Joint Distribution and Marginal Distribution Methods for Generalized Linear Model

Supplementary Material

By Junyi Donga and Qiqing Yua

\textit{a. Department of Mathematical Sciences, SUNY, Binghamton, NY 13902}

Corresponding author’s email address: qyu@math.binghamton.edu

In this supplementary material, we prove Lemmas and Theorems and also derive the asymptotic variance of T_2 in Section 3.2 (Dong and Yu 2018).

1. Proofs

Lemma 1. Let (X, \mathcal{F}, P) be a probability space. Let $\mu_n(t, \omega)$, $t \in \mathbb{R}$ and $\omega \in X$, be a sequence of measure. Let f_n and g_n be measurable functions,

\[
\Omega_a = \{ \omega \in X : \mu_n(\cdot, \omega) \rightarrow \mu(\cdot, \omega) \text{ set-wisely} \},
\]

\[
\Omega_b = \{ \omega \in X : f_n(t, \omega) \rightarrow f(t, \omega) \text{ point-wisely in } t \}, \text{ and}
\]

\[
\Omega_c = \{ \omega \in X : g_n(t, \omega) \rightarrow g(t, \omega) \text{ point-wisely in } t \}.
\]

If $P(\Omega_a \cap \Omega_b \cap \Omega_c) = 1$, $|f_n| \leq g_n$, and $\int g_n d\mu_n \xrightarrow{a.s.} \int g d\mu < \infty$, then $\int f_n d\mu_n \xrightarrow{a.s.} \int f d\mu$.

Proof. Let $\Omega = \Omega_a \cap \Omega_b \cap \Omega_c$, then $P(\Omega) = 1$. For each $\omega \in \Omega$, $\mu_n(\cdot, \omega) \rightarrow \mu(\cdot, \omega)$ set-wisely, $f_n(t, \omega) \rightarrow f(t, \omega)$ point-wisely in t, and $f_n(t, \omega) \rightarrow f(t, \omega)$ point-wisely in t. Since $|f_n| \leq g_n$ and $\int g_n d\mu_n \xrightarrow{a.s.} \int g d\mu < \infty$, by the General Convergence Theorem (R1988), $\lim \int f_n(t, \omega) d\mu_n(t, \omega) = \int f(t, \omega) d\mu(t, \omega)$. Since $P(\Omega) = 1$, $\int f_n d\mu_n \xrightarrow{a.s.} \int f d\mu$.

Remark 2. Let Ω_0 be the event that $\tilde{F}_{Y,Z}(t, z) = \frac{1}{n} \sum_{i=1}^{n} 1(Y_i \leq t, Z_i \leq z) \rightarrow F_{Y,Z}(t, z)$. Let Ω_1 be the event that $\tilde{F}_Y(t) = \frac{1}{n} \sum_{i=1}^{n} 1(Y_i \leq t) \rightarrow F_Y(t)$. Then, by the strong law of large number (SLLN), $P(\Omega_0) = 1$ and $P(\Omega_1) = 1$.

Proof of Lemma 8 (Dong and Yu 2018). We first prove Statement 1. Notice that the proof for the Normal GLM is proved in Remark 9 (Dong and Yu 2018). Let $\mathcal{L}(\beta, \phi)$ and $\tilde{\mathcal{L}}_n(\beta, \phi, Y)$ be defined as in (10) (Dong and Yu 2018).

By the SLLN and assumption (C6), $\tilde{\mathcal{L}}_n(\beta, \phi) \rightarrow \mathcal{L}(\beta, \phi)$ almost surely for each $(\beta, \phi) \in \mathbb{R}^{p+1}$. By assumption (C1), $B = \{(\beta_0, \phi_0) : (\beta_0, \phi_0) = \arg\sup_{\beta, \phi} \mathcal{L}(\theta, \phi)\}$ is a singleton set, thus $(\beta_0, \phi_0) = \arg\sup_{\beta \in \mathbb{R}^{p}, \phi \in \mathbb{R}} \mathcal{L}(\theta, \phi)$ is uniquely determined. $(\hat{\beta}_n, \hat{\phi}_n) = (\hat{\beta}, \hat{\phi}) = \arg\sup_{\beta \in \mathbb{R}^{p}, \phi \in \mathbb{R}} \tilde{\mathcal{L}}_n(\beta, \phi)$.
yields $\mathcal{L}(\beta_0, \phi_0) \geq \mathcal{L}(\beta, \phi)$ and $\tilde{\mathcal{L}}_n(\hat{\beta}, \hat{\phi}) \geq \tilde{\mathcal{L}}_n(\beta, \phi)$ for any $(\beta, \phi) \in \mathbb{R}^{p+1}$. Since $\tilde{\mathcal{L}}_n(\hat{\beta}, \hat{\phi}) \geq \tilde{\mathcal{L}}_n(\beta_0, \phi_0)$,

$$\lim_{n \to \infty} \tilde{\mathcal{L}}_n(\hat{\beta}, \hat{\phi}) \geq \lim_{n \to \infty} \tilde{\mathcal{L}}_n(\beta_0, \phi_0) = \mathcal{L}(\beta_0, \phi_0) \text{ a.s.} \quad (1)$$

For each ω in Ω_0 (see Remark 2), let (β^*, ϕ^*) be a limiting point of $(\hat{\beta}, \hat{\phi})$ such that there exists a subsequence $(\hat{\beta}_{n_l}(\omega), \hat{\phi}_{n_l}(\omega))$ converges to (β^*, ϕ^*), that is, $(\hat{\beta}_{n_l}(\omega), \hat{\phi}_{n_l}(\omega)) \to (\beta^*, \phi^*)$. Let $f_n(\hat{\beta}_{n_l}(\omega), \hat{\phi}_{n_l}(\omega)) = f_n(\omega) = \frac{Y h(\beta_{n_l}(\omega)^T Z) - k(\beta_{n_l}(\omega)^T Z)}{a(\phi_{n_l}(\omega))} + c(Y, \phi_{n_l}(\omega))$ and $f(\beta^*, \phi^*) = f(\omega) = \frac{Y h(\beta^*(\omega)^T Z) - k(\beta^*(\omega)^T Z)}{a(\phi^*)} + c(Y, \phi^*)$. Then $f_n(\omega) \to f(\omega)$. We shall show that \exists a function $g_n(\hat{\beta}_{n_l}(\omega), \hat{\phi}_{n_l}(\omega)) = g_n(\omega)$ such that

(a) $|f_n(\omega)| \leq g_n(\omega)$, (b) $g_n(\omega) \to g(\omega)$, and (c) $\int g_n(\omega) d\tilde{F}_Y Z(t, z) \to \int g(\omega) dF_Y Z(t, z) < \infty$, \quad (2)

then by Lemma 1 $\int f_n(\omega) d\tilde{F}_Y Z(t, z) \to \int f(\omega) dF_Y Z(t, z)$, that is, $\tilde{\mathcal{L}}_n(\hat{\beta}_{n_l}(\omega), \hat{\phi}_{n_l}(\omega)) \to \mathcal{L}(\beta^*, \phi^*)$. Since $\lim \tilde{\mathcal{L}}_n(\hat{\beta}_{n_l}(\omega), \hat{\phi}_{n_l}(\omega)) \geq \lim \tilde{\mathcal{L}}_n(\beta_0, \phi_0)$, we have $\mathcal{L}(\beta^*(\omega), \phi^*(\omega)) \geq \mathcal{L}(\beta_0, \phi_0)$. Then $\mathcal{L}(\beta^*(\omega), \phi^*(\omega)) = \mathcal{L}(\beta_0, \phi_0)$ which implies $(\beta^*(\omega), \phi^*(\omega)) = (\beta_0, \phi_0)$ as B is a singleton set. Since every convergent subsequence of $(\hat{\beta}(\omega), \hat{\phi}(\omega))$ converges to (β_0, ϕ_0) for all $\omega \in \Omega_1$ (see Remark 2 and $P(\Omega_1) = 1$, we have $(\hat{\beta}, \hat{\phi}) \overset{a.s.}{\to} (\beta_0, \phi_0)$.

We now prove the existence of $g_n(\omega)$ satisfying (2) and under the Poisson, Binomial and Gamma with their canonical link functions separately as there is no unified proof.

Poisson GLMs. In the Poisson GLM with mean μ, $\phi = 1$, $a(\phi) = 1$, $\theta = \ln \mu$, $b(\theta) = \exp(\theta)$ and $c(y, \phi) = -\ln y!$. The canonical link function is $g(t) = \ln t$. Then $f_n(\omega) = Y(\hat{\beta}_{n_l}(\omega)^T Z) - \exp(\hat{\beta}_{n_l}(\omega)^T Z) - \ln Y!$. Under assumptions (C2) and (C4), $\hat{\beta}_{n_l}(\omega)$ is bounded and Z is bounded. It follows that $||\hat{\beta}_{n_l}(\omega)^T Z|| \leq K$. Then $|f_n(\omega)| \leq K|Y| + e^K + \ln Y! = g_n = g$, then $g_n \to g$ and $\int g_n(\omega) d\tilde{F}_Y Z(t, z) \to \int g(\omega) dF_Y Z(t, z) = K\mathbb{E}[|Y|] + e^K + \mathbb{E}[\ln Y!] < \infty$ by the assumption that all expectations exist (see (C6)).

Binomial GLMs. In the Binomial GLM, $\text{Binom}(m, \mu_i)/m$, $\phi = 1$, $a(\phi) = 1/m$, $\theta = \ln \frac{\mu}{1-\mu}$, $b(\theta) = -\ln(1 + \exp(\theta))$ and $c(y, \phi) = \ln \binom{m}{\mu y}$. The canonical link function is $g(t) = \ln \frac{t}{1-t}$. Let $f_n(\omega) = \left[Y(\hat{\beta}_{n_l}(\omega)^T Z) - \ln(1 + \exp(\hat{\beta}_{n_l}(\omega)^T Z))\right]m + \ln \binom{m}{\mu Y}$. By assumptions (C2) and (C4), we can assume that $||\hat{\beta}_{n_l}(\omega)^T Z|| \leq K$, and then $|f_n(\omega)| \leq [K|Y| + \ln(1 + e^K)]m + \ln \binom{m}{\mu Y} = g_n = g$. Then $g_n \to$
Lemma 8 in Dong and Yu (Dong and Yu 2018), expectation exist due to the fact that \(Y \) and \(m \) are bounded under the binomial distribution.

Gamma GLMs. In the Gamma GLM, Gamma(\(\alpha, \mu / \alpha \)), \(\phi = \alpha, a(\phi) = 1 / \phi, \theta = -1 / \mu, b(\theta) = -\ln(-\theta) \) and \(c(y, \phi) = -\ln(\Gamma(\alpha) + (\alpha - 1)\ln y + a \ln \alpha) \). The canonical link function is \(g(\phi) = -1 / \phi \). Let \(f_n(\omega) = \alpha \mathbb{E} \left[(\mathbf{\hat{b}}_{nl}(\omega)^T \mathbf{Z}) + \ln(- (\mathbf{\hat{b}}_{nl}(\omega)^T \mathbf{Z})) \right] - \ln(\Gamma(\alpha) + (\alpha - 1)\ln y + a \ln \alpha) \).

Since \(\mathbf{\hat{b}}_{nl}(\omega)^T \mathbf{Z} \) is bounded above and bounded below by some assumptions (C5), there exists \(M_1 \) and \(M_2 \) such that \(|(\mathbf{\hat{b}}_{nl}(\omega)^T \mathbf{Z})| < M_1 \) and \(|\ln(- (\mathbf{\hat{b}}_{nl}(\omega)^T \mathbf{Z}))| < M_2 \).

Thus \(|f_n(\omega)| \leq \alpha M_1 |Y| + M_2 - \ln(\Gamma(\alpha) + (\alpha - 1)\ln y + a \ln \alpha) = g_n = g, g_n \rightarrow g \) and \(\int g_n(\omega) d\hat{F}_{Y,Z}(t, z) \rightarrow \int g(\omega) dF_Y(t, z) \). Let \(\mathbf{\hat{b}}_{nl}(\omega)^T \mathbf{Z} \) be as defined in Proof of Lemma 8 in Dong and Yu (Dong and Yu 2018).

To prove (12) in Dong and Yu (Dong and Yu 2018), let \(f_n(\omega) = \mathbb{E} \left[(\mathbf{\hat{b}}_{nl}(\omega)^T \mathbf{Z}) + \ln(- (\mathbf{\hat{b}}_{nl}(\omega)^T \mathbf{Z})) \right] - \ln(\Gamma(\alpha) + (\alpha - 1)\ln y + a \ln \alpha) \). Since \(\mathbf{\hat{b}}_{nl}(\omega)^T \mathbf{Z} \) is bounded above and bounded below by some assumptions (C5), there exists \(M_1 \) and \(M_2 \) such that \(|(\mathbf{\hat{b}}_{nl}(\omega)^T \mathbf{Z})| < M_1 \) and \(|\ln(- (\mathbf{\hat{b}}_{nl}(\omega)^T \mathbf{Z}))| < M_2 \).

Thus \(|f_n(\omega)| \leq \alpha M_1 |Y| + M_2 - \ln(\Gamma(\alpha) + (\alpha - 1)\ln y + a \ln \alpha) = g_n = g, g_n \rightarrow g \) and \(\int g_n(\omega) d\hat{F}_{Y,Z}(t, z) \rightarrow \int g(\omega) dF_Y(t, z) \). Let \(\mathbf{\hat{b}}_{nl}(\omega)^T \mathbf{Z} \) be as defined in Proof of Lemma 8 in Dong and Yu (Dong and Yu 2018).
$g_n = g = 1$ and $\int g dF_Z = 1$, then by Lemma 1 $\int f_n(\omega) d\hat{F}_Z(\omega) \rightarrow \int f dF_Z$. Since $P(\Omega_1 \cap \Omega_2 \cap \Omega_3) = 1$, (12) in Dong and Yu (Dong and Yu 2018) follows.

The convergence in (13) follows (12) and Theorem 5 in Dong and Yu (Dong and Yu 2018).

2. Asymptotic Variance of T_2 (Dong and Yu 2018)

Let $Y_i \in \{M_1 < M_2 < ... < M_k\}$, $i = 1, ..., n$. $T_2 = \int [\hat{F}(t) - \hat{F}^*(t)] d\hat{F}(t) = \sum_{i=1}^{k} \hat{F}(M_i) \hat{f}(M_i) - \sum_{i=1}^{k} \hat{F}^*(M_i) \hat{f}(M_i)$

When Y is discrete (as in Binomial or Poisson model):

$$V[T_2] = V[\sum_{i=1}^{k} \hat{F}(M_i) \hat{f}(M_i)] + V[\sum_{i=1}^{k} \hat{F}^*(M_i) \hat{f}(M_i)]$$

$$- 2Cov[\sum_{i=1}^{k} \hat{F}(M_i) \hat{f}(M_i), \sum_{i=1}^{k} \hat{F}^*(M_i) \hat{f}(M_i)]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} Cov[\hat{F}(M_i) \hat{f}(M_i), \hat{F}(M_j) \hat{f}(M_j)] = V_1$$

$$+ \sum_{i=1}^{n} \sum_{j=1}^{n} Cov[\hat{F}^*(M_i) \hat{f}(M_i), \hat{F}^*(M_j) \hat{f}(M_j)] = V_2$$

$$- 2 \sum_{i=1}^{n} \sum_{j=1}^{n} Cov[\hat{F}(M_i) \hat{f}(M_i), \hat{F}^*(M_j) \hat{f}(M_j)] = V_3$$

Estimate V_1.

Let $\hat{F}_i = \hat{F}(M_i)$ and $\hat{F}_j = \hat{F}(M_j)$, then $\hat{f}(M_i) = \hat{F}_i - \hat{F}_{i-1}$ and $\hat{f}(M_j) = \hat{F}_j - \hat{F}_{j-1}$.

$$Cov[\hat{F}(M_i) \hat{f}(M_i), \hat{F}(M_j) \hat{f}(M_j)]$$

$$= Cov[\hat{F}(M_i) (\hat{F}_i - \hat{F}_{i-1}), \hat{F}(M_j) (\hat{F}_j - \hat{F}_{j-1})]$$

$$= Cov[\hat{F}_i^2, \hat{F}_j^2] - Cov[\hat{F}_i \hat{F}_{i-1}, \hat{F}_j \hat{F}_{j-1}] - Cov[\hat{F}_i^2, \hat{F}_j \hat{F}_{j-1}] + Cov[\hat{F}_i \hat{F}_{i-1}, \hat{F}_j \hat{F}_{j-1}]$$
Each term can be estimated as follows.

\[
\text{COV}[\hat{F}^2_i, \hat{F}^2_j] = E[\hat{F}^2_i \hat{F}^2_j] - E[\hat{F}^2_i]E[\hat{F}^2_j] \\
E[\hat{F}^2_i \hat{F}^2_j] = E[(\frac{1}{n} \sum_{k=1}^{n} 1(Y_k \leq M_i))^2(\frac{1}{n} \sum_{l=1}^{n} 1(Y_l \leq M_j))^2] \\
= \frac{1}{n^4} \sum_{k=1}^{n} \sum_{p=1}^{n} \sum_{l=1}^{n} \sum_{q=1}^{n} \mathbb{P}(Y_k \leq M_i, Y_p \leq M_i, Y_l \leq M_j, Y_q \leq M_j) \\
= \frac{1}{n^4} [(F_i F_j^2 + 4 \min(F_i, F_j) F_i F_j + F_i^2 F_j^2)n(n-1)(n-2) + 2 \min(F_i, F_j) F_i \\
+ 2 \min(F_i, F_j) F_j n(n-1) + n \min(F_i, F_j) + F_i^2 F_j^2 n(n-1)(n-2)(n-3) \\
+ (F_i F_j + 2 \min(F_i, F_j)^2) n(n-1)] \\
E[\hat{F}^2_i] = E[(\frac{1}{n} \sum_{k=1}^{n} 1(Y_k \leq M_i))^2] \\
= \frac{1}{n^2} \sum_{k=1}^{n} \sum_{l=1}^{n} \mathbb{P}(Y_k \leq M_i, Y_l \leq M_i) \\
= \frac{1}{n^2} [nF_i + n(n-1)F_i^2] \\
E[\hat{F}^2_j] = E[(\frac{1}{n} \sum_{k=1}^{n} 1(Y_k \leq M_j))^2] \\
= \frac{1}{n^2} \sum_{k=1}^{n} \sum_{l=1}^{n} \mathbb{P}(Y_k \leq M_j, Y_l \leq M_j) \\
= \frac{1}{n^2} [nF_j + n(n-1)F_j^2] \\
\text{COV}[\hat{F}^2_i, \hat{F}^2_j] \approx \frac{1}{n^4} [(\hat{F}_i \hat{F}_j^2 + 4 \min(\hat{F}_i, \hat{F}_j) \hat{F}_i \hat{F}_j + \hat{F}_i^2 \hat{F}_j^2)n(n-1)(n-2) + 2 \min(\hat{F}_i, \hat{F}_j) \hat{F}_i \\
+ 2 \min(\hat{F}_i, \hat{F}_j) \hat{F}_j n(n-1) + n \min(\hat{F}_i, \hat{F}_j) + \hat{F}_i^2 \hat{F}_j^2 n(n-1)(n-2)(n-3) \\
+ (\hat{F}_i \hat{F}_j + 2 \min(\hat{F}_i, \hat{F}_j)^2) n(n-1) - (n\hat{F}_i + n(n-1)\hat{F}_i^2)(n\hat{F}_j + n(n-1)\hat{F}_j^2)]
\[
\text{COV}[\hat{F}_i \hat{F}_{i-1}, \hat{F}_j^2] = E[\hat{F}_i \hat{F}_{i-1} \hat{F}_j^2] - E[\hat{F}_i \hat{F}_{i-1}]E[\hat{F}_j^2]
\]

\[
E[\hat{F}_i \hat{F}_{i-1} \hat{F}_j^2] = E[\frac{1}{n} \sum_{k=1}^{n} 1(Y_k \leq M_i) \frac{1}{n} \sum_{l=1}^{n} 1(Y_l \leq M_{i-1}) (\frac{1}{n} \sum_{p=1}^{n} 1(Y_p \leq M_j))^2]
\]

\[
= \frac{1}{n^2} \sum_{k=1}^{n} \sum_{l=1}^{n} \sum_{p=1}^{n} \sum_{q=1}^{n} P(Y_k \leq M_i, Y_l \leq M_{i-1}, Y_p \leq M_j, Y_q \leq M_j)
\]

\[
= \frac{1}{n^4} [(F_{i-1} F_j^2 + 2 \min(F_i, F_j) F_{i-1} F_j + 2 \min(F_{i-1}, F_j) F_j F_{i-1} F_j) n(n-1)(n-2) + (2 \min(F_{i-1}, F_j) F_j + \min(F_i, F_j) F_{i-1} + \min(F_{i-1}, F_j) F_i)
\]

\[
E[\hat{F}_i] = E[(\frac{1}{n} \sum_{k=1}^{n} 1(Y_k \leq M_i))^2]
\]

\[
= \frac{1}{n^2} \sum_{k=1}^{n} \sum_{l=1}^{n} P(Y_k \leq M_j, Y_l \leq M_j)
\]

\[
= \frac{1}{n^2} [n F_i + n(n-1) F_i^2]
\]

\[
\text{COV}[\hat{F}_i \hat{F}_{i-1}, \hat{F}_j^2] \approx \frac{1}{n^4} [(\hat{F}_{i-1} \hat{F}_j^2 + 2 \min(\hat{F}_i, \hat{F}_j) \hat{F}_{i-1} \hat{F}_j + 2 \min(\hat{F}_{i-1}, \hat{F}_j) \hat{F}_i \hat{F}_j + \hat{F}_i \hat{F}_{i-1} \hat{F}_j)
\]

\[
n(n-1)(n-2) + (2 \min(\hat{F}_{i-1}, \hat{F}_j) \hat{F}_j + \min(\hat{F}_i, \hat{F}_j) \hat{F}_{i-1} + \min(\hat{F}_{i-1}, \hat{F}_j) \hat{F}_i)
\]

\[
n(n-1) + \min(\hat{F}_{i-1}, \hat{F}_j) n + \hat{F}_i \hat{F}_{i-1} \hat{F}_j n(n-1)(n-2)(n-3) +
\]

\[
(2 \min(\hat{F}_{i-1}, \hat{F}_j) \min(\hat{F}_i, \hat{F}_j) + \min(\hat{F}_{i-1}, \hat{F}_i) \hat{F}_j) n(n-1) -
\]

\[
(n \min(\hat{F}_{i-1}, \hat{F}_i) + n(n-1) \hat{F}_i \hat{F}_{i-1}) (n \hat{F}_j + n(n-1) \hat{F}_j^2)]
\]
\[\text{COV}[\hat{F}_j, \hat{F}_{j-1}, \hat{F}_i^2] \approx \frac{1}{n^4} \left[(\hat{F}_{j-1} \hat{F}_i^2 + 2 \min(\hat{F}_j, \hat{F}_i) \hat{F}_{j-1} \hat{F}_i + 2 \min(\hat{F}_{j-1}, \hat{F}_i) \hat{F}_j \hat{F}_i + \hat{F}_j \hat{F}_{j-1} \hat{F}_i) \\
(n(n-1)(n-2) + (2 \min(\hat{F}_{j-1}, \hat{F}_i) \hat{F}_i + \min(\hat{F}_j, \hat{F}_i) \hat{F}_{j-1} + \min(\hat{F}_{j-1}, \hat{F}_i) \hat{F}_j) \\
n(n-1) + \min(\hat{F}_{j-1}, \hat{F}_i)n + \hat{F}_j \hat{F}_{j-1} \hat{F}_i^2 n(n-1)(n-2)(n-3) + \\
(2 \min(\hat{F}_{j-1}, \hat{F}_i) \min(\hat{F}_j, \hat{F}_i) + \min(\hat{F}_{j-1}, \hat{F}_j) \hat{F}_i)n(n-1) \\
- (n \min(\hat{F}_{j-1}, \hat{F}_j) + n(n-1) \hat{F}_j \hat{F}_{j-1})(n\hat{F}_i + n(n-1)\hat{F}_i^2) \right] \]
$$\text{COV}[\hat{F}_i, \hat{F}_{j-1}, \hat{F}_j] = \mathbb{E}[\hat{F}_i \hat{F}_{j-1}] - \mathbb{E}[\hat{F}_i] \mathbb{E}[\hat{F}_{j-1}]$$

$$\mathbb{E}[\hat{F}_i \hat{F}_{j-1}] = \frac{1}{n^4} \sum_{k=1}^{n} \sum_{l=1}^{n} \sum_{p=1}^{n} \sum_{q=1}^{n} \mathbb{P}(Y_k \leq M_i, Y_l \leq M_i, Y_p \leq M_j, Y_q \leq M_j)$$

$$= \frac{1}{n^2} \left[n(n-1)(n-2)(F_{i-1} F_{j-1} + \min(F_i, F_j) F_{i-1} F_{j-1} + \min(F_{i-1}, F_{j-1}) F_i F_j + F_{j-1} F_i F_{i-1} + n(n-1)(\min(F_{i-1}, F_j) F_{j-1} + \min(F_{i-1}, F_{j-1}) F_j + \min(F_{j-1}, F_i) F_{i-1} + \min(F_{i-1}, F_{j-1}) F_i) + n \min(F_{i-1}, F_{j-1}) + n(n-1)(F_{i-1} F_{j-1} + \min(F_i, F_j) \min(F_{i-1}, F_{j-1}) + \min(F_{i-1}, F_j) \min(F_{j-1}, F_i)) \right]$$

$$\mathbb{E}[\hat{F}_i] = \frac{1}{n^2} \sum_{k=1}^{n} \sum_{l=1}^{n} \mathbb{P}(Y_k \leq M_i, Y_l \leq M_i)$$

$$= \frac{1}{n^2} \left[n \min(F_{i-1}, F_i) + n(n-1) F_{i-1} \right]$$

$$\mathbb{E}[\hat{F}_j] = \frac{1}{n^2} \sum_{k=1}^{n} \sum_{l=1}^{n} \mathbb{P}(Y_k \leq M_j, Y_l \leq M_j)$$

$$= \frac{1}{n^2} \left[n \min(F_{j-1}, F_j) + n(n-1) F_{j-1} \right]$$

$$\text{COV}[\hat{F}_i, \hat{F}_{j-1}, \hat{F}_j] \approx \frac{1}{n^4} \left[n(n-1)(n-2)(\hat{F}_{i-1} \hat{F}_j \hat{F}_{j-1} + \min(\hat{F}_i, \hat{F}_j) \hat{F}_{i-1} \hat{F}_{j-1} + \min(\hat{F}_{i-1}, \hat{F}_j) \hat{F}_i \hat{F}_{j-1} + \hat{F}_{j-1} \hat{F}_i \hat{F}_{i-1} + n(n-1)(\min(\hat{F}_{i-1}, \hat{F}_j) \hat{F}_{j-1} + \min(\hat{F}_{i-1}, \hat{F}_{j-1}) \hat{F}_j + \min(\hat{F}_{j-1}, \hat{F}_i) \hat{F}_{i-1} + \min(\hat{F}_{i-1}, \hat{F}_{j-1}) \hat{F}_i) + n \min(\hat{F}_{i-1}, \hat{F}_{j-1}) + n(n-1)(\hat{F}_{i-1} \hat{F}_{j-1} + \min(\hat{F}_i, \hat{F}_j) \min(\hat{F}_{i-1}, \hat{F}_{j-1}) + \min(\hat{F}_i, \hat{F}_j) \min(\hat{F}_{i-1}, \hat{F}_{j-1}) + \min(\hat{F}_{i-1}, \hat{F}_j) \min(\hat{F}_i, \hat{F}_{j-1})) \right]$$

Estimate \mathbb{V}_2.

Let $\hat{F}_i = \hat{F}^*(M_i)$ and $\hat{F}_j = \hat{F}^*(M_j)$, then $\hat{f}(M_i) = \hat{F}_i - \hat{F}_{i-1}$ and $\hat{f}(M_j) = \hat{F}_j - \hat{F}_{j-1}$.
\[\text{COV}[\hat{F}^*(M_i), \hat{F}(M_j)] \]
\[= \text{COV}[\hat{F}^*(M_i)(\hat{F}_i - \hat{F}_{i-1}), \hat{F}^*(M_j)(\hat{F}_j - \hat{F}_{j-1})] \]
\[= \text{COV}[\hat{F}^*_i \hat{F}_i, \hat{F}^*_j \hat{F}_j] - \text{COV}[\hat{F}^*_i \hat{F}_{i-1}, \hat{F}^*_j \hat{F}_j] - \text{COV}[\hat{F}^*_i \hat{F}_i, \hat{F}^*_j \hat{F}_{j-1}] + \text{COV}[\hat{F}^*_i \hat{F}_{i-1}, \hat{F}^*_j \hat{F}_{j-1}] \]

Each term can be estimated as follows.

\[\text{COV}[(\hat{F}_i^*)^2, (\hat{F}_j^*)^2] = \text{COV}[(\frac{1}{k} \sum_{p=1}^{k} \hat{f}^*(M_p)1(M_p \leq M_i))((\frac{1}{k} \sum_{q=1}^{k} 1(M_q \leq M_i))], \]
\[= (\frac{1}{k} \sum_{m=1}^{k} \hat{f}^*(M_m)1(M_m \leq M_j))((\frac{1}{k} \sum_{l=1}^{k} 1(M_l \leq M_j))] \]
\[= \frac{1}{k^2} \sum_{p=1}^{k} \sum_{q=1}^{k} \sum_{m=1}^{k} \sum_{l=1}^{k} \text{COV}[\hat{f}^*(M_p)1(M_p \leq M_i, M_q \leq M_l)], \]
\[\hat{f}^*(M_m)1(M_m \leq M_j, M_l \leq M_j)] \]

Let \(Z_i \in \{W_1, ..., W_{kk}\}, i=1, ..., n. \) Let \(p_j = \hat{f}^*_Z(W_j) = \frac{1}{n} \sum_{i=1}^{n} 1(Z_i = W_j). \) Then

\[\hat{f}^*(M_p) = \frac{1}{kk} \sum_{l=1}^{kk} \hat{f}^*(M_p | W_l)p_l \]
\[\text{COV}[\hat{f}^*(M_p)1(M_p \leq M_i, M_q \leq M_l), \hat{f}^*(M_m)1(M_m \leq M_j, M_l \leq M_j)] \]
\[= \frac{1}{kk} \sum_{u=1}^{kk} \sum_{v=1}^{kk} \text{COV}[\hat{f}^*(M_p | W_u)p_u1(M_p \leq M_i, M_q \leq M_l), \hat{f}^*(M_m | W_v)p_v1(M_m \leq M_j, M_l \leq M_j)] \]

Each term can be estimated as follows.

Let \(\Sigma = \text{COV}[\hat{\beta}]_{p \times p}, \) and let \(g_1(\beta) = \hat{f}^*(M_p | W_u)p_u1(M_p \leq M_i, M_q \leq M_l), g_2(\beta) = \hat{f}^*(M_m | W_v)p_v1(M_m \leq M_j, M_l \leq M_j) \) and \(g(\beta) = (g_1(\beta), g_2(\beta))^T. \) Let \(\nabla g = (\frac{\partial}{\partial \beta} g_1(\beta), \frac{\partial}{\partial \beta} g_2(\beta))^T, \) then

\[\text{COV}[\hat{f}^*(M_p | W_u)p_u1(M_p \leq M_i, M_q \leq M_l), \hat{f}^*(M_m | W_v)p_v1(M_m \leq M_j, M_l \leq M_j)] \]
\[\approx [\nabla g^T \Sigma \nabla g]_{1,2} \]
Example 2.1. If one wants to test H_0 : the data set is from a Poisson GLM with identity link ($\mu_Y = \beta^T Z$), then

$$g_1(\beta) = \frac{e^{-\beta^T W_u (\beta^T W_u)^{M_p} 1(M_p \leq M_i, M_q \leq M_j)}}{M_p!}$$

$$g_2(\beta) = \frac{e^{-\beta^T W_v (\beta^T W_v)^{M_m} 1(M_m \leq M_j, M_l \leq M_j)}}{M_m!}$$

$$\frac{\partial}{\partial \beta} g_1(\beta) = \frac{1}{M_p!} \left[(-e^{-\beta^T W_u (\beta^T W_u)^{M_p} W_u} + e^{-\beta^T W_u M_p (\beta^T W_u)^{M_p-1}} 1(M_p \leq M_i, M_q \leq M_j)) \right]$$

$$\frac{\partial}{\partial \beta} g_2(\beta) = \frac{1}{M_m!} \left[(-e^{-\beta^T W_v (\beta^T W_v)^{M_m} W_v} + e^{-\beta^T W_v M_m (\beta^T W_v)^{M_m-1}} 1(M_m \leq M_j, M_l \leq M_j)) \right]$$

$$\text{COV}[\hat{F}_{i-1}, \hat{F}_j] = \text{COV}[\frac{1}{k} \sum_{p=1}^k \hat{f}^*(M_p) 1(M_p \leq M_i), \frac{1}{k} \sum_{q=1}^k 1(M_q \leq M_{i-1})]$$

$$= \frac{1}{k^4} \sum_{p=1}^k \sum_{q=1}^k \sum_{m=1}^k \sum_{l=1}^k \text{COV}[\hat{f}^*(M_p) 1(M_p \leq M_i, M_q \leq M_{i-1}), \hat{f}^*(M_m) 1(M_m \leq M_j, M_l \leq M_j)]$$

Then

$$\text{COV}[\hat{f}^*(M_p) 1(M_p \leq M_i, M_q \leq M_{i-1}), \hat{f}^*(M_m) 1(M_m \leq M_j, M_l \leq M_j)]$$

$$= \frac{1}{kk^2} \sum_{u=1}^{kk} \sum_{v=1}^{kk} \text{COV}[\hat{f}^*(M_p | W_u) p_u 1(M_p \leq M_i, M_q \leq M_{i-1}), \hat{f}^*(M_m | W_v) p_v 1(M_m \leq M_j, M_l \leq M_j)]$$

Each term can be estimated using delta method as in the first term.
\[
\text{COV}[\hat{F}_i, \hat{F}_{i-1}, \hat{F}_j, \hat{F}_{j-1}] = \text{COV}\left[\frac{1}{k} \sum_{p=1}^{k} \hat{f}^*(M_p)1(M_p \leq M_i) \frac{1}{k} \sum_{q=1}^{k} 1(M_q \leq M_{i-1})\right] \\
= \frac{1}{k^2} \sum_{p=1}^{k} \sum_{q=1}^{k} \sum_{m=1}^{k} \sum_{l=1}^{k} \text{COV}[\hat{f}^*(M_p)1(M_p \leq M_i, M_q \leq M_{i-1}), \hat{f}^*(M_m)1(M_m \leq M_j, M_l \leq M_{j-1})]
\]

Then

\[
\text{COV}[\hat{f}^*(M_p)1(M_p \leq M_i, M_q \leq M_{i-1}), \hat{f}^*(M_m)1(M_m \leq M_j, M_l \leq M_{j-1})] \\
= \frac{1}{k^2} \sum_{u=1}^{k} \sum_{v=1}^{k} \text{COV}[\hat{f}^*(M_p|W_u)p_u1(M_p \leq M_i, M_q \leq M_{i-1}), \hat{f}^*(M_m|W_v)p_v1(M_m \leq M_j, M_l \leq M_{j-1})]
\]

Each term can be estimated using delta method as in the first term.
Estimate V_3.

$$
\text{COV}\left[\sum_{i=1}^{k} \hat{F}(M_i), \hat{F}(M_i), \sum_{i=1}^{k} \hat{F}^*(M_i), \hat{F}(M_i)\right] = \sum_{i=1}^{k} \sum_{j=1}^{k} \text{COV}[\hat{F}(M_i), \hat{F}^*(M_j)]
$$

$$
\text{COV}[\hat{F}(M_i), \hat{F}(M_j), \hat{F}^*(M_j)\hat{F}(M_j)]
= \text{COV}[\hat{F}_i, \hat{F}_i - \hat{F}_i, \hat{F}_j - \hat{F}_j]
= \text{COV}[\hat{F}_i, \hat{F}_i, \hat{F}_j] - \text{COV}[\hat{F}_i, \hat{F}_i, \hat{F}_j] - \text{COV}[\hat{F}_i, \hat{F}_j, \hat{F}_j - \hat{F}_j] + \text{COV}[\hat{F}_i, \hat{F}_j, \hat{F}_j - \hat{F}_j]
$$

Each term can be estimated as follows.

$$
\text{COV}[\hat{F}_i, \hat{F}_j] = \frac{1}{k} \sum_{p=1}^{k} \text{COV}[\hat{F}_i, \hat{F}_j, \hat{F}_j] 1(M_p \leq M_j) \hat{F}_j
$$

$$
= \frac{1}{k} \sum_{p=1}^{k} \sum_{u=1}^{k} \text{COV}[\hat{F}_i, \hat{F}_j, \hat{F}_j] 1(M_p \leq M_j) \hat{F}_j
$$

$$
\text{COV}[\hat{F}_i, \hat{F}_j, \hat{F}_j] 1(M_p \leq M_j) \hat{F}_j \approx [\nabla g^T \Sigma \nabla g]_{1,2}
$$

where $g_1(\hat{F}_i, \hat{F}_j, \beta) = \hat{F}_i^2$ and $g_2(\hat{F}_i, \hat{F}_j, \beta) = \hat{F}_j^2 (M_p \leq M_j) \hat{F}_j$, $g(\hat{F}_i, \hat{F}_j, \beta) = (g_1, g_2)^T$ and

$$
\nabla g = \begin{bmatrix}
\frac{\partial}{\partial \hat{F}_i} g_1 & \frac{\partial}{\partial \hat{F}_j} g_1 & \frac{\partial}{\partial \beta} g_1 \\
\frac{\partial}{\partial \hat{F}_i} g_2 & \frac{\partial}{\partial \hat{F}_j} g_2 & \frac{\partial}{\partial \beta} g_2
\end{bmatrix}
$$

$$
\Sigma = \begin{bmatrix}
\text{COV}[\hat{F}_i, \hat{F}_j]_{2 \times 2} & \begin{bmatrix} 0_{2 \times p} \end{bmatrix} \\
\begin{bmatrix} 0_{p \times 2} \end{bmatrix} & \text{COV}[\beta]_{p \times p}
\end{bmatrix}
$$
\[
\text{COV} \{\hat{F}_i, \hat{F}_{i-1}, \hat{F}_j \} = \frac{1}{k} \sum_{p=1}^{k} \text{COV} \{\hat{F}_i, \hat{F}_{i-1}, \hat{F}_j \} \approx \frac{1}{k} \sum_{p=1}^{k} \text{COV} \{\hat{F}_i, \hat{F}_{i-1}, \hat{F}_j \} \approx [\nabla g^T \Sigma \nabla g]_{1,2}
\]

where \(g_1(\hat{F}_i, \hat{F}_{i-1}, \hat{F}_j, \beta) = \hat{F}_i \hat{F}_{i-1} \) and \(g_2(\hat{F}_i, \hat{F}_{i-1}, \hat{F}_j, \beta) = \hat{f}^*(M_p|Z_u) p_u 1(M_p \leq M_j) \hat{F}_j \), \(g(\hat{F}_i, \hat{F}_j, \beta) = (g_1, g_2)^T \) and

\[
\nabla g = \begin{bmatrix}
\frac{\partial}{\partial \hat{F}_i} g_1 & \frac{\partial}{\partial \hat{F}_{i-1}} g_1 & \frac{\partial}{\partial \hat{F}_j} g_1 & \frac{\partial}{\partial \beta} g_1 \\
\frac{\partial}{\partial \hat{F}_i} g_2 & \frac{\partial}{\partial \hat{F}_{i-1}} g_2 & \frac{\partial}{\partial \hat{F}_j} g_2 & \frac{\partial}{\partial \beta} g_2 \\
\end{bmatrix}
\]

\[
\Sigma = \begin{bmatrix}
\text{COV} \{\hat{F}_i, \hat{F}_{i-1}, \hat{F}_j \}_{3 \times 3} & \mathbf{0}_{3 \times p} \\
\mathbf{0}_{p \times 3} & \text{COV} \{\beta \}_{p \times p}
\end{bmatrix}
\]

\[
\text{COV} \{\hat{F}_i^2, \hat{F}_j^2 \} = \frac{1}{k} \sum_{p=1}^{k} \text{COV} \{\hat{F}_i^2, \hat{F}_j^2 \} \approx \frac{1}{k} \sum_{p=1}^{k} \text{COV} \{\hat{F}_i^2, \hat{F}_j^2 \} \approx [\nabla g^T \Sigma \nabla g]_{1,2}
\]
where \(g_1(\hat{F}_i, \hat{F}_{j-1}, \beta) = \hat{F}_i^2 \) and \(g_2(\hat{F}_i, \hat{F}_{j-1}, \beta) = \hat{f}^*(M_p|Z_u)p_u1(M_p \leq M_j)\hat{F}_{j-1} \), \(g(\hat{F}_i, \hat{F}_{j-1}, \beta) = (g_1, g_2)^T \) and

\[
\nabla g = \begin{bmatrix}
\frac{\partial}{\partial \hat{F}_i} g_1 & \frac{\partial}{\partial \hat{F}_{j-1}} g_1 & \frac{\partial}{\partial \beta} g_1 \\
\frac{\partial}{\partial \hat{F}_i} g_2 & \frac{\partial}{\partial \hat{F}_{j-1}} g_2 & \frac{\partial}{\partial \beta} g_2 \\
\end{bmatrix}
= \begin{bmatrix}
2\hat{F}_i & 0 & 0 & \vdots & 0_{1	imes p} \\
0 & \hat{f}^*(M_p|Z_u)p_u1(M_p \leq M_j) & \frac{\partial}{\partial \beta} \hat{f}^*(M_p|Z_u)p_u1(M_p \leq M_j) & \vdots & 0_{2	imes p} \\
\end{bmatrix}
\]

\[
\Sigma = \begin{bmatrix}
\text{COV}[\hat{F}_i, \hat{F}_{j-1}] & 0_{2	imes p} \\
0_{p	imes 2} & \text{COV}[\beta]_{p	imes p} \\
\end{bmatrix}
\]

\[
\text{COV}[\hat{F}_i, \hat{F}_{j-1}, \hat{F}_j] = \frac{1}{k} \sum_{p=1}^k \text{COV}[\hat{F}_i, \hat{F}_{j-1}, \hat{f}_p^*(M_p \leq M_j)\hat{F}_{j-1}] \\
= \frac{1}{k} \sum_{p=1}^k \sum_{u=1}^{k_k} \text{COV}[\hat{F}_i, \hat{F}_{j-1}, \hat{f}^*(M_p|Z_u)p_u1(M_p \leq M_j)\hat{F}_{j-1}] \\
\]

\[
\text{COV}[\hat{F}_i, \hat{F}_{j-1}, \hat{f}^*(M_p|Z_u)p_u1(M_p \leq M_j)\hat{F}_{j-1}] \approx [\nabla g^T \Sigma \nabla g]_{1,2}
\]

where \(g_1(\hat{F}_i, \hat{F}_{j-1}, \hat{F}_j, \hat{F}_{j-1}, \beta) = \hat{F}_i\hat{F}_{j-1} \) and \(g_2(\hat{F}_i, \hat{F}_{j-1}, \hat{F}_j, \hat{F}_{j-1}, \beta) = \hat{f}^*(M_p|Z_u)p_u1(M_p \leq M_j)\hat{F}_{j-1} \), \(g(\hat{F}_i, \hat{F}_{j-1}, \hat{F}_j, \hat{F}_{j-1}, \beta) = (g_1, g_2)^T \) and

\[
\nabla g = \begin{bmatrix}
\frac{\partial}{\partial \hat{F}_i} g_1 & \frac{\partial}{\partial \hat{F}_{j-1}} g_1 & \frac{\partial}{\partial \beta} g_1 \\
\frac{\partial}{\partial \hat{F}_i} g_2 & \frac{\partial}{\partial \hat{F}_{j-1}} g_2 & \frac{\partial}{\partial \beta} g_2 \\
\end{bmatrix}
= \begin{bmatrix}
\hat{F}_{j-1} & \hat{F}_i & 0 & 0 & \vdots & 0_{1	imes p} \\
0 & \hat{f}^*(M_p|Z_u)p_u1(M_p \leq M_j) & \frac{\partial}{\partial \beta} \hat{f}^*(M_p|Z_u)p_u1(M_p \leq M_j) & \vdots & 0_{2	imes p} \\
\end{bmatrix}
\]

\[
\Sigma = \begin{bmatrix}
\text{COV}[\hat{F}_i, \hat{F}_{j-1}, \hat{F}_j, \hat{F}_{j-1}]_{4\times 4} & 0_{4	imes p} \\
0_{p\times 4} & \text{COV}[\beta]_{p\times p} \\
\end{bmatrix}
\]
When Y is continuous (as in Normal or Gamma model):

\[T_2 = \int [\hat{F}(t) - \hat{F}^*(t)]d\hat{F}(t) = \frac{1}{n} \sum_{i=1}^{n} \hat{F}(M_i) - \frac{1}{n} \sum_{i=1}^{n} \hat{F}^*(M_i) = \frac{n+1}{2} - \frac{1}{n} \sum_{i=1}^{n} \hat{F}^*(M_i) \]

\[n^2 \mathbb{V}[T_2] = \sum_{i=1}^{k} \sum_{j=1}^{k} \text{COV}[\hat{F}^*(M_i), \hat{F}^*(M_j)] \]

\[\text{COV}[\hat{F}^*, \hat{F}^*_j] = \text{COV}[\frac{1}{k} \sum_{p=1}^{k} \hat{f}^*(M_p)1(M_p \leq M_i), \frac{1}{k} \sum_{m=1}^{k} \hat{f}^*(M_m)1(M_m \leq M_j)] \]

\[= \frac{1}{k^2} \sum_{p=1}^{k} \sum_{m=1}^{k} \text{COV}[\hat{f}^*(M_p)1(M_p \leq M_i), \hat{f}^*(M_m)1(M_m \leq M_j)] \]

\[\text{COV}[\hat{f}^*(M_p)1(M_p \leq M_i), \hat{f}^*(M_m)1(M_m \leq M_j)] = \frac{1}{kk} \sum_{u=1}^{kk} \sum_{v=1}^{kk} \text{COV}[\hat{f}^*(M_p|W_u)p_u1(M_p \leq M_i), \hat{f}^*(M_m|W_v)p_v1(M_m \leq M_j)] \]

\[\text{COV}[\hat{f}^*(M_p|W_u)p_u1(M_p \leq M_i), \hat{f}^*(M_m|W_v)p_v1(M_m \leq M_j)] \text{ can be estimated using delta method as in the discrete case.} \]

Bibliography