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The proof of Theorem 3 is quite long. We need to establish certain preliminary results for its

proof.

Let Q be a probability measure and F ⊂ L2(Q) be a class of functions. We say a measurable

function FF is an envelop of F if supf∈F |f | ≤ FF . Define a ball with radius ε > 0 and center

f ∈ F by B(f, ε) = {g ∈ F|
∫
|g − f |2dQ ≤ ε2}. Define the covering number N(ε, L2(Q),F) as

the smallest integer m such that there exist f1, f2, ..., fm ∈ L2(Q) satisfying F ⊂ ∪mi=1B(fi, ε).

Let h(x, y) be a symmetric function in the sense that h(x, y) = h(y, x) and h is said to be a Q-

degenerate kernel if E(h(Z1, Z2)|Z2) = 0 almost sure, where Z1, Z2 are i.i.d. with the distribution

associated with the probability measure Q.

Let (D, d,Bd) be a metric space with metric d and Borel sigma algebra Bd generated by all

open subsets of D. Let (X ,BX , P ) be a probability space, define outer measure P ∗ as

P ∗(B) = inf
A∈BX ,A⊃B

P (A), for B ⊂ X ,

and inner measure P∗ as

P∗(B) = 1− P ∗(X \B), for B ⊂ X .

The outer expectation of D, denoted as E∗D, is defined as the infimum over all EU , where

U : X → R, U is measurable and U ≥ T . Analogically, the inner expectation is defined as

E∗D = −E∗(−D). Denote Cb(D) the collection of all bounded continuous functions from D→ R.

Let {Xn, n ≥ 1}, X be maps from X to D, and X be measurable. {Xn, n ≥ 1} is said to be

asymptotically measurable if

E∗(f(Xn))− E∗(f(Xn))→ 0, for all f ∈ Cb(D).
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And {Xn, n ≥ 1} is asymptotically tight if for every ε > 0, there is a compact subset Kε of D such

that

lim inf
n→∞

P∗(Xn ∈ Kδ
ε ) ≥ 1− ε, for all δ > 0,

where Kδ
ε = {x ∈ D|d(x, y) < δ, for some y ∈ Kε}.

A measurable map X from X to D is said to be tight if for each ε > 0, there is a compact set

Kε ⊂ D such that

P (X ∈ Kε) ≥ 1− ε.

We denote  as weakly convergence, that is, Xn  X if E∗f(Xn) → E(f(X)), for each f ∈
Cb(D), where X is measurable. A common choice of D is l∞(T ), which is defined as the collection

of all bounded maps φ : T → R and equipped with norm ‖φ‖ = supt∈T |φ(t)|. By an . bn we

mean that there exists a positive number c such that an ≤ cbn for all large n.

Lemma 0.1 (Kosorok (2008) Lemma 7.1). Let X and Y be tight and measurable with values in

metric space (D,Bd, d) and G be a subset of Cb(D) such that

(i). G is a vector space containing constant functionals;

(ii). If g ∈ G, then max(g, 0) ∈ G;

(iii). For any point x, y ∈ D, there exists functional g ∈ G such that g(x) 6= g(y),

then X and Y has the same distribution if and only if E(g(X)) = E(g(Y )) for all g ∈ G.

Lemma 0.2 (Kosorok (2008) Lemma 7.12). Let {Xn, n ≥ 1}, X be maps from X to D and X is

measurable. Assume Xn  X. Then X is tight if and only if Xn is asymptotically tight.

Lemma 0.3 (Kosorok (2008) Lemma 7.14). Let {Xn, Yn, n ≥ 1} be sequences of maps from X to

D. Then the following are true:

(i). {Xn, n ≥ 1} and {Yn, n ≥ 1} are asymptotically tight if and only if (Xn, Yn), n ≥ 1 is

asymptotically tight.

(ii). Asymptotically sequences {Xn, n ≥ 1} and {Yn, n ≥ 1} are asymptotically measurable if and

only if (Xn, Yn), n ≥ 1 is asymptotically measurable.

Lemma 0.4 (A version of Prohorove’s Theorem in Kosorok (2008) Theorem 7.13). Let {Xn, n ≥
1} be a sequence of maps from X to D which is asymptotically measurable and asymptotically

tight, then there exists a subsequence {Xnk
, k ≥ 1} converging weakly to a tight random variable

X.

Lemma 0.5. Let X(t), Y (t) be tight Gaussian processes on l∞(T ) and T is the index. The se-

quences of processes Xn(t)  X(t) and Yn(t)  Y (t) in l∞(T ). And for each positive integers

k,m and each indexes t1, .., tk, s1, ..., sm ∈ T , (Xn(t1), ..., Xn(tk), Yn(s1), ..., Yn(sm)) converges in

distribution to some (k+m)-dimensional normal random vector (Z
(1)
t1
, ..., Z

(1)
tk
, Z

(2)
s1 , ..., Z

(2)
sm ). Then

there exist a tight 2-dimensional Gaussian process (D1(t), D2(t)) in l∞(T ) such that
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(i). (Xn(t), Yn(t)) (D1(t), D2(t)) in l∞(T ).

(ii). (D1(t1), D1(t2), ..., D1(tk), D2(s1), D2(s2), ..., D2(sm)) has the same distribution as

(Z
(1)
t1
, ..., Z

(1)
tk
, Z

(2)
s1 , ..., Z

(2)
sm ).

(iii). Cov(D1(t), D1(s)) = Cov(Z
(1)
t , Z

(1)
s ), Cov(D2(t), D2(s)) = Cov(Z

(2)
t , Z

(2)
s ) and

Cov(D1(t), D2(s)) = Cov(Z
(1)
t , Z

(2)
s ).

Proof of Lemma 0.5. By Lemma 0.2, we can see both {Xn, n ≥ 1} and {Yn, n ≥ 1} are asymp-

totically measurable and asymptotically tight on l∞(T ). So {(Xn, Yn), n ≥ 1} is also asymptot-

ically measurable and asymptotically tight due to Lemma 0.3. Now, it suffices to show that for

any subsequence of {(Xn, Yn), n ≥ 1}, there exists a further subsequence converging weakly in

l∞(T )×l∞(T ). Abusing notation, denote {(Xn, Yn), n ≥ 1} as a subsequence, by Lemma 0.4, there

exist a subsequence {(Xni , Yni), i ≥ 1} and a tight random variable (R1, R2) such that (Xni , Yni)

converges weakly to (R1, R2) on l∞(T )× l∞(T ).

Next, we will show (R1, R2) is (D1, D2). Now construct a two dimensional Gaussian process

(D̃1(t), D̃2(t)) on l∞(T )× l∞(T ) satisfying (i)-(iii). Let G be the collection of bounded continuous

functionals g : l∞(T )× l∞(T )→ R with the form:

g(x, y) = fg(x(t1), ..., x(tk), y(s1), ..., y(sm)),

for some positive integers k,m, some indexes t1, ..., tk, s1, ..., sm ∈ T and some bounded continuous

function fg : R(k+m) → R. By definition of weakly convergence, for all g ∈ G, it follows that

lim
i→∞

E(fg(Xni(t1), ..., Xni(tk), Yni(s1), ..., Yni(sk)))

= lim
i→∞

E(g(Xni , Yni))

= E(g(R1, R2))

= E(fg(R1(t1), ..., R1(tk), R2(s1), ..., R2(sk))).

Since (Xn(t1), ..., Xn(tk), Yn(s1), ..., Yn(sm)) converges in distribution to some (k+m)-dimensional

normal random (Z
(1)
t1
, ..., Z

(1)
tk
, Z

(2)
s1 , ..., Z

(2)
sm ), so we have

lim
n→∞

E(fg(Xn(t1), ..., Xn(tk), Yn(s1), ..., Yn(sk)))

= E(fg(Z
(1)
t1
, ..., Z

(1)
tk
, Z(2)

s1 , ..., Z
(2)
sm ))

= E(fg(D̃1(t1), ..., D̃1(tk), D̃2(s1), ..., D̃2(sk)))

= E(g(D̃1, D̃2)).

These two equations above suggest E(g(D̃1, D̃2)) = E(g(R1, R2)), for all g ∈ G and it is not

difficult to verify that G satisfy the conditions in Lemma 0.1. So it follows that (R1, R2) has the

same distribution as (D̃1, D̃2) and satisfies (i)-(iii).

A map φ : D→ E between normed spaces D and E is Hadamard differentiable at θ ∈ D if there
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exists a continuous linear map φ′θ : D→ E such that

lim
n→∞

∥∥∥∥φ(θ + tnhn)− φ(θ)

tn
− φ′θ − φ′θ(h)

∥∥∥∥ = 0,

for every converging sequence tn → 0 and hn → h ∈ D.

Lemma 0.6 (Kosorok (2008) Theorem 2.8). For normed spaces D and E, let φ : D → E be

Hadamard differentiable at θ with derivative φ′θ. Let {Xn, n ≥ 1} be maps from X to D and

rn(Xn− θ) X for some sequence of constants rn →∞ and some tight random variable X with

value in D. Then rn(φ(Xn)− φ(θ)) φ′θ(X) on E.

Lemma 0.7 (Nolan and Pollard (1987) Lemma 16). Support FΘ ⊂ L2(Q),Fi,Θ ⊂ L2(Qi), i =

1, 2, ..., k, where Qi’s are probability measures, and Fi,Θ and L2(Qi) are indexed by Θ and Qi,

respectively. Suppose that for each pairs ft, fs ∈ FΘ where s, t ∈ Θ, there exist fi,t, fi,s ∈ Fi,Θ, i =

1, 2, ..., k such that

√
Q|ft − gs|2 ≤

k∑
i=1

√
Qi|fi,t − gi,s|2.

Then for all ε > 0, it holds that

N(2kε, L2(Q),FΘ) ≤
k∏
i=1

N(ε, L2(Qi),Fi,Θ).

Let X be a sample space and C be a collection of subsets of X . For set {x1, x2, ..., xn} ⊂ X ,

define

∆n(C, {x1, x2, ..., xn}) = |{C ∩ {x1, x2, ..., xn}|C ∈ C}|,

where |A| is the cardinality of set A. The VC index V (C) is the smallest n such that

sup
x1,x2,...,xn∈X

∆n(C, {x1, x2, ..., xn}) < 2n, (0.1)

where the supremum is taking over all possible points in X . We say C or {IC |C ∈ C} is a V C

class if V (C) <∞.

Lemma 0.8 (Kosorok (2008) Theorem 9.2). There exists a universal constant K <∞ such that,

for any VC class of sets C, any probability measure Q and any 0 < ε < 1,

N(ε, {IC |C ∈ C}, L2(Q)) ≤ KV (C)(4e)V (C)ε−2(V (C)−1).

Lemma 0.9 (Kosorok (2008) Lemma 9.12). The class {x ∈ Rd|β′x ≤ t, β ∈ Rd, t ∈ R} is a VC

class with VC index d+2.
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Lemma 0.10 (Nolan and Pollard (1987) Theorem 6). Let E be a class of P-degenerate kernels

with envelop FE and let Ui, i ≥ 1 be i.i.d random vectors with distribution associated with P , then

there exists a constant C which is free of n such that

E(sup
g∈E
|
∑
i 6=j

g(Ui, Uj)| ≤ CE(θn + τnJ(θn/τn, L2(Tn), E)), (0.2)

where τn = 2n(TnF
2
E )1/2, Tn is a probability measure which may not be the same as P that is associ-

ated with U1, ..., Un, TnF
2
E =

∫
F 2
E dTn, J(δ, L2(Tn), E) =

∫ δ
0 N(ε(TnF

2
E )1/2, L2(Tn), E)dε, for all δ >

0 and θn = n
2 supg∈E(Tng

2)1/2.

A class of functions F ⊂ L2(Q) is said to be Q-Donsker, if

√
n

(
1

n

n∑
i=1

f(Zi)−Qf
)
 G(f), f ∈ F ,

where Zi, i ≥ 1 are i.i.d with distribution Q and G(f) is a tight Gaussian process indexed by F
with covariance function

Cov(G(f), G(g)) = Q(fg)−QfQg, f, g ∈ F .

Lemma 0.11 (Kosorok (2008) Theorem 2.5). Let P be a probability measure and F ⊂ L2(P )

with envelop FF . If PF 2
F ≤ ∞ and∫ 1

0

√
log sup

Q
N(ε(F 2

F )1/2, L2(Q),F)dε <∞,

then F is P-Donsker (see the next paragraph).

Assumption A1. The cdf Fo = FW is discontinous.

Remark 1. Under the assumption that Y = βX +W and A1 holds, the SMLE and the MSMLE

β̂ of β satisfy P (β̂ 6= β i.o.) = 0 (see Yu and Wong (2002 and 2003)). Under such assumptions

together with W ⊥ X, we shall establish the asymptotic distribution of
√
n(F̌ ∗ − F̂Y ). Since n is

large, WLOG, we can assume that β̂ = β and

F̌ ∗(t) =
1
n2

∑n
j=1

∑n
i=1 I(Yi + βXj ≤ t,Xi = 0)∑n
i=1 I(Xi = 0)/n

Let FY ∗(t, β) = P (W ≤ t− β′X). By definition FY ∗(t, β) = FY (t) under the given assumptions.

Theorem 3. Suppose that Y = βX + W , X ⊥ W , and Assumption A1 holds, and thus P (β̂ 6=
β0 i.o.) = 0. Moreover, suppose P (X = 0) = p > 0. Then

√
n

(
F̌ ∗(t)− F̂Y (t)

)
 D1(t)− FY (t)D2 −D3(t), t ∈ R,
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where D2 = D1(∞), D1(t) and D3(t) are both Brownian bridge with zero mean and covariance

Cov(D1(t), D1(s)) = p−1

∫ (∫
I(w + β0x ≤ t)dFX(x)

∫
I(w + β0x ≤ s)dFX(x)

)
dF0(w)

−2FY (t)FY (s) +

∫
F0(t− β0x)F0(s− β0x)dFX(x)

+FY (t)[F0(s)− FY (s)] + FY (s)[F0(t)− FY (t)],

Cov(D3(t), D3(s)) = FY (t ∧ s)− FY (t)FY (s),

Cov(D1(t), D3(s)) =

∫ ∫
I(w + β0x ≤ t)I(w ≤ s)dFX(x)dF0(w)− FY (t)FY (s)

+

∫
F0(t− β0x)F0(s− β0x)dFX(x)− FY (t)FY (s),

Remark 2. The theorem is not valid if H0 is not true. In particular, if P (X = 0)P (X =

uo) > 0 for a uo 6= 0, Y 6= βX + W , and A1 holds, then ∃ a β such that P (β̂ 6= β i.o.) = 0,

where β̂ is the SMLE. In the latter case, the asymptotic distribution of the test statistic given

in the theorem is not valid and it can be shown that FY in Cov(D1(t), D1(s) should be changed

to FY ∗, and Cov(D1(t), D3(s)) =
∫ ∫

I(w + βx ≤ t)I(w ≤ s)dFX(x)dF0(w) − FY ∗(t)FY ∗(s)︸ ︷︷ ︸
not FY (t)FY (s)

+

∫ ∫
I(w + βx ≤ t)I(y ≤ s)FX,Y (0, w)FX,Y (x, y)︸ ︷︷ ︸
not

∫
F0(t−β0x)F0(s−β0x)dFX(x)−FY (t)FY (s)

, where dFX,Y (0, w) = pdFo(w) if X ⊥W .

In general, if H0 is not true, then it is not clear whether the SMLE and MSMLE β̂ always

converge. Then the asymptotic distribution may not exist. Since we are testing H0, the data may

not satisfy H0. The advantage of the bootstraping distribution of F̌ ∗ − F̂Y over the approach in

the theorem is that it does not need that the data satisfy Y = βX + W , and the test statistic is

still valid regardless whether or not H0 holds.

Proof of Theorem 3. We only prove the case when p = 1 and the extension to the case when

p > 1 can be done analogically. Let u = (x, y) ∈ R2 and Ui = (Xi, Yi), i = 1, 2, ...n which are i.i.d.

Consider a class of functions F = {I(y + β0x ≤ t)|t ∈ R}. For each g or gt ∈ F , define the kernel

Kg(u1, u2) = I(y1 ≤ t− β0x2)I(|x1| = 0),

and corresponding symmetric kernel

hg(u1, u2) =
Kg(u1, u2) +Kg(u2, u1)

2
.

Define classes of functions KF = {Kg|g ∈ F} and HF = {hg|g ∈ F}, and for each measurable

function h on R2 × R2, define a stochastic process by

Mn(h) =
2

n(n− 1)

∑
1≤i<j≤n

h(Ui, Uj)− E (h(U1, U2)) , (0.3)
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and define Ph(·, u) = E(h(U1, U2)|U2 = u), Ph(u, ·) = E(h(U1, U2)|U1 = u) and P ⊗ Ph =

E(h(U1, U2)). For each symmetric kernel hg, letting

h̃g(u1, u2) = hg(u1, u2)− Phg(u1, ·)− Phg(·, u2) + P ⊗ Phg,

the Hoeffding decomposition tells us that h̃g is a degenerate kernel and it yields the decomposition

Mn(hg) = Mn(h̃g) +
2

n

n∑
i=1

(Phg(Ui, ·)− P ⊗ Phg). (0.4)

Let H̃F = {h̃g|g ∈ F}, then it follows that

E(sup
g∈F
|Mn(h̃g)|) = E( sup

h̃∈H̃F
|Mn(h̃)|)

=
2

n(n− 1)
E

(
sup
h̃∈H̃F

|
∑

1≤i<j≤n
h̃(Ui, Uj)− E

(
h̃(U1, U2)

)
|
)

=
1

n(n− 1)
E

(
sup
h̃∈H̃F

|
∑
i 6=j

h̃(Ui, Uj)− E
(
h̃(U1, U2)

)
︸ ︷︷ ︸

=0 since h̃ is degenerate

|
)

≤ C

n(n− 1)
E(θn + τnJ(θn/τn, L2(Tn), H̃F )) (by (0.2) in Lemma 0.10)

≤ C

n(n− 1)
E(2n+ 8nJ(1/4, L2(Tn), H̃F ))

(as sup
h∈H̃F |h| ≤ 4 and thus 4θn ≤ τn ≤ 8n)

≤ 2C

n− 1
E(1 + 4J(1/4, L2(Tn), H̃F )), (0.5)

where θn = n
2 sup

g∈H̃F (Tng
2)1/2, τn = 2n(TnF

2
H̃F

)1/2, and Tn is defined in Lemma 0.10.

Next we will establish a bound of the empirical entropy J(1/4, L2(Tn), H̃F ). Let gi(u) = I(y +

β0x ≤ ti), i = 1, 2. It is not hard to verify using triangular inequality and Jensen’s inequality that√
Tn|h̃g1 − h̃g2 |2

=
√
Tn|(hg1 − hg2)− (Phg1(u, ·)− Phg2(u, ·))− (Phg1(·, u)− Phg2(·, u)) + P ⊗ P (hg1 − hg2)|2

≤
√
Tn|hg1 − hg2 |2 +

√
Tn|Phg1(u, ·)− Phg2(u, ·)|2

+
√
Tn|Phg1(·, u)− Phg2(·, u)|2 +

√
P ⊗ P |hg1 − hg2 |2

=
√
Tn|hg1 − hg2 |2 + 2

√
Tn|Phg1(u, ·)− Phg2(u, ·)|2

+
√
P ⊗ P |hg1 − hg2 |2 bBy the fact hg is symmetric)

≤
√
Tn|hg1 − hg2 |2 + 2

√
Tn ⊗ P |hg1 − hg2 |2 +

√
P ⊗ P |hg1 − hg2 |2. (0.6)

Moreover, for any probability measure Q(u1, u2), we have
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√
Q|hg1 − hg2 |2 ≤ 1

2

√∫
|Kg1(u1, u2)−Kg2(u1, u2)|2dQ(u1, u2)

+
1

2

√∫
|Kg1(u2, u1)−Kg2(u2, u1)|2dQ(u1, u2)

≤ 1

2

√∫
|I(y1 ≤ t1 − β0x2)− I(y1 ≤ t2 − β0x2)|2dQ(u1, u2)

+
1

2

√∫
|I(y2 ≤ t1 − β0x1)− I(y2 ≤ t2 − β0x1)|2dQ(u1, u2) (0.7)

Therefore, (by the definition of N(4ε, L2(Tn), H̃F ), (0.6)) and (0.7), we can see, for every ε > 0,

it holds that

N(4ε, L2(Tn), H̃F )

≤ N(ε/2, L2(Tn),HF )N2(ε/2, L2(Tn ⊗ P ),HF )N(ε/2, L2(P ⊗ P ),HF ) (by (0.6) and Lemma 0.7)

≤ N2(ε/8, L2(Tn),F)N4(ε/8, L2(Tn ⊗ P ),F)N2(ε/8, L2(P ⊗ P ),F) (by (0.7) and Lemma 0.7)

≤ sup
Q
N8(ε/8, L2(Q),F), (By taking supernum of all measures) (0.8)

where the supernum is taken over all probability measures.

Since F is a subset of {I(y + βx ≤ t)|β ∈ R, t ∈ R} ∪ {0, 1} and {I(y + βx ≤ t)|β ∈ R, t ∈ R}
is a VC class with VC index 3 due to Lemma 0.9. Therefore, applying Lemma 0.8, we can see

sup
Q
N(ε, L2(Q),F) . ε−4. (0.9)

Since sup
h∈H̃F |h| ≤ 4, combining (0.8) and (0.9), we have

J(1/4, L2(Tn), H̃F ) =

∫ 1/4

0
logN(4ε, L2(Tn), H̃F )dε

.
∫ 1

0
− log εdε <∞. (0.10)

Combining (0.5) and (0.10), we obtain that

sup
g∈F

√
n|Mn(h̃g)| = Op(

1√
n

) = oP (1).

The previous equality and (0.4) lead to

sup
g∈F

√
n

∣∣∣∣Mn(hg)−
2

n

n∑
i=1

(Phg(Ui, ·)− P ⊗ Phg)
∣∣∣∣ = Op(

1√
n

) = oP (1). (0.11)
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By definition, rewrite F̌ ∗ as

F̌ ∗(t) =
1

n

n∑
i=1

F̂0(t− β̂Xi)

=
1

n

n∑
i=1

∑n
j=1 I(Yj ≤ t− β̂Xi)I(|Xj | = 0)∑n

j=1 I(|Xj | = 0)

=
1

n

∑n
i=1

∑n
j=1 I(Yj ≤ t− β̂Xi)I(|Xj | = 0)∑n

j=1 I(|Xj | = 0)
.

Now let us define

Gn(t, β) =
1

n− 1

∑n
i=1

∑n
j=1 I(Yj ≤ t− βXi)I(|Xj | = 0)∑n

j=1 I(|Xj | = 0)
,

Ḡn(t, β) =
1

n(n− 1)

n∑
i=1

n∑
j=1

I(Yj ≤ t− βXi)I(|Xj | = 0).

Moreover, direct examinations show that for gt(u) = I(y + β0x ≤ t)

|Ḡn(t, β0)− 2

n(n− 1)

∑
1≤i<j≤n

hgt(Ui, Uj)|

= |Ḡn(t, β0)− 1

n(n− 1)

∑
i 6=j

Kgt(Ui, Uj)|

=
1

n(n− 1)

n∑
i=1

Kgt(Ui, Ui)

≤ 1

n(n− 1)

n∑
i=1

I(|Xi| = 0).

As a consequence, we obtain

sup
t∈R

√
n|Ḡn(t, β0)− 2

n(n− 1)

∑
1≤i<j≤n

hgt(Ui, Uj)| = OP (n−1/2) = oP (1). (0.12)

Since for gt(u) = I(y ≤ t − β0x), P ⊗ Pgt = pFY (t). So in the view of (0.3), (0.4), (0.11)

and (0.12), it not hard to conclude
√
n(Ḡn(t, β0)− pFY (t)) and n−1/2

∑n
i=1(Phgt(Ui, ·)− pFY (t))

has the same limit distribution in terms of weak convergence as stochastic processes indexed

by R. In the following we will establish the limit distribution of
√
n(Ḡn(t, β0) − pFY (t)) using

n−1/2
∑n

i=1(Phgt(Ui, ·)− pFY (t)) as a proxy process.

Next we will show the class PHF := {Phg(u, ·)|g ∈ F} is Donsker. Similar calculation to (0.7),
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for any probability measure Q, it is not hard to show for gi(u) = I(y + β0x ≤ ti)√
Q|Phg1(u, ·)− Phg2(u, ·)|2

≤
√
Q⊗ P |hg1 − hg2 |2

≤ 1

2

√∫
|I(y1 ≤ t1 − β0x2)− I(y1 ≤ t2 − β0x2)|2dQ⊗ P (u1, u2)

+
1

2

√∫
|I(y2 ≤ t1 − β0x1)− I(y2 ≤ t2 − β0x1)|2dQ⊗ P (u1, u2).

The previous inequality and Lemma 0.7 suggest

N(ε, L2(Q), PHF ) ≤ N2(ε/4, L2(Q⊗ P ),F)

Therefore, (0.9) and the inequality above imply

sup
Q
N(ε, L2(Q), PHF ) ≤ sup

Q
N2(ε/4, L2(Q),F)

. ε−8.

Above covering number condition and Lemma 0.11 suggest the PHF is a Donsker class. Hence

n−1/2
∑n

i=1(Phgt(Ui, ·) − pFY (t)) weakly converges to a Gaussian process and
√
n(Ḡn(t, β0) −

pFY (t)) converges to the same Gaussian process. Now, let us define a multi-dimensional process

indexed by R, for gt(u) = I(y ≤ t− β0x), letting

Vn(t) := (V1n(t), V2n, V3n(t))

:=
√
n

(
p−1Ḡn(t, β0)− FY (t),

1

np

n∑
i=1

I(|Xi| = 0)− 1,
1

n

n∑
i=1

I(Yi ≤ t)− FY (t)

)
, t ∈ R,

and

Ṽn(t) := (Ṽ1n(t), Ṽ2n, Ṽ3n(t))

:=
√
n

(
1

n

n∑
i=1

(p−1Phgt(Ui, ·)− FY (t)),
1

np

n∑
i=1

I(|Xi| = 0)− 1,
1

n

n∑
i=1

I(Yi ≤ t)− FY (t)

)
, t ∈ R.

Previous argument suggest Vn and V̂n should have the same limit distribution if they converge

weakly. But notice previous argument also shows V1n(t) converges weakly to a Gaussian process.

The limit distribution of V2n is also Gaussian distribution due to C.L.T. Similar argument can

show that V3n(t) also converges weakly to a Gaussian process. In order to apply Lemma 0.5, we

still need to check the condition: for each positive integers k,m and each t1, ...tk, s1, ..., sm ∈ R,

by C.L.T, it is not difficult to show (Ṽ1n(t1), ..., Ṽ1n(tk), Ṽ2n, Ṽ3n(s1), ..., Ṽ3n(sm)) converges to a

(k+m+ 1)-dimensional normal random variable (Z
(1)
t1
, ..., Z

(k)
tk
, Z(2), Z

(3)
s1 , ..., Z

(3)
sm ) in distribution,
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where

Z(2) = Z(1)
∞ ,

Cov(Z
(1)
t , Z(1)

s ) = p−1

∫ (∫
I(w + β0x ≤ t)dFX(x)

∫
I(w + β0x ≤ s)dFX(x)

)
dF0(w)

−2FY (t)FY (s) +

∫
F0(t− β0x)F0(s− β0x)dFX(x)

+FY (t)[F0(s)− FY (s)] + FY (s)[F0(t)− FY (t)],

Cov(Z
(3)
t , Z(3)

s ) = FY (t ∧ s)− FY (t)FY (s),

Cov(Z
(1)
t , Z(3)

s ) =

∫ ∫
I(w + β0x ≤ t)I(w ≤ s)dFX(x)dF0(w)− FY (t)FY (s)

+

∫
F0(t− β0x)F0(s− β0x)dFX(x)− FY (t)FY (s).

Moreover, the equivalence of Ṽ1n(t) and V1n(t) shows (V1n(t1), ..., V1n(tk), V2n, V3n(s1), ..., V3n(sm))

converges the same limit distribution. Now we can apply Lemma 0.5 to Vn(t) and it follows that

Vn(t) D(t) =

(
D1(t), D2, D3(t)

)
, t ∈ R,

where D1(t), D3(t) are both Gaussian processes with zero mean and covariance

Cov(D1(t), D1(s)) = p−1

∫ (∫
I(w + β0x ≤ t)dFX(x)

∫
I(w + β0x ≤ s)dFX(x)

)
dF0(w)

−2FY (t)FY (s) +

∫
F0(t− β0x)F0(s− β0x)dFX(x)

+FY (t)[F0(s)− FY (s)] + FY (s)[F0(t)− FY (t)],

Cov(D3(t), D3(s)) = FY (t ∧ s)− FY (t)FY (s),

Cov(D1(t), D3(s)) =

∫ ∫
I(w + β0x ≤ t)I(w ≤ s)dFX(x)dF0(w)− FY (t)FY (s)

+

∫
F0(t− β0x)F0(s− β0x)dFX(x)− FY (t)FY (s),

and D2 = D1(∞).

Now let us apply functional delta method to process Vn(t). Define φ(v1, v2, v3) = v1/v2− v3. It

not hard to verify the Hadamard derivative at point (FY (t), 1, FY (t)) is φ(FY (t),1,FY (t))(v1, v2, v3) =

v1 − FY (t)v2 − v3. As a consequence, by Lemma 0.6, we have

√
n

(
Gn(t, β0)− 1

n

n∑
i=1

I(Yi ≤ t)
)

(0.13)

. =
√
n

(
p−1Ḡn(t, β0)

1
np

∑n
i=1 I(|Xi| = 0)

− 1

n

n∑
i=1

I(Yi ≤ t)
)
 D1(t)− FY (t)D2 −D3(t), t ∈ R.

By Remark 2, it follows that P (β̂ 6= β0 i.o.) = 0. Therefore (0.14) implies that

√
n

(
Gn(t, β̂)− F̂Y (t)

)
 D1(t)− FY (t)D2 −D3(t), t ∈ R.
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Finally, the desire result follows the above inequality and following fact

sup
t∈R

√
n|Gn(t, β̂)− F̌ ∗(t)| ≤

√
n

n− 1
= oP (1).
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