Contents

Index i

1 MATH 450, Syllabus 25

2 Survival models 29
 2.1 Survival models. ... 29
 2.1.1 A short probability review. .. 29
 2.1.2 Survival function. ... 31
 2.1.3 Expectation. ... 33
 2.1.4 Quantiles ... 38
 2.2 Actuarial notation for survival analysis. 40
 2.3 Force of mortality .. 46
 2.4 Expectation of life ... 47
 2.5 Future curtate lifetime. .. 52
 2.6 Selected survival models. .. 56
 2.7 Common analytical survival models 57
 2.7.1 De Moivre model. ... 57
 2.7.2 Generalized De Moivre model. 57
 2.7.3 Exponential model. .. 58
 2.7.4 Gompertz model. ... 60
 2.7.5 Makeham model. .. 60
 2.7.6 Weibull model. ... 60
 2.7.7 Pareto model .. 61
 2.8 Mixture distributions .. 61
 2.9 Estimation of the survival function 65

3 Life Tables 71
 3.1 Life tables ... 71
 3.2 Mathematical models ... 74
 3.3 Deterministic survivorship group and stochastic survivorship group 74
 3.4 Continuous computations. ... 78
 3.5 Interpolating life tables ... 78
3.5.1 Uniform distribution of deaths ... 79
3.5.2 Exponential interpolation. .. 85
3.5.3 Harmonic interpolation ... 89
3.5.4 Review of interpolations. .. 93
3.6 Select and ultimate tables ... 94

4 Life Insurance .. 101
4.1 Introduction to life insurance. .. 101
4.2 Payments paid at the end of the year of death. 104
 4.2.1 Whole life insurance. ... 104
 4.2.2 n–year term life insurance. .. 112
 4.2.3 n–year deferred life insurance. 117
 4.2.4 n–year pure endowment life insurance. 121
 4.2.5 n–year endowment life insurance. 123
 4.2.6 m–year deferred n–year term life insurance. 125
4.3 Properties of the APV for discrete insurance. 126
4.4 Non–level payments paid at the end of the year 128
4.5 Life insurance paid m–thy ... 133
4.6 Level benefit insurance in the continuous case. 135
 4.6.1 Whole life insurance. ... 135
 4.6.2 n–year term life insurance. .. 141
 4.6.3 n–year deferred life insurance. 142
 4.6.4 n–year pure endowment life insurance. 143
 4.6.5 n–year endowment life insurance. 144
 4.6.6 m–year deferred n–year term life insurance. 145
4.7 Properties of the APV for continuous insurance 146
4.8 Non–level payments paid at the time of death 148
4.9 Computing APV’s from a life table .. 154

5 Life Annuities .. 159
5.1 Whole life annuities .. 159
 5.1.1 Whole life due annuity ... 159
 5.1.2 Whole life immediate annuity ... 164
 5.1.3 Whole life continuous annuity ... 165
5.2 Deferred annuities. .. 168
 5.2.1 Due n–year deferred annuity. .. 168
CONTENTS

5.2.2 Immediate n–year deferred annuity. .. 172
5.2.3 Continuous n–year deferred annuity. 172

5.3 Temporary annuities. ... 175
5.3.1 Due n–year temporary annuity. .. 175
5.3.2 Immediate n–year temporary annuity. 177
5.3.3 Continuous n–year temporary annuity. 178

5.4 n–year certain life annuity .. 180
5.4.1 n–year certain life annuity–due .. 180
5.4.2 n–year certain life annuity–immediate 182
5.4.3 n–year certain life continuous annuity 182

5.5 Contingencies paid m times a year. .. 183
5.5.1 Whole life due annuity paid m times a year. 183
5.5.2 Whole life immediate annuity paid m times a year. 185
5.5.3 Due n–year temporary annuity paid m times a year. 185
5.5.4 Immediate n–year temporary annuity paid m times a year. 186
5.5.5 Due n–year deferred annuity paid m times a year. 186
5.5.6 Immediate n–year deferred annuity paid m times a year. 187

5.6 Non–level payments annuities ... 188

5.7 Computing present values from a life table. 197
5.7.1 Whole life annuities. ... 197
5.7.2 Deferred annuities ... 198
5.7.3 Temporary annuities ... 200
5.7.4 Linear interpolation of the actuarial discount factor. 201
5.7.5 Woolhouse’s formula .. 203

6 Benefit Premiums ... 207

6.1 Funding a liability. ... 207
6.2 Fully discrete benefit premiums. ... 207
6.2.1 Whole life insurance. .. 207
6.2.2 n–year term insurance. .. 217

6.3 Benefits paid annually funded continuously. 221
6.3.1 Whole life insurance. .. 221
6.3.2 n–year term insurance. .. 221

6.4 Benefit premiums for fully continuous insurance. 222
6.4.1 Whole life insurance. .. 223

6.5 Benefit premiums for semicontinuous insurance. 226
6.6 Benefit premium for an n–year deferred annuity due. 227
 6.6.1 n–year deferred annuity due funded discretely. 228
6.7 Premiums paid m times a year. 229
6.8 Non–level premiums and/or benefits. 229
6.9 Computing benefit premiums from a life table 234
 6.9.1 Fully discrete insurance. 234
 6.9.2 Semicontinuous insurance. 235
6.10 Premiums found including expenses. 238

7 Benefit Reserves 249
 7.1 Benefit reserves. 249
 7.2 Fully discrete insurance. 250
 7.2.1 Whole life insurance. 250
 7.2.2 n–year term insurance. 258
 7.2.3 n–year pure endowment insurance. 259
 7.2.4 n–year endowment insurance. 260
 7.2.5 n–year deferred insurance. 262
 7.2.6 n–year deferred annuity. 263
 7.3 Fully continuous insurance 263
 7.3.1 Whole life insurance. 263
 7.3.2 n–year term insurance. 267
 7.3.3 n–year pure endowment insurance. 267
 7.3.4 n–year endowment insurance. 268
 7.3.5 n–year deferred insurance. 268
 7.3.6 n–year deferred life annuity. 268
 7.4 Reserves for insurance paid immediately and funded discretely. 269
 7.5 Reserves for insurance paid discretely and funded continuously. 271
 7.6 Benefit reserves for general fully discrete insurance. 271
 7.7 Benefit reserves for general fully cts insurances. 283
 7.8 Benefit reserves for m–thly payed premiums. 285
 7.9 Benefit reserves including expenses. 286
 7.10 Benefit reserves at fractional durations 291
8 Multiple Life Functions 297
8.1 Multivariate random variables 297
8.2 Joint life status .. 298
8.3 Last–survivor status .. 303
8.4 Joint survival functions .. 308
8.5 Common shock model .. 310
8.6 Insurance for multi–life models 314
 8.6.1 Life insurance for multi–life status 314
 8.6.2 Life annuities for multi–life status 316
 8.6.3 Benefit premiums for multi–life status 319
 8.6.4 Benefit reserves for multi–life status 319
 8.6.5 Reversionary annuity 319
 8.6.6 Contingent insurance 321

9 Multiple Decrement Models 323
9.1 Deterministic survivorship group 324
9.2 Stochastic model for multiple decrements 327
9.3 Random survivorship group 330
9.4 Associated single decrement tables 330
9.5 Interpolating multiple decrement life tables 331
 9.5.1 Uniformity in the multiple decrement table 332
 9.5.2 Uniformity in the single decrement table 333
 9.5.3 Other options ... 334
9.6 Insurance for multiple decrement life tables 334
9.7 Asset shares ... 337

10 Pension 339
10.1 Pension Plans ... 339
10.2 Multiple decrement model for a DB pension plan 348
10.3 Valuation of benefits ... 358
10.4 Benefit reserves .. 365
10.5 The traditional unit credit (TUC) method 367
10.6 Problems from actuarial exams 373
10.7 Solution to the Problems from actuarial exams 374
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Markov Chains</td>
<td>395</td>
</tr>
<tr>
<td>11.1</td>
<td>Stochastic processes.</td>
<td>395</td>
</tr>
<tr>
<td>11.2</td>
<td>Markov chains.</td>
<td>395</td>
</tr>
<tr>
<td>11.3</td>
<td>Random walk.</td>
<td>407</td>
</tr>
<tr>
<td>11.4</td>
<td>Hitting probabilities.</td>
<td>409</td>
</tr>
<tr>
<td>11.5</td>
<td>Gambler’s ruin problem.</td>
<td>412</td>
</tr>
<tr>
<td>11.6</td>
<td>Some actuarial applications.</td>
<td>416</td>
</tr>
<tr>
<td>12</td>
<td>Poisson Processes</td>
<td>419</td>
</tr>
<tr>
<td>12.1</td>
<td>Exponential and gamma distributions.</td>
<td>419</td>
</tr>
<tr>
<td>12.1.1</td>
<td>Exponential distribution</td>
<td>419</td>
</tr>
<tr>
<td>12.1.2</td>
<td>Gamma distribution</td>
<td>419</td>
</tr>
<tr>
<td>12.2</td>
<td>Poisson process.</td>
<td>424</td>
</tr>
<tr>
<td>12.3</td>
<td>Interarrival times.</td>
<td>430</td>
</tr>
<tr>
<td>12.4</td>
<td>Superposition and decomposition of a Poisson process.</td>
<td>435</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Superposition of a Poisson process</td>
<td>435</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Decomposition of a Poisson process</td>
<td>437</td>
</tr>
<tr>
<td>12.5</td>
<td>Nonhomogenous Poisson process.</td>
<td>440</td>
</tr>
<tr>
<td>12.6</td>
<td>Gamma-Poisson mixture.</td>
<td>444</td>
</tr>
<tr>
<td>12.6.1</td>
<td>Negative binomial distribution.</td>
<td>444</td>
</tr>
<tr>
<td>12.6.2</td>
<td>Gamma–Poisson mixture.</td>
<td>448</td>
</tr>
<tr>
<td>12.7</td>
<td>Compound Poisson processes.</td>
<td>450</td>
</tr>
<tr>
<td>13</td>
<td>Normal and life tables</td>
<td>461</td>
</tr>
</tbody>
</table>
Notations in 450: \(k, i, n \geq 0 \) and \(0 \leq m \leq n \). \(P(X \geq 0) = 1 \) and \(x, t > 0 \). \(S_X(x) = s(x) = P(X > x) \).

1. If \(H(0) = 0 \) and \(H' \geq 0 \), then \(E(H(X)) = \int_0^\infty s(t)H'(t) \, dt \), e.g., \(E(X) = \int_0^\infty s(t) \, dt \), \(E(X^p) = \int_0^\infty s(t)t^{p-1} \, dt \), \(E[X \wedge a] = \int_0^a s(t) \, dt \).

2. If \(P(X \in \{0, 1, 2, \ldots\}) = 1 \) and \(H \uparrow \), then \(E[H(X)] = \sum_{k=1}^{\infty} \mathbb{P}\{X \geq k\}(H(k) - H(k-1)) \), \(E[X] = \sum_{k=1}^{\infty} \mathbb{P}\{X \geq k\} \).

3. \(T(x) = T_x = (X - x) X > x \),
\[tP_x = S_{T(x)}(t) = \frac{s(x+t)}{s(x)} \cdot t\varphi_x = F_{T(x)}(t) = \frac{s(x)-s(x+t)}{s(x)} \cdot \varphi_x, \]
\[s\varphi_x = \mathbb{P}\{s < T(x) \leq s + t\} = \varphi_x \cdot |q_{x+s}|, \]
\[s\varphi_x = \mathbb{P}\{s \mid T(x) \leq s + t\} = \varphi_x \cdot q_x, \]
\[m_x = \frac{n_x}{n} \frac{s(x)}{s(x+t)} \cdot \varphi_x, \]
\[m_x = \varphi_x \cdot g_x, \]
\[m = \varphi_x \cdot g_x. \]

4. The force of mortality is \(\mu_X = \mu = \frac{f_X(x)}{S_X(x)} \). If \(X \) is cts, \(\mu(x) = -\frac{d}{dx} \ln S_X(x), \frac{S_X(x)}{S_X(x-)} = \exp \left(-\int_0^x \mu(t) \, dt \right) \).

5. The central rate of failure on \((x, x + n)\] is \(n_s = \frac{x^n}{n} \frac{x^n}{s(x+t)} \cdot \varphi_x \).

6. \(K_x = [T(x)], \[t \] = k \) if \(t \in (k - 1, k], K(x) = K_x \).

7. The Nelson-Aalen estimator: \(\hat{S}_{NA}(t) = e^{-H(t)}1(t > 0) \), where \(H(t) = \sum_{k \leq t} \frac{d_k}{x_k} \).

8. The Kaplan-Meier estimator: \(\hat{S}(t_k) = \prod_{k \leq t} \left(1 - \frac{d_k}{x_k} \right) \), and \(\hat{S}'(t_k) = \frac{1}{n} \hat{S}'(t_k) \).

9. \(\ell_x = \# \) of individuals alive at age \(x \), \(\ell_x = L_x, \ell_x = s(x), \ell_x = t \).

10. The key to computing expected lives:
\[UDD \]
\[\text{exponential} \]
\[\text{Balducci} \]
\[\hat{S}_{NA}(t) = \left(\frac{\ell_x + t \ell_x}{\ell_x} \right)^{\frac{1}{\ell_x}} \]
14. Life Insurance: $Z = b_x v_r t_x$.
Whole life ins: $Z_x = \frac{v R_x}{a_x}, \quad \overline{Z}_x = \frac{v T_x}{a_x}, \quad A_x = A_x(v) = E[vK_x] = v q_x + v p_x A_{x+1}, \quad 2A_x = E[\overline{Z}_x^2] = A_x(v^2)$.

n-year term: $Z_{x:1\overline{m}} = v K_x I(K_x \leq n), \quad \overline{Z}_{x:1\overline{m}} = v T_x I(T_x \leq n), \quad A_{x:1\overline{m}} = E[\overline{Z}_{x:1\overline{m}}] = \sum_{k=1}^n v^k f_{K_x}(k) = v q_x + v p_x A_{x+1:n-1}$, $2A_{x:1\overline{m}} = E((\overline{Z}_{x:1\overline{m}})^2) = A_{x:1\overline{m}}(v^2)$.

n-year deferred: $\overline{Z}_x = v K_x I(n < K_x), \quad \overline{Z}_x = v T_x I(n < T_x), \quad 2n A_x = n A_x(v^2), \quad n A_x = E[n|Z_x] = \sum_{k=1}^\infty v^k f_{K_x}(k) = v^{n+1} f_{K_x}(n+1) + n+1 A_x = v p_x E[n|A_{x+1}]

n-year pure endowment: $Z_{x:1\overline{m}} = v^n I(n < K_x), \quad \overline{Z}_{x:1\overline{m}} = v^n I(n < T_x), \quad A_{x:1\overline{m}} = n E_x = \sum_{k=1}^n v^k f_{K_x}(k) = \sum_{k=1}^n v^k f_{K_x}(k) = v^{n+1} f_{K_x}(n+1) + n+1 A_x = v p_x E[n|A_{x+1}]

m-year defer n-year term: $m n Z_x = v K_x I(m < K_x \leq n + m), \quad m n \overline{Z}_x = v T_x I(m < T_x \leq n + m), \quad m n A_x = m E_x A_{x+m,1\overline{m}}$, $2m A_{x:1\overline{m}} = E((m n Z_x)^2) = \sum_{k=1}^{n+m} v^{2k} f_{K_x}(k)$.

\[Z_x = Z_{x:1\overline{m}} + n |Z_x, \quad Z_{x:1\overline{m}} = n |Z_x, \quad Z_{x:1\overline{m}} = Z_{x:1\overline{m}}, \quad Z_{x:1\overline{m}} = Z_{x:1\overline{m}}, \quad Z_{x:1\overline{m}} = Z_{x:1\overline{m}}.
\]

\[\overline{Z}_x = \overline{Z}_{x:1\overline{m}} + n |\overline{Z}_x, \quad \overline{Z}_{x:1\overline{m}} = n |\overline{Z}_x, \quad \overline{Z}_{x:1\overline{m}} = \overline{Z}_{x:1\overline{m}}, \quad \overline{Z}_{x:1\overline{m}} = \overline{Z}_{x:1\overline{m}}, \quad \overline{Z}_{x:1\overline{m}} = \overline{Z}_{x:1\overline{m}}.
\]

15. (IZ)$_x = K_x v Z_x$, (TZ)$_x = T_x v T_x$, (IZ)$_x = [T_x] v T_x$ (DZ)$_x = (n+1-K_x) v K_x I(K_x \leq n)$.

\[(DZ)_{x:1\overline{m}} = (n-T_x) v T_x I(T_x \leq n), \quad (DZ)_{x:1\overline{m}} = [n-T_x] v T_x I(T_x \leq n).
\]

16. $v = \frac{1}{i+1}$, $\delta = -ln v$, $d = 1 - v$. $\sum_{k=1}^n t x^{k-1} = \left(\frac{1-x^{n+1}}{1-x}\right)^d$.

\[a_{\overline{m}} = \sum_{k=1}^n v^k = v\left(\frac{1-x^n}{1-v}\right)
\]

<table>
<thead>
<tr>
<th>due</th>
<th>PV</th>
<th>APV</th>
</tr>
</thead>
<tbody>
<tr>
<td>whole life</td>
<td>$Y_x = \sum_{k=0}^{K_x-1} v^k = \frac{1-Z_x}{1-v}$</td>
<td>$\tilde{a}x = \sum{k=0}^{\infty} v^k p_x$</td>
</tr>
<tr>
<td>n-y. def.</td>
<td>$n</td>
<td>Y_x = \sum_{k=n}^{K_x-1} v^k = \frac{v^n - v^{K_x}}{1-v} I(K_x > n)$</td>
</tr>
<tr>
<td>n-y. tem.</td>
<td>$\tilde{Y}{x:1\overline{m}} = \sum{k=n}^{K_x-1} v^k = \frac{1-Z_{x:1\overline{m}}}{d}$</td>
<td>$n</td>
</tr>
<tr>
<td>n-y. cer.</td>
<td>$\tilde{Y}{x:1\overline{m}} = \sum{k=n}^{(K_x-1)\cap n} v^k = \tilde{a}_{\overline{m}} + n</td>
<td>Y_x$</td>
</tr>
</tbody>
</table>

immediate: $Y_x = \sum_{k=0}^{K_x-1} v^k = \tilde{Y}_x - 1$, $n |Y_x = \sum_{k=n}^{K_x-1} v^k = n |\tilde{Y}_x$.

$Y_x = \sum_{k=1}^{K_x-1} v^k = \tilde{Y}_{x:1\overline{m}} - 1$, $Y_{x:1\overline{m}} = \sum_{k=1}^{(K_x-1)\cap n} v^k = \tilde{Y}_{x:1\overline{m}} - 1$.
18. \(\bar{Y}_x \) and \(\bar{Y}_x \) as Functions of \(\bar{Y}_x \)

\[
\bar{Y}_x = \bar{Y}_{x:n} + n \bar{Y}_x, \quad E((\bar{Y}_x)^2) + \bar{a}_x(v^2), \quad \bar{a}_x = 1 + vp_x \bar{a}_{x+1}, \quad \bar{a}_x = \bar{a}_{x:n} + v^n p_x \bar{a}_{x+n}.
\]

19. Plan and Loss

<table>
<thead>
<tr>
<th>Plan</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole life insurance</td>
<td>(Z_x - P\bar{Y}_x)</td>
</tr>
<tr>
<td>t-year funded whole life insurance</td>
<td>(Z_x - P\bar{Y}_{x:n})</td>
</tr>
<tr>
<td>n-year term insurance</td>
<td>(Z_{x:n} - P\bar{Y}_{x:n})</td>
</tr>
<tr>
<td>t-year funded n-year term insurance</td>
<td>(Z_{x:n} - P\bar{Y}_{x:n})</td>
</tr>
<tr>
<td>n-year pure endowment insurance</td>
<td>(Z_{x:n}^{-1} - P\bar{Y}_{x:n})</td>
</tr>
<tr>
<td>t-year funded n-year pure endowment insurance</td>
<td>(Z_{x:n}^{-1} - P\bar{Y}_{x:n})</td>
</tr>
<tr>
<td>n-year endowment</td>
<td>(Z_{x:n} - P\bar{Y}_{x:n})</td>
</tr>
<tr>
<td>t-year funded n-year endowment insurance</td>
<td>(Z_{x:n} - P\bar{Y}_{x:n})</td>
</tr>
<tr>
<td>n-year deferred insurance</td>
<td>(n</td>
</tr>
<tr>
<td>t-year funded n-year deferred insurance</td>
<td>(n</td>
</tr>
</tbody>
</table>

Loss in the fully discrete case

13. Application of Woolhouse’s formula:

\[
\bar{a}_x \approx \bar{a}_x - \frac{1}{2} \cdot \frac{1}{12} (\delta + \mu_x) \approx \bar{a}_x^{(m)} - \frac{1}{2m} - \frac{1}{12m^2}(\delta + \mu_x)
\]
Syllabus for Math 450:
The material will focus on Long-Term Actuarial Mathematics Exam.
(1) Various Life insurance such as whole life, n–year term, n–year deferred, n–year endowment or pure endowment, and m–year deferred n-year term life insurances.
(2) Various Life annuities such as (due, immediate and continuous), whole life, n–year deferred, n–year temporary, n–year certain annuities with level or non-level payments.
(3) Premiums calculation for insurance and annuity using equivalence principle,
(4) Present value random variable (rv) and the random variables involves in (1), (2) and (3), including loss-at-issue r.v. for premiums. Compute their probability, means, variance, percentiles, force of mortality and central rate of failure with changes in mortality and interest, under select and ultimate survival models, parametric model and tabular model, select and ultimate mortality table, or using approximation methods such as UUD, constant force, Woolhouse and Euler, Kaplan-Meier estimator and Nelson-Aalen estimator.
1. Axioms of probability: (1) \(P(A) \geq 0 \), (2) \(P(S) = 1 \).

2. \(P(A \cap B) = \ldots \). If \(A \) and \(B \) are \ldots then \(P(A \cap B) = P(A)P(B) \).

3. \(P(\ldots) = 1 - P(A) \). \(P(A \cup B) = P(A) + P(B) \ldots \).

 If \(A \) and \(B \) are \ldots then \(P(A \cup B) = P(A) + P(B) \).

4. \(X \sim \text{bin}(n, p) \): \(f(i) = \ldots \) if \(i \in \{0, \ldots, n\} \), \(\mu = \ldots \), \(\sigma^2 = \ldots \), where \(q = 1 - p \)

5. \(X \sim \text{Pois}(\lambda) \). \(f(i) = \ldots \) if \(i \geq 0 \). \(\mu = \ldots \), \(\sigma^2 = \ldots \)

6. \(Y = g(X) \). \(E(g(X)) = \left\{ \begin{array}{ll} \sum_y yf_Y(y) & \text{dis} \\ \int yf_Y(y)dy & \text{cts} \end{array} \right. \ldots \)

7. The mgf of \(X \) is \(M(t) = \ldots \) \(\frac{d^k M(t)}{dt^k} \bigg|_{t=0} = \ldots \)

8. A cdf \(F(t) (= \ldots) \) satisfying (1) \(F(-\infty) = \ldots \), and \(F(\infty) = \ldots \). (2) \(F(x+) = \ldots \)

(3) \(F(x) \ldots \). Moreover, \(F(b) - F(a) = P(\ldots) \)

9. \(F(t) = \left\{ \begin{array}{ll} \sum_{x \leq t} & \text{dis} \\ d(t) & \text{cts} \end{array} \right. \ldots \)

10. \(E(aX + b) = \ldots \), \(Var(aX + b) = \ldots \)

11. \(X \sim N(\mu, \sigma^2) \). \(f(x) = \ldots \), \(\frac{X-\mu}{\sigma} \sim \ldots \)

12. \(X \sim G(\alpha, \beta) \). \(f(x) = \ldots \) if \(x > \ldots \), \(\mu = \ldots \), \(\sigma^2 = \ldots \), \(\Gamma(\alpha + 1) = \ldots \)

13. \(\text{Exp}(\lambda) = \ldots \), \(\chi^2(\nu) = \ldots \)

14. \(f_X(x) = \left\{ \begin{array}{ll} \int f(x, y) & \text{cts} \\ f(x, y) & \text{dis} \end{array} \right. \ldots \)

15. \(E(g(X, Y)) = \left\{ \begin{array}{ll} \ldots & \text{cts} \\ \ldots & \text{dis} \end{array} \right. \ldots \)
16. \(f_{X|Y}(x|y) = \quad \) \(F_{X|Y}(x|y) = P(\quad) \)

17. \(E(c) = \quad , \) \(E(ag(X, Y) + bh(X, Y)) = \quad \)

18. \(\text{Cov}(X, Y) = \quad , \) \(V(aX + bY) = \quad \), \(\rho(X, Y) = \quad \)

19. \(E(X|Y = y) = \quad \) \(E(E(X|Y)) = \quad , \) \(E(V(X|Y)) + V(E(X|Y)) = \quad \)

20. \(U = h(Y) , \) where \(h \) is \quad \text{and} \ Y \) is cts. \(f_U(u) = f_Y(\quad) \cdot \quad \)

21. \(\bar{Y} = \quad , \) \(S^2 = S_Y^2 = \quad \)

22. \(F_Y(t) \quad \Phi(\quad) , \) where \(\Phi(t) \) is the cdf of \quad .

\(X_i \)'s \sim: \quad X_1 + X_2 \sim: \quad G(\alpha_1 + \alpha_2, \beta) \)
\(G(\alpha_i, \beta) \quad \chi^2(v_i + v_2) \)
\(\chi^2(v_i) \quad \text{key: } \perp \quad Pois(\lambda_i + \lambda_2) \)
\(Pois(\lambda_i) \quad N(\mu_i, \sigma^2_i) \quad N(\mu_1 + \mu_2, \sigma^2_1 + \sigma^2_2) \)
\(N(\mu_i, \sigma^2_i) \quad bin(n_i, p) \quad bin(n_1 + n_2, p) \)
MATH 450, ACTUARIAL MATHEMATICS I

The course is a preparation for Long-Term Actuarial Mathematics Exam.

MWF 2:20 - 3:20 CW-115
T 1:15 - 2:40 CW-107

Professor: Qiqing Yu
Office: WH 132
Office hours: 11:00 am - 12:00(M) 3:30-4:30pm (Tu),

Textbook: Arcones’ Manual For SOA Exam MLC (First Volumn).

(Chapters to be covered: 2-6)

A pdf file with some tables needed in the homework can be downloaded from my website.
http://www.math.binghamton.edu/qyu/qyu_personal
e.g, the Illustrative Life Table needed in some of the homework problems.

Exams: 3 tests + final,
Feb. 18(M), Mar. 25(M), April 22(M), May17(F) 12:50-2:50pm CW 106 (moved to WH 100E)

You can bring a calculator without the function of installing formulas.

Quizes: once a week, at random.

Homework: Due Wednesday in class, no late homework.

Grading Policy:

1. 10% hw +10% quiz +45% tests +35% final

2. Correction: If you make correction and hand in with the old exam, within 3 days after I return the test in class, you can get 40% of the missing grades back. No partial credit for correction.

3. A- = 85 + and C = 60 +.

Student Attendance in Class: The Bulletin states, Students are expected to attend all scheduled classes, laboratories and discussions. Instructors may establish their own attendance criteria for a course. They may establish both the number of absences permitted to receive credit for the course and the number of absences after which the final grade may be adjusted downward. In such cases it is expected that the instructor stipulate such requirements in the syllabus and that the syllabus be made available to students at or near the beginning of classes. In the absence of such statements, instructors have the right to deny a student the privilege of taking the final examination or of receiving credit for the course, or may prescribe other academic penalties if the student misses more than 25 percent of the total class sessions. Excessive tardiness may count as absence.
CHAPTER 2
Survival models

2.1 Survival models.

2.1.1 A short probability review.

Definition 2.1. Given a set Ω, a probability P on Ω is a function defined on the collection of all events (subsets) of Ω such that

(i) $P(\emptyset) = 0$;
(ii) $P(\Omega) = 1$;
(iii) If $\{A_n\}_{n=1}^\infty$ are disjoint events, then $P(\cup_{n=1}^\infty A_n) = \sum_{n=1}^\infty P(A_n)$.

Ω is called the sample space.

Definition 2.2. A random variable (r.v.) X is a function from the sample space Ω into \mathbb{R}.

Definition 2.3. The cumulative distribution function (cdf) of the r.v. X is $F_X(x) = P\{X \leq x\}$, $x \in \mathbb{R}$.

Let X be the age at the death of a life. Then $X > 0$.

Theorem 2.1. F_X is a cdf iff

(i) $F_X \uparrow$, i.e., for each $x_1 \leq x_2$, $F_X(x_1) \leq F_X(x_2)$.
(ii) F_X is right continuous (cts) ($\lim_{h \to 0^+} F_X(x+h) = F_X(x)$ $\forall x$)
 (or $F(x+) = F(x)$ $\forall x$).
(iii) $\lim_{x \to -\infty} F_X(x) = 0$ and $\lim_{x \to \infty} F_X(x) = 1$.

For the c.d.f. of an age–at–failure, we only need to define it for $x > 0$ Why ??

Theorem 2.2.

Definition 2.4. A r.v. X is called discrete
if there is a countable set $C \subset \mathbb{R}$ such that $P\{X \in C\} = 1$.

Meaning of countable set ?

Ans. C is either a finite set or $C = \{c_i : i = 1, ..., \infty\}$.

Definition 2.5. The probability mass function (or frequency function) (p.m.f.) of the discrete r.v. X is the function $p : \mathbb{R} \to \mathbb{R}$ defined by

$p(x) = P\{X = x\}$, $x \in \mathbb{R}$.

29