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Abstract: Suppose that the observations are i.i.d. from a density f(·; θ), where θ is

an identifiable parameter. One expects that the maximum likelihood estimator of θ is

consistent. But its consistency proof is non-trivial and various sufficient conditions have

been proposed (see, e.g., the classical textbooks of Ferguson (1996), Lehmann and Casella

(1998), Stuart and Arnold (1999), and Casella and Berger (2001), and more recently Rossi

(2018) among others). All these sufficient conditions require f(x; θ) being somewhat upper

semi-continuous (in θ), with various smoothness conditions or conditions needed for the

dominated convergence theorem. We show that the sufficient and necessary condition is

just that f is somewhat upper semi-continuous, without additional assumptions.
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1. Introduction. In this paper, the sufficient and necessary condition is established for

the strong consistency of the maximum likelihood estimator (MLE) under the assumptions

(A1) X1, ..., Xn are i.i.d. from a random vector X with its density function f(·; θo), θo ∈ Θ;

(A2) the identifiability condition:
∫

|f(x; θ)− f(x; θo)|dµ(x) = 0 implies that θ = θo,

where µ is a measure, θ is a finite dimensional parameter in Θ (the parameter space).

While (A1) is a common assumption of the MLE, (A2) is a necessary identifiability condition.

If a parameter is not identifiable, we do not even know what is the true value of θ, let alone

a consistent estimator of θ. Hereafter, we assume that (A1) and (A2) hold.

The new result is weaker than all the existing results in the literature (see, e.g., Ferguson

(1996, Part 4), Lehmann and Casella (1998, Section 6.3), Stuart and Arnold (1999, Chapter

18), and Casella and Berger (2001, p. 156)), among others), who only consider sufficient

conditions, and is weaker than the results of Zhang (2017) and Rossi (2018) etc., who study

also necessary conditions under additional assumptions rather than (A1) and (A2).

For illustration, consider first a continuous random variable (r.v.) X, with its density

function f . There are 4 typical cases as follows:

Case 1.
∫

f(t)lnf(t)dt is finite, e.g., the uniform distribution f(t) = 1(t ∈ (0, 1)).

Case 2.
∫

f(t)lnf(t)dt = −∞, e.g., f(t) = (r − 1)1(t>e)
t(lnt)r , r > 1.

Case 3.
∫

f(t)lnf(t)dt = ∞, e.g., f(t) = (r − 1)1(t∈(0,e−1])
t(|lnt|)r , r > 1.

Case 4.
∫

f(t)lnf(t)dt does not exist, e.g., f(t) = 1(t∈(0,e−1]∪[e,∞))
2t(lnt)2 .

Each distribution in the examples of the four cases leads to a location or scale parameter

family, among other possibilities. Thus we need to study the consistency of the MLE of the

parameter in each case.

In many textbooks, people often say that the MLE is consistent under suitable con-

ditions (see e.g., Bickel and Doksum (1997, p. 139.)). On the other hand, in his classical

textbook, Ferguson (1996, p.114) shows that the MLE of θ is consistent if the following
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conditions hold:

(A3) limθ′→θf(x; θ
′) ≤ f(x; θ) ∀ x (i.e., f(·; θ) is upper semi-continuous);

(A4) Θ is compact;

(A5) ∃ a function K(x) such that Eθo(|K(X)|) < ∞ and log f(x;θ)
f(x;θo)

≤ K(x) ∀ (x, θ);

(A6) for all θ ∈ Θ, and sufficiently small δ > 0, sup|θ−θo|<δ f(x; θ) is measurable in x.

(A5) is needed in his proof so that the dominated convergence theorem is applicable, but in

the examples of Cases 2, 3 and 4, (A3), (A4) and (A5) do not hold (see Remark 1).

Casella and Berger (2001, p.516) present a set of somewhat simpler sufficient conditions

for the consistency of the MLE of θ in their popular textbook as follows:

(A7) The densities f(x; θ) have common support, and f(x; θ) is differentiable in θ.

(A8) The parameter space Θ contains an open set A and the true parameter θo ∈ A.

Until recently (see e.g., Rossi (2018)) the sufficient conditions for the MLE under the as-

sumptions of (A1) and (A2) are still essentially combinations of (A3), ..., (A8). Notice that

(A7) implies (A3), and (A7) and (A8) are much stronger smoothness assumptions on the

density. (A8) weaken (A4), but it does not allow discrete Θ and we may not know the true

A, just like that we do not know the true value of θo. One can verify that (A7) does not

hold in the examples of Cases 2, 3 and 4 (see Remark 1).

It is actually more desirable to find the necessary and sufficient (NS) conditions for the

consistency of the MLE. The NS conditions are studied for consistency of M-estimates in

regression models with general errors (see Berlinet, Liese and Vajda (2000)) or other models,

but not for the MLE until recently. Zhang (2017) establishes the NS condition for the weak

consistency of the M-estimator under additional assumptions. In particular, Theorem 4 in

Zhang (2017) can be stated for the MLE θ̂n as follows:

(S1) Suppose that X is a r.v.. ρn(θ) decreases with θ < θ̂n and increases with θ > θ̂n, where
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ρn(θ) = − 1
n

∑n
i=1 lnf(Xi; θ), θ ∈ R. Then θ̂n

P
→θo iff

inf
||θ−θo||≥ǫ

ρn(θ)− ρn(θo)
P
→δ(ǫ) ∀ ǫ > 0 and some δ(ǫ) > 0. (1.1)

Zhang’s result has several drawbacks: (1) condition (1.1) is not always easy to check, (2) it

is not a strong consistency result; (3) X is not a random vector, (4) θ ∈ R, (5) convexity of

L(θ) in R may not be true (see Example 7).

Under (A1) and (A2), it is interesting to notice that almost all sufficient conditions in

the literature imply that f(·; θ) is upper semi-continuous in θ (see e.g., (A3) or (A7) (as

continuity implies upper semi-continuity)), or its weakened version:

(A9) lim
n→∞

f(x; θn) ≤ f(x; θ∗) ∀ x ∈ W, where
∫

1(x /∈ W)dµ(x) = 0 and lim
n→∞

θn = θ∗

(see van der Vaart (1998)). Under (A1) and (A2), in additional to upper semi-continuity

(A3) or its weakened one (A9), all existing sufficient conditions in the literature need some

additional regularity assumptions such as (A5), (A7), (A8) or (S1), among others. In this

paper, it is shown that the sufficient condition for strong consistency of the MLE is only

(A9) alone (see Theorems 1 and 2). The aforementioned parametric families all satisfy (A9)

(see Section 4), but some of them do not satisfy (A3) and (A7) (see Remark 1). It is worth

mentioning that since (A3) implies (A9), if (A3) holds then the MLE is consistent without

(A4), (A5), (A7), (A8) and (S1), as imposed in the literature.

In Section 2, we present the sufficient condition for the strong consistency of the MLE

when the observations are random variables (see Theorem 1). The extension of Theorem

1 to the case that the observations are p × 1 random vectors is studied in Section 3 (see

Theorem 2). In our proof of consistency, we need to modify the Kullback-Leibler (KL)

(1951) inequality. In Section 4, we establish the consistency of the MLEs of the parameters

related to the examples in Cases 2, 3 and 4. In Sections 5 and 6, we explain that Theorem

2 can be applied to multivariate regression analysis and survival analysis, respectively. In
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Section 7, it is shown that (A9) is the necessary condition in some sense. Some proofs are

relegated to Appendix for a better presentation.

2. Main results when observations are random variables. In order to motivate our

main results, we shall first study some special cases. The examples in Cases 2, 3 and 4

can lead to parametric families that the existing sufficient conditions for the consistency of

the MLE are not applicable. In some cases such as in Example 1, the MLE has an explicit

solution. Their consistency proofs are relatively easy in such cases, but not so otherwise.

Example 1. Consider an example in Case 4 with the density function

f(x) =

{

0.5
(1+lnx)2x if x ≥ 1

0.5
(1−lnx)2x if x ∈ (0, 1)

and F (x) = P (X ≤ x) =

{

1− 0.5
1+lnx if x ≥ 1

0.5
1−lnx if x ∈ (0, 1).

It leads to a location parameter family. Suppose that X1, ..., Xn are i.i.d. from F (x− α).

The likelihood function is

L(α) =0.5n
n
∏

i=1

[1(α < Xi)((1− ln(Xi − α))2(Xi − α))−1(Xi−α∈(0,1])]

×

n
∏

i=1

[1(α < Xi)((1 + ln(Xi − α))2(Xi − α))−1(Xi−α>1)]







= 0 if α ≥ X(1)

= ∞ if α = X(1)−
< ∞ if α < X(1).

Thus the MLE under the location parameter family F (x− α) is α̂ = X(1). It is well known

that P (α̂ > t) = P (X(1) > t) = (P (X1 > t))n, thus the consistency follows, as well as the

distribution of α̂. It is proved in Appendix that α̂ is also strongly consistent.

The cumulative distribution function (cdf) F (·) in Example 1 also leads to a scale

parameter family {F (·/θ) : θ > 0}. The density is

f(x; θ) =θf(x/θ) = 0.5/{[(1 + ln(x/θ))2x]1(x>θ)[(1− ln(x/θ))2x]1(x∈(0,θ])} x > 0

=0.5/{x(1 + ln(x/θ))21(x>θ>0)(1− ln(x/θ))21(x∈(0,θ])} x > 0;

L(θ) =0.5n/[
n
∏

i=1

Xi

n
∏

i=1

(1− ln(Xi/θ))
21(Xi/θ∈(0,1])(1 + ln(Xi/θ))

21(Xi/θ>1)]

=0.5n/[

n
∏

i=1

Xi

m
∏

i=1

(1 + ln(X(i)/θ))
21(X(i)>θ>0)]

n
∏

i=m+1

(1− ln(Xi/θ))
21(0<X(i)≤θ), X(1) > 0
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g(lnθ)
def
= (lnL(θ) +

∑

i

lnXi + nln2)/2

=−

n
∑

i>k

ln(1 + ln
X(i)

θ
)−

k
∑

i=1

ln(1− ln
X(i)

θ
) if X(k) ≤ θ < X(k+1), 0 ≤ k ≤ n

=























−∞ if θ = 0+
−
∑n

i=1 ln(1 + ln
X(i)

θ )−
∑

i∈∅ ln(1− ln
X(i)

θ ) if 0 < θ < X(1)

−
∑n

i>k ln(1 + ln
X(i)

θ )−
∑k

i=1 ln(1− ln
X(i)

θ ) if X(k) ≤ θ < X(k+1), 1 ≤ k < n

−
∑

i∈∅ ln(1 + ln
X(i)

θ )−
∑n

i=1 ln(1− ln
X(i)

θ ) if X(n) ≤ θ
−∞ if θ = ∞,

where X(0) = 0. Let h(x) = ln(a± x), then h′ = ±(a± x)−1 and h′′(x) = (a± x)−2. Thus

g′(t) =
∑

i: X(i)>et

(1 + lnX(i) − t)−1 −
∑

i: X(i)≤et

(1− lnX(i) + t)−1

=

n
∑

i>k

(1 + lnX(i) − t)−1 −

k
∑

i=1

(1− lnX(i) + t)−1 if t 6= lnX(k), k = 1, ..., n.

g′′(t) =
∑

i: X(i)>et

(1 + lnX(i) − t)−2 +
∑

i: X(i)≤et

(1− lnX(i) + t)−2 > 0

if t 6= lnX(k), k = 1, ..., n. Thus g′(lnθ) is a monotonely increasing function of lnθ for

θ ∈ (X(i), X(i+1)), i ∈ {0, 1, ..., n}. For example, consider a special case by letting n = 2,

X1 = 1 and X2 = e. Then

g(t) = −1(0 > t)ln(1− t)− 1(0 ≤ t)ln(1 + t)− 1(1 > t)ln(2− t)− 1(1 ≤ t)ln(t).

g(t) =



































−1(0 > t)ln(1− t)− 1(1 > t)ln(2− t) = −∞ if t = −∞
−1(0 > t)ln(1− t)− 1(1 > t)ln(2− t) = −ln2 if t = 0−
−1(0 ≤ t)ln(1 + t)− 1(1 > t)ln(2− t) = −ln2 if t = 0+
−1(0 ≤ t)ln(1 + t)− 1(1 > t)ln(2− t) = −ln2.25 if t = 0.5
−1(0 ≤ t)ln(1 + t)− 1(1 > t)ln(2− t) = −ln2 if t = 1−
−1(0 ≤ t)ln(1 + t)− 1(1 ≤ t)ln(t) = −ln2 if t = 1+
−1(0 ≤ t)ln(1 + t)− 1(1 ≤ t)ln(t) = −∞ if t = ∞
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g′(t) =















































−1(0≤t)
1+t − 1(1≤t)

t = 0− if t = ∞

−1(0≤t)
1+t − 1(1≤t)

t < 0 if t = 1+

−1(0≤t)
1+t + 1(1>t)

2−t > 0 if t = 1−

−1(0≤t)
1+t + 1(1>t)

2−t < 0 if t = 0+
1(0>t)
1−t + 1(1>t)

2−t > 0 if t = 0−
1(0>t)
1−t + 1(1>t)

2−t = 0+ if t = −∞

t : −∞ 0− 0+ 1− 1+ ∞
g′(t) : 0+ ր 1.5 −0.5 ր 0 ր +0.5 −1.5 ր 0−
g(t) : −∞ ր −ln2 −ln2 ց ր −ln2 −ln2 ց −∞

Notice that

(1) L(θ) is a continuous function in θ;

(2) twice differentiable in the intervals (X(i−1), X(i)), i = 0, ..., n;

(3) but not differentiable at X(i)’s;

(4) g′′(t) > 0 for t ∈ (eX(i−1) , eX(i)), i = 0, ..., n;

(5) thus g′(t) is strictly increasing for t ∈ (eX(i−1) , eX(i)), i = 0, ..., n;

(6) thus g′(t) = 0 at the local minimum points.

The MLE θ̂n = argmaxt∈{X1,...,Xn}g(lnt) where

g(lnX(k)) =
∑n

i>k(1 + ln(X(i)/X(k)))
−1 −

∑

i<k(1− ln(X(i)/X(k)))
−1, k = 0, ..., n.

The examples in Cases 2, 3 and 4 can also lead to certain location or scale parameter

families. The existing sufficient conditions for the consistency of the MLE are not applicable

(see Remark 1).

The example in Case 2. f(t) = (r − 1)1(t > e)/[t(lnt)r], r > 1.

The location parameter: f(t;α) = (r − 1)1(t − e > α)/[(t − α)(ln(t − α))r], r > 1.

f(t;α) ↑ in α ∈ (−∞, t− e], as 1
t−α ↑ and 1

(ln(t−α))r ↑. Thus L(α) ↑ in α ∈ (−∞, X(1) − e],

the MLE of α is α̂n = X(1) − e.

The scale parameter: f(t; θ) = (r − 1)1(t > eθ)/[t(ln(t/θ))r], r > 1. Thus the MLE of

θ is θ̂n = X(1)/e.
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The example in Case 3. f(t) = (r − 1)1(t ∈ (0, 1/e])/[t(lnt)r], r > 1.

The location parameter: f(t;α) = (r− 1)1(t ∈ [α, α+1/e])/[(t−α)(ln(t−α))r], r > 1.

L(α) =
1(α<X(1)≤···≤X(n)<α+1/e])

∏

n

i=1
(r−1)[(Xi−α)(ln(Xi−α))r ]

↑ in α ∈ [X(n) − 1/e,X(1)]. Thus the MLE of α is

α̂n = X(1).

The scale parameter: f(t; θ) = (r − 1)1(t ∈ (0, θ/e))/[t(ln(t/θ))r], r > 1. Thus the

MLE of θ is θ̂n = X(n)e.

An example in Case 4. Let u, v > 1, p ∈ [0, 1], f(t) = p (v−1)1(t∈(0,1])
(1−lnt)vt + q (u−1)1(t>1)

(1+lnt)ut ,

q = 1− p. Then F (t) = p1(t∈(0,1))
(1−lnt)v + q[1− 1(t≥1)

(1−lnt)u ].

The location parameter α: f(t;α) = p (v−1)1(t−a∈(0,1])
(1−ln(t−a))v(t−a) + q (u−1)1(t−α>1)

(1+ln(t−a))u(t−a) . Thus α <

X(1). Since L(α)
{

= ∞ if α = X(1)−
< ∞ otherwise

, the MLE is α̂n = X(1).

The scale parameter θ: f(t; θ) = p (v−1)1(t/θ∈(0,1])
(1−ln(t/θ))vt + q (u−1)1(t/θ>1)

(1+ln(t/θ))ut . Since lnf=

−lnt+1(t ∈ (0, θ))[ln(p(v−1))−vln(1− lnt+lnθ)]+1(t > θ)[ln(q(u−1))−uln(1+lnt− lnθ)]

g(lnθ)
def
= lnL(θ) +

∑

lnXi −
∑

i

1(Xi ∈ (0, θ])ln(p(v − 1))−
∑

i

1(Xi > θ)ln(q(u− 1))

=−
∑

i

1(Xi ∈ (0, θ])vln(1− lnt+ lnθ)−
∑

i

1(Xi > θ))uln(1 + lnt− lnθ)

=− u
n
∑

i>k

ln(1 + lnX(i) − lnθ)− v
k

∑

i≥1

ln(1− lnX(i) + lnθ) where X(k) ≤ θ < X(k+1),

k = 0, 1, ..., n and X(0) = 0. Notice that d
dθg(lnθ) does not exist at θ ∈ {X1, ..., Xn} and

g′′(t) =
∑

i>k
u

(1+lnX(i)−t)2 +
∑k

i≥1
v

(1−lnX(i)+t)2 > 0 if it exists.

Thus θ̂n = argmaxθ∈{X(1),...,X(n)}
L(θ).

It is worth mentioning that the Newton-Raphson algorithm does not work here.

One can also find the MLE of u. lnf ∝ ln(u− 1)− uln(1 + lnt).

d
du

∑

i lnf(Xi;u) =
∑

Xi>1[
1

u−1 − ln(1 + lnXi)] = 0 yields

∑

Xi>1
1

u−1 =
∑

Xi>1 ln(1 + lnXi) => the MLE û = 1 +

∑

Xi>1
1

∑

Xi>1
ln(1+lnXi)

,
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as d2

du2

∑

i lnf(Xi;u) = −
∑

Xi>1
1

(u−1)2 < 0.

One can also find the MLE of p, u and v.

Remark 1. Condition (A7) in Casella and Berger (2001) and conditions (A3), (A4), (A5)

in Ferguson (1996) are violated if f(x; θ, α) = 1(x∈(α,α+θ/e])
(x−α)(ln((x−α)/θ))2 (an example of Case 3).

(A7) fails: f(x; θ, α) is not continuous in θ at θ = θ∗ for x ∈ {α, α+ θ∗/e}

and for each θ∗ > 0, due to the factor 1(x ∈ (α, α+ θ/e]) in f(x; θ, α).

The support of f(x; θ, α) is

{

[0, 1/e] if θ = 1 and α = 0
[0, 1/(2e)] if θ = 0.5 and α = 0

(not the same).

(A3) fails: lim
n→∞

f(x; θn, αn) = ∞ ( 6≤ 0 = f(x; 1, 0)) if θn = 1 and αn = (−1)n/n+ x.

(A4) fails: Θ is not compact, as Θ = (0,∞)× (−∞,∞) 6= Θ (the closure of Θ).

(A5) fails: Letting (θo, αo) = (1, 0) and θ ≥ 1, we have

f(x; θ, α)

f(x; θo, αo)
=

1(x− α ∈ (0, θ/e])x(lnx)2

(x− α)(ln((x− α)e/θ))21(x ∈ (0, 1/e])
= ∞, if x = α+ > αo and (2.1)

x < 1/e. If (A5) were true, then ∃ a function K(x) such that

Eθo,αo
(|K(X)|) < ∞ and K(x) ≥ ln f(x;θ,α)

f(x;θo,αo)
∀ (x, θ, α),

then K(x) ≥ ln f(x;θ,α)
f(x;θo,αo)

= log∞ ∀ x = α+ > αo = 0 and x < 1/e by (2.1),

i.e. K(x) = ∞ for all x ∈ (0, 1/e] and
∫ 1/e

0
fo(x; θo)dx = 1.

Consequently ∞ > Eθo,αo
(|K(X)|) = E(∞) = ∞, a contradiction.

ρn(θ) = −
∑n

i=1 lnf(Xi; θ)

= −
∑n

i=1[ln(0.5θ/Xi) + 21(Xi > θ > 0)ln(1 + lnXi

θ ) + 21(0 < Xi ≤ θ)ln(1− lnXi

θ )]

∝ −nlnθ + 2
∑n

i=1 ln1(Xi > θ > 0)ln(1 + lnXi

θ ) + 2
∑n

i=1 1(0 < Xi ≤ θ)ln(1− lnXi

θ )

=























∞ if θ = 0+
−nlnθ + 2

∑n
i=1 ln(1 + ln

X(i)

θ ) (∞ ↓) if θ < X(1)

−nlnθ + 2
∑m

i=1 ln(1 + ln
X(i)

θ ) + 2
∑n

i>m ln(1− ln
X(i)

θ )] if X(m) ≤ θ < X(m+1)

−nlnθ + 2
∑n

i=1 ln(1− ln
X(i)

θ ) (↓ −∞) if X(n) ≤ θ
−∞ if θ = ∞.
Since the existing results on the sufficient conditions of the consistency of the MLE

are not applicable to the families of distributions in Cases 2, 3 and 4, we propose a weaker

sufficient condition for consistency of the MLE in Theorem 1. The consistency of the MLEs
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in the examples in Cases 2, 3 and 4 can be proved by verifying the sufficient condition

proposed in Theorem 1. This is done in Section 4.

Before we present the main theorem, we shall present some preliminary results. We

shall make use of the following inequality:

KL inequality.
∫

fo(t)ln(fo/f)(t)dµ(t) ≥ 0; with equality iff
∫

|f(t)− fo(t)|dµ(t) = 0.

Kullback and Leibler (1951) show that
∫

fo(t)ln(fo/f)(t)dµ(t) exists, though it may be ∞.

The KL inequality requires that f and fo are both densities w.r.t. the measure µ. That

is,
∫

fodµ =
∫

fdµ = 1. However, we encounter the case
∫

fdµ < 1 in our proof such as in

Example 2.

Example 2. Let f(x; θ) = 1(x ∈ (0, θ])/θ, θ > 0. F (x; 0) = limθ↓0 F (x; θ) = 1(x ≥ 0) ∀ x.

f(·; 0) is a point mass at 0 and
∫

f(x; 0)dx = 0 < 1 =
∫

f(x; θ)dx if θ > 0.

We thus modify the KL inequality as follows.

Proposition 1. If f ≥ 0, fo ≥ 0, µ is a measure,
∫

fo(t)dµ(t) = 1 and
∫

f(t)dµ(t) ≤ 1,

then
∫

fo(t)ln
fo(t)
f(t) dµ(t) ≥ 0, with equality iff f = fo a.e. w.r.t. µ.

Proof. In view of the KL inequality, it suffice to prove the inequality
∫

fo(t)ln
fo(t)
f(t) dµ(t) ≥ 0

under the additional assumption that
∫

f(t)dµ(t) < 1, but
∫

f(t)d(µ(t) + µ2(t)) = 1 and
∫

fo(t)µ2(t) = 0. Since fo and f are densities w.r.t. the measure ν = µ+ µ2,

0 ≤

∫

fo(t)ln
fo(t)

f(t)
dν(t) (by the KL inequality)

=

∫

fo(t)ln
fo(t)

f(t)
dµ(t) +

∫

fo(t)ln
fo(t)

f(t)
dµ2(t)

=

∫

fo(t)ln
fo(t)

f(t)
dµ(t).

We would also make use of Fatou’s Lemma with varying measures as follows.

Lemma 1 (Propositions 17 and 18 in Royden (1968, page 231)). Let (S,B) be a measur-

able space, {µn}n≥1 a sequence of measures which converge setwise to a measure µ (ı.e.,
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lim
n→∞

µn(B) = µ(B), ∀ B ∈ B), gn and fn are non-negative measurable functions, and

(fn, gn)(x) converges pointwise to the vector of functions (f, g)(x). Then

(1)
∫

f dµ ≤ lim
n→∞

∫

fn dµn;

(2) if fn ≤ gn and lim
n→∞

∫

gndµn =
∫

gdµ, then
∫

fdµ = lim
n→∞

∫

fndµn.

Corollary 1. Suppose that µn is a sequence of measures on the measurable space (S,B)

such that lim
n→∞

µn(B) → µ(B), ∀ B ∈ B, f and fn are integrable functions, n ≥ 1.

(1) If fn are bounded below and f(x) = lim
n→∞

fn(x), then
∫

f dµ ≤ lim
n→∞

∫

fn dµn.

(2) If fn are bounded below then
∫

lim
n→∞

fn dµ ≤ lim
n→∞

∫

fn dµn.

Proof. (1) Let k = infn infx fn(x). If k ≥ 0 then the corollary follows from Lemma 1.

Otherwise, let f−
n (x) = 0∧fn(x), f

+
n (x) = 0∨fn(x), f

−(x) = 0∧f(x) and f+(x) = 0∨f(x).

Then f+
n → f+ and f−

n → f− pointwisely, as fn → f (assumed in statement (1)). Then

lim
n→∞

∫

fndµn = lim
n→∞

∫

(f+
n + f−

n )dµn = lim
n→∞

[

∫

f+
n dµn +

∫

f−
n dµn]

≥ lim
n→∞

∫

f+
n dµn + lim

n→∞

∫

f−
n dµn

= lim
n→∞

∫

f+
n dµn +

∫

lim
n→∞

f−
n dµ (by statement (2) of Lemma 1, as |f−

n (x)| ≤ k)

≥

∫

lim
n→∞

f+
n dµ+

∫

f−dµ (by statement (1) of Lemma 1, as f+
n (x) is nonnegative)

=

∫

f+dµ+

∫

f−dµ =

∫

(f+ + f−)dµ =

∫

fdµ i.e., statement (1) holds.

(2) Let gn(x) = inf{fk(x) : k ≥ n}, then gn(x) → g(x) = lim
n→∞

fn(x). We have

∫

lim
n→∞

fn dµ =

∫

lim
n→∞

gn dµ ≤ lim
n→∞

∫

gn dµn (by statement (1), as gn is bounded below)

= lim
n→∞

∫

inf{fk : k ≥ n} dµn ≤ lim
n→∞

∫

fn dµn.

Lemma 2. Given each sequence of cdf ’s {F (·; θn)}n≥1, ∃ a pointwise convergence sub-

sequence {F (·; θnj
}j≥1 with the limit function F (·) ∈ F , where F is a collection of all F

satisfying that F (x) is a nondecreasing function on [−∞,∞], F (−∞) = 0 and F (∞) = 1.
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Here F includes F satisfying limx→∞ F (x) < F (∞) = 1, or limx→−∞ F (x) > F (−∞) =

0, or limt↓x F (t) > F (x). Lemma 2 is a trivial special case of Helly’s selection theorem

(Rudin (1976) p.167), thus its proof is skipped. F (x; θ) =
∫

1(t ≤ x)f(t; θ)dµ(t) if θ ∈ Θ.

If θn ∈ Θ and θn → θ∗ /∈ Θ, then there is a convergent sub-sequence of {F (·; θn)}n≥1 by

Lemma 2, say F (·; θjn) → F (·; θ∗). Then f(x; θ∗) needs to be defined. For technical reasons

in the proof of consistency, define

f(x; θ∗) = lim
n→∞

f(x; θjn). (2.2)

Remark 2. It is worth mentioning that f(·; θ∗) defined in Eq. (2.2) may not be a density

function w.r.t. µ. If θ∗ /∈ Θ then we may not have F (x; θ∗) =
∫

1(t ≤ x)f(t; θ∗)dµ(t). For

instance, let fn(x) = 1(x ∈ (0, 1/n))n as in Example 2, where θn = 1/n → 0 = θ∗ and µ is

the Lebesgue measure. Then Fn(x) =
∫

1(t ≤ x)fn(t)dt → 1(x ≥ 0), denoted by F (x; θ∗).

Eq. (2.2) yields f(x; θ∗) = lim
n→∞

fn(x) = 0, which is not a density function w.r.t. µ.

Lemma 3. If (A9) holds and if ∃{θn}n≥1 ⊂ Θ such that θn → θ∗ and lim
n→∞

F (x; θn) exists

∀ x, then by defining f(·; θ∗)
def
= lim

n→∞
f(·; θn) if θ∗ /∈ Θ, we have

lim
n→∞

f(x; θn) ≤ f(x; θ∗) if x ∈ W, where

∫

1(x /∈ W)dµ(x) = 0. (2.3)

Proof. Assume (A9) holds. If θ∗ ∈ Θ, (2.3) follows from (A9). Otherwise, (2.3) follows

from f(·; θ∗)
def
= lim

n→∞
f(·; θn) if θ∗ /∈ Θ.

Remark 3. (A9) is a weakened version of (A3) (the upper semi-continuity) in three senses:

(1) It does not require lim
n→∞

f(x; θn) ≤ f(x; θ∗) for all x;

(2) It allows Θ be a nowhere-dense set;

(3) It yields Eq. (2.3), which does not require θ∗ ∈ Θ, if Θ is not compact as in (A4).

Remark 4. (A9) weakens (A7) too: (1) (A9) is implied by the existence of ∂f(·;θ)
∂θ in (A7);

(2) (A9) does not require that the densities f(x; θ) have common support as in (A7).
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Remark 5. For technical reason, we define the MLE θ̂ = θ̂n = argmaxθ∈Θ

∏n
i=1 f(Xi; θ),

rather than θ̂ = argmaxθ∈Θ

∏n
i=1 f(Xi; θ). Hereafter, let F̂n be the empirical distribution

function (edf) based on Xi’s and Ωo the subset of the sample space Ω such that F̂n(x) →

F (x; θo) ∀ x, where F (·; θo) is the true cdf of X.

Theorem 1. Suppose that (A1) and (A2) hold and Xi’s in (A1) are random variables.

Then the MLE θ̂
a.s.
→ θo and f(x; θ̂n)

a.s.
→f(x; θo) ∀ x ∈ W, if either (A9) or (A10) holds.

(A10) lim
n→∞

f(x; θ̂jn)(ω) ≤ f(x; θ∗(ω)) ∀ x ∈ W, ∀ ω ∈ Ωo and ∀ convergent subsequence

{θ̂jn}n≥1 of the MLE θ̂n, where θ̂jn(ω) → θ∗(ω) and
∫

1(x /∈ W)dµ(x) = 0.

Proof. Under assumptions (A1) and (A2), P (Ωo) = 1. For each ω ∈ Ωo, let θ∗ be a limiting

point of θ̂n(ω), where θ∗ ∈ Θ. Then the MLE θ̂n is consistent iff θ∗ = θo, Thus the theorem

is proved once we prove θ∗ = θo, which is done next.

Hereafter, fixed ω ∈ Ωo. Then there exists a convergent subsequence of {F (·; θ̂n)}n≥1

by Lemma 2. By taking a convergence subsequences of {θ̂n}n≥1 and {F (·; θ̂n)}n≥1, without

loss of generality (WLOG), we can assume θ̂n → θ∗ and F̂ (·, θ̂n) converges to F (·; θ∗) (∈ F

(see Lemma 2)) pointwisely. Thus (A9) and Lemma 3 yield Eq. (2.3), with θn = θ̂n, i.e.,

lim
n→∞

f(x; θ̂n) ≤ f(x; θ∗), x ∈ W, where

∫

1(x /∈ W)dµ(x) = 0. (2.4)

On the other hand, (2.4) follows from (A10) directly.

The normalized log-likelihood is
∑n

i=1 lnf(Xi; θ)/n. Let H(t) = tlnt. We have

0 ≥
1

n

n
∑

i=1

ln
f(Xi; θo)

f(Xi; θ̂n)
=

∫

ln
f(t; θo)

f(t; θ̂n)
dF̂n(t) =

∫

H(
f(t; θo)

f(t; θ̂n)
)
f(t; θ̂n)

f(t; θo)
dF̂n(t). (2.5)

Denote Ak = {t : f(t;θ̂n)
f(t;θo)

≤ k, ∀ n} and Bk = Ak \Ak−1, k ≥ 1. Notice that f(t;θ̂n)
f(t;θo)

is finite

for each n, provided that t ∈ {x : |F (x+ s; θo)− F (x; θo)| > 0 ∀ s 6= 0}. Then

∫

1(∪k≥1Bk)dF (t; θo) = 1. (2.6)
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For each k ≥ 1, let ak = 1(t ∈ Bk)ln(
f(t;θo)

f(t;θ̂n)
) and define ln0 = −∞. We have

lim
n→∞

∫

Bk

ln
f(t; θo)

f(t; θ̂n)
dF̂n(t)

≥

∫

Bk

lim
n→∞

ln
f(t; θo)

f(t; θ̂n)
dF (t; θo) (by (2) of Corollary 1 as ak ∈ [−lnk,−ln(k − 1)], k ≥ 1)

=

∫

Bk

ln lim
n→∞

f(t; θo)

f(t; θ̂n)
dF (t; θo) (as ln(x) is continuous)

=

∫

Bk

ln
f(t; θo)

lim
n→∞

f(t; θ̂n)
dF (t; θo)

≥

∫

Bk

ln
f(t; θo)

f(t; θ∗)
dF (t; θo) (by (2.4) and (A9)) (2.7)

=

∫

Bk

H(
f(t; θo)

f(t; θ∗)
)
f(t; θ∗)

f(t; θo)
dF (t; θo) (see Eq. (2.5), as H(t) = tlnt)

=

∫

Bk

H(
f(t; θo)

f(t; θ∗)
)f(t; θ∗)dµ(t) (as dF (t; θo) = f(t; θo)dµ(t))

≥

∫

Bk

(−1/e)f(t; θ∗)dµ(t) (as tlnt ≥ −1/e ∀ t > 0)

≥− 1/e (as

∫

Bk

f(t; θ∗)dµ(t) ∈ [0, 1]). (2.8)

Finally, 0 ≥ lim
n→∞

∫

ln
f(t; θo)

f(t; θ̂n)
dF̂n(t) (by Eq. (2.5))

= lim
n→∞

∑

k≥1

∫

Bk

f(t; θo)

f(t; θ̂n)
dF̂n(t) (by (2.6))

= lim
n→∞

∫

k≥1

∫

Bk

ln
f(t; θo)

f(t; θ̂n)
dF̂n(t)dν(k) (dν is the counting measure)

≥

∫

k≥1

lim
n→∞

∫

Bk

ln
f(t; θo)

f(t; θ̂n)
dF̂n(t)dν(k) (by (2) of Corollary 1 and (2.8))

≥

∫

k≥1

∫

Bk

ln
f(t; θo)

f(t; θ∗)
dF (t; θo)dν(k) (by (2.7))

=

∫

ln
f(t; θo)

f(t; θ∗)
dF (t; θo)

=

∫

ln
f(t; θo)

f(t; θ∗)
f(t; θo)dµ(t) ≥ 0 (by Proposition 1).
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That is,
∫

ln f(t;θo)
f(t;θ∗)

f(t; θo)dµ(t) = 0. It follows that
∫

|f(x; θ∗) − f(x; θo)|dµ(x) = 0 by the

second statement of Proposition 1. Consequently θ∗ = θo by (A2). Since P (Ωo) = 1, the

MLE θ̂
a.s.
→ θo and f(x; θ̂n)

a.s.
→f(x; θo) ∀ x ∈ W,

Remark 6. In view of Remarks 3 and 4, under assumptions (A1) and (A2), Theorem 1

presents a simple sufficient condition, namely (A9) or (A10) alone, which is much weaker

than all similar results in the literature. Notice that in the literature, even though some

people show that the sufficient conditions include (A9), it is not known that the sufficient

condition can be (A9) alone. We shall show in Theorem 3 that (A10) alone is the NS

condition for the MLE being strong consistent. But (A9) is easier to verify than (A10).

3. Extension of Theorem 1 to Random Vectors. In this section, assume that X is

a p × 1 random vector. Notice that (A1) says that X1, ..., Xn are i.i.d. observations from

f(·; θ), θ ∈ Θ. Here Xi can be a random variable or a random vector. (A1), (A2) and (A9),

as well as Eq. (2.2), Lemmas 1 and 3 do not need to be revised except replacing x by x

(= (x1, ..., xp)), etc..

For a better presentation, we shall first extend Theorem 1 to the case p = 2. Hereafter,

write x = (x1, x2), etc., denote x ≥ y if xi ≥ yi, i ∈ {1, 2}; denote x > y if x1 ≥ y1 and

x2 ≥ y2 with at least one strict inequality. Lemma 2 is a key in the proof of Theorem 1,

and it is extended as follows.

Lemma 4. Given each sequence of bivariate cdf ’s {F (·; θn)}n≥1, there exists a convergence

subsequence such that limj→∞ F (x; θnj
) = F (x; θ∗) ∀ x, where F (x; θ∗) ∈ F2, a collection

of all F such that F (x) ≥ F (y) whenever x ≥ y, F (−∞,−∞) = 0 and F (∞,∞) = 1.

Proof. Given a sequence of cdf’s F (·; θn), {F (x,∞; θ)}n≥1 is a bounded nondecreasing

sequence in x. Helly’s selection theorem ensures that there exists a convergent subsequence.

WLOG, we can assume {F (x,∞; θn)}n≥1 converges. Likewise, F (∞, x; θn) is a bounded

nondecreasing sequence in x. Helly’s selection theorem ensures that there exists a convergent
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subsequence. WLOG, we can assume F (∞, x; θn) converges too. Moreover, {F (x, x; θn)}n≥1

is also a bounded nondecreasing sequence, thus Helly’s selection theorem ensures that there

exists a convergent subsequence. WLOG, we can further assume F (x, x; θn) converges again.

Denote the limiting functions of F (x,∞; θn), F (∞, x; θn) and F (x, x; θn), by F1, F2 and F3,

respectively. Let Qk be the collection of i/2kth quantiles of Fj ’s for i ∈ {1, 2, ..., 2k − 1}

and j ∈ {1, 2, 3}. Notice that Qk is a finite set with at most 3(2k − 1) elements. For k = 1,

there is a convergent subsequence of {F (x, θn)}n≥1 for x ∈ Q1, denoted by {F (x, θ1,n)}n≥1.

Inductively, for k ≥ 2, there is a convergent subsequence of {F (x, θk−1,n)}n≥1 for x ∈

∪k
j=1Qj , denoted by {F (x, θk,n)}n≥1. Then the subsequence {F (x, θn,n)}n≥1 converges ∀

x ∈ ∪k≥1Qk. WLOG, we can assume F (x, θn) converges for x ∈ ∪k≥1Qk.

We now show that F (x; θn) converges pointwisely. By the previous construction, it

suffices to show that F (x; θn) converges if x /∈ ∪j≥1Qj . In the latter case, given ǫ > 0, ∃

k > 0 and ∃ z, y ∈ ∪jQj satisfying z < x < y such that

F (y; θn)− F (z; θn) ≤ ǫ, |F (y; θm)− F (y; θn)| ≤ ǫ, and |F (z; θm)− F (z; θn)| ≤ ǫ (3.1)

whenever n,m ≥ k. It follows that

|F (x; θn)− F (x; θm)|

≤|F (y; θm)− F (y; θm) + F (y; θn)− F (y; θn) + F (x; θn)− F (x; θm) + F (z; θm)− F (z; θm)|

=|F (y; θm)− F (z; θm) + F (y; θn)− F (y; θm) + F (x; θn)− F (y; θn) + F (z; θm)− F (x; θm)|

≤|F (y; θm)− F (z; θm)|+ |F (y; θn)− F (y; θm)|

+ |F (x; θn)− F (y; θn)|+ |F (z; θm)− F (x; θm)|

≤|F (y; θm)− F (z; θm)|+ |F (y; θn)− F (y; θm)|+ 2|F (z; θm)− F (y; θm)| (as z < x < y)

≤4ǫ, whenever n,m ≥ k by (3.1).

Consequently, F (x; θk) converges pointwisely. This completes the proof of the lemma.
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Theorem 2. Suppose that (A1) and (A2) hold and Xi’s in (A1) are 2−dimensional

random vector. Then the MLE θ̂ is consistent if (A9) or (A10) holds.

Proof. Let F̂n be the empirical distribution function (edf) based on Xi’s and Ωo the subset

of the sample space Ω such that F̂n(·) → F (·; θo), where F (·; θo) is the true cdf of X. Under

assumptions (A1) and (A2), P (Ωo) = 1. For each ω ∈ Ωo, let θ∗ be a limiting point of θ̂n(ω),

where θ∗ ∈ Θ. Then the MLE θ̂n is consistent iff θ∗ = θo, Thus the theorem is proved once

we prove θ∗ = θo, which is done next.

Hereafter, fixed ω ∈ Ωo. Then there exists a convergent subsequence of {F (·; θ̂n)}n≥1

by Lemma 4. By taking a convergence subsequences of {θ̂n}n≥1 and {F (·; θ̂n)}n≥1, WLOG,

we can assume θ̂n → θ∗ and F̂ (·, θ̂n) converges to F (·; θ∗) pointwisely, where F (·; θ∗) ∈ F2.

Thus either (A10) yields (2.4), or both (A9) and Lemma 3 yield (2.3) with θn = θ̂n, that is,

lim
n→∞

f(x; θ̂n) ≤ f(x; θ∗), x ∈ W, where

∫

1(x /∈ W)dµ(x) = 0 (see (2.4)).

The normalized log-likelihood is
∑n

i=1 lnf(Xi; θ)/n. Let H(t) = tlnt. We have

0 ≥
1

n

n
∑

i=1

ln
f(Xi; θo)

f(Xi; θ̂n)
=

∫

ln
f(t; θo)

f(t; θ̂n)
dF̂n(t) =

∫

H(
f(t; θo)

f(t; θ̂n)
)
f(t; θ̂n)

f(t; θo)
dF̂n(t) (see (2.5)).

The rest of the proof is skipped, as it is identical to the proof of Theorem 1 after Eq. (2.5),

provided that x is replaced by x.

Remark 7. The extension of Theorem 1 to the case p > 1 can be done through a

mathematical induction on p. The proof of Theorem 1 can be viewed as the step p = 1 in

the mathematical induction. The proof of Theorem 2 can be viewed as the simple version

of step p+ 1. For simplicity, we ignore the details.

4. Direct Applications. We first consider the case of a random vector specified in the

next example.

Example 3. Let fx(x; θ, α, r) =
∏3

i=1 fi(
xi−α

θ ), be the density of X = (X1, X2, X3),

where f1(x) =
(r−1)1(x>e)

(lnx)rx , f2(x) =
(r−1)1(x∈(0,1/e))

(lnx)rx and f3(x) =
1(x>e)+1(x∈(0,1/e))

2(lnx)rx , r > 1,
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θ > 0. Notice that f1, f2 and f3 are the examples corresponding to Cases 2, 3 and 4

(mentioned in Section 1), respectively. Then the MLE of the parameter (θ, α, r) based on

i.i.d. observations from fx is consistent. It suffices to show that (A2) and (A9) holds.

⊢: (A2) holds. Or equivalently, (θ, α, r) = (θo, αo, ro) if F (x; θ, α, r) = F (x; θo, αo, ro) ∀ x.

By taking derivative, it is easy to check that
∫

r−1
x(lnx)r dx = −sign(lnx)|lnx|1−r+c, where

c is a constant. Then

F (x; θ, α, r) =1(x1 > α+ eθ)[1− (ln
x1 − α

θ
)1−r]1(x2 ∈ (α, α+ θ/e))|ln

x2 − α

θ
|1−r (4.1)

× {1(x3 ∈ (α, α+ θ/e))/|ln
x3 − α

θ
|+ 1(x3 > α+ eθ)[1− 1/(ln

x3 − α

θ
)]}/2.

If (θ, α, r) 6= (θo, αo, ro), θ, θo > 0, and r, ro > 1, due to symmetry, it suffices to consider

these 4 cases: (1) α < αo, (2) α + θ/e < αo + θo/e, (3) α + θe < αo + θoe, (4) r < ro. We

shall show that if F (x; θ, α, r) = F (x; θo, αo, ro) ∀ x then none of the 4 cases is possible.

In Case (1), ∃ x2 ∈ (α, αo ∧ (α+ θ/e)) and x1 = x3 ≈ ∞ such that

F (x; θ, α, r) = 1(x2 ∈ (α, α + θ/3))|lnx2−α
θ |1−r > 0 = F (x; θo, αo, ro), by Eq. (4.1). Thus

Case (1) is impossible.

In Case (2), ∃ x2 ∈ ((α+ θ/e) ∨ αo, αo + θo/e) and x1 = x3 ≈ ∞ such that

F (x; θ, α, r) = 0 < 1(x2 ∈ (αo, αo + θo/e))|ln
x2−αo

θo
|1−ro = F (x; θo, αo, ro) by Eq. (4.1).

Thus Case (2) is impossible.

In Case (3), ∃ x1 ∈ (α+ θe, αo + θoe) and x2 = x3 ≈ ∞ such that

F (x; θ, α, r) = 1(x1 > α + θe))[1 − (lnx1−α
θ )1−r] > 0 = F (x; θo, αo, ro). Thus Case (3) is

impossible.

The previous discussion implies that if F (x; θ, α, r) = F (x; θo, αo, ro) ∀ x then (θ, α) =

(θo, αo) and thus F (x; θ, α, r) = F (x; θ, α, ro) ∀ x. The latter equality together with Eq. (4.1)

and x1 = x3 = ∞ further implies

1(x2 ∈ (α, α+ θ/e))|lnx2−α
θ |1−r = 1(x2 ∈ (α, α+ θ/e))|lnx2−α

θ |1−ro for all x2.

=> 1 = |lnx2−α
θ |ro−r if x2 ∈ (α, α+ θ/e)).
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Letting x2 ↓ α, the last equation yields 1 → ∞ which is a contradiction. It implies that

r = ro. Thus (A2) holds.

Moreover, fx(x; θ, α, r) is continuous in (θ, α, r) for all x /∈ B, where x ∈ B implies

that either x1 = α + θe or x2 ∈ {α, α + θ/e} or x3 ∈ {α, α + θ/e, α + θe}. Furthermore,
∫

1(x ∈ B)dx = 0. Thus (A9) holds.

5. Applications to the multivariate regression analysis. It seems that Theorem 2

is just for non-regression data, however it can also be applied to the regression data. For

instance, the common regression model is the linear regression model, which can be specified

by Y = β′Z+W, where Y is a k-dimensional response vector, Z is a p-dimensional covariate

vector which may take value zero, and E(W ) may not exist. The conditional density function

of Y, given Z = z, is

fy|z(y|z) = fw(y− β′z; γ), where β is a k × p dimensional matrix,

β and γ are parameters. The marginal density function of Z is fz(z), which does not depend

on (β, γ). Then the joint density function of X = (Y′,Z′)′ becomes

fx(x; θ) = fw(y− β′z; γ)fz(z), where θ = (β, γ) and x′ = (y′, z′). (5.1)

For a random sample from the density fx(·; θ), one can apply Theorem 2 to prove the

consistency of the MLE, such as the next example.

Example 5. Suppose that the density function of X is as in Eq. (5.1), where W =

(W1,W2)
′, W1 and W2 are independent, fWi

(t; γ) = γi−1
t(lnt)γi 1(t > e) (γi > 1). By Eq. (5.1),

fx(x; θ) = fW (x1 −

p
∑

j=1

β1jzj , γ1)fW (x2 −

p
∑

j=1

β2jzj , γ2)fz(z),

where θ = (γ1, γ2, β), and β is a 2× p matrix. The MLE of θ can be derived by a numerical

method, but the consistency can be proved easily by Theorem 2. In order to prove its
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consistency, it is suffices to prove that

lim
n→∞

fx(x; θn) ≤ fx(x; θ∗), whenever θn, θ∗ ∈ Θ, and θn → θ∗.

Notice that

fWi
(ti −

p
∑

j=1

βijzj ; γi) =
(γi − 1)1((ti −

∑p
j=1 βijzj) > e)

(ti −
∑p

j=1 βijzj)(ln(ti −
∑p

j=1 βijzj))γi

is continuous in θ ∈ Θ a.e. in x /∈ Bθ, where Bθ = {(t1, t2, z1, ..., zp) : ti −
∑p

j=1 βijzj = e}

and
∫

Bθ
1dx = 0. Thus fx(x; θ) is continuous a.e. in x. Consequently, (A9) holds and thus

the MLE is consistent.

Example 4. Suppose that the survival time Y ∼ U(0, θ), θ ∈ Θ = R. The censoring

time C ∼ Exp(1). Y and C are independent. The observable random vector is X = (M, δ),

where M = Y ∧C and δ = 1(Y ≤ C. Let (M1, δ1), ..., (Mn, δn) be i.i.d. observations. Then

f(m, δ; θ) = 1(m∈[0,θ])
θ (θ−m)1−δ. It is easy to verify that (A4), (A5) and (A6) do not hold.

However, it is easy to show that (A9) holds with W = {0, y} × {0, 1} ∀ y > 0. Thus the

MLE of θ is strong consistent by Theorem 2.

6. Applications to censored data. It also seems that Theorem 2 is only applicable

to complete data. However, Theorem 2 is applicable to various censored data too, such as

the right-censored data, current status data, case 2 interval-censored data and the double

censored data. In particular, in this section, we consider the controlled experiment with k

groups under the right censorship model and the Cox regression model. Then our obser-

vations are i.i.d. from (M1, δ1, ...,Mk, δk,Z), where Mi = Yi ∧ C, i ∈ {1, ..., k}, Y1, ..., Yk

are independent random variables, C is a random censoring variable common to the Y1, ...,

Yk, δi = 1(Yi ≤ C), where 1(A) is the indicator function of an event A, and Z is a random

covariate vector. Assume that Yi is a continuous random variable. Then the Cox model can

be specified by

SYi|z(y|z) = (So(t; γi))
exp(β′z), i = 1, ..., k, (6.1)
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where So(t; γi) = SY |z(t|0) is the baseline survival function and γ = (γ1, ..., γk) is a param-

eter. One can derive fYi|z(t|z) from SYi|z(t|z). That is,

fYi|z(t|z) = eβ
′z(So(t; γi))

exp(β′z)−1fo(t; γi) = eβ
′z(So(t; γi))

exp(β′z)ho(t; γi). (6.2)

Let τC = sup{t : SC(t) > 0}. Under the right censorship model, Yi is not observable

if Yi > τC . Write X = (M1, δ1, ...,Mk, δk,Z
′)′. Under the right censorship model and

assuming that the densities fz and fC do not depend on (β, γ), the density of X becomes

fx(x; θ) =c
k
∏

i=1

(fYi|z(ti|z))
δi(SYi|z(ti|z))

1−δi

=c
k
∏

i=1

(eβ
′zho(ti; γi))

δi(So(ti; γi))
exp(β′z) (6.3)

for maxi ti ≤ τC , where θ = (γ, β), c = fz(z)
∏k

i=1(SC(ti))
δi(fC(ti))

1−δi , ti = tj if δi = δj =

0 and x = (t1, δ1, ..., tk, δk, z
′). In view of Eqs. (6.2) and (6.3), it is easy to prove the next

lemma.

Lemma 5. Under the assumptions leading to Eq. (6.3), if ∃{θ∗} ∪ {θn}n≥1 ⊂ Θ such that

lim
n→∞

θn = θ∗ and lim
n→∞

Fx(·; θn) exists, and if

lim
n→∞

ho(t; γin) ≤ fo(t; γi∗) ∀ t ∈ W, where

∫

1(t /∈ W)dt = 0, γn = (γ1n, ..., γkn)

and γ∗ = (γ1∗, ..., γk∗), then (R9) holds for fx(x; θ).

Example 6. Suppose that a random sample of right censored regression data is from

the distribution specified by Eq. (6.3) with k = 2 and the baseline density functions are

fo(t; γi) =
γi−1

t(lnt)γi 1(t > e), where γi > 1, i = 1, 2. The density of the random vector X is

fx(x) = c

2
∏

i=1

(exp(β/z)
γi − 1

tilnti
1(ti > e))δi(lnti)

exp(β′z)(1−γi), x = (t1, δ1, t2, δ2, z
′)′.

The parameter is θ = (γ, β), γ = (γ1, γ2), γi > 1 and β ∈ Rp, the p-dimensional Euclidean

space. Since the baseline density function is fo(t; γi) =
γi−1

t(lnt)γi 1(t > e), we have So(t; γi) =
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(lnt)(1−γi)1(t>e) and ho(t; γi) =
γi−1
tlnt 1(t > e). In order to show that the MLE of θ based on

the random sample is consistent, by the previous lemma, it suffices to show that fo(t; γi) is

continuous in γi a.e in t, which is indeed true. In fact, fo(t; γi) is continuous in γi except at

t = e, provided that γi > 1.

7. Concluding Remark. In this paper we assume (A1) and (A2). We show that (A9) is

the only sufficient condition needed for the MLE θ̂ being consistent. In almost all natural

parametric distribution families, (A9) is valid and is easy to verified, thus Theorems 1 and 2

confirm our belief that the MLE is consistent in almost all practical cases. One may wonder

whether it is the necessary condition. The answer is “No”, as shown in Example 7 below.

Example 7. Let f(x; θ) =

{

1(x ∈ (0, 2])/2 if θ = 0
k+1
k exp(−x(k + 1)/k) if θ = 1/k, k ∈ K

, K = {1, 2, 3, ...},

and Θ = {0} ∪ {1/k : k ∈ K}. Then θ̂n is consistent, (A10) holds but not (A9) and (1.1).

Step (1). ⊢: The MLE θ̂n is consistent. The reason is as follows.

L(θ) =

{

2−n1(X(n) < 2) if θ = 0,

(k+1
k )n exp(−

∑n
i=1 Xi(k + 1)/k) if θ = 1/k, k ∈ K,

≈























{

2−n if θ = 0,
(k+1

k )n exp(−n(k + 1)/k) if θ = 1/k, k ∈ K,
if θo = 0,







0 if θ = 0,
(m+1

m )n exp(−n) = (m+1
me )n if θ = 1/m,

(k+1
k )n exp(−n m

m+1
k+1
k ) if θ = 1/k, k ∈ K,

if θo = 1/m, m ∈ K,
if n is large.

θ̂n =

{

0 if 0.5n ≥ maxk(
k+1
k )n exp(−

∑n
i=1 Xi(k + 1)/k)

1/m if 0.5n < maxk(
k+1
k )n exp(−

∑n
i=1 Xi

k+1
k ) = (m+1

m )n exp(−
∑n

i=1 Xi
m+1
m ).

Notice that θ̂n = 0 if θo = 0 and n is large, as

L(0) = 2−n > 2ne−2n = (2/e2)n = L(1) ≥ L(1/m) = (
m+ 1

m exp(m+1
m

))n, m ∈ K. (7.1)

Similarly, if θo = 1/m, then θ̂n = 1/m if n is large, as L(0) = 0 and it is essentially the

exponential distribution Exp(ρ), with the MLE ρ̂ ≈ ρo (= m+1
m if θo = 1/m).

Step (2). ⊢: (A9) and (1.1) do not hold. Eq. (1.1) fails as L(0) > L(1) > L(1/2) by

(7.1). On the other hand, (A9) fails by letting θk = 1/k → 0 = θ∗ ∈ Θ, then

lim
n→∞

f(x; θk) = lim
n→∞

f(x; θk) = e−x > 1(x ∈ (0, 2])/2 = f(x; θ∗) if x ∈ (0,−ln0.5) ∪ (2,∞).
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Step (3) ⊢: (A10) holds. We have just proved in Step (2) that θ̂n = θo if θ = θo and n is

large enough. Thus θ̂jn(ω) → θ∗(ω), θ∗ = θo, and lim
n→∞

f(x; θ̂jn)(ω) = f(x; θ∗(ω)) ∀ x ∈ W,

∀ ω ∈ Ωo, where
∫

1(x /∈ W)dµ(x) = 0. So (A10) holds naturally.

Theorem 3. Suppose that X is a random vector, (A1) and (A2) hold, θo ∈ Θ and θ̂n is

the MLE of θo. Then statement (A10) holds iff statement (A11) holds.

(A11) θ̂n(ω) → θo and f(x; θ̂n(ω)) → f(x; θo) ∀ x ∈ W and ω ∈ Ωo, where
∫

1(x /∈ W)dµ(x) = 0 and Ωo is a subset of the sample space satisfying P (Ωo) = 1.

Proof. By Theorems 1 and 2, (A10) implies (A11). On the other hand, letting θ∗ = θo in

(A11), it is trivially true that (A11) yields (A10).

Remark 8. Theorem 3 actually presents the NS condition for the MLE θ̂n being strongly

consistent, though the consistency is referred to both θ̂n and f(·; θ̂n).
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Appendix For the convenience of readers, we shall give the proofs of some statements in

Sections 1 and 2 here. The Appendix can be deleted later on.

Proof of Example 1. ⊢: The MLE α̂ is strongly consistent.

Let X(1),n = mini∈{1,...,n} Xi, where n is the sample size. Since X(1),n(ω) ≥ X(1),n+1(ω) ∀

n and ∀ ω, α̂ = X(1),n converges pointwisely as n → ∞. X(1),n+1(ω) > ǫ => X(1),n(ω) > ǫ.

Thus {ω ∈ Ω : X(1),n+1(ω) > ǫ} ⊂ {ω : X(1),n > ǫ}. Consequently,

{ω ∈ Ω : limn→∞ X(1),n(ω) > ǫ} = ∩n≥1{ω : X(1),n > ǫ} = limn→∞{ω : X(1),n > ǫ}, and

P ({ω ∈ Ω : lim
n→∞

X(1),n(ω) > ǫ}) = lim
n→∞

P ({ω : X(1),n > ǫ}) = lim
n→∞

(P (X1 > ǫ))n = 0.

Thus α̂ is strongly consistent.

Lemma 6. If r > 1, then (1)
∫

1
x(|lnx|)r dx = sign(lnx)(1− r)−1(|lnx|)−r+1 + c, and

(2)
∫

1
x(lnx)2 ln

1
x(|lnx|)r dx = −ln|lnx|+ rln|lnx|

lnx + r
lnx + c, where c is a constant and

∫

f(x)dx

is the indefinite integral.

Proof of Lemma 6. If x ∈ (0, 1) then
∫

1
x(|lnx|)r dx =

∫

1
x(−lnx)r dx = −

∫

(−lnx)−rd(−lnx) = −(−lnx)−r+1

−r+1 + c.

If x > 1 then
∫

1
x(|lnx|)r dx =

∫

(lnx)−rdlnx = 1
−r+1 (lnx)

−r+1 + c. Thus statement (1) holds.
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∫

1
x(lnx)2 ln

1
x(lnx)r dx (if x > 1)

= −
∫

1
x(|lnx|)2 [lnx+ ln(|lnx|)r]dx = −

∫

1
x(lnx)dx−

∫

rlnlnx
x(lnx)2 dx = −lnlnx−

∫

rlnlnxd(− 1
lnx )

= −lnlnx− rlnlnx(− 1
lnx ) + r

∫

(− 1
lnx )dlnlnx = −lnlnx+ rlnlnx

lnx − r
∫

1
(lnx)2 dlnx

= −lnlnx+ rlnlnx
lnx + r

lnx + c.
∫

1
x(|lnx|)2 ln

1
x(|lnx|)r dx =

∫

1
x(−lnx)2 ln

1
x(−lnx)r dx (if x ∈ (0, 1))

= −
∫

1
x(−lnx)2 [lnx+ ln(−lnx)r]dx = −

∫

1
x(lnx)dx−

∫ rln|lnx|
x(lnx)2 dx

= −ln|lnx| −
∫

rln|lnx|d(− 1
lnx )

= −ln|lnx| − rln|lnx|(− 1
lnx ) + r

∫

(− 1
lnx )dln|lnx| = (−ln|lnx|+ rln|lnx|( 1

lnx ))− r
∫

1
(lnx)2 dlnx

= −ln|lnx|+ rln|lnx|
lnx + r

lnx + c.

Remark 9. 1
x(lnx)r = ∞ if x = 1 and

∫

1
x(lnx)r dx = (1− r)−1(lnx)−r+1 = ∞ if x = 1.

Proof of the Example in Case 3 (mentioned in Section 1). Consider a family of distri-

butions:

f(x; r) = r−1
x(|lnx|)r , x ∈ (0, e−1) and r > 1, where r is a parameter.

Notice that
∫ e−1

0
f(x; r)dx = (|lnx|)−r+1

∣

∣

e−1

0
= 1 by Lemma 6.

⊢:
∫

f(t; 2)lnf(t; r)dt = ∞, where r > 1.
∫ e−1

0
f(x; 2)lnf(x; r)dx =

∫ e−1

0
ln(r−1)−ln(x(|lnx|)r)

x(lnx)2 dx

= ln(r − 1) + [(−ln|lnx|+ rln|lnx|
lnx + r

lnx )
∣

∣

e−1

0
] = ∞ ∀ by Lemma 6.
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