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ABSTRACT
The Buckley-James estimator (BJE) is an estimator of β for the semi-parametric
linear regression model Y = β′X + W with right-censored data. Several iterative
algorithms for the BJE have been proposed so far. However, they may either converge
to a value far away from the BJE, or fail to converge at all. On the other hand, Yu
and Wong (2002) introduced a non-iterative algorithm for finding all solutions of
the BJE. While theoretically appealing, this approach becomes computationally
intensive if β ∈ Rp with p > 1 and with a large sample size n. This paper presents
a modification to the BJE with a non-iterative algorithm. It yields the exact BJE if

β ∈ R; otherwise it consistently approximates both β̂ and the true parameter β as n
increases. We compare its performance against the BJE through simulation studies
and illustrative examples. We also carry out a data analysis of a real-world data set.

KEYWORDS
Linear regression; survival analysis; right censorship model; semiparametric model;
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1. Introduction.
This paper studies the problem of parameter estimation under the semiparametric
multiple linear regression model with right-censored (RC) data.
Regression analysis constitutes a central tool in statistical inference, with broad
applicability in disciplines such as economics, engineering, biomedical research, and
the social sciences. Specifically, we consider the following semiparametric multiple
linear regression (LR) model.

(AS) Y = β′X+W, where Y and W are random variables, X is a p-dimensional ran-
dom vector, β ∈ Rp, the p-dimensional Euclidean space, Y is subject to right censoring
with censoring variable C, P (Y ≤ C) ∈ (0, 1], and C, X and W are independent. Both
β and the survival function SW (t) (= P (W > t)) are unknown. The observations
(X1,M1, δ1), ..., (Xn,Mn, δn) are i.i.d. from (X,M, δ), where δ = 1(Y ≤ C) (the
indicator function) and M = Y ∧ C.

The LR model is commonly expressed as Y = α + β′X + ϵ, where E(ϵ) = 0 and
X ⊥ ϵ. However, E(Y ) may not exist such as in the case that W follows a Cauchy
distribution. Even if α (=E(W )) exists, it is often non-identifiable under censoring,
such as in the case that P (C < τ) = 1 and SW (τ) > 0 for some τ ∈ R. Moreover,
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researchers are typically more interested in the effect β of X on Y . Therefore, (AS) is
more appropriate, general, and practical.

The least squares estimator (LSE) remains the predominant method for analyzing
complete data. In the presence of right censoring, several extensions of the LSE have
been proposed. Among the early contributions, Miller (1976) introduced an adaptation
of the least squares principle, while Buckley and James (1979) proposed the Buckley-
James estimator (BJE) of β as a solution to a modified normal equation of the sum of
squares represented by H(b) (see Eq. (2.1) in Section 2 (§2)). Other modifications to
the LSE methodology were proposed by Chatterjee and McLeish (1986), and Leurgans
(1987). Notably, Hillis (1993) conducted a comparative study and concluded that the
BJE performs favorably compared to alternative estimators in the regression setting.

Buckley and James also proposed an iterative algorithm for computing the BJE. They
pointed out the potential non-uniqueness and non-existence of the BJE as the root of
the function H(b). In subsequent work, James and Smith (1984) proposed refinements
to the BJE, one of which redefined the estimator as a zero-crossing point (ZC) of H(b).
This ZC-based definition has since been widely adopted in the literature (see e.g., Lai
and Ying (1991)). The asymptotic properties of the ZC-based BJE have been rigorously
established under various regularity conditions (see, e.g., Lai and Ying (1991) and
Wang et al. (2010)). However, the recent work by Yu (2023) demonstrated that the
ZC-based BJE can be inconsistent, even when a consistent estimator exists in the form
of a strict zero-crossing point (SZC) (see Definition 3 in §2). This observation leads to
the refined definition of the BJE as the SZC of H(b). Yu and Huang (2024) further
established the existence of the BJE as a ZC even under degenerate settings such as
X ≡ a constant and proved that an SZC always exists whenever β is identifiable.

The original iterative algorithm developed by Buckley and James has been adapted
for the ZC and is integrated into the R function bj() within the current R package rms
(Stare, et al. (2001)). However, this iterative approach may yield no solution at all.
Jin, Lin, and Ying (2006) as well as Wang, Zhao, and Fu (2016) attempted to modify
the iterative algorithm to reduce the instability of the iteration. Nevertheless, these
efforts have not completely overcome the drawback that the procedure may oscillate
indefinitely between multiple values for some data sets (see Table 5.1 in §5). Yu and
Wong (2002) proposed a non-iterative algorithm capable of identifying all possible ZCs
(see §2). While this approach guarantees identification of all ZCs, its computational
burden grows rapidly with the dimension p of β (∈ Rp) and with the sample size,
rendering it inconvenient in higher dimensions.

We propose a modified version of the BJE along with a non-iterative and computa-
tionally efficient algorithm. Our method is built upon the non-iterative approach of
Yu and Wong (2002), with key modifications that enhance scalability. Specifically, the
modification is exactly the same as the ZC in the case p = 1, or in some cases (see
Examples 1 and 2 in §2). In general, simulation studies suggest that the proposed
method is a consistent approximation to the BJE and β.

Section 2 introduces the proposed algorithm and provides illustrative examples.
Section 3 presents simulation results to demonstrate the effectiveness of the new
algorithm and the approximation to the BJE β̂ and β. Section 4 illustrates the
practical utility of our estimator via a real data analysis. Section 5 provides a data
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example in which the three existing iterative algorithms fail to produce a solution,
highlighting the advantage of our approach.

2. Preliminary results.
We first introduce the BJE of β ∈ Rp. Let b ∈ Rp, Ti(b) = Mi −b′Xi, (T

∗
i (b), δ

∗
i (b))

=


(Ti(b), 1) if δi = 1 or Ti(b) = T(n)(b) (= maxj Tj(b)),

(

∑
t>Ti(b)

tf̂b(t)

Ŝb(Ti(b))
, δi) otherwise,

(2.1)

and Ŝb is the product-limit-estimator (PLE) of F
Y−b′X based on (Ti(b), δ

∗
i (b))’s.

Then H(b) = (H1(b), ...,Hp(b))
′ =

n∑
i=1

(Xi −X)T ∗
i (b). (2.2)

If the largest Ti(b) is right censored,

∑
t>Ti(b)

tf̂b(t)

Ŝb(Ti(b))
in (2.1) is not defined and it is

treated as an exact observation in H(b). Abusing notations, write δ∗i = δ∗i (b). The
BJE was originally defined as a root of H(b), but the root may not exist, thus the

BJE β̂ is defined as a ZC of H(b) (see Lai and Ying (1991) p.1371) until recently.
Notice that H(b) is piecewise linear in b (see Remark 3.1 in Yu and Wong (2002)).

Definition 1. Let p = 1. A point b is called a ZC of H(·) if H(b−)H(b+) ≤ 0 or
H(b) = 0.

So a root of H(b) is also a ZC. Notice that if δi ≡ 1 and Xi’s are not identical, then the
ZC and BJE is the LSE. To emphasize the distinction from the complete-data setting,
we henceforth assume that the data are subject to right-censoring, i.e., mini δi = 0
(unless being specified otherwise). When the dimension p ≥ 2, Yu and Huang (2024)
highlighted a fundamental limitation of the naive extension of the zero-crossing (ZC)
definition based on Definition 1, and proposed a refined formulation to address this
issue. The modified definition, formalized in Definition 2, ensures better theoretical
and computational properties of the estimator in higher-dimensional settings.

Definition 2. Let β ∈ Rp. β̂ is a ZC of H(b) if ∀ (i, j) ∈ {1, ..., p} × {1, 2}, ∃
bikj ∈ Rp such that (1) limj→∞Hk(bi2j)· limj→∞Hk(bi1j) ≤ 0 or H(b) = 0, and (2)

limj→∞ bikj → β̂, k ∈ {1, 2}.

In the same paper, they established that the BJE as a ZC always exists, however,
it may happen that each point in an interval is a BJE. To address this issue, they
redefined the BJE as the strict zero-crossing (SZC) (see Definition 3 below). The
SZC criterion excludes such degenerate solutions and provides a more meaningful and
robust characterization of the BJE. Furthermore, they demonstrated that an SZC
always exists as long as the parameter β is identifiable.

Definition 3. If β ∈ Rp, a point β̂ is a strict ZC (SZC) if ∃ 2 sequences {bi}i≥1 and

{boj}j≥1 such that they converge to β̂ and limbi→b sign(H(bi)) ̸= limboj→b sign(H(boj)),

where sign(0)
def
= 0.
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Based on earlier definition of the BJE as a ZC, Yu and Wong (2002) developed a
comprehensive algorithm for deriving all ZCs in finite many steps. The algorithm is
described as follows:

Algorithm for the ZC with p = 1 (by Yu and Wong (2002)):

(1) Compute the slope bij = Mi−Mj

Xi−Xj
for each pair (i, j) with Xi < Xj . Let q1 <

q2 < · · · < qmb
be all the distinct bij ’s and let (q0, qmb+1) = (−∞,∞). For each

h = 0, 1, ..., mb, first compute the PLE Ŝb for a b ∈ (qh, qh+1). For example, let
b be the midpoint of the interval (qh, qh+1) if 0 < h < mb, b = q1 − 1 if h = 0,
and b = qmb

+ 1 if h = mb. With the given b, denoted by ah, compute H(ah). If

H(ah) = 0 then ah is a BJE, otherwise let b̂h =
∑n

j=1(Xj−X)M∗
j (ah)∑n

k=1(Xk−X)X∗
k (ah)

(if b̂h exists)

and check whether b̂h ∈ (qh, qh+1), where

M∗
i (b) = Miδi + (1− δi)

∑
t>Ti(b)

f̂b(t)

Ŝb(Ti(b))

∑n
j=1Mj1(Tj(b)=t,δ∗j=1)∑n
k=1 1(Tk(b)=t,δ∗k=1)

and (2.3)

X∗
i (b) = Xiδi + (1− δi)

∑
t>Ti(b)

f̂b(t)

Ŝb(Ti(b))

∑n
j=1Xj1(Tj(b)=t,δ∗j=1)∑n
k=1 1(Tk(b)=t,δ∗k=1)

, i = 1, ..., n. (2.4)

If so, then b̂h is a solution to equation H(b) = 0 and thus a ZC of H.

(2) Compute H(qi−), H(qi) and H(qi+), i = 1, ..., mb, where H(b̂+) and H(b̂−)
are the right- and left-hand limits of H, respectively. By (2.1) and (2.3) we have

H(b) =

{∑n
j=1(Xj −X)(M∗

j (qi)− bX∗
j (qi)) if b = qi,∑n

j=1(Xj −X)(M∗
j (ai)− bX∗

j (ai)) if b ∈ (qi, qi+1) (ai ∈ (qi, qi+1)).

If H(qi−)H(qi+) ≤ 0, or H(qi−)H(qi) ≤ 0, or H(qi)H(qi+) ≤ 0, then qi is a
BJE too.

(3) If H(qi+) = H(qi+1−) = 0, then each b ∈ (qi, qi+1) is also a ZC.

Algorithm with p ≥ 2:

(1) First find all solutions to the system of p equations Mik −b′Xik = Mjk −b′Xjk ,

i .e., b = Q(Mi1 −Mj1 , ...,Mip −Mjp)
′ (∈ Rp), (2.5)

if Q = ((Xi1−Xj1 , · · · ,Xip−Xjp)
′)−1 exists. It becomes b = Mi−Mj

Xi−Xj
if p = 1. Let

b1, ..., bmo
be all distinct solutions of Eq. (2.5). As vertices, these bi’s can form

finitely many disjoint convex sets, say Qh’s, each with non-empty open interior
in Rp, just like the roles of q1, ..., qmb

in Item (1) of the algorithm for the ZC

with p = 1). Let c be an interior point of Qh. Note that now, given j, Ŝb(Tj)
does not change for each b in the subset Qh ∀ j. Check whether H(c) = 0. If
so, c is a ZC, otherwise, solve

∑n
j=1(M

∗
j (c)− b′X∗

j (c))(Xj −X) = 0 for b, i.e.,

b = ((

n∑
i=1

(Xi −X)(X∗
i (c))

′)−1
n∑

j=1

M∗
j (c)(Xj −X), (2.6)
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if Q exists, where M∗
j (c) is the same as in Eq. (2.3), but

Xi(c) in Eq. (2.4) is replaced by X∗
i = (X∗

i1, ...,X
∗
ip)

′ and

X∗
ik(c) = Xikδi + (1 − δi)

∑
t>Ti(c)

f̂b(t)

Ŝb(Ti(b))

∑n
j=1Xjk1(Tj(b)=t,δ∗

j
=1)∑n

k=1 1(Tk(b)=t,δ∗
k
=1)

, k = 1, ...,

p and i = 1, ..., n, as Xi ∈ Rp, p ≥ 2. If b given by (2.6) exists (i.e.,
((
∑n

i=1(Xi −X)(X∗
i (c))

′)−1 exists) and satisfies b ∈ Qh, then b is a ZC.
(2) It is similar to the case p = 1 and is skipped.
(3) If H(b) = 0 for two distinct b ∈ Qi, then each b ∈ Qi is a ZC.

While the algorithm performs well in low-dimensional settings, its computational cost
increases substantially as the dimension p increases, as seen from Example 1.

Example 1 (Example 2 (Yu (2023))). There are 4 (Mi, δi, Xi1, Xi2): (1, 0, 1, 0),
(1, 0, 0, 1), (0.6, 1, 0, 0) and (0.1, 1, 0, 0), generated from the model Y = X1 +X2 +W ,
C = 1 and W ∼ U(0, 1) (the uniform distribution on (0, 1)). Write H(b) =
(H1(b), H2(b))

′, where b = (b1, b2)
′. Then

H(b) =


(0, 0)′ if b ∈ {(x, y) : x ∧ y > 0.9},
(+,+)′ if b ∈ {(x, y) : x ∨ y ≤ 0.9},
(+, 0)′ if b ∈ {(x, y) : x < 0.9 < y},
(0,+)′ if b ∈ {(x, y) : x > 0.9 > y},

where “+” stands for “> 0”. Thus

each b ∈ {(x, y)′ : x ∧ y ≥ 0.9} is a ZC. In particular, b = (0.9, 0.9)′ is a ZC and
is not a root of H(b), whereas β = (1, 1)′ is the true parameter value. This can be
derived by Algorithm of Yu and Wong (2002) as follows. The possible solutions to
Mi −Mk = b1(Xi1 −Xk1) + b2(Xi2 −Xk2) are
(i, k) : (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)
(b1, b2) : b1 = b2 b1 = 0.4 b1 = 0.9 b2 = 0.4 b2 = 0.9 ∅

Then the possible solutions to

{
Mi −Mk = b1(Xi1 −Xk1) + b2(Xi2 −Xk2)

Mh −Mj = b1(Xh1 −Xj1) + b2(Xh2 −Xj2)

are (b1, b2) ∈ {(0.9, 0.4), (0.4, 0.9), (0.9, 0.9), (0.4, 0.4)}. Denote these 4 points by
b1, . . . ,b4. These 4 points yield 9 open rectangles as shown in Figure 1 below, de-
noted by Q1, . . . , Q9 (see Figure 1), as well as their open boundary line segments.

Then (Xi − X) =

(
(1, 0, 0, 0)− 0.25
(0, 1, 0, 0)− 0.25

)
, Ti = Mi − b1Xi1 − b2Xi2 and T ∗

i is as in

Eq. (2.2). H(b) is linear in each of these 49 disjoint sets by Yu and Wong (2002).
Thus check whether H(b) has a ZC in Q1, . . . , Q9 one by one, as well as at b1, . . . ,b4

and on those boundary line segments. For instance, check H(b) on Q7 as follows.
Q7= {(x, y) : x∨y < 0.4}: Let c = −(1, 1) ∈ Q7, then T (b) = (2, 2, 0.1, 0.6), T ∗(b) =
T (b),X∗ = X andM∗ = M , where b,M∗

i andX∗
i are as defined in Eq. (2.6), (2.3) and

(2.4). AndM∗
j (c) is the same as in Eq. (2.3), butXi(c) in Eq. (2.4) is replaced byX∗

i =

(X∗
i1, . . . ,X

∗
ip)

′ and X∗
ik(c) = Xikδi + (1 − δi)

∑
t>Ti(c)

f̂b(t)

Ŝb(Ti(b))

∑n
j=1Xjk 1(Tj(b)=t, δ∗

j
=1)∑n

k=1 1(Tk(b)=t, δ∗
k
=1)

,

k = 1, . . . , p, i = 1, . . . , n, as Xi ∈ Rp, p ≥ 2. It is further shown (see Yu (2023)) that
Eq. (2.6) yields

b =

(
1− 1

4 −1
4

−1
4 1− 1

4

)−1(
1− 1

4 −1
4 −1

4 −1
4

−1
4 1− 1

4 −1
4 −1

4

)
1

1

0.1

0.6

 = 1.3
2 (1, 1)′ /∈ Q7,
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and it implies that there is no BJE in Q7.

Figure 1. H(b) in Various Rectangles

We refer the proof of the other regions to Example 2 in Yu (2023).

Remark 1. The algorithm proposed by Yu and Wong (2002) yields all possible
BJEs for a given set, but it is time-consuming. Is it possible to modify the algorithm
so that it is faster ? A possible new algorithm for the BJE of β ∈ Rp, p ≥ 1 is as
follows. Suppose that (X1, ...,Xn) are orthogonal, that is, they can be treated as p
n−dimensional orthogonal vectors, say Fi = (X1i, . . . ,Xni)

′, i = 1, ..., p. Then apply

the algorithm of Yu and Wong (2002) to solve the BJE β̂i with (M, δ⃗,Fi), where

M = (M1, . . . ,Mn)
′, δ⃗ = (δ1, . . . , δn) and Fi, i = 1, ..., p. Then hopefully, the BJE of

β is β̂ = (β̂1, . . . , β̂p)
′.

Example 1 (continued). B′ = (X1, . . . ,X4) =

(
1 0 0 0
0 1 0 0

)
and B′B =

(
1 0
0 1

)
.

Using the approach in Remark 1, first solve β̂1 with (Mi, δi,Xi1)’s. It is shown in Huang
and Yu (2025) (see §A.1) that each b ∈ [0.9,∞) is a ZC. Since (M1,M2) = (1, 1)
and (δ1, δ2) = (0, 0), by symmetry, each b ≥ 0.9 is a ZC of β2. Thus each point

in {(x, y) : x ∧ y ≥ 0.9} is a BJE of β̂. This derivation is much simpler than the
derivation given in Example 1 using the original algorithm of Yu and Wong (2002).
In that approach, one needs to check whether ∃ ZC of H(b) in the following 49 sets
(instead of 7 sets twice in the new algorithm):

(1) 9 open rectangle sets Q1, . . . , Q9;
(2) 24 open line segments of the boundaries for Q1, . . . , Q9;
(3) 16 singletons of the endpoints of the above 24 line segments.

But the new approach only checks 2 points and 3 intervals twice instead. In general,
the time saving is from mp to p × m. Notice that (X1, ...,X4) can be viewed as two
orthogonal row vectors.

In view of Example 1 and Remark 1, we propose a modification of the definition
of the BJE together with a more efficient algorithm that remains computationally
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feasible in higher dimensions and is capable of consistently approximating the true
parameter value β when the sample size n is sufficiently large.

A modification of the BJE: Let B′ def
= (X1, ....,Xn)p×n with its trans-

pose (B1, ...,Bp)
def
= B. The full singular value decomposition (SVD) of B

is B = Un×nDn×pV
′
p×p. Let B̃

def
=UD

def
= (X̃1, ...., X̃n)

′def= (B̃1, ..., B̃p), where

X̃i = (X̃i1, ..., X̃ip)
′. Let β̂ be the BJE based on (M, δ⃗,B), where M = (M1, ...,Mn)

and δ⃗ = (δ1, ..., δn). Let β̃ = Vγ̂, where γ̂′ = (γ̂1, ..., γ̂p), γ̂j is the BJE based on

(M, δ⃗, B̃j) (B̃j = (X̃1j , · · · , X̃nj)
′), j = 1, ..., p. We call β̃ the modified BJE.

Remark 2. We expect that β̂ ≈ β̃ in the sense that (1) limn→∞ β̂ = limn→∞ β̃ and

(2) Cov(β̂)(Cov(β̃))−1 → I, the identity matrix, provided that (AS) holds and β is
identifiable.

The modification is actually motivated by the property of the LSE, as proved in
Proposition 1.

Proposition 1. Suppose that p = 1 or δi = 1 for all i. Then β̃ = β̂.

The proof for p = 1 is trivially true and the proof for the 2nd case is in Huang and
Yu (2025) (see §A.2).

Hereafter, let β̂ be the BJE and β̃ be the estimator based on the new method. Even
though β̃ does not always coincide with the BJE β̂, it is expected that they are close
if the sample size is large, such as the in next example.

Example 2. Suppose that P (X = (0, 0)′) = P (X = (0.5, 0)′) = P (X = (0.5, 0.5)′) =
1/3, W ∼ U(0, 1), C ≡ c ∈ [0, 1], X ⊥ W and β = (1, 1)′. Let M(i)’s be the order

statistics of Mi’s, M(m) the largest value for Mi’s that less than c, and β̂ = (β̂1, β̂2) =
(2c− 2M(1), 2M(m) − 2M(1)). Then

(1) If c ∈ (0.5, 1], then ∃! BJE of b near (1, 1).

(2) If c = 0.5, then β̂ is the unique SZC of H(b) and H(b) = 0 if b ∈ (β̂1,∞) ×
(β̂2,∞).

The proof of these two statements are given in Huang and Yu (2025) (see §A.3).

Theorem 1. Under the assumptions of Example 2 with c = 0.5,
(1) β̂ = (β̂1, β̂2) = (2c− 2M(1), 2M(m) − 2M(1)) → (1, 1) a.s..

(2) β̃ = Vγ̂, where γ̂1 = (M(1) − 0.5)/0.43 and γ̂2 = (0.5−M(1))/0.16 (if n is large).

The proof of Theorem 1 is given in Huang and Yu (2025) (see §A.4). When n is large
enough, M1 → 0, γ̂ ≈ (−1.16, 3.13)′, β̃ = Vγ̂ ≈ (1, 1). Moreover, the comparison of
the BJE to our modified estimator for this special case through simulation studies is
given in §3.1.b.

Remark 3. (The estimation of the standard deviations (SD) of the BJE under the

assumption of Example 2). Since W ∼ U(0, 1), β̂1 = 2c− 2M(1), then σ2
β̂1

= 4σ2
M(1)

=

7
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4 n
(n+1)2(n+2) ≈ 4

n2 , and σβ̂1
≈ 2

n . σ2
β̂2

= 4(σ2
M(m)

+ σ2
M(1)

− 2Cov(M(m),M(1))) =

4[ m(n−m+1)
(n+1)2(n+2) +

n
(n+1)2(n+2) −

2(n−m+1)
(n+1)2(n+2) ]. The proof is given in Huang and Yu (2025)

(see §A.5).

Remark 4. (The estimation of the SD of β̃ under the assumption of Example 2).
σβ̃1

= σβ̃2
≈ 2

n . The proof is given in Huang and Yu (2025) (see §A.6).

3. Simulation results. We shall present results of two simulation studies in this
section. In §3.1, W ∼ U(0, 1) and in §3.2, W ∼ N(µ, σ2). Each result is based on
M = 1000 replications.

3.1 Simulation Results under the assumption in Example 2. Let W ∼ U(0, 1)

and β = (1, 1)′. Let Σ̂ and Σ̌ be the covariance matrices of β̂ and β̃, respectively.
In Table 3.1, we report the empirical means, SD and covariance matrices of both the
BJE β̂ and the modified estimator β̃ across different sample sizes n, with c = 0.51.
The reference rate in the tables is given by Remarks 3 and 4 in §2.

Table 3.1. Simulation results under W ∼ U(0, 1) with β = (1, 1)′

n = 40 n = 160 n = 640 Reference Rate

(a) Exact estimator β̂
Mean (0.962, 0.949) (0.986, 0.982) (0.991, 0.990) –

SD (0.0398, 0.0537) (0.0120, 0.0403) (0.0028, 0.0104) (2/n,
√
5/(36n))

(b) Modified estimator β̃
Mean (0.957, 0.944) (0.985, 0.984) (0.995, 0.995) –
SD (0.0412, 0.0430) (0.0110, 0.0121) (0.0025, 0.0026) (2/n, 2/n)

(c) Covariance matrices

Σ̂

(
0.0144 0.0155
0.0155 0.0141

) (
0.00037 0.00105
0.00105 0.00174

) (
1×10−6 2.1×10−5

2.1×10−5 1.2×10−5

)
–

Σ̃

(
0.0156 0.0188
0.0188 0.0163

) (
0.00051 0.00112
0.00112 0.00202

) (
0.000002 0.000033
0.000033 0.000014

)
–

Table 3.2. Mean of β̃ and the mean/SD of (β̂ − β̃) under W ∼ U(0, 1) with β = (1, 1)′

Setting n Mean of β̃ Mean of (β̂ − β̃) SD of (β̂ − β̃)

Case I 45 (0.964, 0.954) (0.0158, 0.0156) (0.025, 0.023)
150 (0.984, 0.984) (0.0048, 0.0048) (0.0054, 0.0054)
640 (0.992, 0.993) (0.0013, 0.0013) (0.0013, 0.0014)

Case II 40 (0.973, 0.957) (0.014, 0.014) (0.025, 0.026)
160 (0.990, 0.990) (0.0037, 0.0039) (0.0058, 0.0058)
640 (0.995, 0.999) (0.0010, 0.0010) (0.0014, 0.0015)

In Table 3.2, we summarize the replication-based comparisons of β̂ and β̃ for
Example 3 with c = 0.5. Two uniform-error scenarios are considered:
Case I. The sample consists of 3n observations with n replicates of each covariate
triplet (0, 0), (0, 0.5), and (0.5, 0.5), again with W ∼ U(0, 1) independent of Xi. This
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corresponds to the special design described in Example 3.
Case II. The covariates Xi are drawn independently from {(0, 0), (0.5, 0), (0.5, 0.5)}
with equal probability 1/3, and W ∼ U(0, 1) is independent of Xi.

3.2 Simulation Results under the assumption W ∼ N(µ, σ2) and c = 0.51. We
consider two assumptions: (a) W ∼ N(0, 1) with β = (1, 1)′, and (b) W ∼ N(2, 4)
with β = (2, 3)′.

Table 3.3. Results under Normal errors W ∼ N(0, 1) and W ∼ N(2, 4)

n = 40 n = 160 n = 640 Reference Rate

(a) W ∼ N(0, 1), β = (1, 1)′

Mean (0.893, 0.875) (0.930, 0.908) (0.984, 0.979) –

SD (0.205, 0.223) (0.097, 0.107) (0.051, 0.058)
√

1/n

Σ̂

(
0.0089 0.0106
0.0106 0.0073

) (
0.0026 0.0028
0.0028 0.0026

) (
0.00057 0.00055
0.00055 0.00059

)
–

Σ̃

(
0.0092 0.0122
0.0122 0.0099

) (
0.0030 0.0031
0.0031 0.0029

) (
0.00056 0.00056
0.00056 0.00059

)
–

(b) W ∼ N(2, 4), β = (2, 3)′

Mean (1.642, 2.490) (1.854, 2.775) (1.975, 2.957) –
SD (0.303, 0.337) (0.138, 0.153) (0.062, 0.063) –

Σ̂

(
0.0090 0.0108
0.0107 0.0108

) (
0.0021 0.0026
0.0026 0.0021

) (
0.00049 0.00048
0.00049 0.00049

)
–

Σ̃

(
0.0103 0.0110
0.0110 0.0105

) (
0.0029 0.0030
0.0030 0.0027

) (
0.00048 0.00048
0.00049 0.00049

)
–

4. Data Analysis. The Olympic data set (available as Olympic.NH4.df in the
EnvStats R package) contains weekly or biweekly measurements of ammonium
(NH4) concentrations (in mg/L) in wet atmospheric deposition, recorded from Jan-
uary 2009 to December 2011 at the Hoh Ranger Station in Olympic National Park,
Washington. These measurements are part of the National Atmospheric Deposition
Program/National Trends Network (NADP/NTN).

Table 4.1. Weekly measurements across months

Week 1 Week 2 Week 3 Week 4 Week 5

Month 1 < 0.006
Month 2 0.006 0.016 < 0.006
Month 3 0.015 0.023 0.034 0.022
Month 4 0.007 0.021 0.012 < 0.006
Month 5 0.021 0.015 0.088 0.058
Month 6 < 0.006 < 0.006
Month 7 < 0.006 < 0.006 0.074
Month 8 0.011 0.121 < 0.006
...

...
...

...
...

...
Month 35 0.036 < 0.008 0.012 0.030 0.022
Month 36 0.008

Table 4.1 presents data from the first eight and the last two months of the sampling

9



A modification of the BJE Huang and Yu

period. In total, the data set contains 56 uncensored (observed) values and 46
RC values, corresponding to multiple detection limits. Among these, four distinct
detection limits were used, although only two of them appear in the subset shown in
the table.

In addition to ammonium concentrations, the Olympic data set also contains
covariates including real-time air temperature, denoted as X1 (in Kelvin), and
real-time humidity, denoted as X2 (in oz/cu. yd). Based on a proportional hazards
(PH) model applied to this data set (see references therein), a normal approximation
yields a 95% confidence interval for the mean NH4 deposition of (0.014, 0.028) mg/L,
with the sample mean of the observed (uncensored) values being 0.020 mg/L. We also
fit the data to a log-linear regression model of the form log(Y ) = β′X + W, where
X = (X1, X2). Using our proposed estimation algorithm, the resulting mean estimate
for NH4 deposition is 0.019 mg/L, which lies within the 95% confidence interval based
on the PH model and is close to its sample mean.

To assess model adequacy, several classical diagnostic tools are available for linear
regression analysis. In particular, Q–Q plots can be used—albeit in a less conventional
manner—to evaluate the goodness-of-fit of the residuals under specific distributional
assumptions.

Dong and Yu (2019), as well as Yu and Liu (2020), introduced marginal distri-
bution (MD) approaches for model diagnostics under semiparametric regression
frameworks. These MD-based methods allow flexible model checking for a variety
of regression models, including the linear regression (LR) model, the proportional
hazards model, the generalized LR model, and others. The MD framework incorpo-
rates both diagnostic plots and formal statistical tests and can be readily adapted to
parametric settings. In this paper, we first introduce the parametric versions of MD
diagnostics and subsequently apply them to the Olympic data set.

Suppose that (X1, Y1), ..., (Xn, Yn) are i.i.d. observations from FX,Y with den-
sity function fX,Y , where X is a p-dimensional random vector and Y is a response
variable. Let FY |X be the conditional cumulative distribution function (cdf) with
density function fY |X . Denote Fo = FY |X(·|0), which is called the baseline cdf of
FY |X . Given FX,Y ∈ Θ, the family of all joint cdfs of (X,Y ), Fo is well defined, even
if (X,Y ) does not satisfy the LR model and E(W ) may not exist. In particular,
under assumption (AS), Fo = FW . We consider the test of H0 : FX,Y ∈ Θ0,
where Θ0 = {FX,Y : (X,Y,W ) satisfies (1.1)}. Define Y ∗ = βX + W ∗, where
FW ∗(·) = FY |X(·|0) and X ⊥ W ∗.

Denote the edf of FY (t) by F̂Y (t) = 1
n

∑n
i=1 1(Yi≤t). We call the 95% pointwise

confidence interval of FY (t) the confidence band (CB) of FY . Figures 2 and 3
present the 95% confidence bands of log-transformed edf of the NH4 wet deposition
data within the log-transformed distribution of Y in our model and within the
log-transformed distribution of Y using Cox Proportional-Hazards Model, called the
parametric marginal distribution (MD) plots.

The MD plot is to plot y = F̂Y ∗(t) and y = F̂Y (t) together with the 95% CB

of FY , where F̂Y ∗(t) = 1
n

∑n
i=1 F̂o(t − β̂Xi), and F̂o is the parametric MLE of Fo. If
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the two curves are close, e.g, the curve of y = F̂Y ∗(t) lies within the CB of FY , then

it suggests that the model does fit the data. If most of the curve of y = F̂Y ∗(t) lie
outside the CB of FY , then it suggests that the model does not fit the data.

Figure 2. MD plot under log-LR model

Figure 3. MD plot under Cox Proportional-Hazards model with log-transformed response

As the figures shown, the LR model with the log-transformed response fits
the data better. The MD plotting method leads to a class of tests called
MD tests for H0 : FX,Y ∈ Θ0, as follows. T1 =

∑
t |F̂Y (t) − F̂Y ∗(t)|f̂Y (t)

or T2 = supt |F̂Y (t) − F̂Y ∗(t)|, T3 =
∫
W(t)(F̂Y (t) − F̂Y ∗(t))dG(t), or

T4 =
∫
W(t)|F̂Y (t) − F̂Y ∗(t)|kdG(t), where W(t) is a weight function, k ≥ 1 is

a constant, and dG is a measure, e.g., dt, dF̂o, dF̂Y and dF̂Y ∗(t). The p-value can be
obtained by the resampling method. Under the parametric assumption, in particular
under Model (AS), the distributions of these statistics Tj can be approximated by
making use of the procedure as follows.

[B0] Generate the {W ∗
i }ni=1 from U(â, b̂), let Y ∗

i = β̂Xi+W ∗
i , and evaluate a Tj above,

say T1 =
∑

t |F̂Y (t)− F̂Y ∗(t)|f̂Y (t).
[B1] Obtain the MLE (â∗, b̂∗, β̂∗) based on (Y ∗

i , Xi)’s.

[B2] Generate a random sample of size n from U(â∗, b̂∗), say, W
(1)
1 , ..., W

(1)
n .

[B3] Resample Xi’s of size n with replacement, say, X
(1)
1 , ..., X

(1)
n .

[B4] Let Y
(1)
i = β̂∗X

(1)
i +W

(1)
i , i = 1, ..., n.

[B5] Obtain the MLE (â∗(1), b̂∗(1), β̂∗(1)) based on (Y
(1)
i , X

(1)
i )’s.
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[B6] Generate W
∗(1)
i ’s using (â∗(1), b̂∗(1)) and let Y

∗(1)
i = β̂∗(1)X

(1)
i +W

∗(1)
i , i = 1, ..., n.

[B7] Now, obtain a value of T1, say T
(1)
1 , based on (Y

(1)
i , Y

∗(1)
i , X

(1)
i )’s.

[B8] Repeat the steps B2, ..., B7 a large number of times, say 100 times, obtain T
(s)
1 ,

s = 2, ..., 100. Thus the desired percentile can be estimated by the edf of these T
(s)
1 ’s.

If we use the MD test for our model with T2 = supt |F̂Y (t) − F̂Y ∗(t)| at significance
level α = 0.05, and repeat for 100 times, the p-value is 0.44, which suggests that the
data fit the log- LR model. In contrast, for the Cox proportional-hazards model, the
p-value is 0.04, which suggests that the data do not fit that model.

Section 5. Comments on other existing iterative algorithms for the ap-
proximation of the BJE. There are at least three existing iterative algorithms in
the literature for approximating the BJE. Based on the original iterative algorithm by
Buckley and James, Lin, Jin, and Ying (2006) developed a resampling-based estimator
that involves iterative procedures similar in spirit to those proposed by Jin et al.
(2003). Separately, Wang, Zhao, and Fu (2016) proposed the smoothed Buckley-James
estimator (SBJ), which incorporates the induced smoothing framework originally
introduced by Brown and Wang (2005). While these methods often perform well,
they may fail to yield a stable solution for certain datasets. For example, consider
a simulated dataset with n = 40, generated under the assumption Y = β′X + W
with β′ = (0.5, 0.5), X1 ∼ Exp(1) − 1, X2 ∼ Exp(1) − 2, W ∼ N(3, 1), C ∼ Exp(1),
where Y is subject to right-censoring by C, X1, X2 and W are independent, and the
observed data consist of T = min(Y,C) and δ = 1{Y ≤ C}.

Table 5.1. Comparison of four BJE estimation methods under simulated data with set.seed(100) and

n = 40.

Method Output Remarks
bj() (R package) No convergence in 80 steps Failed to converge
Lin, Jin, and Ying (2006) Algorithm did not converge Warning issued
SBJ (Wang, Zhao & Fu, 2016) Algorithm did not converge Last 4 steps oscillate

Proposed method β̃ = (0.38, 0.31), SD=0.31 our modified BJE

Yu and Wong (2002) β̂ = (0.30, 0.32), SD=0.31 the true value of the BJE

Using set.seed(100), we generated a dataset (given in Huang and Yu (2025) (see
§A.9)) and applied these three iterative methods to this data set. None of them
produced a convergent estimate: the bj() function which is the iterative algorithm
by Buckley and James failed to converge within 80 iterations, the method of Lin, Jin,
and Ying terminated with a convergence warning, and the SBJ estimator exhibited
oscillatory behavior in its final steps. In contrast, our proposed method successfully
converged to the correct solution.

A comparison of the four methods is summarized in Table 5.1. The SDs of our
proposed estimator β̃ are (0.162, 0.170), whereas for the algorithm of Yu and Wong

(2002) the SDs of β̂ are (0.251, 0.257). The intervals based on each estimate and its
SD cover the true parameter value. These results highlight the numerical instability
and convergence issues that may arise with existing iterative methods. In contrast,
our proposed approach demonstrates superior robustness and reliability, even in
challenging settings where traditional algorithms fail.
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Appendix.
§A.1. Proof of Example 1 (continued)
⊢: If X = (1, 0, 0, 0), δ = (0, 0, 1, 1), M = (1, 1, 0.6, 0.1), then each b ∈ [0.9,∞) is a
BJE.

Since T1(b) = 1− b, T2(b) = 1, T3(b) = 0.6, T4(b) = 0.1 by the algorithm of Yu and
Wong (2002), the possible solutions to Mi − Mk = b(Xi − Xk) are b ∈ {0, 0.4, 0.9},
and they break R into 4 open intervals, denoted by Q1, . . . , Q4. We shall show that

H(b) =
∑
i

(Xi −X)(Mi − bXi)

=



(
3
4

)
(1− b)− 1

4(1 + 0.6 + 0.1) = 0.325− 0.75 b > 0.325 ∀ b in Q1 = (−∞, 0),(
3
4

)
(1)− 1

4(1 + 0.6 + 0.1) = 0.325 ∀ b in Q2 = (0, 0.4),(
3
4

)
(1+0.6

2 )− 1
4(1 + 0.6 + 0.1) = 0.175 ∀ b in Q3 = (0.4, 0.9),(

3
4

)
(1+0.6+0.1

3 )− 1
4(1 + 0.6 + 0.1) = 0 ∀ b in Q4 = (0.9,∞).

H(0) =0.325, H(0.4) = 0.175 and H(0.9) = 0. (a.1)

Q1: b ≤ 0. Here T1(b) = 1 − b > 1 so the orders of Ti’s are 0.1 < 0.6 < 1 < T1(b).
The largest time is T1(b) with δ1 = 0, it forces δ∗1 = 1; hence all four are events and
T ∗
i = Ti, M

∗
i = Mi, X

∗
i = Xi. Thus H(b) =

∑
i(Xi − X)(Mi − bXi) =

(
3
4

)
(1 − b) −

1
4(1 + 0.6 + 0.1) = 0.325− 0.75 b > 0.325 > 0, so no root of H(b) in (−∞, 0).
Q2: 0 < b < 0.4. Here T1(b) = 1 − b ∈ (0.6, 1) and 0.1 < 0.6 < T1(b) < 1. The
largest time is T2 = 1 with δ2 = 0, it forces δ∗2 = 1. Conditional on T > T1(b), the
only remaining event time is 1, so unit 1 has T ∗

1 (b) = T1(b), M
∗
1 (b) = 1, X∗

1 (b) = 0.
Units 2–4 are events: M∗

2 = 1, M∗
3 = 0.6, M∗

4 = 0.1, X∗
2 = X∗

3 = X∗
4 = 0. Thus

H(b) =
(
3
4

)
· 1− 1

4(1 + 0.6 + 0.1) = 0.325 > 0, so no root of H(b) in (0, 0.4).
Q3: 0.4 < b < 0.9. Here T1(b) = 1−b ∈ (0.1, 0.6) so the order is 0.1 < T1(b) < 0.6 < 1.
Again it forces δ∗2 = 1. Unit 1 lies between the events at 0.6 and 1, hence T ∗

1 (b) = T1(b),
M∗

1 (b) =
1
2(0.6)+

1
2(1) = 0.8, X∗

1 (b) = 0. Units 2–4 remain events: M∗
2 = 1, M∗

3 = 0.6,

M∗
4 = 0.1, with X∗

2 = X∗
3 = X∗

4 = 0. Thus H(b) =
(
3
4

)
·0.8− 1

4(1+0.6+0.1) = 0.175 >
0, hence no root in (0.4, 0.9).
Q4: b > 0.9. Here T1(b) = 1 − b ∈ (0, 0.1) so T1(b) < 0.1 < 0.6 < 1. Since unit 1

is censored before the first event, Ŝ(0.1) = 2
3 , Ŝ(0.6) = 1

3 , Ŝ(1) = 0, so conditional

on T > T1(b), P (T = 0.1) = P (T = 0.6) = P (T = 1) = 1
3 . Thus T ∗

1 (b) = T1(b),

M∗
1 (b) = 1

3(0.1 + 0.6 + 1) = 17
30 , X∗

1 (b) = 0. Units 2–4 are events with M∗
2 = 1,

M∗
3 = 0.6, M∗

4 = 0.1. Hence H(b) =
(
3
4

)
· 17
30 − 1

4(1 + 0.6 + 0.1) = 0, so H(b) ≡ 0 on
(0.9,∞).
Boundary behavior. Similarly, it can be shown that H(0) = 0.325, H(0.4) = 0.175,
H(0.9) = 0.
Thus (a.1) holds and b = 0.9 is the SZC, and every b ∈ [0.9,∞) is a ZC (hence a BJE
solution).

§A.2. Proof of Proposition 1.
⊢: Suppose that δi = 1 for all i. Then β̃ = β̂.

For simplicity, assume that δi ≡ 1 and E(Y ) = B′β. Then we have M′ = Y. Let
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γ = V−1β. Then E(Y ) = B′β = UDV′β = UDγ, as γ = V′β.

γ̂ =((UD)′(UD))−1(UD)′Y = (D′U′UD)−1(UD)′Y

=(D′D)−1D′U′Y = D−1U′Y => γ̂′ = (U ′
1Y/d1, ..., U

′
pY/dp).

β̂ =(B′B)−1B′Y = ((UDV′)′(UDV′))−1(UDV′)′Y

=(VDU′UDV′)−1(VDU′)′Y

=(VD2V′)−1(VDU′)′Y = (VD−2V′)VDU′Y = VD−1U′Y = Vγ̂

=β̃.

§A.3. Proof of Example 2.
For convenience, restate Example 2 as follows.
Suppose that P (X = (0, 0)′) = P (X = (0.5, 0)′) = P (X = (0.5, 0.5)′) = 1/3, W ∼
U(0, 1), C ≡ c ∈ [0, 1], X ⊥ W and β = (1, 1)′. Let M(i)’s be the order statistics of

Mi’s, M(m) be the largest value among the Mi’s that is less than c, and β̂ = (β̂1, β̂2) =
(2c− 2M(1), 2M(m) − 2M(1)).
Then

(1) If c ∈ (0.5, 1], then ∃! BJE of b near (1, 1).

(2) If c = 0.5, then β̂ is the unique SZC of H(b) and H(b) = (0, 0)′ if b ∈ (β̂1,∞)×
(β̂2,∞).

The proof is given in 2 steps.

Step 1. ⊢: Statement (2) holds.

Assume c = 0.5. WLOG we can assume M1 ≤ M2 ≤ · · · ≤ Mn. In particular,
M1 ≤ M2 ≤ · · · ≤ Mm < c = Mm+1 = · · ·Mn. The key step for finding all BJE’s

is to find the solutions to

{
Mi −Mk = b1(Xi1 −Xk1) + b2(Xi2 −Xk2)

Mh −Mj = b1(Xh1 −Xj1) + b2(Xh2 −Xj2),
i.e.,

{
Ti(b) = Tk(b)

Th(b) = Tj(b),
where Ti(b) =


Mi(∈ (0, c)) if i = 1, ...,m

c if i = m+ 1, ..., s

c− 0.5b1 if i = s+ 1, ..., t

c− 0.5(b1 + b2) if i = t+ 1, ..., n.
Then the solutions are
(b1, b2) = {(0, 0), (2c−2Mj ,−(2c−2Mj)), (0, 2c−2Mj), (2c−2Mj , 0), (2c−2Mj , 2Mi−
2Mj)}. If the largest Ti(b) is right censored, it is treated as an exact observation in
H(b).

Modify δi as δ∗(b1, b2) = 1(i ∈ {1, ...,m}) + 1(i /∈ {1, ...,m}, b1 < 0, b2 ≥ 0, b1 + b2 ≤
2(c − Mm)) + 1(i ∈ {s + 1, ..., t}, b1 < 0, b2 ≥ 0, b1 + b2 > 2(c − Mm)) + 1(i /∈
{1, ...,m}, b2 < 0, b1 ≤ 2(c−Mm))+1(i ∈ {t+1, ..., n}, b2 < 0, b1 > 2(c−Mm))+1(i ∈
{m+ 1, ..., n}, 0 ≤ b1 ≤ 2(c−Mm), 0 ≤ b1 + b2 ≤ 2(c−Mm)). Then T ∗

i (b) =

15
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

Mi(Mi ∈ (0, c)) if i = 1, ...,m

c if i /∈ {1, ...,m}, 0 ≤ b1 ≤ 2(c−Mm); 0 ≤ b1 + b2 ≤ 2(c−Mm)

c− 0.5b1 if i /∈ {1, ...,m}; b1 < 0 ≤ b2, b1 + b2 ≤ 2(c−Mm)

c− 0.5(b1 + b2) if i /∈ {1, ...,m}; b2 < 0, b1 ≤ 2(c−Mm)

c− 0.5b1 if i ∈ {m+ 1, ..., s, t+ 1, ..., n}; b1 < 0 ≤ b2, b1 + b2 > 2(c−Mm)

c− 0.5(b1 + b2) if i ∈ {t+ 1, ..., n}; b2 < 0, b1 > 2(c−Mm)

Gi(·) if i /∈ {1, ..., s}; b1, b1 + b2 > 0, b1 > 2(c−Mm) or b1 + b2 > 2(c−Mm),

whereGi(·) =



∑
1(Mj>Ti(b))Mj+(c−0.5b1)(s−m)

(
∑

1(Mj>Ti(b))+s−m) if i = s+ 1, ..., t, b1 + b2 and b1 > 2(c−Mm)∑
1(Mj>Ti(b))Mj+(c−0.5(b1+b2))(t−s)

(
∑

1(Mj>Ti(b))+t−s) if i = t+ 1, ..., n, b1 + b2 and b1 > 2(c−Mm)∑
1(Mj>Ti(b))Mj+(c−0.5b1)(s−m)

(
∑

1(Mj>Ti(b))+s−m) if i = s+ 1, ..., t, b1 > 2(c−Mm) ≥ b1 + b2∑
1(Mj>Ti(b))Mj+c(t−s)

(
∑

1(Mj>Ti(b))+t−s) if i = t+ 1, ..., n, b1 > 2(c−Mm) ≥ b1 + b2∑
1(Mj>Ti(b))Mj+c(s−m)

(
∑

1(Mj>Ti(b))+s−m) if i = s+ 1, ..., t, b1 ≤ 2(c−Mm) < b1 + b2∑
1(Mj>Ti(b))Mj+(c−0.5(b1+b2))(t−s)

(
∑

1(Mj>Ti(b))+t−s) if i = t+ 1, ..., n, b1 ≤ 2(c−Mm) < b1 + b2.

Note that X = (X1, X2)
′, thus by Eq. (2.1), H(b) = (H1(b), H2(b))

′ (where
b = (b1, b2)

′). For b1 < 0 ≤ b2, b1 + b2 ≤ 2(c − Mm), H1(b) and H2(b) are linear

functions of b1, say, H
∗
1 (b1)

def
=H1(b) and H∗

2 (b1)
def
=H2(b), and for j = 1, 2,

H∗
j (b1) =

∑m
i=1Mi(0−Xj) +

∑
i>m c(1− b1)(0.5−Xj);

H∗
j (b1) is decreasing in b1 ∈ (−∞, 0);

H∗
j (b1) ≥

∑m
i=1Mi(−Xj) +

∑
i>m c(0.5−Xj) > 0 a.s., as m ≈ n/3 if n is large when

b1 < 0.

For b2 < 0, b1 ≤ 2(c−Mm), H1(b) and H2(b) are linear functions of b1 + b2, i.e.

H∗
1 (b1 + b2)

def
=H1(b) and H∗

2 (b1 + b2)
def
=H2(b), and for j = 1, 2,

H∗
j (b1 + b2) =

∑m
i=1Mi(0−Xj) +

∑
i>m c(1− b1 − b2)(0.5−Xj);

H∗
j (b1 + b2) is decreasing in b1 + b2;

H∗
j (b1 + b2) ≥

∑m
i=1Mi(−Xj) +

∑
i>m c(0.5−Xj) > 0 a.s., as m ≈ n/3 if n is large.

For b1 > 0 and b1 + b2 > 0,

H2(b1, b2) =−
m∑
i=1

MiX2 −
s∑

i>m

cX2 +

′∑
i>s

T ∗
i (b1, b2)(−X2) +

n∑
i>t

T ∗
i (b1, b2)(0.5−X2)

=− (

m∑
i=1

Mi +

s∑
i>m

c)X2 +

′∑
i>s

G(b1, b2)(−X2) +

n∑
i>t

G(b1, b2)(0.5−X2);

H1(b1, b2) =−
m∑
i=1

MiX1 −
s∑

i>m

cX1 +

′∑
i>s

T ∗
i (b1, b2)(0.5−X1) +

n∑
i>t

T ∗
i (b1, b2)(0.5−X1)

=− (

m∑
i=1

Mi +

s∑
i>m

c)X1 +

′∑
i>s

G(b1, b2)(0.5−X1) +

n∑
i>t

G(b1, b2)(0.5−X1).

G(·) is a left-continuous decreasing step function in {b1 > 0} × {b1 + b2 > 0}, with
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drops at (2c− 2Mi, 2c− 2Mj), where i = s+ 1, ..., t, and j = t+ 1, ..., n. For example,
for 0 < b1 + b2 ≤ 2(c−Mm), 0 < b1 ≤ 2(c−Mm),

G(b1, b2) =

∑m
j=1 1(b1+b2>2c−2Mj)Mj + c(s−m)

(
∑m

j=1 1(b1+b2>2c−2Mj) + s−m)
(letting M0 = −∞)

=1(b1+b2∈(0,2c−2Mm])c+

m∑
i=1

1(b1+b2∈(2c−2Mi,2c−2Mi−1])

∑m
j=iMj + c(s−m)

(m− i+ 1 + s−m)
,

G(β̂1, β̂2) =
∑m

j=2 Mj+c(s−m)

(s−1) >
∑m

j=1 Mj+c(s−m)

s = G(β̂1+, β̂2+), as M1 ≤ .... ≤ Mm < c.

Hj(b1, b2) = 0 < Hj(β̂) ≤ Hj(t1, t2) ∀t1 ≤ β̂1, t2 ≤ β̂2 and b1 > β̂1, b1 + b2 > β̂2. Thus

β̂ is the unique SZC and each b ∈ (β̂1,∞)× (β̂2,∞) is a root of H(b).

Step 2. ⊢: Statement (1) holds:
Let δi = 1(i ≤ m or i ∈ (k, h]), M1 ≤ · · · ≤ Mm < c, and

0.5 < Mk+1 ≤ · · · ≤ Mh < c, Mi =


Wi(< c) if i = 1, ...,m

c(≤ Wi) if i = m+ 1, ..., k

Wi + 0.5(< c) if i = k + 1, ..., h

c(≤ Wi + 0.5) if i = h+ 1, ..., n.

Then Ti(b) =



Mi(∈ (0, c)) if i = 1, ...,m

c if i = m+ 1, ..., k

Mi − 0.5b1 if i = k + 1, ..., t

Mi − 0.5(b1 + b2) if i = t+ 1, ..., h

c− 0.5b1 if i = h+ 1, ..., s

c− 0.5(b1 + b2) if i = s+ 1, ..., n.

Let δ∗i (b) =

{
1 if i ≤ k and b1 ≤ 0, b1 + b2 ≤ 0, or i > k and b1 ≥ 0 or b1 + b2 ≥ 0

δi o.w..
. Then

T ∗
i (b) =



Mi(= Wi) if i = 1, ...,m

Z(·) if i = m+ 1, ..., k and b1 ≤ 0, b1 + b2 ≤ 0

c if i = m+ 1, ..., k; b1 > 0; b1 + b2 > 0

Mi − 0.5b1 if i = k + 1, ..., h; b1 ≤ 0, b1 + b2 > 0

c− 0.5b1 if i = h+ 1, ..., n; b1 ≤ 0, b1 + b2 > 0

Mi − 0.5(b1 + b2) if i = k + 1, ..., h; b1 > 0, b1 + b2 ≤ 0

c− 0.5(b1 + b2) if i = h+ 1, ..., n; b1 > 0, b1 + b2 ≤ 0

Mi − 0.5b1 if i = k + 1, ..., t; b1 ≤ 0, b1 + b2 ≤ 0

Mi − 0.5(b1 + b2) if i = t+ 1, ..., h; b1 ≤ 0, b1 + b2 ≤ 0

c− 0.5b1 if i = h+ 1, ..., s; b1 ≤ 0, b1 + b2 ≤ 0

c− 0.5(b1 + b2) if i > s; b1 ≤ 0, b1 + b2 ≤ 0

G(·) if i > h, b1 > 0, b1 + b2 > 0,

where Z(·) =
∑h

j>k 1(Mj>Ti(b))(Mj−b′Xj)+(c−b′Xj)(n−h)

(
∑

1(Mj>Ti(b))+n−h) , G(·) =
∑

1(Mj>Ti(b))Mj+c(k−m)

(
∑

1(Mj>Ti(b))+k−m) .

Notice that −2(c− 0.5) ≤ 2(Mm+1− c) ≤ · · · ≤ 2(Mk − c) < 0, for b1 ≤ 0, b1+ b2 ≤ 0.

Z(b1, b2) =
∑h

j>k 1(Mj>Ti(b))(Mj−b′Xj)+(c−b′Xj)(n−h)

(
∑

1(Mj>Ti(b))+n−h) is a 2-dimensional left-continuous
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strictly decreasing function; G(·) is a left-continuous decreasing step function in {b1 >
0} × {b1 + b2 > 0}, with drops at (2c− 2Mi, 2c− 2Mj), where i = s+ 1, ..., t, and j =
t+ 1, ..., n from the proof of Statement (1). H(b) = (H1(b), H2(b))

′, X = (X1, X2)
′.

If n is large enough, then m
n ≈ 1/6, k

n ≈ 2c−0.5
3 , h−k

n ≈ c−0.5
3 , n−h

n ≈ 1.5−c
3 , X1 ≈ 1/3,

X2 ≈ 1/6.
H1(1,1)
m/3 = 2

3c
2+(c−0.5)(0.5− 1

3)+(1− (c−0.5)) (c−1/6)(0.5)+(1−c)c/6)
1.5−c = c2

6 + 7c
6 − 1

6 > 0,

Similarly, H1(1−,1−)
m/3 = − c2

6 − 1
12 < 0, H2(1,1)

m/6 = c2

12 + 3c
8 − 1

12 > 0, H2(1−,1−)
m/6 = − c2

12 −
3c
4 − 1

3 < 0.
If b = (b1, b2) where b1 < 0 and b2 ≤ −b1,

T ∗
i (b) =



Mi(= Wi) if i = 1, ...,m

Z(·) =
∑h

j>k 1(Mj>Ti(b))(Mj−b′Xj)+(c−b′Xj)(n−h)

(
∑

1(Mj>Ti(b))+n−h) if i = m+ 1, ..., k

Mi − 0.5b1 if i = k + 1, ..., t

Mi − 0.5(b1 + b2) if i = t+ 1, ..., h

c− 0.5b1 if i = h+ 1, ..., s

c− 0.5(b1 + b2) if i > s,

H1(b1, b2) =

m∑
i=1

MiX1 −
k∑

i>m

(Xi1 −X1)Z(b1, b2) +

′∑
i>k

(Mi − 0.5b1)(Xi1 −X1)

+

h∑
i>t

(Mi − 0.5(b1 + b2))(Xi1 −X1) +

s∑
i>h

(c− 0.5b1)(Xi1 −X1)

+

n∑
i>s

(c− 0.5(b1 + b2))(Xi1 −X1);

H2(b1, b2) =

m∑
i=1

MiX2 −
k∑

i>m

(Xi2 −X2)Z(b1, b2) +

′∑
i>k

(Mi − 0.5b1)(Xi2 −X2)

+

h∑
i>t

(Mi − 0.5(b1 + b2))(Xi2 −X2) +

s∑
i>h

(c− 0.5b1)(Xi2 −X2)

+

n∑
i>s

(c− 0.5(b1 + b2))(Xi2 −X2).

If b0 < b1 < 0 and b2 ≤ −b1, H1(b0, b2)−H1(b1, b2)

18
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=

k∑
i>m

(Xi1 −X1)(Z(b0, b2)− Z(b1, b2)) +

′∑
i>k

(Mi − 0.5(b0 − b1))(Xi1 −X1)

+

h∑
i>t

(Mi − 0.5(b0 − b1))(Xi1 −X1) +

s∑
i>h

(c− 0.5(b0 − b1))(Xi1 −X1)

+

n∑
i>s

(c− 0.5(b0 − b1))(Xi1 −X1) > 0;

H2(b0, b2)−H2(b1, b2)

=

k∑
i>m

(Xi2 −X2)(Z(b0, b2)− Z(b1, b2)) +

′∑
i>k

(Mi − 0.5(b0 − b1))(Xi2 −X2)

+

h∑
i>t

(Mi − 0.5(b0 − b1))(Xi2 −X2) +

s∑
i>h

(c− 0.5(b0 − b1))(Xi2 −X2)

+

n∑
i>s

(c− 0.5(b0 − b1))(Xi2 −X2) > 0.

If b1 < 0 and b0 < b2 < −b1,

H1(b1, b0)−H1(b1, b2) =

k∑
i>m

(Xi1 −X1)(Z(b1, b0)− Z(b1, b2))

+

h∑
i>t

(Mi − 0.5(b0 − b2))(Xi1 −X1) +

n∑
i>s

(c− 0.5(b0 − b2))(Xi1 −X1) > 0;

H2(b0, b2)−H2(b1, b2) =

k∑
i>m

(Xi2 −X2)(Z(b1, b0)− Z(b1, b2))

+

h∑
i>t

(Mi − 0.5(b0 − b2))(Xi2 −X2) +

n∑
i>s

(c− 0.5(b0 − b2))(Xi2 −X2) > 0.

Therefore, both H1(b1, b2) and H2(b1, b2) are strictly decreasing when b1 < 0 and
b2 ≤ −b1, i.e., over the region (−∞, 0)× (−∞,−b1].
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If b1 > 0 and b2 ≤ −b1, T
∗
i (b) =


Mi(= Wi) if i = 1, ...,m

Mi − 0.5(b1 + b2) if i = k + 1, ..., h

c− 0.5(b1 + b2) if i = h+ 1, ..., n,

H1(b1, b2) =

m∑
i=1

MiX1 +

h∑
i>k

(Mi − 0.5(b1 + b2))(Xi1 −X1) +

n∑
i>h

(c− 0.5(b1 + b2))(Xi1 −X1);

H2(b1, b2) =

m∑
i=1

MiX2 +

h∑
i>k

(Mi − 0.5(b1 + b2))(Xi2 −X2) +

n∑
i>h

(c− 0.5(b1 + b2))(Xi2 −X2).

If 0 < b0 < b1 and b2 ≤ −b1,

H1(b0, b2)−H1(b1, b2) =

h∑
i>k

(Mi−0.5(b0−b1))(Xi1−X1)+

n∑
i>h

(c−0.5(b0−b1))(Xi1−X1) > 0;

H2(b0, b2)−H2(b1, b2) =

h∑
i>k

(Mi−0.5(b0−b1))(Xi2−X2)+

n∑
i>h

(c−0.5(b0−b1))(Xi2−X2) > 0.

If b1 > 0 and b0 < b2 ≤ −b1,

H1(b1, b0)−H1(b1, b2) =

h∑
i>k

(Mi−0.5(b0−b2))(Xi1−X1)+

n∑
i>h

(c−0.5(b0−b2))(Xi1−X1) > 0;

H2(b1, b0)−H2(b1, b2) =

h∑
i>k

(Mi−0.5(b0−b2))(Xi2−X2)+

n∑
i>h

(c−0.5(b0−b2))(Xi2−X2) > 0.

Then both H1(b1, b2) and H2(b1, b2) are strictly decreasing over the region
(0,∞)× (−∞,−b1].

If b1 < 0 and b2 > −b1, T
∗
i (b) =


Mi(= Wi) if i = 1, ...,m

Mi − 0.5b1 if i = k + 1, ..., h

c− 0.5b1 if i = h+ 1, ..., n,

H1(b1, b2) =

m∑
i=1

MiX1 +

h∑
i>k

(Mi − 0.5b1)(Xi1 −X1) +

n∑
i>h

(c− 0.5b1)(Xi1 −X1);

H2(b1, b2) =

m∑
i=1

MiX2 +

h∑
i>k

(Mi − 0.5b1)(Xi2 −X2) +

n∑
i>h

(c− 0.5b1)(Xi2 −X2).
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If b1 > 0 and b2 > −b1, T
∗
i (b) =


Mi(= Wi) if i = 1, ...,m

c if i = m+ 1, ..., k

G(·) if i = k + 1, ..., n,

H1(b1, b2) =

m∑
i=1

MiX1 +

k∑
i>m

c(Xi1 −X1) +

n∑
i>k

G(b1, b2)(Xi1 −X1);

H2(b1, b2) =

m∑
i=1

MiX2 +

k∑
i>m

c(Xi1 −X2) +

n∑
i>k

G(b1, b2)(Xi2 −X2).

Therefore, we find that H1(b1, b2) is strictly decreasing and H2(b1, b2) is strictly
increasing throughout R2. Hence, the BJE of β exists and is unique in a neighborhood
of (1, 1).

§A.4. Proof of Theorem 1.
First look at the simplest case: B = (X1,X2)

′, where X1 = (0, 0.5, 0.5) and
X2 = (0, 0, 0.5). The singular value decomposition of B is B = UΣV′, where

U ≈

 0 0 −1
−0.53 −0.85 0
−0.85 0.53 0

, Σ ≈

0.81 0
0 0.31
0 0

 and V ≈
(
−0.85 −0.53
−0.53 0.85

)
.

Therefore UΣ = BV =

 0 0
−0.43 −0.26
−0.69 0.16

. Let A =

B...
B


︸ ︷︷ ︸

n blocks

∈ R3n×2, where

B =

 0 0

0.5 0

0.5 0.5

 ∈ R3×2. Equivalently, let 1n ∈ Rn be the all-ones vector and I3 the

3 × 3 identity, A = (1n ⊗ I3)B. We seek a full SVD A = UΣV ′ with U ∈ R3n×3n

orthogonal, V ∈ R2×2 orthogonal, and rectangular diagonal Σ ∈ R3n×2.

Right singular vectors V (independent of n):
Since A′A =

∑n
k=1B

′B = n (B′B), A′A differs from B′B by a scalar factor n. Hence
V is the orthonormal eigenbasis of B′B and does not depend on n, while the singular

values scale by
√
n. B′B =

[
0.5 0.25
0.25 0.25

]
, λ1,2 = 3±

√
5

8 . Let φ = 1+
√
5

2 . Solving

(B′B − λI)v = 0 yields the unnormalized eigenvectors v1 ∝

[
1
1
φ

]
, v2 ∝

[
1

−φ

]
. After

normalization, V =


1√

1 + (1/φ)2
1√

1 + φ2

1/φ√
1 + (1/φ)2

−φ√
1 + φ2

 , σ1,2(A) =
√

nλ1,2 =

√
n(3±

√
5)

8 .

Left singular vectors U :
Write the thin SVD of B as B = UB ΣB V ′, UB =

[
uB1 uB2

]
∈ R3×2, ΣB =

diag
(
σ1(B), σ2(B)

)
, with the same V as above and singular values σi(B) =

√
λi.

Let
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e := 1n√
n
∈ Rn, E⊥ ∈ Rn×(n−1) have orthonormal columns spanning e⊥. Then

(i) Columns of U corresponding to the two nonzero singular values.
For i = 1, 2, ui = 1

σi(A) Avi = 1√
nσi(B)

(1n ⊗ I3)Bvi = 1√
n
(1n ⊗ uBi ) = e⊗ uBi .

Thus the first two columns of U are u1 = e⊗ uB1 , u2 = e⊗ uB2 .

(ii) The left nullspace (columns of U for zero singular values). Since rank(A) = 2, the
left nullspace of A has dimension 3n− 2 and decomposes as

ker(A′) =
(
e⊥ ⊗ R3

)
⊕

(
span(e)⊗ ker(B′)

)
.

Note that ker(B′) is one-dimensional; an explicit unit vector can be chosen as
q0 = (1, 0, 0)′, due to q′0B = 0. Therefore, an explicit orthonormal basis for ker(A′) is
given by (E⊥⊗ e1, E⊥⊗ e2, E⊥⊗ e3) ∪ (e⊗ q0), where (e1, e2, e3) is any orthonormal
basis of R3 (e.g., the standard basis; one can also take (uB1 , u

B
2 , q0)).

(iii) Assembling a full orthogonal U . Stacking the orthonormal columns, we can take
U = [ e⊗uB1 , e⊗uB2

∣∣ e⊗q0
∣∣ E⊥⊗e1, E⊥⊗e2, E⊥⊗e3 ] ∈ R3n×3n. By construction, U

is orthogonal, its first two columns satisfy Avi = σi(A)ui (i = 1, 2), and the remaining
3n− 2 columns span ker(A′).

The identities U ′U = I3n, UΣV ′ = A, Σ =

[
diag(σ1(A), σ2(A))

0

]
∈ R3n×2 hold up to

the usual columnwise sign ambiguity of singular vectors.

Given that P (X = (0, 0)′) = P (X = (0.5, 0)′) = P (X = (0.5, 0.5)′) = 1/3, when n is
large, it suffices to analyze the data that have 3n pairs (Xi, Yi) with n triples of Xi

equal to (0, 0), (0, 0.5), and (0.5, 0.5).
For this data, we still have

V ≈
(
−0.85 −0.53
−0.53 0.85

)
. Thus B̃ = UΣ = BV ≈(

0 −0.43 −0.69 0 −0.43 −0.69 ...
0 −0.26 0.16 0 −0.26 0.16 ...

)′

2×3n

.

Set c = 0.5. By our modification, γ̂1 is the BJE based on (M, δ⃗, B̃1), where
B̃1 = (0,−0.43,−0.69, 0,−0.43,−0.69, ...), WLOG, we can assume that
M1 ≤ M2 ≤ · · · ≤ Mm < c = Mm+1 = · · ·Mn. The key step for find-
ing all BJE’s is to find the solutions to Ti(b) = Tj(b) ∀X̃i > X̃j , where

Ti(b) =


Mi(= Wi) if i = 1, ...,m

0.5 if i = m+ 1, ..., k

0.5 + 0.43b if i = k + 1, ..., s

0.5 + 0.69b if i = s+ 1, ..., n,

Possible solutions to Ti(b) = Tj(b) are b ∈ {0, (Mi − 0.5)/0.43, (Mi − 0.5)/0.69},
T(n) = 0.5 + 0.69b1(b ≥ 0), δ∗i (b) = 1(b < 0,m < i ≤ k) + 1(b ≥ 0, k < i ≤ s) for

i > m. T ∗
i (b) =


Mi(= Wi) if i = 1, ...,m

0.5 if i = m+ 1, ..., k and b < 0

0.5 + 0.69b if i = k + 1, ..., n and b ≥ 0

Gi(b) =
∑

1(Mj>Ti(b))
Mj+c(k−m)∑

1(Mj>Ti(b))
+k−m if i > k and b < 0.

If b1 < b < 0, T ∗
i (b)− T ∗

i (b1) =

{
0 if i = 1, ..., k

Gi(b)−Gi(b1) if i = k + 1, ..., n,

Ti(b) is strictly increasing when i = k + 1, ..., n, Mj < c, therefore Gi(b) is a left-
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continuous increasing step function on (−∞, 0) with drops at
b = (M1 − 0.5)/0.69, ..., (Mm − 0.5)/0.69, (M1 − 0.5)/0.43, ..., (Mm − 0.5)/0.43,
H(b1)−H(b) =

∑s
i=k+1−0.05(G(b1)−G(b)) +

∑n
i=s+1−0.32 · (G(b1)−G(b)) > 0.

Thus H(b) ↓ if b < 0.

If 0 ≥ b1 < b, T ∗
i (b)− T ∗

i (b1) =

{
0 if i = 1, ..., k

b− b1 if i = k + 1, ..., n,

H(b1) − H(b) =
∑s

i=k+1−0.05(b1 − b) +
∑n

i=s+1−0.32(b1 − b) > 0. Thus H(b) ↓ if

b ≥ 0. H(b) =
∑m

1 (0.37)Mi+
∑k

m+1(0.37)c+
∑s

k+1(−0.05Gi(b))+
∑n

s+1(−0.32Gi(b)).
When b < (M1 − 0.5)/0.43, H(b) = 0, therefore, γ̂1 = (M1 − 0.5)/0.43 ≈ −1.16.

Similarly, γ̂2 is the BJE based on (M, δ⃗, B̃2), where B̃1 =
(0,−0.26, 0.16, 0,−0.26, 0.16, ...). Assume that M1 ≤ M2 ≤ · · · ≤ Mm < c =
Mm+1 = · · ·Mn.

Ti(b) =


Mi(= Wi) if i = 1, ...,m

0.5 if i = m+ 1, ..., k

0.5 + 0.26b if i = k + 1, ..., s

0.5− 0.16b if i = s+ 1, ..., n,

Possible solutions to Ti(b) = Tj(b) are b ∈ {0, (Mi − 0.5)/0.26, (0.5−Mi)/0.16},

T ∗
i (b) =



Mi(= Wi) if i = 1, ...,m

0.5 if i = m+ 1, ..., k and b < 0

0.5 + 0.26b if i = k + 1, ..., s and b ≥ 0

0.5− 0.16b if i = s+ 1, ..., n and b < 0

Gi(b) if i = k + 1, ..., s and b < 0 or i = s+ 1, ..., n and b ≥ 0,

where G(·) =


∑

1(Mj>Ti(b))
Mj+(0.5−0.16b)(n−s)+0.5(k−m)∑
1(Mj>Ti(b))

+n−s+k−m if i = k + 1, ..., s and b < 0∑
1(Mj>Ti(b))

Mj+(0.5+0.26b)(s−k)+0.5(k−m)∑
1(Mj>Ti(b))

+s−m if i = s+ 1, ..., n and b ≥ 0.

Gi(b) is left-continuous increasing on (−∞, 0) with drops at b = (M1 −
0.5)/0.26, ..., (Mm − 0.5)/0.26, and left-continuous decreasing on (0,∞) with drops

at b = (0.5 −Mm)/0.16, ..., (0.5 −M1)/0.16. H(b) =
∑m

1 0.03Mi +
∑k

m+1(0.03)0.5 +∑s
k+1(−0.23T ∗

i (b)) +
∑n

s+1(0.19T
∗
i (b)).

If b1 < b < 0, H(b1) − H(b) =
∑s

k+1(−0.23(Gi(b1) − Gi(b))) +
∑n

s+1 0.19(b −
b1) > 0, therefore, H(b) ↓ if b < 0. If 0 ≤ b1 < b, H(b1) − H(b) =∑s

k+1(−0.23(b1 − b)) +
∑n

s+1 0.19(Gi(b1) − Gi(b)) > 0. Thus H(b) ↓ if b ≥ 0.

H(0) =
∑m

1 0.03Mi +
∑k

m+1(0.03)0.5 +
∑s

k+1(−0.23)(0.5) +
∑n

s+1(0.19)(0.5) < 0.
When b > (0.5−M1)/0.16, H(b) = 0, thus γ̂2 = (0.5−M1)/0.16 ≈ 3.13.

§A.5. Derivation of σ2
β̂1

and σ2
β̂2

in Remark 3. Recall β̂2 = 2M(m) − 2M(1) and

fM(1),M(m)
(x1, xm) =

(
n

1,m−2,1,n−m

)
f(x1)f(xm)(F (xm)−F (x1))

m−2(S(xm))n−m. Under

U(0, 1), 0 < x1 < xm < 1 and fM(1),M(m)
(x1, xm) =

(
n

1,m−2,1,n−m

)
(xm − x1)

m−2(1 −
xm)n−m.
Let w = xm − x1, the probability density function (pdf) g(w) of M(m) −M(1) is
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g(w) =
(

n
1,m−2,1,n−m

)
wm−2

∫ 1−w
0 ((1− w)− x1)

n−mdx1. Let x1 = z(1− w),

∫ 1−w

0
((1− w)− x1)

n−mdx1 =

∫ 1

0
((1− w)− z(1− w))n−m(1− w)dz

=(1− w)n−m+1

∫ 1

0
(1− z)n−mdz

Thus g(w) =
(

n
1,m−2,1,n−m

)
wm−2(1− w)n−m+1

∫ 1
0 (1− z)n−mdz.

Since
∫ 1
0 (1− z)n−mdz = B(1, n−m+ 1), the beta function,

g(w) =

(
n

1,m− 2, 1, n−m

)
wm−2(1− w)n−m+1B(1, n−m+ 1)

=

(
n

1,m− 2, 1, n−m

)
wm−2(1− w)n−m+1 (n−m)!

(n+ 1−m)!

yields that g(w) = (n)!
(n+1−m)!(m−2)!w

m−2(1 − w)n−m+1, which is the pdf of Beta(m −
1, n−m+ 2).
1
2 β̂2 ∼ Beta(m− 1, n−m+ 2) yields that

σ2
β̂2

= 4(σ2
M(m)

+σ2
M(1)

−2Cov(M(m),M(1))) = 4[ m(n−m+1)
(n+1)2(n+2)+

n
(n+1)2(n+2)−

2(n−m+1)
(n+1)2(n+2) ].

§A.6. Derivation of σβ̃i
in Remark 4. We first revisit a key component of our

modified algorithm— its transformation of the design matrix into an orthogonal basis
through singular value decomposition. Let the design matrix B ∈ Rn×p have the
singular value decomposition (SVD): B = UΣV ′, where U ∈ Rn×n satisfies U ′U = In,
Σ ∈ Rn×p is a diagonal matrix containing the singular values, V ∈ Rp×p satisfies
V ′V = Ip.
The linear model becomes Y = Bβ +W = UΣV ′β +W.
Define J = UΣ and η = V ′β, thus Y = Jη +W.
To verify that the columns of J are orthogonal, we compute: J ′J = (UΣ)′(UΣ) =
Σ′U ′U .
Since U ′U = In, it follows that J

′J = Σ′Σ.
Hence, the columns of J are orthogonal, as J ′J is diagonal. From the result above,
assume c = 0.5, for γ̃2, since W ∼ U(0, 1), in a similar way, it can be shown that
γ̃2 = 2c−2M(1), then σ2

γ̃2
= 4σ2

M(1)
= 4 n

(n+1)2(n+2) ≈
4
n2 , σγ̃2

≈ 2
n . Because the columns

of J are orthogonal, σγ̃1
≈ 2

n . The parameter transformation β̃ = V ′γ represents the
projection of the original coefficient vector γ onto the orthonormal basis formed by
the right singular vectors of B. Thus σβ̃1

= σβ̃2
≈ 2

n .

§A.7. Dataset used in section 5.

1 > set.seed(100)

2 > X1 = rexp(40,1)-1

3 > X2 = rexp(40,1)-2

4 > W = rnorm(40,3,1)

5 > C = rexp(40,1)

6 > X1

7 [1] -0.07578838 -0.27616282 -0.89535513 2.09736234 -0.37519476 0.17442933 -0.90688281

8 [8] 0.74839077 -0.75000705 -0.80567353 -0.47489784 -0.66195658 1.02319166 0.12324659

9 [15] 0.13104764 -0.61941894 -0.92837769 -0.57839231 -0.92330260 -0.50205555 0.37355298

10 [22] 0.75765606 -0.45939678 -0.80749656 -0.06515796 -0.60945172 -0.87495123 -0.90969064
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11 [29] -0.44483112 -0.34539310 -0.79335129 -0.16287652 -0.07850923 0.01526657 0.97572692

12 [36] 0.57683127 -0.29329020 1.22597879 0.14168355 -0.64720366

13 > X2

14 [1] -1.0588629 -1.1369676 -0.6579047 -0.9959493 -1.8548705 -1.5669925 -1.4504422 -1.3319458

15 [9] 0.5436060 -0.8913817 -1.9737972 -0.4682717 -0.8743009 -1.0369141 -1.9650805 -0.6117929

16 [17] 1.6926827 -0.7489380 1.0862769 -0.8612663 -1.8580438 -1.6302395 -1.9919973 -1.3268571

17 [25] -1.3862665 0.3743638 -0.5875932 -1.8608325 -1.3195985 -0.7202034 -0.7360438 -1.0625966

18 [33] 2.1294648 -1.8966976 0.7107049 -0.1019819 -1.2956354 -0.8701737 0.4719963 -0.4650352

19 > W

20 [1] 4.331444 3.609377 1.286996 2.155061 4.449412 2.042647 3.899763 3.799767 3.518908 3.172302

21 [11] 2.011158 2.016507 3.552303 4.069043 2.790775 3.934464 2.549438 3.393486 3.268965 3.576410

22 [21] 3.453594 2.609456 1.763391 3.987087 2.841761 4.797495 2.470176 3.252704 3.800993 4.709522

23 [31] 3.928155 4.163567 3.282857 2.802167 3.679962 2.452839 3.337054 3.655829 1.202088 2.846535

24 > C

25 [1] 0.18675555 2.30298096 2.22000486 1.17447326 0.88155598 0.10215654 1.17270953 0.69137906

26 [9] 0.24158141 1.28970727 0.89179329 1.21762653 0.40226987 0.15218058 0.43222072 0.32843593

27 [17] 0.41250040 0.81165915 0.42450099 0.32188422 3.08499476 2.96650475 1.25242206 1.18030233

28 [25] 0.68628497 0.09184619 0.23421824 0.58260902 1.04534201 0.13693588 0.50920579 0.05972813

29 [33] 0.46520084 0.48996440 0.77288643 0.46311903 0.81170865 1.05907050 2.06825870 3.51018993
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