8. Appendix II. Proof of Theorem 3 in

"Testing Independence And Goodness-of-fit In Linear Regression Models Allowing Non-existence Of The Mean Of The Reponse Variable"

Qiqing Yu 1 and Ruiqi Liu 2

This version November 11, 2017

The proof of Theorem 3 is quite long. We need to establish certain preliminary results for its proof.

Let Q be a probability measure and $\mathcal{F} \subset L_2(Q)$ be a class of functions. We say a measurable function $F_{\mathcal{F}}$ is an envelop of \mathcal{F} if $\sup_{f \in \mathcal{F}} |f| \leq F_{\mathcal{F}}$. Define a ball with radius $\epsilon > 0$ and center $f \in \mathcal{F}$ by $B(f, \epsilon) = \{g \in \mathcal{F} | \int |g - f|^2 dQ \leq \epsilon^2\}$. Define the covering number $N(\epsilon, L_2(Q), \mathcal{F})$ as the smallest integer m such that there exist $f_1, f_2, ..., f_m \in L_2(Q)$ satisfying $\mathcal{F} \subset \bigcup_{i=1}^m B(f_i, \epsilon)$. Let h(x, y) be a symmetric function in the sense that h(x, y) = h(y, x) and h is said to be a Qdegenerate kernel if $E(h(Z_1, Z_2)|Z_2) = 0$ almost sure, where Z_1, Z_2 are i.i.d. with the distribution associated with the probability measure Q.

Let $(\mathbb{D}, d, \mathcal{B}_d)$ be a metric space with metric d and Borel sigma algebra \mathcal{B}_d generated by all open subsets of \mathbb{D} . Let $(\mathcal{X}, \mathcal{B}_{\mathcal{X}}, P)$ be a probability space, define outer measure P^* as

$$P^*(B) = \inf_{A \in \mathcal{B}_{\mathcal{X}}, A \supset B} P(A), \text{ for } B \subset \mathcal{X},$$

and inner measure P_* as

$$P_*(B) = 1 - P^*(\mathcal{X} \setminus B), \text{ for } B \subset \mathcal{X}.$$

The outer expectation of D, denoted as E^*D , is defined as the infimum over all EU, where $U : \mathcal{X} \to \mathbb{R}$, U is measurable and $U \ge T$. Analogically, the inner expectation is defined as $E_*D = -E^*(-D)$. Denote $C_b(\mathbb{D})$ the collection of all bounded continuous functions from $\mathbb{D} \to \mathbb{R}$. Let $\{X_n, n \ge 1\}, X$ be maps from \mathcal{X} to \mathbb{D} , and X be measurable. $\{X_n, n \ge 1\}$ is said to be asymptotically measurable if

$$E^*(f(X_n)) - E_*(f(X_n)) \to 0$$
, for all $f \in C_b(\mathbb{D})$.

¹Department of Mathematics, State University of New York, Binghamton, NY, 13902

²Department of Mathematics, State University of New York, Binghamton, NY, 13902

And $\{X_n, n \ge 1\}$ is asymptotically tight if for every $\epsilon > 0$, there is a compact subset K_{ϵ} of \mathbb{D} such that

$$\liminf_{\epsilon \to \infty} P_*(X_n \in K_{\epsilon}^{\delta}) \ge 1 - \epsilon, \text{ for all } \delta > 0,$$

where $K_{\epsilon}^{\delta} = \{x \in \mathbb{D} | d(x, y) < \delta, \text{ for some } y \in K_{\epsilon} \}.$

A measurable map X from \mathcal{X} to \mathbb{D} is said to be tight if for each $\epsilon > 0$, there is a compact set $K_{\epsilon} \subset \mathbb{D}$ such that

$$P(X \in K_{\epsilon}) \ge 1 - \epsilon.$$

We denote \rightsquigarrow as weakly convergence, that is, $X_n \rightsquigarrow X$ if $E^*f(X_n) \to E(f(X))$, for each $f \in C_b(\mathbb{D})$, where X is measurable. A common choice of \mathbb{D} is $l^{\infty}(T)$, which is defined as the collection of all bounded maps $\phi : T \to \mathbb{R}$ and equipped with norm $\|\phi\| = \sup_{t \in T} |\phi(t)|$. By $a_n \lesssim b_n$ we mean that there exists a positive number c such that $a_n \leq cb_n$ for all large n.

Lemma 0.1 (Kosorok (2008) Lemma 7.1). Let X and Y be tight and measurable with values in metric space $(\mathbb{D}, \mathcal{B}_d, d)$ and \mathcal{G} be a subset of $C_b(\mathbb{D})$ such that

- (i). \mathcal{G} is a vector space containing constant functionals;
- (ii). If $g \in \mathcal{G}$, then $\max(g, 0) \in \mathcal{G}$;
- (iii). For any point $x, y \in \mathbb{D}$, there exists functional $g \in \mathcal{G}$ such that $g(x) \neq g(y)$,

then X and Y has the same distribution if and only if E(g(X)) = E(g(Y)) for all $g \in \mathcal{G}$.

Lemma 0.2 (Kosorok (2008) Lemma 7.12). Let $\{X_n, n \ge 1\}, X$ be maps from \mathcal{X} to \mathbb{D} and X is measurable. Assume $X_n \rightsquigarrow X$. Then X is tight if and only if X_n is asymptotically tight.

Lemma 0.3 (Kosorok (2008) Lemma 7.14). Let $\{X_n, Y_n, n \ge 1\}$ be sequences of maps from \mathcal{X} to \mathbb{D} . Then the following are true:

- (i). $\{X_n, n \ge 1\}$ and $\{Y_n, n \ge 1\}$ are asymptotically tight if and only if $(X_n, Y_n), n \ge 1$ is asymptotically tight.
- (ii). Asymptotically sequences $\{X_n, n \ge 1\}$ and $\{Y_n, n \ge 1\}$ are asymptotically measurable if and only if $(X_n, Y_n), n \ge 1$ is asymptotically measurable.

Lemma 0.4 (A version of Prohorove's Theorem in Kosorok (2008) Theorem 7.13). Let $\{X_n, n \geq 1\}$ be a sequence of maps from \mathcal{X} to \mathbb{D} which is asymptotically measurable and asymptotically tight, then there exists a subsequence $\{X_{n_k}, k \geq 1\}$ converging weakly to a tight random variable X.

Lemma 0.5. Let X(t), Y(t) be tight Gaussian processes on $l^{\infty}(T)$ and T is the index. The sequences of processes $X_n(t) \rightsquigarrow X(t)$ and $Y_n(t) \rightsquigarrow Y(t)$ in $l^{\infty}(T)$. And for each positive integers k, m and each indexes $t_1, ..., t_k, s_1, ..., s_m \in T$, $(X_n(t_1), ..., X_n(t_k), Y_n(s_1), ..., Y_n(s_m))$ converges in distribution to some (k+m)-dimensional normal random vector $(Z_{t_1}^{(1)}, ..., Z_{t_k}^{(1)}, Z_{s_1}^{(2)}, ..., Z_{s_m}^{(2)})$. Then there exist a tight 2-dimensional Gaussian process $(D_1(t), D_2(t))$ in $l^{\infty}(T)$ such that

- (i). $(X_n(t), Y_n(t)) \rightsquigarrow (D_1(t), D_2(t))$ in $l^{\infty}(T)$.
- (ii). $(D_1(t_1), D_1(t_2), ..., D_1(t_k), D_2(s_1), D_2(s_2), ..., D_2(s_m))$ has the same distribution as $(Z_{t_1}^{(1)}, ..., Z_{t_k}^{(1)}, Z_{s_1}^{(2)}, ..., Z_{s_m}^{(2)}).$
- (iii). $Cov(D_1(t), D_1(s)) = Cov(Z_t^{(1)}, Z_s^{(1)}), Cov(D_2(t), D_2(s)) = Cov(Z_t^{(2)}, Z_s^{(2)})$ and $Cov(D_1(t), D_2(s)) = Cov(Z_t^{(1)}, Z_s^{(2)}).$

Proof of Lemma 0.5. By Lemma 0.2, we can see both $\{X_n, n \ge 1\}$ and $\{Y_n, n \ge 1\}$ are asymptotically measurable and asymptotically tight on $l^{\infty}(T)$. So $\{(X_n, Y_n), n \ge 1\}$ is also asymptotically measurable and asymptotically tight due to Lemma 0.3. Now, it suffices to show that for any subsequence of $\{(X_n, Y_n), n \ge 1\}$, there exists a further subsequence converging weakly in $l^{\infty}(T) \times l^{\infty}(T)$. Abusing notation, denote $\{(X_n, Y_n), n \ge 1\}$ as a subsequence, by Lemma 0.4, there exist a subsequence $\{(X_{n_i}, Y_{n_i}), i \ge 1\}$ and a tight random variable (R_1, R_2) such that (X_{n_i}, Y_{n_i}) converges weakly to (R_1, R_2) on $l^{\infty}(T) \times l^{\infty}(T)$.

Next, we will show (R_1, R_2) is (D_1, D_2) . Now construct a two dimensional Gaussian process $(\tilde{D}_1(t), \tilde{D}_2(t))$ on $l^{\infty}(T) \times l^{\infty}(T)$ satisfying (i)-(iii). Let \mathcal{G} be the collection of bounded continuous functionals $g: l^{\infty}(T) \times l^{\infty}(T) \to \mathbb{R}$ with the form:

$$g(x,y) = f_g(x(t_1), ..., x(t_k), y(s_1), ..., y(s_m)),$$

for some positive integers k, m, some indexes $t_1, ..., t_k, s_1, ..., s_m \in T$ and some bounded continuous function $f_g : \mathbb{R}^{(k+m)} \to \mathbb{R}$. By definition of weakly convergence, for all $g \in \mathcal{G}$, it follows that

$$\lim_{i \to \infty} E(f_g(X_{n_i}(t_1), ..., X_{n_i}(t_k), Y_{n_i}(s_1), ..., Y_{n_i}(s_k)))$$

$$= \lim_{i \to \infty} E(g(X_{n_i}, Y_{n_i}))$$

$$= E(g(R_1, R_2))$$

$$= E(f_g(R_1(t_1), ..., R_1(t_k), R_2(s_1), ..., R_2(s_k))).$$

Since $(X_n(t_1), ..., X_n(t_k), Y_n(s_1), ..., Y_n(s_m))$ converges in distribution to some (k+m)-dimensional normal random $(Z_{t_1}^{(1)}, ..., Z_{t_k}^{(1)}, Z_{s_1}^{(2)}, ..., Z_{s_m}^{(2)})$, so we have

$$\lim_{n \to \infty} E(f_g(X_n(t_1), ..., X_n(t_k), Y_n(s_1), ..., Y_n(s_k)))$$

$$= E(f_g(Z_{t_1}^{(1)}, ..., Z_{t_k}^{(1)}, Z_{s_1}^{(2)}, ..., Z_{s_m}^{(2)}))$$

$$= E(f_g(\widetilde{D}_1(t_1), ..., \widetilde{D}_1(t_k), \widetilde{D}_2(s_1), ..., \widetilde{D}_2(s_k)))$$

$$= E(g(\widetilde{D}_1, \widetilde{D}_2)).$$

These two equations above suggest $E(g(\tilde{D}_1, \tilde{D}_2)) = E(g(R_1, R_2))$, for all $g \in \mathcal{G}$ and it is not difficult to verify that \mathcal{G} satisfy the conditions in Lemma 0.1. So it follows that (R_1, R_2) has the same distribution as $(\tilde{D}_1, \tilde{D}_2)$ and satisfies (i)-(iii).

A map $\phi : \mathbb{D} \to \mathbb{E}$ between normed spaces \mathbb{D} and \mathbb{E} is Hadamard differentiable at $\theta \in \mathbb{D}$ if there

/

exists a continuous linear map $\phi'_{\theta} : \mathbb{D} \to \mathbb{E}$ such that

$$\lim_{n \to \infty} \left\| \frac{\phi(\theta + t_n h_n) - \phi(\theta)}{t_n} - \phi'_{\theta} - \phi'_{\theta}(h) \right\| = 0,$$

for every converging sequence $t_n \to 0$ and $h_n \to h \in \mathbb{D}$.

Lemma 0.6 (Kosorok (2008) Theorem 2.8). For normed spaces \mathbb{D} and \mathbb{E} , let $\phi : \mathbb{D} \to \mathbb{E}$ be Hadamard differentiable at θ with derivative ϕ'_{θ} . Let $\{X_n, n \ge 1\}$ be maps from \mathcal{X} to \mathbb{D} and $r_n(X_n - \theta) \rightsquigarrow X$ for some sequence of constants $r_n \to \infty$ and some tight random variable X with value in \mathbb{D} . Then $r_n(\phi(X_n) - \phi(\theta)) \rightsquigarrow \phi'_{\theta}(X)$ on \mathbb{E} .

Lemma 0.7 (Nolan and Pollard (1987) Lemma 16). Support $\mathcal{F}_{\Theta} \subset L_2(Q), \mathcal{F}_{i,\Theta} \subset L_2(Q_i), i = 1, 2, ..., k$, where Q_i 's are probability measures, and $\mathcal{F}_{i,\Theta}$ and $L_2(Q_i)$ are indexed by Θ and Q_i , respectively. Suppose that for each pairs $f_t, f_s \in \mathcal{F}_{\Theta}$ where $s, t \in \Theta$, there exist $f_{i,t}, f_{i,s} \in \mathcal{F}_{i,\Theta}, i = 1, 2, ..., k$ such that

$$\sqrt{Q|f_t - g_s|^2} \le \sum_{i=1}^k \sqrt{Q_i|f_{i,t} - g_{i,s}|^2}.$$

Then for all $\epsilon > 0$, it holds that

$$N(2k\epsilon, L_2(Q), \mathcal{F}_{\Theta}) \le \prod_{i=1}^k N(\epsilon, L_2(Q_i), \mathcal{F}_{i,\Theta}).$$

Let \mathcal{X} be a sample space and \mathcal{C} be a collection of subsets of \mathcal{X} . For set $\{x_1, x_2, ..., x_n\} \subset \mathcal{X}$, define

$$\Delta_n(\mathcal{C}, \{x_1, x_2, ..., x_n\}) = |\{C \cap \{x_1, x_2, ..., x_n\}| C \in \mathcal{C}\}|,$$

where |A| is the cardinality of set A. The VC index $V(\mathcal{C})$ is the smallest n such that

$$\sup_{x_1, x_2, \dots, x_n \in \mathcal{X}} \Delta_n(\mathcal{C}, \{x_1, x_2, \dots, x_n\}) < 2^n,$$
(0.1)

where the supremum is taking over all possible points in \mathcal{X} . We say \mathcal{C} or $\{I_C | C \in \mathcal{C}\}$ is a VC class if $V(\mathcal{C}) < \infty$.

Lemma 0.8 (Kosorok (2008) Theorem 9.2). There exists a universal constant $K < \infty$ such that, for any VC class of sets C, any probability measure Q and any $0 < \epsilon < 1$,

$$N(\epsilon, \{I_C | C \in \mathcal{C}\}, L_2(Q)) \le KV(\mathcal{C})(4e)^{V(\mathcal{C})} \epsilon^{-2(V(\mathcal{C})-1)}$$

Lemma 0.9 (Kosorok (2008) Lemma 9.12). The class $\{x \in \mathbb{R}^d | \beta' x \leq t, \beta \in \mathbb{R}^d, t \in \mathbb{R}\}$ is a VC class with VC index d+2.

Lemma 0.10 (Nolan and Pollard (1987) Theorem 6). Let \mathcal{E} be a class of P-degenerate kernels with envelop $F_{\mathcal{E}}$ and let $U_i, i \geq 1$ be i.i.d random vectors with distribution associated with P, then there exists a constant C which is free of n such that

/

$$E(\sup_{g\in\mathcal{E}}|\sum_{i\neq j}g(U_i,U_j)| \le CE(\theta_n + \tau_n J(\theta_n/\tau_n, L_2(T_n), \mathcal{E})),$$
(0.2)

where $\tau_n = 2n(T_n F_{\mathcal{E}}^2)^{1/2}$, T_n is a probability measure which may not be the same as P that is associated with $U_1, ..., U_n, T_n F_{\mathcal{E}}^2 = \int F_{\mathcal{E}}^2 dT_n$, $J(\delta, L_2(T_n), \mathcal{E}) = \int_0^{\delta} N(\epsilon(T_n F_{\mathcal{E}}^2)^{1/2}, L_2(T_n), \mathcal{E}) d\epsilon$, for all $\delta > 0$ and $\theta_n = \frac{n}{2} \sup_{g \in \mathcal{E}} (T_n g^2)^{1/2}$.

A class of functions $\mathcal{F} \subset L_2(Q)$ is said to be Q-Donsker, if

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}f(Z_i)-Qf\right) \rightsquigarrow G(f), f \in \mathcal{F},$$

where $Z_i, i \ge 1$ are i.i.d with distribution Q and G(f) is a tight Gaussian process indexed by \mathcal{F} with covariance function

$$Cov(G(f), G(g)) = Q(fg) - QfQg, f, g \in \mathcal{F}.$$

Lemma 0.11 (Kosorok (2008) Theorem 2.5). Let P be a probability measure and $\mathcal{F} \subset L_2(P)$ with envelop $F_{\mathcal{F}}$. If $PF_{\mathcal{F}}^2 \leq \infty$ and

$$\int_0^1 \sqrt{\log \sup_Q N(\epsilon(F_F^2)^{1/2}, L_2(Q), \mathcal{F})} d\epsilon < \infty,$$

then \mathcal{F} is P-Donsker (see the next paragraph).

Assumption A1. The cdf $F_o = F_W$ is discontinuous.

Remark 1. Under the assumption that $Y = \beta X + W$ and A1 holds, the SMLE and the MSMLE $\hat{\beta}$ of β satisfy $P(\hat{\beta} \neq \beta \text{ i.o.}) = 0$ (see Yu and Wong (2002 and 2003)). Under such assumptions together with $W \perp X$, we shall establish the asymptotic distribution of $\sqrt{n}(\check{F}^* - \hat{F}_Y)$. Since n is large, WLOG, we can assume that $\hat{\beta} = \beta$ and

$$\check{F}^{*}(t) = \frac{\frac{1}{n^{2}} \sum_{j=1}^{n} \sum_{i=1}^{n} I(Y_{i} + \beta X_{j} \le t, X_{i} = 0)}{\sum_{i=1}^{n} I(X_{i} = 0)/n}$$

Let $F_{Y^*}(t,\beta) = P(W \le t - \beta'X)$. By definition $F_{Y^*}(t,\beta) = F_Y(t)$ under the given assumptions.

Theorem 3. Suppose that $Y = \beta X + W$, $X \perp W$, and Assumption A1 holds, and thus $P(\hat{\beta} \neq \beta_0 \text{ i.o.}) = 0$. Moreover, suppose P(X = 0) = p > 0. Then

$$\sqrt{n}\left(\check{F}^*(t) - \widehat{F}_Y(t)\right) \rightsquigarrow D_1(t) - F_Y(t)D_2 - D_3(t), t \in \overline{\mathbb{R}},$$

where $D_2 = D_1(\infty)$, $D_1(t)$ and $D_3(t)$ are both Brownian bridge with zero mean and covariance

/

$$Cov(D_{1}(t), D_{1}(s)) = p^{-1} \int \left(\int I(w + \beta_{0}x \leq t) dF_{X}(x) \int I(w + \beta_{0}x \leq s) dF_{X}(x) \right) dF_{0}(w) -2F_{Y}(t)F_{Y}(s) + \int F_{0}(t - \beta_{0}x)F_{0}(s - \beta_{0}x) dF_{X}(x) +F_{Y}(t)[F_{0}(s) - F_{Y}(s)] + F_{Y}(s)[F_{0}(t) - F_{Y}(t)], Cov(D_{3}(t), D_{3}(s)) = F_{Y}(t \wedge s) - F_{Y}(t)F_{Y}(s), Cov(D_{1}(t), D_{3}(s)) = \int \int I(w + \beta_{0}x \leq t)I(w \leq s) dF_{X}(x) dF_{0}(w) - F_{Y}(t)F_{Y}(s) + \int F_{0}(t - \beta_{0}x)F_{0}(s - \beta_{0}x) dF_{X}(x) - F_{Y}(t)F_{Y}(s),$$

Remark 2. The theorem is not valid if H_0 is not true. In particular, if $P(X = 0)P(X = u_o) > 0$ for a $u_o \neq 0, Y \neq \beta X + W$, and A1 holds, then $\exists a \beta$ such that $P(\hat{\beta} \neq \beta i.o.) = 0$, where $\hat{\beta}$ is the SMLE. In the latter case, the asymptotic distribution of the test statistic given in the theorem is not valid and it can be shown that F_Y in $Cov(D_1(t), D_1(s)$ should be changed to F_{Y^*} , and $Cov(D_1(t), D_3(s)) = \int \int I(w + \beta x \leq t)I(w \leq s)dF_X(x)dF_0(w) - \underbrace{F_{Y^*}(t)F_{Y^*}(s)}_{not \ F_Y(t)F_Y(s)} + \underbrace{F_Y(t)F_Y(s)}_{not \ F_Y(t)F_Y(s)}$

$$\underbrace{\int \int I(w+\beta x \le t)I(y \le s)F_{X,Y}(0,w)F_{X,Y}(x,y), \text{ where } dF_{X,Y}(0,w) = pdF_o(w) \text{ if } X \perp W.}_{\mathsf{A}}$$

not $\int F_0(t-\beta_0 x)F_0(s-\beta_0 x)dF_X(x)-F_Y(t)F_Y(s)$

In general, if H_0 is not true, then it is not clear whether the SMLE and MSMLE $\hat{\beta}$ always converge. Then the asymptotic distribution may not exist. Since we are testing H_0 , the data may not satisfy H_0 . The advantage of the bootstraping distribution of $\check{F}^* - \hat{F}_Y$ over the approach in the theorem is that it does not need that the data satisfy $Y = \beta X + W$, and the test statistic is still valid regardless whether or not H_0 holds.

Proof of Theorem 3. We only prove the case when p = 1 and the extension to the case when p > 1 can be done analogically. Let $u = (x, y) \in \mathbb{R}^2$ and $U_i = (X_i, Y_i)$, i = 1, 2, ...n which are i.i.d. Consider a class of functions $\mathcal{F} = \{I(y + \beta_0 x \leq t) | t \in \mathbb{R}\}$. For each g or $g_t \in \mathcal{F}$, define the kernel

$$K_g(u_1, u_2) = I(y_1 \le t - \beta_0 x_2)I(|x_1| = 0),$$

and corresponding symmetric kernel

$$h_g(u_1, u_2) = \frac{K_g(u_1, u_2) + K_g(u_2, u_1)}{2}.$$

Define classes of functions $\mathcal{K}_{\mathcal{F}} = \{K_g | g \in \mathcal{F}\}$ and $\mathcal{H}_{\mathcal{F}} = \{h_g | g \in \mathcal{F}\}$, and for each measurable function h on $\mathbb{R}^2 \times \mathbb{R}^2$, define a stochastic process by

$$M_n(h) = \frac{2}{n(n-1)} \sum_{1 \le i < j \le n} h(U_i, U_j) - E(h(U_1, U_2)), \qquad (0.3)$$

and define $Ph(\cdot, u) = E(h(U_1, U_2)|U_2 = u)$, $Ph(u, \cdot) = E(h(U_1, U_2)|U_1 = u)$ and $P \otimes Ph = E(h(U_1, U_2))$. For each symmetric kernel h_g , letting

/

$$\widetilde{h}_g(u_1, u_2) = h_g(u_1, u_2) - Ph_g(u_1, \cdot) - Ph_g(\cdot, u_2) + P \otimes Ph_g,$$

the Hoeffding decomposition tells us that \widetilde{h}_g is a degenerate kernel and it yields the decomposition

$$M_n(h_g) = M_n(\widetilde{h}_g) + \frac{2}{n} \sum_{i=1}^n (Ph_g(U_i, \cdot) - P \otimes Ph_g).$$

$$(0.4)$$

Let $\widetilde{H}_{\mathcal{F}} = \{\widetilde{h}_g | g \in \mathcal{F}\}$, then it follows that

$$E(\sup_{g \in \mathcal{F}} |M_n(\tilde{h}_g)|) = E(\sup_{\tilde{h} \in \tilde{\mathcal{H}}_{\mathcal{F}}} |M_n(\tilde{h})|)$$

$$= \frac{2}{n(n-1)} E\left(\sup_{\tilde{h} \in \tilde{\mathcal{H}}_{\mathcal{F}}} |\sum_{1 \le i < j \le n} \tilde{h}(U_i, U_j) - E\left(\tilde{h}(U_1, U_2)\right)|\right)$$

$$= \frac{1}{n(n-1)} E\left(\sup_{\tilde{h} \in \tilde{\mathcal{H}}_{\mathcal{F}}} |\sum_{i \ne j} \tilde{h}(U_i, U_j) - \underbrace{E\left(\tilde{h}(U_1, U_2)\right)}_{=0 \text{ since } \tilde{h} \text{ is degenerate}}\right)$$

$$\leq \frac{C}{n(n-1)} E(\theta_n + \tau_n J(\theta_n / \tau_n, L_2(T_n), \tilde{\mathcal{H}}_{\mathcal{F}})) \quad (\text{by (0.2) in Lemma 0.10})$$

$$\leq \frac{C}{n(n-1)} E(2n + 8nJ(1/4, L_2(T_n), \tilde{\mathcal{H}}_{\mathcal{F}})) \quad (\text{as } \sup_{h \in \tilde{\mathcal{H}}_{\mathcal{F}}} |h| \le 4 \text{ and thus } 4\theta_n \le \tau_n \le 8n)$$

$$\leq \frac{2C}{n-1} E(1 + 4J(1/4, L_2(T_n), \tilde{\mathcal{H}}_{\mathcal{F}})), \quad (0.5)$$

where $\theta_n = \frac{n}{2} \sup_{g \in \widetilde{\mathcal{H}}_{\mathcal{F}}} (T_n g^2)^{1/2}$, $\tau_n = 2n (T_n F_{\widetilde{\mathcal{H}}_{\mathcal{F}}}^2)^{1/2}$, and T_n is defined in Lemma 0.10.

Next we will establish a bound of the empirical entropy $J(1/4, L_2(T_n), \tilde{\mathcal{H}}_{\mathcal{F}})$. Let $g_i(u) = I(y + \beta_0 x \leq t_i), i = 1, 2$. It is not hard to verify using triangular inequality and Jensen's inequality that

$$\begin{aligned}
\sqrt{T_{n}|\tilde{h}_{g_{1}} - \tilde{h}_{g_{2}}|^{2}} \\
&= \sqrt{T_{n}|(h_{g_{1}} - h_{g_{2}}) - (Ph_{g_{1}}(u, \cdot) - Ph_{g_{2}}(u, \cdot)) - (Ph_{g_{1}}(\cdot, u) - Ph_{g_{2}}(\cdot, u)) + P \otimes P(h_{g_{1}} - h_{g_{2}})|^{2}} \\
&\leq \sqrt{T_{n}|h_{g_{1}} - h_{g_{2}}|^{2}} + \sqrt{T_{n}|Ph_{g_{1}}(u, \cdot) - Phg_{2}(u, \cdot)|^{2}} \\
&+ \sqrt{T_{n}|Ph_{g_{1}}(\cdot, u) - Phg_{2}(\cdot, u)|^{2}} + \sqrt{P \otimes P|h_{g_{1}} - h_{g_{2}}|^{2}} \\
&= \sqrt{T_{n}|h_{g_{1}} - h_{g_{2}}|^{2}} + 2\sqrt{T_{n}|Ph_{g_{1}}(u, \cdot) - Phg_{2}(u, \cdot)|^{2}} \\
&+ \sqrt{P \otimes P|h_{g_{1}} - h_{g_{2}}|^{2}} & \text{bBy the fact } h_{g} \text{ is symmetric}) \\
&\leq \sqrt{T_{n}|h_{g_{1}} - h_{g_{2}}|^{2}} + 2\sqrt{T_{n} \otimes P|h_{g_{1}} - h_{g_{2}}|^{2}} + \sqrt{P \otimes P|h_{g_{1}} - h_{g_{2}}|^{2}}.
\end{aligned}$$
(0.6)

Moreover, for any probability measure $Q(u_1, u_2)$, we have

$$\sqrt{Q|h_{g_1} - h_{g_2}|^2} \leq \frac{1}{2} \sqrt{\int |K_{g_1}(u_1, u_2) - K_{g_2}(u_1, u_2)|^2 dQ(u_1, u_2)}
+ \frac{1}{2} \sqrt{\int |K_{g_1}(u_2, u_1) - K_{g_2}(u_2, u_1)|^2 dQ(u_1, u_2)}
\leq \frac{1}{2} \sqrt{\int |I(y_1 \leq t_1 - \beta_0 x_2) - I(y_1 \leq t_2 - \beta_0 x_2)|^2 dQ(u_1, u_2)}
+ \frac{1}{2} \sqrt{\int |I(y_2 \leq t_1 - \beta_0 x_1) - I(y_2 \leq t_2 - \beta_0 x_1)|^2 dQ(u_1, u_2)}$$
(0.7)

Therefore, (by the definition of $N(4\epsilon, L_2(T_n), \widetilde{\mathcal{H}}_{\mathcal{F}})$, (0.6)) and (0.7), we can see, for every $\epsilon > 0$, it holds that

$$N(4\epsilon, L_2(T_n), \mathcal{H}_{\mathcal{F}})$$

$$\leq N(\epsilon/2, L_2(T_n), \mathcal{H}_{\mathcal{F}})N^2(\epsilon/2, L_2(T_n \otimes P), \mathcal{H}_{\mathcal{F}})N(\epsilon/2, L_2(P \otimes P), \mathcal{H}_{\mathcal{F}}) \quad (by (0.6) \text{ and Lemma 0.7})$$

$$\leq N^2(\epsilon/8, L_2(T_n), \mathcal{F})N^4(\epsilon/8, L_2(T_n \otimes P), \mathcal{F})N^2(\epsilon/8, L_2(P \otimes P), \mathcal{F}) \quad (by (0.7) \text{ and Lemma 0.7})$$

$$\leq \sup_Q N^8(\epsilon/8, L_2(Q), \mathcal{F}), \quad (By \text{ taking supernum of all measures}) \quad (0.8)$$

where the supernum is taken over all probability measures.

Since \mathcal{F} is a subset of $\{I(y + \beta x \leq t) | \beta \in \mathbb{R}, t \in \mathbb{R}\} \cup \{0, 1\}$ and $\{I(y + \beta x \leq t) | \beta \in \mathbb{R}, t \in \mathbb{R}\}$ is a VC class with VC index 3 due to Lemma 0.9. Therefore, applying Lemma 0.8, we can see

$$\sup_{Q} N(\epsilon, L_2(Q), \mathcal{F}) \lesssim \epsilon^{-4}.$$
 (0.9)

Since $\sup_{h\in \widetilde{\mathcal{H}}_{\mathcal{F}}} |h| \leq 4$, combining (0.8) and (0.9), we have

$$J(1/4, L_2(T_n), \widetilde{\mathcal{H}}_{\mathcal{F}}) = \int_0^{1/4} \log N(4\epsilon, L_2(T_n), \widetilde{\mathcal{H}}_{\mathcal{F}}) d\epsilon$$

$$\lesssim \int_0^1 -\log \epsilon d\epsilon < \infty.$$
(0.10)

Combining (0.5) and (0.10), we obtain that

$$\sup_{g \in \mathcal{F}} \sqrt{n} |M_n(\tilde{h}_g)| = O_p(\frac{1}{\sqrt{n}}) = o_P(1).$$

The previous equality and (0.4) lead to

$$\sup_{g \in \mathcal{F}} \sqrt{n} \left| M_n(h_g) - \frac{2}{n} \sum_{i=1}^n (Ph_g(U_i, \cdot) - P \otimes Ph_g) \right| = O_p(\frac{1}{\sqrt{n}}) = o_P(1).$$
(0.11)

By definition, rewrite \check{F}^* as

$$\begin{split} \check{F}^{*}(t) &= \frac{1}{n} \sum_{i=1}^{n} \widehat{F}_{0}(t - \widehat{\beta}X_{i}) \\ &= \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{j=1}^{n} I(Y_{j} \le t - \widehat{\beta}X_{i})I(|X_{j}| = 0)}{\sum_{j=1}^{n} I(|X_{j}| = 0)} \\ &= \frac{1}{n} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} I(Y_{j} \le t - \widehat{\beta}X_{i})I(|X_{j}| = 0)}{\sum_{j=1}^{n} I(|X_{j}| = 0)}. \end{split}$$

Now let us define

$$G_n(t,\beta) = \frac{1}{n-1} \frac{\sum_{i=1}^n \sum_{j=1}^n I(Y_j \le t - \beta X_i) I(|X_j| = 0)}{\sum_{j=1}^n I(|X_j| = 0)},$$

$$\bar{G}_n(t,\beta) = \frac{1}{n(n-1)} \sum_{i=1}^n \sum_{j=1}^n I(Y_j \le t - \beta X_i) I(|X_j| = 0).$$

Moreover, direct examinations show that for $g_t(u) = I(y + \beta_0 x \le t)$

$$\begin{aligned} &|\bar{G}_n(t,\beta_0) - \frac{2}{n(n-1)} \sum_{1 \le i < j \le n} h_{g_t}(U_i,U_j)| \\ &= |\bar{G}_n(t,\beta_0) - \frac{1}{n(n-1)} \sum_{i \ne j} K_{g_t}(U_i,U_j)| \\ &= \frac{1}{n(n-1)} \sum_{i=1}^n K_{g_t}(U_i,U_i) \\ &\le \frac{1}{n(n-1)} \sum_{i=1}^n I(|X_i| = 0). \end{aligned}$$

As a consequence, we obtain

$$\sup_{t\in\overline{\mathbb{R}}}\sqrt{n}|\bar{G}_n(t,\beta_0) - \frac{2}{n(n-1)}\sum_{1\le i< j\le n}h_{g_t}(U_i,U_j)| = O_P(n^{-1/2}) = o_P(1).$$
(0.12)

Since for $g_t(u) = I(y \leq t - \beta_0 x)$, $P \otimes Pg_t = pF_Y(t)$. So in the view of (0.3), (0.4), (0.11) and (0.12), it not hard to conclude $\sqrt{n}(\bar{G}_n(t,\beta_0) - pF_Y(t))$ and $n^{-1/2} \sum_{i=1}^n (Ph_{g_t}(U_i,\cdot) - pF_Y(t))$ has the same limit distribution in terms of weak convergence as stochastic processes indexed by $\overline{\mathbb{R}}$. In the following we will establish the limit distribution of $\sqrt{n}(\bar{G}_n(t,\beta_0) - pF_Y(t))$ using $n^{-1/2} \sum_{i=1}^n (Ph_{g_t}(U_i,\cdot) - pF_Y(t))$ as a proxy process.

Next we will show the class $PH_{\mathcal{F}} := \{Ph_g(u, \cdot) | g \in \mathcal{F}\}$ is Donsker. Similar calculation to (0.7),

for any probability measure Q, it is not hard to show for $g_i(u) = I(y + \beta_0 x \le t_i)$

$$\begin{split} &\sqrt{Q|Ph_{g_1}(u,\cdot) - Ph_{g_2}(u,\cdot)|^2} \\ &\leq \sqrt{Q \otimes P|h_{g_1} - h_{g_2}|^2} \\ &\leq \frac{1}{2}\sqrt{\int |I(y_1 \leq t_1 - \beta_0 x_2) - I(y_1 \leq t_2 - \beta_0 x_2)|^2 dQ \otimes P(u_1,u_2)} \\ &\quad + \frac{1}{2}\sqrt{\int |I(y_2 \leq t_1 - \beta_0 x_1) - I(y_2 \leq t_2 - \beta_0 x_1)|^2 dQ \otimes P(u_1,u_2)}. \end{split}$$

The previous inequality and Lemma 0.7 suggest

$$N(\epsilon, L_2(Q), P\mathcal{H}_{\mathcal{F}}) \leq N^2(\epsilon/4, L_2(Q \otimes P), \mathcal{F})$$

Therefore, (0.9) and the inequality above imply

$$\sup_{Q} N(\epsilon, L_2(Q), P\mathcal{H}_{\mathcal{F}}) \leq \sup_{Q} N^2(\epsilon/4, L_2(Q), \mathcal{F})$$

$$\lesssim \epsilon^{-8}.$$

Above covering number condition and Lemma 0.11 suggest the $P\mathcal{H}_{\mathcal{F}}$ is a Donsker class. Hence $n^{-1/2}\sum_{i=1}^{n}(Ph_{g_t}(U_i,\cdot) - pF_Y(t))$ weakly converges to a Gaussian process and $\sqrt{n}(\bar{G}_n(t,\beta_0) - pF_Y(t))$ converges to the same Gaussian process. Now, let us define a multi-dimensional process indexed by $\overline{\mathbb{R}}$, for $g_t(u) = I(y \leq t - \beta_0 x)$, letting

$$V_n(t) := (V_{1n}(t), V_{2n}, V_{3n}(t))$$

$$:= \sqrt{n} \left(p^{-1} \bar{G}_n(t, \beta_0) - F_Y(t), \frac{1}{np} \sum_{i=1}^n I(|X_i| = 0) - 1, \frac{1}{n} \sum_{i=1}^n I(Y_i \le t) - F_Y(t) \right), t \in \overline{\mathbb{R}},$$

and

$$\widetilde{V}_{n}(t) := (\widetilde{V}_{1n}(t), \widetilde{V}_{2n}, \widetilde{V}_{3n}(t)) \\ := \sqrt{n} \bigg(\frac{1}{n} \sum_{i=1}^{n} (p^{-1} Ph_{g_{t}}(U_{i}, \cdot) - F_{Y}(t)), \frac{1}{np} \sum_{i=1}^{n} I(|X_{i}| = 0) - 1, \frac{1}{n} \sum_{i=1}^{n} I(Y_{i} \le t) - F_{Y}(t) \bigg), t \in \overline{\mathbb{R}}.$$

Previous argument suggest V_n and \widehat{V}_n should have the same limit distribution if they converge weakly. But notice previous argument also shows $V_{1n}(t)$ converges weakly to a Gaussian process. The limit distribution of V_{2n} is also Gaussian distribution due to C.L.T. Similar argument can show that $V_{3n}(t)$ also converges weakly to a Gaussian process. In order to apply Lemma 0.5, we still need to check the condition: for each positive integers k, m and each $t_1, ..., t_k, s_1, ..., s_m \in \mathbb{R}$, by C.L.T, it is not difficult to show $(\widetilde{V}_{1n}(t_1), ..., \widetilde{V}_{1n}(t_k), \widetilde{V}_{2n}, \widetilde{V}_{3n}(s_1), ..., \widetilde{V}_{3n}(s_m))$ converges to a (k+m+1)-dimensional normal random variable $(Z_{t_1}^{(1)}, ..., Z_{t_k}^{(k)}, Z^{(2)}, Z_{s_1}^{(3)}, ..., Z_{s_m}^{(3)})$ in distribution, where

$$Z^{(2)} = Z_{\infty}^{(1)},$$

$$Cov(Z_{t}^{(1)}, Z_{s}^{(1)}) = p^{-1} \int \left(\int I(w + \beta_{0}x \leq t)dF_{X}(x) \int I(w + \beta_{0}x \leq s)dF_{X}(x) \right) dF_{0}(w)$$

$$-2F_{Y}(t)F_{Y}(s) + \int F_{0}(t - \beta_{0}x)F_{0}(s - \beta_{0}x)dF_{X}(x)$$

$$+F_{Y}(t)[F_{0}(s) - F_{Y}(s)] + F_{Y}(s)[F_{0}(t) - F_{Y}(t)],$$

$$Cov(Z_{t}^{(3)}, Z_{s}^{(3)}) = F_{Y}(t \wedge s) - F_{Y}(t)F_{Y}(s),$$

$$Cov(Z_{t}^{(1)}, Z_{s}^{(3)}) = \int \int I(w + \beta_{0}x \leq t)I(w \leq s)dF_{X}(x)dF_{0}(w) - F_{Y}(t)F_{Y}(s)$$

$$+ \int F_{0}(t - \beta_{0}x)F_{0}(s - \beta_{0}x)dF_{X}(x) - F_{Y}(t)F_{Y}(s).$$

Moreover, the equivalence of $\widetilde{V}_{1n}(t)$ and $V_{1n}(t)$ shows $(V_{1n}(t_1), ..., V_{1n}(t_k), V_{2n}, V_{3n}(s_1), ..., V_{3n}(s_m))$ converges the same limit distribution. Now we can apply Lemma 0.5 to $V_n(t)$ and it follows that

$$V_n(t) \rightsquigarrow D(t) = \left(D_1(t), D_2, D_3(t)\right), \ t \in \overline{\mathbb{R}},$$

where $D_1(t), D_3(t)$ are both Gaussian processes with zero mean and covariance

$$Cov(D_{1}(t), D_{1}(s)) = p^{-1} \int \left(\int I(w + \beta_{0}x \le t) dF_{X}(x) \int I(w + \beta_{0}x \le s) dF_{X}(x) \right) dF_{0}(w) \\ -2F_{Y}(t)F_{Y}(s) + \int F_{0}(t - \beta_{0}x)F_{0}(s - \beta_{0}x) dF_{X}(x) \\ +F_{Y}(t)[F_{0}(s) - F_{Y}(s)] + F_{Y}(s)[F_{0}(t) - F_{Y}(t)], \\ Cov(D_{3}(t), D_{3}(s)) = F_{Y}(t \land s) - F_{Y}(t)F_{Y}(s), \\ Cov(D_{1}(t), D_{3}(s)) = \int \int I(w + \beta_{0}x \le t)I(w \le s) dF_{X}(x) dF_{0}(w) - F_{Y}(t)F_{Y}(s) \\ + \int F_{0}(t - \beta_{0}x)F_{0}(s - \beta_{0}x) dF_{X}(x) - F_{Y}(t)F_{Y}(s), \\ \end{array}$$

and $D_2 = D_1(\infty)$.

Now let us apply functional delta method to process $V_n(t)$. Define $\phi(v_1, v_2, v_3) = v_1/v_2 - v_3$. It not hard to verify the Hadamard derivative at point $(F_Y(t), 1, F_Y(t))$ is $\phi_{(F_Y(t), 1, F_Y(t))}(v_1, v_2, v_3) = v_1 - F_Y(t)v_2 - v_3$. As a consequence, by Lemma 0.6, we have

$$\sqrt{n} \left(G_n(t,\beta_0) - \frac{1}{n} \sum_{i=1}^n I(Y_i \le t) \right)$$

$$= \sqrt{n} \left(\frac{p^{-1} \bar{G}_n(t,\beta_0)}{\frac{1}{np} \sum_{i=1}^n I(|X_i|=0)} - \frac{1}{n} \sum_{i=1}^n I(Y_i \le t) \right) \rightsquigarrow D_1(t) - F_Y(t) D_2 - D_3(t), t \in \overline{\mathbb{R}}.$$
(0.13)

By Remark 2, it follows that $P(\hat{\beta} \neq \beta_0 \text{ i.o.}) = 0$. Therefore (0.14) implies that

$$\sqrt{n}\left(G_n(t,\widehat{\beta}) - \widehat{F}_Y(t)\right) \rightsquigarrow D_1(t) - F_Y(t)D_2 - D_3(t), t \in \overline{\mathbb{R}}.$$

Finally, the desire result follows the above inequality and following fact

$$\sup_{t\in\mathbb{R}}\sqrt{n}|G_n(t,\hat{\beta})-\check{F}^*(t)| \le \frac{\sqrt{n}}{n-1} = o_P(1).$$

References

- Kosorok, M. (2008). Introduction to empirical processes and semiparametric inference. Springer, New York.
- Nolan, D. and Pollard, D. (1987). U-processes: rates of convergence. *The Annals of Statistics*, pages 780–799.