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Abstract: Under the right censorship model and under the linear regression model Y =

βX + W , where E(W ) may not exist, the modified semi-parametric MLE (MSMLE) was

proposed by Yu and Wong (2005). The MSMLE β̂ of β satisfying P (β̂ 6= β infinitely often) = 0

if W is discontinuous, and the simulation study suggests that it is also consistent and efficient

under certain regularity conditions. In this paper, we establish the consistency of the MSMLE

under the necessary and sufficient condition that β is identifiable. Notice that under the

latter assumption, the Buckley-James estimator and the median regression estimator can be

inconsistent (see Yu and Dong (2019)).
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1. Introduction. We shall establish the consistency of the modified semi-parametric max-

imum likelihood estimator (MSMLE) proposed in Yu and Wong (2005) under the linear

regression model with right-censored data. We shall make the following assumptions.

(A1) Let (Mi, δi,Xi), i = 1, ..., n, be i.i.d. observations from the random vector (M, δ,X),

where M = Y ∧ C, C is a random censoring variable, Y = β′X + W , X ∈ Rp (the p−

dimensional Eucleadian space), W is the baseline random variable (= Y |X = 0), W , C

and X are independent, δ = 1(Y ≤ C), 1(A) is the indicator function of the event A and

P (δ = 1) ∈ (0, 1). Both β and So are unknown, where So(y) = SW (y) = P (W > y).

This is a semi-parametric set-up, as (β, Fo) is unknown (Fo = 1 − So). E(W ) may not exist.

Regression analysis is one of the most widely used statistical techniques. Its applications

occur in almost every field, including engineering, economics, the physical sciences, manage-

ment, life and biological sciences and the social sciences.

To review available estimators for the regression problem, we first consider the case of

complete data under the simple linear regression model. Suppose (Xi, Yi), i = 1, ..., n, are

i.i.d. observations from (X,Y ). There are several possible estimators for β, such as

(1) the least squares estimator (LSE),

(2) the Theil-Sen estimator (Theil (1950) and Sen (1968)),

(3) L-estimators and R-estimators (see, e.g., Montgomery and Peck (1992)),

(4) adaptive estimators (Bickel (1982)),

(5) various M-estimators (Huber (1964)),

(6) the quantile (or median) regression estimator (see e.g., He and Zhu (2003)),

(7) the empirical likelihood estimator (Owen, Art B. (2001)),

(8) The semi-parametric maximum likelihood estimators (SMLE) (Yu and Wong (2003)),

and the modified SMLE (MSMLE) (Yu and Wong (2005)).

Several of these semi-parametric estimators of β are a value of b that maximizes the generalized

likelihood function

 L =  L(f, b) =
∏n

i=1 f(Yi − bXi), where f belongs to a class of density functions. (1.1)
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If f(t) = S(t−) − S(t), where S(·) is a survival function, it leads to the SMLE. If f in

Eq. (1.1) is a kernel estimator, it leads to M-estimators or the MSMLE. Various M-estimators

have been proposed for finding a zero point (or zero-crossing point) of ∂ln L(f̂ ,b)
∂b , where f̂ is

a kernel estimate of f . Zhang and Li (1996) consider such an approach. Let φ be the score

function, that is, φ = (lnf)′ = f ′

f , where f ′ is the derivative of f . Let φ̂ be an estimate of φ.

A point x is said to be a zero-crossing point of a function g if g(x−)g(x+) ≤ 0. Zhang and

Li’s M-estimate of β is a zero-crossing point of a function Φ(φ̂, ·), where

Φ(φ̂, b) =

n
∑

i=1

φ̂(Yi − Y − b(Xi −X))(Xi −X). (1.2)

An M-estimate can be obtained by iterative algorithms. Zhang and Li point out that the

M-estimator with φ̂(x) = x is the LSE, and thus is not efficient. They also show that the

M-estimator with a suitable choice of φ̂ is efficient under certain regularity conditions.

Under right censoring with X ∈ Rp, there are several extensions of the above estimators.

The Buckley-James (1979) estimator (BJE) is a modification of normal equations of the

sum of least squares. Chatterjee and Mcleish (1986) and Leurgans (1987) propose several

parametric and semi-parametric extensions of the LSE. Hillis (1991), Ritov (1990) and Zhang

and Li (1996) consider M-estimators and their modifications. Ireson and Rao (1985) and

Akritas, Murphy and Lavalley (1995) consider extension of the Theil-Sen estimator. Since all

these estimators are extensions, they inherit the properties of the estimators in the case of

complete-data. Yu and Wong (2005) propose the MSMLE of β, denoted by β̂ or β̂n, which

maximizes the likelihood

L(S,b) =

n
∏

i=1

[(fb(Ti(b)))δi(Sb(Ti(b)))1−δi ] where Sb is the product-limit-estimator (ple),

Ti(b) = Yi − bXi, and f is the kernel estimator with the rectangular kernel.

Remark 1. Yu and Wong show that β̂n cannot be obtained by the algorithms for M-

estimate, or by Newton-Raphson algorithm, or Monte Carlo method, as dln L(f,b)
db = 0 a.e..

Yu and Wong (2005) propose a feasible non-iterative algorithm for obtaining β̂n. They

establish the consistency of the MSMLE under the following assumptions in addition to (A1):
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(A2) P(A) > 0, where A =
{

(x1, ...,xp+1) :

rank

(

1 · · · 1
x1 · · · xp+1

)

= p + 1, xi’s are i.i.d. copies of X|δ1 = · · · = δp+1 = 1
}

.

(A3) Fo(t) =
∫

x≤t
fo(x)dµ(x), where µ is the sum of the Lebesgue measure on the real line and

a counting measure on a countable set M, and fo(x) =

{

dFo(x)
dx if x /∈ M

Fo(x) − Fo(x−) if x ∈ M.

(A4) |E(lnfo(ǫ))| < ∞, Fo(t + x) − Fo(t− x) = fo(t)(1 + O(x)) uniformly for all t ∈ M,

Fo(t+x)−Fo(t−x)
2x = fo(t)(1 + O(x)) uniformly for all t /∈ M.

They also prove that

P{β̂n = β for all large n} = 1 if Fo has a discontinuity point and (A2) holds. (1.3)

It is conjectured according to simulation results (see Yu and Wong (2005)) that under certain

regularity conditions, β̂n is efficient.

An MSMLE solution is a maximizer of  L(f, b), while an M-estimator solution is an

approximation of a stationary point of  L(f, b). Even though Zhang and Li (1996) show that

their M-estimator is consistent and efficient under certain regularity conditions, there are

two drawbacks in their approach, in comparison to the MSMLE approach. One is in the

assumption for consistency and the other is in computation.

(a) Zhang and Li’s M-estimator can be inconsistent if Φ(φo, b) = 0 a.s. in b, where

φo = f ′
o/fo. The reason is as follows. (1) An M-estimate is a zero-crossing point of Φ(φ̂, b), and

(2) one expects that the derivative of “the normalized log likelihood” 1
nΦ(φ̂, b) → E( 1

nΦ(φo, b))

a.s. for each b. Note that for uniform distributions or piece-wise uniform distributions (among

other distributions), φo = 0 a.s., and thus Φ(φo, b) = 0 a.s. in b. Consequently, if the data are

from the latter distributions and the score function f ′/f is estimated by a kernel estimator,

one cannot find a consistent M-estimate of β. On the contrary, we shall show in this paper

that the MSMLE is consistent even if Φ(φo, b) = 0 a.s..

(b) Given a data set, even if the efficient and consistent M-estimate exists, the current

algorithms (see Buckley and James (1979) and Zhang and Li (1996)) may not be able to find

it, as there are often multiple solutions to the M-estimator and the algorithm can only find
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one of them. Yu and Wong (2002, Example 4.2 and Figure 1) present such an example for

the BJE, which is also an M-estimator. Because Yu and Wong (2002) propose an algorithm

that can present all possible solutions of the BJE, we can examine which solution of the BJE

can be obtained by the existing algorithms for the M-estimation. The algorithm for the BJE

cannot be generalized to other M-estimators. Moreover, Zhang and Li did not show that

every solution to their M-estimator is consistent, even under the set of regularity conditions

imposed on the underlying distributions.

(c) An estimator of the parameter β is consistent only if β is identifiable. Yu and Dong

establish the necessary and sufficient (NS) conditions for (β, (So(t)) being identifiable. The

consistency of all the existing estimators under the linear regression model (see (A1)) are all

established under assumption (A2), among other regularity conditions. In fact, both the BJE

and the median regression estimator can be inconsistent under the NS condition for β being

identifiable (see Yu and Dong (2019)).

In this paper, we shall prove consistency of the MSMLE β̂n without additional assump-

tions rather than A1 and the necessary and sufficient (NS) conditions for (β, (So(t)) being

identifiable (see Theorems 1 and 2). These assumptions allow Fo to be continuous or dis-

continuous. It is worth mentioning that the standard approach in proving consistency of the

MLE takes advantage of the normal equation dln L
db

|b=β̂n
= 0. However, it does not work

here, as dln L
db

= 0 a.s. (see Remark 1). The asymptotic efficiency of the MSMLE under the

assumption that Fo is continuous is still an open question. The paper is organized as follows.

In Section 2, we present notations and introduce the MSMLE β̂n. In Section 3, we prove the

consistency of the MSMLE.

2. Preliminary Results. In this section, we introduce some preliminary results. For

b ∈ Rp, denote Ti = Ti(b) = Mi − b′Xi. It follows from assumption (A1) that (Ti(β), δi)’s

are i.i.d. copies of (W ∧ Zc, δ), where Zc = C − β′X. The generalized likelihood function is

 L(S,b, f) =
n
∏

i=1

[(f(Ti(b)))δi(S(Ti(b)))1−δi ], where f(t) = S(t−) − S(t), S ∈ F , (2.1)
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F = {H : H is a non-increasing function on [−∞,∞], H(−∞) = 1 and H(∞) = 0}. Yu and

Wong (2005) suggest to replace f by a kernel estimate,

f(x) = fS(x) = −

∫

1

ηn
K(

x− t

ηn
)dS(t), where K(x) = 1

21(|x|≤1) and ηn → 0 (2.2)

(e.g., ηn = n−1/5), and replace S by the product-limit-estimate (PLE), denoted by Ŝb,

based on observations (Ti(b), δi)’s. Let F = 1 − S for S ∈ F and let F̂b = 1 − Ŝb. Since

fS(x) = S(x−ηn)−S(x+ηn)
2ηn

, (2.1) becomes

l(b) = L(Ŝb,b, f̂Sb
) =

n
∏

i=1

[

(fŜb
(Ti(b)))δi(Ŝb(Ti(b)))1−δi

]

=

n
∏

i=1

[ 1

2ηn
[Ŝb((Ti(b) − ηn)−) − Ŝb(Ti(b) + ηn)]δi(Ŝb(Ti(b)))1−δi

]

. (2.3)

Yu and Wong call a value of b that maximizes l(·) over all b ∈ Rp an MSMLE of β. The

MSMLE of So(t) based on Y1 −X′
1β̂, ..., Yn −X′

nβ̂ is denoted by Ŝ(t).

It is obvious that the MSMLE of β is consistent only when the parameter is identifiable.

Yu and Dong (2019) establish the NS conditions for the parameter being identifiable under the

semi-parametric linear regression model. Let DT be the support set of fT , that is, P (||T−t|| <

c) > 0 ∀ c > 0 if t ∈ DT , where || · || denotes a norm. Here T can be W , Y , C or X. Let

Co = C −X′β and τo = τCo
. Define

A =







(−∞, τo) if P (C = τC) = 0 < SW (τo−)
(−∞, τo] if P (C = τC)SW (τo) > 0
(−∞,∞) if SW (τo−) = 0 or P (C = τC)SW (τo−) > 0 = SW (τo)

(2.4)

Definition. Assume (A1) holds. (So, β) is said to be identifiable if

(S∗(t− x′β∗) = So(t− x′β) ∀ t− x′β ∈ A implies that (S∗(t), β∗) = (So(t), β) ∀ t ∈ A.

Theorem 1 (Yu and Dong (2019)). Suppose that (A1) holds and τo < ∞. Then

(a) The survival function SW (t) is identifiable iff t ∈ A.

(b) The parameter β is identifiable iff Bx0
6= ∅, where x0 ∈ Dx such that τC −β′x0 = τo, and

Bx0
=

{

(w1,x1, ..., wp,xp) : x1 − x0, ...,xp − x0 are linearly independent, xi ∈ Dx,

wi ∈ DW and wi + β′xi

{

≤ τC if P (C = τC) > 0
< τC otherwise

}

6



Theorem 2 (Yu and Dong (2019)). Suppose that (A1) holds and τo = ∞.

(a) The survival function SW (t) is identifiable for each t.

(b) The parameter β is identifiable iff ∃ x0 ∈ Dx such that Bx0
6= ∅, where

Bx0
=

{

(x1, ...,xp): x1 − x0, ...,xp − x0 are linearly independent, and xi ∈ Dx
}

.

Here x0 = 0 if 0 ∈ Dx, otherwise x0, ..., xp are vectors belonging to Dx.

Notice that if (A1) holds, then (A2) corresponds to µ(Bx0
) > 0.

We shall make use of the modified Kullback-Leibler (KL) inequality as follows.

Proposition 1 (Yu (2020)). If fi ≥ 0,
∫

f1(t)dµ1(t) = 1 and
∫

f2(t)dµ1(t) ≤ 1, where µ1 is

a measure, then
∫

f1(t)ln f1(t)
f2(t)

dµ1(t) ≥ 0, with equality iff f1 = f2 a.e. w.r.t. µ1.

Denote S(t|x) = So(t− x′β), Ŝ(t|x) = Ŝβ̂(t− x′β̂), Ŝβ(t|x) = Ŝβ(t− x′β) and S∗(t|x) =

S∗(t − x′β∗), where S∗ ∈ F and β∗ ∈ Rp. In view of Eq. (2.3), one may write the measure

w.r.t. the cdf’s F (m, s,x) (
def
= FM,δ,x(m, s,x)) and F∗(m, s,x) as

dF (m, s,x) =1(s = 0)dF (m, 0,x) + 1(s = 1)dF (m, 1,x),

dF (m, 0,x) =S(m|x)dFC(m)dFx(x),

dF (m, 1,x) =SC(m)dF (m|x)dFx(x), (2.5)

dF∗(m, s,x) =1(s = 0)S∗(m|x)dFC(m)dFx(x) + 1(s = 1)SC(m)dF∗(m|x)dFx(x).

In view of Eq. (2.5), the Proposition 1 under the LR model is modified as follows.

Proposition 2. Let S(t|x) be the true conditional survival function and g(t|x) = 1. Let

g∗(t|x) =























0 if t− x′β /∈ DW
S∗(t−|x)−S∗(t+|x)
S(t−|x)−S(t|x) if S(t− |x) − S(t|x) > 0,

S′

∗
(t|x)

S′(t|x) if S′(t|x) > 0 and S′
∗(t|x) exist,

limsups↓0
S∗(t−s|x)−S∗(t+s|x)
S(t−s|x)−S(t+s|x) otherwise ( 00

def
= 0).

(2.6)

Then (1)
∫

ln S(t|x)
S∗(t|x)dF (t, 0,x) +

∫

ln g(t|x)
g∗(t|x)dF (t, 1,x) ≥ 0, ∀ S∗(t|x); and

(2) the equality holds iff S∗(t|x) = S(t|x) ∀ t ∈ A.

Proof. Let h∗(t, s|x) = 1(s = 0)S∗(t|x)
S(t|x) + 1(s = 1) g∗(t|x)

g(t|x) . One can treat h∗ the density of

F∗(t, s|x) w.r.t. the measure dF (t, s|x), where F (t, s,x) = F (t, s|x)Fx(x). Then the density
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of S(t|x) w.r.t. the measure dF (t, s|x) is h(t, s|x) = 1(s = 0)S(t|x)
S(t|x) + 1(s = 1) g(t|x)

g(t|x) = 1.

Given S∗(t|x), by Proposition 1, 0 ≤
∫

h(t, s|x)ln h(t,s|x)
h∗(t,s|x)dF (t, s|x), and the equality holds iff

S∗(t|x) = S(t|x) ∀ t ∈ A. Thus 0 ≤
∫ ∫

h(t, s|x)ln h(t,s|x)
h∗(t,s|x)dF (t, s|x)dFx(x) and the equality

holds iff S∗(t|x) = S(t|x) ∀ t ∈ A.

3. The Main Results. We establish the consistency of the MSMLE in this section. When

we say that Ŝ(t) is consistent, we mean that t ∈ A.

Theorem 3. The MSMLE (Ŝ, β̂) is consistent if the identifiability conditions stated in The-

orems 1 and 2 hold.

Proof. let Ωo be the subset of the sample space Ω such that the empirical distribution

function (edf) F̂n(t, s,x) based on (Mi, δi,Xi)’s converges to F (t, s,x), the cdf of (M, δ,X).

It is well-known that P (Ωo) = 1. Notice that the MSMLE (Ŝ, β̂) is a function of (ω, n), say

(Ŝ(·)(ω, n), β̂n(ω)), where ω belongs to the sample space and n is the sample size. Hereafter,

fix an ω ∈ Ωo, since β̂ (= β̂n(ω)) is a sequence of vectors in Rp, there is a convergent

subsequence with the limit β∗, where the components of β∗ can be ±∞. For simplicity,

we shall suppress (ω, n) hereafter. Moreover, Ŝ is a sequence of bounded non-increasing

functions, Helly’s selection theorem ensures that given any subsequence of Ŝ, there exists a

further subsequence which is convergent. By taking convergent subsequence, without loss of

generality (WLOG), we can assume that β̂ → β∗ and Ŝ → S∗ ∈ F . It is well known that

supt∈A |Ŝβ(t) − So(t)| → 0 a.s..

Since (Ŝ, β̂) is the MSMLE, 1
n lnl(β̂) ≥ 1

n lnl(β) (see Eq. (2.3)), thus

∫

lnŜ(t|x)dF̂n(t, 0,x) +

∫

ln(Ŝ(t− ηn|x) − Ŝ(t + ηn|x))dF̂n(t, 1,x) (see (2.3))

≥

∫

lnŜβ(t|x)dF̂n(t, 0,x) +

∫

ln(Ŝβ(t− ηn|x) − Ŝβ(t + ηn|x))dF̂n(t, 1,x).

The last inequality yields

0 ≥

∫

ln
Ŝβ(t|x)

Ŝ(t|x)
dF̂n(t, 0,x) +

∫

ln
Ŝβ(t− ηn|x) − Ŝβ(t + ηn|x)

Ŝ(t− ηn|x) − Ŝ(t + ηn|x)
dF̂n(t, 1,x). (3.1)
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By assumption, F̂n(·, ·, ·)(ω) → F (·, ·, ·) on Ωo. We shall prove in Lemmas 2 and 3 that

lim
n→∞

∫

ln
Ŝβ(t|x)

Ŝ(t|x)
dF̂n(t, 0,x) ≥

∫

ln
S(t|x)

S∗(t|x)
dF (t, 0,x) (in Lemma 2), (3.2)

lim
n→∞

∫

ln
Ŝβ(t− ηn|x) − Ŝβ(t + ηn|x)

Ŝ(t− ηn|x) − Ŝ(t + ηn|x)
dF̂n(t, 1,x) ≥

∫

ln
g(t|x)

g∗(t|x)
dF (t, 1,x). (3.3)

Then 0 ≥

∫

ln
S(t|x)

S∗(t|x)
dF (t, 0,x) +

∫

ln
g(t|x)

g∗(t|x)
dF (t, 1,x) (by Eq.s (3.1), (3.2) and (3.3))

≥0 (by Proposition 2)

The last two inequalities imply that
∫

ln S(t|x)
S∗(t|x)dF (t, 0,x) +

∫

ln g(t|x)
g∗(t|x)dF (t, 1,x) = 0. Thus

S∗(t|x) = S(t|x) (i.e., S∗(t − β′
∗x) = So(t − β′x)) ∀ (t,x) ∈ DM,x by Statement (2) of

Proposition 2. Since the NS assumptions of the identifiability of (So(t), β) in Theorems 1 and

2 hold, (S∗(t), β∗) = (So(t), β) ∀ t ∈ A by Theorems 1 and 2. Recall P (Ωo) = 1, thus the

MSMLE (Ŝo(t), β̂) is consistent for t ∈ A.

We shall make use of Fatou’s Lemma with varying measures (see Lemma 1 below) in the

proofs of Lemmas 2 and 3.

Lemma 1 (Proposition 17 in Royden (1968), page 231). Suppose that µn is a sequence of

measures on the measurable space (S,B) such that µn(B) → µ(B), ∀ B ∈ B, gn and fn are

non-negative measurable functions, and lim
n→∞

(fn, gn)(x) = (f, g)(x). Then

(1)
∫

f dµ ≤ lim
n→∞

∫

fn dµn;

(2) if gn ≥ fn (≥ 0) and lim
n→∞

∫

gndµn =
∫

gdµ, then
∫

fdµ = lim
n→∞

∫

fndµn.

Corollary 1. Suppose that µn is a sequence of measures on the measurable space (S,B) such

that lim
n→∞

µn(B) → µ(B), ∀ B ∈ B, f and fn are integrable functions, n ≥ 1.

(1) If fn are bounded below and f(x) = lim
n→∞

fn(x), then
∫

f dµ ≤ lim
n→∞

∫

fn dµn.

(2) If fn are bounded below then
∫

lim
n→∞

fn dµ ≤ lim
n→∞

∫

fn dµn.

Lemma 2. Under the assumptions in the proof of Theorem 3,

lim
n→∞

∫

ln
Ŝβ(t|x)

Ŝ(t|x)
dF̂n(t, 0,x) ≥ ln

S(t|x)

S∗(t|x)
dF (t, 0,x) (i.e. inequality (3.2) holds).
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Proof. For the given ω ∈ Ωo and (S∗, β∗) in Eq. (3.2), as assumed, Ŝ(t) → S∗(t), β̂(ω) → β∗,

and S∗(t) is continuous a.e.. S∗(t|x) = lim
n→∞

Ŝ(t − x′β̂), which equals S∗(t − x′β∗) a.e. in

t− x′β∗ w.r.t. the measure induced by FM,δ,X, except perhaps at the discontinuous point of

S∗, say w and S∗(t|x) = S∗(w−), where w = t − x′β∗. Let α = supt∈A So(t), where A is as

in Eq. (2.4). Then either (1) α > 0 or (2) α = 0.

Suppose that α > 0. Then ∃ no such that Ŝβ(t) ≥ α/2 ∀ t ∈ A and n ≥ no, as

supt∈A |Ŝβ(t) − SW (t)| → 0 a.s.. Denote G(t,x, n) = Ŝ(t|x)

Ŝβ(t|x)
, we have

lim
n→∞

G(t,x, n) =
S∗(t|x)

S(t|x)
if S(t|x) > 0. (3.4)

Let Ak = {(t,x) : G(t,x, n) ≤ k, ∀ n ≥ no} and Bk = Ak \ Ak−1, k ≥ 1. Since G(t,x, n) is

finite for each n ≥ no, provided that S(t|x) > 0, we have

∪k≥1Bk = U
def
= {(t,x) : S(t|x) ≥ α} (and

∫

1((t,x) ∈ ∪k≥1Bk)dF (t, s,x) = 1). (3.5)

For each k ≥ 1, let ak
def
= ln

Ŝβ(t|x)

Ŝ(t|x)
1((t,x) ∈ Bk).

lim
n→∞

∫

Bk

ln
Ŝβ(t|x)

Ŝ(t|x)
dF̂n(t, 0,x)

≥

∫

Bk

lim
n→∞

ln(
S(t|x)

Ŝ(t|x)
)dF (t, 0,x) (by (2) of Corollary 1

as a1 ∈ [0,∞), ak ∈ [ln(1/k), ln(1/(k − 1))], k ≥ 2)

=

∫

Bk

ln( lim
n→∞

(Ŝβ(t|x)

(Ŝ(t|x)
)dF (t, 0,x) (as ln(x) is continuous )

=

∫

Bk

ln
S(t|x)

S∗(t|x)
dF (t, 0,x) (see (3.4))

=

∫

Bk

H(
S(t|x)

S∗(t|x)
)
S∗(t|x)

S(t|x)
)dF (t, 0,x) (where H(t)

def
= tlnt ≥ −1/e)

=

∫

Bk

H(
S(t|x)

S∗(t|x)
)dF∗(t, 0,x) (see (2.5))

≥

∫

Bk

(−1/e)dF∗(t, 0,x) = (−1/e)

∫

Bk

1dF∗(t, 0,x) ≥ (−1/e)

∫

1dF∗(t, s,x) ≥ −1/e.

That is, for k ≥ 1, lim
n→∞

∫

Bk

ln
Ŝβ(t|x)

Ŝ(t|x)
dF̂n(t, 0,x) ≥

∫

Bk

ln
S(t|x)

S∗(t|x)
dF (t, 0,x) (3.6)

≥− 1/e. (3.7)

10



Then lim
n→∞

∫

ln
Ŝβ(t|x)

Ŝ(t|x)
dF̂n(t, 0,x)

= lim
n→∞

∑

k≥1

∫

Bk

ln
Ŝβ(t|x)

Ŝ(t|x)
dF̂n(t, 0,x) (by (3.5))

= lim
n→∞

∫

k≥1

∫

Bk

ln
Ŝβ(t|x)

Ŝ(t|x)
dF̂n(t, 0,x)dν(k) (dν is a counting measure)

≥

∫

k≥1

lim
n→∞

∫

Bk

ln
Ŝβ(t|x)

Ŝ(t|x)
dF̂n(t, 0,x)dν(k) (by (1) of Corollary 1 and (3.7))

≥

∫

k≥1

∫

Bk

ln
S(t|x)

S∗(t|x)
dF (t, 0,x)dν(k) (by (3.6))

=
∑

k≥1

∫

Bk

ln
S(t|x)

S∗(t|x)
dF (t, 0,x) =

∫

ln
S(t|x)

S∗(t|x)
dF (t, 0,x). (3.8)

Thus (3.2) holds if α = supt∈A So(t) > 0.

Now suppose that case (2) holds, that is, α = supt∈A So(t) = 0. Let K be the set of all

positive integers, and Um = {(t,x) : S(t− x′β) ∈ (1/(m + 1), 1/m]}, where m ∈ K.

For each m ∈ K, ∃ nm such that Ŝβ(t|x) > 1/(2m) ∀ So(t − x′β) ∈ (1/(m + 1), 1/m].

Denote G(t,x, n) = Ŝ(t|x)

Ŝβ(t|x)
as before, but redefine

Ak = {(t,x) : So(t− x′β) ∈ (1/(m + 1), 1/m], G(t,x, n) ≤ k, ∀ n ≥ nm} (3.9)

and Bk = Ak \ Ak−1, k ∈ K, we have ∪k≥1Bk = Um. Then by a similar arguments as in

proving (3.6), (3.7) and (3.8) (i.e., replacing U by Um), we can show that for m ∈ K,

lim
n→∞

∫

(t,x)∈Um

ln
Ŝβ(t|x)

Ŝ(t|x)
dF̂n(t, 0,x) ≥

∫

(t,x)∈Um

ln
S(t|x)

S∗(t|x)
dF (t, 0,x) (3.10)

≥− 1/e. (3.11)

Their proofs are relegated to Appendix. Moreover, replacing Bk by Um in the proof of

Inequality (3.8), we have

lim
n→∞

∫

ln
Ŝβ(t|x)

Ŝ(t|x)
dF̂n(t, 0,x)

= lim
n→∞

∑

m=1

∫

(t,x)∈Um

ln
Ŝβ(t|x)

Ŝ(t|x)
dF̂n(t, 0,x)

11



= lim
n→∞

∫ ∞

m≥1

∫

(t,x)∈Um

ln
Ŝβ(t|x)

Ŝ(t|x)
dF̂n(t, 0,x)dν(m) (dν is a counting measure)

≥

∫

m≥1

lim
n→∞

∫

(t,x)∈Um

ln
Ŝβ(t|x)

Ŝ(t|x)
dF̂n(t, 0,x)dν(m) (by (1) Coro. 1 and (3.11))

≥
∞
∑

m=1

∫

(t,x)∈Um

ln
S(t|x)

S∗(t|x)
dF (t, 0,x) (by (3.10)

=

∫

ln
S(t|x)

S∗(t|x)
dF (t, 0,x).

which is (3.2) in the case that supt∈A So(t) = 0.

Lemma 3. Under the assumptions set in the proof of Theorem 2, inequality (3.3) holds, i.e.,

lim
n→∞

∫

ln
Ŝβ(t−ηn|x)−Ŝβ(t+ηn|x)

Ŝ(t−ηn|x)−Ŝ(t+ηn|x)
dF̂n(t, 1,x) ≥

∫

ln g(t|x,β)
g∗(t|x) dF (t, 1,x),

where g(t|x, β) ≡ 1 and g∗(t|x) is as in (2.6).

Proof. For the given ω ∈ Ωo, Ŝ(t|x)(ω) and (S∗, β∗) in the proof of Theorem 2, denote

G(t,x, n) = Ŝ(t−ηn|x)−Ŝ(t+ηn|x)

Ŝβ(t−ηn|x)−Ŝβ(t+ηn|x)
. By (2.6),

lim
n→∞

G(t,x, n) = g∗(t|x) =
g∗(t|x)

g(t|x, β)
if t− b′β ∈ A ∩ DW .

Notice that the denominator Ŝβ(t− ηn|x) − Ŝβ(t + ηn|x) of G(t,x, n) can be zero if n is

small. By the definition of DW , if w ∈ DW ∩A, then Ŝβ(w− ηn)− Ŝβ(w+ ηn) > 0 for n large

enough. Thus G(t,x, n) is finite for n large enough, provided that t− x′β ∈ DW ∩ A. Hence

we can partition DW ∩ A as follows. For each m ∈ K, let

Um = {(t,x) : G(t,x, n) is finite for n > m, but not for n = m}.

We shall first prove inequalities similar to (3.6) and (3.7), and then prove (3.3).

Given m ∈ K, let Ak = {(t,x) ∈ Um : G(t,x, n) ≤ k, ∀ n ≥ m} and Bk = Ak \ Ak−1,

k ≥ 1. Then ∪k≥1Bk = Um.

For each k ≥ 1, let ak
def
= ln

Ŝβ(t−ηn|x)−Ŝβ(t+ηn|x)

Ŝ(t−ηn|x)−Ŝ(t+ηn|x)
1((t,x) ∈ Bk).

lim
n→∞

∫

Bk

ln
Ŝβ(t− ηn|x) − Ŝβ(t + ηn|x)

Ŝ(t− ηn|x) − Ŝ(t + ηn|x)
dF̂n(t, 1,x)
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≥

∫

Bk

lim
n→∞

ln(
(Sβ(t− ηn|x) − Sβ(t + ηn|x))

(Ŝ(t− ηn|x) − Ŝ(t + ηn|x))
)dF (t, 1,x) (by (2) of Corollary 1

as a1 ∈ [0,∞), ak ∈ [ln(1/k), ln(1/(k − 1))], k ≥ 2)

=

∫

Bk

ln( lim
n→∞

(Ŝβ(t− ηn|x) − Ŝβ(t + ηn|x))

(Ŝ(t− ηn|x) − Ŝ(t + ηn|x))
)dF (t, 1,x) (as ln(x) is continuous )

=

∫

Bk

ln
g(t|x)

g∗(t|x)
dF (t, 1,x) (see (2.6))

=

∫

Bk

H(
g(t|x)

g∗(t|x)
)
g∗(t|x)

g(t|x)
)dF (t, 1,x) (where H(t)

def
= tlnt ≥ −1/e)

=

∫

Bk

H(
g(t|x)

g∗(t|x)
)dF∗(t, 1,x) (see (2.5))

≥

∫

Bk

(−1/e)dF∗(t, 1,x) ≥ −1/e.

That is, for k ≥ 1,

lim
n→∞

∫

Bk

ln
Ŝβ(t− ηn|x) − Ŝβ(t + ηn|x)

Ŝ(t− ηn|x) − Ŝ(t + ηn|x)
dF̂n(t, 1,x) ≥

∫

Bk

ln
g(t|x)

g∗(t|x)
dF (t, 1,x) (3.12)

≥− 1/e. (3.13)

=> lim
n→∞

∫

Um

ln
Ŝβ(t− ηn|x) − Ŝβ(t + ηn|x)

Ŝ(t− ηn|x) − Ŝ(t + ηn|x)
dF̂n(t, 1,x)

= lim
n→∞

∑

k≥1

∫

Bk

ln
Ŝβ(t− ηn|x) − Ŝβ(t + ηn|x)

Ŝ(t− ηn|x) − Ŝ(t + ηn|x)
dF̂n(t, 1,x) (as ∪k≥1Bk = Um)

= lim
n→∞

∫

k≥1

∫

Bk

ln
Ŝβ(t− ηn|x) − Ŝβ(t + ηn|x)

Ŝ(t− ηn|x) − Ŝ(t + ηn|x)
dF̂n(t, 1,x)dν(k) (dν is a counting measure)

≥

∫

k≥1

lim
n→∞

∫

Bk

ln
Ŝβ(t− ηn|x) − Ŝβ(t + ηn|x)

Ŝ(t− ηn|x) − Ŝ(t + ηn|x)
dF̂n(t, 1,x)dν(k) (by (1) of Coro. 1 and (3.13))

≥

∫

k≥1

∫

Bk

ln
g(t|x)

g∗(t|x)
dF (t, 1,x)dν(k) (by (3.12))

=
∑

k≥1

∫

Bk

ln
g(t|x)

g∗(t|x)
dF (t, 1,x) =

∫

Um

ln
g(t|x)

g∗(t|x)
dF (t, 1,x) (≥ −1/e).

lim
n→∞

∫

ln
Ŝβ(t− ηn|x) − Ŝβ(t + ηn|x)

Ŝ(t− ηn|x) − Ŝ(t + ηn|x)
dF̂n(t, 1,x)Finally,

= lim
n→∞

∞
∑

m=1

∫

Um

ln
Ŝβ(t− ηn|x) − Ŝβ(t + ηn|x)

Ŝ(t− ηn|x) − Ŝ(t + ηn|x)
dF̂n(t, 1,x)
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= lim
n→∞

∫

m≥1

∫

Um

ln
Ŝβ(t− ηn|x) − Ŝβ(t + ηn|x)

Ŝ(t− ηn|x) − Ŝ(t + ηn|x)
dF̂n(t, 1,x)dν(m)

≥

∫

m≥1

lim
n→∞

∫

Um

ln
Ŝβ(t− ηn|x) − Ŝβ(t + ηn|x)

Ŝ(t− ηn|x) − Ŝ(t + ηn|x)
dF̂n(t, 1,x)dν(m)

≥
∑

m≥1

∫

Um

ln
g(t|x)

g∗(t|x)
dF (t, 1,x)

=

∫

ln
g(t|x)

g∗(t|x)
dF (t, 1,x).Thus (3.3) holds.

Remark. Even though the MSMLE is an extension of the SMLE, the SMLE is not always

consistent under the identifiability condition. The reason is that fW (t) = P (W ∈ (t − η, t]),

where η = min{|Wi −Wj | : i 6= j}. Under the continuity assumption, there is no observation

within [W − η,W + η]. But the MSMLE is different in this regard.
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4. Appendix.

Proof of Corollary 1. Let k = infn infx fn(x). If k ≥ 0 then the corollary follows from

Lemma 1. Otherwise, let f−
n (x) = 0 ∧ fn(x), f+

n (x) = 0 ∨ fn(x), f−(x) = 0 ∧ f(x) and

f+(x) = 0 ∨ f(x). Then f+
n → f+ and f−

n → f− pointwisely, as fn → f in Case (1). Then

lim
n→∞

∫

fndµn = lim
n→∞

∫

(f+
n + f−

n )dµn = lim
n→∞

[

∫

f+
n dµn +

∫

f−
n dµn]

≥ lim
n→∞

∫

f+
n dµ + lim

n→∞

∫

f−
n dµn

= lim
n→∞

∫

f+
n dµn +

∫

lim
n→∞

f−
n dµn (by statement (2) of Lemma 1, as |f−

n (x)| ≤ k)

≥

∫

lim
n→∞

f+
n dµ +

∫

f−dµ (by statement (1) of Lemma 1, as f+
n (x) is nonnegative)

=

∫

f+dµ +

∫

f−dµ =

∫

(f+ + f−)dµ =

∫

fdµ i.e., statement (1) holds.

Let gn(x) = inf{fk(x) : k ≥ n}, then gn(x) → g(x) = lim
n→∞

fn(x). We have

∫

lim
n→∞

fn dµ =

∫

lim
n→∞

gn dµ ≤ lim
n→∞

∫

gn dµn (by statement (1)), as gn is bounded below)

= lim
n→∞

∫

inf{fk : k ≥ n} dµn

≤ lim
n→∞

∫

fn dµn (which is statement (2)).

Proof of Eq. (3.10) and Eq. (3.11). Given m ∈ K, since G(t,x, n) is finite ∀ (t,x) ∈ Um

and for each n ≥ no, we have ∪k≥1Bk = Um. For each k ≥ 1, let ak
def
= ln

Ŝβ(t|x)

Ŝ(t|x)
1((t,x) ∈ Bk).

lim
n→∞

∫

Bk

ln
Ŝβ(t|x)

Ŝ(t|x)
dF̂n(t, 0,x)

≥

∫

Bk

lim
n→∞

ln(
S(t|x)

Ŝ(t|x)
)dF (t, 0,x) (by (2) of Corollary 1

as a1 ∈ [0,∞), ak ∈ [ln(1/k), ln(1/(k − 1))], k ≥ 2)

=

∫

Bk

ln( lim
n→∞

(Ŝβ(t|x)

(Ŝ(t|x)
)dF (t, 0,x) (as ln(x) is continuous )

=

∫

Bk

ln
S(t|x)

S∗(t|x)
dF (t, 0,x) (see (3.4))

=

∫

Bk

H(
S(t|x)

S∗(t|x)
)
S∗(t|x)

S(t|x)
)dF (t, 0,x) (where H(t)

def
= tlnt ≥ −1/e)
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=

∫

Bk

H(
S(t|x)

S∗(t|x)
)dF∗(t, 0,x) (see (2.5))

≥

∫

Bk

(−1/e)dF∗(t, 0,x).

That is, for k ≥ 1, lim
n→∞

∫

Bk

ln
Ŝβ(t|x)

Ŝ(t|x)
dF̂n(t, 0,x) ≥

∫

Bk

ln
S(t|x)

S∗(t|x)
dF (t, 0,x) (4.1)

≥− 1/e

∫

Bk

1dF (t, 0,x). (4.2)

Notice that the proof so far till Eq. (4.1) and Eq. (4.2) is identical to the proof of Eq. (3.6)

and Eq. (3.7).

Then lim
n→∞

∫

(t,x)∈Um

ln
Ŝβ(t|x)

Ŝ(t|x)
dF̂n(t, 0,x)

= lim
n→∞

∑

k≥1

∫

Bk

ln
Ŝβ(t|x)

Ŝ(t|x)
dF̂n(t, 0,x) (as ∪kBk = Um)

= lim
n→∞

∫

k≥1

∫

Bk

ln
Ŝβ(t|x)

Ŝ(t|x)
dF̂n(t, 0,x)dν(k) (dν is a counting measure)

≥

∫

k≥1

lim
n→∞

∫

Bk

ln
Ŝβ(t|x)

Ŝ(t|x)
dF̂n(t, 0,x)dν(k) (by (1) of Corollary 1 and (4.2))

≥

∫

k≥1

∫

Bk

ln
S(t|x)

S∗(t|x)
dF (t, 0,x)dν(k) (by (4.1))

=
∑

k≥1

∫

Bk

ln
S(t|x)

S∗(t|x)
dF (t, 0,x) =

∫

(t,x)∈Um

ln
S(t|x)

S∗(t|x)
dF (t, 0,x). (3.6)

≥− 1/e. (3.7)

It is worth mentioning that the proof upto Eq. (3.6) is almost the same as the proof in deriving

Eq. (3.8), except that
∫

in Eq. (3.8) is replaced by
∫

Um
in Eq. (3.6).
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