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Abstract. We study the existing models for right-censored competing risks data and with
masked failure cause. By introducing a new random variable hidden behind the current
models, we give a practical interpretation of the symmetry assumption made by almost
all researchers in this field. We further point out that the drawback of the symmetry
assumption is that it has a strong restriction on the underlying distribution function to be
studied. Moreover, we correct an assumption in the current models.
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1. Introduction. We study the existing models for right-censored (RC) competing risks
data with masked failure cause, called RMCR data hereafter. Friedman and Gertsbakh
(1980) are the pioneers on the study of RMCR. Since then the study of competing risks data
has become an important field in survival analysis and reliability theory. Mukhopadhyay
(2006) gives an extensive review of the literature.

An RMCR observation consists of the observation on the failure time T and the obser-
vation on the associated failure cause C of a J-component series system. A J-component
series system is a system that stops functioning as soon as one of its constituent J compo-
nents fails. Let Xj be the lifetime of the jth component, j = 1, ..., J . We assume that
P (Xi = Xj) = 0 if i 6= j. Then (T,C) satisfies T = min{X1, ..., XJ} = XC . In engineering
and medical applications, X1, ..., XJ may or may not be independent.

In reality, the failure time may be right censored by a censoring variable R, and the

observation on T is (V, δ), where V is the minimum of T and R, and δ (
def
= 1(T≤R)) is the

indicator function of the event {T ≤ R}. Moreover, one may not be able to observe C
exactly. For instance, in examining a failed system, one may narrow down the failure cause
to a subset M of Cr (= {1, ..., J}) and stop for various practical reasons. It is then said that
at the failure time T the failure cause C is masked by M. If T ≤ R, M is the observation
on C. Otherwise, we assume that M is missing and we know nothing about C.

Hereafter, denote J the collection of all the subsets of Cr, including Cr but not the empty
set ∅. Denote ST (t) = P (T > t), FT,C(t, c) = P{T ≤ t, C ≤ c} with its density function
(df) fT,C , fM|T,C(A|t, c) = P{M = A|T = t, C = c} and fM|C(A|c) = P{M = A|C = c}.
Moreover, denote the “cdf” FT,C,M,R in an obvious way, though M is a random set, not a
random variable. The so-called symmetry assumption made by almost all of the research
concerned with masking is S1 as follows.

S1 (S1a) ∀ A in J , νc(A) is constant in c pertaining to A, where νc(A)
def
= fM|C(A|c).

(S1b) ∀ A in J and ∀ c, t > 0, νt,c(A) = νc(A), where νt,c(A)
def
= fM|T,C(A|t, c).

S2 (M, T ) and R are independent ((M, T ) ⊥ R) (see Mukhopadhyay, 2006)).

In the literature, the n observations on T are specified by (V1, δ1), ..., (Vn, δn) and the n
observations on C are specified by Mi if δi = 1 and are missing otherwise. In order to
specified an independent assumption on observations, it is assumed in the literature (see
Mukhopadhyay, 2006) that

S3 (T1, C1,M1), ..., (Tn1
, Cn1

,Mn1
), Tn1+1, ..., Tn are independent. T1, ..., Tn are i.i.d.

copies of T , δ1 = · · · = δn1
= 1 and δn1+1 = · · · = δn = 0.

Based on S1, S2 and S3, the likelihood of fT,C becomes

L =
(

n1
∏

i=1

{

∫

t=Vi≤u, c∈Mi

dFT,C,M,R(t, c,Mi, u)}
)

n
∏

i>n1

P{T > Vi = R} (by (S3)) (1.1)

=
(

n1
∏

i=1

{
∑

t=Vi, c∈Mi

fT,C,M(t, c,Mi)SR(Vi−)}
)

n
∏

i>n1

ST (Vi)fR(Vi) (by S2)

∝
(

n1
∏

i=1

{
∑

t=Vi, c∈Mi

fT,C(t, c)νt,c(Mi)}
)

n
∏

i>n1

ST (Vi) (
def
= Λ)

1



=
(

n1
∏

i=1

{
∑

t=Vi, c∈Mi

fT,C(t, c)νc(Mi)}
)

n
∏

i>n1

ST (Vi) (
def
= Λc) (by S1b)

∝
(

n1
∏

i=1

{
∑

t=Vi, c∈Mi

fT,C(t, c)}
)

n
∏

i>n1

ST (Vi) (
def
= Lc). (by S1a)

(see, e.g., Flehinger et al, 2001 and Sen et al, 2001 for more details on the derivation above).
Yu et al. (2010) call the model that assumes S1, S2 and S3 the Conditional Masking

Probability (CMP) model 1. The model leads to the likelihood Lc. Moreover, they name
the model that assumes S1b, S2 and S3 the CMP model 2. The latter model leads to the
likelihood Λc in (1.1).

The CMP Model 2 has more parameters than the CMP model 1, and thus it is more
flexible. Guttman et al. (1995) and Kuo and Yang (2000) make MLE and Bayesian in-
ferences based on CMP model 2. However, unless additional constraints are imposed, the
parameter under CMP Model 2, can be non-identifiable (see Example 11 in Yu et al., 2010).
Thus CMP model 2 is useful under the assumption that there are stage-2 data or prior
information.

In the literature in order to justify the likelihood Λc or Lc, people make use of the
symmetry assumption, which “is done purely for mathematical convenience without prac-
tical justification” (see Mukhopadhyay and Basu 2007, p.33115). Yu et al. (2010) study
its practical justification under the new random partition masking (RPM) model they pro-
posed. Since the CMP models are not special cases of the RPM model, we shall reinvestigate
the practical justification of the symmetry assumption without the restriction of the RPM
model in the short note.

2. The Main Results. The original formulation of the CMP models is based on S3 as
well as S1 and S2 (see (1.1)). Notice that S3 is related to P (T ≤ R). If P (T ≤ R) = 1,
there is no censoring, thus it is not of interests, as long as the RMCR data are concerned.
If P (T ≤ R) = 0 then it implies that there exists a point t such that P (R ≤ t < T ) = 1. It
follows that the right-censored sample does not provide any information for T and C and
should be deleted. Thus the CMP models are only relevant if P (T ≤ R) ∈ (0, 1).
Proposition 1. S3 is false if P (T ≤ R) ∈ (0, 1).

In view of Proposition 1, S3 is a false statement. However, its role can be replaced by
another assumption to be specified next. An interesting feature of the RMCR data is that

1. T is not always observable and is censored by R, which is not always observable too.
2. C is not always observable and is masked by M, which may be missing too.

While (V, δ) is the observation on T , the observation on C is not defined in the literature if
T > R, as M is missing if T > R. We define the observable random set on C by Mo where

Mo =

{

M if T ≤ R
Cr if T > R.

Mukhopadhyay (2006) maybe the first person who points out that

M 6= Cr if T > R. If one defines M = Cr when T > R, then S2 becomes false. But he does
not define Mo. M is what we know about C at the failure time T and Mo is what we know
about C at the observable time V . S3 should be replaced by the assumption as follows

(Vi, δi,Mi)’s are i.i.d. copies of (V, δ,Mo). (2.1)
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The likelihood of the observed RMCR data can be written as

Λ =
n

∏

i=1

(

{
∑

t=Vi, c∈Mi

fT,C(t, c)νt,c(Mi)}
)δi

(ST (Vi))
1−δi ,

which is the same as the Λ in (1.1).
To understand the CMP models, we first define some notations. Notice that M is

associated with at least one random partition of Cr, namely, Pr =

{

{M,Mc} if M 6= Cr,
{M} otherwise

,

where Mc = Cr \ M. Let P be the collection of all partitions of Cr that satisfy the
following conditions: Ph ∈ P implies that Ph = {Ph1, ..., Phkh

}, Phi ∈ J , ∪kh

i=1Phi = Cr and
Phi ∩ Phj = ∅ ∀ i 6= j. Notice that {Cr, ∅} /∈ P. By definition, for each given partition Ph

and given C = c, there exists an i such that C = c ∈ Phi. For instance, P1 = {{1}, {2}, ...,
{J}}, P2 = {{1}, {2}, {3, 4, ..., J}} and P3 = {Cr} are three such partitions.

The P2 can be interpreted as follows: In the process of determining the cause of failure
in a J-component series system, exactly two steps will be taken. Steps 1 and 2 can determine
whether the failure is due to causes 1 and 2, respectively. If the failure is not due to these
two causes, no further investigation will be taken for cost saving. However, it is only one
of the six examination schemes corresponding to P2 and each has two steps. The first step
can be either of the three inspections:

(1) whether the cause is due to part 1;
(2) whether the cause is due to part 2;
(3) whether the cause is not due to parts 1 and 2.

The second step can be either of the 2 remaining inspections. Thus P2 corresponds to total

of 6 examination schemes. All the 6 of them result in M =







{1} if C = 1
{2} if C = 2
{3, 4, ..., J} otherwise.

In other words, an inspection scheme for the system corresponds to a partition. After
an inspection scheme is chosen, that is, after a partition (Ph1, ..., Phkh

) is chosen, M can
be uniquely determined. Notice that an inspection or partition Ph may not simply be
an examination procedure, but include information obtained from the description of the
symptoms of the failed system from the user or the symptoms of the patient collected in a
check list filled by the user or the patient.

It is obvious that ||P||, the number of all distinct partitions denoted by nP , is finite.
Thus one can order these partitions as P1, P2, ..., PnP . Let ∆ be a random variable taking
values in {1, ..., nP} with df f∆. The value of f∆(h) can be viewed as the proportion in the
population that inspection schemes corresponding to partition Ph have been taken. Then

(V, δ,Mo) =

{

(v, 0, Cr) if T > R = v,
(v, 1, Phj) if T = v ≤ R, ∆ = h and C ∈ Phj .

(2.2)

CMP model 1 should be formulated by assumptions (2.1) and (2.2) together with S1 and
S2, rather than S1, S2 and S3. CMP model 2 should be formulated by assumptions (2.1)
and (2.2) together with S1b and S2, rather than S1b, S2 and S3.

To give a practical justification of the symmetry assumption, it suffices to study the
relation between S1, S2 and ∆, we make use of the following assumptions:
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A1 (T,C) ⊥ (R,∆).

A2 for each t, fT (t) > 0 implies fT,C(t, c) > 0 for each c ∈ Cr.

A3 For each A ∈ J ,
∑

h: A∈Ph
f∆|C(h|c) is constant in c if c ∈ A.

A4 For each A ∈ J ,
∑

h: A∈Ph
f∆|T,C(h|t, c) =

∑

h: A∈Ph
f∆|C(h|c) if c ∈ A.

A5 (1(C∈A,A∈P∆), T ) ⊥ R ∀ A ∈ J , where P∆ = Ph if ∆ = h.

Lemma 1. νc(A) =

{
∑

h: A∈Ph
f∆|C(h|c) if fC(c) > 0

undefined if fC(c) = 0
∀ A ∈ J and c ∈ A.

Lemma 2. νt,c(A) =

{ ∑

h: A∈Ph
f∆|T,C(h|t, c) if c ∈ A and fC|T (c|t) > 0

undefined if fC|T (c|t) = 0 & fT (t) > 0,
∀ A ∈ J .

Lemma 3. Assumption S1b implies A2.

Proof. By Lemma 2, S1b implies A4. In A3 and A4, f∆|C(h|c) and f∆|T,c(h|t, c) are
needed. If fT (t) > 0 but fC|T (c|t) = 0 for some t, which is possible, then f∆|T,C(h|t, c) =
f∆,T,C(h,t,c)

fT,C(t,c) = 0
0 . One might consider to make a new convention to 0

0 . Since f∆|T,C(h|t, c) =
0
0 for each h and they should satisfy the constraint

∑

h f∆|T,C(h|t, c) = 1 and thus
∑

h
0
0 = 1.

As a consequence, f∆|T,C(h|t, c) = 0
0 = 1/||P||. However,

1

||P||
6= 1 =

∑

h

f∆|T,C(h|t, c) =

∑

h f∆,T,C(h, t, c)

fT,C(t, c)
=

fT,C(t, c)

fT,C(t, c)
=

0

0
.

That is, 0
0 = 1 6= 1

||P|| . As a conclusion, S1b implies A2.

Theorem 1. Under formulation (2.2),

1. S1a <=> A3;

2. S1b <=> A2 and A4;

3. S2 <=> A5.

Proof. The theorem follows from Lemmas 1, 2, and 3.

By Theorem 1, CMP model 1 is equivalent to a model that assumes (2.1), (2.2), A2,
A3, A4 and A5, and CMP model 2 is equivalent to a model that assumes (2.1), (2.2), A2,
A4 and A5.

The disadvantage of the CMP models is that it requires A2 and thus it is more restrictive
on FT,C . Yu et al. (2010) propose a different model that the RMCR data are generated by
(2.1) assuming (2.2) and A1. It leads to the same likelihood function Lc in (1.1), but not
Λc. They call the model the random partition masking (RPM) model. The RPM model
does not require A2 and allows FT,C to be arbitrary.

Proposition 2. (Yu et al. (2010)). When J = 2, CMP model 1 implies A1, A2 and

∆ ⊥ R. Thus it is a special case of the RPM model if J = 2.

Proposition 3. Suppose J = 3. CMP model 1 is not a special case of the RPM model

and the RPM model is not a special case of CMP model 1.

Concluding Remark. Our study indicates that both the old CMP model 1 and the
RPM model can be put in the same frame work, making use of the random vector (∆, R).
In view of Proposition 3, in general, the RPM model and CMP model 1 are two different
models. Our study in this paper shows that they both have their own merits. The RPM but
not the CMP model allows FT,C arbitrary. On the other hands, the CMP models weaken
the assumption (T,C) ⊥ (∆, R). This is clear now by Proposition 3.
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We are not proposing a new model for the RMCR data. Instead, we are trying to
understand what the old CMP model 1 means in terms of their symmetry assumption.
Thus the estimation and the inferences of the parameters in the model based on the new
interpretation will remain the same as the old one.

The study is useful in studying the properties of the estimators. For instance, in the
current literature, it is not known that the CMP models have the restriction A2 on FT,C .
Moreover, after one has a better understanding on the models, one may design a more
realistic model for the RMCR data, taking advantages of both the CMP models and the
RPM model. The authors are working on the new model.

3. Proofs.

Proof of Proposition 1. S3 intends to say that the observations are independent and
the first n1 have exact Ti’s and the remaining have right-censored Ti’s. Thus it follows that
δ1, ..., δn are independent and the first n1 δi’s are 1 and the rest of them are 0. S3 can be
interpreted in two ways. (1) n1 is fixed and thus there are two independent samples; (2) n1

is random, and n1 = n with positive probability.
In case (1) P{R ≥ T} > 0 means that with positive probability there are observations

with δi = 1 among those n − n1 observations. It contradicts S3 as S3 implies that δn1+1 =
· · · = δn = 0 w.p.1. Thus S3 is false.

In case (2), the nth
1 and (n1 + 1)th observations cannot be independent, as

P (δ1 = 1)P (δ2 = 0) =P (δ1 = 1, δ2 = 0) (by S3)

=P (δ1 = 1, δ2 = 0, ..., δn = 0) (by the definition of n1)

=P (δ1 = 1)P (δ2 = 0) · · ·P (δn = 0) (by S3)

It follows that P (δi = 0) is either 0 or 1, violating the assumption that P (δi = 0) ∈ (0, 1).
Proof of Lemma 1. For each A ∈ J and c ∈ A, if P (C = c) = 0 then νc(A) = P{M =
A|C = c} is undefined; otherwise

νc(A) =P{M = A|C = c}

=
∑

h

P{M = A,∆ = h|C = c}

=
∑

h

P{C ∈ A,A ∈ Ph,∆ = h|C = c} (by the definitions of ∆ and M)

=
∑

h: A∈Ph

P{C ∈ A,∆ = h|C = c} (as A and Ph are not random)

=
∑

h: A∈Ph

P{C = c,∆ = h|C = c}

=
∑

h: A∈Ph

f∆|C(h|c).

Proof of Lemma 2. For each A ∈ J and c ∈ A, if fT,C(t, c) = 0 and fT (t) > 0,
νt,c(A) = P{M = A|C = c, T = t} is undefined.
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For each A ∈ J and c ∈ A, if fT,C(t, c) > 0 then

νt,c(A) =P{M = A|C = c, T = t}

=
∑

h

P{M = A,∆ = h|C = c, T = t}

=
∑

h

P{C ∈ A,A ∈ Ph,∆ = h|C = c, T = t} (by the definitions of M and ∆)

=
∑

h: A∈Ph

P{C = c,∆ = h|C = c, T = t} (as A and Ph are not random)

=
∑

h: A∈Ph

P{∆ = h|C = c, T = t}

=
∑

h: A∈Ph

f∆|T,C(h|t, c).

Proof of Proposition 2. When J = 2, ||P|| = 2. Let P1 = {{1}, {2}} and P0 = {Cr}.
S1 says fM|T,C(Cr|t, c) = fM(Cr) ∀ (t, c). Thus (T,C) ⊥ 1(M=Cr) (= 1(∆=0)). It implies
that (T,C) ⊥ 1(∆=1), and thus (T,C) ⊥ ∆. Moreover, S2 yields (T,1(C=c,∆=1)) ⊥ R for
c = 1, 2. Thus (T,C,1(∆=1)) ⊥ R, which yields (T,C,1(∆=0)) ⊥ R. Thus (T,C,∆) ⊥ R.
As a summary, if J = 2, CMP model 1 requires A1, R ⊥ ∆ and A2 (see Lemma 3).

Proof of Proposition 3. Since the RPM model does not require A2, but CMP models
do, the RPM model is not a special case of the CMP models.

We shall now find a case that it belongs to the CMP model, but not the RPM model.
In particular, we shall present a case that S1 and S2 hold but not A1.

Assume A2 so that S1 is possible to hold. Assume (C,∆) ⊥ R and T ⊥ ∆. Then S2
holds and νt,c(A) =

∑

A∈Ph
f∆|T,C(h|t, c) =

∑

A∈Ph
f∆|C(h|c) = νc(A) ∀ A with c ∈ A.

If J = 3, J contains 7 elements: Cr and elements of forms {2, 3}, {1, 3}, {1, 2}, {1}, {2}
and {3}, denoted by A0, ..., A6. Verify that ||P|| = 5 and P contains Cr (P0), {{1}, {2}, {3}}
(P4), Pc = {{c}, {i, j}} ∀ distinct (c, i, j) with i < j and c, i, j ∈ Cr. Verify that

{

νt,c(Ai) = ai, c ∈ Ai and ai is a constant, i = 0, ..., 6 (by S1),
∑

Ai
νt,c(Ai) = 1, c ∈ Cr (as νt,c is a conditional density function).

(3.1)

Since ∆ ⊥ T , (3.1) yields

f∆|C(0|1) = f∆|C(0|2) = f∆|C(0|3) = a0

f∆|C(1|2)
{

= νt,2({2, 3}) = νt,3({2, 3})
}

= f∆|C(1|3) = a1,

f∆|C(2|1)
{

= νt,1({1, 3}) = νt,3({1, 3})
}

= f∆|C(2|3) = a2,

f∆|C(3|1)
{

= νt,1({1, 2}) = νt,2({1, 2})
}

= f∆|C(3|2) = a3,

f∆|C(4|1) + f∆|C(1|1) = νt,1({1}) = a4,

f∆|C(4|2) + f∆|C(2|2) = νt,2({2}) = a5,

f∆|C(4|3) + f∆|C(3|3) = νt,3({3}) = a6. (3.2)
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Verify that if a0 = 0.1, a1 = a2 = a3 = 0.2 and a4 = a5 = a6 = 0.5 then (3.1) holds. If one

further sets
f∆|C(4|1) = 0.1, f∆|C(1|1) = 0.4,
f∆|C(4|2) = 0.2, f∆|C(2|2) = 0.3,
f∆|C(4|3) = 0.3, f∆|C(3|3) = 0.2.

then (3.2) still holds and thus S1 holds.

However, it is obvious that ∆ 6⊥ C, and thus A1 fails. This implies that CMP model 1 is
not a special case of the RPM model if J = 3.
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