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Abstract: Under the right censorship model and under the linear regression model ¥ =
BX + W, where E(W) may not exist, the modified semi-parametric MLE (MSMLE) was
proposed by Yu and Wong (2005). The MSMLE 8 of B satisfying P(B # [ infinitely often) = 0
if W is discontinuous, and the simulation study suggests that it is also consistent and efficient
under certain regularity conditions. In this paper, we establish the consistency of the MSMLE
under the necessary and sufficient condition that [ is identifiable. Notice that under the
latter assumption, the Buckley-James estimator and the median regression estimator can be

inconsistent (see Yu and Dong (2019)).



1. Introduction. We shall establish the consistency of the modified semi-parametric max-
imum likelihood estimator (MSMLE) proposed in Yu and Wong (2005) under the linear
regression model with right-censored data. We shall make the following assumptions.

(A1) Let (M;,6;,X;), i =1, ..., n, be i.i.d. observations from the random vector (M, J, X),
where M =Y A C, C is a random censoring variable, Y = /X + W, X € R? (the p—
dimensional Eucleadian space), W is the baseline random variable (= Y|X = 0), W, C
and X are independent, 6 = 1(Y < C), 1(A) is the indicator function of the event A and
P(5=1)€(0,1). Both 8 and S, are unknown, where S,(y) = Sw(y) = P(W > y).

This is a semi-parametric set-up, as (5, F},) is unknown (F, =1 —S,). E(W) may not exist.

Regression analysis is one of the most widely used statistical techniques. Its applications
occur in almost every field, including engineering, economics, the physical sciences, manage-
ment, life and biological sciences and the social sciences.

To review available estimators for the regression problem, we first consider the case of
complete data under the simple linear regression model. Suppose (X;,Y;), i = 1, ..., n, are
i.i.d. observations from (X,Y’). There are several possible estimators for 3, such as
(1) the least squares estimator (LSE),

(2) the Theil-Sen estimator (Theil (1950) and Sen (1968)),
(3) L-estimators and R-estimators (see, e.g., Montgomery and Peck (1992)),
(4) adaptive estimators (Bickel (1982)),
(5) various M-estimators (Huber (1964)),
(6) the quantile (or median) regression estimator (see e.g., He and Zhu (2003)),
(7) the empirical likelihood estimator (Owen, Art B. (2001)),
(8) The semi-parametric maximum likelihood estimators (SMLE) (Yu and Wong (2003)),
and the modified SMLE (MSMLE) (Yu and Wong (2005)).
Several of these semi-parametric estimators of 3 are a value of b that maximizes the generalized

likelihood function

L=1L(f,b) =[l—, f(Y; — bX;), where f belongs to a class of density functions.  (1.1)
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If f(t) = S(t—) — S(t), where S(-) is a survival function, it leads to the SMLE. If f in
Eq. (1.1) is a kernel estimator, it leads to M-estimators or the MSMLE. Various M-estimators
have been proposed for finding a zero point (or zero-crossing point) of %, where f is
a kernel estimate of f. Zhang and Li (1996) consider such an approach. Let ¢ be the score
function, that is, ¢ = (Inf)’ = fT/’ where f’ is the derivative of f. Let ¢ be an estimate of ¢.
A point z is said to be a zero-crossing point of a function g if g(x—)g(z+) < 0. Zhang and

Li’s M-estimate of 3 is a zero-crossing point of a function (P(qg, -), where

O(9,0) = 3 _o(Yi =Y = b(X; - X))(Xi - X). (1.2)

An M-estimate can be obtained by iterative algorithms. Zhang and Li point out that the
M-estimator with ¢(z) = x is the LSE, and thus is not efficient. They also show that the
M-estimator with a suitable choice of gg is efficient under certain regularity conditions.
Under right censoring with X € R”, there are several extensions of the above estimators.
The Buckley-James (1979) estimator (BJE) is a modification of normal equations of the
sum of least squares. Chatterjee and Mcleish (1986) and Leurgans (1987) propose several
parametric and semi-parametric extensions of the LSE. Hillis (1991), Ritov (1990) and Zhang
and Li (1996) consider M-estimators and their modifications. Ireson and Rao (1985) and
Akritas, Murphy and Lavalley (1995) consider extension of the Theil-Sen estimator. Since all
these estimators are extensions, they inherit the properties of the estimators in the case of
complete-data. Yu and Wong (2005) propose the MSMLE of g, denoted by B or B,, which

maximizes the likelihood

L(S,b) = ﬁ[( fi (T (0)))° (S, (T3 (b)) %] where Sy, is the product-limit-estimator (ple),

i=1
T;(b) =Y; — bX;, and f is the kernel estimator with the rectangular kernel.
Remark 1. Yu and Wong show that f3,, cannot be obtained by the algorithms for M-

—dln%f’b) =0 a.e..

estimate, or by Newton-Raphson algorithm, or Monte Carlo method, as
Yu and Wong (2005) propose a feasible non-iterative algorithm for obtaining By They

establish the consistency of the MSMLE under the following assumptions in addition to (A1l):
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(A2) P(A) >0, where A = {(x1, ..., Xp11) :

1 1 L . .
rank <x1 _ Xp+1> =p+1, x;’s are i.i.d. copies of X|01 = -+ = 0py1 = 1}.
(A3) F,(t) = [ ., fo(z)du(z), where i is the sum of the Lebesgue measure on the real line and

dF;;"r) if z ¢ M
Fy(x) — Fo(z—) ifx € M.
(A4) |E(Inf,(€))| < 00, Fo(t +x) — Fo(t — ) = fo(t)(1 + O(x)) uniformly for all t € M,

a counting measure on a countable set M, and f,(z) = {

Fo(t+x)£EFo(t—$) = fo(t)(1 + O(x)) uniformly for all ¢t ¢ M.

They also prove that
P{B, = B for all large n} = 1 if F, has a discontinuity point and (A2) holds. (1.3)

It is conjectured according to simulation results (see Yu and Wong (2005)) that under certain
regularity conditions, Bn is efficient.

An MSMLE solution is a maximizer of L(f,b), while an M-estimator solution is an
approximation of a stationary point of L(f,b). Even though Zhang and Li (1996) show that
their M-estimator is consistent and efficient under certain regularity conditions, there are
two drawbacks in their approach, in comparison to the MSMLE approach. One is in the
assumption for consistency and the other is in computation.

(a) Zhang and Li’s M-estimator can be inconsistent if ®(¢,,b) = 0 a.s. in b, where
b0 = f'/f,. The reason is as follows. (1) An M-estimate is a zero-crossing point of ®(¢, b), and
(2) one expects that the derivative of “the normalized log likelihood” 1®(¢,b) — E(L®(¢,,b))
a.s. for each b. Note that for uniform distributions or piece-wise uniform distributions (among
other distributions), ¢, = 0 a.s., and thus ®(¢,,b) = 0 a.s. in b. Consequently, if the data are
from the latter distributions and the score function f’/f is estimated by a kernel estimator,
one cannot find a consistent M-estimate of 5. On the contrary, we shall show in this paper
that the MSMLE is consistent even if ®(¢,,b) = 0 a.s..

(b) Given a data set, even if the efficient and consistent M-estimate exists, the current
algorithms (see Buckley and James (1979) and Zhang and Li (1996)) may not be able to find

it, as there are often multiple solutions to the M-estimator and the algorithm can only find
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one of them. Yu and Wong (2002, Example 4.2 and Figure 1) present such an example for
the BJE, which is also an M-estimator. Because Yu and Wong (2002) propose an algorithm
that can present all possible solutions of the BJE, we can examine which solution of the BJE
can be obtained by the existing algorithms for the M-estimation. The algorithm for the BJE
cannot be generalized to other M-estimators. Moreover, Zhang and Li did not show that
every solution to their M-estimator is consistent, even under the set of regularity conditions
imposed on the underlying distributions.

(c¢) An estimator of the parameter [ is consistent only if S is identifiable. Yu and Dong
establish the necessary and sufficient (NS) conditions for (3, (S,(t)) being identifiable. The
consistency of all the existing estimators under the linear regression model (see (Al)) are all
established under assumption (A2), among other regularity conditions. In fact, both the BJE
and the median regression estimator can be inconsistent under the NS condition for § being
identifiable (see Yu and Dong (2019)).

In this paper, we shall prove consistency of the MSMLE Bn without additional assump-
tions rather than Al and the necessary and sufficient (NS) conditions for (3, (S,(t)) being
identifiable (see Theorems 1 and 2). These assumptions allow F, to be continuous or dis-
continuous. It is worth mentioning that the standard approach in proving consistency of the

MLE takes advantage of the normal equation d(ljrl‘)L|b: 5, = 0. However, it does not work

here, as % = 0 a.s. (see Remark 1). The asymptotic efficiency of the MSMLE under the

assumption that F, is continuous is still an open question. The paper is organized as follows.
In Section 2, we present notations and introduce the MSMLE ﬁAn. In Section 3, we prove the
consistency of the MSMLE.

2. Preliminary Results. In this section, we introduce some preliminary results. For
b € RP?, denote T; = T;(b) = M; — b'X;. Tt follows from assumption (A1) that (T;(8),d;)’s
are i.i.d. copies of (W A Z€,§), where Z¢ = C' — 3'X. The generalized likelihood function is

n

L(S,b, f) = [ TI(F(Ti(0))* (S(Ty(b)))' =], where f(t) =S(t—) = S(t), S € F, (2.1)
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F ={H : H is a non-increasing function on [—o0, o], H(—0o0) =1 and H(co) = 0}. Yu and
Wong (2005) suggest to replace f by a kernel estimate,

F@) = fo(z) = — niK(””n_ 'S (1), where K(z) = L ujcry and a0 (2.2)

(e.g., mn = n~'/%), and replace S by the product-limit-estimate (PLE), denoted by S’b,
based on observations (7;(b),d;)’s. Let FF =1 — S for S € F and let Fb =1- Sb' Since

S(z—nn)—S(x+n,
folz) = ( n;nn( +n )7<

2.1) becomes

[(b) =L(Sp,,b, fs, ) =] | [(fgb(Ti(b)))5i(S‘b(Ti(b)))l_‘si]

1=1

A A

2% 5—[Sp((T3(b) = 0) =) = Sp(Ti(b) + 1)) (Sp(Ti(D))' ] (2.3)

n

1=1

Yu and Wong call a value of b that maximizes [(-) over all b € RP an MSMLE of 3. The
MSMLE of S,(t) based on Y; — X3, ..., ¥, — X/, 3 is denoted by S(¢).

It is obvious that the MSMLE of 3 is consistent only when the parameter is identifiable.
Yu and Dong (2019) establish the NS conditions for the parameter being identifiable under the
semi-parametric linear regression model. Let D be the support set of fr, that is, P(||T—t|| <
¢) >0V c>0ift € Dp, where || - || denotes a norm. Here T can be W, Y, C or X. Let
Co,=C—X'B and 7, = 7¢,. Define

(—00,7) i P(C=7c)=0< Sw(1,—)
A=< (—o0,7,] if P(C =71¢c)Sw(1) >0 (2.4)
(—00,00) if Sw(1o—) =0 or P(C =7¢)Sw(1o—) > 0= Sw(7,)

Definition. Assume (A1) holds. (S,, ) is said to be identifiable if
(Su(t —x'Bs) = So(t —x'B) Vit —x'B € Aimplies that (S.(t),5:) = (S,(t),8) ¥Vt € A.
Theorem 1 (Yu and Dong (2019)). Suppose that (A1) holds and 7, < co. Then
(a) The survival function Sy (t) is identifiable iff ¢t € A.
(b) The parameter (3 is identifiable iff Bx, # (), where xg € Dx such that ¢ — 8'xg = 7,, and
Bx, = {(wl,xl, ey Wp,Xp) T X1 — X0, ..., Xp — Xq are linearly independent, x; € Dx,

< 70 ifP(C:TC)>O}

w; € Dy and w; + B8'x; .
’ w i+ A% < T7¢c otherwise
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Theorem 2 (Yu and Dong (2019)). Suppose that (A1) holds and 7, = oc.
(a) The survival function Sy (t) is identifiable for each t¢.
(b) The parameter (3 is identifiable iff 3 x¢ € Dx such that Bx, # (), where
Bx, = {(xl, ., Xp)! X1 — Xq, ..., Xp — X0 are linearly independent, and x; € DX}.
Here x¢ = 0 if 0 € Dx, otherwise xq, ..., X, are vectors belonging to Dx.
Notice that if (A1) holds, then (A2) corresponds to u(Bx,) > 0.
We shall make use of the modified Kullback-Leibler (KL) inequality as follows.
Proposition 1 (Yu (2020)). If f; >0, [ fi(t)dui(¢t) =1 and [ fa(t)dpi(t) < 1, where p is

a measure, then [ fi(¢)1 }‘18 duy (t) > 0, with equality iff f; = fo a.e. w.r.t. p.
Denote S(t[x) = S,(t —x'B), S(t|x) = S;5(t — x'B), Ss(t|x) = Ss(t —x'8) and S.(tx) =
S.(t — x'By), where S, € F and B, € RP. In view of Eq. (2.3), one may write the measure

w.r.t. the cdf’s F(m, s, x) (défFM’(;’x(m, s,x)) and Fy(m,s,x) as

dF(m,s,x) =1(s = 0)dF(m,0,x) + 1(s = 1)dF (m, 1,x),
dF(m,0,x) =S(m|x)dFc(m)dFx(x),
dF(m,1,x) =Sc(m)dF (m|x)dFx(x), (2.5)

dF.(m,s,x) =1(s = 0)S,(m|x)dFc(m)dFx(x) + 1(s = 1)Sc(m)dF,(m|x)dFx(x).

In view of Eq. (2.5), the Proposition 1 under the LR model is modified as follows.

Proposition 2. Let S(t|x) be the true conditional survival function and g(t|x) = 1. Let

0 ift —x'B ¢ Dw
S0 S if S(t — [x) = S(thx) > 0,
g(thx) = 27((;';{)) if S'(t|x) > 0 and S, (t|x) exist, (2:6)

. Sk (t—s|X)— S, (t+5]|X) . odef
limsup, o =5—sx)"saTsx) Otherwise (5=0).

Then (1) flng(ar%dF(t 0,x) + [In g%l'};))dF(t 1,x) >0, V S.(t|x); and

(2) the equality holds iff S«(t|x) = S(t|x) V t € A.

Proof. Let h.(t,s|x) = 1(s = 0) %((:\L){c)) +1(s = 1)99*((5%). One can treat h, the density of

F.(t,s|x) w.r.t. the measure dF(t, s|x), where F(t,s,x) = F(t, s|x)Fx(x). Then the density
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of S(t|x) w.r.t. the measure dF(t,s|x) is h(t,s|x) = 1(s = 0)?8};3 + 1(s = 1>%I§§ = 1.

Given S, (t|x), by Proposition 1, 0 < [ h(t, s|x)ln h}i(éss‘fg) dF(t, s|x), and the equality holds iff

S.(t|x) = S(t|x) ¥ t € A. Thus 0 < [ [ At s|x)nSE22LdF (1, s|x)dFx(x) and the equality
holds iff S, (t|x) = S(t|x) Vt € A. o

3. The Main Results. We establish the consistency of the MSMLE in this section. When
we say that S(t) is consistent, we mean that t € A.

Theorem 3. The MSMLE (S,B) s consistent if the identifiability conditions stated in The-
orems 1 and 2 hold.

Proof. let ©Q, be the subset of the sample space ) such that the empirical distribution
function (edf) E),(t,s,x) based on (M;,d;, X;)’s converges to F(t, s, x), the cdf of (M, d,X).
It is well-known that P(€,) = 1. Notice that the MSMLE (S, 8) is a function of (w,n), say
(S(-)(w,n), Bn(w)), where w belongs to the sample space and n is the sample size. Hereafter,
fix an w € Q,, since § (= Bn(w)) is a sequence of vectors in RP, there is a convergent
subsequence with the limit (5., where the components of 3, can be d+o0o. For simplicity,
we shall suppress (w,n) hereafter. Moreover, S is a sequence of bounded non-increasing
functions, Helly’s selection theorem ensures that given any subsequence of S , there exists a
further subsequence which is convergent. By taking convergent subsequence, without loss of
generality (WLOG), we can assume that 3 — 8, and § — S, € F. It is well known that
sup,e 4 |95(t) — So(t)| — 0 aus..

Since (S, 3) is the MSMLE, 1In/(3) > LIni(B) (see Eq. (2.3)), thus

/lng(t]x)dﬁ’n(t, 0,x) + /ln(S’(t — X)) = S(t + 1 |x))dE, (t,1,%) (see (2.3))

z/lngg(tlx)dﬁ’n(t,O,x) +/1n(§5(t—77n]x) — S5(t +nn|x))dE, (t,1,%).

The last inequality yields

0 Z/IHSAB(ﬂx)an(t,O,x) +/1n

S(tx)

(t — mulx) — Aﬁ(t + N [X)
(

s >
(=m0 —

dF,(t,1,x). (3.1
t =+ 1 |x)
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By assumption, E,(-,,-)(w) = F(-,-,-) on Q,. We shall prove in Lemmas 2 and 3 that

lim lnwdﬁ’n(t,o,x) > /ln S(tlx) dF(t,0,x) (in Lemma 2), (3.2)
n—00 S(t X) (t‘X)

i [ 1220 = nlX) = Sa(t - ) dE,(t,1,%) > /ln 9(tx) dF(t,1,%).  (3.3)
n—oo S(t —nnlx) — S(t 4 n,|x) g« (t|x)

Then 0 Z/IH%dF(t,O,X) + /lni((ﬁig) dF(t,1,x) (by Eq.s (3.1), (3.2) and (3.3))

>0 (by Proposition 2)

The last two inequalities imply that [In& ((tt||))<{)) dF(t,0,x) + [InZ2 ((tii)(c)) dF(t,1,x) = 0. Thus
S.(t|x) = S(t|x) (i-e., Su(t — Blx) = So(t — f'x)) V (t,x) € Dy x by Statement (2) of
Proposition 2. Since the NS assumptions of the identifiability of (S,(t), 5) in Theorems 1 and
2 hold, (S«(t),B«) = (So(t),B) V t € A by Theorems 1 and 2. Recall P(Q,) = 1, thus the

MSMLE (S,(t), 3) is consistent for ¢t € A. o

We shall make use of Fatou’s Lemma with varying measures (see Lemma 1 below) in the
proofs of Lemmas 2 and 3.
Lemma 1 (Proposition 17 in Royden (1968), page 231). Suppose that p, is a sequence of
measures on the measurable space (S,B) such that p,(B) — u(B),V B € B, g, and f, are

non-negative measurable functions, and lim (f,, g,)(x) = (f,9)(x). Then
n—oo

(1) [ fdu < lim [ f,dun;

n—oo

(2) if gn > fn (> 0) and lim [ g dp, = [ gdu, then [ fdu = lm [ f,dpu,.
n—oo n—oo
Corollary 1. Suppose that ., is a sequence of measures on the measurable space (S, B) such
that lim p,(B) — u(B),V B € B, f and f, are integrable functions, n > 1.
n—oo

(1) If f are bounded below and f(x) = li_>m fn(x), then [ fdu < lim [ f,du,.

n—oo

(2) If f, are bounded below then [ lim f, dp < lim [ f, du,.

n—oo n— o0

Lemma 2. Under the assumptions in the proof of Theorem 3,

lim lnSZB(t|X) dF,(t,0,x) > ln S(tlx) dF(t,0,x) (i.e. inequality (3.2) holds).
n—00 S(t|X) (t|X)
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Proof. For the given w € Q, and (S,, 8,) in Eq. (3.2), as assumed, S(t) — S.(t), B(w) — B,
and S,(t) is continuous a.e.. S, (t|x) = E S(t — x'f3), which equals S, (t — x'8,) a.e. in
t —x'f, w.r.t. the measure induced by F,, M.5.X > except perhaps at the discontinuous point of
Ss, say w and S, (t|x) = S,(w—), where w =t — x'f,. Let o = sup,¢ 4 So(t), where A is as
in Eq. (2.4). Then either (1) a > 0 or (2) a = 0.

Suppose that o > 0. Then 3 n, such that Sz(t) > a/2 ¥Vt € A and n > n,, as

S(tx)

5, (X)) we have

sup;e 4 |95(t) — Sw(t)| = 0 a.s.. Denote G(t,x,n) =

T G(tx,n) = i((tt“;:; if S(tx) > 0. (3.4)

Let Ap = {(t,x): G(t,x,n) <k, Vn >n,} and By = Ay \ Ax—1, k > 1. Since G(t,x,n) is
finite for each n > n,, provided that S(¢|x) > 0, we have

def

Ur>1Br =U={(t,x) : S(t|x) > a} (and /1((t,x) € Ug>1Bg)dF (t,s,x) =1).  (3.5)

For each k > 1, let a, %! lni?(g‘;())l(( x) € By).

lim lnwdﬁ’n(t, 0,x)

n—o0 J By, S(t|X)

2/ lim In(= (t|X>)dF(t,O,X) (by (2) of Corollary 1
B

L N—00 (th)

as ay € [0,00), ax € [In(1/k),In(1/(k —1))], k > 2)

:/ hrl(nli_%lgo %)d}?(zﬁ, 0,x) (as In(x) is continuous )
/ t"‘ SLF(1.0.5) (see (3.4))
t\x S, (t|x) defint > —1/e

/ S ) S A (0.%) (where H(#)™<tlnt > —1/e)
/ t"‘ )AL (2,0.%) (see (2.5))

/ 1 /e)dFL(t,0,%x) = (— 1/6)/B ldF*(t,O,x)2(—1/6)/1dF*(t,3,x)2—1/6.

That is, for k> 1, lim 1nSF(t|X)an(t,o,x)2/ 2% dF(t,0,x) (3.6)
n—oo J By, S(t|x) By (t|X)

>—1/e. (3.7)
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Then lim lnwdﬁn(t, 0,x)

n—oo)  S(t[x)

“uw Y [ SEULIPT . (by (3.5))
n—o0o k>1 By, S(t|X)
) Sﬁ t|X . )
= lim E,(t,0,x)dv(k) (dv is a counting measure)
n—oo Jk>1 Bk

2/ lim In LB(ﬂX)) dF,(t,0,x)dv(k) (by (1) of Corollary 1 and (3.7))

k>1 n—o00 Bk S(t|x

/ / dF(tOx)du(k) (by (3.6))
k>1J B, t’X

t]x S(t|x)
];/B dF(tO X) = /m 5. (i )dF(tO X). (3.8)

Thus (3.2) holds if o = sup,c 4 S,(t) > 0

Now suppose that case (2) holds, that is, @ = sup,c 4 So(t) = 0. Let IC be the set of all
positive integers, and U,,, = {(¢t,x) : S(t —x'B) € (1/(m +1),1/m]}, where m € K.

For each m € K, 3 n,, such that Sz(t|x) > 1/(2m) ¥V So(t — x'B) € (1/(m +1),1/m).

Sx)

Denote G(t,x,n) = 3 (%)

as before, but redefine
A ={(t,x): So(t—x'B) e (1/(m+1),1/m],G(t,x,n) <k, ¥V n>n,} (3.9)

and By = Ap \ Ak—1, k € K, we have Up>1Br = U,,. Then by a similar arguments as in

proving (3.6), (3.7) and (3.8) (i.e., replacing U by U,, ), we can show that for m € K,

S5(t[x) - t
lim 220 g 40,59 2/ Ingor s S(tlx) dF(t,0,x) (3.10)
n—oo J(tx)eU,  S(tx) e X) el Ox(EX)
> —1/e. (3.11)

Their proofs are relegated to Appendix. Moreover, replacing By by U,, in the proof of

Inequality (3.8), we have

i [ 10225, 00,5

n—00 (t|X)

= lim / lnSF(ﬂX) dpn(t,(),x)
n—o0 T (t,X)eU S(t|X)
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= lim / / lnwdﬁ’n(t, 0,x)dv(m) (dv is a counting measure)
(t,X) €U

n—ooJm>1 S(t|x)
. Sﬁ(ﬂx) .
Z/m>1 nh_%lo (t.X) In S(t)x) dF,(t,0,x)dv(m)  (by (1) Coro. 1 and (3.11))
t|X)
- Z/ 5. (tp) 5 0:%) (by (3.10)

_/1 S*(t|x)dF(t,O, )

which is (3.2) in the case that sup,c 4 So(t) =0. o

Lemma 3. Under the assumptions set in the proof of Theorem 2, inequality (3.3) holds, i.e.,

: S5 (t=11n |X) =S5 (t+1n|X) 9(tX,B)
nl;_niofln S (e 30— (¢ [X) dE,(t,1,x) > flng GES) dF(t,1,x),

where g(t|x, ) =1 and g.(t|x) is as in (2.6).
Proof. For the given w € Q,, S(t/x)(w) and (S,, ;) in the proof of Theorem 2, denote

S(t—nn|X)— S(t-i-nn\x)
G(t,x,n) = B e 1K) B (Lo 5O By (2.6),

_ g-(tx) ..
nlggoG(tX n) = g«(t|x) = o(t%. B) ift—b'ge ANDy.

Notice that the denominator Sz(t — 1,|x) — S5(t + nn|x) of G(t,x,n) can be zero if n is
small. By the definition of Dy, if w € Dy N A, then Sg(w —n,) — Sg(w +n,) > 0 for n large
enough. Thus G(¢,x,n) is finite for n large enough, provided that ¢t — x’5 € Dy N A. Hence

we can partition Dy N.A as follows. For each m € K, let
Uy, = {(t,x) : G(t,x,n) is finite for n > m, but not for n = m}.

We shall first prove inequalities similar to (3.6) and (3.7), and then prove (3.3).
Given m € K, let Ay = {(t,x) € Uy, : G(t,x,n) <k, Vn>m}and By = A \ Ap_1,
k> 1. Then Uk>1Bk =U,,

For each k > 1, let akdiflnsgg Z":g i?t(i;n&))() 1((t,x) € By).

: > dE,(t,1,x)
n—oo J By S(t — nn‘X) - (t + Un‘x)
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: (S(t — 1 [x) = Sp(t + 1n[x))
> lim In(—% dF'(t,1,x) (by (2) of Corollary 1
—/Bk S ) = 8+ by B ) ’

as a; € [0,00), ay, € [In(1/k),In(1/(k —1))], k > 2)

_ /B I lim (fggi:z:z;: :f;:_+n:T}L};))))dF(t,1,x) (as In(z) is continuous )
:/Bkl i(g’};))dF(t,l,x) (see (2.6))
= e i (;t‘i:))g;((tt‘f;)dp(t, 1,%) (where H (1) fint > —1/e)
= [, i((t!r:))d}?*(t,l,x) (see (2.5))

E/Bk(—l/e)dF*(t,l,x) > —1/e.

That is, for k > 1,

i [ M) =Sl ) e s / EAULIB T (3.12)
n—ooJB, St —nn|x)— S(t+ n.|x) B, 9«(t]x)
>—1/e. (3.13)
=> lim In é(t—nn|x) Sg(t+77n|x) dF,(t,1,x)
noooJu,, St —nu|x) — St + 1n|x)

= lim Z/ In SA(t %) — ?B(t—i—nnm)dﬁn(t,l,x) (as Ug>1Br = Un,)
n—o0 151/ By St — np|x) — S(t + nn|x)

N

= lim / / In é(t Ix) = € 5+ 1 ) dF,(t,1,x)dv(k) (dv is a counting measure)
n—oo Jk>1JB, St —np|x) — S(t+ nn|x)

> / fim [ w2 |X) S5 £1IX) 46 (11 X)dw(k) (by (1) of Coro. 1 and (3.13))
E>1n—oo J B, St — np|x) — S(t+ nn|x)
/ / In gt"‘ F(t, 1, x)dv(k) (by (3.12))
k>1 J By *

_Z/ 01X )dF(t,l,x):/ 2% e 1) (> —1/e).
=5, 0e(tx) u,  9«(tx)

Finally, lim [ In S5 (t = 1) — ?ﬁ(H""'X)an(t,Lx)

n— o0 St —np|x) — S(t+ nn|x)

— lim Z/ G e Sﬁ(t+””’x)dﬁn(t,1,x)
n—oo A= Sty S(t—1nlx) — St + %)
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N N

(t + nn[x)

= lim / / In é(t = thlX) i dF,(t,1,x)dv(m)
n—00Sm21 Sty S(E—1n[x) = S+ %)

> / lim In é(t = MlX) = Aﬁ(t + 1 X) dF,(t,1,x)dv(m)
m21n—=00Ju,, St = nu|x) = S(t+nalx)

g(tx)
o () dF(t,1,x)

ZZ/umln

m>1

g(t|x)
= [ In dF(t,1,x).Thus (3.3) holds. o
[ g 1% T (33)

Remark. Even though the MSMLE is an extension of the SMLE, the SMLE is not always
consistent under the identifiability condition. The reason is that fy (t) = P(W € (t — n,t]),
where n = min{|W; — W;| : i # j}. Under the continuity assumption, there is no observation
within [W —n, W + n]. But the MSMLE is different in this regard.
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4. Appendix.
Proof of Corollary 1. Let k = inf,, inf, f,,(z). If £ > 0 then the corollary follows from
Lemma 1. Otherwise, let f, (z) = 0A fo(z), fF(z) = 0V fu(z), f~(x) = 0A f(x) and
ft(x) =0V f(x). Then f;f — f* and f, — f~ pointwisely, as f, — f in Case (1). Then

tim [ fodien = i [ (55 £ = i [t [ 5 die

n— oo n—oo n— oo

> lim [ frdp+ lm [ fdp,

= lim [ fdu, +/ lim f, dun, (by statement (2) of Lemma 1, as | f,, (z)| < k)
n—00 n—00

2/ ILm fdp + /f_du (by statement (1) of Lemma 1, as f;F(x) is nonnegative)
:/f+d,u+/f_d,u:/(f++f_)d,u:/fdp i.e., statement (1) holds.

Let g, (x) = inf{fx(z) : k> n}, then g,(z) —» g(z) = lim f,(x). We have

n—oo

/ lim f,du :/ hm gndp < lim [ g, du, (by statement (1)), as g, is bounded below)

n—oo n—oo

= lim [ inf{fx: k>n}du,

n—oo

< lim [ fudu, (which is statement (2)). o

n—oo

Proof of Eq. (3.10) and Eq. (3.11). Given m € K, since G(t,x,n) is finite V (¢,x) € Uy,

and for each n > n,, we have Up>1 By, = U,,. For each k > 1, let akdéfl Ssﬁéﬁl;)) 1((t,x) € By).
b [ et
n—o00 Bk S(t|X>

dE,(t,0,x)

2/ lim ln(‘?(ﬂx))dF(t 0,x) (by (2) of Corollary 1
B n—0 S(t|X)

as a1 € [0,00), ar € [In(1/k),In(1/(k —1))], k > 2)

= n( lim M b'e as In(x) is continuous
‘/Bkl (G 1 0X) ) con |
= n S(t) see
_/Bkl 5 (i 11,0, (see (3.4))
= S(tlx) ) Su(tx) X where def n —1/e
= . H(S*(t\x)) S(x) )dF(t,0,x) (wh H(t)=tlnt > —1/e)
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:/Bk H(%)dm(t,o,x) (see (2.5))

2/ (—1/e)dF.(t,0,).

St A t
That is, for k > 1, lim lnMan(t,O,x) 2/ n ) dF(t,0,x) (4.1)
n—oo J By, S(t|X) By S*(t|x)
> — 1/6/ 1dF(t,0,x). (4.2)
By

Notice that the proof so far till Eq. (4.1) and Eq. (4.2) is identical to the proof of Eq. (3.6)

and Eq. (3.7).
Then lim lnwdﬁn(t,(),x)
n—00 J (t,X)EUp, (t|X)
= lim Z/ In (t|x) dF, (t,0,x) (as U Br = Up)
n—o00 k>1 By, S(t|X)
= lim / / S’B t|x F,(t,0,x)dv(k) (dv is a counting measure)
n—o0 JEk>1 J By, tX

>/ lim In LB(ﬂX)) dF,(t,0,x)dv(k) (by (1) of Corollary 1 and (4.2))
k

>1 n—00 Bk S(t|x

/k>1/B t]x dF(t 0,x)dv(k) (by (4.1))
S(thx) S(tx)

I;/B Sa(t]x) dF(t %% = /(t,x)eum RO S, (t|x) dF(t,0,x). (3.6)

>—1/e. o (3.7)

It is worth mentioning that the proof upto Eq. (3.6) is almost the same as the proof in deriving

Eq. (3.8), except that [ in Eq. (3.8) is replaced by [, in Eq. (3.6).
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