distribution ?, where N(0,1) L x?(v)

Y-X-§ 2 2
(b) t = ==\ 50/

nx (X -X)? S (Yi-Y)?
«oz ~ Xy — 1), 2=

nx 2 ny V)2
(d) 2 (X -X) + Zi:lg’ LOENY what distribution ?

The paired t-test: Under the paired random sample of size n from N(uy,0%)
and N(px,0%), then a common test is

¢p =1(t > to n_1), where

t = Y-X-4 and 32 = ﬁ E?:l(}/l — Xl —ﬁ)?

Importance of the independent normally distributed assumptions in both
tests.

Chemical Example in Table 3.2. An experiment was performed on a factory
by making in sequence 10 batches of chemical using a standard production method
(A) followed by 10 batches of a chemical using a modified method (B). The data
are

A: 89.7, 814, ..., 845

B: 84.7, 86.1, ..., 88.5
See Table 3.1 on page 69.

Summary:

na =npg = 10,

ya = 84.24,

yp = 85.54,

512) = 10.8727,
H, pp—pa=0,v.s. H: ug —ps > 0.

Yp —Ya =13

Is it significant 7 What does it mean ?
We need to

(1) set a (= 0.05), and



(2) compute P(gg —74 >13)=7 what is it called ?
Then conclude that if P(§p — 74 > 1.3) < a ...

One often uses the two-sample t-test in Eq. (1), then the P-value is 19% here.
Is it significant ?
Do we reject H, 7
Can we use paired t-test 7
Does the SD become larger or smaller if we use it ?
o%/(2n —2) v.s. 02/(n—1).
2 EIA D 05

P ny +nx—2 L
What is the conclusion if we use it ? P-value=P(T > ¥£4)
Introduce two alternative approaches next.
External Reference Distribution.
Old data. 210 batches of the chemical products recorded in time order before the
20 data:

T1, ...y 210

The old data (see p.120) provide an external reference distribution.
Under H,, the 20 data can be viewed as a sample from the population of the 210
data.

2
v.s. Sy, v,

Compute
Dy =300 owi/10 = S 210, t =1, ., 191
See the histogram Figure 3.3 on page 70.

P(yg —74 > 1.3) =9/191 ~ 0.047. Is it significant ?
Recall that if one uses t-test, the P-value is 19%. Anything wrong 7
1. The lag-1 sample auto-correlation of the data is r; = p; = —0.29.
The data are not independent.
If one pretends independence, it leads to incorrect conclusion.
2. Normal assumption may not be valid (do we need to check it ?)

Internal Reference distribution. Random sampling distribution.

A randomized design in the comparison of standard and modified fer-
tilizer mixtures for tomato plants. 11 plants in a row. 5 with standard (A),
6 with modified (B). One way is to apply A to the first 5 and B to the next 6 in
a row. There are correlation between locations and it is not a good idea without
randomization.

Randomizing the order in the row (sample(1:11,5) = ?) resulting

location : 1 2 3 4 5 6 7 8 9 10 11
fertilizer : A A B B A B B B A A B
yield : 29.2 114 26.6 23.7 253 285 14.2 179 16.5 21.1 24.3
(1)
Remark: Role of a statistician:
(1) randomization before an experiment (DOE);
(2) make inferences after the experiment.
> x=c(29.2,11.4,26.6,23.7,25.3,28.5,14.2,17.9,16.5,21.1, 24.3)
> z=c¢(3,4,6,7,8,11)
> mean(x[z])-mean(x[subset=—2z]) # results in g — Y4 ~ 1.69.
To test Hy: up — pa = 0 against Hy: up — pg > 0.
Need to compute P(yg — 34 > 1.69) =7
Rather than using t-test, which needs normal assumption, and equal variance,
we make use of the
Permutation distribution.



Table (1) is one combination of selecting 5 out of 11.

1 2 3 4 5 6 7 8 9 10 11
A A A A A B B B B B B (2)
202 114 26.6 237 253 285 142 179 165 21.1 243

is another combination under H,: pup — pua = 0.
> mean(x[6:11]) —mean(x[1:5]) # results in —2.82
Eq.(2) yields g5 — 74 ~ —2.82; while
Eq.(1) yields g5 — 74 ~ 1.69.

There are (151) = ;,—16', =11-3-2-7 = 462 such combinations.
> P=combn(1:11,6)

> P[,1:10]
L L2 L3 L4 [s] L6l L7 [8] [9 [10]
My + 1 1 1 1 1 1 1 1 1
2] 2 2 2 2 2 2 2 2 2 2
3] 3 3 3 3 3 3 3 3 3 3
M4, 4 4 4 4 4 4 4 4 4 4
] 5 5 5 5 5 5 6 6 6 6
6] 6 7 8 9 10 11 7 8 9 10

Thus these 462 combinations yield 462 yz — 74 values.
These 462 values form a (discrete) distribution called the permutation distribu-
tion.
x=c(29.2,11.4,26.6,23.7,25.3,28.5,14.2,17.9,16.5,21.1, 24.3)
Either use loop

N=choose(11,6) # =462
y=1:N
P=combn(1:11,6) # Can we use combn(1:11,5) ?

for(i in 1:N)
ylij=mean(x[P[]]) —mean(x|~P[])

length(y[y>=1.69])/N # result is 0.3203463
Or without loop:

y=x[P]

dim(y)=c(6,462)

B=apply(y,2,sum)

y=B/6—(sum(x)—B)/5

length(y[y>=1.69])/N # result is 0.3203463
What is the conclusion of the test ?

library(jmuOutlier)  (another codes)

y=runif(16,0,1)

x=runif(20,0,1)

perm.test(y,x,alternative=c(” two.sided”, "less”, ” greater” ), mu=0, paired=FALSE |}
all.perms=TRUE, plot=FALSE, stat=sum)

The permutation distribution can also be simulated by the R code as follows.
x=c(29.2,11.4,26.6,23.7,25.3,28.5,14.2,17.9,16.5,21.1, 24.3)
N=10000
y=rep(0,N)
for(i in 1:N){
u=sample(x)
y[i]=mean(u[1:6])-mean(u[7:11])
}
length(y[y>=1.69])/N # result is 0.3209

4
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Figure 3.1. Histograms of permutation distribution v.s. simulation one

Should we use simulation here ?
Remark.  The two-samples t-test P(t,,+nz—2 > %) ~ 0.34) for the

current data. If the normal assumption is not valid, the At—te:t is not applicable
(though it happens to be close to 0.32

The permutation distribution is based on a different sample space from the sample
space where the data come from. But if n4 +np is large, the permutation distribu-
tion of Y g — Y 4 is very close to t, A+np—2, Whereas the two-sample t-test may not
have the t,, , 415 —2 distribution (e.g. if the random variables satisfy Xy = --- = X, ,
and Y7 =--- =Y,,,), thus they are not independent).

Can we say n4 + ngp is large here ?

Is it appropriate to apply randomization distribution in the chemical
example ?

Remark. In the fertilizer example, the data are resulted from randomization,
whereas in the previous chemical example, the data are in sequence.

AAAAAAAAAABBBBBBBBBB
We use the External Reference distribution (old data) to get the P-value.
Can we use the permutation distribution to get the P-value in that ex-
ample 7

No. If they had done

sample(1:20,10)
for the order of 10 batches of chemical using method A, then the permutation
distribution would be valid.
3.2. Randomized paired comparison design: Boys shoes example. The
shoe soles can be made of two different materials, A and B. To find out whether
there is a difference between them, ten boys were chosen randomly to compare the
shoe wear. Each boy wore a special pair of shoes. The decision as to whether the
left or right sole was made with A or B was determined by

(1) convenience,

(2) by flipping a coin (or rbinom(n,1,0.5)).
Which result in a random sample ? (Took 2 steps in DOE. Which 2 7 )
The randomization results (maf;zc.zl A é i ]?% i ]5% 2 Z i ]% 15)
The experiment results in

x=(0.8,0.6,0.3,-0.1,1.1,-0.2,0.3,0.5,0.5,0.3) #Yys —Ya

5



Then 10 yg — ya’s yield

mean(x) #Yg— Uy =041
Should we use two-sample t-test or paired t-test ?
What assumptions do we need in order to use one of them ?
Another way to compute P-value for y5—% 4 > 0.41 is the permutation distribution.
Under H,: up — pa = 0, a combination could be

(RLRLRLLLRL)

R L R L R L L L R L

(realLLRLRLLLRL)
Then the data become

x=(-0.8,0.6,0.3,-0.1,1.1,-0.2,0.3,0.5,0.5,0.3)
Compare to the real data:

=(0.8,0.6,0.3,-0.1,1.1,-0.2,0.3,0.5,0.5,0.3)

The randomized reference distribution under H,: pus = pup can be ob-
tained as follows.

x=¢(0.8,0.6,0.3,-0.1,1.1,-0.2,0.3,0.5,0.5,0.3)

sum(x) # result=4.1

y=1:1024 # initialize y

for(il in 0:1)

for(i2 in 0:1)

for(i3 in 0:1)

for(i4 in 0:1)
for(i5 in 0:1)
for(i6 in 0:1)
for(i7 in 0:1)
for(i8 in 0:1)
for(i9 in 0:1)
for(i10 in 0:1){

i=c(il1,i2,i3,i4,i5,i6,i7,i8,i9,i10)

h=0:9

y[i% * %(2 % xh) +1]=sum(x*((-1)**1))

——

401520 42421 4034224+ 4i10%29, (0,...,0)(20,21, ..., 29) +1 =1,

# Examples:
# binary number 1110 =123 +1%22 4+ 12! +0%x20 =14
# ternary number 2101 =2 %33+ 132 +0%3' +1x3° =64
# decimal number 2101 = 2% 103 + 1 % 10% 4+ 0 % 10" + 1 % 10°
}
length(yly>= 4.1])/1024 # result = 0.0068
hist(y); z=seq(-6,6,0.1);lines(z,dt(z,9))

The randomized reference distribution under H,: pus = pp can be ap-
proximated by simulation as follows.

N=10000

y=rep(0,N)

x=¢(0.8,0.6,0.3,-0.1,1.1,-0.2,0.3,0.5,0.5,0.3)

for (iin 1:N) {

s=rbinom(10,1,0.5)

z=(-1)**s

y[i]=sum(x*z)

length(y[y>=4.1])/N #0.0063
hist(y,xlim=c(-6,6), breaks=12, freq=F)
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Figure 3.2. Histograms of permutation distribution v.s. simulation one

One can see from Figure 3.2 that the simulation distribution is very close to the
true permutation distribution. The density of tg is displayed at the top of Fig. 3.2.
The P-value using the 1-sided paired t-test is 0.4%.
Any thing wrong with the solution 0.0068 or 0.4 ?
Is it one sided test or two-sided test ?
Can we mimic P=combn(1:10, ?) to write a code to replace the 1st one ?
Bashar, Mohamed A. 2 Chaikin, Kassidy 3 Phillips, Bruce 4 Zhao, Zhongyuan
Chapter 10. Linear regression models.

10.1. Main assumption:
Y261X1—|—"'+ﬁpo—|—€, or
E(Y|X)=5X1+- -+ BpX,, where
€ is unobservable random variable with E(¢|X) = 0 (no assumption on V (¢|X) yet),
Bi’s are parameters,
X;’s and Y are observable.
Given (independent) observations (Y;, zi1, ..., Tip), ¢ = 1, ..., n,
we shall make inference about f;’s.
Remark. A special case of the linear regression model is
Y=a+pX +e
Least squares estimator (LSE) minimizes
S(B) = Z?zl(yi — Bz — - — 5p$ip)2 where 8 = (81,..., Bp)".
Notice that S(8) can be written as a matrix form
S(8) = (Y — XB) (Y — X5)
where Y' = (Y1, ..., Yy),

r11 - xpl
Tnl “e :L-np
The LSE can be obtained by solving the normal equation
% =0, a p X 1 zero vector. gg, =7
That is,
X'(Y - XB)=0. (Why not (Y —X8)X =0 7)

The LSE has the form
B = (X'X)"'X"Y if X'X is invertible,
otherwise, the solution to LSE is not unique,
one often imposes further constraints to get a unique solution.

7



If € is normal, then B is the MLE. Otherwise, it is a semi-parametric estimator.
Fitted value §; = (z;1, ..., 23p)3. (= E(Yx))
Residuals y; — y;, i =1, ..., n.
If one further assumes that V(e;) = 02 V 4, then
6% = %_p S (yi — §:)? is an unbiased estimator of o2,
and conditional on X (if one assumes X is random),
V(B) = o2(X'X)! or V(B|X) = 02(X'X)~! (are they both correct ?7)
Is V(B) variance or covariance matrix ?
SE of 3; is /v, where v is obtained by the j-th diagonal element of 62(X'X)~
(why not 0?(X’X)"! ? SD = SE ? Are they r.v.’s ?)
Under NID a (1 — a)100% CI of 8; is Bj £ ty_pa/2SE
v+ W, ifie{l,..,n_}
’Y"‘Wl ifie{n_+1,...,n,}
Wi, ..., Wy, are i.i.d. from the exponential distribution and E(W;) = 1. v and W;s
are unknown, though we know W; ~ Exp(1). Y;’s are observations. Derive the LSE
and the MLE of v based on these regression data.
Discussion. The typical linear regression model is
=9

Example 0: Suppose that Y; = { n_ > 1, and

Do we observe Y; 7
Do we observe (X1, ..., Xip) 7
Wi = €; ?
Do we know 3 ? or (B, ..., 3p) ?
If we rewrite th model as Y; = a +vX; + ¢;, then a = 7
Do we need to estimate o 7
Homework 10.1. Find the MLE and the LSE of S under the assumptions above.

Polynomial model: Y; = g + B1@; + -+ Bpzl + e, i =1, ..., n.

k can be as large as n — 1 if z;’s are all distinct.
Example 1. Data: (X;,Y;): (1,2), (3,4). The LSE g = (X'X)"1X"Y under the
models:

Y =6y +e, X=7
Y = fix + €, X=7
Y:B()—Fﬁll‘—f—e. X:?
Bo Bi B
. 9 2 1 1 1
If one fits model Y = [y 4+ B1x + fox” + €. ThenY:<4),X: (1 3 9>

rank of X'X is 2. X'X is not invertible. The LSE is not uniquely determined.
We say that the parameter is not identifiable.
Possible modification: Add a constraint to 5;’s, e.g. Sy = 0 or 51 = s, etc.:

models\ X type : original in model X in LSE formula 15}
Y=p0y+¢ 1,3 1,1 (1,1) Bo
Y =piz+e 1,3 1,3 (1,3) 51
1 1
Y=f+fate 13 (L1,(L3 (1 3) (B0, B1)
Y:ﬁ()+51x+52x2+6 173 (17]-’]-)7(]-7379) ? (ﬁ()vﬁlvﬁQ)l
Y—1251$+62$2+6 173 (171)7(379) ? (51)62)/
Y:60+61($+x2)+6 173 (1a2)a(1712) ? (BOaﬁl)l

Example 2. One way anova table

Yij=p+oj+e5i=1,..,4 and j =1, 2, 3.
Consider an example that there are three treatments A, B and C. There are I (=4)
groups, each consists of 3 patients. Total of 12 patients. In each group, the 3
patients receive 3 different treatments separately. The result for the jth patient in
the ith group is Yj;.



Is it a linear regression model ?

B=1

LSE = (X'X)'X"Y.

X = 7 One possibility is based on Y = X5 + e,

Yi Y 1 1 0 0
Yio Y, 1 10
Yis Y3 10 1 K
=] =] | e Yij =+ i+ e
Y Yio 1100 s
Yio Y 1 L0
Yi3 Yio 1o 1
I X X2 Xis K
= 31 +e:X5+e, e:(el,...,elg)’,
2
1 an Xn2 Xn3 a3
X;1=1(treatment=A for the i—th patient).
Xio=1(treatment=B for the i—th patient).
X;3=1(treatment=C for the i—th patient).
Notice that X;; + X2 + X3 = 1.
XX is not invertible as
1 X X2 Xis
X=]": : : : is of rank at most 3, not 4,
1 an XnQ XnS
X1+ Xi2 + Xas 1
as =|:| why?
an + Xn2 + Xn& 1

Thus the LSE for Y; = By + 81 X1 + B2 X2 + 83 X3 + €; is not unique.
(We say that the parameters are not identifiable).

Three modifications:
M1. Revise the model. Let Y; = 81 X;1 + B2 X2 + B3 X3 + €; with =0,
X1 X2 X3
B=(a1,az,a3), X = o, B =(X'X)"'X"Y works.
an Xn2 Xn3
R codes: Im(Y ~ X7 + Xo + X3 —1)
Interpretation: 3; is the effect of treatment i (73).
M2. Impose a constraint «;; = 0 for the model

Y =p+ a1 X + eXip +asXis + €. Yi = (1, Xi2, Xi3) (u, aa, av3)’.

Let (51, B2, B3) be as in M1.
Thenﬂz—u—ﬁ-al,izl 2, 3.

Lif Xj1 =1, then Y; = 51 + ¢, = p+ a1 + €, where g =0, p = 1, ..
i.e., p is the ef’fect of treatment 1, but «; is the additional effect of T; to T1

optlons(contrasts =c(” contr.treatment”, ”contr.poly”))

M3. Impose another constraint ) . o; = 0 (a3 = —a1 — az) for the model
Yi=p+ a1 Xy +aaXi +azXis + ¢
then B+ ap = ﬁ?ﬁ 1= 17 273 Yl = (1aXi1 - Xi?n ????)(IJ’7 O417C¥2)/

i.e., i is the average treatment effect, «; is the additional effect of T;.

options(contrasts =c(”contr.sum”, ”contr.poly”))

lm(Y ~ X1 + X2 + Xg)
Example 3 (a simulation study on the Two way anova table).
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Yij = p+ai+b; +eij, i € {1,..,4}, j € {1,...,6}
> y=rnorm(24)
> a=gl(4,6,24)
> b=gl(6,1,24)
> a
[1111111222222333333444444Levels: 1234
>Db
[11234561234561234561234560Levels: 123456
> lm(y~a+b—1) #1.

al a2 a3 a4 b2 b3 b4 b5 b6

0.266 0.235 0.246 —-0.379 —-0.102 -0.319 0.913 -—-0.227 —-0.125
ﬂand bl="7 (u,al,...,a4,b1,...,b6) =7

> lm(y~a+b) #2

# or

# lm(y~a+b, contrasts =c(” contr.treatment”, ” contr.poly”))

(Intercept) a2 a3 a4 b2 b3 b4 b5 b6

0.268 —0.031 -0.020 -0.645 —-0.102 —-0.319 0.913 -—-0.227 —0.125'

al,bl ?

> options(contrasts =c(”contr.sum”, ”contr.poly”)) #3.
> lm(y~a+b)

(Intercept)  al a2 a3 bl b2 b3 b4 b5
0.115 0.174 0.143 0.154 -0.023 —-0.125 —-0.342 0.890 —0.250
ad, b6 7

Relation between these three ?

E(Y;;) = intercept+ai + bj = same ?

1. int.=0 b1=0

int  al a2 a3 a4 bl b2 b3 b4 b5 b6
0 0.27 0.24 0.25 —0.38 0 —-0.10 -0.32 091 -0.23 -0.13
2. al=0 b1=0

027 0 —-0.03 —-0.02 -0.65 0 —-0.10 -0.32 091 -0.23 -0.13
3 a4 =7 b6 =7

0.12 0.17 0.14 015 -046 -0.02 -0.13 -0.34 089 -0.25 -0.15

R 0+0.266 + 0 from #1
E(Y11) = {0.268 +0+4+0 from #2 Are they the same 7
0.115+ 0.174 — 0.023 = 0.266  from #3.

What is X, 8 and 3 in the model Y = X’ +¢ for Im(y ~a+b) in Ex. 37

—_
—_

or ? B' = (i, ag, ..., ag, by, ..., bg), and B/ = - ?

Il
o i )
NN N N AN N TN TN T
S o e e e e
I
QU W N s W N =
TeEeE2DEsEERE
Il Il
O T W N R W D
S N N N N e e

e e e e

NN N N N S N

ST R QR
Il

1(b = 6)
The sample size is n = 24, § = X’ = 0.27 +01(a = 1) — 0.031(a = 2) —
0.021(a=3)+---+01(b=1)+--- —0.231(b = 5) — 0.131(b = 6)
What is 8 and X for § = (X'X)"'X'Y ?
ﬂ = (u,ag,ag,a4,b2,...,b6)’ and

10



int a2 a3 a4 b2 --- b6

1 0 0 0 0 -~ 0
1 0 0 0 1 - 0

X= | . Why 77
1 0 0 1 0 - 1

nx9

afl]111111222222333333444444
b[1]123456123456123456123456

Homework. 10.2. What is X and § for = (X'’X)"'X'Y in Im(y ~ a+b—1)
in Example 3 7

Example 3 (continued).
Another way to generate the same type of data:
> y=rnorm(24)
> a=rep(1,6)
> a=c(a,a+1,a+2,a+3)
> b=rep(1:6,4)
> Im(y~a+b) # #A
(Output)
(Intercept) a b
> a=factor(a)
> b=factor(b)
> lm(y~a+b) # #B
(Output)
(Intercept) a2 a3 a4 b2 b3 b4 b5 b6
What is X and § for § = (X'X)"'X'Y in # A ?
What is X and 3 for 3 = (X'X)"'X'Yin # B ?
What is the difference between outcomes # A and # B 7
> Im(y~a+b—1) #1.
> lm(y~a+b) #2
> options(contrasts =c(”contr.sum”, ”contr.poly”)) #3.
> lm(y~a+b)
Which is the way same as in Example 3 7 #A or #B ?
What do you expect the estimates before seeing output ?

> summary (lm(y~a+b)) # justify the answer to the question
Coefficients:
Estimate Std. Error t value Pr(> [t])
How to find the P-value to justify the answer to the previous question?
Is it Pr(> |t]) 7
Homework 10.3.
1. Repeat Example 3 once yourself and answer the questions there.
2. Mimic Example 3 (continued) by inserting y=1+2*a+y right after b=rep(1:6,4)
(not before each lm(y~a+b),as 2 x factor(a) does not work).
Then ask yourself relevant questions and answer them.
Hw due Wednesday before class. Late hw -3, submit both .tex file and .pdf
file !

In regression analysis, there are several issues:
1. What is model for the data ? (LR, non-LR, Cox, Parametric) model ?
2. Can the model be simplifies 7
3. Does the model fit the data ?

Model checking
Question. Does a given set of data fits the given model (LR, non-LR, Cox,

Lehmann, Parametric) ?
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Ans. Various diagnostic plots, QQplots, residual plots, and model tests.

For example, for question about the LR model, test
Hy: Y =X +evs. Hi: Y #£[BX +e, X € RP.

Two common approaches.

1. A check of model fit. If there are replications in X;’s, that is, the model
Y;‘ = B/Xi +€i7 1= 1, ., n

can be written as
}/ij = BX” + €ij, where

7=1,..J;

t1=1, .., m,

X1 =---=X,j,, with J; > 1 for some 4,

and Xij 7& th if 4 # k, e.g, ()(17 ...,Xﬁ) = (2,2,2, 1,3,3)

then a model lack-of-fit test of HY: o = op v.s. Hi: o # og
¢ = l(mL/mE > Fde dfs, a) where
mpg = de > Yy — Yi.)2, (unbiased estimator of o? under NID (E(Y;) = )

mp = g3, ;(Yi. = Yij)?, (unbiased estimator of 0® under NID and LR Model)
de—Z'(Ji_l) ( )and
dfp, = m — p, df of rebldualb) =n—p—dfg=n—(p+dfg)

Here, we make use of

i3 Y
=%, (Yw VP4,V =2 Y N Y+ X, (V)Y
2
= Xy =T+ S0 TP 45,7
~ — —2
ZYU—Y +Z Vi =Yyl +3,00 =Y+ 3,7
1,7

2

relate to mg or mp? mpg or mp?
df: (n —m) +(m —p) +(p—1)+1.
We also make use of NID.
Second way. If there is no replication, add another function to the model
Y = 38X +¢,
e.g., consider a new model
Y =B8X +60X2+¢€(orY =BX +09g(X) +e, eg., g(x) = (23,22)),
and check whether § = 0, where § € R (or R? if g(X) € RY).
That is, set
H{: =0, v.s. Hi: 0+#0.
(a) One test is t-test (if ¢ = 1):
¢ =1(101/65 > tn—p,as2)-
If n is large and p is not so, the statistic does not rely on € ~ N(u,o?).
(b) Another test is F-test:
Assuming E(Y|X) = 'X +0'g(X), Hy: 6 =0 v.s. Hy: 0 #0.
Write Yyx1 = Zyx(prq)Y + €, where Y = (Y1,...,Y,,),

X1 og(Xy)
7 =1 ... ,

X5, 9(Xn)

Xi
X=1--],

X/

- (;
Let C=( 0 I ), where I is an identity matrix.
—~

axp axq
The original Hy becomes

H]: Cy=60=0.
= (Z'Z)Z'Y,
B =XX)"'X'Y,

12



SSE=Y'Y —4'Z'Y (=||Y — 4'Z|]?), df=?
SSW=Y'Y — F/X'Y (= ||Y — ’X|[?), df=?
An F test is
SSW-—-SSE
¢=1(—=z— > Fyn—p—g,a);

n—p—q
where ¢ is the dimension of €, which is 1 most of the time.

F-test relies on NID.

3 tests are introduced: (1) Lack of fit test if there are ties in X;’s, (2) t-test or
F-test.
Q: 1. If there exist ties in X;’s, can we use all three approaches ?

2. If there do not exist ties in X;’s, can we use all three approaches ?

Impurity data. An experiment to determine how the initial rate of formation of
an undesirable impurity (wuldian3) Y depended on two factors:
(1) the concentration Xy of monomer, (danlti3)
(2) the concentration X; of dimer. (shuanglti3)
The relation is expected to be
Y = ﬁ0}(0'+’ﬁ1)(14—6.
The data are as follows.

order in experiment Xy X; Y i i
3 0.34 0.73 575 1 11
6 0.34 0.73 479 2 12
2 0.58 0.69 544 3 21
4 1.26 097 9.09 4 31
1 1.26 097 859 5 32
5 1.82 046 5.09 6 41
why ordered ?
define Xo X3 Y

Can we use all three approaches for checking Hy: E(Y|X) = 5o X0 + /1 X1 ?
Notice: n=6,i1=4, Jy =J3=2and Jo = Jy, = 1.
— 2 2
mp = d}E ZZJ(K] _ Yi-)2 — l((5.75—4.79) + (9.09—28.59) ) Why 7?2

P P
((5.75-4.79)%%2+ (9.09-8.59)**2) /4
o202

my = gy 2 (Vi = Yy)? =7

Yij = BX; ;=7

- (Xg)x0 Xg)xl)l (XéY)
XoX1 XiXy XY
_ 1 XX, —-XpX; XY
XX XX (X X )2 (—X6X1 XX ) (X&Y)
Too tedious, thus use R
> x=¢(0.34,0.73,5.75,
0.34,0.73,4.79,
0.58,0.69,5.44,
1.26,0.97,9.09,
1.26,0.97,8.59,
1.82,0.46,5.09)
> dim(x)=c(3,6)
4 y=Im(x[3,}~x[1]+x[2,] 1)
> x=t(x
> y=Ilm(x[,3]~x[,1]4+x[,2]-1)
>y
Coefficients:
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Fig. 10.1. QQ-plot data and rnorm(6) (3 times) Why do this ?

par(mfrow=c(2,2))

qqnorm (y$resid)

qqline(y3resid)

z=rnorm(6)

qqnorm(z)

qqline(z)

> anova(y)
Df Sum Sq Mean Sq F value Pr(>F)

x[, 1] 1 207.693  207.693 624.29  1.523e — 05
x[, 2] 1 58.901 58.901 177.05  0.0001844

Restduals 4 1.331 0.333
Lack of fit test ¢ = 1(F > FI*l,I(J*l),OL)'
> z=¢(1,1,2,3,3,4)
#z=factor(x[,1])
> Y=Im(x[,3]~x][,1]+x[,2]+factor(z)—1)
> anova(Y)
Df Sum Sq Mean Sq F value Pr(>F)
x[, 1] 1 207.693 207.693 709.0903 0.001407
x[, 2] 58.901 58.901 201.0966 0.004936

1
factor(z) 2 0.745 mp =0.372 % = 1.2717 0.440202
Residuals 2 0.586 mpg = 0.293

f=1/1.27
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1-pf(f,2,2)
Conclusion Do not reject the model,

and the data fit the linear regression model.
Are we done ?
The second way: H,: Y =X +evs. Hi: Y =X +60g(X) + e with 6 # 0.
> z=1m(x[,3]~x[,1]+x[,2]+x[,1]*x[,2]-1)
> summary|(z)

Estimate Std. Error twvalue Pr(> [t|)

z[,1] 0.3844 05171  0.743  0.51120
z],2] 6.4990 0.5226 12437  0.00112 ok
x[1]:2[,2]  1.6812 0.8668 1.939  0.14779  p — value > 0.05?

Conclusion 7
What else needs to be done 7
The third way:
> anova(z)
Df Sum Sq Mean Sq F value  Pr(>F)
x[,1] 1 207.693 207.693 1055.2702 6.411e — 05 * % %
z[, 2] 1 58.901 58.901 299.2726  0.0004209 * % %
z[,1] : z[,2] 1 0.740 0.740 3.7615 0.1477919  p — value > 0.057
Residuals 3 0.590 0.197

Conclusion ?

Another code:
> anova(y,z)

Model 1: x[, 3] ~x[, 1] + x[, 2] - 1

Model 2: x[, 3] ~ x[, 1] + x[, 2] + x[, 1] *x[, 2] - 1

Res.Df RSS Df Sumof Sq F Pr(>F)

1 4 1.33075

2 3 0.59044 1 0.74031 3.7615  0.1478
Example 4 (Growth rate data). The data in Table 10.7 is for the growth rate
of rats (denoted by Y') fed various doses of a dietary supplement (denoted by X).
From similar investigation, it was believed that the relation could be roughly linear.
We shall test two models: a simple linear model and a quadratic model.

H, EY|X)=a+ X vs. H: EY|X) # a4+ 8X.

y=c(73,78,85,90,91,87,86,91,75,65) # rate
x=c(10,10,15,20,20,25,25,25,30,35) # dose
a=factor(c(1,1,2,3,3,4,4,4,5,6))
#a=factor(x)

z=lm(y~x)

plot(x,y)

v=(100:350)/10

u=z$coef[1]+z$coef[2]*v

lines(v,u,lty=2)

z=Im(y~x+I(x?))

z=z$coef

u=z[1]+z[2]*v+z[3]*v?

lines(v,u,lty=3)

z=lm(y~x+a)

anova(z) # lack of fit test

Df Sum Sq Mean Sq F value Pr(>F)

T 1 24.5 24.502 3.6299  0.12946
a 4 659.4 164.850 24.4222  0.00452  *x*
Residuals 4 27.0 6.750
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Conclusion: The linear regression model does not fit the data.

)
o

Q

Now consider

HOI E(Y|X) == ﬂo —‘rﬁlX +62X2 V.S. Hli E(YlX) 75 ﬁo +61X +ﬁ2X2
First way, lack of fit.

z=lm(y~x+I1(x" 2)+a)

anova(z)
Df Sum Sq Mean Sq F value Pr(>F)
T 1 24.50 24.50 3.6299  0.1294567
I(z?) 1 641.20 641.20 94.9933 0.0006207  * * *
a 3 18.19 6.06 0.8985  0.5156739
Restduals 4 27.00 6.75

Conclusion: The quadratic regression model does fit the data.
Second way: H,: 83 =0 v.s. Hy: 83 #0.
assuming E(YlX) = 60 + ﬂlX + 62X2 + B3X3.
z=lm(y~x+I(x" 2)+I(x" 3))
summary (z)
Estimate Std.Error tvalue Pr(> |t|)
(Intercept) 24.007599 19.712021  1.218 0.2690

T 7.198068 3.179330 2.264 0.0642 . Conclusion ?
I(x?)  —0.222267 0.153348 —1.449  0.1974
I(2?) 0.001409 0.002276 0.619 0.5585
Third way: H,: B3 =0 v.s. Hy: 53 #0.
> anova(z)
Df Sum Sq Mean Sq F value Pr(>F)
T 1 24.50 24.50 3.4608 0.1122
I(z?) 1 641.20 641.20  90.5674 7.677¢ — 05 Conclusion ?
(=% 1 271 271 0.3834  0.5585
Residuals 6 42.48 7.08

It seems that the data fit Y ~ z2. How to check it ?
> Z=Im(y~1(x" 2)+a)
> anova(Z)
Df Sum Sq Mean Sq F value Pr(>F)
I(x2) 1 91.42 91.421 13.544  0.021200
a 4 592.48 148.120 21.944  0.005533
Restduals 4 27.00 6.750
Compare to z=lm(y~x+I(x" 2)+a)

Conclusion ?

Q: Is it true that
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the regression model fits the data if the regression curve fits the data well 7
The answer can be found from the next example.

Example 5. Consider the model logY ~ N(0,1).
x=1:5
y=exp(rnorm(5))
plot(x,y)
z=lm(y~x+I1(x" 2)+I(x" 3)+1(x" 4))
z=z$coef
v=(10:50)/10
u=z[1]+v*z[2]+2[3]*v" 24+z[4]*v" 3+z[5]*v" 4
lines(v,u,lty=2)

Then Y; = Y; for all i. However, the data do not fit the polynomial regression
model.
If we do it again the equation is totally different.

Model checking: Given a regression data set (X;,Y;)’s, to make statistical
inferences on py, oy, Y = g(X) + € etc. we need to assume a certain model:
parametric models: normal ? exponential ? uniform ? etc.,
semi-parametric models: LR, NLR, Cox, Lehmann, among others.
which of them is appropriate 7 Or none of them is ?
For example, if one choose LR model, say

Y; :6Xi+€ia andENN(an-z)? (1)

and we can fit the data to the model and get the LSE of 3, Fy|x, SE of 8, CI of 3,
and do testing about 8 and Fy .
After these, we should ask

is the model in Eq. (1) appropriate for the data ?

is NID valid ? etc....
This is model checking. The tools are model diagnostic plots and model checking
tests.
Example 6. Simulation studies on testing Hy: Y = X + W (or with NID) v.s.
Hi: Hp is not true (i.e. Y # X + W or NID is not true) with the R codes
(summary (y~x+I(sin(x)))$coef[3,4]> 0.05) # test ¢ = 1(p — value < 0.05) (1)
Ideally it tests Hy: Y = X + W or with NID v.s. Hy: YV # X + W,
actually it tests H): § =0 v.s. H{: 6 # 0, under the assumption

Y =3X +0sin X + W and NID. (6.1)

Simulation 1.

17



True model: Y = X + ¢, where € ~ N(0,1) and X ~ bin(3,0.5).
Questions:

Is Hi true ? How about Hy ? Is Hy true ? How about NID ?

What do you expect for the test 7

Sample size= 50, replication= 1000, § = 1, B: 0.996, sd= 0.17
Rate of accepting right Hy is 0.952, P(H,|Ho) = 0.048, P(H}|Hy) = 0.048, P(H,|H,) =7}

Does the test work as expected ?

What do you expect if n = 5000 ?

P(Hy|H,)=0.952 ? =7
Simulation 2.

True model: Y =sin X + ¢, where X ~ bin(3,0.5) and € ~ N(0, 1).

Hy: Y =0X+W,H;: Y # 38X +W, H{: 0+ 0 under assumption (6.1).
Questions: Is H{ true ? How about Hy ? Is Hy true ? How about NID ?

What do you expect for the test ?

Sample size= 50, replication= 100, 5 = 0, B = —0.003, sd= 0.03

Rate of accepting wrong Hy is 0.33. P(Ho|H,) = ? P(Ho|H}) =7

P(H{|Hy) =1—-0.337

Does the test work in this case 7

What do you expect if n = 5000 ? P(Ho|Hy) — 07 P(Ho|Hy) =17
Simulation 3.

True model: Y = X/2 4 ¢, where ¢ ~ N(0,1) and X ~ bin(3,0.5).

Hy: Y =8X+W,H;: Y #8X+W, H{: 0+ 0 under assumption (6.1).
Questions: Is H{ true ? How about Hy ? Is Hy true ? How about NID ?

What do you expect for the test ?

Sample size= 5000, replication= 100, 5= 0, B: 0.5150, sd= 0.1761

Rate of accepting wrong Hy is 0.00. P(Hy|H;) = 0.00 ?? P(Hy|H}) = 0.00 ??

It says that Hj is true, the model is Y = a4+ X + 0sin X + e.

Does the test work in this case ?

Both Hy and Hj are wrong, though Hj is true. It happens to work.
Simulation 4.

True model Y = X/2 4 ¢, where X ~ B * |W|, B ~ U(0,3), B L W, and €
and W ~ Cauchy.

Hy: Y=0BX+W H: Y#BX+W, H: Y =0X+0sin X +W, 0 #0.
Questions: Is Hf true ? How about Hy ? Is Hy true ? How about NID ?

What do you expect for the test ?

Sample size= 5000, replication= 100, 8 = 0, B: 0.0149, sd= 0.0141

rate of accepting wrong Hy is 0.96. P(Ho|Hy) = 0.96 ? P(Ho|H}) = 0.96 ?

Does the test work in this case 7

Remark. The homework solution is in my website. Quiz on 447 and 448 on
Friday.
The codes for simulations 1-4 are as follows.

n=>5000 # need to adjust for input sample
beta=1
NN=100 # No. of simulation replication
swb = 1 # switch for binomial covariant
swn = 0 # switch for normal error
sww = 1 # switch for wrong LR model
p=0 # No. of accepting Hy
b=0 # LSE
s=0 # SD of LSE
for (N in 1:NN) {

c=rbinom(n,3,0.5)

if (swb == 0)

c=abs(rcauchy(n))*c
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c=sort(c)
e=rcauchy(n)
if (swn == 1)
e=rnorm(n)
y=beta*c+e
if (sww == 1)
y=beta*sqrt(c)+e
z=Ilm(y~c+I(sin(c)))
b=b+z3$co[2]
s=s+z$co[2]*z$co[2]
p=p+(summary(z)$coef[3,4]>0.05) }
(p=p/NN)
(b=b/NN)
(s=sqrt(s/NN-b*b))
summary(z)$coef
Estimate  Std. Error t value Pr(>|t|) (needs NID)
(Intercept) —4.8670290  3.324966  —1.4637829 0.14331617
c 2.8889273 1.472481 1.9619452  0.04982429

I(sin(c)) —0.5723319  3.625139  —0.1578786 0.87455884

Example 7. Simulation on testing
Hy: Y =f8sin X + W v.s. Hy: Hy is false.

H{: Y =8sin X + 60X + W, with 0 # 0, under NID.
The R codes

(summary (y~x+I(sin(x)))$coef[2,4]> 0.05) # test ¢ = 1(p—value < 0.05)

True model Y = X + W, where X ~ bin(3,0.5) and W ~ |Cauchy|.
Questions:

Is Hy true ?

Is Hj true ?

Is Hy true ?

What do you expect for the test ?

Sample size= 50, replication= 1000, § = 1, 6= 2.324, sd= 47.06,

rate of accepting Hy is 0.795. P(Hy|Hy) = 0.795 ? P(Hy|H}) = 0.795 ?
P(H,|Hy) =1—0.795 ?
Summary on the simulation studies.
There are many regression models:

the linear regression models,

the logistic regression models,

the generalized linear (regression) models,

the generalized additive models, etc..
Given a data set, one needs to check which model fits the data. This is to test

Hy: the data fits a given model, e.g., E(Y|X) = 8'X, v.s. Hy: Hy is false.
To implement, people design H{ instead. If Hy and H{ are not properly designed,
then the previous 3 model checking tests can be misleading as in simulations 3 and
4 of Ex. 6.
The existing model checking tests are the tests of
Hi: £() =0, v.s. Hi: £(1) # 0, where £(X) = E(Y|X) — #’X has a certain form
with NID.
e.g., £ = 0g(X) in the 3 aforementioned model checking tests. In order to establish
the distribution theories for the tests, each of these tests imposes certain regularity
conditions on Fx y such as NID, which specifies a parameter space for Fx y, say
Op, under which the test is valid. The ©, depends on the specific test and is a
certain common regression model that contains ©¢. For instance, in Example 6,

0, ={Fxy: Y=a+BX+0sinX +¢ e~ N(0,0%), X Le}.
Thus O, # O, the family of all cdfs Fx y. If Fx y ¢ ©,, these tests are invalid in
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the sense that the (asymptotic) distributions specified for these tests are false.
In simulation 1, Hj is true and the model assumptions holds,

the test can either reject Hy or do not reject. But P(H;|Hp) = 0.05.
In simulation 2, H; is true, and the assumptions for the t-test hold.

The test rejects Hy with probability — 1 as n — oo

(P(Ho|Hy) — 0, P(Hp|H}) — 0, a consistent test). P(H1|Ho)="7
In simulations 3 and 4, both Hy and H are false, thus no P(Hy|Hj).

The test can reject Hy with probability 0 or 0.96, i.e., P(Hy|H;) can be ~ 0
or 0.96.

In Example 7, both Hy and Hj are false, as NID is false and E(W|X) does not
exist.

An estimate of P(Hy|H;) is = 0.8.

Remark. Type I error, denoted by H;|Hy, implies that Hy is true. In Simulation
1 of Ex.6, it is true that P(Hy|Hp) = 0.05. It works as expected.

Type II error, denoted by Ho|H;, implies that H is true. In Simulation 2 of Ex.6,
it is true that P(Hy|H;) =~ 0.33 — 0, as n — oo. It works as expected.

In Simulations 3 and 4 of Ex.6 and in Example 7, neither Hy nor Hj is true. Thus
neither P(H;|Hy) nor P(Hy|H) is a proper term. The test is based on invalid
assumption in (6.1) Thus the test is not valid. Just like a random guess. P(Ho|H})
can be =~ 0, 0.8, 1.

Interpretation of one way anova YV;; = p+o; +¢5,1=1,2,3; =1, ..., 10.
Another way:

3
EY;;|X)=pn+ Z a;1(Treatment= i for the ij—th person) (1)
i=1

There are 3 treatments, each is applied to 10 people. «; is the effect of treatment
i.
From Eq. (1), there are 3 equations and 4 unknown variables (due to i € {1,2,3}.
B(YylX) = i+ o
E(Y95|X) = p+ ag,
E(Y3;|X) = p+ ag, j=1,...,10.
(1) p=0. «; is the average effect of treatment i.

(2) oy = 0. p is the average effect of treatment 1. «; is the deviation effect of
treatment i from treatment 1. (Obviously a; = 0).

(3) Zle o; = 0. p is the average effect of the 3 treatments. «; is the deviation
effect of treatment i from the average.

x=1:3

x=rep(x,10)
y=4*x+rnorm(30)
Im (y~x)

lm(y~ factor(x)-1)
lm(y~ factor(x))

options(contrasts =c(”contr.sum”, ”contr.poly”))

lm(y~ factor(x))
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Im(y ~ x) (Intercept) x

3 —0.5422 4.2430
i 0 4
Im(y ~ factor(x) — 1) factor(x)l  factor(z)2 factor(x)3

B 3.757 7.832 12.243
Ié] 4 8 12

Im(y ~ factor(z)) (Intercept) factor(x)2  factor(x)3
B 3.757 ? 4.075 8.486
3 4 0 4 8

contr.sum

Im(y ~ factor(z)) (Intercept) factor(z)l factor(zx)2
B 7.9439 —-4.1871  —0.1119 ?
B 8 —4 0 4

Remark.
Once contr.sum is applied, it remains there unless we apply
options(contrasts =c(” contr.treatment”, ” contr.poly”))
Chapter 4. Comparing a number of entities

4.1. Analysis of Variance (ANOVA)

One-way ANOVA is to check the difference between several samples, in contrast to
the t-test which is to check the difference between two samples.

Suppose that
Y;j =7+ €tj, t = 17 ,I andj = 17 ceey J,

where €;; ~ N(0,0?), and 7; is the averages of the t—th sample (a parameter).
H,: 71 =--- =77 v.s. Hy: at least one inequality.
If I = 2, we use t— test.

Y1 Y
Example 3. Let I =3, J =2, | Yo1 Y2 |,thenn =6, p=3,
Y31 Y3
Y1
Yo
y-— | =XB+e X="73=77
Yo
Yoo
Y32

th = (thl,th27th3), Where thk = 1(t = k‘)
Remark. The model is E(Y;;) =7, t € {1,2,3}, j € {1, 2}, which is often written

as
E(Yy;) =7 =n+ oy (1)
EY,)=7=n+ o witha; =0 (2)
E(Y:j) = 7 =n + o with iaj =0 (3)
i1
E(Y;;) = 7 =aq with :JO (4)

We say the parameters in Eq. (1) are not identifiable, as 3 infinitely many solutions,
e.g.,

(n, 1, a2, a3) = (0,71, 72, 73),

(n, a1, @2, 03) = (71,71 — T1, T2 — T1, T3 — T1)

(n,a1,a0,a3) = (T, 71 — T, 70 — 7,73 — T) (7= Zle 7t/3)
are 3 solutions to Eq. (1).

Since the parameters in Eq. (1) are not identifiable, the LSE cannot be uniquely
determined. Thus we either set 7 =0, or a3 = 0 or Zle ay = 0.
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For testing

H,.  =---=77v.s. Hi: H, is false.
The test is ¢ = 1(F' > F1_1,1(j—1),a), Where I is given in the ANOVA table.

Source of wvariation sum of squares.
Between treatments St =37, ;(Ye, — Y)?

Within treatments  Sgp =), (Y1 — Y)? vr=1(J-1) mp = S8

(hin) =S
Total about Y Sp = Z” (Y;; —Y)?

due to NID and

df mean square
vp = I—-1 mr = %

:n—p

VD:IJ—l

F

mr

mpg

Zt,j Yt? = Z(Ytj - ?)2 J’_Zt,j YQ = Z(Yt _?)2 +Z(Ytj - ?t-)Q +Zt,j ?2'

129

Sp

Blood Coagulation Time Example.

(2]

t,j

Table 4.1 gives coagulation times for sample blood drawn from 24 animals receiving

4 different diets A, B, C and D.

Question: Is there evidence to indicate any real difference between the mean coag-
ulation times for the four different diets 7
To randomized the outcomes, in addition to randomly select 24 animals,

one may randomly put them into four groups by (1) number them, and (2) use

> sample(1:24,replace=F)

17111916202 —85923121 —31215222413 — 61710144 18

(What is the output in the following Table ?)

60 | T =4,J =6,

A B C D
62(20) 63(12) 68(16) 56(23)
602 679 66N 203
The data are 631D 7115 71(1)
59(10) 64(14) 67(17) 61(18)
6305) 54 g8(13) 3(22)
5924 6608  g8(2L)  g4(19)
Source of wvariation sum of squares
Between treatments St = 228
Within treatments Sr =112

Between treatments St =73, j(?t,' -Y)?

Within treatments  Sp =), ;(Yi; — Y:)? vg=1I(J—-1) mp=>23&

df mean square
vp = 3 mr = 76
VR = 20 mpr = 5.6
v = I—-1 mr = St

vr

VR

13.57

mT

> x=c( 62, 63, 68 , 56, 60 , 67,66 ,62,63,71,71,60,59,64, 67,61, 63,65

,68 , 63,59, 66,68, 64)
> (treatment=gl(4,1,24))

[1123412341234123412341234

Levels: 123 4
> (obj=lm(x~treatment))

(Intercept) treatment2 treatment3
6.100e + 01  5.000e 4+ 00  7.000e + 00
Y3 -V

Y. Yo — Y.
> anova(obj)
Df Sum Sq
treatment 3 228

Residuals 20 112
Summary:

Mean Sq

76.0

5.6

22

treatment4
—9.999¢ — 15
Y. —-Y;.

F value  Pr(>F)
13.571  4.658e — 05 * * *



H,: 4 =---=m74 v.s. Hy: at least one inequality.
Conclusion: Yes, reject H,, as F is far away from 1 (where do we know it 7)
P-values is 0.00005.
There is real difference between the mean coagulation times for the four differ-
ent diets.

For one way anova (under control.sum):

Yrij =N+ o; + €, 1€ {17...71}, j € {17...7J},
2. =0

=>Y =n+F,
Yi=n+a;+¢.,i¢€{l,..I}. One can also explain by
(7, 1,y Gir—1) = (X'X) XY

Blood Coagulation Time Example (continued).

> summary (Im(x~treatment-1))

Estimate Std. Error t value Pr(> |t])
treatmentl  61.0000 0.9661 63.14 < 2e — 16 * *x
treatment2  66.0000 0.9661 68.32 < 2e — 16 % *x
treatment3  68.0000 0.9661 70.39 < 2e — 16 * *xx
treatment4  61.0000 0.9661 63.14 < 2e — 16 * *xx
> dim(x)=c(4,6); X=t(x)
> apply(X,2,mean)

[1] 61 66 68 61
> summary (Im(x~treatment))

Estimate  Std. Error t value Pr(> |t])

(Intercept) 6.100e +01  9.66le — 01 63.141 < 2e — 16 * *x
treatment2  5.000e +00 1.366e + 00  3.660 0.00156 * *
treatment3d  7.000e +00 1.366e +00 5.123  5.18e — 05 * *x
treatment4d —1.000e —14 1.366e+ 00 0.000 1.00000

> treat=rep(c(1,2,3,1),6)
# what does 4— 1 mean ? (see summary(lm(x~treatment-1)))

> a=lm(x~factor(treat))

> summary(a)

Estimate Std. Error t value Pr(> |t])
(Intercept) 61.0000 0.6667 91.500 < 2e — 16 * *x
factor(treat)2  5.0000 1.1547 4.330  0.000295 s #x
factor(treat)3  7.0000 1.1547 6.062  5.14e — 06 * s*x

> a=lm(x~factor(treat)-1)
> summary(a) # compare “Estimate” in these two summaries.

Estimate Std. Error t value Pr(>|t|)
factor(treat)l  61.0000 0.6667 91.50 < 2e— 16 * *x
factor(treat)2  66.0000 0.9428 70.00 < 2e — 16 * xx
factor(treat)3  68.0000 0.9428 7212 < 2e — 16 % xx
> anova(a) Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(> F)
factor(treat) 3 98532 32844 6158.2 < 2.2e — 16 * *x
Residuals 21 112 5

> qgnorm (a$resid)

> qqline(a$resid)

> b=rnorm(24)

> qqnorm(b)

> qqline(b) # repeat the last 3 lines one or two times why ?
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Two-way ANOVA is to check the difference between several samples, and between
blocks.
Suppose that
Yii=n+n+Bi+e;,t=1 .. kandj=1, ..., n,
where €;; ~ N(0,0?%), n, ¢ and 3; are parameters, subject to
T1 :0:51 (OI‘ ZtTt :Zjﬂj :0)
We shall do three tests:

HY:m=---=mand 1 =--- =0, v.s. H: at least one inequality.
H,: 7m =--- =1, v.s. Hy: at least one inequality.
H!: py=---= b, v.s. Hi: at least one inequality.
Source of wvariation sum of squares df mean squares F
Between blocks Sp = Zy:l(z"j —5:)2 vg=n—1 mpg = f—g :Z—i
Between treatments St = Zle(th -Y)? vr=k—1 mp = ,% %;
Within treatments Sr = VR = mp = %I:
and blocksi oY =Y. — {7j)2 (k—1(n—-1)
Total about Y Sp =3,V — Y)? vp=hkn—1
Sp+St
Hj S+ St vp +vr %
=2 =2
Zt,j)/t? :SD+Zt7jY = SB+ST+SR+Zt7jY .
Blood Coagulation Time Example (continued).
Hi: 1= =7, p1 ==L, vs. vs. H: at least one inequality.
H,: treatment effects: 7 = --- = 73 v.s. Hy: at least one inequality.
H!: row effects g1 = --- = 3, v.s. Hy: at least one inequality.
> (row=gl(6,4,24))
[1111122223333444455556666
Levels: 123456
> (tr=lm(x~treatment+row))
(Intercept)  treatment2 treatment3 treatment4 row?2 row3
5.925e +01  5.000e +00 7.000e+00 1.285¢ —14 1.500e + 00 4.000e + 00
row4 rowd row6b T
5.000e — 01 2.500e + 00 2.000e + 00 1
_(Intercept)  treatment2 treatment3 treatmentd — row2 _ row3
Y. +4Y1-Y Yo -—-Y, Y3 — Yy Y4 —Yq Yo—Y, Y3-Y,
i -7
Yo =7
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Yo+Y, -Y

> summary(tr) Call: lm(formula = x ~ treatment + row)

Estimate  Std. Error t value Pr(> |t])
(Intercept) 5.925e 401 1.328¢+00 44.630 < 2e — 16 * *x
treatment2  5.000e +00 1.252e +00  3.995 0.00117 * =
treatment3  7.000e 400 1.252¢+ 00 5.593  5.14e — 05 * xx
treatment4d —1.088e¢ —14 1.252¢+ 00 0.000 1.00000
row?2 1.500e + 00 1.533e+00 0.978 0.34335
row3 4.000e +00 1.533¢+400 2.609 0.01973%
rowd 5.000e — 01  1.533e+00 0.326 0.74881
rowd 2.500e +00 1.533e+00 1.631 0.12374
row6 2.000e +00 1.533e+00 1.305 0.21167
> u=Ilm(x~1)
> anova(u,tr) # which null hypothesis does it test ?
Model 1: x ~ 1
Model 2: x ~ treatment + row
Res.Df RSS Df Sumof Sq F Pr(>F)
1 23 340.0
2 15 70.5 8 269.5 7.1676 0.0005797 % *
> anova(tr)
Df Sum Sq Mean Sq F value Pr(>F)
treatment 3 228.0 76.0 16.170  5.745e¢ — 05 how many tests ?
row 5 41.5 8.3 1.766 0.1806 ’
Restduals 15 70.5 4.7
2284415 /4.7 = 7.167553 indent
> aov(x~treatment+row)
treatment row Residuals

Sum of Squares 228.0 41.5 70.5
Deg. of Freedom 3 5 15

Residual standard error: 2.167948 (= v/4.7).
Ans: Reject Hf and Hy, but not Hy, the row effect is not significant, the model
should be x ~ treatment

x = 61treatment[1 or 4] +66treatment[2]+ 68treatment[3]
(x = 61 - 1(treatment is type 1 or 4)+66 - 1(treatment is type 2)+68 - 1(treatment
is type 3)

(see columns 1&2 of anova(tr))

Derive the LSE directly for two way anova:
Y;j =n+ao; +7;, 1 E {1,...,]}, j e {1,...,J},
>0 =3 ;7 =0 (contr.sum) (the simplest way).

=> ZZYij/nzZZ(W‘FO@+Vj)/n=n+ZZai/n+ZZ'yj/n.

Y=n=>0=Y; (due to MME).

?i. =n+ao;,t € {1,...,[}, => q; 2?1'. —?;

Yij=n+vJ¢€ {1,7...,,]},7:> =Y, - Y;

Yij=n+da&+9=Yi+Y,;-Y.
Y 1 1 0 1
Yo n 1 0 1 1

- . B Vel . [ I S R |

For instance, if (I, J) = (3,2), Y = Yio ,B= s , X = 1 1 0 _1

Yoo Y1 1 0 1 -1
Y30 1 -1 -1 -1

(N, A1y ooy BT 1,91, -, F7—1) = (X' X)7IX"Y (contr.sum), Im(y ~ row + col).

The LSE can also be derived by
(N, G2y ey G142, oy ) = (X' X)7IXY (default), Im(y ~ row + col).

25



Yi, 1000
_ Y31 _ | @2 |t 010
UN=02, Y=y A= | X=]] ¢ ¢ 1
1/22 72 1 1 O 1

Yo 1 0 1 1

How about (A1, &a, ..., &1,%2, ..., ¥7) = (X' X)71X"Y (default) (Im(y ~ row + col —
1) 7

In two-way anova, Yij =nN+o;+9 = Y. —1—7_]- —Y is valid for the 3 models.
It is easiest to derive the LSE through control.sum model, then to yield the other
LSE’s.

Im(y ~)  (Intercept) rl r2 r3 cl c2
r4+c ?1. —l—?.l -Y 0 ?2. —?1. ?3. —?1. 0 ?.2 —?.1
sum ? ?1‘ — ? ?2‘ — ? ?3. — Y ?‘1 — ? ?.2 -Y

r+c—1 0 ?1+?1—? ? ? 0 ?.2—?.1

Key: ﬁj are the same in 3 forms. It is equivalent to the identifying the parameters
in E(Y;;) =n+ a; + ;¢
n Qi Q2 as ga! V2

i+j  BMYi)+EY)-EB(Y.) 0 BE(Y)-E(Yy) E(Y)-EB(Yy) 0 BE(Ya)-E(Yy)
sum E(Y.)
itj—1 0

A simulation for understanding the estimates.
> y=rnorm(6)
> (col=gl(2,3,6))
111222
> (row=gl(3,1,6))
1123123
> X=y
> dim(x)=c(3,2)
> (a=mean(x))
[1] -0.3406383
> mean(x[1,])-a
1] 0.6422441
> mean(x[2,])-a
[1] -0.2224916
> mean(x[,1])-a
[1] -0.07302435
> options(contrasts =c(”contr.sum”, ”contr.poly”))
> Im(y~row)

(Intercept)  rowl row?2
—0.3406  0.6422 —0.2225
Y Y. -Y Y, -Y

> Im(y~-col)
(Intercept) coll
~0.34064  —0.07302

Y Yi-Y
> lm(y~row+col)
(Intercept)  rowl row2 coll
—0.34064  0.64224 —0.22249 —-0.07302
Y Yi.-Y Yo-Y Y, -Y
> anova(lm(y~row+col)) #What do you expect ?
Df Sum Sq Mean Sq F value Pr(>F) &
row 2 0.63053 0.315267  1.2241 0.4496 0.561
col 1 0.07823 0.078233  0.3038 0.6369 0.279
Residuals 2 0.51508  0.257542 0.507
row+col 3 0.708 0.236 ~ 11— 0.486
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What is (p, 8,0) in lm(y~row+col) ?
What are the conclusions about Hy, Hj and Hj ?
Are these null hypotheses really true ?

4.2. Randomized Block Designs
Penicillin Yield Example.
Yield due to 4 variants of the process A, B, C and D was obtained.
The raw experiment material (corn steep liquor) varied considerably.
Each blend of materials can make 4 runs.
So n=>5 blends were prepared (ideally, randomly select 5 blends from possible more
in storage), and k = 4 experiments were carried out for each blend.
First randomize the experiment by
rep(sample(1:4,replace=F),5)
which is the order to use processes A, B, C and D for the 5 blends. The data are
blends\treatments A B C D

1 89(1) 883 97(2) 94(4)

. 2 844 772 923 79(1)
given as follows. 3 817 877 /77 85
4 877 927 897 847

5 79" 817 807 887

x=c(89,84,81,87,79, 88,77,87,92,81, 97,92,87,89,80, 94,79,85,84,88)
dim(x)=c(5,4)

# x=matrix(c(80,84,81,87,79, 88,77,87,92,81, 97,92,87,80,80, 94,79,85,84,88),ncol=4)f
T = factor(as.vector(col(x))) # T=gl(4,5,20)
B = factor(as.vector(row(x))) # B=gl(5,1,20)

options(contrasts =c(”contr.sum”, ” contr.poly”))
(obj=lm(as.vector(x)~T+B))

anova(obj)
Consider 3 hypotheses:
H,: T4 =---=71p v.s. Hi: at least one inequality.
H!: vy =+ =5 v.s. Hi: at least one inequality.
HY:14q=---=7pand vy =--- =15 v.s. H{: at least one inequality.
Df Sum Sq Mean Sq F value Pr(>F)
T 3 70 23.333 1.2389  0.33866
B 4 264 66.000 3.5044  0.04075
Residuals 12 226 18.833

F value = (70 + 264)/(3 + 4)/18.833 ~ 2.5 P-value ?
> 1-pf(2.5,7,12)
1] 0.07821256
Conclusion How many statements ?
> summary(obj)
Estimate Std. Error twvalue Pr(> |t])
(Intercept)  86.0000 0.9704 88.624 < 2e—16 *x*x

T1 ~2.0000 1.6808  —1.190  0.25708

T2 ~1.0000 1.6808  —0.595  0.56292 Which
T3 3.0000 1.6808 1.785  0.09956 o
Bl 6.0000 1.9408 3.002  0.00934 constraint
B2 ~3.0000 1.9408  —1.546  0.14812

B3 ~1.0000 1.9408  —0.515  0.61573

B4 2.0000 1.9408 1.031  0.32310

The model can be simplified.
Should the model be E(Y|X) =86 + 61(B =1) ? Or
> Im(x~ factor(B==1))
(Intercept) factor(B ==1)1
88.25 —-3.75
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E(Y|X)=8825—3.75 1(B#1) .
N—_——
why not =77

4.3. is skipped.

4.4. Latin squares Latin squares deal with the case that there are 2 more equal-
level factors with the same level as the treatment. (R,C,T) v.s. (R,T).

Car Emissions Data. 4 drivers using 4 different cars to test the feasibility of
reducing air pollution by modifying a gas mixture with very small amounts of cer-
tain chemicals A, B, C and D. There are 4 cars and 4 drivers. For randomization,
randomly select cars and drivers. Then there are several ways to carry out the
experiments.

Drivers\cars 1 2 3 4
1 A B C D d
(1) Convenient way: IT A B C D car and freatment
11T A B C D effects are confounded
v A B C D
Drivers\cars 1 2 3 4
1 D A C B
(2) Simple randomization: 11 D A B C based on R output be-
IIr C B A D
v A C D B

low

> I'ep(Sample(C(“A”,“B”,“C”7“D”))74)
[1] 44D77 ALA” LLC” LLB” MD?? LCA” LLB” LLC?) ALC” (LB?? “A’) HD” LLA” LLC” 44D77 ((B??

Drwegs\cars 2 ]29 g é which eliminates the block
(3) Latin Square: 17 B C D A effects of cars and drivers, as
11T cC D A B’ each row and column
v D A B C has A, B, C, D
1 2 3 4 1 2 3 4 1 2 3 4
I A B C D I A B C D I A B C D
Compare II D A B C, II C D A B, II C D A B
111 B ¢ D A IIl B ¢ D A IIl D A B C
IVv. ¢ D A B v D A B C IV B C D A
Relation between these 3 7
The data are put in Table 2.
Drivers\cars 1 2 3 4
1 A B D C
19 24 23 26
17 D C A B
23 24 19 30 which pattern of the above 3 ?
117 B D C A
15 14 15 16
v CcC A B D
19 18 19 16

> y=c(19, 24, 23, 26, 23, 24, 19, 30, 15, 14, 15, 16, 19, 18, 19, 16)
> (col=gl(4,1,16))
[1]11234123412341234
Levels: 1234
> (row=gl(4,4,16))
[11111222233334444
Levels: 1234
> T=c¢(A,B,D,C,D,C,A,B,B,D,C,A,C,A,B,D) # Does it work ?
> T=c("A”,)B”)>D”,”C” ’D”,”C” ?A” "B”"B” "D”,”C” ”A” " C” ?A” "B”,”D")
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> T=c(1,2,4,3,4,3,1,2,2,4,3,1,3,1,2,4)
> T=tfactor(T)
> (obj=lm(y~col+row+T))

(Intercept) col2 col3 cold row?2 row3
2.000e +01  1.000e +00 —1.088¢—15 3.000e+ 00 1.000e+00 —8.000e+ 00
row4 T2 T3 T4

—5.000e + 00 —4.000e — 01  3.000e — 01  1.000e + 00
> anova(obj)
Df Sum Sq Mean Sq F value Pr(>F)

T 3 40 13.333 2.5 0.156490 < 0.5
col 3 24 8.000 1.5 0.307174 car
row 3 216 72.000 13.5 0.004466 x**x driver
Residuals 6 32 5.333
> (40 4+ 24 + 216)/9/5.333
[1] 5.8
> 1-pf(5.8,9,6) what does it mean ?
[1] 0.023

> (ob=Ilm(y~T))
(Intercept) T2 T3 T4
18 4 3 1

> anova(ob)

Df Sum Sq Mean Sq F value Pr(>F)
T 3 40 13.333 0.5882 0.6343 > 0.5
Residuals 12 272 22.667

H,: T =7 =7¢c =71p v.s. Hy: H, is false.
> summary (Im(y~row))
Estimate Std. Error twvalue Pr(>|t|)

(Intercept)  23.000 1.414 16.26  1.54e — 09 % xx
row2 1.000 2.000 0.50 0.62612
row3 —8.000 2.000 —4.00 0.00176 ok
row4 —5.000 2.000 —2.50 0.02792 *

Conclusion ? Based on anova(obj) or anova(ob) ?
Ans: Based on anova(obj). The P-value of T is smaller.
Also row effect is significant, the model can be simplified as
E(Y|X) = 23 — 81(Drives) — 51(Drivey) ? 1(Drives) = 1(driver is #3)
> D=rep(1,4)
> D=c(D,D,D+2,D+3)
>D[1]1111111133334444
> summary (Im(y~factor(D)-1))
Estimate Std. Error twvalue Pr(> |t])
(Intercept)  23.5000 0.9707 24209 3.37e — 12 *%x
factor(D)3  —8.5000 1.6813 —5.055  0.00022 %
factor(D)4  —5.5000 1.6813 -3.271  0.00608 *k
The model is E(Y|X) = 23.5 — 8.51(Drives) — 5.51(Drivey).
Graeco-Latin Squares deal with the case that
there are 3 block factors with levels equal the level of the treatment factor (3+1),
whereas Latin squares deal with the case that
there are 2 equal-level factors with the same level as the treatment (241).
One may try to superimpose two Latin Squares together.
Which of the following two can eliminate confounding effect ?

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2 1 4 3 21 4 3 3 41 2 3 41 2 2 3 41
34 1 2 3 4 1 2 4 3 2 1 2 1 4 3 3 4 1 2
4 3 2 1 4 3 2 1 2 1 4 3 4 3 2 1 4 1 2 3
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(1) latin sq., (2) replication, (3) permute 3 rows, (4) permute 2 rows, (5) different.

1- =2 1- -3 1- -4 1- =5

11 22 33 44 11 22 33 44 11 22 33 4 11 22 33
22 11 44 33 23 14 41 32 23 14 41 32 22 13 44
33 44 11 22 34 43 12 21 32 41 14 23 33 44 11
44 33 22 11 42 31 24 13 44 33 22 11 44 31 22

Conclusion 7
1. Permute 3 rows of Latin square (1) works;

2. Permute 2 rows of Latin square or superimpose (5) does not work !
How to tell ?

No pair of numbers occurs twice.
Hyper-Graeco-Latin Squares deal with the case that there are 4 block factors
with levels equal the level of the treatment factor (4+41).

A Hyper-Graeco-Latin Square used in a Martindale wear tester.
The martindale wear tester is a machine used for testing the wearing quality of
types of cloth or other such materials.

* 4 pieces of cloth may be compared simultaneously in one machine cycle.

* The response is the weight loss in tenths of a milligram suffered by the test piece

when it is rubbed again a standard grade of emory paper for 1000 revolutions
of the machine.

Specimens of the four different types of cloth (treatments) A, B, C, D whose
wearing qualities are to be compared are mounted in 4 different specimen hold-
ers 1, 2, 3, 4.

Each holder can be in any of the 4 positions P;, P>, P3, Py on the machine.

Each emory paper sheet «, 8, v, § was cut into 4 quarters and each quarter
used to complete a single cycle ¢1, c2, c3 and ¢4 of 1000 revolutions.

The object of the experiment:

(1) to make a more accurate comparison of the treatments

(2) to discover how much a total variability was contributed by the various factors:
holders, positions, emory paper and cycles.

One replication has 16 df.

Under control-sum, 1+ (44 1) x (4 — 1) = 16 dfs are needed, thus

two replications are needed why 77

Thus 4 additional cycles and 4 additional emory papers are needed.

So there are 32 experiments. It is important to consider randomizing the 32
experiments. In the first 16 runs, each run involves 5 conditions: (4+1) factors,
each with 4 levels.

How to order them for randomization ?

In each circle, 4 experiments are carried out simultaneously, it needs 4 types
of emory papers and 4 types of cloth. Each holder, position and circle are one unit,
respectively. Each cloth and emory paper are cut to 4 pieces. If the qualify of cloth
and emory papers are uniform, then no need to randomize (the textbook does not
bother). Otherwise, in each replication of 16 experiments, we can randomize as
follows.

for (iin 1:4) sample (1:4) (for 4 pieces of each emory paper in 4 circles),

for (i in 1:4) sample (1:4) (for 4 pieces of each type of cloth in 4 circles).
The data are as follows.

30

44
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cycles\position Py P, P P,

c1 aAl pB2 ~C3 6D4
320 297 299 313 replication 1
Ca psC4 aD3 (A2 ~Bl1 Cycles: c1, ¢, c3, ¢4
216)62 (?271 22(1 gi% Treatments: A, B, C, D
C3 [0
o1 510 267 95 Holders: 1,2, 3, 4
Ca §B3 ~A4 BD1l aC2 Emory paper sheet: a, B, v,
301 238 243 290
Cs €Al ¢B2 0C3 kD4 replication II
285 280 331 311 Cveles:
ce €C4 D3 kA2 0B1 yeles: €5, ¢, €7, €8
268 233 291 280 Treatments: A, B, C, D
cr 0D2 kC1 eB4 EA3 Holders: 1, 2, 3, 4
265 273 234 243 Emory paper sheet: €, £, 0, &
cs kB3 0A4 E(D1 eC2
306 271 270 272

What is the property of the arrangement 7
Three Latin squares superimpose together twice.

aAl pattern aAl
111 222 333 444 1 111 222 333 444
234 143 412 321 234 , but not 222 111 444 333
342 431 124 213 34 333 444 111 222
423 314 241 132 4 444 333 222 111
Notice:
1. (ay A), (a, 1), (A, 1), etc. will not occur twice.
111
. 234
2. Rows 2, 3, 4 belongs to {(2,1,4,3), (3,4, 1,2), (4,3,2,1)} in the order e
4ab
3. The element (a,b,c) in the table is uniquely determined.
It is easier to set the Hyper-Graeco-Latin Square this way:
1 2 3 4 1 2 3 4 1 111 111 111 111
2 1 4 L LS— 2 1 4 3 . 234 N 234 . 234 N 234 N 234
3 4 1 3 4 1 2 34 34 347 342 342
4 1 4 3 2 1 4 47 42 427 423
111 = (1st,1st,1st) row of LSquare
. 234 = 2nd, 3rd, 4th) row of LS
What does it mean 7 g\ _ E3rd, Ath, 2nd§ row o§ LS
423 = (4th,2nd, 3rd) row of LS
aAl
111 2 3 4 111 222 333 444
— 234 1 4 3 — 234 143 412 321
342 4 1 2 342 431 124 213
423 3 2 1 423 314 241 132

This may not work for other dimension, say 5.
Consider model
Y ~ replication, + cycleg + positions + Emoryg + holders + treatments, or
Y = XB+¢, where Y is a 32 x 1 vector, 3 is a vector in R?* (1+1+6+3+
6+ 343 =23), and X is a matrix of dimension 32 x 23.

> y=c(320, 297, 299, 313, 266, 227, 260, 240, 221, 240, 267, 252, 301, 238, 243,
290)

> z=c(y, 285, 280, 331, 311, 268, 233, 291, 280, 265, 273, 234, 243, 306, 271, 270,
272)

> options(contrasts =c(” contr.sum”, ”
> (P=gl(4,1,32))

contr.poly”))
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[112341234123412341234123412341234
Levels: 1234

> r=gl(2,16,32) # replication index

> T=c(1,2,3,4,3,4,1,2.4,3,2,1,2,1,4,3)

> T=factor(c(T,T))

> H=c(1,2,3,4,4,3,2,1,2,1,4,3,3,4,1,2) # holder

> H=factor(c(H,H))

> (Cl=c(rep(1,4),rep(0,8),rep(-1,4)))
[1]111100000000-1-1-1-1# why —17

> (C2=c(rep(0,4),rep(1,4),rep(0,4),rep(-1,4)))
[1000011110000-1-1-1-1

> (C3=c(rep(0,8),rep(1,4),rep(-1,4)))
(1000000001 111-1-1-1-1

> C5=c(rep(0,16),C1)

> C6=c(rep(0,16),C2)

> C7=c(rep(0,16),C3)

> Cl=c(Cl,rep(0,16)) # C1 is a factor or numerical variable ?

> C2=c(C2,rep(0,16))

> C3=c(C3,rep(0,16))

> E1=¢(1,0,0,-1,0,1,-1,0,0,-1,1,0,-1,0,0,1) # emory

# O‘vﬂ,’7757ﬂ7aa(sa’yavvé,avﬁvavﬁyaﬁaa

> E2=¢(0,1,0,-1,1,0,-1,0,0,-1,0,1,-1,0,1,0)

> E3=¢(0,0,1,-1,0,0,-1,1,1,-1,0,0,-1,1,0,0)

> Eb5=c(rep(0,16),E1)

> E6=c(rep(0,16),E2)

> E7=c(rep(0,16),E3)

> El=c(E1,rep(0,16))

> E2=c(E2,rep(0,16))

> E3=c(E3,rep(0,16))

> obj=lm(z ~ T+H+P+C1+C2+4C3 +C5+C6+C7 +E1+E2+E3+E5+E6+E7+r))}

> (ob=Ilm(z ~ T))
(Intercept) T1 T2 T3

271.469 —1.469 4.156 8.406
> obj

(Intercept) T1 T2 T3 H1 H2
271.4688 —1.4688 4.1563 8.4063  —2.5938  0.5313
H3 P1 P2 P3 C1 C2
2.5313 7.5312  —14.0938  2.9063 40.1250 —18.8750 (1)
C3 C5 C6 c7 E1 E2
—22.1250 25.9375 —7.8125 —22.0625 88750  —2.6250
E3 Eb5 E6 ET rl

—17.6250 —19.8125 —10.5625 10.9375 —4.3438

Remark. LSE of treatment effects of two models are the same.

> C=c(C1,C2,C3,05,C6,C7)
> dim(C)=c(32,6)
> E=c(E1,E2,E3,E5,E6,E7)
> dim(E)=c(32,6)
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>lm(z~T+H+P+C+E+r) difference between Eq.(1) and Eq.(2) ?
(Intercept) T1 T2 T3 H1 H2
271.4688 —1.4688 4.1563 8.4063  —2.5938  0.5313
H3 P1 P2 P3 C1 C2
2.5313 7.5312  —14.0937  2.9063 40.1250 —18.8750 2)
C3 C4 C5 C6 E1 E2
—22.1250 25.9375 —7.8125 —22.0625 88750  —2.6250
E3 E4 Eb5 E6 rl
—17.6250 —19.8125 —10.5625 10.9375 —4.3438

Main concern: H,: 74 =1 = 7¢ = 7p Vv.s. Hy: H, fails.

> anova(lm(z~T))

Df Sum Sq Mean Sq F value
T 3 1705.3 568.45 0.6429
Restduals 28  24758.6 884.24
> anova(lm(z~T+H+P+C+E+r))
Df Sum Sq Mean Sq F value
T 3 1705.3 568.45 5.3908
H 3 109.1 36.36 0.3449
P 3 2217.3 739.11 7.0093
C 6 147704  2461.74  23.3455
E 6 6108.9 1018.16 9.6555
r 1 603.8 603.78 5.7259
Residuals 9 949.0 105.45
> anova(lm(z~T+P+C+E+r))
Df Sum Sq Mean Sq F value
T 3 1705.3 568.45 6.4467
P 3 2217.3 739.11 8.3822
C 6 147704  2461.74  27.9181
E 6 6108.9 1018.16  11.5467
r 1 603.8 603.78 6.8474
Residuals 12 1058.1 88.18
> anova(lm(y~T+r))
Df Sum Sq Mean Sq F value
T 3 1705.3 568.45 0.6354
r 1 603.8 603.78 0.6749
Restduals 27  24154.8 894.62
Normal Q-Q Plot Normal Q-Q Plot

Sample Quantiles
Sample Quantiles

Theoretical Quantiles Theoretical Quantiles

qqnorm(objSresid)
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Pr(>F)
0.5939

Pr(> F)
0.021245
0.793790
0.009925

Conclusion 7

Conclusion ?

5.273e — 05

0.001698
0.040366

Pr(> F)

0.0075703 Kk
0.0028332 *ok
2.221e — 06  * * *
0.0002213  * x x
0.0225196 *

Pr(>F)
0.5987
0.4185

Why different ?



qqline(obj$resid)
z=rnorm(32)
qqnorm(z)
qqline(z)

Summary:
1. H!: No difference in replication. 7?7
H¢: No difference in cycles. 77
HI: No difference in specimen holder. P-value = 0.8 > 0.05.
HP: No difference in positions. ??
H¢: No difference in emory papers. 77
H,: TA =73 =7¢c =7p v.s. Hy: H, fails.

Is the p-value for T 0.594, or 0.021 or 0.008, or 0.599 7

The difference is very significant.

Reject H,, and the treatment effect are not equal.
Notice that without blocking factor P, C and E, the conclusion is
different, even with replications.

p-value for T is 0.59 > a = 0.05.

7. Preference of treatments (weight loss) D > A > B > C.

S ot N

(Int) T1 T2 T3

271 -1 4 8
There are several models:

(1) Im(y~T)

(2) Im(y~T+r)

(3) Im(y~T+H+P+C+E+r)

(4) Im(y~T+P+C+E+r)

Which of them is appropriate ?

What is the connection between the previous question and goodness-of-fit test ?
H,: E(Y|X)=p'Xvs. Hi: E(Y|X) =X+ 0¢(X).
Model (1) is a special case of Models (2), (3) and (4).
Does anova suggests that it can be simplified ?

Which of them is better ?

> anova(obj,ob)
Model 1: z~T+P+C+ E+r

Model 2: z ~ T
Res.Df RSS Df Sumof Sq F Pr(>F)

1 12 1058.1
2 28 24758.6 —16  —23700  16.799 8.058e — 06
> summary(obj)
Estimate Std.Error tvalue  Pr(> |t])
(Intercept) 271.4688 1.8153 149.546 < 2e—16 ***

T1 —1.4688 3.1442 —0.467  0.651505
T2 4.1563 3.1442 1.322 0.218814
T3 8.4063 3.1442 2.674 0.025471 *
H1 —2.5938 3.1442 —-0.825  0.430726
H2 0.5313 3.1442 0.169 0.869561
H3 2.5313 3.1442 0.805 0.441531
P1 7.5312 3.1442 2.395 0.040206 *
P2 —14.0937 3.1442 —4.483  0.001527 ok
P3 2.9063 3.1442 0.924 0.379429

C1 40.1250 4.4465 9.024 8.35e¢ —06 *xx

Q: Under model im(z ~ T) under control sum, if we write in the standard LR
model form Y; = 8X; +¢;, (V;, X, 8)=7?
Y =271.5 - 1.5T1+4.272 4+ 8413 ?
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8 =(T1,T2,T3) ?
Or try
Im(formula =z ~ T - 1)

T1 T2 T3 T4
270.0 275.6 279.9 260.4

Y = Ziy

X/ =(1,1(T=1),1(T=2),1(T = 3),1(T = 4)), or more accurately,

X! = (1,1(T is cloth A),1(T is cloth B),1(T is cloth C),1(T is cloth D)),
B = (Bo, Br B2, By, — S0y Bo)-

B = (271.5,-1.5,4.2,8.4, —11.1).

Interpretation:

The mean wearing effect on the 4 cloths is 271.5 units,
effect on cloth A is 1.5 units lower,

effect on cloth B is 4.2 units higher,

effect on cloth C is 8.4 units higher,

effect on cloth D is 11.1 units lower.

Homework 4.1. 1. Suppose that each emory paper «, 3, v, § can be cut into 8
pieces rather than 4 quaters and each piece is used to complete a single cicle ¢y, ...,
cs of 1000 revolutions. That is (¢, &, 0, k) are replaced by («, 3, 7, 0). Pretend the
data remain the same. Revise the codes and do data analysis again.

4.5. Balanced incomplete block designs. The Martindale wear tester example
is a complete block design. There are 4 treatment, and block size (Emory paper) is
also 4.
If # of treatments > block size, then we have incomplete block designs, e.g., if there
are 4 treatment, and block size (Emory paper) is 3, then it is an incomplete block
design.

A B C D
I a B v
A balanced incomplete block design: circle of 2 B v o
103 revolutions 3 a f
4 a B~
Its properties:
1. Within block of cycles, every pair of treatments appears twice. e.g. (A,B) occurs

at blocks (circles) 1 and 2, and (A,D) occurs at blocks 2 and 3.

2. Every row contains each of o, 8 and ~.

3. Every column contains each of o, 5 and 7.

Thus each of «, 8 and v block contains {4, B,C, D} and circle {1,2,3,4}.

Youden Squares: A second wear testing example. There are 7 treatment,
and block size of emory paper is still 4, a balanced incomplete block design is as
follows.

cycles\treatment A B C D E F G

1 ab627 8248 v563 6252 DG
2 a344 8233 0442 ~226

3 o251 ~211 4160 8297 DG
4 B337 6537 7195 a300 AB
5 v¥520 4278 8199  «ab95

6 369 0196 185 (606

7 0396 (3602 ~240 273 AB

Within block of cycles, every pair of treatments appears twice.
e.g. In the block of cycles (A,B) occurs at blocks 4 and 7.
Each row and column contains «, 3, v, 4.
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cycles\treatment A B C D E F G
1 a B v 0
2 B v 90 @
Does i g 0 o g f work 7
5 a By 4
6 a B v 6
7 e 1)

> y=c(627,248,563,252, 344,233,442,226, 251,211,160,297, 337,537,195,300,
520,278,199,595, 369,196,185,606, 396,602,240,273)

> T:C(77B77 777 D?? 777F” ,77 G” , 2 A” ,77 C” ,77 F” ,77 G” , ki C” ,77 D” ”’ E?’ ,77 G” , 2 A” ,77 B77 7” E” ’77 G” 7I
”» B?? ’77 C?? ’77 E” ,77 F77 , ki A77 777 D” ,77 E” 777 F77 , ” A77 ’)7B77 ’77 C?? ’77 D77 )

> e:C(77 aﬂ ,77 b” ’77 r?? ,77 d?? , 2 a’? ’77 b?? ’77 d?? ’77 r77 , b)) a?? ,77 r77 777 d77 777 b77 , ” b77 777 d77 777 r” ’77 a,?? ,
” r” ’77 d’? ’77 b77 ’77 a” , » r” ’77 d” ’77 a” ,77 b” , ” d?) ’77 b” ’77 r77 ,’7 a?))

> c= gl(7,4,28)
[11111222233334444555566667777

> (z=lm(y~T)) # What is the LSE of TA ?

# What is the LSE of wearing effect on cloth A ?
(Intercept) TB TC TD TE TF TG

361.50 210.00 —111.00 —-129.50 -—176.75 190.00 —92.75
> (x=lm(y~T+e+c))

(Intercept) TB TC TD TE TF
408.429 191.357 —111.571 —147.643 —184.500 188.429
TG eb ed er 2 c3
—87.571 —7.571 —44.857 —35.857 —72.429 —23.786
c4 15) c6 cT
—23.929 —9.286 —11.429 8.357
> anova(x)
Df Sumgq Mean Sq Fuvalue Pr(>F)
T 6 589623 98271 96.4619  1.899¢ — 09  * * %
e 3 9846 3282 3.2217 0.06125
c 6 14570 2428 2.3837 0.09445
Residuals 12 12225 1019
Can we simplify
Delete eorc
e+c 9 24416 2712.9 2.6623 0.0583

pf(2.67,9,12)
> anova(x,z)
Model 1: y~ T +e+ ¢
Model 2: y ~ T
Res.Df RSS Df SumofSq F Pr(>F)
1 12 12225
2 21 36641 -9 —24416 2.663 0.05828
> summary|(z)
Estimate Std. Error twvalue Pr(> |t])

(Intercept) 361.50 20.89 17.309 6.6le — 14 %%
TB 210.00 29.54 7110 5.17e =07 ***
TC —111.00 29.54 —3.758  0.001157 ok
TD —129.50 29.54 —4.384  0.000259  ** *
TE —176.75 29.54 —5.984 6.13e —06 *x**
TF 190.00 29.54 6.433 2.24e — 06 *x* %
TG —92.75 29.54 —3.140  0.004943 ok

> qqnorm(studres(z))
> qqline(studres(z))
> u=rnorm(28)

> qqnorm(u)
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Normal Q-Q Plot Normal Q-Q Plot
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> qqline(u)
Summary:

H,: TA=mT=7c =7Tp =T =T = T¢ v.8. Hi: H, fails.
p-value for T is < 0.001 < a = 0.05.
The treatments are significantly different.

Reject H,, and the treatment effect are not equal.
Which of the two model is appropriate 7

(1) E(Y|X) =a+ /T,

(2) E(Y|X) = a+ BT + Bse + fic
Preference in treatments: £ > D >C >G> A>F > B. Why ?
Interpretation of o under model (1) 7

The average effect of the 7 treatments ?

The average effect of Treatment A ?
Interpretation of 3; ?
Interpretation of o under model (2) 7

The average effect of the 7 treatments ?

The average effect of Treatment A ?
Interpretation of f3; ?
> names(summary(z))

9

[1] "call” "terms” "residuals” ”coefficients”

[5] ”aliased” ”sigma” "df” "r.squared”

» N

[9] ”adj.r.squared” " fstatistic” ”cov.unscaled”

> summary (Im(y~T-1))$cov

TA TB TC TD TE TF TG
TA 0.25 0.00 0.00 0.00 0.00 0.00 0.00
TB 0.00 0.25 0.00 0.00 0.00 0.00 0.00
TC 0.00 0.00 0.25 0.00 0.00 0.00 0.00
TD 0.00 0.00 0.00 0.25 0.00 0.00 0.00
TE 0.00 0.00 0.00 0.00 0.25 0.00 0.00
TF 0.00 0.00 0.00 0.00 0.00 0.25 0.00
TG 0.00 0.00 0.00 0.00 0.00 0.00 0.25

Residual standard error: 41.77 on 21 degrees of freedom
> (U=summary(Im(y~T))$cov)
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(Intercept) TB TC TD TE TF TG

(Intercept) 0.25 -0.25 —-0.25 —-0.25 -0.25 —-0.25 —0.25
TB —0.25 050 025 025 025 025 0.25
TC —0.25 0.25 0.50 0.25 0.25 0.25 0.25
TD —0.25 0.25 0.25 0.50 0.25 0.25 0.25
TE —0.25 0.25 0.25 0.25 0.50 0.25 0.25
TF —0.25 025 025 025 025 050 0.25
TG —0.25 025 025 025 025 025 0.0

Why is there such a big difference ?
Under the model y ~ T — 1,
5 > wil(Ti=A)
D D [
5 > wl(Ti=B)
Op =5 To=m
cov(Ba,Be) = E(Ba - Br) — E(Ba)E(BB).
Under the model y ~ T,
5 le v L(Ti=A) 4 B A Z?:1 vi L(T:=B) A
Bo = le T(T=4) ° Ba =0, Bp = Z:;l 14(T,;=B) 05 «--

where n = 7 7 treatments and 4 blocks.

> summary (Im(y~T-1))
Estimate Std. Error t value Pr(>|t|)

TA  361.50 20.89 17.309 6.61e — 14 * *x
TB  571.50 20.89 27.363 < 2e — 16 * *x
TC  250.50 20.89 11.994  7.35e — 11 * xx
TD  232.00 20.89 11.108  2.98e — 10 * *x
TE  184.75 20.89 8.846  1.59e — 08 * *x
TF  551.50 20.89 26.406 < 2e — 16 * xx
TG  268.75 20.89 12.868 1.99e — 11 * *x
Is U really a covariance matrix ?
N5 =0%(X'X)7!

cov.unscaled=(X'X) "1,

> 0.25%41.77%%2

[1] 436.1832

> 20.89%*2

[1] 436.3921

Chapter 5. Factorial Designs at two levels

We shall look at 3 examples. Two are qualitative and one is quantitative.
5.2. Example 1: The effect of 3 factors on clarity of film.
An experiment to determine how the cloudiness of a floor wax is affected when
certain changes are introduced into the formula for its preparation.
1 response: cloudiness of a floor.
3 factors each with two levels:

amount of emulsifier A (low, high) or (-,4),

amount of emulsifier B (low, high) or (-,4),

catalyst concentration C (low, high) or (-,4).
There are 22 = 8 combinations and one needs 8 (random) runs of experiments.
They are called 23 factorial designs.

run## A B C results(N/Y) or(—/+)

1 - = - No —
2 + - - No —
3 - 4+ - Yes 4
4 + + - Yes +
5 - - + No -
6 + - 4+ No -
7 - 4+ + Yes +
8 + + + Yes +
compare same as B
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Results can also be given as visual display in Figure 5.1 (in the textbook). One
can see from Figure 5.1 that cloudy is mainly due to high amount of emulsifier B.
Factors A nd C are called inert.

Is the run number the order of experiments ? Then 7

5.3. The effects of 3 factors on 3 physical properties of a polymer solution.
In the previous example, there is just one response.
There are 3 responses in the current experiment
3 responses: Is the polymer solution
milky ? (1),
viscous ? (ya2),
yellow color 7 (ys3).
3 factors each with two levels in the formulation of the solution:
amount of a reactive monomer (10,30)% or (—,+),
the type of chain length regulator (A,B) or (—,+),
amount of chain length regulator (1,3)% or (—,+).

rungt 1 2 3 milky? wiscous? yellow?
1 - - — Y- Y — N —
2 + - - N+ Y — N —
3 - 4+ - Y- Y — N —
4 + + - N+ Y — Slightly + +
5 - - 4+ Y- N + N —
6 + - + N+ N + N —
7 - 4+ + Y - N + N —
8 + + + N+ N + Slightly + +
compare to columns 1 3 Y if 1&2 both +-+
ow N

See Figures 5.2 and 5.3 for visual display of the results.
Pay attention to the row of “compare columns” to the figures.

Notice that the response is qualitative in the previous two examples.
The factorial design can tell which factor do what to which response.
5.4. A pilot investigation.

1 response: yields of the experiment (numerical).
3 factors: temperature T (160, 180) or (—,+),
concentration C (20,40) or (—,+),
type of catalyst K (A,B) or (—,+).
There are duplicate runs (8+8=16).

(order) (order)

run# T C K average yields of 2 runs y;; Yo

1 - - - 60 5906 61013
2 4+ - - 72 742) 704
3 - + - 54 5001 58(16)
4 4+ + - 68 69 67010)
5 - - + 52 5008 54(12)
6 + - + 83 819 g5(14)
T — + + 45 463 4401)
8 + + + 80 790 81019

Table 5.3

Remark. Using average is only for the convenience of computing the main effects,
not for anova.

5.5. Calculation of main effect.

Definition: Main effect of each factor =%, —7_ (see the next tables).
Interpretation: the average difference between level 2 (4) of a factor and level 1 (-)
(same as control.treatment)

Main effect of T: Main effect of C:
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run#t T C K y; y— yields run# T C K y;i y— yields
1 - - - 60 1 - - 60
2 + - - 72 2 - - 72
3 - + - 54 3 + — 54
4 + + — 68 4 + - 68
5 - - + 52 5 - + 52
6 + - + 83 6 - + 83
7 - + + 45 7 + + 45
8 + + + 80 8 + + &0
er - Y- =23 ?Jr -y =-5
run#g T C K y4 y_ yields
1 — 60
2 — 72
3 — 54
. 4 — 68
Main effect of K: 5 L5
6 + 83
7 + 45
8 + 80
7, — y. =15

Four ways to compute with Rziéode:
> y=c(60,72,54,68,52,83,45,80)
> (a=rep(c(-1,1),4))
M]-11-11-11-11
> (b=rep(c(-1,-1,1,1),2))
M-1-111-1-111
> c=rep(-1,4)
> (c=c(c,-c))
]-1-1-1-11111
# First way to compute effects
> (v=c(y% *% a/4, y% *% b/4, y% *% c/4))
[1] 23.0 —5.0 1.5 # main effects
# 2nd way to compute effects
> W=lm(y~a+b+c)
> Wcoef[1:4]
(Intercept) a b c
64.25 11.50 —2.50 0.75
> ¢( 2*¥W$coef[2:4])
a b c
23.00 —5.00 1.50
# 3rd way and the prefer way
> lm(y~factor(a)+factor(b)+factor(c) )$coef[1:4]
(Intercept) factor(a)l factor(b)l factor(c)l
54.5 23.0 —5.0 1.5
# factor(a)l refers to 1(a=1)
#model 2: y = 1+ B LT = +) + B21(C = +) + Bl (K = +) +e.
> mean(y)
1] 64.25
The fourth way:
> options(contrasts =c(” contr.sum”, ”contr.poly”))
>U= lm(y~factor(a)+factor(b)+factor(c))$coef[1:4]
(Inéfigc;pt) fa_ctlolréc(z))l fac;ff)g’o(b)l faitg;(;)l factor(a)l refers to 1(a=-1)
grmodel 3: y = i+ (LT = =) — 1T = +)) + B(1(C = ) — 1(C = +))
+ B3(L(K = —) — 1(K = +)) + €. (somewhat opposite to model 1).
> —2*U[2:4] # main effects

# model 1: y = p+ Bra+ B2b+ Bsc+ e

# main effects

# main effects
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Remark. Y remains unchanged in the last three ways.

Homework problem 5.5: Given the LSE by the fourth way, how to get the LSE
under model 2 (the 3rd way) ?

5.6. Interaction.

Two-factor interaction for T'C| Two-factor interaction for TK,
run#g T C K yg y— yields run#g T C K y;i y— yields
1 - - 60 1 — — 60
2 + - 72 2 + — 72
3 - + 54 3 — - 54
4 + + 68 4 + - 68
5 - = 52 5 — + 52
6 + - 83 6 + + 83
7 - + 45 7 - + 45
8 + + 80 8 + + 80
¥y, — Y. =15 ¥y, — y. =10
Two-factor interaction for CK, Three-factor interaction
run#t T C K y;4 y— yields run#g T C K yg y— yields
1 - — 60 1 - - - 60
2 - = 72 2 + - = 72
3 + - 54 3 - + = 54
4 + - 68 4 + + - 68
5 - + 52 5 - - + 52
6 - + 83 6 + - + 83
7 + + 45 7 - + + 45
8 + + 80 8 + + + 80
Y. — Y- = 1.5 Yy — Y- =0
R commands:
ab=a*b
ac=a*c
be=b*c
abc=ab*c

a=factor(a)
b=factor(b)
c=factor(c)
ab=factor(ab) # why not ab=a*b ?
ac=factor(ac)
be=factor(bc)
abc=factor(abc)
lm(y~a+b+c+ab+ac+bc+abe)
5.7. Estimation of variance of replicate runs.
1) Under the i.i.d. N(u,0?) assumption,
52 =L (Vi — BX,)? if df> 0, where BXE 5/X.
&2 is the unbiased estimator using mean squared residuals, under the null hypothesis
H,: E(Y|X)=pX.
If there is no replicate runs (r = 1 under the full model), then
S (v — BXi)2 = 0, as there are 8 parameters and 8 observations y;;’s.
Thus it is not a proper estimator in such case.
(2) If there are r replicate runs in a 23 factorial design, with responses
Yij, 1 =1,..,8and j =1, ..., 7, let
Sg = »,nil Z;:l(yij 7?13)27 i=1,..,8

If r =2,
7 )2 7. )2 o _a0)2 .
52 = (yi1 yl.)Zir(lym vi)® _ (Wi 21/12) i=1, .., 8,
where 7, = 73’“‘51“2.

52 =% | s?/8 is an (unbiased) estimator of 2.
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s2 =627

Yes, if under the full model y ~ a+ b+ ¢+ ab+ bc+ ac+ abe. (p =38)

No, if under the submodel, e.g. y ~ I(axbxc) (p=2).

(3) Is the Mean Sq in each row of anova(), unbiased estimator of o2 ?
How about (Residual standard error)? in summary(lm()) ?
How about Residual Mean Sq in anova() ?

Simulation example 5.7.1

a=rep(c(-1,1),4)

b=rep(c(-1,-1,1,1),2)

c=rep(-1,4)

c=c(c,-c)

a=c(a,a)

b=c(b,b)

c=c(c,c)

ab=a*b

> ac=a*c

> be=b*c

> e=rnorm(16)

> y=a+2*b—3%*c+16*ab+bc+e

> (z=lm(y~a+b-+c+ab+bc)) ((Intercept) “ b ¢ ab be >I

VVVVVYVVYV

—0.12 098 234 -—-3.36 1589 0.97

Let Y = #/X 4+ ¢ where BERP. p=7 =7 =7
Df Sum Sq Mean Sq F value  Pr(>F)

a 1 14.7 14.7 15.914 0.002562 Kk
b 1 47.1 47.1 51.107  3.109e¢ — 05  * * %
> anova(z) c 1 159.6 159.6 173.258 1.219e¢ — 07  * * %
ab 1 3994.3 3994.3  4335.153 1.590e — 14 %
be 1 39.7 39.7 43.034 6.391e — 05 %%
Residuals 10 9.2 0.92

5 possible null hypotheses:

Hi: Bi=0foranie {1,...,5}.
Is H! true ?
Is the model true (under the NID) ?
What can be said about the Mean Sq in anova table 7?7
Do they look like 02 =1 ?
> z=Ilm(y~a+b+c)

Df Sum Sq Mean Sq F value Pr(>F)

a 1 147 14.66  0.0435  0.8383
> anova(z) b 1 471 4709 01398  0.7150
c 1 159.6  159.63  0.4738  0.5043

Residuals 12 4043.2 336.93
Three possible null hypotheses:

H;I 61 =0.
Hg: 62 =0.
Hg: 63 =0.

Is H! true ?

Is the model true (under the NID) ?

What can be said about the Mean Sq in anova table 77

Do they look like 02 =1 ?

> mean((y[1:8]-y[9:16])**2/2)
[1] 1.130107 # (= s> ~ 02 77?)

Remark. If the model is wrong, s? is an unbiased estimators of o2,
but not 62 and other mean squares in anova.
If the model is correct, both 42 and s? are unbiased.
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Simulation example 5.7.2
> y=rnorm(16)
> z=Ilm(y~a+b+c)
Df Sum Sq Mean Sq F value Pr(>F)

a 1 0.0212 0.02121 0.0282 0.869
> anova(z) b 1 0.8812 0.88119 1.1730 0.300
c 1 0.1444 0.14441 0.1922 0.668

Residuals 12 9.0148 0.75123
3 possible null hypotheses:

Hi: 3;=0foranie€ {1,...,3}.
Is H! true ?
Is the model true (under the NID) ?
What can be said about the mean squares in anova table 77
Do they look like 02 =1 ?

> z=lm(y~a+b-+c+ab+bc)

> anova(z)
Df Sum Sq Mean Sq F value Pr(>F)
a 1 0.0212 0.02121 0.0254 0.8765
b 1 0.8812 0.88119 1.0563 0.3283
c 1 0.1444 0.14441 0.1731 0.6861
ab 1 0.0176 0.01762 0.0211 0.8873
be 1 0.6553 0.65531 0.7856 0.3963

Residuals 10 8.3419 0.83419
> mean((y[1:8]-y[9:16])**2/2)
[1] 0.986949

5 possible null hypotheses:
Hi: 3;=0forani€ {1,...,5}.
Is H! true ?
Is the model true (under the NID) ?
What can be said about the mean squares in anova table 77
Do they look like 02 =1 ?
Remark. If the model is correct and H, is correct, all mean squares are unbiased
estimators of o2. But 62 has smaller variance than the other Mean Sq., as its degree
of freedom (Df) is larger. v6%/0? ~ x*(v) (with mean = ¥ -2 (= af3), variance
= aB? = ? Thus E(6?) = 02 and V(6?%) = 20%/v.
Simulation example 5.7.3
> n=100
> a=rexp(n)
> b=rbinom(n,5,0.5)
> a=c(a,a)
> b=c(b,b)
> e=rnorm(2*n)
> y=2+a+b+e
> z=Ilm(y~a)
> anova(z)
Df Sum Sq Mean Sq F value Pr(>F)
a 1 215.36 215.365 111.09 < 2.2e — 16 * *x
Residuals 198  383.86 1.939
o?= 1+ 77

Note: SS/0? ~ x?(Df) with Var 2« Df. Thus 14+2./2/Df ~140.2

> w=Ilm(y~a+b)
> anova(w)

43



Df Sum Sq Mean Sq F value Pr(>F)

a 1 215.37 215.365 210.83 < 2.2e — 16 * *x*
b 1 182.62 182.621 178.77 < 2.2e — 16 * *x
Residuals 197  201.24 1.022
o2= 177

> mean((y[1:n]-y[(n+1):(2 * n)]) x x2/2)
[1] 0.9183548 # (= s?)

o2 =17

Conclusion: X
1. If the model is correct, ﬁ >, (Y; — Y;)? is an unbiased estimator of o2.
2. If the model is correct, 5; = 0, the corresponding Mean Sq is unbiased.

3. If there are replications, s is unbiased.

If the model is incorrect, %717 > Y — Yl)z is not an unbiased estimator of 2.
This can be proved by a counterexample as follows.

Counterexample : Let
}/1] = ﬁle + ﬁQZZ + €ijs J = 17 27 and i = ]-7 ey M,
where X;, Z; and ¢;; are independent ~ N(0,0?).
m  (Yi1—Yi2)?
52:%21':1( — 2

_ 1 (z‘*z‘)z
R I
= Hzizl( 1\15;2) g-.

ST (S22 2 ().

=> E(s?) = 02. (Abusing notation, treating s* as a r.v.).
Now if the model is chosen incorrectly, say, consider model,

Y;‘j = ﬁle + Wij, where Wij = BoZ; + €55 ~ N(O, (ﬂg + 1)0’2)7

o* = Z?zl(}/ij —Y;;)? is an unbiased estimator of (63 + 1)0? # o2.
n=7p=7

Wi L Wie 227
E(WnWig) = E(B327 + B2Z1(e11 + €12) + ennern) = E(B527) = B3E(Z7)
E(Wi1)E(Wia) = B3(E(Z71))?. ...

Simulation example 5.7.4.

> a=rep(c(-1,1),4)

> b=rep(c(-1,-1,1,1),2)

> c=rep(-1,4)

> c=c(c,-¢)

> n=380

> e=rnorm(n)

> a=rep(a,10)

> b=rep(b,10)

> c=rep(c,10)

> y=2%*a—5%*b+e

> a=factor(a)

> b=factor(b)

> c=factor(c)

> z=lm(y~a+b+c)

> summary|(z)

# Note that a, b and c are all factors.

Using Model: Y; = By + 81 X1 + B2 Xio + -+ + ¢
and under control treatment, X;;= ?
What is 8y ?

What is g1 7
Where to find Bj’s ?
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Estimate Std. Error tvalue Pr(> |t|)
(Intercept) 3.235377 0.2014 16.064 <2e—16 *x*=*

al 3.8619 0.2014 19.176 < 2e—16 ***
bl —10.1350 0.2014 —50.323 < 2e—16 *x*x
cl —0.2773 0.2014 —1.377 0.173

Residual standard error: 0.9007 on 76 degrees of freedom
Y~ Bo=—24+5=3if a = —1 = b = ¢ under control.treat.
YaBo+Bi+B+8;3=3+4—10+0=—3if a =1 = b= c under control.treat.
Bo ~ 0~ Y under control.sum.

> anova(z)
Df Sum Sq Mean Sq F value Pr(>F)
a 1 298.29 298.29 367.7073 < 2e—16 xx*x
b 1 205437 2054.37 2532.4402 < 2e—16 **x
c 1 1.54 1.54 1.8952 0.1727
Residuals 76 61.65 0.81

5.7.5. Homework. Carry out the simulations in §5.7 yourself with different pa-
rameters and rnorm(n, 1,2), then summarize the results and address the questions.
5.8. Interpretation of results.

Under NID assumption and 23 factorial designs,

To= e~ tar (= N, 1)/ V)
T = ’34;’81 ~ tdf7 where

s2(H+1)

df = 2%(r — 14) f(jr 52 in 2% factorial design with r replicates and under the full
model. B]- refers to one of the 7 effects.
Remark. In the linear regression, if the model is correct, then we have

T = % ~ tn—p, Where
A]2- is the j—th diagonal element of 62(X'X)~!, and
5% = o (Y - X))

Notice n = 2Fr and p = 2¥ in the previous case.

Example of pilot study in §5.4.
The data presented in §5.4 are the 8 averages of 2 replications in a 22 factorial
design. The 16 data rather than the averages are as follows.
> y=c(59,74,50,69,50,81,46,79, 61,70,58,67,54,85,44,81) # yield of experiments in
Table 5.3
> mean((y[1:8]-y[9:16])**2/2)

[1] 8 = s?

Vieffect) =V (@, —7.) =0>(3 + 3;)

SE = 1/%—1—%%1.4.
For the data in Table 5.3, df=8, tg0.025 =~ 2.3, so a 95% confidence interval (CI) is

B +2.3x 1.4 (or B; +3.2).
In practice, people prefer Bj + SE, i.e.,

Bj + 1.4, as it is more conservative (not relying on NID).

ef fects  T0%CI

T 23.0+£14 temperature (160, 180)
C —5.0£1.4 concentration (20,40)
K 1.5+14 catalyst (A, B)
TC 1.5+14

TK 10.0+1.4

CK 00+14

TCK 05+14

important ignorable if |ef fect| < s nearly or too small
> z=lm(y~a+b+c+ab+bct+ac+abe) #(a,b,c)=(T,C,K) (are factors)
> anova(z)
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Df Sum Sq Mean Sq  F value Pr(>F)

a 1 2116 2116 264.500 2.055e — 07 * * %
b 1 100 100 12.500 0.007670 Kk
c 1 9 9 1.125 0.319813

ab 1 9 9 1.125 0.319813

be 1 0 0 0.000 1.000000

ac 1 400 400 50.000 0.000105 % * %

abc 1 1 1 0.125 0.732810

Residuals 8 64 8 (=62 =s%
Implication:

> w=lm(y~a+b+ac)
> anova(w,z)
Model 1: y ~a + b + ac
Model 2: y ~a+ b + ¢ + ab 4+ bc + ac + abc
Res.Df RSS Df Sum of Sq F Pr(>F)
1 12 83

2 8 64 419 0.5938  0.6772
> anova(w)
Df Sum Sq Mean Sq F value Pr(>F)

a 1 2116 2116.00  305.928 6.631e — 10 * %
b 1 100 100.00 14.458 0.002519 *ok
ac 1 400 400.00 57.831 6.292e — 06 x x x
Residuals 12 83 6.92
Estimator of o2 can be 6.92 rather than 8.
Summary. Recall that a, b, ..., abc are factors defined in §5.6.

What does the main effect mean ?
lm(y~a+b+c+bc) <=>

B(Y|X) = fo+ Ailla = 1)+ Bo1(b = 1) + fyl(c = 1) + ful(be = 1),
where X' = (1,1(a =1),1(b=1),1(c =1),1(b=c € {-1,1})) or
E(Y[X) =B+ p1lla=—-1)+ fil(a=1) + fo1(b=—-1)+ Bo1(b=1) +---
X' = (1,1(a=-1),1(a =1),1(b = —1),1(b = 1),...) with 1 =0 = B_o = ...)
Im(y~a+b*c) <=>

E(Y[X) = By + Ail(a = 1) + B1(b = 1)+ fsl(c = 1) + fil(bxc = 1),
where X' = (1,1(a = 1),1(b=1),1(c = 1),1(b = ¢ = 1)). (Compare to bc).
> lm(y~a+b*c)

(Intercept) al bl cl bl :cl

5.450e + 01 2.300e +01 —5.000e +00 1.500e + 00 3.553e — 15

> Im(y~a+b+c+bc)
(Intercept) al bl cl be
5.450e + 01 2.300e +01 —5.000e +00 1.500e+00 4.441e—16

Remark. It is easier to see the difference through the next model.
> lm(y~a+c+ac)
(Intercept) al ¢l acl
47.0 23.0 1.5 10.0
> (z=lm(y~a*c))
Intercept al cl al:cl
( 57.0 ) 13.0 -85  20.0 #llaie=1)=1la=c=1)
> predict(z,newdata=data.frame(a="-1",c="-1"))
57T # =57+04+0+0=47+04+0+10
yr~axc y~a+c+ac
> predict(z,newdata=data.frame(a="1",c="-1"))
TO#=57+13+0+0=47+234+0+0
> predict(z,newdata=data.frame(a="-1" ,c="1"))
485 # =574+0—-854+0=47+0+1.5+0
> predict(z,newdata=data.frame(a="1",c="1"))
815 # =574+13-85+20=47+23+15+10

#1lac=1)=1la=ce{-1,1})
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Observations:

(1) If one changes the model from y ~ a4 b+ c+ab+ac+bec+abc) to y ~ a+c+ac,
the LSE of (8, ), remains the same,
due to the vectors in the table of contrast are orthogonal.

(2) If one changes the model from y ~ a+b+c+ab+ac+be+abe) toy ~ a+c+a: ¢),
the LSE of (., 8.) may not be the same,
as (—1,1,-1,1,—-1,1,-1,1)(=1,-1,—-1,—=1,—=1,1,=1,1) #0 (X’ Xa.c £ 0)

a =( -1, 1, -1, 1, -1, 1, -1, 1Y

c =( -1, -1, -1, -1, 1, 1, 1, 1) dc=0
ate =( -1, -1, -1, -1, -1, 1, -1, 1Y
ax(a:c) = 1 -1 1 -1 1 1 1 1 =4

(3) However, the prediction of ¥ remains the same.

Under control.treatment,

the intercept is the estimate of the mean response of Y at the low levels of factors.
The main effect is the est. of the change due to the factor changing from - to +.

The conclusion of the experiment: Y = 47 4+ 23T — 85K + 20T K.
To get high yields of the product, set

1. the temperature 7" = 180 (high);

2. the concentration at C=20 (low);

3. It was thought that the suppliers of catalyst K do not matter and they were
supposed to produce the same type of catalyst. In fact ¢ (or K) is not significant.
However, they now notice that TK is significant. Further study of the data yields

run#t T C K outputs:

1 — — 60

2 + — 72

3 — — 54

4 + — 68

5 - + 52

6 + + 83
7 — + 45

8 + + 80
mean 48.5 57 70 81.5

They should select the better supplier (who supplies catalyst B (K+)).

- — N
Remark. A 2? factorial design _T_ + 52 can be viewed as an additive model for
- Y3
t +
one-way ANOVA or two-way ANOVA.

For one-way anova: Yj; =0+ 7; + €5, 1,7 € {1,2}, where (Y11, Y12, Y21, Y2) =
(Y1, Y2, Y3, Ya)-

For two-way anova: Y;; =n+7; + 6, +¢€;;, i, € {1,2}.
In particular, under two-way anova, one can write

Yij=n+1+0;+ej,14,5 €{0,1}.
Yij=n+ml(i=0)+71(i=1)+01(j =0)+6:11(j = 1)+ ey, 4,5 € {0,1}.

Yii=n+mnl1(i=1)+6,1(j = 1) + ¢, 4,7 € {0,1}, under control.treatment.
Q: 7 =7 if (1) under default; (2) under control.sum with Hy: 79 = 71.

47



5.9. Table of contrast.

Yates number mean a b ¢ ab ac bc abe
1 1 -1 -1 -1 1 1 1 -1

2 1 1 -1 -1 -1 -1 1 1
3 1 -1 1 -1 -1 1 -1 1
4 1 1 1 -1 1 -1 -1 -1
5 1 -1 -1 1 1 -1 -1 1
6 1 1 -1 1 -1 1 -1 -1
7 1 -1 1 1 -1 -1 1 -1
8 1 1 1 1 1 1 1 1
df 8 4 4 4 4 4 4 4

Notice that Y'(a, b, ¢, ab, ac, be, abce) /4 =(T effects), where Y = (y1, ..., ys)

5.10. Misuse of the ANOVA for 2* factorial experiments.

If there is no replicate runs (r = 1), then ANOVA may not be very helpful (see
explanation before Simulation example 5.7.1).

Skip the rest of the section.

5.11. Eyeing the data. In some special case, the interactions are negligible.
Then the main factors are orthogonal, and one can do contour eyeballing.

Example of Testing worsted yarn. (jing fang mao xian) Table 5.6 shows part of
the data from an investigation on the strength of the particular type of yarn under
cycles of repeated loading. This is a 23 factorial design with 3 factors:

Length of specimen (A) ((250,350) mm),

amplitude of load cycle (B) ((8,10) mm),

load (C) ((40,50) g).

Yates# A B C durancey
1 28
36
22
31
25
33
19
26

00 J O Ui W N

Table 5.6
mean A B C AB AC BC ABC

The effects are "oz 5 g 6 35 0 05 —05 —05
Notice the interaction effects are all negligible (] — 0.5| < |main ef fect|/7).
A, B and C are essentially orthogonal.
The direction of steepest ascent is then (8, —6, —3.5).
Ao
The contour plane of a durance 25 is a hyperplane 25 = (8, -6, —3.5) | B,
Co
where A, = (x1—250)/(350—250), B, = (x2—8)/(10—-8), C, = (x3—40)/(50—40),
(see Figure 5.6). Where are (250,350) come from ?
4,
The contour plane of a durance y is a hyperplane y = (8, —6,—3.5) | B, | = f(&)
Co
5.12. Dealing with more than one response: A pet food experiment.
The manufacturer of pet food had received complaints that packages of food pellets
received by the customers contained an unsatisfactorily large amount of powder.
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The factory did a 23 factorial design to investigate it. All in two levels.
A. Conditioning Temperature: 80% at max, or max
B: Flow: 80% at max, or max
C: Compression zone: 2, or 2.5
Responses:
Y7 — powder in product;
Ys — powder in plant;
Y3 — a measure of yield;
Y, — energy consumed.

Y1 was obtained after the same process as if a customer would eventually get it.

They tried to find out
the relation between Y; and Y5, as well as
how to control the response Y5 by adjusting the factors,
without losing too much in yield Y3 and energy Yj.

Responses in standard (Yates) order:
y1=c(132,107,117,122,102,92,107,104)
y2=c(166,162,193,185,173,192,196,164)
y3=c(83, 85, 99, 102, 59, 75, 80,73)
y4=c(235,224,255,250,233,223,250,249)

Rough estimates of errors are obtained through previous duplicated runs:
6’1 =5.6 (fOT Yl),

S A 1 1
Oeffect; = 01 \/ 2 + 1

69 = ... 03 = ... = ...
4.0 ifi=1 (for ¥7)
. )74 ifi=2 (for Ys)
Geffecti =N 4.9 ifi=3 (for Ys)
1.1 if i =4 (for Yy)
Finding:

There is no serious correlation between Y; and Y3 by plotting (Y7,Y3) and
> cor(yl,y2)
[1] -0.1686297
> summary (lm(y2~y1))
Estimate Std.Error tvalue Pr(> |t])

(Intercept) 199.7701 50.1472 3.984  0.00725 => 42 =200+0xyl
yl —0.1893 0.4518 —0.419  0.68976
powder in product powder in plant  yield energy
Y Y; Y3 Yy
o 4 7.4 4.9 1.1
temp, A —8.2 -6.3 3.5 —6.8x
flow, B 4.3 11.3 13+ 22.3x%
relate to zone,C —18.2x 4.8 —20.5%« —2.3
powder AB 9.3% —13.7 —5.5 3.8x%
inert AC 1.7 -0.3 1 1.3
inert BC 4.3 —13.7 -3.5 -0.8
inert ABC —5.7 —11.7 —6 0.8

zone at + or 2.5, from row C,
temp*flow at —, from row AB.
How to choose the levels from A and B ?

=> adjustment should set

(AB)—  energy(Ya) vy yield(Ys)
(A+,B—) —68-223 —82—43
(A—, B+) 82+43 -35+13

If energy saving is more important: (A+, B—), which also decreases Y1,
otherwise (A—, B+) (Y3,Y1) = (—3.5+ 13,8.2 + 4.3).
5.13. A 2% factorial design: Process development study
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Often there are more factors to be investigated than can conventionally be
accommodated within the time and budget available, but you will find that usually
you can separate genuine effects from noise without replication. In a pilot study,
if one plans 16 runs for a replicated 23 factorial design with 3 factors, it can be
replaced by a 2% factorial design with 4 factors.

A process development study.

Factors:
1. (a). Catalyst charge (Ib) (10,15) or (—,+), (yongliang)
2. (b). Temperature (°C) (220,240) or (—,+),
3. (¢). Pressure (psi) (50,80) or (—,+),
4. (d). Concentration (%) (10,12) or (—,+),
Table 5.10a. Data
Yatesrun # 1 2 3 4 conversion(%) random order
1 - - - = 70 8
2 + - - = 60 2
3 -+ - = 89 10
4 + + - - 81 4
) - - + - 69 15
6 + - + - 62 9
7 -+ + - 88 1
8 + o+ o+ - 81 13
9 - - - ¥ 60 16
10 + - -+ 19 5
11 -+ - + 88 11
12 + o+ -+ 82 14
13 - - + + 60 3
14 + -+ + 52 12
15 - + + + 86 6
16 + o+ o+ 79 7
x=c(70,60,89,81,69,62,88,81,60,
49,88,82,60,52,86,79)
a=rep(c(-1,1),8)
b=rep(c(-1,-1,1,1),4)
c=rep(-1,4)
c=c(c,-c,c,-C)
d=c(rep(-1,8),rep(1,8)) Normal Q-Q Plot
ab=a*b g .
ac=a*c
ad=a*d 7
be=b*c .
bd=b*d s
cd=c*d E 2
abc=ab*c g |
abd=ab*d 7 ’
acd=ac*d s —w
bed=bc*d
abed=ab*cd i °
mean(x) ° ‘ \ \
Im(x~factor(a))$coef[2]  # =7 - N 1
SuIn(X*a)/S # _ ? Theoretical Quantiles
x%*%a/8 #=7 Figure 5.10

round(lm(x~a*b*c*d)$coef[2:16],2)*2
The average is 72.25.
The effects are
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a b c d ab ac ad be bd cd
—8.00 24.00 -0.25 —-5.50 1.00 0.75 0.00 —1.25 4.50 -0.25

abc abd acd bed abced
—-0.75 050 -0.25 —-0.75 -0.25
In a 23 factorial design with r replicates,

o? is estimated by

5% =% Zil s7, where

87 = 727 Yopey (Yin = Yi)?,

df of 52 is 23(r — 1).
Vieffect) =6%(& + &), as effect =y, —7_.
A CI for effect is

effect itdf,o,ogm/aa(i + L)

In this example, there is no replication (16 runs with 16 parameters).
The 5 3-factor and 4-factor interaction effects can be viewed as errors.

A conservative estimate of the SE of effect (1/V (ef fect) is

15 t2
M ~ 0.55 (treating each of the 5 effect;’s as a variation of the effect).

The CI of effect is then
effect 5 0.0250.55 (= 2.57 x 0.55).
It can be justified by qg-plot.

The significant effects can be found out:
a b c d ab ac ad bc bd cd

—0.25 1.00 0.75 0.00 —1.25 —0.25
—8.00 24.00 —5.50 4.50 Kk
abc abd acd bed abed
—-0.75 0.50 —-0.25 —-0.75 —-0.25

Remark. Factor ¢ and the interactions related to ¢ are inert. It becomes a 23
factorial design, with replication ¢ = 2. Thus we can use s to estimate o2.

It is interesting to see from Figure 5.10 (see last page) that the significant
effects can be detected by the qg-plot against normal distribution.

It is also interesting to see from the following stem-and-leaf plot that all but
the 4 significant effects appear normal distribution.

Thus one may use all but 4 effects to estimate V(effect)

u=c(-8.00,24.00,-0.25,-5.50 ,1.00 ,0.75, 0.00, -1.25, 4.50,-0.25,-0.75, 0.50,-0.25,-0.75,-
0.25)

u=ufabs(u)<2] what is it ?

sort(u)

[1] -1.25 -0.75 -0.75 -0.25 -0.25 -0.25 -0.25 0.00 0.50 0.75 1.00
stem(u)

The decimal point is at the |
-113
-0 | 88
03333
00
058
110
sqrt(mean(u*u))

[1] 0.6571287 what is it ?
> summary (Im(x~a*b*d))
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Estimate  Std. Error  twvalue  Pr(> |t|)
(Intercept) 7.225e 401 3.307e — 01 218.463 < 2e—16 **x

a —4.000e + 00 3.307e — 01 —12.095 2.02e — 06 % *
b 1.200e +01 3.307e — 01  36.285 3.65e — 10 xxx
d —2.750e + 00 3.307¢ — 01 —8.315 3.30e — 05 ** x

a:b 5.000e — 01  3.307¢ — 01 1.512 0.169020

a:d —3.955¢ — 16 3.307¢e — 01  0.000 1.000000

b:d 2.250e + 00 3.307¢e — 01  6.803 0.000137  xx %

a:b:d 2.500e — 01 3.307e —01  0.756 0.471362
Residual standard error: 1.323 on 8 degrees of freedom.

Remark. s? = 1.323%2 = 2. The 3rd Oeffect = 1.332 ﬁ + ﬁ What are the
first two ?

Normal Q-Q Plot Normal Q-Q Plot

Sample Quantiles
Sample Quantiles

-2.0

Theoretical Quantiles Theoretical Quantiles

How to explain ties 7
Interpretation of the data.
1. Conversion changes -8% if catalyst charge switches from 10 to 15.
2. Pressure is inert.

3. To increase conversion set catalyst charge at 10 lb, temperature at 240°C' |
concentration at 10%. It causes 33% increase.

4. Interaction between temperature and concentration can be seen from Figure
5.11 in the textbook.

5. It reduces to a duplicated 23 FD.
6. © =72 —4a+12b—2.75d 4 2.25bd. Do we need to run Ilm() again for the
LSE ?
(a). Catalyst charge (Ib) (10,15) or (—,+), (yongliang)
(b). Temperature (°C) (220,240) or (—,+),
(d). Concentration (%) (10,12) or (—,+),

5.14. A first look at sequential assembly. The process of investigation includes
interactive deduction and induction. Running an experiment can gain improvement
on the production, but also indicates the possibility of even further advance and
shows where additional runs needed to be made. It is called sequential assem-
bly.

Experiment by Hill and Wiles (1975).

The object: to increase the disappointingly low yields of a chemical product.

3 factorial designs were run in sequence but only the first will be described here.
In phase I, a 23 factorial design was run.
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run#g  C R T y; (yields)
3 factors: phase T
. 1 - - -
concentration C,
. 2 + - =
rate of reaction R,
temperature T 3 -t
’ 4 + + -
5 - - +
6 + - +
T -+ o+
8 + + +
> y=¢(75.4,73.9,76.8,72.8,75.3,71.4,76.5,72.3)
76.5 72.3
76. 728
753 ,,,,,,,,,,,,,,,,,,,,,,,,,, 1.4
75.4 73.9

Visual Display suggests that C is significant

> C=rep(c(-1,1),4), R=rep(c(-1,-1,1,1),2), c=rep(-1,4), T=c(c,-c)
> z=lm(y~ C*R*T)S$coef
> ¢(z[1],2*2[2:8]) # (no need to define factors) The effects are

Y C R T CR CT RT CRT
74.3 —3.4 0.6 —-0.85 —0.7 —0.65 0.45 0.55
intercept factors
76.3 77
signi ficant
Why ?

> H=Ilm(y~ factor(C)) Do we need to update the estimates ?

Normal Q-Q Plot

‘Sample Quanties

T T T T T T
-10 05 00 0s 10 -2 Rl 0 1 2

Fig. 1 QQplot Fig. 2 (plot(a,y))
> qqnorm(z[2:8])
> qqline(z[2:8])
> sqrt(mean((22[3:8])*%2)) [1] 0.6454972  # & = 0.65 or Gefpect = 0.65 7
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> summary (H)$coef]2,2] [1] 0.6454972
> sqrt(anova(H)[2,3]/2) # \/o?(F + 1) [1] 0.6454972

Thus the model becomes Y = a+ 1(C =1) + e or ¥ = 76.3 — 3.41(C = 1).
In phase II since C is significant, 3 runs were further made.
Purpose: To check whether the next new model is appropriate:

lm(y~ C) # g =743 - 1.7C
Moreover, whether further improvement can be made.
run#t C R T phasell
9 -2 0 0
10 0 0 0
11 2 0 0

> y=c(y,79,74,69)
> a=c(C,-2,0,2)
> plot(a,y) # See above Fig. 2. What does it suggest ?
> (u=lm(y~a))
(Intercept) a
74.22 -2.10
fitted equation: Y, = 74.22 — 2.1a.
Compare to the original simplified fitted equation:
Y =76.0—-341(C =1)or Y =74.3 - 1.7C.
Can we further improve the yield by reducing the concentration C ?
Possible further experiment design ?
Remark. The difference between
Im(y ~ a+b) and Im(y ~ factor(a) +b), and 2* factorial designs.
> n=20
> a=rbinom(n,3,0.5)
> b=rbinom(n,3,0.5)
> y=T74—2*a+rnorm(n,0,2)
> x=factor(a)
> Im(y~a) # True model: E(Y|X) = (8o, 81)(1,a)t =74 —2a

(Intercept) a
74.011 —1.943
> lm(y~x) # True model: E(Y|X) = (51, ..., 84) X

=74-21(a=1)—41(a =2) — 61(a = 3)

(Intercept) xl x2 x3
73.764 —1.580 —3.824 —5.494
> Im(y~x+b) # True model: Y = (81, ..., 35)(1,1(a=1),1(a = 2),1(a = 3),b) +¢

=74-21(a=1)—41(a=2)—61(a=3)+0-b+e¢

(Intercept) xl x2 x3 b
73.5866 —1.6907 —3.9429 —5.4584 0.1777

The LSE and prediction are all different now.
5.16. Blocking the 2* factorial designs.

In a trial to be conducted using a 2* factorial design, one either use 2% different
batches of raw materials or one batch of the same material. Otherwise, one may
need blocking idea. Block sizes can be 2, 22, ..., 28=1 ¢.g., for 23 FD, the block
sizes are 2 and 4.

Block of size 4 for 23 FD. If one batch of raw material is only enough for 4

54



experiment, then partition according to 123 (or abc) = +1.

mean a b ¢ ab ac bc abc

1 1 -1 -1 -1 1 1 1 -1
2 1 1 -1 -1 -1 -1 1 1
3 1 -1 1 -1 -1 1 -1 1
4 1 1 1 -1 1 -1 -1 -1
) 1 -1 -1 1 1 -1 -1 1
6 1 1 -1 1 -1 1 -1 -1
7 1 -1 1 1 -1 -1 1 -1
8 1 1 1 1 1 1 1 1
df 8 4 4 4 4 4 4 4
1 1 -1 -1 -1 1 1 1 -1
4 1 1 1 -1 1 -1 -1 -1
6 1 1 -1 1 -1 1 -1 -1
7 1 -1 1 1 -1 -1 1 -1 bdlock1
2 1 1 -1 -1 -1 -1 1 1 block 2
3 1 -1 1 -1 -1 1 -1 1
5 1 -1 -1 1 1 -1 -1 1
8 1 1 1 1 1 1 1 1

It leads to two sets of the run #:
{1,4,6,7} and {2,3,5,8}
Drawback: It cannot estimate 3-factor interaction.
abc = block variable.
Advantage: See Figure 5.16
the batch T (1,4,6,7) and the batch IT (2,3,5,8) are in 4 opposite vertices.

Remark. If we ignore the confounding effect, then what happans ? For example,
in the previous case, suppose Y = 11(a = 1) + B21(abc = 1) + ¢, where (35 is the
confounding effect of different batch of raw materials and interaction abc. If we
ignore confounding effects, and set Y = 811(a = 1) + €,,, then

oz, = Var(B21(abe = 1) + €) = B3pq + o Why ?7?

Hence NID fails. If 2 4+ 02 > 23, then f is likely to become insignificant.
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Can we use ab, or ac, or bc ?

Yes, but it is often that abc is inert. Moreover, it is not like abc which form 2
pair of opposite vertices. e.g. be leads to (1,2,7,8), v.s. (3,4,5,6).

Can we use a or b or ¢ as a partition factor ?

No, we need to estimate the main effect, which is often more important than
other effects, do not let it be confounded with the block factor.

Block of size 2 for 23 FD. If a batch of raw material can only be used in two
experiments, partition according to (12,13) (or (ab,ac)).

It leads to 4 sets of the run due to ——, —+, +—, ++:
run# 1 2 3 4=12 5=13 block#

1 - - + + 1%
I
II
III
— II1 Table 1
II
I
1%

+ I+
I+

0O ~J O UL i W N
o+

L+
A
ot
+ 1+

1

1

17

11
11T Table 2
— 117

- + v

8 + + + + v
The two block positions can be viewed as factors 4 and 5, together with the original
3 factors 1, 2, and 3 (or a, b, ¢). Each pair is on the opposite vertex of the cube.

+
\
\
\
\

L+
I+ 1+ +
B
|+ o+

= Otk O W N

+ 4+ +

) )
2 S
' 3
runs
variable 5 + (3,6) (1,8)
Thus there is no confounding (main) effects. - (2,7) (4,5)
- +
variable 4

The advantage of this approach is that the 3 factors a, b, ¢ are all in different values
(see Table 2).
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How about let (4,5) = (12,23) ? or (13,23) ?

Patterns not to partition. (4,5)=(123,23) (or (abe,be)), due to ——, +—, —+, ++.J}

[y
N

3 4=123 5 =23 block#
+ 117
+ 1V
11
— I
— II
— I
+ 117
1V

run #
1

0 O U W
L+ 41
et e R B R
I+ 1+ + |
|

* + |
+

It leads to 4 sets of the run #:

1
— 1
17
17
117
117
v
v

I+ 4+ 14+ 1+ 1+ |
L+ + +
4+
!

+

+
T+ 1+ 1+ 1

CREN NG I JUNC NI
\

+ A+

+
8 +
The drawback of this approach is that factor a is the same in each block.
Not to partition according to (1,123) (or (a,abc), due to ——, +—, —4, ++.
run# 1 2 3 4=123 block#
1 1
v
117
II
117
11
1
v

+

00~ O U W R
I+ + |
|
I+ 1+ + |

+ +

It leads to 4 sets of the run #:

N
\
+ A+

* 4

1
1
17
17
117
117
v

+
8 + + v
The drawback of this approach is that factor a is the same in each block.

UL D =]~
o+ + 0
o+ 0+ 4+
F+ 1+ 1 + 1

o

+ 4+ +

+

In the above two cases, the block factors confounded with a.

Generators and defining relations.

a b ¢ ab ac bc abc
-1 -1 -1 1 1 1 -1
1 -1 -1 -1 -1 1 1
-1 -1 1 -1 1

1 1 -1 1 -1 -1 -1
-1 -1 1 1 -1 -1 1
1 -1 1 -1 1 -1 -1
-1 1 1 -1 -1 1 -1
1 1 1 1 1 1 1 1
It can be viewed as a 8 x 8 matrix, with each column being an 8 x 1 vector, say

Recall the table of contrast:

= ey
—_
—
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(I 1 2 3 12 13 23 123)or

(I a b & ab dc be agc).

Then I=11=22=33=44=55,

1/ =1=1I1,

2[—2-12,
Recall in R, a*a=(1,...,1) and a% * %a = ?

The defining relations 4=12 and 5=13 for two new factors in the previous cases

are also called generators.

Then 1=2345 as 2345= 231213=I (=124135) and [=124=135
Namely, 45=23, or 4 and 5 are confounded with 23, 12, 13, 125, 134 (none is a
main effect), in the sense that each element in {4,5,45,23,12,13,125,134} is either

4 or 5 or 45.

On the other hand, if we let 4=123 and 5=23, and form 4 blocks (out of 8 runs)
by (4,5), then I=451 as 1=1234235=451. Also [=1234=235.

That is, 45=1, or 4 and 5 are confounded with 123, 23, 1, 234, etc. (with one
main effect).

, as how we get ab, ac, ...

What happens to (4,5)=(12,23) or (13,23) ?

Finally, if we let 4=123 and form 4 blocks by (1,4),
Then 1 and 4 are clearly confounded with the block factor 1 (as well as, 4, 123,
23,14 ). How about 4=13 and form 4 blocks by (1,4) ?

5.16.2. Homework. Answer the previous two question marks.
Connection between defining relations and blocking:

1. Use higher order interaction if possible.

2. The new defining factors have interaction of higher order.

For more details, see Table 5A.1 as follow.

Table 5A.1. Blocking Arrangements for 2 FD.
k  block size

3

4

4

2
8
4
2

—_

6
8
4
2
32
16
8

4
2

block generator
123
12,13
1234
124,134
12,23, 34
12345
123,345
125,235, 345
12,13, 34,45
123456
1236, 3456
135,1256, 1234
126,136, 346, 456
12,23, 34,45, 56

how about
21,237

Examples of 26 FD, with block size 8.

The first example (which is in the table).

Define By = 135, B;=1256 and B3=1234. Then
B1B5;=1351256=236,
B1B3=1351234=245,
B3B>=12341256=3456,

B1B2B3=13512561234=146 (no replication of numbers).
Thus By, By and Bj are confounded with 135, 1256, 1234, 236, 245, 3456, 146.
Interpretation:
These effects 135, 1256, 1234, 236, 245, 3456, 146 cannot be estimated.
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Their order (of interaction): 3+.
Another example (not in the table).
Define A1=12456, B,=1256 and B3=1234. Then
A132=4,
A, B3=356,
B3B>;=3456,
A1B233=123.
Interpretation:
These effects 12456, 1256, 1234, 4, 356, 3456, 123 cannot be estimated.
Their order: 14
Is it appropriate ?
How about (246, 1236, 2345) 7
The third example. Define As=1245, Bo=1256 and B3=1234. Then
Ay By=486,
Ay B3=35,
B3 B>;=3456,
Ay By B3=1236.
Interpretation:
These effects 1245, 1256 1234, 46, 35, 3456, 1236 cannot be estimated.
Their order: 2+.
Is it appropriate ?
Which is the best among these three 7
Capter 6 Fractional Factorial Designs
We shall introduce the concept through examples.
6.1. Experiment on effects of 5 factors on six properties of films in 8
runs.

Factors : — +
A: catalyst(%) 1 15
B: additive(%) 0.25 0.5
C: emulsifier P (%) 2 3 ruhuaji
D: emulsifier Q (%) 1 2
E: emulsifier R (%) 1 2

Response : (qualitative)

Y1t hazy?

Y adhere?

Y3 : grease on top of film 7
Yq - grease under film 7
Ys - dull, adjusted pH
Yo : dull, original pH

A standard FD in such a case is 2° design with n > 32 experiments.

But it is done by a fractional factorial design in n=8 runs. The data are as follows.

run # 1 2 3 4=123 5 =23 Y1 Y2 Ys  Ya Us Y6
A B C E

D
1 - - = — + no mno yes mno slightly wyes
2 - = + + no yes yes yes s yes
3 -+ = + - no mno no yes no no
4 o+ = — — no yes no no no no
5 - - + — yes mno no yes no $-no
6 4+ - 4 — — yes yes no  no no no
7 -+ — + yes mo yes mno s yes
] + o+ 4+ + + yes yes yes yes s yes
res  ya 1 nt wut wyywt ¢ A D E D D

It is called a 2°~2 design, or a quarter fraction of the full 2° design.
The results in the last row in the table are the purpose of the experiment:
which level yields the desired result.
The set-ups of the two quantitative levels are based on the experience of engineers.
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The values of the variables are not uniquely determined, at least in this experiment.
Notice: This is different from blocking, where (12,13) is used.
Justification: (High order) interactions are often negligible.
Can we choose 4=123 and 5=12 7
Main difference between blocking factor and fractional FD:
The former tries to avoid confounding blocks with other effects.
The latter focuses on main effects assuming higher order interaction is insignificant.

Why FD and FFD ? There are two types of covariates: categorical and numerical.

Categorical variables are naturally factorial.

Numerical variable can also be specified as factor variables as in §6.1.
The purpose in FD is to find the tendency for desired results, not necessarily to find
the linear relation. The FFD is try to use less experiments to find the tendency of
more factors.
6.1.2. Homework. 1. Discuss a statistician what are the possible randomization
steps for the experiment in §6.1 using the fractional FD. Notice that the raw mate-
rials include films, catalysts, additives, emulsifiers, among others.
6.2. Stability of new product, 4 factors in 8 runs (a half fractional FD).
A chemist in a lab was trying to formulate a household liquid product using a new
process. The product had some nice properties but he had not found the value of
factors to achieve the desired value y of stability at 25 or above.
So he carried out another experiment as follows.

Factors : - +
A acid concentration 20% 30%
B catalyst concentration 1% 2%
C: temperature 100 150
D: monomer concentration : 25% 50%

Let D =4 = 123. The data according to Yates order are

y=c(20,14,17,10,19,13,14,10).
It was disappointed that the value y > 25 is not achieved in any of the cases.

However, the experiment provided a trend for it.
intercept A B C D

The main effects: 19;25 —53.75 —§.75 —1.25 0;75 0.25 0.75 -0.25

Bo Ba Be Bc  Bp
It occurs that the effect of D (or maybe C) is negligible,

> x=¢(0.75,0.25,0.75,-0.25) (from the effects)
> round(2.33*sqrt(mean(x*x)),2) normal scores: 1.64 1.96 2.33 2.58
[1] 1.30

or as displayed in the gqnorm() of the 7 effects.
It is simplified to Y; = B, — 5.751(factor(4;) = 1) — 3.751(factor(B;) = 1) if
A; € {20,30} & B; € {1,2}
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Normal Q-Q Plot

Sample Quantiles

run # 4=123 yor R

N
o3 o
+ o

19 1
20 S — ; ‘ ‘
14
14
17
10
10

|
|
I+ 1+ Qe

I+ + |
|

+ 4+ +
I+

eV B VRN e I

+ I+ 1+

+
8 +
Ignoring columns C and D, the first two columns become a replicate 22 factorial
design, as in Figure 6.1 (see Textbook p.238).
It seems from Figure 6.1 that one may simplify the relation as

2 1 A—2
Y~ “;9_5m 100%WMB—Uﬁnmmmﬁd%) (1)
~—~—"where?
how? ow?
5 A—2 5B —1.
y Y — 5;5 5 5 _ 3;5 05 5 in control.sum with 7 = 14.625 (2)
Factors : - +
A: acid concentration 20 30
B: catalyst concentration 1 2

Eq. (1) is a guess, not from the LSE.

Roughly speaking, from Fig. 6.1,
if A=15 (%) and B = 0.5 (%), then Eq. (1) yields
y =219 (575 + 3.75)(—0.5) = 24.25.

Thus the stability value y = 25 can be reached if
acid concentration is set less than 15% and

catalyst concentration is set less than 0.5%.

The LSE:
> u=lm(y~ a+b)$coef
(Intercept) al bl
19.37 —5.75 —3.75

#19.5 (see Eq.(1)
> v=c(1,0, 0.5, —0.6, —0.7)
> u[1]4-v*(u[2]4u[3]) 19.37 — 5754520 — 3.75(B — 1) > 257
[1] 9.875 19.375 24.125 25.075 26.025

A0 — 0.6 => A=14

B-1=-06=>B=04
The example illustrates:
1. How a fractional design was used for screening purposes to isolate 2 factors out
of 4.
2. How a desirable direction in which to carry out further experiment was found.
6.2.2. Homework. What is the set up for the further experiment to serve the

chemist’s original plan ? How many experiments would you suggest 7 Why 7

61



Factors : — 4

A: acid concentration 20% 30%
B: catalyst concentration 1% 2%
C: temperature 100 150
D: monomer concentration : 25% 50%

6.3. Another Half-fraction FD example. The modification of a bearing.
A manufacturer of bearing tries to improve their product of bearing.

A project team conjectured that they might need to modify

4 factors:

A: a particular characteristic of the manufacturing process for balls in the bearing,
B: the cage design,

C: the type of grease,

D: the amount of grease.

A 2471 half fractional FD was carried out with D corresponding to abc.
Yatesrun# 1 2 3 4 5 6 7 8

failureratey 16 7 14 5 11 7 13 4 %
abc

R yields effects: A B C D ab  ac be
-77 -12 -1.7 -12 -13 12 0.7

The results are

The cube plots is

By experience, they suspected that interactions are inert (has little effect),
then it reduces to a 2% or duplicated 2% design (see Figure 6.2).
From this half fraction FD design experiment,

they found the major factors A and C to improve their bearing.

y = 14.37 = 7.75 factor(a) — 1.75 factor(c)
Both should be set at the “+” level (why ?)

6.4. The anatomy of the half fraction.
A complete 2* factorial design can estimate 16 independent quantities:
average, 4 main effects: A, B, C, D, and the interaction effects: AB, ..., ABCD.
A half fraction design using ABC to accommodate factor D.
Thus the main effect of D cannot distinguished from ABC interaction.
The main effect D is really

Ip=21(-1,1,1,-1,1,-1,-1,1) - (y1, ..., ys) (abc%*%y/4).
Thus [p is really estimate the sum of the effects D and ABC, denoted by

lp = D+ ABC.
The reason we said [p is the main effect of D is that the 3-factor interactions are
often negligible. For instance, in the example of §6.3, knowing ABC is inert by
experience,
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effects  estimates effects assuming  3-factor interactions are inert

A 7.7 A

B -1.2 B

C —1.7 C

D -1.2 D(&noise) (as ABCD=ABC(ABC)=I).
AB+CD -1.3 AB
AC + BD 1.2 AC
AD + BC 0.7 BC

The effects D and ABC are said to be confounded.
ABC is called an alias of D.
Under this design we also have
la— A+ BCD,lap - AB+CD
Il — B+ ACD, lyc - AC + BD
loc > C+ ABD, lgc — BC + AD.
Table 1

Why 7
Recall AB represents interaction of A and B,

corresponding to their coordinates multiplying separately.
The AA corresponds to a vector with coordinates being all +1,
denoted by

I=AA=BB=CC=DD
Notice under the fractional factorial design

D=ABC (called the generating relation).

combinations of ABCD in 2 groups

I=DD=ABCD, "A=BCD, B=ACD, C=ABD, AB=CD, AC=BD, AD=BC.

I=ABCD is also called the generating relation of the fractional FD.

The 24~ fractional factorial design used here is said to be of resolution 4, as
the generating relation is

I=ABCD with 4 letters,
and no other products of less than 4 distinct letters lead to I.
It is also denoted by 2}1‘71 or “2 to the four minus 1, resolution four”.
Remark. 25! FFD may not be resolution k.
For instance, if the generating relation is

D=AB, (2*1)
then
I=ABD.
Also A=BD, B=AD, AC=BCD, BC=ACD, CD=ABC, I=ABD, C=ABCD.
—_——
3 letters on the right 4 letters
No other products of less than 3 distinct letters lead to I.
The half fraction FD has a resolution 3, and is a 2}11_11 (not 24};1).

Thus 3-factor interaction may be confounded with 2-factor interaction. (AC=BCD)
If D=ABC, then 2-factor interaction is confounded with a 2-factor interaction (see
Table 1 1).

Projectivity. Look at the next example of 4-run design in factors A, B, C:

a b ab a ab ab
run# A B C il rug #* g ? rm; * ?
! - -t + 2 — + 1 — or (C,B) as (1,2),
2+ - -
- 1 4+ - 3+
5o - + 4 4+ + 4+
4 + + + 1 9 1 9

The design is a 2?1_11, as ABC=I.
If you drop one of the factor, you obtain a 22 FD in the remaining 2 factors.
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It is said of projectivity P=2. The 22 FD in the next table can be viewed as 2?;11:
Yates run #

In general,
P=resolution of the design—1.

Denoted by
P=R-1.

1 O =

A

I+ + |

B

I+

_|_

(as AB = —C, see also Fig. 6.3 (p.244))

Remark 6.3. See the previous example of
relation D=ABC. Then P=4 — 1=3. The geometric interpretation is clear from the
figure, as well as the next table:
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On the other hand, if the generating relation is D=AB, then P=3—-1=2.
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Dropping one variable does not always reduce to a 23 FD (see Table 3 below).
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Dropping two variables does reduce to a (replicated) 22 FD (just need to con-
sider 2 cases: (1) keep D, (2) otherwise.
(1) Keep D:
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run# a b ¢ ab Tun# a b ¢ ab run# a b c¢ ab
A B C D A B C D A B C D
1 2 1 2 1 2
3 - 4+ - - 2 + - - - 2 + - - -
2 4+ - - - 3 - + - - 6 + - + -
1 - - - 4 1 - - - 4 1 - - - 4
4+ + - + 4+ + - + 5 - - + 4+
T - 4+ + - 6 + - + - 3 - + - -
6 + - + - 7T -+ 4+ - 7T -+ + -
5 - — + + 5 - — + + 4 4+ + - +
8 + + + + 8 + + + + 8 + + + +
(2) Otherwise ?
6.5. The 2;;14 design: a bicycle example.
7 Factors:
A: seat (up,down),
B: dynamo (generator) (off, on),
C: handlebars (up, down),
D: gear (low, median),
E: raincoat (on, off),
F: breakfast (yes, no),
G: tires (hard, soft),
Response: y, climb hill in seconds.
run # a ¢ ab ac bc abc y
A B C D E F G
1 - - - + + + = 69
2 + - - - - + 4+ 52
3 - 4+ - - + - + 60
4 + + - + - - - 83
5 - -+ + - - + 17
6 + - 4+ - + - = 50
7 -+ + - - + = 939
8 + + + + + + + 88
Table 6.4

Estimates of effects:
la = 3.5 seat (up,down),
lp = 12 dynamo (generator) (off, on),
lc = 2.5 handlebars (up, down), typo in the textbook
Ip = 22.5 gear (low, median),
lp = 1 raincoat (on, off),
lp = 0.5 breakfast (yes, no),
lg = 1.0 tires (hard, soft),
Average=66.5
From previous experiments on the bicycle example, an estimate of the SD of re-
peated runs is 3. So the SE of the estimated effects is
VEi+E =21
Thus there are only two factors which are distinguishable from noise. They are
dynamo B and gear D. Or roughly, one can determine by
> z=c( 3.5, 12.0, 2.5, 22.5, 1.0, 0.5, 1.0)
> qqnorm(z)
> qqline(z)
Or
> stem(z)
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The decimal point is 1 digit(s) to the right of the |

011134 [0,5)
0 [5,10)
1]2 [10,15)
1] [15,20)
22 20,25)

This fractional design can reduce the number of runs and present a replicated
22 FD for factors B and D, which is not very clear before the experiment.

Notice that (ignoring interactions of order 3+)
lr — average.

la—>A+BD+CE+ FG

lp — B+ AD + CF + EG,

lec - C+ AE+ BF + DG,

Ip =D+ AB+ EF + CG,

lp - E+ AC + DF + BG,

lp — F+ BC + DE + AG,

la >G+CD+ BE + AF,
How are they obtained ?
The Defining Relations. The 4 generators
D=AB, E=AC, F=BC, G=ABC
yield 4 defining relations:
(1) (}) = 4 I=ABD=ACE=BCF=ABCG.
which lead to A=BD=CE=ABCF=BCG (not l4).
To find all defining relations and to find all aliases, we need to add all words. There
are ?: (f) = 15 defining relations: (from ABD=ACE=BCF=ABCG (=I)).

1) (3 =4 ...

I=(ABD)(ACE)=BCDE
BCF)=ACDF
ABCG)=CDG
BCF)=ABEF

ABCG)=BEG

I=(BCF)(ABCG)=AFG
(3) (3) = 4 from ABD=ACE=BCF=ABCG(=I),

I=DEF (=(ABD)(ACE)(BCF))
I=ADEG (=(ABD)(ACE)(ABCG))
I=BDFG (=(ABD)(BCF)(ABCG))

I=CEFC (=(ACE)(BCF)(ABCG))
(4) (3) =1 from ABD = ACE = BCF = ABCG(=I)
I=ABCDEFG

~—

I=ABCDEFG
Remark. (1) In each of the 15 words, the letters are all distinct.
(2) Now it is clear why

la—+A+BD+CE+FG
due to I=ABD=ACE =AFG =ABCG=ACDF=ABEF =ADEG=ABCEDFG

The shortest “word” in the 15 defining relations among (1) — (4) is 3.

It is called a 27;;' FD.
Remark. This is different from the definition of resolution in half FD. But latter
can be rephraced as this new one.
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The 2};14 can be viewed as a replicate 22 FD.

a b ¢ ab ac bc abc y
new run # in (D, B)
2 - - - + + + - 69
1 + - - - - 4+ + 32
3 -+ - - 4+ = + 60
4 + + - + - - - 83
6 - - + + - - + 11
5 + -+ - + - = &0
7 -+ + - - + - 59
8 + + + + + + + 388
Median 69 71 — — -— — - — 83 88
| |
| |
| |
Gear, D | |
| |
| |
| |
| |
low 52 50 — — -— — - — 60 59
of f generator , B on

6.6. Eight-run designs Table 6.4 ignoring the response y can be used to produce
the 23, the 2‘}‘71, or the 2;;14 designs.
The latter two (not the first one) are called nodal designs, in the sense that
for a given number of runs, the nodal design includes the largest number of
factors at a given resolution.
The resolution R = the smallest # of distinct letters in the product.
There are
7 factors in 27, design (where R=3).
4 factors in 27, design (where R=4).
¢ ab ac bc abc
There are 3 2}11_11: g D E
C F
Remark. It won’t matter whether one calls the factors A, B, C, D, or A, B, C, E.
These 3 2‘}1_11 generating relations are I=ABD, I=ACE and I=BCF, respectively.

b
B
B
B

NS s

R=3 Why ?

4-1 a b ¢ ab ac bc abc
21v

A B C G

The generating relation [I=ABCG. R=4 Why ?
Between 2;;14 and 2‘}‘7,1, we have 8-run 2?;12 and 2?;13 designs, but they are not
nodal designs.

For example, if one considers a 5-factor design 2°~2, there are 6 of them:
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run# a b ¢ ab ac bec abc

A B C D E

A B C D F

A B C F F

A B C D G

A B C E G

A B C F G
1 - - + + + -
2 + - - - - 4+ +
3 - + -+ - +
4 + + - + - - =
) - - + 4+ - - +
6 + - 4+ - + - -
7 -+ + - - + -
8 + + 4+ + + +

Table 6.6.

Note that I=ABCG=BCF in the last row of Table 6.6.

R=4 or R=3 in Table 6.6 ?
In Table 6.6, each of the 6 FD has either ABD=I, or I=ACE, or I=BCF and no
product of two distinct letters = I, thus its resolution R=3.
Do we have 2?;5 design 7

run# a b ¢ ab ac bec abc

A B C D FE F G Then resolution =3 or 2 7?
H

Comments:

The fractional FG is used to screen out significant factors from a larger group
of factors.

It is hopeful to reduce to 2 factors by 22;14

It is hopeful to reduce to 3 factors by 2 I‘_/l

2?1_5 can not even reduce to 1 factor, as G and H cannot be distinguished.

6.7. Using Table 6.6. An illustration.

a b ¢ ab ac bc abc Projectivity P
22 A B C
22;1 A B C G 3
2;f A B C D E F G 2
For 2‘};1 design, ignoring 3-factor interaction,
g — A,
Il — B,
lo — C7
Ip — AB+ CG, (due to ABCG=I)
lp — AC + BG,
lrp - BC + AG,
l(; — G.

For 2};14 design, ignoring 3-factor interaction,

la—+A+BD+CE+ FG,

lp > B+ AD+ CF + EG,

lc - C+ AE+ BF + DG,

Ilp > D+ AB+ EF + CG, (as discussed in §6.5)

lg = E+ AC + DF + BG,

lp = F+BC+ DE + AG,

la >G+CD+ BE + AF.
An Experiment. In the early stages of a lab experiment, 5 factors are given as
follows.
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factors -1 41

1: concentration of v 94  96%

2: proportion of v toa 3.85 4.15 mol/mol
3 amount of solvent 280 310 cm?
4: proportion of Btoa 3.5 55 mol/mol
5: reaction time 2 4 hr

The best conditions known at that time were thought to be far from optimal

and the main effects were believed to be dominant,

but the interaction AC were thought to be active and needs to be avoid.
So the column corresponds to AC needs to be dropped in section column from Table
6.6.

One way is to select columns A, B, C, D, G: G should be selected as abc is of
higher order of interaction. That is, the 5th factor is not denoted by E, but by G.

run# a b ¢ ab ac bc abc
A B C D G Y
1 - - - 4+ 4+ + = 771
2 + - - - - + + 689
3 -+ - - 4+ - + 755
4 + + - + - - = 725
5 - - + 4+ - - + 679
6 + - 4+ - + - - 685
7 -+ + - - + = 715
8 + + + + + + + 637
The estimates are
la lp le lp lg lp lg
—-45 02 -56 -0.8 1.0 —-0.8 -—-34
s s S why?

Do we have factors E and F ?

I can be viewed as a noise, then so does lg in view of [f.
The optimal yields might be obtained by moving in a direction such that the con-
centration of v (A), the amount of solvent (C) and the reaction time (G) were all
reduced. A serious of further experiments lead to a yield of 84% (v.s. 77.1%) for
the chemical manufacturing process. What experiments to be considered ?

6.8. Sign switching, foldover and sequential assembly. Further runs may
needed when fractional designs yield ambiguity, i.e., confounding effects.

A strategy is Foldover:
A single column foldover:

multiply one selected column by —1, or switching sign of the column.
An example of Bicycle experiment, where B and D are significant effects.
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run# a b ¢ ab ac bec abec vy
A B C D E F @G
1 - - - + + 4+ - 69
2 + - - - - + + 52
3 - 4+ — - + - + 60
4 + + - 4+ - - - 83
5 - = + + - - 4+ 7
6 + - + - + - - 50
7 - + + - -+ - 59
8 + + + + o+ + 88
switch x(=1)
9 - - - - + + = 47
10 + - - + - 4+ + T4
11 - 4+ - + + - + 84
12 + 4+ - - - - — 62
3 - — + - - — + 53
4 + - + + + - - 78
15 - + + + - + - 87
16 + + + - + + + 60

Effect: These 16 runs provide unaliased estimates of the main effect D and
all two-factor interactions involving D.

1st23: la Ilg le Ip g lp o I
Reason: 3.5 12 1 225 05 1.0 2.5 66.5
’ 2nd 23 Uy Uy I, Uy Uy U I, A

0.7 102 27 252 1.7 22 -0.7 68.125
The first 8 runs yield (ignoring higher order interactions):
la—+A+BD+CE+ FG,
lp B+ AD + CF + EG,
lc = C+ AE + BF + DG,
Ilp =D+ AB+ EF + CG,
lg = E+ AC + DF + BG,
lp - F+BC+ DE + AG,
l¢ = G+CD+ BE + AF,
The second 8 runs yield (ignoring higher order interactions):
Iw—~A—-BD+CE+ FG,
l's > B—AD+ CF + EG,
Il - C+ AE + BF — DG,
I'n, = D—-AB - EF — CG,
'y - E+ AC — DF + BG,
l'= = F+ BC — DE + AG,
ly; -+ G—CD+ BE + AF,
Then ignoring three or high order interactions,
0.5(la+1y)=21— A+ CE + FQG,
0.5(lp +13) =11.1 - B+ CF + EG,
0.5(lc +1) =19 - C+ AE + BF,
0.5(Ip + 1) =23.9— D,
0.5(lg +1) =—-0.6 - E+ AC + BG,
0.5(lp + 1) =1.6 - F+ BC + AG,
0.5(lg +1;) =09 - G+ BE + AF,
In fact, 0.5(la +14) =2.1 - A+ CE+ FG + BCG + BEF, as

0.5(la +14) »[A+ BD+CE + FG + BCG + BEF + CDF + DEG + BCDEFG
+(A-BD+CE+ FG+ BCG+ BEF — CDF — DEG — BCDEFG)|/2

=A+CE+ FG+ BCG + BEF

Recall for 277} design, the 15 (= Z?:l (f)) defining relations are

I=ABD =CDG =DEF =ACE=BCF =BEG=AFG
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=BCDE =ACDF =ADEG =BDFG  =ABCG =ABEF =CEFG

=ABCDEFG
Foldover yields
=—ABD =-CDG =-DEF =ACE=BCF =BEG=AFG
=—BCDE =—ACDF =—ADEG =—BDFG =ABCG =ABEF =CEFG
=—ABCDEFG
Average them yields
I=ACE=BCF =BEG =AFG =ABCG =ABEF =CEFG No D!
Moreover,
05(A—l’)—14—>BD
0.5(lg —1l)5) =09 — AD,
O5(lc—l’ )=-0.9 — DG,
0.5(lp —lp) =—-14— AB+ EF + CG,
O5(lE—l )=1.1— DF,
0.5(lp — 1) = —0.6 - DE,
0.5(lg —li;) = 1.6 - CD, why 777

0.5(la = 14) »|[A+ BD+ CE + FG + BCG + BEF + CDF + DEG + BCDEFG
—(A-BD+ CE+ FG+ BCG + BEF — CDF — DEG — BCDEFGQG)]/2
=BD + CDF + DEG + BCDEFG

(Ip—1p)/2 =D+ AB+ EF + CG+ BCE + ACF + AEG + BFG + ABCEFG
+(—-D+ AB+ EF+CG+ BCE + ACF + AEG + BFG + ABCEFG)]/2

=[AB+ EF +CG+ BCE + ACF + AEG + BFG + ABCEFG

(Ip+1p)/2 =D+ AB+ EF + CG+ BCE + ACF + AEG + BFG + ABCEFG
—(-D+ AB+ FEF+CG+ BCE+ ACF + AEG + BFG + ABCEFG)|/2
=D

Notice that now D is not aliased with any 2 or 3-factor interaction ...
The column D foldover “de-alias” the main effect D and all its interaction with
other effects.
So, 0.5(l; +1}) = 67.3 — average,
0.5(I; —1}) = —1.6 — block effect (which blocks ?)
How to implement in R ?
> y=c(69, 52, 60, 83, 71, 50, 59, 88, 47, 74, 84, 62, 53, 78, 87, 60)
> a=rep(c(-1,1),4)
> b=rep(c(-1,-1,1,1),2)
> c=rep(-1,4)
> c=c(c,-c)
>z=Ilm(y[1:8]~a*b*c)$coef
>(z=c(z[1],2[2:8]*2))
66.5 3.5 12.0 1.0 22.5 0.5 1.0 2.5
> D=-2a*b
> E=a*c
> F=b*c
> G=a*F
>x=Im(y[9:16]~a+b+c+D+E+F+G)$coef
> (x=c(x[1],x[2:8]*2))
68.125 0.750 10.250 2.750 25.250 —1.750 —2.250 —0.750
> (74x)/2
67.3125 2.1250 11.1250 1.8750 23.8750 —0.6250 —0.6250 0.8750 ¢y |

> (z—x)/2
1.3750.875 —0.875 —1.3751.1251.625 1.625 —0.8125 1.375 0.875 —0.875 —1.3751
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1.125 1.625 1.625
> a=c(a,a)
> b=c(b,b)
> c=c(c,c)
> D=c¢(—D,D) why not C(D,—D) ? (see D=—a*b)
> E=c(E.E)
> F=c(F,F)
> G=c(G,G)
> lm(y~a+b+c+D+E+F+G)S$coef[2:8]*2
2.125 11.125 1.875 23.875 —0.625 —0.625 0.875
Im (y~factor(a)+factor(b)-+factor(c)+factor(D)+factor (E)+factor(F)+factor(G))$coef]2:8]|}

2.125 11.125 1.875 23.875 —0.625 —0.625 0.875
Can we apply it to other column ?
The foldover is part of sequential process of scientific learning,
in contrast to the “one-shot” experiment we have learned so far.
In the previous example, the first 8 run is the first shot.
If we stop, then it is a one-shot experiment.
In experimental design, we have initial informed guesses:
what factors to include ?
what response to measure ?
where to locate the experimental region ?
by how much to vary the factors ?
after the data are available, how to proceed ?
We do not expect to find answers to all the question in one-shot.
We can try smaller experiment to reduce the unknown possibilities gradually by
making second guesses. Foldover is one of such strategy.

274 FD — 16-run design.
Does the total of the 16 runs consist of a 272 FD ? Where to find D ?

run # Z gé (11;) aEc l;f agc y run# a b ¢ 7 ac bc abc y
P A ABCDETF G

5 + - - - -+ + 5 2 - A=A
- T
A A B S
o R e
P A e
SIS R TS ER
Swftch ot x(—tl) L A S VRO
T R it S I
U S S B S,
U A R E B S
B B
e - + 71
- S S S S
e T
6 + + + - + + + 6 ° v A A A A 58

16 runs FFD 273 FFD

6.9. Multiple-column foldover. Its effect is that all main effects can be unaliased
with two-factor interactions. (A single column (say D) foldover unaliases D with all
interactions).

Chemical plants experiment. A number of similar chemical plants in different
locations had been operated successfully for years. In a newly constructed plant
certain filtration cycle took twice as long as the other plants. In order to find the
reason, 7 factors are identified and a 2;1_14 fractional design was carried out.

72



Factors — +

A water supply town reservoir well

B: raw material on site other

C: temperature low high

D: recycle yes no

E:  caustic soda fast slow  (kexingna)

F: filter cloth new old

G: holdup time low high

a b ¢ ab ac bec abc Y
run # A B C D E F G

1 - - - + + + — 684
2 + - - = — + + 77T
3 -+ - - + - + 66.4
4 + + - + - — — 810
5 e + - — + 78.6
6 + - + = + — — 412
7 -+ + - — + - 68.7
8 + + + + + + 38.7

foldover —a —-b —c —ab —ac —bc —abc vy

run # A B C D E F G

9 + + + - - - +  66.7
10 -+ +  + + - —  65.0
11 + - 4+  + — + — 864
12 - - 4+ - + + + 619
13 + + - = + + — 4738
14 -+ -  + - + +  59.0
15 + - -  + + - + 426
16 - - - = — — — 676

For the 2;;14 design, the defining relations:

I= ABD=ACE=BCF =CDG =BEG=AFG =DEF

=ABEF =ABCG=BCDE=ACDF =ADEG=BDFG=CEFG= ABCDEFG.
Estimates:
la=-109— A+ BD+CE+ FG,

due to I=ABD=ACE =AFG,

and ignoring high order interactions: +BCG +CDF +BEF +DEG +BCDEFG.

lp=-28—>B+AD+ CF + EG,
due to I=ABD=BCF =BEG
lc =-16.6 - C+ AE+ BF + DG,
due to I=ACE=BCF =CDG
Ilp=32— D+ AB+ FEF + CG,
due to I=ABD =CDG=DEF
lp =—-228 - FE+ AC+ DF + BG,
due to I=ACE =BEG=DEF
lp=-34—F+ BC+ DE + AG,
due to I=BCF =AFG=DEF
lg =0.5— G+ CD+ BE + AF,
due to I=CDG=BEG=AFG.
The estimates and summary(y~a*b+b*c+a*c) (why ignore ¢¢ 7) suggest that the
causes are factors A, C and E. To further investigate, another 8 runs were made.

The defining relation for the foldover is
I= —ABD=—-ACE=-BCF =—CDG =—BEG=—AFG=-DEF = —ABCDEFG
=ABCG=BCDE=ACDF =ABEF =ADEG=BDFG=CEFG
Iw—-+A-BD-CE - FG,
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due to I=—ABD=—ACE =—AFG,
and ignoring high order interactions: BCG+CDF+BEF+DEG—BCDEFG
l's - B—AD - CF - EG,
le,. -+ C—AE — BF — DG,
I'nx»>D—-AB - EF — CG,
l'z= - E—AC — DF — BG,
l'= = F—BC — DE — AG,
lty, -+ G—CD— BE — AF.

Then
5(1a +1) =—6.7 — A, ignoring BCG+CDF+BEF+DEG,
5(lp+15) =-3.9— B,
5(lc +1p) =—-04—C,
5(Ip +1p)=27—D,
S(lp+1y) =—19.2 - E,
0.5(lp + 1) = —0.1 — F,
5(1g + lG) =—-4.3 = G,
51y + l/) = 63.6.
5(Ia —14)=—-42— BD + CFE + FG,
5(g—15)=11— AD + CF + EG,
5(c —1lp) =—-16.2 - AE + BF + DG,

0.5(Ip —1p) = 0.5 = AB + EF + CG (no high order interaction, except
ABCEFG)

0.5(lg — ) = —3.6 - AC + DF + BG,

5(p —lz) = —-3.4— BC+ DE + AG,

0.5(1(; —l,)=48—-CD+ BE + AF,
(l; — 1) =3.0.
-3.9,-0.4,2.7,-19.2,-0.1,-4.3,0.5,-3.6,1.1,-16.2, 4.8,-3.4,-4.2,3)
)

-403-190-40-41-165-3-43

017
—0 | 4444300
+0 | 1133
+0 |5
Thus it suggests that rather than A, C and E in the first 27, IH FD, the multiple
foldover finds that the main causes are A, E and AE (why not BF+DG ?), Cis
a noise.
On one hand, the stem and leaf plot suggests that
the main causes are E and AE, but A is also a noise.
On the other hand, the Analysis of Variance Table suggests that A is marginally
significant.
Model 1: y ~ E 4+ I(A * E)
Model 2: y ~ A+ E + I(A*E)
Res.Df RSS Df Sumof Sq F Pr(>F)
1 13 645.94
2 12 467.05 1 178.89 4.5962  0.05322
y=063.6—9.6E —8.1AF + ¢ (or § =63.6 —9.6E — 8.1AF, where j = 63.6) ?
y=636-1921(F=1)—1621(AE=1)+¢€?
Improvement can be obtained by E=+1 (caustic soda slow) and A=+1 (well water).

An economic alternative to total foldover.
The foldover took 8 runs to find out the previous conclusion,
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but there were simpler ways to do it.
Since the 8-run 2;;14 experiment indicates that A, C and E are possibly not inert,
we can consider 22 FD with factor A, C and E.

run# a b ¢ ab ac bc abc y
A C E

A C E 2 + — - 7.7 1 2 3
1 - - 4+ 4 + — — 81.0 7 - = =
2 + - - 2,4 + — -
3 — — + 5 — + - 78.6 57 — + -
4 + - - 7 — + — 68.7 T4+ + =
5 — + - L3 - — +
6 + + + 1 - — + 68.4 7+ - +
7T - + - 3 — - + 66.4 7 - + +
8 + + + 6,8 + + +

6 + + + 41.2

8 + + + 38.7

Then runs 1-8 can be treated as 4 pairs of replicates, leading to estimate of SD

§% = M =149 with df 4. (=V(e) ? or V(effect) ? d;=7) (1)

Reason: Recall under model V' = B'X + € with 8 € RP,
>0 (Y — B/ X5)? has df n — p.

n—p

d?/2 = ﬁ E;lzl(Yj — ﬁ’Xj)z, under model Y; =p+e,n=2and p="7

Thus it has df =1.
Add 4 more runs (instead of 8) yields

run# a b ¢ ab ac bc abc y
A C E
16 — - - 67.6
2.4 + - - 777 81.0
9,7 — + - 78.6 68.7
11 + + - 86.4
1,3 - — + 68.4 66.4
13 + - + 47.8
10 — + + 65.0
6,8 + o+ + 412 38.7
The 12 runs lead to estimates (through im(y ~axc+axe+ cx*e)$coef[2: 7] x2)
la e e lac lap  lcE
-50 0.7 -21.7 -—-1.1 -173 -5.8
s s ?

With 6effect = s1/& + & = 2.23 (why /6 ?) and tg.025.4 ~ 2.8. s is as in Eq.(1).
2.8 x 2.23 =~ 6.24.

The effect is not significant if |ef fect| < 6.24. (P-value =0.06).

Thus, the main causes are E and AE, same as the 16-run results. Moreover,

A, C and CE are not significant.

Remark. Notice that under the economic alternative design with 12 runs, l4 etc.

are derived from Im(y ~ ---), not from 7, —7_, as can be seen from the table.

> mean(y[c(2,4,11,13,6,8)])-mean(y[c(16,5,7,1,3,10)])

1] -6.983333
la lc le lac lae lce
T -7 —6.98 —5.05 —22.08 —835 —17.05 —7.52
Im(y ~ )$coef[-1]%2  —5.04 —0.71 —21.71 —111 —17.29 -583
foldover —67  —04 —192 —36 —162 —42

la=Uy loe—1lp lg=1y lg+ly lo+ly la+ly
Thus 7, —7_ is not applicable in foldover. Moreover, unlike the 2k FD,
given lm(y~a*c*e) the final model needs to be estimated again. See the next R
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outputs.

> Im(y~factor(a) + factor(c) + factor(e) + factor(a*e)+factor(c*e))$coef

(Intercept) factor(a)l factor(c)l factor(e)l factor(cxe)l factor(axe)l
90.39167 —5.03750 0.71250  —22.08333 —5.83750 —17.28750 I

> x=Ilm(y~a*c+a*etc*e)$coef
> c(x[1],x[—1]*2)
(Intercept) a c e a:c a:e c:e

65.89375  —5.03750 0.71250 —21.71250 —1.11250 —17.28750 —5.83750
It turns out to be different from 7, —%_.

> w=lm(y~e+I(a*e)+I(c*e))$coef
> c(w[l],w[-1]*2)
(Intercept) e I(axe) I(cxe)
65.625000 —22.083333 —17.050000 —7.516667
> V=lm(y~e +I(a*e))$coef
> ¢(V[1],V[2:3]*2)
(Intercept) € I(axe)
65.62500  —22.08333 —17.05000
It turns out to be the same asy, —7_.
> anova(h,z)
Analysis of Variance Table
Model 1: y ~ e + I(a * e)
Model 2: y ~ e + I(a *e) + I(c * e)
Res.Df RSS Df Sumof Sq F Pr(>F)
1 9 308.3

2 8 138.8 1 169.5 9.7672 0.01412
Thus the model is § = 65.6 — 22.1e — 17.1a x e — 7.5c * e.

R program for computing effects.
v1=c(68.4, 77.7, 66.4, 81.0, 78.6, 41.2, 68.7, 38.7)
a=rep(c(-1,1),4)
b=rep(c(-1,-1,1,1),2)
c=rep(-1,4)
c=c(c,-c)
z=lm(yl~a*b*c)$coef
summary (lm(yl~a*b+a*c+b*c))
Estimate Std.Error  tvalue  Pr(> |t])
(Intercept)  65.0875 0.2625 247952  0.00257  *xx

a —5.4375 0.2625 —20.714 0.03071  =x

b —1.3875 0.2625 —5.286  0.11903

c —8.2875 0.2625 —=31.571 0.02016  *
a:b 1.5875 0.2625 6.048 0.10432
a:c —11.4125 0.2625 —43.476 0.01464
b:c —1.7125 0.2625 —6.524  0.09683

Analysis of Variance Table
Model 1: yl ~a*b+a*c+b*c
Model 2: y1 ~a+ ¢+ I(a * ¢)
Res.Df RSS Df Sumof Sq F Pr(> F)
1 1 0.551
2 4 59.575 -3 —59.024 35.691  0.1223
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b=—b

c=—c
ab=—ab
ac=—ac
be=—bc
abc=—abc

y2=c(66.7, 65.0, 86.4, 61.9, 47.8, 59.0, 42.6, 67.6)
(x=Ilm(y2~a+b-+ct+ab+act+be+abe)$coef)

(Intercept) a b c ab ac
62.125 —1.250 —2.500 7.875 1.125 —7.800
be abc
1.650 —4.575
(x=lm(y2~a*b*c)$coef) #Does it work ?
(Intercept) a b c a:b a:c
62.125 —1.250 —-2.500 7.875 —1.125 7.800
b:c a:b:c

—1.650 —4.575
Im(y2~ —A*B*C) #Does it work ?
u=round(z+x,1) # la, I, lc, Ip, g, lF, ...
v=round(z-x,1)

a:c c a a:b:c a b
—19.2 —16.2 —6.7 —-4.3 —-4.2 -39
a:c b:c c b:c a:b b
sort(c(v,ulll/Zul-1l) Z5 ¢ —3.4 —0.4 —0.1 05 11
a:b (Intercept) a:b:c (Intercept)
2.7 3.0 4.8 63.6
x=lm(y2~a*b*c)$coefl
u=round(z+x,1)
v=round(z-x,1)
a:c c a a:b:c a b
—19.2 —16.2 —6.7 —-4.3 —-4.2 -39
a:c b:c c b:c a:b b
sort(c(v,ulll/Zul-1l) Z5 ¢ —3.4 —0.4 —0.1 05 11
a:b (Intercept) a:b:c (Intercept)
2.7 3.0 4.8 63.6
d=c(1,2,16)
(s=sqrt(mean(x[-d]**2))) # treating the other estimates as noises.
[1] 3.526929

s*qt(0.975,13)
[1] 7.619468 # cut point for significance, which suggests that a= —6.7 is not
significant.

# Another way:
a=c(A,a)
c=c(C,c)
b=c(B,b)
ab=c(A*B,ab)
ac=c(A*C,ac)
be=c(B*C,bc)
abc=c(A*B*C,abc)
y=c(yl,y2)

AA=c(AA)
BB=c¢(B,B)
CC=¢(C,C)
EE=AA*CC
sort(round(lm(y~a-+b+c+ab+ac+bc+abe +AA*BB*CC)S$coef]-1]*2,1)) # effects
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after foldover

E AE A

ac ccC a abc AA b AA.CC BB:CC
—-19.2 —-16.2 —6.7 —4.3 —-4.2 -3.9 -3.6 -3.4

c be AA: BB BB ab AA:BB:CC
-04 -0.1 0.5 1.1 2.7 4.8

round((Im(y~ AA*BB*CC)$coef*2),1) # effects unchanged
(Intercept) AA BB CC AA:BB AA:CC BB:CC AA:BB:CC
127.2 —-42 11 -16.2 0.5 —-3.6 —-34 4.8

(Im(y~ e+a:e)$coef*2)
(Intercept) e e:a
127.2125  —19.2125 —16.1625
(Im(y~ a+eta:e)$coef*2)
(Intercept) a e a:e
127.2125  —6.6875 —19.2125 —16.1625

(Im(y~a+c+e+AA+CCHEE)S$coef*2)
(Intercept) a c e AA cc EE
127.2125  —6.6875 —0.4125 —19.2125 —4.1875 —16.1625 —3.6125
Analysis of Variance Table
Model 1: y ~a+c 4+ e+ AA + CC + EE
Model 2: y ~ e + CC
Res.Df RSS Df Sumof Sq F Pr(>F)
1 9 344.03
2 13 645.94 —4  —301.91 19745  0.1822
Analysis of Variance Table
Model 1: y ~a+c+ e+ AA + CC + EE
Model 2: y ~ a 4+ e + CC
Res.Df RSS Df Sumof Sq F Pr(> F)
1 9 344.03
2 12 467.05 -3 —123.02 1.0728  0.4083
Analysis of Variance Table
Model 1: y ~ e + CC

Model 2: y ~a + e + CC

Res.Df RSS Df Sumof Sq F Pr(>F)
1 13 645.94
2 12 467.05 1 178.89 4.5962  0.05322

An economic alternative:
d=c(16,11,13,10)
a=c(A,a[d])

¢(C,c[d])
=c(A*C,ac[d])
d=c(8,3,5,2) # d+8=c(16,11,13,10)
y=c(yly2[d])
x=lm(y~a*c*e)
summary(x)
d=c(16,11,13,10)-8
a=c(A,-A[d])
c¢=c(C,-C[d])
e=c(A*C,-A[d]*C[d])
y=c(y1,y2[d])
x=Ilm(y~a*c*e)
x=Ilm(y~a*c*e)
summary(x)

C
e

78



Estimate Std Error twvalue Pr(>|t|)
(Intercept)  65.8938 1.1816 55.764 6.19¢ — 07  * * %

a —2.5188 1.1816 —2.132  0.10003
c 0.3562 1.1816 0.301 0.77807
e —10.8562 1.1816 —9.187  0.00078  xx %
a:c —0.5562 1.1816 —0.471  0.66235
a:e —8.6438 1.1816 —-7.315 0.00186 Kok
c:e —2.9188 1.1816 —2.470  0.06894
a:c:e —0.8062 1.1816 —0.682  0.53251

Residual standard error: 3.859 on 4 degrees of freedom
s =1/14.9 = 3.86 computed by replications s?, and matching summary().

u=lm(y~a*c+e*c+a*e)
summary(u)
anova(u,x)
Estimate Std Error twvalue Pr(>|t|)
(Intercept)  65.6250 1.0528 62.331 2.0le — 08

a —2.5188 1.1167 —2.256  0.073765

c 0.3562 1.1167 0.319  0.762610

e —10.8562 1.1167 —9.722  0.000196  * * x*
a:c —0.5562 1.1167 —0.498  0.639536
c:e —2.9188 1.1167 —2.614 0.047457 *
a:e —8.6438 1.1167 —7.740  0.000575  ** x

Residual standard error: 3.647 on 5 degrees of freedom

If ignoring ace, & = 1/ -2 3212, (V; — ¥;)2 = 3.65 with df 5.

n—p

Analysis of Variance Table
Model I: y~a*c+e*ct+a*e
Model 2: y ~ e + I(a * e)
Res.Df RSS Df SumofSq F Pr(>F)
1 5 66.509

2 9 308.334 —4 —241.82  4.545 0.06398
Analysis of Variance Table

Model 1: y~a*c+e*c+a*e
Model 2: y ~e + I(a*e) + I(c * e)
Res.Df RSS Df Sumof Sq F Pr(>F)
1 5 66.509
2 8 138.833 -3 —72.325 1.8124  0.2617

Analysis of Variance Table

Model 1: y ~ e + I(a * e)

Model 2: y ~ e + I(a * e) + I(c * e)

Res.Df RSS Df Sumof Sq F Pr(>F)

1 9 308.33

2 8 138.83 1 169.5 9.7672 0.01412 conclusion?l
Conclusion: AFE and E are significant and CE is significant.
Remark: There are three conclusion based on whether CE is significant:
(1) In last ANOVA (economic alternative), AE, E and CE are all significant.

(2) In full foldover, CE is on the boundary (p-value=0.053) (in contrast to the
conclusion in (1).

(3) In the ecomonic alternative, recall

lA lc lE lAC lAE lCE
-5.0 0.7 -21.7 -1.1 -17.3 —5.8
s s p — value = 0.06 using replications

The last conclusion (0.06 based on Geffect = 2.23) might be more reliable, as it
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relies on replications and does not rely on N{(.,.).
Of course, if NID is true, statement (2) is more reliable, as it sample size is larger.

Estimation of SD of effects.

yl=c(68.4, 77.7, 66.4, 81.0, 78.6, 41.2, 68.7, 38.7)
a=rep(c(-1,1),4)

b=rep(c(-1,-1,1,1),2)

c=rep(-1,4)
c=c(c,-c)
(z=lm(yl~a*b*c)$coef[-1]*2)
a b c a:b a:c b:c a:b:c
—10.875 —2.775 —16.575 3.175 —22.825 —3.425 0.525
s s s

x=z$coef]c(2,4,6,7)]
sqrt(mean(x**2)) # SD of effects

[1] 2.733587
x=Ilm(yl~a*c)
summary(x)
Estimate Std.Error tvalue  Pr(>|t|)
(Intercept)  65.087 1.364 47.702 1.16e — 06 * % *
a —5.437 1.364 —-3.985  0.01633 *
c —8.287 1.364 —6.074  0.00371 *k
I(axc) —11.412 1.364 —8.364  0.00112 Kok
2 x ef fects —-10.8 2.734
—16.57 2.734
—22.82 2.734
SDeffects

Residual standard error: 3.859 on 4 degrees of freedom
3.859,/% + 5 =2.734
sqrt(2*mean(x**2)) # compare to Residual standard error in summary
[1] 3.865876 # SD of errors.
Effect =Yy —Y_.
Var(ef fect) = 03(% + %)
Recall that runs 1-8 can be treated as 4 pairs of replicates corresponding to
factors a and c, leading to estimate of SD
N 4 2
§2 =2 = 2 ™/? _ 149 with df 4 and v/I29 = 3.86.
Remark related to homework 6.2.2. EQ.(2) is the equation for the contour

plane.
5715A-25 375B-15

2 5 2 0.5
(A, B) = (14,0.4) is a point on the contour plane

Yy~ 14.63 — in control.sum (2)

15 A-2 .75 B —1.
25.075 = 14.625 — 575 b _ 315 >

2 5 2 0.5
It is a straght line on the AB plane (with A-axis and B-axis). (A4, B) = (20,1.5) is
a point on the contour plane 0 = 372 4=25 4 3T B=LS op p— 15 215495 (from

575 A—-25 3.75B-1.5
14.625 = 14.625 — —— —
625 625 2 5 2 0.5

).

It is another straght line on the AB plane.

6.10. Increasing design resolution from III to IV by foldover.
The foldover in §6.9 increases the resolution from III to I'V.

Before multiple column foldover, there are 15 defining relations:
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I=ABD =ACE=BCF =CDG =DEF =BEG=AFG =ABCDEFG
=ABCG =BCDE =ACDF =ADEG =BDFG =ABEF =CEFG
Adding the foldover, only 4-letter defining relations remain and the resolution be-

comes 4.

I= ABCG=BCDE=ACDF =ABEF =ADEG=BDFG=CEFG (total of 7).

If we choose 3 letters from ABCG (=I), we can form a replicated 23 FD, based on

I=ABCG. i.e., (A,B,C), (A,B,G), (A,C,G), (B,C,G)

So total of 4 x 7 = 28 combinations,
out of total of (§) = 35.

This is the advantage of such an approach.

Notice that a single column foldover yield defining relation

I=ACE=BCF =BEG =ABCG =ABEF =CEFG

The resolution is ?

Recall that the single column foldover results in a 2};13 design.
Look at the previous 16-run experiment. Is it a 2773 design ?

design.

run

N O U W N

Original order 8
run

9

10

11

12

13

14

15

16

Reverse the last 8

Columns A B C G form a replicated 2

#

#

16
15
14
13
12
11
10
9

P+ i+l +l =2 4+ 0+ 1+ 4+l +14+1+1+1 =0

+

svjRS

S

I+ +

+
+

I+ + L++ 000+ 4

I+ + |

o+t

c
c

I+ +++ L ++++ 10

\
2
S

I+ + |

I+ + |

w

I + 9%

o+ + 1

&+
>

I+ +

I+ + 1

FD,

+
_|_
+
+

I+ 1 + =8

+ I+

|
@

I+ 1 ++ 1 + 1

—ac

C

I+ + =
0§

I+ 1+ 4+

_|_

be

L+ +++ 11 &
()
|
[T T I I

—bc
67.6
42.6
59.0
47.8
61.9
86.4
65.0
66.7

L+l

+||+|++|§

If so, it is a 2];°

y  (table of contrast)
(defining factors)
68.4
7.7
66.4
81.0
78.6
41.2
68.7
38.7
Y
66.7
65.0
86.4
61.9
47.8
59.0
42.6
67.6

(see a, b, ¢, abc cloumns), not a 2* FD.

The main component of 2¢ (or 2°73) FD: a,b,c,d columns.
Replacing G by other 3 choices from [=ABCG: ABCD,ABCEand ABCF.

Is A BCD2*FD ? Try order 16,2,3,13,12,6,7,9, 1,15,14,4,5,11,10,8.
Are ABCEand A BCF 2% FD ? Note these 3 are related to ABCG=I

a b
A B

ab

ac
E

bc abc y

F

G

81

(table of contrast)
(defining factors)



Are these 24 FD ?

S
Sy

+ 11 +1+1+1+1+1+ 1+ 1

' ++ 1 1 ++ 1 1 ++ 1|

+ +

L+l

o+t

e e e

— — — =
CTo—roSooukwih &

13
12
11

o
Sy

+ 1+ 1+ 1 +1+1+ 14+ 1 4+

F++ 1 1 +4+ 1 1 ++ 11

+ +

L+

+ 4+

e e

What are the FD patterns for the cases by replacing one letter from

ABCG=BCDE=ACDF =ABEF =ADEG=BDFG=CEFG (=I) ?

Like ABCG, they are not 2* FD, but replicated 2*~! fractional FD:

I=ABCG

16
15
14
13
12
11
10

NeJ

00 O Ui W N

h

+ 1+ 1+ 1 +1+1 4+ + 1+

B

F++ 1 1 ++ 1 1 ++ 1|

+ o+

C

|+t

+ 4+

G

I+ I+ + |

I+ ++ 1 + |

16
11
10
13
12
15
14

Ne

O W N UL 3O

NG

+ 1+ 1 +1+1+1+1 4+ 1 4+

++

(0]
[N

2
B

F++ 11 ++ 101 ++ 1 1

123

Q

F+ 1+ 4+

F+ 1 ++ 1 + |

3
G

e e S

o+t

I=ABCG



run# 1 2 123 3 run# 1 2 3 123
A B C D E F A D E F G

6 - - - 6 - - - -
15+ - - 9 + - - +
10 - + - 4 - + - +
9  + + - 1+ + - -
12 - - + 12 - - + -
1+ - + 13+ - + -
4 - 4+ + 0 - + + =
I=ABEE 3y p EADEG 4y +
5 - — - 7 - - - -
6 + - —~ 2+ - - +
3 - + - 5 - + +
4+ 4+ - 4+ + - -
1 - - + 3 - - + +
2+ - + 6 + - + -
T -+ + 1 - + 4+ -
8 4+ + + 8 4+ + + +

or [I=BCDE=ACDF =BDFG=CEFG

This is a 27,,® design. It can scan 3 out of 7 factors to form a replicated 2° FD
for all () = 35 patterns, though 7 x 4 = 28 of them cannot form 2% FD.
6.10.1. Homework. Are ADEF,BDEF,CDEF 2% FDs ? Prove or disprove
it.

6.10.2. Homework. Prove or disprove it. Can (B, D, F) be chosen as (a,b,c) 7
How about (A, B, D) ?

6.11. 16-run design.
For computation purpose, instead define the orthogonal array in Table 6.14a, one
can use

z=lm(y~ a*b*c*d)

2*z8coef[2:16]
where y is the response variable and a, b, ¢, d are variables defined as follows.

=c(~1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1, -1, 1)
b=c(-1,—1,1,1,—-1,-1,1,1,—-1,-1,1,1,-1,-1,1,1)
c=c(-1,-1,-1,-1,1,1,1,1,-1,-1,—1,-1,1,1,1,1)

)

d=c(-1,-1,-1,-1,-1,—-1,-1,-1,1,1,1,1,1,1,1,1

y T by s Ly Ly by by Ly Ly Ly

nodal

designs a b ¢ d ab ac ad bc bd cd abc abd acd bed abed
24 A B C D

22" A B C D P
2% A B C D L M N O
27,7 A B CDFE F G H J K L M N O P

24 is not a nodal design. Neither is the 2;‘_/3 in §6.10. Note that for convenience,
in 2?/_1 design, the 5-th factors are denoted by P, instead of by E
I is not used as it denote columns with all +’s.

The alias structure for 16-run nodal designs are given in Table 6.14c.
Table 6.14c. Alias Structure for Sixteen Run Nodal Designs
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5—1 8—4 15-11
2\/ 2IV 2III

a A A A+ BE+---
b B B B+AE+---
c C c C+AF +---
d D D D+ AG+---
ab AB AB+CL+DM+NO E+AB+---

ac AC AC+BL+DN+MO F+ACH+---
ad AD AD+BM+CN+LO G+ ADA---
bc BC AL+BC+DO+MN H+AL+---
bd BD AM+BD+CO+LN J+AM+---
ecd CD AN+BO+CD+LM K+ AN+ ---

abc DP L L+AH +---
abd CP M M+AT+---
acd BP N N+ AK +---
bed AP (0] O+ AP+ ..

abed P AO+BN+CM+DL P+AO+---

Notice that the higher order interactions are ignored in the table.
It is due to the defining relation:
%ﬁ%I:ABCDR
%;%IzABCLzABDM:ACDN:BCDO:”;:ADLO:ALAUV:.NZJMWNQI
(1) (2) ()
=ABCDLMNO, total of 2* — 1 = 15.
—_—
(3)

2;7 " I=ABE=..., total of (1) + () +---+ (1}) =2" -1
6.12. The nodal half replicate of 2° FD.
Reactor example. Table 6.15 shows the data and estimates from a complete 2°
factorial design in factor A, B, C, D, E.

factor — +
A feed rate (L/min) 10 15
B catalyst(%) 1 2
C agitation(rpm) 100 120 jiaodong
D: temperature(°C’) 140 180
E concentration 3 4

a=c(a,a)

b=c(b,b)

c=c(c,c)

d=c(d,d)

e=rep(-1,16)

e=c(e,-e)

y=c(61, 53, 63, 61, 53, 56, 54, 61, 69, 61, 94, 93, 66, 60, 95, 98,
56, 63, 70, 65, 59, 55, 67, 65, 44, 45, 78, 77, 49, 42, 81, 82)
(x=sort(round(lm(y~a*b*c*d*e)$coef[2:32]*2,1)))

d:e e a:c:e a:b:e a a:d a:c:d b:c:d:e
—11.00 —6.25 —2.50 —1.87 —1.37 —0.88 —0.75 —0.63
c a:b:c:d:e b:d:e a:b:c:d a:e b:c:e c:d:e a:b:d:e
—0.62 —0.50 —0.25 0.00 0.12 0.13 0.13 0.62
a:d:e a:c b:c c:e a:c:d:e b:c:d a:b a:b:d
0.63 0.75 0.87 0.87 1.00 1.13 1.37 1.38
a:b:c a:b:c:e b:e c:d d b:d b
1.50 1.50 2.00 2.12 10.75 13.25 19.50
stem(x)
11
-0 6
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The stem and leaf plot or the normal plot (Fig.6.7a) of the 31 LSEs indicates that
over the ranges studied, only the estimates of the main effects B, D and E, and the
interactions BD and DE are distinguishable from the noise.
summary(lm(y~b*d*e))

Estimate Std. Error twvalue Pr(> |t])
(Intercept)  65.5000 0.5774 113449 < 2e—16 %

b 9.7500 0.5774 16.887 8.00e — 15 % % %
d 5.3750 0.5774 9.310 1.95¢ —09 ** *
e —3.1250 0.5774 —5.413 1.47¢ — 05 % x
b:d 6.6250 0.5774 11.475 3.14e — 11 % %
b:e 1.0000 0.5774 1.732 0.0961 .
d:e —5.5000 0.5774 —9.526 1.26e — 09 * x %
b:d:e —0.1250 0.5774 —0.217 0.8304

z=lm(y~b*d*e)
w=Ilm(y~b*d+d*e)
anova(w,z) Analysis of Variance Table

Model I: y~b*d+d*e

Model 2: y ~ b *d *e

Res.Df RSS Df Sumof Sq F Pr(>F)
1 26 288.5
2 24 256.0 2 32.5 1.5234  0.2383
Final Model: E(Y|X) =65.5+ 9.8b + 5.4d — 3.1e + 6.6b * d — 5.5d  ¢; or
E(Y|X) =??+19.61(b=1)+10.8I(d=1)-6.2I(e=1)-+13.21(b*d=1)-11.0I(d*e=1).

Thus the experiment screens out 3 factors from 5. It turns out that one can

use 2°~! nodal design to surve the purpose.
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run # A B C D E
1 - - - - - 1 17+ +
2% + - - - - —
RES -+ - - - -
4 + + - - - 4 20 +
O - - + - - -
6 + - + = - 6 22x +
7 -+ + - - 7 23 +
8% + + + - - -
9 - - - 4+ - —
10 + - - + - 10 265 +
11 -+ - + - 11 27 +
12x + 4+ - + - -
13 - - 4+ + - 13 29 +
14 + - 4+ + - -
15% - 4+ + + - —
16 + + + + - 16 32x +
17 - - - - + 17 +
18 + - - - + -
19 -+ - - + -
20 + + - - + 20 +
21 - - + - + -
22 + - 4+ - + 22 +
23 -+ + - + 23 +
24 + + + - + -
25 - - - + + -
26 + - - + + 26 +
27 - + - + + 27 +
28 + + - + + -
29x - - + + + 29 +
30 + - 4+ + + -
31 -+ + + + -
32 + + + + + 32 +
new design of 2‘;’/_1 a b ¢ d replace E by e = abed
Table 6.15

The full 2° requires 32 runs. If the experimenter had chosen instead to just
make the 16 runs marked with asterisks in Table, 6.15, then
only the data of the next Table would have been available.
y1~ye O3 63 53 61 69 93 60 95
TUNS 2 3 5 8 9 12 14 15
Y17 ~ Y32 H6 65 55 67 45 78 49 82
rUNS 17 20 22 23 26 27 29 32

The generating relation is E=ABCD. The defining relation is I=ABCDE.

s=c(2,3,5,8,9,12,14,15,17,20,22,23,26,27,29,32)
(x=round(Im(y|[s]~a[s]*b[s]*c[s]*d[s])$coef[2:16]*2,1))

a b c d a:b a:c b:c a:d b:d c:d
—-2.0 20.5 0.0 12.2 1.5 05 1.5 -0.7 10.8 0.3
B D BD
a:b:c a:b:d a:c:d b:c:d a:b:c:d
—-9.5 2.2 1.2 1.2 —6.2
DFE E

Note that the main effects and 2-factor interaction effects are not very different
from those from the full 2° design.
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a b c d a:b a:c b:c a:d b:d c:d
25: —14 195 —0.6 10.8 14 0.7 0.9 -0.9 132 21
25-1 —-2.0 20.5 0.0 12.2 1.5 0.5 1.5 -0.7 108 0.3
B D BD
d:e a:b:c a:b:d a:c:d b:c:d e
25 (=11 + 1.5) 1.4 —0.7 1.1 —6.2
2571 (=) -95 2.2 1.2 1.2 —6.2 ?
DFE ABCD

ABC is aliased with DE due to I=ABCDE.
Moreover, the normal plot shows the similar pattern.

stem(x,3)
006
021
0] 00111222
0]
1]12
1|
21
sort(x)
DFE E
a:b:c a:bic:d a a:d ¢ c:d a:c a:c:d b:c:d a:b
-9.5 —6.2 -2.0 —-0.7 00 02 05 1.3 1.3 1.5
b:c a:b:d b:d d b
1.5 2.2 10.7  12.2  20.5
(u=summary(lm(y1l~b*d-+e+a*b*c))) # redefine y1, a, b, ¢, d
# summary(Im(yl~b*d+e+I(a*b*c)))
Estimate  Std. Error twvalue Pr(> [t])
(Intercept)  6.525e 401  6.638¢ —01 98.298 2.07e —09 %%
b 1.025e +01 6.638e — 01 15.441 2.07e — 05 %
d 6.125e 4+ 00 6.638¢ — 01  9.227 0.000251 = x x
e —3.125e+ 00 6.638¢ —01 —4.708 0.005300  *x
a —1.000e +00 6.638¢ —01 —1.506 0.192295
c 5.412¢ — 16  6.638¢—01 0.000  1.000000
b:d 5.375e +00 6.638e —01  8.097 0.000466 s * *
b:a 7.500e — 01 6.638¢e —01 1.130 0.309803
a:c 2.500e —01 6.638¢—01 0.377  0.721908
b:c 7.500e —01 6.638¢e—01 1.130  0.309803
b:a:c —4.750e + 00 6.638¢ —01 —7.156 0.000828  * * *

Residual standard error: 2.655 on 5 degrees of freedom

Multiple R-squared: 0.9894, Adjusted R-squared: 0.9683

F-statistic: 46.75 on 10 and 5 DF, p-value: 0.0002622
v=summary (lm(yl~b*d4e+I(a*b*c)))

anova(u,v)

The 2‘;’/_1 can be used as a factor screen. In this example, factors A and C are
inert. They can be checked from the half fraction factorial design. It is called a
factor screen of order [16,5,4] (16 runs, 5 factors and projectivity 4). If one wants

the full design, it can be obtained by foldover (on which factors 7)

6.13. The 235‘_,4 nodal 16th fraction of a 28 factorial. This design is useful to
screen 3 out of 8 factors in this 16-run design. A [16, 8, 3] factor screen for 16 runs,
8 factors at projectivity 3. There are (g) = 56 ways.

nodal

designs
98~4

a b ¢ d
A B C D
A B C D

ab ac ad be
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bd cd abc

L M N O
E F G H

abd acd bed abed
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There are ((‘11) + (3) + (i) + (i) = 15) defining relations:
I =ABCL =ABDM = ACDN = BCDO

4

=CDLM = BDLN = ADLO = BCMN = ACMO = ABNO

4

2
= ALMN = BLMO =CLNO = DMNQO = ABCDLMNO
(3)

A Paint trial. In developing a paint for certain vehicles a customer required that
the paint have high glossiness (y; on a scale 1 to 100) (guang-ze-du) and acceptable
abrasion resistance (ys on a scale of 1 to 10) (nai-mo-xing). They believe that there
are two main factors, say A and B. However, the factors A and B

either produce high glossiness but low abrasion,

or produce low glossiness but acceptable abrasion,

A - 4+ - + - + - +

B - - 4+ + - - + + ideal
y1: 53 78 48 78 68 61 70 65 >65

y2: 63 21 69 25 31 43 34 3.0 >5
According to the paint technologist, there are 6 more factors, C, D, E, F, G, H.

They want to find out how to select the factors to obtain high glossiness and high
abrasion, The experiments results in data as follows.

y1 = ¢(53,60,68,78,48,67,55,78,49,68,61,81,52,70,65,82)

ys = ¢(6.3,6.1,5.5,2.1,6.9,5.1,6.4,2.5,8.2,3.1,4.3,3.2,7.1,3.4,3.0,2.8)

Im(y; ~ a*b*c*d)$coef[2:16]*2
EffectsAare

For instance,

c D E F G H
vy 16.6 126 -01 26 -01 -09 -36 19 09 26 19 -19
y2 -24 -2.0 —-02 -0.7 0.1 1.6 06 -03 03 00 -0.1 0.1

Sorting the effects of y;:
-3.6-1.9-0.9-0.4-0.1-0.1-0.10.91.91.9 2.6 2.6 2.6 12.6 16.6;
-0 | 4210000
0| 122333
0
113
117
Sorting the effects of ya:
-2.4-2.0-0.7-0.4-0.3-0.2-0.2-0.1-0.10.00.10.10.30.6 1.6
-2 | 40
-1 |
-1 |
0|7
-0 | 432211
010113
06
1|
1]6

Analysis of Variance Table
Model 1: y[1,] ~a+ b 4+ I(a * b * d)
Model 2: y[1,] ~a*b *d
Res.Df RSS Df Sumof Sq F Pr(>F)
1 12 181.25

2 8 136.50 4 44.75 0.6557  0.6394
The ANOVA and stem-and-leaf plot suggest that

effects on y; are not significant different from error if y; € (—3.6,2.6),
effects on y, are not significantly different from error if y, € (—0.7,0.6).
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Thus in addition to factors A and B, factor F is also an important factor.
Hence we screen 3 factors out of 8.
x=lm(y[1,]~a+b+I(a*b*d))
Estimate Std Error twvalue Pr(>|t|)
(Intercept)  64.6875 0.9413 68.719 <2e—16 *xx
summary(x) a 8.3125 0.9413 8.831  7.46e — 07 %
b 6.3125 0.9413 6.706 1.46e — 05 %%
I(axbxd) —0.4375 0.9716 —0.450 0.661
Y1 =64.74+8.3a 4+ 6.3b + €.
Yy =501416.6x1(a=1)+12.6x 1(b=1)+¢ how?
x=lm(y[2,]~a+b+I(a*b*d))
Estimate Std Error twvalue Pr(>|t|)

(Intercept)  4.7500 0.1647 28.842 1.88e —12 %
summary(x) a —1.2125 0.1647 —7.362 8.7le —06 **x
b —1.0250 0.1647 —6.224 4.42e¢ — 05 **

I(axbxd)  0.8000 0.1647 4.858  0.000393  * *x
Yo =48 —-12a—1.06+0.8a*xbx*xd-+e.
Vo=62-24x1a=1)—21x1(b=1)+1.6x L(axbxd=1) +e.
How to obtain high y; (> 65) and acceptable y, (> 5) if A and B can be numerical?
The contour plots (based on Eq.s (1) and (2)) in Figure 6.9 (in the textbook) suggest
that at + level of A, at — level of B and + level of F (i.e. - level of d)
would make possible of substantial improvement in (high) glossiness y1 (> 65) while
maintaining an acceptable level of abrasion resistance ys (> 5).
Y1 =64.74+83a+6.3b + e Yi(1,-1,1) = 66.7
Yy =48—1.2a—1.0b+ 0.8axb*d+e. Ya(1,—1,1) = 5.4.

-05 0.0 0.5 1.0
-05 0.0 0.5 1.0

-1.0
-1.0

Fig. 6.13.

y2<5

-05 0.0 0.5 1.0
-05 0.0 0.5 1.0

- y2>6

1
o
]

IN

-1.0
-1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

a,b-axis, (F=abd= +1)

A=c(-1,1)

x=lm(y[1,]~a+b+I(a*b*d))$coef
B=(65-x[1]-x[2]*A+x[4])/x[3] # (65=x[1]+x[2]*A +x[3]*B -x[4])
plot(A,B, ylim=c(-1,1), type="1", lty=1)
B=(70-x[1]-x[2]*A+x[4])/x[3]

lines(A,B, type="1", lty=2)

teXt(O'ga'la” (F:_l)”) # (avb’d)e {(17 -1, _1)7 (_1’ 1, _1)}
text(0.8,0.5,7y1>707)

B=(65-x[1]-x[2]*A-x[4]) /x[3] #-+]evel

plot(A,B, ylim=c(-1,1), type="1", lty=1)
B=(70-x[1]-x[2]*A-x[4]) /x[3]
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lines(A,B, type="1", lty=2)

text(0.8,-1,” (F=1)") # (a,b,d)e {(1,-1,1),(-1,1,1)}
text(0.8,0.5,”y1>70")
x=lm(y[2,]~a+b+I(a*b*d))Scoef
B=(5-x[1]-x[2]*A+x[4]) /x[3]

plot(A,B, ylim=c(-1,1), type="1", lty=1)
B (6-x[1]-x[2J*A-+x[4]) /(3]

lines(A,B, type="1", lty=2)

text(0.8,-1,” (F=-1)")

text(0.0,0.0,” y2<5")
B=(5-x[1]-x[2]*A-x[4]) /x[3] #-+]level
plot(A,B, ylim=c(-1,1), type="1", lty=1)
B (6-x[1] x[2J*A-x[4])/x[3

lines(A,B, type="1", lty=2)

text(0.8,-1,” (F=1)")
text(-0.5,-0.5,"y2>6")

6.13.2. Homework. Draw the contour plots for the region in (A,B) with F' = +1
such that both y; and ys acceptable.

6.14. 2}?;11 design. It can be used to screen for two factors amount 15 factors.
A speedometer casing example. Postextrusion shrinkage of a speedometer cas-
ing had produced undesirable noise. The objective of the experiment was to find a
way to reduce the shrinkage.
A considerable length (in > 300 meters) of product was made during each run and
measurements were made at 4 equally spaced points, the responses are

the averages and log variances of the 4 measurements.
y=c(48.5,57.5,8.8,17.5,18.5,14.5,22.5.17.5,12.5,12,45.5,53.5,17,27.5,34.2,58.2) #mean]]

s=¢(-0.8,-0.8,0.4,0.3,-0.2,0.1,-0.3,1.1,-0.1,-0.2,0.7,-0.9,0.7,-0.9,0.1,0.7,0.6) #run log vari-}j
ance
The 15 factors are
A: liner tension, (chen ban zhangli)
: liner line speed, (ban lun xian speed)
: liner die, (ban lun mo ju)
: liner outsider diameter, (chen guan outsider diameter)
: melt temperature,
: coating material,
: liner temperature,
: braid tension, (bian zhi tension)
J: wire braid type, (xian bian zhi lei xing)
K: liner material,
L: cooling method,
M: screen pack,
N: coating die type, (tu cheng mo ju lei xing)
O: wire diameter,
P: line speed.

ToHEHOQW

x=Ilm(y~a*b*c*d)$coef[2:16]*2

a b c d a:b a:c b:c a:d b:d c:d

6.3 6.2 —5.7 6.9 2.6 0.0 75 42 244 9.1

A B C D E F G H J K
a:b:c a:b:d a:c:d b:c:d a:b:c:d

0.5 2.9 6.7 —14.2 0.7

L M N (0] P
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The second normal plot about s did not reveal any important factors.
The 1st normal plot and stem-and-leaf plot of y reveals important factors.
-1 4

—0| 6

—0|

+0| 011334

+0| 667789

+1]

+1]

+2| 4

It turns out from the normal plot of the effects due to averages that

the factors O, J and C are important factors.
nodal c bd bed

designs a b ¢ d ab ac ad bc bd cd abc abd acd bed abed
2 A B CDUEVF GH J K L M N O P
> J=b*d
> O=J*c
> x=Im(y~factor(c)+factor(J)+factor(O))
> summary(x)

Estimate Std.Error tvalue Pr(> |t|)

(Intercept)  26.863 5.351 5.020  0.000299  x * x

factor(c)l  —5737 5351  —1.072 0.304693 OxJ (1)
factor(J)1  24.388 5.351 4.558  0.000657 *xxx bxd
factor(O)1  —14.163 5.351 —2.647 0.021305  x Jx*c

Residual standard error: 10.7 on 12 degrees of freedom

Multiple R-squared: 0.7068, Adjusted R-squared: 0.6335

F-statistic: 9.643 on 3 and 12 DF, p-value: 0.001612
anova(u,w)

Model 1: y ~ J*O

Model 2: y ~J + O

Res.Df RSS Df Sumof Sq F Pr(>F)
1 12 1374.3

2 13 1506.0 —1 —131.68 1.1497  0.3047
Notice that C is alias with the interaction of OJ, i.e., I=0JC, as O=bcd and J=bd.

Conclusion: The model is
Yy =26.87+24.38 x 1(J =1) — 14.16 x 1(O = 1) (see (1) above) ? Or
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26.87—5.74/2=

A~
y= 2399 4+2438x1(J=1)—14.16x1(0 =1), or
y = 929.11 11219 x J — 7.08 x O, J,0 = +1.
o~

=23.99+412.19-7.08
In order to reduce the shrinkage, set factors J and O at levels -1 and +1, respectively.

Remark. The results using summary(lm( y ~ factor(c) + factor(J) + factor(0O)))

can be derived directly as follows. The 2}?;11 design can be viewed as a 4 replicated
i -+ -+
22 factorial design with (1,2) = (J,0), o — — + + with their average
type # 1 2 3 4
of y;’s.
From the table of contract of 2}5};11, we have
J + + - -+ 4+ - - - - 4+ 4+ - - + +
0] - -4+ ++ + - -4+ + - - - - + +
types 2 2 3 3 4 4 1 1 3 3 2 2 1 1 4 4
run# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
> s=c(7,8,13,14,1,2,11,12,3,4,9,10,5,6,15,16) # where are they come from ?

> mean(y[s[1:4]) # 21.1
> mean(y[s[5:8]) # 51.3
> mean(y[s[9:12]) # 12.7
> mean(y[s[13:16]) # 31.4
> mean(y)
[1] 29.10625
O+ 12.7 314
The results lead to O— 21.1 51.3

J—  J+
By=2445 y,_ 7.,
_. O 12.7 314 Tos
- o= 21.1 51.3 o

J— J+ —14.15= 8o

> sqrt((var(y[s[1:4]])+var(y[s[5:8]])+var(y[s[9:12]])+var(y[s[13:16]])) /4)

[1] 10.70166 # estimating residual SD directly, same as in summary(x)
> y=c(21.1,51.3,12.7,31.4)
> v=lm(y~J+0)$coef
> c¢(v[1],2*v[2:3])

) J 0

29.10625 24.38750 —14.16250
So the 2757 fractional FD successfully screens 2 factors from 15 factors.
6.15. Constructing other two-level fractions. Adding a factor to a nodal
design. Recall Table 6.14b for 16-run nodal designs. How many ? Consider for
example, 2?;4. One can choose a factor which is most likely to be inert and it is
likely to be factor P.

nodal
designs a b ¢ d ab ac ad bc bd cd abc abd acd bed abed
24 A B C D
251 A B C D P
2%;4 A B C D L M N O
2177 A BCDUEVF GH J K L M N O P
non — nodal
297 A B C D L M N O P

The alias structure :
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2" Lst 2777

a A A+OP
b B B+ NP
c C C+MP
d D D+ LP
ab AB+CL+ DM + NO

ac AC+ BL+ DN+ MO

ad AD+ BM +CN + LO same
bc AL+ BC+ DO+ MN as
bd AM + BD +CO + LN 25
cd AN-+BO+CD+ LM

abc L L+ DP
abd M M+ CP
acd N N + BP
bed 0] O+ AP

abcd AO+ BN +CM+ DL P+ AO+ BN+ CM + DL

6.15.2. Remark. The previous non-nodal 2°~° design is of resolution III. The reason
is as follows.

The generating relation is I=ABCDP, together with 4 generating relations from
22(/4 FFD. There are 2° — 1 = 31 defining relations. 15 of them are the same as the
2 §‘74 FFD, which has either 4 letters or 8 letters.

21‘74: I=ABCL=ABDM=ACDN=BCDO =... = ADLO =ALMN = ...= DMNO
(9 @ ®
=ABCDLMNO, total of 24 — 1 = 15.
—_
()
Another 15 are due to ABCDP times each of the previous 15. Since each of
these 4-letter words does not contain all of ABCD, their products with ABCDP

have lengths > 3. e.g., The 1st one is ABCL. ABCDP(ABCL)=DLP. Moreover,
ABCDP(ABCDLMNO)=LMNOP.

Are there other non-nodal 2°7° design of resolution III ? Consider the next
example.

(1) I =ABCL=ABDM=ACDN=BCDO =ABE (E=AB replacing P=ABCD).

It’s resolution is III, the reason is as follows.
There are 31 defining relations, which consists of original 15 from the 2?;4 FFD +
ABE, and ABE times each of the original 14 4-letter words, which do not contain E.
Thus, the shortest one of the latter 15 products is ABE(ABXY)=EXY. Moreover,
ABCDLMNO(ABE)=DELMNO.
6.16. Elimination of block effects. Fractional designs may be run in blocks
with suitable contrast used as “block variable”. A design in 2¢ blocks is defined by
g independent contrast. All effects (including aliases) associated with these chosen
contrasts and all their interactions are confounded with blocks. Consider the 2%/_1

93



design as follows.

run# a b ¢ d e=abed ab ac ad bec abc
1 - - - - + + + + 4+ -
2 + - - = - - - - + +
3 -+ - = - -+ + - +
4 + + - - + + - - = =
5 - - + - - + - 4+ - +
6 + - + - + -+ - - -
7 -+ + - + - - + + -
8 + + + - - + + - 4+ +
9 - - - + — + + - 4+ -
10 + - - + + - - + + +
11 - 4+ - + + - 4+ - - +
12 + + - + - + - 4+ - -
13 - - + + + + - - - +
14 + - + + - -+ + - -
15 - + + + - - - - + -
16 + + + + + + + + +

g=1. A 277" in two blocks of either runs. (e.g. male or female patients). If one
believes that AC is most likely to be negligible, then 2! blocks can be decided
as follows.
1. the 8 runs 2, 4, 5, ..., 15, having — in the AC column;
2. the other 8 runs having + in the AC column.
The block contrast is AC. AC is confounded with the block factor, say 6, with
2 levels.
q=2. A 2%/_1 design in 4 blocks of 4 runs. (e.g. a pack of raw material enough for 4
runs). If one uses AC and BC to define blocks, then the sign (- -), (- +), (+ -)
and (+ +) can be the 4 blocks.
(=—): runs 4, 5, 12, 13;
(=4): runs 2, 7, 11, 15;
In this case, AC and BC are confound with the block factor 6 with 4 levels (or
2 new block factors F=AC and G=BC.

run #
8

9
16
1
2
15
7
10
14
3
6
11
12
13
4
)

S

abed a

(=

|+ +++ 8

ad

I+ 1 + <
I+ 1 + 0o
I+ 4+
I+ 4+ 1

I+ 4+ + +

I+ 1 + 1 + =

|+ +
l++++++++7¢S

+ |
1+ + 1+
I+ + |
|

S

[
|+ 4+
|
|+
|

+ L+
!
!
Fl+ I+ 1+ +1 1+ 4+1+&

L+
B
++ 4+
!
!

+

g =3 . Is it possible to use ab, ac, be for the case of ¢ =3 7
How about other combinations 7
Ans. (ab, ac, ad) works; and (ab, ac, abc) works.
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Minimum-Aberration 2*~7 designs. Before given its definition, consider first
the three 2;‘_/2 designs in the following table.
Table 6.21. 3 choices for a 2;‘_,2 fractional FD

design(a) design(b) design(c)
share 2 # share 1 # share 3 #
2 generators 6 =123, 7=234 6 =123, 7T=145 6 =1234, 7=1235
3 defining 1 =1236 = 2347 = 1467 I = 1236 = 1457 I = 4567
relations = 234567 = 12346 = 12357
(3) alliases from lst 12 + 36 12+ 36 45 + 67
(with 2 letters) 13 + 26 13 + 26 46 + 57
16 423 16 + 23 47 + 56
(3) alliases from 2nd 23 + 47 14 4 57
(with 2 letters) 24 4 37 15 +47
27 + 34 17445
(;1) alliases from 3rd 14 + 67
(with 2 letters) 16 + 47
17 4 46
distinct patterns 12 + 36 12 + 36 45 4+ 67
13 426 13 + 26 46 + 57
16 + 23 + 47 16 + 23 47 + 56
14 + 57
24 + 37 15 + 47
27 + 34 17445
14 4- 67
17 4 46
total # words: 15 12 6
How about 6=12345 and (7 =12 0r 7 =123 or 7 = 1234) ? (Resolution)
—— —— ———
R<IV R=IV R<IV

The 4-th and the 6-the have resolution <IV, which is not desirable, and
the 5-th: 6=12345 and 7=123 => 1=123456=1237=4567 is similar to design (b).
Which pattern has the least # of shortest words among defining relations 7
Definition. The minimum-aberration design is the one that minimizes the number
of words in the defining relation having minimum length with the largest resolution.
Note: 123456, 1237, 4567 are all called words.

See for examples, 26_2, 2?/_11 and 2° designs as follows.
2;‘_/2 fractional FD design: There are several types of them. In each type, Factors
1,2,3,4,5 (as well as 6, 7) are aliased with 3-factor or high order interactions,
Table 6.21 above gives an example of each of three types, where 2-factor interactions
which are aliased with (only) 2-factor interactions are given there.
Which design is better ?

Design 4 or 6 is not of resolution IV, and is out of consideration.

Design (b) or (a) has 2 or 3 words of length 4.

Design (c), as it has the least number of 2 factor interactions.

Design (c) is the minimum-aberration 2;(,2 design, with 1 word of length 4.

Is it the unique minimum-aberration 2;(/2 design 7
Remark. 2772 minimum-aberration design is not defined for 2777, as it is not as
good as 27, design.
2° FD. A defining generator. So it is also a minimum-aberration 2° design.
2?;1 fractional FD designs: There is just one (a nodal design), with a unique

defining generator 6 = 12345. So it is the minimum-aberration 2(‘5,}1 design.
There are also 2?,72, ey 2%%716 designs.
Table 6.22 is for general 2*~? FD with Table 6.21 as the special case.
Explain it via the next table.
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# of variables k (or factors)

# of runs 5 6
4
8 L Fractional FD of 2° L Fractional FD of 25
16 g Fractional FD of 2° % Fractional FD of 26
32 1 FD of 2° 5 Fractional FD of 20
64 2 replicated FD of 2° 1 FD of 26
128 4 replicated FD of 2° 2 replicated FD of 25

12345678910 = ABCDEFGHJK

What are the nodal designs in row 1 7
What are the nodal designs in row 2 7
What are the nodal designs in row 3 7

Chapter 7. Additional Fractionals and Analysis

7.1. Plackett and Burman designs. For screening a large number of factors,
one can use 2 factorial designs. The number of runs are

n= 4, 8, 16, 32, 64, 128, 256, ...
The gaps are getting wider fast.
The Plackett and Burman (PB) designs has the advantage that it slows down the
pace.

n=12, (2%), 20, 24, 28, (2°), ..., a multiple of 4 (skipped 2¥).

If n = 2%, it is just FD. Otherwise, it is generated by the first row. For example,
a 12-run PB design (PB3) is constructed as follows.

F-+———F+++ — +
~—
*ok *
++—+-———+++ —
— ++—+———+++
~—

QT

tt—tF—t———+

-t ———

T

—— ettt =ttt -

—— =ttt -ttt

t———ttt—F+-

—t—— =+ttt

ABCDEFGHJKL

Table 7.1

Thus the PB design is determined by the first row (except 2* FD).
This can be done in R as follows.
> x=rep(0,132)
> dim(x)=c(12,11)
> x([1,]=c(1,-1,1,-1,-1-1,1,1,1,-1,1) # (the first row of PB design)
> for(i in 1:10)
> x[i+1,]=c(x[i,11],x[i,1:10])
> x[12,]=rep(-1,11)

a bcdefghjkl

t—t———+++—+
-t ———+++-
— -+ ——+++
ot ——++
FH—t++-+———+

-+ —+———
e
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-——+++-—++-—+-
——— -ttt
+-——+++—-—++-
-ttt
Notice that
neither of f,g,h,j,k,1 are two-factor products of a, b, c, d, e,
no vector is of the pattern — 4+ — + — + —+...
but these 11 vectors together with I form a basis of the space.
t(z[,1:11])% * %z[,1: 11] is a 11 x 11 diagonal matrix (12)I.
> y1=¢(56,93,67,60,77,65,95,49,44,63,63,61)
> a=c(1,2,4,5,6,10) # from the first column of the PBjs design matrix (with +).
> 0.5*(mean(yl[a])-mean(yl[-a]))
> Im(y1~x[,1:3]) # Im(y1~x[,1]+x[,2]4+x[,3])
> Im(y1~x[,1]*x[,2]*x[,3])
(W, —y_)/2 2916667
(Intercept)
66.083
(Intercept)
64.5625

meaning, see Figure 7.1 below) for any of (131) = 165 choices.

2[,1:3]1 z[,1:32 x[,1:3)3
10.583  —0.750

3.1875

2.917
x[, 1]

2

[, 2] [, 3]
8.9375  —1.3125

1

For instance, choose C, E, F again.

run #
1

0 O U W

9
10
11
12

+_
++
—+
+_
-t
+
—+

l+++ 1 ++ 1 +0Q

L+ 4

+++-+
— o+ -
—— 4+
———++
+-———+

shuffled as

x[,1] : x[,2]
—1.6875

— =
o5 ok D oow

x[,1] : x[, 3]

—4.9375

Notice that the first 3 effects are all different in the models yl~x[,1]*x[,2]*x[,3])
and y1~x][,1:3]) and they do not differ from the main effects by a factor of 2.

Advantage of PB design.
PBj2 is a [12, 11, 3] screen, producing 1% replicated 22 factorial design (for its

+++

¥ N ¥ O OU % = W N %

og)

x[,2] : x[, 3]
0.8125

Now compare PBis to a 2?;4 (nodal) design. 2?;4 design is a [16,8,3] screen, that

is, it projects a duplicated 23 factorial for any one of the (g) = 56 choices.
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For instance, pick C, E, F factors from 2?(,4 fractional design. By rearrangement,
it lgecomes clear that it is a duplicated 23 FD.

2" c F E
run# a b ¢ d abd ab ac bc abc M“I# g ?f’
1 - - - — - + + + -1 P
2 4+ - - - + - - 4+ + 7

14 + - =
O 15 + - =
o 0 - 4+ —
P S A 1n - o+ -
6 + - + - + - + - - 6 LT
T -+ + - + - - 4+ - 6

shuffl _

8+++——++++45uedas£8)i_i_+
YA A 12 - - 1
0 + - -+ - - - 4+ + 3 .
S 7+ -+
TS S S 2 — 4 +
B - -+ 4+ + + - - + 8 > o
4 + - + 4+ - - + - = 2 )

3+ + +
R S 6+ + +
6 + + + + + + + + + 8

The PBy5 is a [12,11,3] screen. The PByg is the same as 2* FD. Among PByg,
the 25,* (nodal design) is a [16,8,3] screen,
the 2757 ! (nodal design) is a [16,15,2] screen.

Is something strange 7

12-run PBy is a [12,11,3] screen. (}) = 165.
16-run 23, is a [16,8,3] screen. (5) = 56. (8 < 11)

16-run 25,7 " is a [16,11,2] screen. (2<3)

16-run 2757 is a [16,15,2] screen.

Should we have more choices for screening 3 factors in PB1g than in PBqy 7
Ans. Yes, as explained as follows. PB;g = 2* FD and
(12%_/4 design, 21177 design and 275, design are special cases of PBjs design.
noda

designs a b ¢ d ab ac ad bc bd cd abc abd acd bed abed
2271 A B C D P
2%;4 A B C D L M N O

oo A B CDEF G H J K L M N O P

a. (1, 2, (12)) (or (a,b,ab)) is 4-duplicated tetrahedral design (see 1 in Fig. 1)
((125) = 105 of them). That is, choose 2 from 15 factors, and the third one is
uniquely determined by the first two, e.g., (1234), (12), (34) (or P, E, K, and
PEK=I) (see the next Table).

b. (1,2,(13)) (or (a,b,ac)) is a duplicated 22 FD ((g) (?) = 30 many of them and
(1)(2)(13)#1, i.e., choose 2 from (a,b,c,d) (say a, b), choose 1 from 5
(the possible remainings from (ab, ac, ad, bc, bd, cd) \ ab) (see the next Table).

c. Choose 3 from 1,2,3,4, (123), (124), (134), (234) form the 27,;* design.
((g) = 56 of them).

d. The other combinations (not in cases (a), (b) and (c)) of selecting 3 out the
15 factors can also be screened out, as there is no more cases that I=3-letter
product as in (a).

Totally, it can screen (135) - (125) = 350 (> 165 screened by PBjs).
What is the difference between case b and case a 7

12(12) =I (or zy(zy) =I), but 12(13) #I.
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run# a b ab wvertex 24 24

1 - - + 5 run#t a b ac run# a b
5 - - + 5 1 - - + 3 - -
2 + - - 2 2 + - = 5 - -
6 + - - 2 3 - + + 2 + -
3 -+ - 3 4 + + - 0 + -
7 - + - 3 5 - - - 7 - +
4 + + + 8 6 + - + 5 - +
8 + + + 8 7 - + - 4 + +

8 + + + 2 + +
9 - - + 5 9 - - + 1 - -
3 - - + 5 0 + - - 9 - -
0w + - - 2 1 - + + 14 + -
4 + - - 2 2 + + - 6 + -
1 - + - 3 3 - - - 3 - +
. - + - 3 14 + - + 1 - +
12 + + + 8 5 - + - 8 + +
6 + + + 8 6 + + + 6 + +

Should PB;s have more choices for screening 3 factors than PBqs 7

e e A

Ans. It indeed screens more combinations of 3 factors (350 of them) than PBjs

(which has (131) = 165 of them),
but not all (135) (= 455).

However, PBi, screens all (131).

Generator rows for constructing PB design.

PBio ++—+++———+ —, a [12,11,3] screen.

PBy ++—-——++++—+—4+————++—, a [20,19,3] screen.

PByy +++++—+-++——4++——+—4+————, a[24,23,3] screen.
Table 7.2

Remark. The PByy and PGy can be generated as PB1s, with all —’s in the last

row.
Remark. The PBi5 in Table 7.2 is different from the one in Table 7.1.
+—+———+++ —+, (the old one)
++—+++ — — — + — (the new one).
—+—+4++4++———+4—old x(—1) # new.

The projective properties of the PBy, design. (Plackett and Burman)
Table 7.3 displays a PByg design, where for convenience,
row and column operations are made, as well as products of columns, so that
the variables A and B are renamed to reproduce a 22 factorial replicated 5 times,
the last 5 columns are replaced by products of the original columns.
Thus its first and last rows are not the same as in Table 7.2.
and none of its row are all —’s.
Attach Table 7.3 AB CDEF GHJK LMNO PQRS T
There are two cases in PBog.
If one chooses A, B together with any column except T, say C (see the next table),
it is a duplicated 22 FD with a tetrahedral design.

run
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
+ + + + 4+ 4+ 4+ ++ + - - - - - - - - -
+ - - - - - 4+ 4+ + + + - - - -
+ - - - 4+ + -+ -+ - - 4+ + + - -+ +
8 7 6 5 3 4 1 2
7 8 6 5 3 4 1 2
7 6 4
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It is easy to see the 2 22 FD from the next table:

1sr 23 2nd 23 tetrahedral
run#t C B A run# runt

16 - - = 17 20

19 + - - 18

11 - 4+ - 12

14 + + - 13 15

7 - - + 9

6 + - + 8 10

2 - + + 3 4

I+ + + 5

Two 23 factorial designs above and one with * tetrahedral design.
Otherwise,, it is one 23 FD plus a 2?;11 design replicated 3 times. The next table
shows that the transpose of the first 3 columns of Table 7.3 or A, B, T.

run
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
+ + + + 4+ + 4+ ++ 4+ - - - - - - - - -
+ + + + 4+ - - - - - + + 4+ + 4+ - - - -
- - - -+ + + ++ -+ + + + - - = = -
708 6 5 4 3 1
T T 7 6 6 6 4 4 4 111

One 23 factorial designs and the tetrahedral design replicates 3 times.

It turns out among (139) = 969 choices of choosing 3 factors out of 19,
only 57 (19 x 3) produce the latter patterns, the rest are all 2% replicates.
Since each pattern contains at least one 23 FD, it can screen 3 factors.

Fig. 7.2.

Analysis of PB;, design with 5 factors. For 2% designs, every main effect
and 2-factor interaction only occur once. For the case for PB designs, the 2-factor
interactions occur more than once. Using Table 7.1 (the standard table for PBiq
design, then the alias structure is given in Table 7.4. In particular,

Ian— A+ Y(~BC+ BD+ BE—~CD~CE — DE),

lBaB+%bAC+AD+AE—CD+CE—D@,
lo = C+ 5(~AB — AD — AE — BD + BE ~ DE),
Ip = D+ L(+AB — AC — AE — BC — BE — CE),
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lg — E+ Y(+AB — AC — AD + BC — BD — CD),

lp — +(~AB+ AC — AD + AE + BC — BD — BE+CD — CE — DE),
lg =+ 3(~AB— AC — AD + AE — BC + BD — BE+ CD — CE + DE),
Iy — $(+AB+ AC — AD — AE — BC — BD — BE — CD + CE + DE),
l; — 2(~AB— AC — AD — AE + BC + BD — BE — CD — CE — DE),
Ik = 5(=AB — AC + AD — AE — BC — BD — BE+ CD + CE — DE),
l, & 2(—AB+ AC + AD — AE — BC — BD + BE — CD — CE + DE).

Table 7.4
-1 -1
-1 -1
-1 -1
-1 -1
-1 -1
ABC:(—]_,—]_,—1,—1,—1,1,_1713_1,1717_1)t: _1]_ ’ BC = —1]. A.
1 1
-1 —1
1 1
1 1
-1 -1

ABC here is a vector of 1 with 1/3 being +1. (—A+5'BC).
Recall I=ABC yields A = BC ({4 — A+BC ---).

> x[,1]*x[,2]*x[,3] # ABC

1-1-1-1-1-11-11-111-1

> [ 1*]2)*xl4) # ABD

Mi111-11-1-11111-1 ABD here is a vector of £1 with 1/3 being —1.
(A+3BD).

Revisit Reactor Example in Table 6.15 in §6.12. Table 6.15 is a 2° factorial
design in 5 factors, A, B, C, D, E.

factor — +
A:  feed rate (L/min) 10 15
B: catalyst(%) 1 2
C: agitation(rpm) 100 120 jiaodong
D: temperature(°C’) 140 180
E: concentration 3 4

The analysis for the full 32-run design led to the conclusion that

the effects B, D, BD, E and DE are likely significant.
Later it was bhOWIl that the 16-run 2 ~1 design led to the same conclusion.
Question: Can it be done by PBg 7

PB,, starts with n=12, (16), 20, ... Moreover, it is (2¥,2% —1,2) screen design
Question: Can it be done by PBys ?

We rewrite Table 7.5 as follows
run # in PB1s 1 2 3 5 6 7 8 9 10 11 12

run #in 25 6 12 23 14 28 24 15 29 25 18 3 1
by comparing the designs about A, B, C, D, E.

101



run A B C D FE a b ¢ d e f g h j k 1

6 1 -1 1 -1 -1 4+ — + — — — + + + — +

12 1 1 -1 1 -1 + + — + — — — + + + -

23 -1 1 1 -1 1 — 4+ 4+ — 4+ — — — + + +

4 1 -1 1 1 -1 4+ — 4+ 4+ — + — — — + +

2 1 1 -1 1 1 + 4+ — 4+ 4+ — 4+ — — — +

24 1 1 1 -1 1 + 4+ 4+ — 4+ + — + — — —

5 -1 1 1 1 -1 — 4 + + — + + — 4+ — -

20 -1 -1 1 1 1 - — 4+ + + — + + — + -

% -1 -1 -1 1 1 — — — 4+ 4+ + — + + — +

18 1 -1 -1 -1 1 4+ — — — + + + — + + -

3 -1 1 -1 -1 -1 - 4+ = = — + 4+ + - + +

1 -1 -1 -1 -1 -1 — — — — — — — — — — -
They yield (ordered) effects in Table 7.0 below:

e l h f c k g a d ] b

PDqs: -10.5 —-98 —-88 —-22 -—-15 —-05 22 58 72 72 212
2507’2‘:’/_1: E D B
stem(x,3)

1] 10

09

0221

0]2

0677

1|

1|

21

The plot suggests that effects B and E, or maybe D, J and L or H are real, (versus
B, E, D, BD and DE in 2° FD). What is the reason for the difference ?

PByy, 2°
lp — B+ Y(~AC + AD + AE — CD + CE — DE) 21.2  19.5
Ip — D+?i(+AB7ACfAE—BC—BE—C’E) 7.2 108
lp — E+ L(+AB -~ AC — AD + BC - BD — CD) ~105 63

lg — 2(+AB+ AC — AD — AE — BC — BD —BE—~CD +CE +DE) -88
ly > 3:(-AB—AC—-AD-AE+BC+BD-BE-CD-CE—-DE) 72
lp — %(—AB+AC+AD—AE—BC—BD—&-BE—C’D—C’E-FM) -9.8
Part of Table 7.4
From design 2°, BD= 13.25 and DE=—11.0 are significant.
One way to modify is to notice from Table 7.4 that
the first 5 effects are single factor effects, and the others are 2-factor effects.
Among the 5 factors, B, D, E are indeed larger than the other two.
So try the model summary(lm(y ~bxd*e+h+ j+1)) (11 — 1 parameters).
Estimate Std.Error tvalue  Pr(>|t|)
(Intercept)  66.0833 0.4488 147.256  4.61le — 05 * * x

b 9.4583 0.5262 17.974 0.00308 *k
d 3.4583 0.5017 6.893 0.02041
e —3.3333 0.5262 —6.334  0.02403
h —1.5000 0.6346 —2.364  0.14188
j 0.4167 0.7773 0.536 0.64556
l —1.7500 0.7773 —2.251 0.15320
b:d 5.7500 0.8244 6.975 0.01994 *
b:e —0.3750 0.6731 —0.557  0.63349
d:e -3.3750 0.8244 —4.094  0.05481
b:d:e NA NA NA NA

And try the model Im(y ~bxdx*xe+j+1)
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Estimate Std.Error tvalue  Pr(>|t|)
(Intercept)  66.0833 0.7136 92.602 2.78¢ — 06 * * %

b 9.0833 0.7979 11.385  0.00145 Fk
d 3.4583 0.7979 4.335 0.02265
e —2.9583 0.7979 —3.708  0.03409 *
j —0.3333 1.1283 —0.295  0.78694 see PBqs
l —1.0000 1.1283 —0.886  0.44075 see PBiy
b:d 6.8750 1.0704 6.423 0.00765 xx  (Table 7.0
b:e —0.3750 1.0704 —0.350  0.74925
d:e —4.5000 1.0704 —4.204  0.02457 *
b:d:e NA NA NA NA

It seems that the model can be simplified by lm(yl~b*d+d*e)

Estimate Std.Error tvalue Pr(> |t])
(Intercept)  66.0833 0.6855 96.402 8.4e — 11 *xx*

b 9.0000 0.7271 12.378 1.7e — 05 s xx

d 3.5833 0.6855 5.227  0.001962

e —2.8750 0.7271 —3.954 0.007502  *x
b:d 7.1250 0.7271 9.799 6.5 —05 x*x*
d:e —4.7500 0.7271 —6.533 0.000614  * * *

Analysis of Variance Table
Model I: y~b*d*e+h +j+1
Model 2: y~b*d+d*e

Res.Df RSS Df SumofSq F Pr(>F)
1 2 4.833

2 6 33.833 —4 -29 3 0.2653
The analysis suggests that the effect B, E, D BD and DE are significant, which is

consistent with the previous 2?;1 conclusion.
y = 66.083 4+ 9b + 3.583d — 2.875e + 7.125bd — 4.750de

y = 66.341 4 9b + 3.841d — 3.068e + 7.318bd — 4.750de + 0.773bac
Note that the estimates are not exact the same under a different model, even it
implies the final model.

Estimate Std.Error tvalue  Pr(> |t])
(Intercept)  66.3409 0.7617 87.097 3.78e — 09 *x x

d 3.8409 0.7617 5.043  0.003958 *ok

e —3.0682 0.7762 -3.953  0.010820 *

b 9.0000 0.7432 12,111 6.78e — 05  * x %
d:e —4.7500 0.7432 —6.392  0.001389 *ok
d:b 7.3182 0.7762 9.428  0.000227  *x*x

I(bxaxc) 0.7727 0.8963 0.862  0.428006
Chapter 8. Factorial designs and data transformation.

In a 2F factorial design, we have k factors and each has two levels. In contrast
to 2-level factorial designs, there are multi-level factorial designs, namely, the level
of some factor can be 3 or more, such as Latin Squares.

8.1. A two-way (factorial) design.

Taxic agents. Data: Survival time (in 10 hrs) of animals, which is randomly
allocated to each of 12 combinations of 3 poisons (I, II III), and 4 treatments (A, B,
C, D). Each combination has 4 replications. Thus we have two factors here: poison
and treatment, with 3 and 4 levels, respectively. The data are as follows.
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treatment A B C D P\T 1 2 3 4

I 0.31 0.82 043 0.45 1 0.31
1 0.45 1.10 045 0.71 1
I 0.46 0.88 0.63 0.66
I 0.43 0.72 0.76 0.62
11 0.36 0.92 0.44 0.56
poison 11 0.29 0.61 0.35 1.02 or

17 0.40 0.49 031 0.71
17 0.23 1.24 040 0.38
117 0.22 030 0.23 0.30
117 0.21 037 0.25 0.36
117 0.18 0.38 0.24 0.31

117 0.23 0.29 0.22 0.33
This is formulated by the two-way anova model

Yij=n+m+mtwsteu;t=1,..,Ni=1 ...k j=1,..,m. (Nk,m)= 7

OrY=Xpg(ie,Y,=0X)+epn, h=1,..,n(=7)

What are the parameters ? degree of freedom =7 observations ?
(Xn,Yy) ? 8 =7 Is X} numerical or a factor ? How about T}, or Py, ?

N k kK N
Y, =n+ ZTtl(Th = t) + ZTQ‘l(Ph = Z) + Z Zwtil(Th = t)l(Ph = Z) + €n,
t=1 i=1 i=1 t=1
Which of the next 2 commands is convenient ?
lm(Y~X)
Im(Y~T*P)
In the R codes in §8.1, Im(z ~ ¢  p).
Analysis of Variance Table (ANOVA).
Yo =Y = @z - y) + @t~~ - @) + (yti~ —Yp.. — Y. +?),
where 7 = ﬁ Zt,i,j Yiij, -

source of wvariation sum of squares df mean sq.
poisons >t Ti —9)? k-1
treatments Zt,i,j ... —7)? N—-1
interactions Zt,i’j Ui — V. — G + 9 (E—1)(N —1)
between group Dot Ui — 7)? kN —1
within group Dot (Yrig — Ui.)? (m—1) xkxN

>t (Yeij — 79)*

=200 (Yeij = Upso + Vi — 7)?

=i (Yeij — Ui)? + T — 9)°

=il Veig = T02)* + @i =Yoo = Vot VT + T =T+ Ui — 7))

=00l Veig = T0i)* + @i = oo = Ui + 9> + @ — 9> + (T = 9)°]

> (x=read.table(” toxic.txt”))

> x=unlist(x)

> (t=gl(4,12,48)) # treatment
[111111111111122222222222233333333333344
(30] 4444444444
Levels: 1234

> (p:rep(gl(3,4,12),4)) #pOiSOH
[111112222333311112222333311112222333311
301122223333
Levels: 123

> (z=Ilm(x~t*p))
Yij = ne =0+ 7 + T + wy + €45,

N k kE N
Vi=n+Y nl(Th=t)+Y ml(Py=i)+> Y wul(Th=tPy=1i)+en,

t=1 i=1 =1 t=1
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h=1,..,N xk+m. Notice that the parameters in the above equation are
not uniquely determined, i.e., not identifiable.
Y, = ﬁth +eép, € L X.
> summary|(z)
Estimate Std. Error twvalue Pr(> |t])
(Intercept)  0.41250 0.07457 5.532  2.94e — 06 x * %

2 0.46750 0.10546 4.433  8.37e — 05 %
t3 0.15500 0.10546 1.470 0.1503
t4 0.19750 0.10546 1.873 0.0692
p2 —0.09250 0.10546 —0.877 0.3862
p3 —0.20250 0.10546 —1.920 0.0628
t2 : p2 0.02750 0.14914 0.184 0.8547
t3: p2 —0.10000  0.14914  —0.671  0.5068
t4 : p2 0.15000 0.14914 1.006 0.3212
t2: p3 —0.34250 0.14914 —2.297 0.0276 *
t3:p3 —0.13000 0.14914 —0.872 0.3892
t4 : p3 —0.08250 0.14914 —0.553 0.5836
Understanding the model and the summary(z):
T = ?
m = ?
wy =7
Wi = ?
E(Yp|Xp) = B'Xp 7
E(Y3|X3) = ? (numerically) if h =1 ((¢,p) =(1,1))
E(Yh\Xh) = ? (numerically) if h =39 ((¢,p) =(4,1))
E(Y,|X),) = 7 (numerically) if h = 36. ((t =p =3).

> v=Im(x~1(t==2)*I(p==3))
> anova(v,z)
Model 1: x ~ I(t == 2) * I(p == 3)
Model 2: x ~t * p
Res.Df RSS Df Sumof Sq F Pr(>F)
1 44 1.23851
2 36 0.80072 8 0.43779 2.4603  0.0308
> anova(z)
Df Sum Sq Mean Sq F value Pr(>F)
t 3 0.92121  0.30707  13.8056 3.777e — 06 * % x
P 2 1.03301  0.51651  23.2217 3.331e — 07 %%
t:p 6 0.25014 0.04169 1.8743 0.1123
> w=Ilm(x~t+p)
> summary(w)
Estimate Std. Error tvalue Pr(> |t])
(Intercept)  0.45229 0.05592 8.088 4.22¢ —10 %%

2 0.36250 0.06458 5.614 1.43e—06 *xx
t3 0.07833 0.06458 1.213 0.23189

t4 0.22000 0.06458 3.407 0.00146 ok
p2 —0.07313 0.05592 —1.308  0.19813

p3 —0.34125 0.05592 —6.102 2.83e — 07 **x%

> anova(w,z)

Model 1: x ~t + p

Model 2: x ~t * p

Res.Df RSS Df Sumof Sq F Pr(>F)

1 42 1.05086

2 36 0.80072 6 0.25014 1.8743  0.1123
> s=lm(x~I(t==2)+1(t==4)+1(p==3))
> anova(s,z)
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Res.Df RSS Df Sumof Sq F Pr(>F)
1 44 1.13046
2 36 0.80072 8 0.32973 1.8531 0.09888

> summary(s)
Estimate Std. Error twvalue Pr(> |t])

(Intercept) 0.45490 0.03658 12.435 5.34e — 16 # %%
I(t==2)TRUE 0.32333 0.05667 5.706  9.13e — 07 = x
I(t==4)TRUE  0.18083 0.05667 3.191 0.00262 *ok
I(p==3)TRUE —0.30469 0.04908 —6.208 1.67¢ — 07 = x

Are these effects ?7

So the final model is

Y =0.45 4 0.321(T = 2) + 0.181(T = 4) — 0.31(P = 3) + €.

OrY =0.45+0.321(T = B) + 0.181(T = C) — 0.31(P = 3) + €.
8.2. Simplification and increased sensitivity from transformation. The
analysis in §8.1 is based on the assumption that Y = 8'X+e¢, where e ~ N(0,02) and
X L e. The residual plot (Gy;., ytij — §y;.)’s in Fig. 8.1 (see panel (1,1)) has a funnel
shape. If oyx is a function of n = EYI|X) (Y > 0), say
Yy ifA=1—-a#0
logY ifA=1—a=0
the variance stabilizing transformation. « can be estimated by the slope of the
regression line lIm(lngy ~ Infiy), where jiy and &y are estimates, which are avail-
able if there are replications such as in the Taxic agents data (see Fig. 8.1), with
(u,v) = (4, 6y ) = (U, Sy,;) (the mean and SD of the 4 (t,) replicates).

oyix X n* (or Inoyx =~ ¢+ alnn), then g(Y) = { is

< | [9)
e o
S o
S o
173 o o =
o 2
(-.%O_e 88 080 o 2
2 28 3 k)
) o
° "o g _ ©
Y o o
S o
o
)

02 03 04 05 06 07 08 0.9

fitted(z) log(u)
o _| o — (o)
o o <
[To) ° - o
S 7] 08 ° o ) o o °
g o ©° % ° E o| _/0—0/
& o o© D
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Fig. 8.1. ((y, 2, u, v) is given in the R codes)

For the Taxic agents data, the top two panels in Fig. 8.1 are plots (fitted, residuals)
and (Y., St;.). From panel (1,2) in Fig. 8.1, (—1.5,—0.4) and (0, —1) leads to the
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%&% =2 and A\ = —1. Thus it is appropriate to let the variance
stabilizing transformation be g(Y) = 1/Y. The bottom two panels of Fig. 8.1 are
plots (fitted, residuals) and (1/y;., s¢;.) after y is replaced by y~!. The slope ~ 0.

Variance stabilizing transformations when oy x o 1%, where n = E(Y|X).

slope & =~

dependency variance
of stabilizing

onn a A=1l—-« transformation example

o o n? 2 -1 reciprocal
ooxn? 32 —1/2 reciprocal square root

oxXn 1 0 log
con/? 1/2 1/2 square 100t poisson frequency
o o const 0 1 no trans formation

The codes to produce Fig. 8.1 are given below.
funcl= function(x) {

z=lm(x~t*p) plot(fitted(z),resid(z))

y=x

dim(y)=c(4,12)

u=apply(y,2,mean)

v=apply(y,2,sd)

z=lm(log(v)~log(u))

plot(log(u),log(v))

abline(z)
}
par(mfrow=c(2,2))
funcl(x)
x=1/x
funcl(x)
w=lm(x~t*p)
summary(w)

Estimate Std. Error twvalue Pr(> |t])

(Intercept)  2.48688 0.24499 10.151 4.16e — 12 % x

t2 —1.32342 0.34647 —3.820 0.000508  * * *
t3 —0.62416 0.34647 —1.801  0.080010
t4 —0.79720 0.34647 —2.301  0.027297 *
p2 0.78159 0.34647 2.256 0.030252 *
p3 2.31580 0.34647 6.684 8.56e — 08 *x x

12 : p2 —0.55166 0.48999 —1.126  0.267669

t3:p2 0.06961 0.48999 0.142 0.887826

t4 : p2 —0.76974 0.48999 —1.571  0.124946

t2: p3 —0.45030 0.48999 —-0.919 0.364213

t3:p3 0.08646 0.48999 0.176 0.860928

t4 : p3 —0.91368 0.48999 —1.865 0.070391

anova(w)

Df Sum Sq Mean Sq F value Pr(>F)

t 3 20.414 6.8048 28.3431 1.376e — 09 *x* x
p 2 34.877 17.4386  72.6347 2.310e — 13  * x %
t:p 6 1.571 0.2618 1.0904 0.3867

Residuals 36 8.643 0.2401
The analysis is more sensitive than the one gets from §8.1.

> u=lm(x~t+p)
> summary(u)
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Estimate Std. Error tvalue Pr(> |t])

(Intercept) 2.6977 0.1744 15473 < 2e—16 *xx
t2 —1.6574 0.2013 —8.233 2.66e — 10 * x %
t3 —0.5721 0.2013 —2.842  0.00689 ok
t4 —1.3583 0.2013 —6.747 3.35e — 08  * x %
p2 0.4686 0.1744 2.688 0.01026 *
p3 1.9964 0.1744 11.451 1.69e — 14  *x* %

So the final model is
1)y = 2.7-1.71(T = 2)—0.61(T = 3)—1.41(T = 4)+0.51(P = 2)+2.01(P = 3)+¢
v.s. Y =0.45+0.321(T = B)+0.181(T = C)—0.31(P = 3)+e¢ from the end of §8.1:
Df Sum Sq Mean Sq F value Pr(>F)
t 3 0.92121 0.30707  13.8056 3.777e¢ — 06 * ok %
2 1.03301 0.51651 23.2217 3.331e — 07 * %k ok

t:p 6 0.25014  0.04169 1.8743 0.1123 v.s. 0.3867
Remark. The variance stabilizing transformation is actually the boxcox method.
library(MASS)

boxcox(x~t*p)
b=boxcox(x~t*p)
I=which(b$x==max(b$x))
b$x([I]

anova(w)

-10

log-Likelihood
—-40 -30 -20
I I I

-50

-60
L

It suggests that A =1 — a ~ —1 too.

Another simulation example.
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library (MASS)
n=20

x=1:20
y=x**2+4rnorm(n)
W=lm(y~ x)
#y'lP=x+e
par(mfrow=c(3,2))
plot(x,y)
boxcox(W,plotit=T)

boxcox(W ,plotit=T,lambda=

seq(0.4,0.6,by=0.01))
b=boxcox(y~ x)
I=which(b$y==max(b$y))
b$x[I]
[1] 0.5050505 (= a)
plot(x,y**0.5)
plot(x**2,y)
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A consultant problem (see the attached fd.pdf).

We will conduct a two-part experiment. In Obj 2A, we will employ a substitutive and additive
design to generate self-sustaining mesocosms using protocols developed in the Hua lab (i.e. Hua
and Relyea 2014). Specifically, we will generate mesocosms using a 3 (environmental
conditions) x 28 (four most common chemicals applied individually and in 2-, 3-, and 4-
chemicals combinations) factorial design (Fig. #) for a total of 84 mesocosms. After generating
mesocosms, in Obj 2B and 2C, we will rear 40 leopard frogs (n= 20 for acute and chronic
metrics and n= 20 extra individuals) in each of these mesocosms (1300 L cattle tanks) and

9

measure the physiological and long-term health metrics described below across several life
stages.
3 (environmental treatments) x 28 (pollutant treatments)

Mixture treatments (11) Individual pollutant

Control (1)
2 pollutants 3 pollutants 4 pollutants g
mixtures mixtures mixtures “ B G D
[Total]: 2 ppb [Total]: 3 ppb  [Total): 4 ppb
5| | N [
A B (o D
X B C B © 7173 | 2ppb || 2 ppb || 2 ppb
G D
C A
f D

- =1ppb* *Actual concentration will depend on the environmentally A B (€ D
-relevant concentrations detected in Obj 1.

c4 | 3ppb || 3ppb|| 3 ppb

|0 |0 @

D D

Gd.L | 4ppb || 4ppb || 4ppb

Figure #: Proposed factorial, additive, and substitutive design including every combination of
the four individual pollutants (A, B, C, and D) and individual pollutant treatments at the four
additive concentrations. Our experiment will use concentrations determined in Obj 1. In this
hypothetical example, in the 2-, 3-, and 4- mixture treatments each of the individual pollutants
are at a concentration of 1 parts per billion (ppb). To match the total concentration of each
mixture, the additive concentrations of the individual pollutants will be: 1 ppb, 2 ppb, 3 ppb, and
4 ppb. By including individual pollutants at concentrations that match the mixture treatments,
this design allows us to control for the concentration effect making it possible to determine
antagonistic, synergistic, or additive mixture effects.

Comment: There are two types of set-up: 1. Numerical: The box on the
right represents numerical in 1, 2, 3, 4 ppb. 2. Factor: The rest are factors.

Q: 1. How many factor variables 7 2 or else ?

2. What are the levels of each variable ?
If the 4 variables are treated as linear variables, then the inputs for the right group
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is ...
Otherwise, one may check whether it is quadratic relation.
i#(1,0,0,0,0 ...), i € {1,2,3,4} ix(0,1,0,0,0 ...), i € {1,2,3,4}
i%(0,0,1,0,0 ...), i € {1,2,3,4} i%(0,0,0,1,0 ...), i € {1,2,3,4}
For measurement 1 ppb, there are 4 pollutants factors: A, B, C, D, each having
2 levels (—, +) or (control, 1 ppb). The standard table of contrast is
a b ¢ d ab ac ad bc bd cd abc abd acd bed abed

+ — — —
— _|_ — —
+ + - -
— — + —
+ - + -
+ + + -
- - - +
+ - - +
-+ - +
+ + - +
- - + +
+ - + +
-+ + +
+ + + +
Use factor(), it becomes —1 — 0, +1 — 1, thus the table becomes
a b ¢ d ab ac ad bc bd cd abc abd acd bed abed
0 00O
10 00
01 00
1100

0 010
1010
0110
1110

0 0 01

1 0 01
0101

1 1 01

0 011

1 011
0111
1111

Note (—1)(—=1) = 41 but factor(-1)*factor(-1)=0. There are 4+6+4+1 df,
together with average effect, total of 16 df.

The enviromental variable is a 3-level factor, say take values E1, E2 and E3,
total of 2 df. Now together with the 4 pollutant factors,

there are 4+2 main effects,

2x4 2-factors interactions,

2x6 3-factors interactions,

2x4 4-factors interactions,

2x1 5-factors interactions,

1 intercept parameter.

The total df is 6+8+124+8+2+1=37. Let e and f denote the 2nd and 3rd
enviromental treatments.
run e f a b ¢ d

The model is Y = X3, where n = 48 (= 2* x 3), B is a 37 x 1 vector, X is a
48 x 37 matrix with the coordinate of the first column always being 1.

111



ea eb ec ed eab eac ead ebc ebd ecd eabc eabd eacd ebed eabed|]

fa fb fc fd fab fac fad fbc fbd fed fabe fabd facd fbed fabed|]

X without the 1st column is

run e f a b ¢ d ea eb ec ed eab eac ead ebc --- eabed fa
1 0 0 0 0 0 O
2 0 0 1 0 0 O
3 0 0 0 1 0 O
4 0 0 1 1 00
5 0 0 0 0 1 0
6 0 0 1 0 1 0
7T 0 0 0 1 1 0
8 0 0 1 1 1 0
9 0 0 0 0 0 1
10 0 01 0 0 1
1 0 0 0 1 0 1
12 0 0 1 1 0 1
13 0 0 0 0 1 1
14 0 0 1 0 1 1
15 0 0 0 1 1 1
6 0 0 1 1 1 1
17 1.0 0 0 0 O
322 1 0 1 1 11

33 0 1 0 0 0 O

48 0 1 1 1 1 1

Chapter 12. Some Application of Response Surface Methods

Response surface methodology (RSM) is a collection of mathematical and sta-
tistical techniques for empirical model building. By careful design of experiments,
the objective is to optimize a response (output variable) which is influenced by
several independent variables (input variables).

12.1. Iterative experimentation to improve a product design.

An experiment is a series of tests, called runs, in which changes are made in the
input variables in order to identify the reasons for changes in the output response.
In an experiment, choices of

different factors,

different ranges for the factors,

different qualitative and blocking factors,

transformations for the factors,

responses and their metrics,

models,
will make a difference in the conclusions.

However, in an iterative sequence of experiments, they may nevertheless arrive at
a similar or equally satisfactory solutions.

A paper helicopter design experiment.
Initial experiment.
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Factor -1 +1
P: paper type x1 regular bound
l: wing length x4 3in 475  x9 = (1 —3.875)/0.875 = £1
L: body length 3 3in 475  x3= (L —3.875)/0.875 = £1
W body width x4 1.25in  2in x4 = (W —1.625)/0.375 = £1 (1)
F: fold Ts5 No Yes
T: taped body  xg No Yes no need to adjust
C: paper clip  x7 No Yes
M : taped wing xg No Yes

Let 7, and s; be the data from repeated flight times of the 16 helicopters made
according to the 25;‘_/4 design (what are the generating relations 7)
y=c(236,185,259,318,180,195,246,229,196,203,230,261,168,197,220,241) # (7;)
s=c(2.1,4.7,2.7,5.3,7.7,7.7,9,3.2,11.5,10.1,2.9,15.3,11.3,11.7,16,6.8)
a=rep(c(-1,1),8)
b=rep(c(-1,-1,1,1),4)
c=rep(c(rep(-1,4),rep(1,4)),2)
d=c(rep(-1,8),rep(1,8))
Q: Are a, b, ¢ and d factors 7
P l L %4 F T C M
587 2775 —13.25 —8.25 3.75 1.37 —-10.88 —3.88
Ocf fect = 4.5.
From the output and statistics analysis (try yourself), [, L, W and C are real.
Since C, the paper clip factor, reduces the flight time,
any further experiment does not add paper clip.
Then the model is simplified as
y = 223 + 28x9 — 13x3 — 8x4 # from lm(y~ x2+x3+x4)

Another 5 helicopters were made roughly according to the steepest ascent direction.
4
' helicopter 1 2 3 4 )
l: winglength 4 475 55 625 7
L: bodylength 3.82 3.46 3.10 275 2.39
W body width 1.61 152 1.42 133 1.24 (
g 275 304 347 275 227
S 94 135 20 573 389
Note that [ increases by 0.75 each time,
L decreases by 0.36, 0.36, 0.35, 0.36,
W decreases by 0.1 roughly each time.

Why this way ?

the optimal value y =~ 347).

a=c(28,-13,-8) (see 1, L, W)
b=c(4,3.82,1.61) (see 1st column of above table)
d=c(4.75,3.46,1.52) (see 2nd column ...)
e=c(3.875,3.875,1.625) (see Eq. (1) above)
r=c(0.875,0.875,0.375) (see Eq. (1) above)
x=a/sum(a)
y=(b-e)/r
x/y

[1] 28.00000 29.54545 28.57143
y=(d-e)/r
x/y

[2] 4.000000 3.915663 4.081633
What is in common in [1] and [2] ?

The engineers suggest that the wing area (lw) and the wing length ratio (I/w)
may be factors that has impact on the flight time. So another set of 18 experiments
were run.
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Factor -1 0 +1

A: wing area (lw) 11.8 124 13
R: wing length ratio 2.25 2.52 2.78
W body width 1 1.25 1.5
L: body length 1.5 2 2.5

Note. The estimates are based on numerical covariates, but not factors.
To allow for the fitting of a second-order model, 24+12 additional runs were
added. Now total of 2* + 2 4 12 = 30 runs.
> lm(y~a+b—+c+d+I(a*a)+I(b*b)+I(c*c)+I(d*d)+I(a*b)+I(a*c)
+I(a*d)+I(b*c)+I(b*d)+I(c*d))

j =370.83
— 0.08x1 + 5.08z5 4+ 0.25x3 — 6.08x4
— 1.7927 — 14223 — 2.2923 — 0.0823 (12.2)

— 2.88x1x2 — 3.75x12x3 + 4.38% 124
4+ 4.63x5x3 — 1.50x024 — 2.132324

By eliminating the inert effects, the equation can be simplified as

j =370.83
5.0825 — 6.0824
— 1.792% — 2.2922 (12.3)

— 2.88171562 — 3.751‘1583 + 4.381‘11’4
+ 4.63x9x3 — 2.13x374

Note: The fitted equation (12.3) is not the same as the output from R program,
unless adjust the values of intercept and squared terms. See codes below.
> lm(y~b+d+I(a*a)+I(c*c)+I(a*b)+I(a*c) +I(a*d)+I(b*c)+I(c*d))

7 =369.5
+ 5.0825 — 6.08z4
— 1.6623 — 2.1323
— 2.88x1x0 — 3.75x123 + 4.38x 124
4+ 4.63x9x3 — 2.13x374

> w=lm(y b+d+I(a*a)+I(c*c)+I(a*b)+I(a*c)+I(a*d)+I(b*c)+I(c*d))
> anova(z,w)

Model 1: y a+b—|—c—|—d—|—I( *a) + I(b*b) + I(c *c) + I(d * d)
+Ia*b) +Ia*c) +Ia*d) + I(b*c) + I(b * d) + I(c * d)
Mode12y b+d+1I(a*a)+I(c*c)+Ia*b)+Ia*c)

+1(a*d) +1I(b*c)+I(c*d)
Res.Df RSS Df SumofSq F Pr(>F)
1 15 194.17
2 20 289.17 -5 —-95 1.4678  0.2579
Based on Eq.(12.2), we can have canonical form

§=371.4—4.66X7 —3.81X7 — 3.27X7 — 1.2X7 (12.4)
where X; = (0.39, —0.45,0.8, —0.07) (21, 2, T3, x4)’,
Xy = (—0.76,—0.5,0.12,0.39) (21, 2o, T3, 4)’,
X3 = (052, —0.45, —0.45,0.57)(1‘1,%‘2,1‘3,1‘4)/,
X4 = (—004, —058, —0.377 —072)($1, To, T3, 934)/.
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Appendix. The marginal distribution (MD) approach. The MD approach
consists a speical type of graphing and tests for model checking. Notice that existing
model checking tests for testing

Hy: Y =X+ W and X L W v.s. Hy: Hy is false. (1.1)

like the F-test and t-test tests are valid if

(1) Y = BX 4+ 60g(X) + € is true, (it changes Hy to HY: 0 # 0).

(2) X Le,

(3) e ~ N(0,02).

If (1) or (3) fails, the existing tests are not valid, and can be worse than random
guessing, let alone being consistent. Of course, if no better choice, something is
better than no choice.

We shall introduce a new approach for model checking. It can be applied to
various models, including the LR models. It is always consistent for testing Hy:
Y=X4+Wand X 1L W v.s. Hi: Hy is false.

A.1. Preliminary. We assume that

(X1,Y1), ..., (X;,,Y},) are i.i.d. observations from Fx y, with density function
fx,vy, where X is a p-dimensional random vector and Y is a response variable.
Let Fyx be the conditional cdf with density function fyx.

Denote F, = Fy|x(+|0), which is called the baseline cdf of Fyx.
The LR model is often formulated by

Y =a+ X +¢, where E(e|]X) = 0. (1.2)

If the conditional variance Var(W|X) does not depend on X, it is called an ordinary
linear regression (OLR) model, otherwise, it is called a weighted linear regression
(WLR) model. Q: Does WLR model satisfy Hy in (1.1) ?
Remark 1. Advantages that the LR model is specified by Eq. (1.1) rather than
(1.2) are as follow:

(1) Eq. (1.2) but not (1.1) requires that E(Y|X) exists;

(2) In general, 8 but not « is identifiable under censorship models;

(3) It is often less important to estimate « than 3, the effect of X on Y.
Under the OLR model, there are several consistent estimators of 3 if Fx y € Ojse,

where Ops = {Fx,y: Yx is non-singular and Cov(X,Y") exists}, (1.3)

and Yx is the p X p covariance matrix of X. They include
the semi-parametric MLE (SMLE) Y&W (2003) (if Fy, is discontinuous),
the modified SMLE (MSMLE) (see Y&W (2002)), (L =T], f(Yi — 8X3))
the least squares estimator (LSE) and
the quantile or median regression estimator.
Yu and Wong (2002) show that
the MSMLE is still consistent if E(lnfy (W)) exists, and
the MSMLE (or SMLE) j satisfy P(j3 # # infinitely often) = 0 if Fyy isn’t cts.
However, the LSE is inconsistent if E(|Y]|X) = co.
Given Fxy € © (the family of all joint cdf of (X,Y)), F, = Fyx(:|0) is
well defined, even if (X,Y) does not satisfy the linear regression model in Hy:
Y = 8/’X + W, where E(W) may not exist. Let

O ={Fxy: Y =0X+W, where W L X, 8 and Fyy are unknown} (2.1)

(Fw = F,). Then Eq. (1.1) can be specified as Hy: Fxy € ©g. The next lemma
characterizes various LR models and motivating the MD approach for the LR model.

Lemma 1. Fyx is a function of (F,, ) and Fy(t) = E(Fyx(t|X)). Moreover, if
Fxy € ©q, then Fyx(t|r) = F,(t — f'z).
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For convenience, we write Fy (t) = Fy (t; 8), as Fy is a function of the parameter
if Fxx € ©,. Given 3 and Fx y, which may or may not belong to the LR model,
define another r.v..

Y* = p'X + W*, where Fyy-(-) = Fy|x(:|0) and X L W*. (2.2)
By Lemma 1, the cdf of Y* is
Fy.(t) = E(F,(t — 'X)) (denoted also by Fy-(t;3)). (2.3)

Q: Is Fy~ related to Fxy ?
Theorem 1. If Fxy € Og (see Eq. (2.1)), then
(a/) Fo(') = FY\X(|0) = FY*|X(|0);
(b) FY|X = FY*\X7 and
(C) Fy = Fy*.
If Fx y € ©\ O, then
(e) Fo() = Fyx(-[0) = Fy-x(:0), and
(d) FY\X # FY*\X-
Notice that if Fx y € O¢ as in (2.1), E(Y|X) may not exist.

Corollary 1. (1) Fxy € Oq iff Fyx = Fy«x;

(2) nyy S @0 => Fy = Fy-.

Corollary 1 motivates the MD plot and the MD test. Given data (X;,Y;)’s
from Fxy, if Fxy € ©g in (2.1), then 8 in Fy~(¢;8) is uniquely determined by
Fx y. It is often that § in Fy-(¢; 8) can also be uniquely determined by Fx y even
if Fxy ¢ O, such as in the case that Fx y € Oz (see (1.3)). One estimates 8 by
the LSE if one feels confident that ©, = Oy, or by the modified semi-parametric
MLE (MSMLE) otherwise. In this course, we only use the LSE for illustration.
A.2. The MD plot. The edf of Fy(t) is Fy(t) = L 3" 1(Y; <t). We call the

T n

95% pointwise confidence interval of Fy (t), i.e., Fy (t)+ 1.96\/Fy t)(1 = Fy (1) /n,
the confidence band (CB) of Fy. The MD plot is
to plot y = Fy-(t) and y = EFy (t), or together with the 95% CB of Fy,
or to plot y = Sy« (t) and y = Sy (t), or the CB of Sy,
where Sy =1 — Fy, SY =1- Fy(t), etc.
Fye(t) = LY Byt - BX,),
B is a consistent estimator of 3,
F,(t) = F,(t) as.
If the two curves are close, e.g, the curve of y = Fy. (t) lies within the CB of Fy,
then it suggests that the model does fit the data.
If most of the curve of y = Fy-- () lies outside the CB of Fy,
then it suggests that the model does not fit the data.
The key of our new approach is to construct an estimator of the baseline cdf

F,, say F,, which satisfies that for each ¢, Fo(t)gFo(t) vV Fxy € 0.

We now explain how to construct the estimators F,, and Fy=.
For simplicity, we first explain in the case that
X eRandY = X + W, where fx(0) > 0. (2.4)
Then, there are observations Xy, ..., X, satisfying | X;| < §,, for some 4,, = en~ /3,
If n =~ 100 then ideally choose ¢ so that m > 20.

£(t) :% S <) = Fo(t) (= Fyx(0) if n — 00 (2.5)
=1
Fy-(t) :% S, (t-BX:) = % SO 1Y +8X <)
i=1 i=1 j=1
1 n m . R
=— ;; L(W; + BX; < t),
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where § is a consistent estimator of 3 e.g. the LSE based on (X;,Y;)’s. One can
replace Fy- by Fy-«, the edf based on n “observations” Y;* = X, + W}, i = 1,
..y 1y W2's are n samples with replacement from {Y¥7,...,Y,,} (where X; ~ 0 and

W L X). If (2.4) fails (fx(0) # 0), then 3 a mode of fx, denoted by a. Since

FX+W=p8X-a)+Ba+W, and W L Xif W—-p5al (X—a), (26)
—_—— ——

=X =W

we can replace X; by X; = X; —a,i=1, ..., n.
Eq. (2.5) remains the same, treating X; as X;, where |X;| < 6, for i =1, ..., m.
Remark 3. In application, a can be the center of an interval where X;’s are most
concentrated.

Without loss of generality (WLOG), we shall assume hereafter that the zero
vector satisfies

fx(0) > 0 and Y1, ..., Y,, are the Y;’s where ||X;|| < 6,, 6, = 0 (e.g., 6, = n
(2.7)
c=r/2 and r = max; ; ||X; — X,||) and || - || is a norm.
Remark 4. One may wonder whether a naive estimator of F, is the edf F, based
on W, ’s (=Y; —B’Xi). This F, is a consistent estimator of F, if Hy in Eq. (2.1) is
true. The drawback of this naive approach is that if Hy in Eq. (2.1) is false then F,
is not consistent. We shall present 2 examples that Fy- based on such F, suggests
that the data fit the incorrect models ©y. Thus it does not serve our purpose of a
diagnostic tool.

If the curve of Fy- (t) lies either entirely outside or entirely inside the confidence
band of Fy (t), then the indication is quite clear. Otherwise, it is quite subjective to
say whether the two curves are close. Thus it is desirable to derive certain statistical
tests.

A.3. The MD test The MD plotting method leads to a class of tests of Hy:
Fxy € 0y, as follows.

ﬂ:ﬂﬂm—RﬁWR®=ZWN%EMMMm (2.8)

or Ty = sup, | Fy (t) — Fy-(1)],
Ty = [ W)y (t) — Fy- ()G (D),
or Ty = [W(t)|Fy(t) — Fy«(t)|*dG(t), where k > 1, W(-) is a weight function,

and dG is a measure, e.g., dt, dF,, dEy and dFy- (t). These tests are really testing
HMP: Fy = Fy., v.s. HMP: Fy # Fy., where Y* is defined in Eq. (2.2).

Recall Hy: Y =X +W and X L W v.s. Hy: Hy is not true.

Or vs. H?:'Y = X +60G(z) + ¢, 0 # 0 and under NID.

Definition. The tests T3, ..., Ty in Eq. (2.8) are called the MD tests.
The percentiles of these T};’s can be estimated by resampling as follows.

bl. In view of Remark 3 and Eq. (2.6), WLOG, we can assume that (2.7) holds.
OW, let X; = X; — a, where a is specified in Remark 3.

b2. Obtain B, an estimator of § based on (X;,Y;)’s under Hy, such as the LSE if it
is sure that Fx y € Ojsc, or the SMLE if there exist ties in the data, otherwise,
the MSMLE.

b3. Take a random sample of size m from the X;’s in a neighborhood of 0, say
Neib(0, 6y ), where m and 4, are as in (2.7), and take another random sample
of size n —m from the X,;’s outside Neib(0, dy,). It yields a sample of X;’s, say
xM, L xm,

b4. Generate a random sample of size n from 13’0, say, Wl(l), ...... , Wél).
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b5. Let YV = g xM 4w i=1, .. n

b6. Now, obtain a value of T1, say Tl(l), based on (Xi(l), Yi(l))’s and Eq. (2.8).

b7. Repeat the steps b3, ..., b6 a large number of times, say 100 times, obtain Tl(j)
forj=2, ... , 100. Thus the desired percentile can be estimated by the edf of
these TW)’s,

Remark 5. The MD tests are valid tests of

Hé”D: Fy = Fy -« against HIMD: Fy # Fy..

It is worth mentioning that even when Hy in Eq. (2.1) fails and E(|Y]|X) = oo,
the asymptotic distribution of the MD test still holds.

In particular, if Hy is not true but Fy« = Fy,

the MD test would make type I error for testing HM? with probability (w.p.) p,

and type II error for testing Hy: Y = X + W in (2.1) w.p.(1 — p,), where p, is the

size of the MD test. This is not the case for all existing tests.

For instance, the goodness-of-fit test tests Hy: o5, = og under NID.

The t-test tests H,: 0 = 0 with Y = X 4 0g(X) + € under NID.

If the assumption fails, the type II error depends on the real model and # 1—«.
Remark 6. A valid test for Hy: Y = 8X +W v.s. Hy: Y # /X + W is based on
Zjﬁxvy — Fx,y*, where FY,Y* is the joint distribution function, Y* is defined as in
(2.2), and FX,Y* is its edf. However, it is more convenient to use the MD approach,
as it has a diagnostic plot and most of the time Fy # Fy« if Hy is true.
Example 2.1. We generated data (X;,Y;), ¢ = 1, ..., n from the Cox model
hoix (Hz) = ho(t) exp(x), where h, = 1(t > 0), i.e., Spx(tlz) = ete"1E>0),
Y =T —-E(T|X), X ~U(-4/k,4), k ~n°7, and n is between 60 and 300.

n=100

k=n**0.7

x=runif(n,-4/k,4)

y=rexp(n,exp(x))-exp(-x)  #so that E(Y|X)=0

We fitted the data to the OLR (or WLR model), that is,

Hy: Y =08X+W (& X LW).

The Cox model does not belong to any LR model. We compare the MD test
to two existing tests in the literature: gam test and SS-test.

The gam test is invalid, as X Y Y — X — E(Y|X), violating its required assump-
tion.

The t-test and the goodness-of-fit test are also invalid, as no NID.

The SS-test is valid under the assumption in this example (it only requires finite
E(Y|x)).

For such data with a sample size n = 200, the residual plots (see panels (1,2)
and (1,3) in Figure 1) and the MD plot (see panel (2,1)) suggest that the OLR model
may not fit the data, but the residual plot in panel (2,2) suggests that a WLR model
with a weight function /|(X — 4)31(X < 3.7) + (X — 4.5)31(X > 3.7)| might work.
However, the MD plot (see panel (2,3)) suggests that the WLR model does not fit
the data neither. Thus the MD plots are better.

The simulation results suggest that the MD test 7 performs very well for
testing the incorrect OLR model, even when n = 60. The MD test can detect that
the data do not fit the WLR model for large sample sizes such as n > 200.

For comparison sake, we also generated random samples from another WLR
model:

Y=X+W, where W=14e/X+03,¢e L X,e~N(0,1), X ~U(0,2),
Under this model, we carried out two sets of simulation studies. We first fitted the
data to the OLR model Y = X + W, where W L X. The residual plots (see
panels (3,2) and (3,3)) and the MD plot (see panel (4,1)) of Figure 1 suggest that
the OLR model does not fit the data, but a WLR model might work (see panels
(4,2) and (4,3)).
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The naive estimator S* (= 1 — Fy~ see Remark 4) suggests that the data from
the Cox model and from the WLR model all fit the OLR model (see panels (1,1)
and (3,1)). Thus it is useless. We also applied the same three tests to the WLR
model. Since the data were from the WLR model, thus we estimated P(Hp|H)
for fitting the OLR model and P(H;|Hy) for fitting the WLR model, where H3:
the model is the WLR model v.s. H?: H{ is not true. The simulation results are
presented in the bottom half of Table 1.
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MD plot for OLR (X residual) for WLR MD plot for WLR
Figure 1. Residuals and MD plots under the Cox Model or the WLR model

Model: | OLR | WLR
Data Test: | T SS gam | T SS gam
n | 250|1 130|1 ﬁ0|1 | ﬁ0|1 130|1 130|1
Cox 60 | 0.01 0.06 1.00 | 0.78 0.96 1.00
200 | 0.00 0.00 1.00 | 0.19 0.95 1.00
300 | 0.00 0.00 1.00 | 0.02 0.94 1.00
| Pop Poj1 Pol1 | Do P1jo P1jo
WLR 60 | 0.03 0.00 0.59 | 0.04 0.05 0.08
120 | 0.00 0.00 0.60 | 0.04 0.05 0.07

Poj1 is the estimate of P(Ho|H,) and py|o is the estimate of P(H[Ho)

Table 1. Simulation Results in Example 2.1

Homework. 1. Write the R codes to recover panels in Figure 1, except [2,3] and
[4,3].
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2. Write the R codes to recover the first column of Table 1, the results on MD
test based on T statistic. Then make comparison to the ¢t — test for those 5 cases.
You should use the same data to do the two tests.

In the original MD method, F(t) is a smooth version of the edf. So we discuss
as follows.

Remark. The idea for generating random numbers for a continuous distribution
Fx: Fx(X)~U(0,1). Let Y ~ U(0,1), Fx'(Y) ~ Fx

Example 8. Suppose that F' is a piecewise uniform distribution on (0, 1) and (3, 4)
with weights 1/4 and 3/4. A pseudo random number of n = 10 can be generated
as follows.

> n=10

> x=runif(n)

> m=length(x[x<0.25])

> y=runif(m)

> z=runif(n-m)+3

>y [1] 0.08246115 0.76996953

> 7 [1] 3.848005 3.442600 3.142384 3.670791 3.537500 3.897043 3.558773 3.388922

Example 9. Suppose that F' is piecewise uniform on (0, 0.5) and (3, 6) with weights
0

ifx <0
0.4z if x € ]0,0.5]
1/5and 3/5 and F(z) = 1-0.2¢"**7 ifz > 7. That is F(z) = 83 +02(5—3) ﬁ ’ E Ez?z] 3)
0.8 if z € (6,7)

1—0.2e7%F7 ifoe>7
t/0.4 if t € [0,0.2]
Thus F~1(t) = ¢ 552 +3 ift €(0.2,0.8]
7—Int ifte (08,1]
9 pseudo random numbers can be generated as follows.

> (x=sort(runif(9)))
[1] 0.01509044 0.03312090 0.19840396 0.28440890 0.33304866 0.35577466 0.48100012]}
[8] 0.59806993 0.85603151
> y=X
> (k=ceiling(x*5)) # Why x5 ?
1111222335
> (u=x[k==1]*2.5)
[1] 0.03772610 0.08280224 0.49600990
> (v=T-log(5*(1-x[k==5])))
[1] 7.328723
> (x=x[k>1&k<5])
[1] 0.2844089 0.3330487 0.3557747 0.4810001 0.5980699
> round(c(u,(x-0.2)*543,v),2)
[1] 0.04 0.08 0.50 3.42 3.67 3.78 4.41 4.99 7.33
> y=c(y[k==1]*2.5, 5*(y[k>1&k<5]-0.2)+3, 7-log(5*(1-y[k==5])))
> round(y,2)
[1] 0.04 0.08 0.50 3.42 3.67 3.78 4.41 4.99 7.33
Remark. Given a n distinct ¥;, their edf is F/(t) = L " 1(Y; < t). WLOG,
assume that Y7 < --- <Y,,. A linear interpolation to the discrete Fis

ﬁ0=%§ﬁtiﬁiﬂﬂﬂﬂﬁ—aﬁn+ungm

{Z+”§“iﬁem—amneumm}
where € = min;«j<,,, |Y; — Y},
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