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1. Introduction. Time-dependent proportional hazards (PH) models involve a covariate

vector z(t) that is time dependent. Let Y be a random survival time variable that is subject

to right censoring. Denote its survival distribution and density function by S(t) and f(t),

respectively. The hazard function of Y is h(t) = f(t)/S(t−). A time-dependent PH (TDPH)

model for Y is represented by

h(t|z(t)) = ho(t)e
̺z(t), (1)

where ho is the baseline hazard function, ̺ is the vector of regression coefficients, z(t) is the

time-dependent covariate vector and ̺z(t) is the inner product of ̺ and z(t). If Y is not

continuous, then we need to add the restriction t < sup{t : ho(t) > 0}. Yu (2006) gives

an example of a discrete ho without the restriction such that (1) does not define a hazard

function. We shall only consider the case that Y is continuous in this paper.

TDPH models have been discussed for right-censored (RC) data (see, for examples, Th-

erneau and Grambsch (2000), Zhou (2001), Platt et al. (2004), Zhang and Huang (2006),

Stephan and Michael (2007), Masaaki and Masato. (2009), and Leffondre et al. (2010)). A

common situation that will involve the use of a TDPH model is a long-term clinical follow-up

study. In such a study, the impact of a prognostic variable may change at different time

periods. We have collected survival and relapse data on 371 women with early stage breast

cancer with a median follow-up time of 7.4 years. The primary objective of the study is to

investigate whether bone marrow micrometastasis (BMM) is significant in predicting early or

late relapse. Clinical consideration and survival plots suggest early failure can be considered

at time less than 4 years from initial breast cancer surgery. Our research interest is to employ

a TDPH model to study the prognostic significance of BMM (presence or absence), together

with standard clinical variables including lymph node involvement LN (yes or no) and tumor

diameter TD (> 2cm or ≤ 2cm). To allow for the possibility of differential impact of BMM for

follow-up time ≤ 4 years and that > 4 years in a TDPH model, we let z1(t) = BMM ·1(t ≤ 4)
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and z2(t) = BMM · 1(t > 4), where 1(·) denotes the indicator function. If BMM is the only

variable in the model, then (1) yields

h(t|BMM) =

{

ho(t)e
αBMM t ≤ 4

ho(t)e
βBMM t > 4.

(2)

The TDPH model (2) is an example of a piecewise PH (PWPH) model with one variable

involving a single cut point at t = 4 years. PWPH models refer to regression models that

are PH when restricted to different time intervals. Note that z2i(1(t ≤ ci),1(t > ci)) can be

viewed as an (external) time-dependent covariate vector (see Kalbfleisch and Prentice (1980)

p.123), or β(t) = β11(t ≤ ci) + β21(t > ci) can be viewed as a time varying regression

coefficient (see Tian (2005)).

Zhou (2001) considered a more general PWPH model as follows.

h(t|zi) = ho(t) exp(αz1i + β1z2i1(t ≤ ci) + β2z2i1(t > ci)), (3)

where zji is a time-independent covariates (for j ∈ {1, 2, 3}), and ci is the cut point for

the i-th observation. The maximum partial likelihood estimator (MPLE) of the parameter

can be obtained from an algorithm proposed by (Therneau (1999)). The method consists of

first expanding the original data set and then apply a Cox regression-type algorithm to the

resulting expanded data set. When ci = c for all i, we say the design of a PWPH model is

balanced. Our research are concerned with balanced PWPH models.

In Section 2, we present the general form of a PWPH model with one cut point. We

also show how to re-parameterize the model to facilitate derivation. We introduce a re-

parametrization of the model in order to facilitate derivation and discussion. In Section 3,

we demonstrate that the MPLE of a general class of PWPH models can be obtained in a

piecewise fashion by appealing to a standard statistical program for time-independent PH

(TIPH) models. Our algorithm is simpler than the Therneau algorithm for two reasons.

First, we deal with the original unexpanded data set. Second, our algorithm optimizes over
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smaller component parameter space, while the Therneau algorithm optimizes over the entire

composite parameter space. Thus it is less likely to have a singular Hessian matrix. Data sets

that our method works but not the Therneau method are given in Appendix (see Examples

A1 and A2). We derive the generalized likelihood function for PWPH models in Section 4. To

obtain the semiparametric maximum likelihood estimator (SMLE) of the model parameters by

a numerical method, it is important to have a good initial value for the parameter vector. For

this purpose, we propose a simple initial estimator and show that it is consistent. To assess

the validity of the piecewise PH assumption, we propose in Section 5 a simple diagnostic

method based on the SMLE of the survival function. We call this plot the PWPH plot. This

method can also help us identify an appropriate cut point. The typical diagnostic method in

the literature is the log-minus-log plots (see, for instance, Kalbfleisch and Prentice (1980)),

and one checks whether the curves are parallel. Several other diagnostic plotting methods

based on the scaled Schoenfeld residuals or the martingale residuals have also been proposed

in the literature (see, for example, Therneau and Grambsch (2000)), but these methods needs

to specify the forms of the covariate z(t) (see Eq. (1)). Using our PWPH plot, one just

needs to check whether the plot is piecewise linear and the “corner” of the piecewise linear

graph suggests the cutting point, without specifying the form of z(t) in advance. In Section

6, we discuss extension of our results to PWPH models involving more than one cut point.

Simulation results are presented in Section 7. Finally in Section 8, we present survival analysis

on our long-term breast cancer follow-up data using the results for the PWPH models we have

developed. It is interesting to point out that it is not clear whether our data fit the PWPH

models from the log-minus-log plots, but it is clear from the PWPH plots we proposed in this

paper.

2. Model formulation. A general PWPH model with one cut point c should accommodate

a covariate vector w that is time independent (same impact both to the left side and to the
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right side of c), a set of covariates x1 that follows a PH model to the left side of c but is absent

in the PH model to the right side of c, a set of covariates x2 that follows a PH model to the

right side of c but is absent in the PH model to the left side of c, and a set of covariates z

that follows a different PH model to the left side and to the right side of c. We represent the

model as follows:

h(t|w, x1, x2, z) =

{

ho(t) exp(γw + ρ1x1 + αz) t ≤ c
ho(t) exp(γw + ρ2x2 + βz) t > c,

(4)

where γ, ρ1, ρ2, α and β are vectors of regression coefficients.

To facilitate presentation and calculation, we can re-express (4) in a more compact for-

mulation as follows.

h(t|w, u, v) = ho(t) exp(γw + αu1(t ≤ c) + βv1(t > c)), (5)

where w, u and v are covariate vectors and it is possible that u = v. The time-dependent

covariate vector of the general PWPH model is

z(t) = (w, u1(t ≤ c), v1(t > c)), (6)

with corresponding independent parameter vector

η = (γ, α, β). (7)

Note that x1 in (4) is represented by the coordinate covariates uk (of u) such that uk 6= vj

for any j, x2 by vk such that vk 6= uj for any j, and z by the coordinate covariates of u and

v such that uk = vk.

3. Partial likelihood estimation. Let Mi =min(Yi, Ci), where Yi is the i-th survival time

and Ci is the i-th censoring time, and δi be the indicator function for Mi = Yi. The RC data

for a TDPH model (1) (or PWPH model (5)) consist of (Mi, δi, zi(t)), i = 1, ..., n. For a TIPH

model h(t|z) = exp(βz)ho(t), the partial likelihood is given by

lo =
∏

i∈D

exp(̺zi)
∑

k∈Ri
exp(̺zk)

, (8)
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where Ri is the risk set {j : Mj ≥ Yi} and D is the collection of indices of the exact

observations (see Cox and Oak (1984)). For a TDPH model (1), the partial likelihood is

given by

l1 =
∏

i∈D

exp(̺zi(Mi))
∑

k∈Ri
exp(̺zk(Mi))

. (9)

Under the PWPH model (5) with observations (Mi, δi, wi, ui, vi) and cut point c, the partial

likelihood (9) becomes

l1 =
∏

i∈D

exp(γwi + αui1(Mi ≤ c) + βvi1(Mi > c))
∑

k∈Ri
exp(γwk + αuk1(Mi ≤ c) + βvk1(Mi > c))

. (10)

When there is no w in (5), the hazard function for (5) is given by

h(t|u, v) =
{

ho(t)e
αu t ≤ c

ho(t)e
βv t > c.

The last expression leads to a simpler algorithm which is stated in Theorem 1 that says that

the MPLE α̂P of α can be computed with a standard statistical program for a TIPH model

by censoring data Mi’s at c, and for the MPLE β̂P of β using data Mi > c.

Theorem 1. Let w = 0 in (5). The maximum partial likelihood estimate (α̂P , β̂P ) of (α, β)

can be obtained as follows:

(I) For computing α̂P , modify the data by right censoring all Mi’s with Mi > c at c. Let

(M∗
i , δ

∗
i , u

∗
i ) =

{

(Mi, δi, ui) if Mi ≤ c
(c, 0, ui) if Mi > c,

(11)

and use an existing statistical software for the TIPH model h(t|u∗) = ho(t) exp(αu
∗).

(II) For computing β̂P , use only the data (Mi, δi, vi) satisfying Mi > c and use an existing

statistical software for the TIPH model h(t|v) = ho(t) exp(βv).

Proof. Without loss of generality (WLOG), we can assume that the data are ordered in the

Mi’s, and Mm ≤ c < Mm+1. The partial likelihood (9) becomes

l1 =
∏

i∈D

exp(αui1(Mi ≤ c) + βvi1(Mi > c))
∑

k∈Ri
exp(αuk1(Mi ≤ c) + βvk1(Mi > c))

=
∏

i≤m

[
exp(αui)

∑

k≥i exp(αuk)
]δi

∏

i>m

[
exp(βvi)

∑

k≥i exp(βvk)
]δi . (12)
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In l1, here are two parameters α and β. The partial likelihood l1 is a product of two

factors. The first factor does not depend on β and the second factor does not depend on α.

Thus we only need to maximize the first and the second factors separately to obtain α̂P and

β̂P , respectively.

The first factor in (12) is the same as the partial likelihood for the modified data

(M∗
i , δ

∗
i , u

∗
i ) defined in (11). Therefore, a standard statistical package for the TIPH model

can be used here to obtain α̂P . The message of (11) is that to compute the MPLE of the

model parameters to the left side of the cut point c, we need only use data Mi ≤ c and treat

all data Mi > c as censored at c.

The second factor in (12) is the same as the partial likelihood in (8) for the truncated

data removing all the Mi ≤ c. Such a truncated data set satisfies the conditional distribution

S(t|z)
S(c|z) =

(So(t))
eβv

(So(c))e
βv

= (S1(t))
eβv

,

where So(t) = S(t|0) is the baseline survival function and S1(t) = So(t)
So(c)

. Therefore, the

truncated data set satisfies a TIPH model. Then the partial likelihood solution of β from a

standard package is the same as β̂P based on the entire data set.

We now describe the application of Therneau’s algorithm (1999) to fit the MPLE asso-

ciated with the model h(wi, ui, vi) = ho(t)e
γwi+αui1(t≤ci)+βvi1(t>ci). The program is written

in Splus, R or SAS. The command in R is coxph(Surv(start,stop,event)∼z). The original data

set is (Mi, δi, wi, ui, vi) with cut point ci, i = 1, ..., n. Let m be the number of Mi ≤ ci. The

data set is expanded as follows.

Step 1. For each Mi ≤ ci generate one vector

(starti1, stopi1, δ
∗
i1, w

∗
i1, u

∗
i1, v

∗
i1) = (0,Mi, δi, wi, ui, 0).

Step 2. For each Mi > ci, generate two vectors
{

(starti1, stopi1, δ
∗
i1, w

∗
i1, u

∗
i1, v

∗
i1) = (0, c, 0, wi, ui, 0)

(starti2, stopi2, δ
∗
i2, w

∗
i2, u

∗
i2, v

∗
i2) = (c,Mi, δi, wi, 0, vi).
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Let start, stop, δ∗, w∗, u∗, and v∗ be the (2n − m) dimensional vectors with coordinates

startij , stopij , δ
∗
ij , w

∗
ij , u

∗
ij , and v∗ij , respectively. Then the MPLE (γ̂, α̂, β̂) can be obtained

by applying the command coxph(Surv(start, stop, δ∗) ∼ w∗ + u∗ + v∗).

When we apply our simple algorithm and the Therneau algorithm to our BMM data

where ci = c for all i, both of the algorithms yield the same MPLE values for almost all

data under all the models studied there. In the Appendix, we present two data examples (see

Examples A1 and A2) that our algorithm provides the solutions but Therneau algorithm does

not because the 2× 2 Hessian matrix is singular for these two data sets. Thus our algorithm

has the advantage over Therneau algorithm in simplicity and feasibility.

4. Full Likelihood Estimation. For TIPH models, Finkelstein (1986) proposes the full

likelihood approach by making use of the generalized likelihood of Kiefer andWolfowitz (1956):

L =
n
∏

i=1

((So(Mi))
eβz

)1−δi((So(Mi−))e
βz − (So(Mi))

eβz

)δi ,

where So is the baseline survival function. For TDPH model (1) with RC data (Mi, δi, zi),

L =
n
∏

i=1

[(S(Mi|zi))1−δi(S(Mi − |zi)− S(Mi|zi))δi ]. (13)

By model assumption in Eq (5), (6) and (7), S(·|·) is a function of So and the parameter η.

The SMLE of (So, η) maximizes L over all η and over all So in the collection

{S : S is non-increasing, right continuous and S ∈ [0, 1]}

Evaluation of the function L in (13) requires an explicit expression for S(t|z) in terms of So

and the paramter. We derive this for the general continuous PWPH model (5) in Theorem 2.

Theorem 2. If Y is continuous, the survival function corresponding to model (5) is given by

S(t|w, u, v) =
{

(S1(t))
eαu

t ≤ c

(S1(c))
eαu

( S1(t)
S1(c)

)e
βv

t > c,
where S1(t) = (So(t))

eγw

. (14)
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Proof. Since Y is continuous, S(t|w, u, v) = exp(−
∫ t

0
h(x|w, u, v)dx). When t ≤ c,

S(t|w, u, v) =exp(−
∫ t

0

eγw+αuho(x)dx)

=(So(t))
eγw+αu

=(S1(t))
eαu

.

When t > c,

S(t|w, u, v) = exp(−
∫ c

0

eγw+αuho(x)dx) exp(−
∫ t

c

eγw+βvho(x)dx)

=(So(c))
eγw+αu

(
So(t)

So(c)
)e

γw+βv

=(S1(c))
eαu

(
S1(t)

S1(c)
)e

βv

.

Remark 1. It is well known (see Wong and Yu (2012)) that under the non-parametric set-

up with RC data, the SMLE of the TIPH model only assigns weights to exact observations

or ∞. It can be shown that in order to maximize L under the PWPH model, in addition

to put probability weights of So to exact observations or ∞, one may also need to put the

probability weight of So to c.

Let t1, ..., tN be the distinct exact observations of Yi or c or ∞, where

−∞ = t0 < t1 < · · · < tm = c < tm+1 < · · · < tN = ∞.

For each i, let ri, li ∈ {0, 1, ..., N} such that (tri , tli) =

{

(Mi, tri−1) if δi = 1
(tN ,max{tj : tj ≤ Mi}) if δi = 0.

Substituting the expression for S(Mi|zi) = S(Mi|wi, ui, vi) in Theorem 2 into L in (13), we

obtain the full likelihood for model (5).

L =
∏

i: Mi≤c, δi=0

(S1(Mi))
eαui

∏

i: Mi>c, δi=0

(S1(c))
eαui−βvi

(S1(Mi))
eβvi

×
∏

i: Mi≤c,δi=1

((S1(Mi−))e
αui − (S1(Mi))

eαui
)
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×
∏

i: Mi>tm+1,δi=1

(S1(c))
eαui−eβvi

((S1(Mi−))e
βvi − (S1(Mi))

eβvi
)

×
∏

i: Mi=tm+1,δi=1

((S1(c))
eαui − (S1(c))

eαui−eβvi
(S1(Mi))

eβvi
),

where S1(Mi) = (So(t))
eγwi

, S1(c)
αui+βvi = (So(t))

eγwi+αui+βvi
, and an arbitrary So puts

weights to the 2N disjoint intervals (t0, t1), [t1, t1], ..., (tN−1, tN ), [tN , tN ]. Notice that for

each j ∈ {1, ..., N}, L increases if the positive weight assigned to the interval (tj−1, tj) is

moved to tj . Thus in order to obtain the SMLE of S(·|·), it suffices to obtain the SMLE

(η̂, Ŝo) of (η, So) which maximizes the likelihood

L =g(So(c))
∏

Mi∈[t1,c)

(So(tli))
e(γiwi+αui)(1−δi)

∏

Mi>c

(So(tli))
e(γwi+βvi)(1−δi) (15)

×
∏

Mi<c

((So(tli))
e(γwi+αui) − (So(Mi))

e(γwi+αui)

)δi

×
∏

Mi>tm+1

((So(tli))
e(γwi+βvi) − (So(Mi))

e(γwi+βvi ))δi ,

subject to the constraint 0 ≤ So(t1) ≤ · · · ≤ So(tN−1) ≤ So(tN ) = 1,

where g(So(c)) = (So(c))

∑

i: Mi≥tm+1
eγwi+αui−eγwi+βvi+

∑

tli
=c

(1−δi)e
γwi+αui

×
∏

Mi=tm+1

((So(c))
eγwi+βvi − (So(tm+1))

eγwi+βvi
)δi

×
∏

Mi=c

((So(tli))
e(γwi+αui) − (So(c))

e(γwi+αui)

)δi .

The SMLE has to be obtained by an iterative algorithm. It is well known (see Wong and

Yu (2012)) that in general the Newton-Raphson method does not work for the SMLE under

the Cox regression model, we implement a steep decent method to compute the SMLE.

Remark 2. For each j ∈ {1, ..., N − 1}, given So(ti) for i /∈ {j,N}, in general, there is no

closed form solution for the maximum point of L with respect to So(tj), except for j = m,

i.e. tj = c. In the latter case, given So(ti) for i /∈ {m,N}, the maximum point of L with

respect to So(tm) (= So(c)) has an explicit solution, given in Lemma 1. Notice that So(c)

only occurs in L through g(So(c)) (see Eq. (15)). Thus it suffices to maximizes g(x).
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Let g(x) = (xy − t)xz (as
∑

i 1(Mi = tm+1) = 1 and
∑n

i=1 1(Mi = c, δi = 1) = 0 by the

continuity assumption on Y ), where (y, t, z)

= (eγwi1+βvi1 , (So(tm+1))
e
γwi1

+βvi1 ,
∑

i: Mi≥tm+1

(eγwi+αui − eγwi+βvi)+
∑

i:tli=c

(1− δi)e
γwi+αui),

and i1 satisfies that Mi1 = tm+1 and δi1 = 1.

Lemma 1. g(x) ≤ g(xξo
o (So(tm−1))

1−ξo) for x ∈ [So(tm+1), So(tm−1)], where xo = ( tz
y+z )

1/y

and ξo = 1(xo ∈ (So(tm+1), So(tm−1)).

Proof. It is easy to verify the following statements:

1. (log g(x))′ = z
x + xyy/x

xy−t = (z + xyy
xy−t )/x = 0 yields the unique root xo = ( tz

y+z )
1/y;

2. both g(x) and (log g(x))′ exist if xy > t, that is, x ∈ [So(tm+1),∞);

3. (log g(x))′ change its sign only at xo;

4. g(So(tm+1)) = 0;

5. g(x) > 0 if x > So(tm+1), that is, x
y > t (≥ 0).

If xo /∈ (So(tm+1), So(tm−1)), then (log g(x))′ does not change sign in the same interval

due to statements 3. Thus it is increasing in x in the interval [So(tm+1), So(tm−1)] due

to statements 4 and 5. Consequently, g(x) achieves its maximum at x = So(tm−1) if x ∈

[So(tm+1), So(tm−1)].

If xo ∈ (So(tm+1), So(tm−1)), g(x) achieves its extremum uniquely at the stationary point

xo due to statements 1, 2 and 3. If g(xo) is the minimum point, then g(xo) < 0 by statement

4, but it contradicts statement 5. Thus g(x) achieves its maximum at xo.

In general, the likelihood function (15) is not a convex function. If one implements a

numerical algorithm to find (η̂, Ŝo), it is important to use a good initial value η0 for η to

increase the chance of convergence and the chance of convergence to the correct solution. We

propose a simple algorithm to derive a consistent estimate of η and use it as η0. The main

idea is to replace the time independent component γw with [γ1(t ≤ c) + γ∗1(t > c)]w, and

apply the results of Theorem 1. The algorithm goes as follows.
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1. Let (M∗
i , δ

∗
i , w

∗
i , u

∗
i ) =

{

(Mi, δi, wi, ui) if Mi ≤ c
(c, 0, wi, ui) if Mi > c.

Use a standard package to fit a

TIPHmodel to the data (M∗
i , δ

∗
i , w

∗
i , u

∗
i )’s and obtain estimate (γ̃, α̃) for (γ, α) forMi ≤ c.

2. Fit a TIPH model to the data (Mi, δi, wi, vi)’s satisfying Mi > c and obtain estimate

(γ̃∗, β̃) for (γ, β).

3. Set η̃ = (γ̃, α̃, β̃) or (γ̃∗, α̃, β̃) and let η0 = η̃.

We now explain why η̃ is consistent. When we regard w as piecewise at c, the PWPH model

becomes

h(t|wi, ui, vi) =

{

ho(t) exp(γwi + αui) if t ≤ c
ho(t) exp(γ

∗wi + βvi) if t > c.

The likelihood corresponding to this hazard function is the same as the partial likelihood (12)

if we identify ui in (12) with (wi, ui) and vi with (wi, vi), α with (γ, α) and β with (γ, β). By

Theorem 1, (γ̃, α̃) = α̂P and (γ̃∗, β̃) = β̂P are consistent, as it is well known that the MPLE

is consistent. Note that both γ̃ → γ and γ̃∗ → γ with probability 1.

5. Diagnostic plots. We propose a simple diagnostic method for PWPH models to assess

any departure from the PWPH assumption and the appropriateness of the cut point. We

present our diagnostic method for a PWPH model with a simple dichotomous variable that

impacts differently on the left and right sides of a cut point c. In expression(14), set w ≡ 0

and u = v. Then

S(t|u) =
{

(So(t))
eαu

if t ≤ c

(So(c))
eαu

( So(t)
So(c)

)e
βu

if t > c.

Let u take values 0 and 1. Then

S(t|0) = So(t), ∀ t; (16)

S(t|1) =
{

(So(t))
eα if t ≤ c

(So(c))
eα( So(t)

So(c)
)e

β

if t > c.
(17)

Equivalently,

lnS(t|1) =
{

eαlnSo(t) if t ≤ c
eβ lnSo(t) + (eα − eβ)lnSo(c) if t > c.

(18)
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We propose a diagnostic plotting procedure as follows.

1. Obtain Kaplan-Meier estimates (KME) Ŝo of So by calculating the KME Ŝ(t|0) (see (16))

based on observations (Mi, δi)’s with ui = 0, and obtain the KME Ŝ(t|1) of S(t|1) (see

(17)) based on the observations (Mi, δi)’s with ui = 1.

2. Plot −lnŜ(t|1) on the y-axis against −lnŜo(t) on the x-axis (see (18)).

3. If the plot consists of one linear line segment going through the origin, then it suggests

that the PWPH model is simply a TIPH model. If the plot consists of two linear line

segments, then it suggests the PWPH model with one cut point (see middle right panel

of Figure 1 in Section 8). If the plot shows K (> 1) linear line segments, then it suggests

that a model with K cut points is appropriate (see Section 6 and the bottom right panel

of Figure 1 in Section 8).

We remark that expression (18) suggests that the diagnostic plot can be used to estimate an

appropriate value for c.

6. Extension to models involving multiple cut points. For ease of exposition and

WLOG, we consider a general PWPH model with two cut points c1 and c2

h(t|u, r, v) =







ho(t)e
γw+αu if t ≤ c1

ho(t)e
γw+θr if t ∈ (c1, c2]

ho(t)e
γw+βv if t > c2,

where r denotes a covariate vector that is present in (c1, c2], and θ denotes the corresponding

parameter vector. When w = 0, Theorem 1 can be extended in a straightforward manner as

follows:

(1) For computing α̂P , modify the data by right censoring all times Mi’s at c1. Let

(M∗
i , δ

∗
i , u

∗
i ) =

{

(Mi, δi, ui) if Mi ≤ c1
(c1, 0, ui) if Mi > c1,

and use an existing statistical software for the TIPH model h(t|u∗) = ho(t) exp(βu
∗).

(2) For computing θ̂P , use only the data satisfying Mi > c1 and right censored them at c2.

Let (M∗
i , δ

∗
i , r

∗
i ) =

{

(Mi, δi, ri) if Mi ∈ (c1, c2]
(c2, 0, ri) if Mi > c2,
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and use an existing statistical software for the TIPH model h(t|r∗) = ho(t) exp(θr
∗).

(3) For computing β̂P , use only the data satisfying Mi > c2 and use an existing statistical

software for the TIPH model h(t|v) = ho(t) exp(βv).

The full likelihood can be obtained by maximizing the likelihood

L(η, So) =
n
∏

i=1

(S(Mi − |wi, ui, ri, vi)− S(Mi|wi, ui, ri, vi))
δi(S(Mi|wi, ui, ri, vi))

1−δi ,

where η = (γ, α, θ, β, So) and So(cj) = So(cj−) if cj is not an exact observation, j = 1, 2,

S(t|w, u, r, v) =











(S1(t))
eαu

t ≤ c1
(S1(c1))

eαu

( S1(t)
S1(c1)

)e
θr

t ∈ (c1, c2]

(S1(c1))
eαu

(S1(c2)
S1(c1)

)e
θr

( S1(t)
S1(c2)

)e
βv

t > c2,

where S1(t) = (So(t))
eγw

.

As for diagnostic plots, it follows directly from (17) with w = 0 that the extension of

Expression (18) is given by

lnS(t|1) =







eαlnSo(t) if t ≤ c1
eθlnSo(t) + (eα − eθ)lnSo(c1) if t ∈ (c1, c2]
eβ lnSo(t) + (eα − eθ)lnSo(c1) + (eθ − eβ)lnSo(c2) if t > c2.

(19)

Again the diagnostic method parallels that for the case of one cut point. A PWPH model

with a dichotomous variable will exhibit three linear line segments. It will then be possible to

estimate the values of c1 and c2 from the diagnostic plots, as is in the case of one cut point.

The Therneau algorithm for finding the MPLE of model (19) is as follows.

Recall that the data are (Mi, δi, wi, ui, ri, vi), i = 1, ..., n, satisfying model

h(t|ui, ri, vi) = ho(t) exp(γwi + αui1(t ∈ (c0, c1]) + θri1(t ∈ (c1, c2]) + βvi1(t ∈ (c2, c3]))

where c0 = 0 < c1 < c2 < c3 = ∞ are the cut points.

Step 1. For each Mi ≤ c1 generate one vector

(starti1, stopi1, δ
∗
i1, w

∗
i1, u

∗
i1, r

∗
i1, v

∗
i1) = (0,Mi, δi, wi, ui, 0, 0).
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Step 2. For each Mi ∈ (c1, c2], generate two vectors
{

(starti1, stopi1, δ
∗
i1, w

∗
i1, u

∗
i1, r

∗
i1, v

∗
i1) = (0, c1, 0, wi, ui, 0, 0)

(starti2, stopi2, δ
∗
i2, w

∗
i2, u

∗
i2, r

∗
i2, v

∗
i2) = (c1,Mi, δi, wi, 0, ri, 0).

Let n2 be the number of Mi ∈ (c1, c2].

Step 3. For each Mi > c2, generate 3 vectors






(starti1, stopi1, δ
∗
i1, w

∗
i1, u

∗
i1, r

∗
i1, v

∗
i1) = (0, c1, 0, wi, ui, 0, 0)

(starti2, stopi2, δ
∗
i2, w

∗
i2, u

∗
i2, r

∗
i2, v

∗
i2) = (c1, c2, 0, wi, 0, ri, 0)

(starti3, stopi3, δ
∗
i3, w

∗
i3, u

∗
i3, r

∗
i3, v

∗
i3) = (c2,Mi, δi, wi, 0, 0, vi).

Let n3 be the number of Mi > c2.

Let start, stop, δ∗, w∗, u∗, r∗ and v∗ be the (n+n2+2n3) dimensional vectors with coordinates

startij , stopij , δ∗ij , w
∗
ij , u

∗
ij , r∗ij and v∗ij , respectively. Then the MPLE (γ̂, α̂, θ̂, β̂) can be

obtained by applying the command

coxph(Surv(start, stop, δ∗) ∼ w∗ + u∗ + r∗ + v∗).

7. Simulation Studies. We study the performance of the SMLE under several simulation as-

sumptions. We drew data (Yi, ui)’s from the PWPH model h(t|ui) = eαui1(t≤c)+βui1(t>c)ho(t),

where Yi is right censored at 3, ui is from Binomial(1, 0.5), the baseline survival function So

is either from Exp(1) or from U(0, 4), and c is either 0.15 or 1. In the simulation, we assume

that α is a known value, so only β is unknown. We generated data with 5000 replications

each for sample sizes n = 100, or 400, or 800. Table 1 displays the results.

Our simulation study suggests that the SMLE β̂ is consistent and the convergence rate

is
√
n. The SMLE β̂ is just a little bit better than the PMLE β̂P .

We also compare the PMLE to the SMLE of parameters under the same assumptions.

Our simulation study suggests that the relative efficiency of the PMLE of the parameter to

the SMLE ranges from 96% to 99.9%.

Moreover, we compare the estimators of the baseline survival function So. Notice that

the SMLE of So is well defined by the full likelihood in Eq. (15), denoted by Ŝo, but there

is no PMLE of So, even under the Cox model with the time-independent covariates, as the

partial likelihood function does not involve So. Several estimators of So making use of the
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PMLE of β were proposed in the literature. In Table 1, we only present the default one in

the functions coxph() and survfit() of R program, denoted by S̃o. It is seen from Table that

the SMLE Ŝo is much better than S̃o, whose relative efficiency ranges from 3% to 24%.

n (α, β) So c β̂ SDβ̂ β̂P SDβ̂P

SD
β̂

SD
β̂P

100 (0,1) Exp(1) 1 1.047 0.411 1.044 0.415 0.990
400 (0,1) Exp(1) 1 1.009 0.180 1.007 0.189 0.956
100 (-1,2) Exp(1) 0.15 2.010 0.313 2.014 0.314 0.997
400 (-1,2) Exp(1) 0.15 1.993 0.145 1.985 0.145 0.999
400 (0,-2) U(0,4) 1 -1.932 0.248 -2.014 0.255 0.972
800 (0,-2) U(0,4) 1 -1.932 0.167 -2.015 0.174 0.955
400 (-2,3) U(0,4) 1 2.950 0.212 3.012 0.220 0.962
800 (-2,3) U(0,4) 1 2.961 0.145 3.015 0.148 0.983

n (α, β) So c Ŝo(1.1) SDŜo(1.1)
S̃o(1.1) SDS̃o(1.1)

SD
Ŝo(1.1)

SDS̃o(1.1)

100 (0,1) Exp(1) 1 0.334 0.004 0.333 0.017 0.235
400 (0,1) Exp(1) 1 0.333 0.001 0.333 0.008 0.125
100 (-1,2) Exp(1) 0.15 0.331 0.004 0.339 0.062 0.065
400 (-1,2) Exp(1) 0.15 0.333 0.001 0.334 0.031 0.032

So(1.1) 0.333
400 (0,-2) U(0,4) 1 0.724 0.001 0.725 0.010 0.100
800 (0,-2) U(0,4) 1 0.724 0.0006 0.725 0.007 0.086
400 (-2,3) U(0,4) 1 0.726 0.0009 0.725 0.006 0.150
800 (-2,3) U(0,4) 1 0.725 0.0005 0.725 0.004 0.125

So(1.1) 0.725

Table 1. Simulation results for SMLE and PMLE of β and So

8. Data analysis. Our data are obtained from an Institutional Review Board approved

long-term clinical follow-up study on 371 women with stages I-III unilateral invasive breast

cancer treated by surgery at Memorial Sloan-Kettering Cancer Center in New York City

between 1985 and 2001.

The primary objective of the study is to investigate the prognostic significance of bone

marrow micrometastasis (BMM) for relapse and survival. The censoring rate is 87%. The

median follow-up time of the study is 7.4 years (range is 1 month-180 months (14.8 years)),
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which is the longest among published studies on BMM. For the discussion here, we will

consider only the covariates BMM, lymph node involvement LN and tumor diameter TD as

mentioned in Section 1. Meta-analysis of BMM by Braun et. al. (2005) suggests that a

stepwise Cox model with a cut point at 4 years is appropriate for the BMM data. We fitted

the PWPH model (5) with w ≡ 0, u = v = (BMM,LN, TD) and c = 4 years to the data.

We obtained the MPLE and the SMLE of the model parameters. Table 2 summarizes the

multivariate results.

MPLE BMM p-value LN p-value TD p-value
< 4 years 0.40 0.32 1.04 0.03 0.51 0.23
> 4 years 0.20 0.65 0.80 0.10 0.46 0.31
SMLE BMM p-value LN p-value TD p-value

< 4 years 0.30 0.22 1.24 0.00 0.38 0.19
> 4 years 0.31 0.21 0.62 0.06 0.62 0.07

Table 2. Multivariate analysis of BMM data

Multivariate analysis of the PWPH model by either the partial likelihood method or the

full likelihood method indicates that BMM does not predict survival either before 4 years or

after 4 years. Before four years, LN is the only variable that was significant both by partial

likelihood analysis and by full likelihood analysis. The fact that the important clinical variable

TD was not significant in the multivariate analysis can be explained by its correlation with

LN. After four years, partial likelihood shows that LN has lost its prognostic significance and

TD remains not predictive. However, full likelihood analysis suggests that both LN and TD

may still be predictive. Our finding here is in direct contrast to the conclusions from all recent

published studies (for example, see Braun et al. (2005)) that conclude that BMM involvement

is a strong predictor of poor survival by TIPH multivariate analysis.

We applied both the log-minus-log plots and our PWPH plots to assess the appropriate-

ness of the PWPH model with a single cut point at 4 years and to see if the PWPH model

can be improved. The diagnostic plots for BMM, LN and TD are give in Figure 1.
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It can be seen from Figure 1 that each pair of the standard log-minus-log plots does not

appear parallel along the y-axis, except perhaps the top left panel in Figure 1. The top left

plots suggest that the two curves appear somewhat coincide, thus it suggests that the data

fit the Cox model with time-independent covariate BMM. It is not easy to see any patterns

from the other two log-minus-log plots.

On the other hand, the PWPH plot for BMM at the top right panel of Figure 1 yields

roughly a simple straight line. Therefore, our diagnostic plot for a dichotomous covariate

suggests that BMM should follow a TIPH model. In the general PWPH model (5), BMM

corresponds to the covariate w. The message here is that BMM does not differentially predict

early and late failure. BMM was not significant by univariate TIPH regression using partial

likelihood method.

The PWPH diagnostic plot for LN in the middle right panel of Figure 1 shows two distinct

straight line segments. Our diagnostic method suggests that a PWPH model for LN with a

single cut point is appropriate. We estimated the slope and the intercept (see (13)) of each

of the two line segments by linear regression and concluded that a reasonable choice of c is a

value between 4 and 5 years. When c = 4. univariate analysis by partial likelihood yields the

MPLE α̂P = 1.24 with p = 0.005 before 4 years and β̂P = 0.96 with p = 0.03 after 4 years.

The PWPH diagnostic plot for TD at the bottom right panel in Figure 1 displays three

straight line segments. Our diagnostic method suggests a PWPH model for TD should have

two cut points c1 and c2. From (14) and using linear regression, c1 = 1.5 and c2 = 6. Since

the two-year and five-year marks are recognized time points of clinical relevance in cancer

follow-up, we choose c1 = 2 and c2 = 5.
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Figure 1. Diagnostic plots for BMM, LN and TD

We obtained the 3 MPLEs for TD with two cut points at 2 and 5 as −1.76, 2.02 and

0.34, with p-value 0.77, 0.001 and 0.52, respectively.

Our univariate analysis of TD by a PWPH model with two cut points suggests that TD
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does not predict early deaths or late failure of patients who have achieved five-year survival.

But TD is a very significant predictor between two and five years. The conclusions here differ

from the conventional view that TD possess the same significant predictor power for survival

throughout a breast cancer patient’s life time.

The above analysis suggests that our long-term breast cancer follow-up data is best

described by a PWPH model with a time-independent component for BMM, a piecewise

component with a single cut point at c = 4 years for LN, and a piecewise component with two

cut points at c1 = 2 years and c2 = 5 years. However, we will need more data and a longer

follow-up time to yield a more informative diagnostic plot for each of the three covariates.

This is particularly true for the diagnostic plot for TD in which more data information will

enable us to gain a better assessment of the lower and upper time segments. We propose to

update and add about 800 new cases to the BMM database.

The proposed re-analysis of the BMM data, however, will require a PWPH model involv-

ing unequal cut points (at 4 years for LN, and at 2 and 5 years for TD). Further research is

needed to extend the results developed for PWPH models with equal cut points to those with

unequal cut points. We shall again consider both the partial likelihood approach and the full

likelihood approach. We expect that the full likelihood SMLE method should be able to be

extended to the PWPH model with unequal cut points.
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Appendix.

Example A.1. Consider the model h(t|z) = exp((α1(t ≤ 1) + β1(t > 1))z)ho(t). A data set

(y, δ, z) of 50 RC data with the cut point c = 1 are given as follows.

> y

[1] 0.01889 0.03201 0.03507 0.10677 0.11106 0.23184 0.29353 0.40049 0.50323 2.65036

[11] 0.51341 0.54032 0.54246 0.56325 0.57291 0.69315 0.74532 0.83477 0.88320 2.69411

[21] 0.97981 1.00453 1.01508 1.03283 1.04153 1.04333 1.04565 1.04864 1.06527 2.92332

[31] 1.06746 1.07607 1.11337 1.12039 1.12285 1.12499 1.17092 1.21515 1.27879 3.04159

[41] 1.28950 1.44392 1.47707 1.47778 1.57985 1.60793 1.61542 1.87746 1.94818 4.46560

> δ

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

[39] 0 0 1 1 0 0 1 0 0 0 0 1

> z

[1] 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

[39] 0 0 1 1 0 0 0 0 0 0 0 0

Applying the method in Theorem 1 to R program yields (α̂, β̂) = (−1.837, 22.548), but the

Therneau algorithm yields (NA,NA).

Example A.2. Consider the model h(t|z) = exp((α1(t ≤ 1)+β1(t > 1))z). A data set of 100

RC data with the cut point c = 1 are given as follows. Applying the method in Theorem 1 to

R program yields (α̂, β̂) = (−1.66, 20.52), but the Therneau algorithm presents (NA, 32.58).

Notice that the estimates of β using both algorithms indicate β = ∞.

> y

[1] 0.00495 0.02291 0.04044 0.06118 0.06879 0.06904 0.07210 0.08047 0.08462

[10] 0.08825 0.10049 0.10824 0.12244 0.14294 0.19162 0.21194 0.21499 0.24943

[19] 0.26049 0.26478 0.27132 0.29989 0.30673 0.34700 0.35673 0.39163 0.40032
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[28] 0.41490 0.41914 0.43303 0.43604 0.51220 0.55450 0.60633 0.61418 0.64214

[37] 0.70096 0.72695 0.73642 0.79251 0.81413 0.84694 0.89843 0.93752 0.95366

[46] 0.97138 1.00119 1.00262 1.00339 1.00463 1.00505 1.00734 1.01196 1.01643

[55] 1.01964 1.02023 1.02238 1.02270 1.02362 1.02414 1.02627 1.02815 1.02907

[64] 1.03241 1.05252 1.05454 1.05543 1.05737 1.05928 1.06516 1.06763 1.07549

[73] 1.08590 1.08643 1.10780 1.10832 1.11567 1.11636 1.12387 1.14569 1.16403

[82] 1.17903 1.19876 1.20499 1.22961 1.26507 1.27199 1.29644 1.33341 1.34185

[91] 1.42591 1.49448 1.51977 1.63795 1.65927 1.71104 1.81075 2.29736 2.85665

[100] 4.38886

> δ

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

> z

[1] 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

[38] 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
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