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1. Introduction

In survival analysis, one frequently is unable to precisely observe the survival time

X of interest, but can only assess that it belongs to some random interval. The simplest

such model is the so-called case 1 interval censorship model. In this model one is only able

to observe a random time Y and whether X lies in the random interval [0; Y ] or (Y;1).

More formally, one observes

(1.1) (Y;�); where � = I[X � Y ]:

Here and below I[A] denotes the indicator function of the event A. The random time Y is

called the inspection time.

Such data arise in industrial life testing and medical research. Consider for example

an animal sacri�ce study in which a laboratory animal has to be dissected to check whether

a tumor has developed. In this case, X is the onset of tumor and Y is the time of the

dissection, and we only can infer at the time of dissection whether the tumor is present

or has not yet developed. Other examples are mentioned in Ayer et al. (1955), Keiding

(1991) and Wang and Gardiner (1996).

We shall assume throughout that the life time X and the inspection time Y are

independent and denote their distribution functions by F

0

and G, respectively. Our data

consist of n independent copies (Y

i

;�

i

) = (Y

i

; I[X

i

� Y

i

]), i = 1; :::; n, of (Y;�). We

consider estimating (characteristics of) the distribution function F

0

based on these data.

Ayer et al. (1955) derived the explicit expression of the generalized maximum likeli-

hood estimator (GMLE) of the distribution function F

0

. Moreover, they established the

weak consistency of the GMLE at continuity points x of F

0

under additional assumptions

on G. They also mentioned the strong consistency of the GMLE at each support point of

a discrete Y with �nitely many values. Using an inequality of theirs we shall generalize

this result to arbitrary discrete Y in our Theorem 2.1. From this result we shall derive

the uniform strong consistency on the entire line if F

0

is continuous and the support of

2



Y is dense in the positive half line. Moreover, using Theorem 2.1 of Ayer et al. (1955),

we shall derive an explicit representation of the GMLE at what we call regular points and

conclude the asymptotic normality and e�ciency of the GMLE at such points.

Peto (1973) considered the problem of obtaining the GMLE based on interval-censored

data using a Newton-Raphson type algorithm. Turnbull (1976) proposed a self-consistent

algorithm and showed that it converges to the GMLE

^

F . Both conjectured that for ar-

bitrary F

0

and G, the GMLE is asymptotically normal at the usual n

1=2

rate. Thus our

results provide a partial justi�cation of their claim for discrete Y . It was, however, shown

by Groeneboom and Wellner (1992) that this conjecture is false if F

0

and G satisfy certain

smoothness assumptions. Indeed, their Theorem 5.1 establishes that under di�erentiabil-

ity assumptions on F

0

and G the convergence is at the slower n

1=3

rate and the limiting

distribution is not normal. Groeneboom and Wellner (1992) also obtained the uniform

strong consistency of the GMLE for continuous F

0

and G. A variant of this result was

also proved by Wang and Gardiner (1996) using a totally di�erent approach and a slightly

di�erent set of assumptions.

The results of Groeneboom and Wellner (1992) give a fairly detailed description for

the case of continuous F

0

and G, while ours do so for the case of arbitrary F

0

and discrete

G. There are many practical situations in which Y is discrete. In medical research, for

example, the data are often recorded as integers (to represent number of days, weeks etc).

Motivated by this we assume that the inspection time Y is a discrete random variable with

density g. This assumption is used by several authors in survival analysis, see Becker and

Melbye (1991) and Finkelstein (1986) among others.

Our paper is organized as follows. We introduce the GMLE in Section 2 and prove

its strong consistency. In Section 3 we establish the asymptotic normality and e�ciency

of the GMLE at what we call regular points. Finally, Section 4 summarizes our work,

discusses some of its implications, addresses some questions raised by it and establishes

connections with the work of others. In particular, we show by means of an example
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that our asymptotic normality result fails at nonregular points even though the rate of

convergence is still n

1=2

.

2. The consistency of the GMLE

By our assumptions, Y is a discrete random variable with density g. Let A be the set

of possible values of Y , i.e., A = fa 2 R : g(a) > 0g. For a 2 A, set

N

�

n

(a) =

1

n

n

X

j=1

I[X

j

� a; Y

j

= a];

N

+

n

(a) =

1

n

n

X

j=1

I[X

j

> a; Y

j

= a];

N

n

(a) =

1

n

n

X

j=1

I[Y

j

= a]:

The generalized likelihood is given by

�

n

(F ) =

Y

a2A

F (a)

nN

�

n

(a)

(1� F (a))

nN

+

n

(a)

:

In the above we let F range over the set F of all subdistribution functions. A function F

is called a subdistribution function if F = aF

1

for some distribution function F

1

and some

number a in [0; 1]. Thus a subdistribution function has all the properties of a distribution

function except that its limit at in�nity may be less than 1.

Note that �

n

(F ) depends on F only through the values of F at the points a 2 A for

which N

n

(a) > 0. Thus there exists no unique maximizer of �

n

(F ) in the set F . But

there exists a uniquely determined F -valued random element

^

F

n

which maximizes �

n

(F )

and satis�es

^

F

n

(b) = supf

^

F

n

(a) : a � b;N

n

(a) > 0g for each b 2 R. Here we interpret the

supremum of the empty set as 0. We call

^

F

n

the GMLE of F

0

. It is easy to check that

^

F

n

(Y

(1)

) = 0 on the event fN

�

n

(Y

(1)

) = 0g and

^

F

n

(Y

(n)

) = 1 on the event fN

+

n

(Y

(n)

) = 0g,

where Y

(1)

and Y

(n)

are the smallest and largest among Y

1

; : : : ; Y

n

. For latter use, set

~

F

n

(a) =

�

N

�

n

(a)=N

n

(a); if N

n

(a) > 0

0; otherwise.
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2.1. Theorem. The GMLE

^

F

n

satis�es

^

F

n

(a)! F

0

(a) almost surely for each a 2 A.

Proof: Using the following inequality given in Ayer et al. (1955, p. 644),

X

a2A

(

^

F

n

(a)� F

0

(a))

2

N

n

(a) �

X

a2A

(

~

F

n

(a)� F

0

(a))

2

N

n

(a);

we get

X

a2A

(

^

F

n

(a)� F

0

(a))

2

N

n

(a) �

X

a2A

jN

n

(a)� g(a)j+

X

a2A

(

~

F

n

(a)� F

0

(a))

2

g(a):

It follows from the SLLN that for each a 2 A, N

n

(a) ! g(a) and

~

F

n

(a) ! F

0

(a) almost

surely. Thus Sche��e's Theorem (see Billingsley (1968, p. 224)) implies

X

a2A

jN

n

(a)� g(a)j ! 0 almost surely

and the Lebesgue Dominating Convergence Theorem implies

X

a2A

(

~

F

n

(a)� F

0

(a))

2

g(a)! 0 almost surely.

It follows that

P

a2A

(

^

F

n

(a) � F

0

(a))

2

N

n

(a) ! 0 almost surely. This yields the desired

result as N

n

(a) is eventually positive with probability 1 for each a 2 A. �

The above result was already observed by Ayer et al. (1955) in the case when A is

�nite. In this case one can even conclude that the GMLE is uniformly strongly consistent

on A, i.e., sup

a2A

j

^

F

n

(a)� F

0

(a)j ! 0 almost surely: For countably in�nite A, however,

additional assumptions are required to conclude this as demonstrated by the following

example.

2.2. Example. Suppose A = fy

i

: y

i

= 1� 1=i; i � 1g and G(y) = y for y 2 A. Then the

GMLE will not be uniformly strongly consistent on A if 0 < F (1�) < 1.

Proof: Let 


n

=

S

n

i=1

T

j 6=i

fX

i

� Y

i

; Y

j

< Y

i

g. Then 


n

� fN

+

(Y

(n)

) = 0g. Since

^

F

n

(Y

(n)

) = 1 on the event fN

+

(Y

(n)

) = 0g as observed prior to Theorem 2.1 and since
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F

0

(1�) < 1, we cannot have uniform strong convergence if lim inf

n!1

P (


n

) > 0. But

P (


n

) = nP (

n

\

j=2

fX

1

� Y

1

; Y

j

< Y

1

g) � nF

0

(y

n

)(G(y

n

�))

n�1

P (Y

1

� y

n

)

so that by the choice of A and G

lim inf

n!1

P (


n

) � lim inf

n!1

F

0

(y

n

)

�

1�

1

n� 1

�

n�1

= F (1�)=e > 0:

Consequently, the GMLE is not uniformly consistent on A. �

We now address the uniform strong consistency.

2.3. Corollary. Suppose the set A is closed. Assume that F

0

(a�) = F

0

(a) for each

a 2 A for which there is a strictly increasing sequence of points fa

i

g

i�1

in A such that

a

i

" a. Then the GMLE is uniformly strongly consistent on A.

Proof: Let m be a positive integer. Let A

i

= fa 2 A : x

i�1

� a < x

i

g, i = 1; : : : ;m,

where x

0

= �1, x

m

= 1 and x

i

= inffx : F

0

(x) � i=mg, i = 1; :::;m � 1. Let a 2 A.

Then a 2 A

i

for some i = 1; : : : ;m. Since A is a closed set, a

i

= inf A

i

and b

i

= supA

i

belong to A. Using the monotonicity of

^

F

n

and F

0

, we �nd that

j

^

F

n

(a)� F

0

(a)j � maxfj

^

F

n

(b

i

)� F

0

(b

i

)j; j

^

F

n

(a

i

)� F

0

(a

i

)jg+ F

0

(b

i

)� F

0

(a

i

):

If b

i

< x

i

, then F

0

(b

i

) � F

0

(a

i

) < 1=m. If b

i

= x

i

, then F

0

(x

i

) = F

0

(x

i

�) = i=m and

F

0

(b

i

)� F

0

(a

i

) � 1=m. This shows that

lim sup

n!1

sup

a2A

j

^

F

n

(a)� F

0

(a)j � 1=m

on the event 


�

=

T

a2A

flim

n!1

^

F

n

(a) = F

0

(a)g. Since m is arbitrary and P (


�

) = 1 by

Theorem 2.1, we obtain the desired result. �

In the next corollary, the set A needs not be closed.
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2.4. Corollary. Assume that A = fa

i

g

i�1

, where a

i

< a

i+1

for all i. Let � = sup

i

a

i

. If

F

0

(��) = 1, then the GMLE is uniformly strongly consistent on A.

Proof: Let m be a positive integer. Since

sup

a2A

j

^

F

n

(a)� F

0

(a)j � max

1�i�m

j

^

F

n

(a

i

)� F

0

(a

i

)j+ 1� F

0

(a

m

);

it follows from Theorem 2.1 that

lim sup

n!1

sup

a2A

j

^

F

n

(a)� F

0

(a)j � 1� F (a

m

):

The desired result follows as m is arbitrary and F

0

(��) = 1. �

We call a number x a point of increase of F

0

if either F

0

(x) < F

0

(y) for all y > x or

F

0

(y) < F

0

(x) for all y < x. Note that, for each � in the interval (0; 1), the left quantile

F

�1

0

(�) = inffy : F (y) � �g is a point of increase of F

0

.

2.5. Corollary. Suppose that F

0

is continuous and the closure of A contains the set

S of all points of increase of F

0

. Then the GMLE is uniformly strongly consistent, i.e.,

sup

x2R

j

^

F

n

(x)� F

0

(x)j ! 0 almost surely.

Proof: Let F

1

; F

2

; : : : be subdistribution functions such that F

n

(a)! F

0

(a) for all a 2 A.

Letm be a positive integer. Since F

0

is continuous, there are points x

1

< � � � < x

m

in S such

that F

0

(x

i

) = i=(m+ 1). The continuity of F

0

and the fact that the closure of A contains

S imply that there are points a

1

< � � � < a

m

in A such that jF

0

(a

i

) � F

0

(x

i

)j � 1=m

2

.

Using this and the monotonicity of F

0

and F

n

we derive that

jF

n

(x)� F

0

(x)j � max

1�i�m

jF

n

(a

i

)� F

0

(a

i

)j+

3

m

; x 2 R:

This shows that F

n

converges to F

0

uniformly.

By the above, the events

T

a2A

f

^

F

n

(a) ! F

0

(a)g and fsup

x2R

j

^

F

n

(x) � F

0

(x)j ! 0g

are identical and thus have probability 1 by Theorem 2.1. �
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3. The asymptotic normality of the GMLE

We shall now discuss asymptotic normality and e�ciency of

^

F

n

(x) for regular points

x as de�ned next. Let A

�

= A [ f�1;1g. For x 2 R, set

x

�

:= supfa 2 A

�

: a < xg and x

+

:= inffa 2 A

�

: a > xg:

We say x is a regular point, if x belongs to A, x

�

and x

+

belong to A

�

, x

�

< x < x

+

and F

0

(x

�

) < F

0

(x) < F

0

(x

+

). It is worth mentioning that there may be in�nitely many

regular points. For example, if F

0

is strictly increasing and A is the set of all positive

integers, then every positive integer is a regular point. The conditions imposed on regular

points are somewhat similar to the assumption that F

0

and G have positive and continuous

derivatives needed in the asymptotic distribution result of the GMLE (see Groeneboom

and Wellner (1992)). However, their convergence rate is n

1=3

, while we shall show that the

convergence rate is n

1=2

under our assumptions.

Given a regular point x,

^

F

n

(x) may or may not be the same as

~

F

n

(x) as shown by the

following example. Suppose that F is the exponential distribution function and A = f1; 2g.

Then both 1 and 2 are regular points. If a sample of size 3 consists of observations

f(1; 0); (1; 1); (2; 1)g, then (

~

F (1);

~

F (2)) = (1=2; 1), which is the same as (

^

F (1);

^

F (2)). On

the other hand, if a sample of size 3 consists of observations f(1; 0); (1; 1); (2; 0)g, then

(

~

F (1);

~

F (2)) = (1=2; 0), which is not the same as (

^

F (1);

^

F (2)) = (1=3; 1=3). However, the

following lemma shows that the two estimators di�er only on a set whose probability tends

to zero.

3.1. Lemma. Suppose x is a regular point. Then P (

^

F

n

(x) =

~

F

n

(x))! 1.

Proof: Assume �rst that x

�

and x

+

belong to A. Let B

n

= f

^

F

n

(x

�

) <

^

F

n

(x) <

^

F

n

(x

+

)g

and C

n

= fN

n

(x

�

) > 0; N

n

(x) > 0; N

n

(x

+

) > 0g. It follows from Theorem 2.1 and

F

0

(x

�

) < F

0

(x) < F

0

(x

+

) that P (B

n

)! 1, and from the SLLN that P (C

n

)! 1. In view
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of Theorem 2.1 in Ayer et al. (1955), we have, on the event B

n

\ C

n

,

^

F

n

(x

�

) <

~

F

n

(x) �

^

F

n

(x) �

~

F

n

(x) <

^

F

n

(x

+

):

That is,

^

F

n

(x) =

~

F

n

(x). Thus the desired result follows as P (B

n

\ C

n

)! 1. This proves

the claim when x

�

and x

+

belong to A.

If x

+

=2 A and x

�

2 A, then x

+

= +1 since x is a regular point. Let

B

+

n

= f

^

F

n

(x

�

) <

^

F

n

(x) < 1g and C

+

n

= fN

n

(x

�

) > 0; N

n

(x) > 0g.

It follows from Theorem 2.1 and F

0

(x

�

) < F

0

(x) < 1 that P (B

+

n

) ! 1, and from the

SLLN that P (C

+

n

) ! 1. In view of Theorem 2.1 in Ayer et al. (1955), we have, on the

event B

+

n

\ C

+

n

,

^

F

n

(x

�

) <

~

F

n

(x) �

^

F

n

(x) �

~

F

n

(x). That is,

^

F

n

(x) =

~

F

n

(x). Thus the

desired result follows as P (B

+

n

\ C

+

n

) ! 1. This proves the claim when x

�

but not x

+

belongs to A.

The proofs when x

+

but not x

�

belongs to A is similar and will be omitted. �

The above result shows that

^

F

n

(x) has the same asymptotic properties as

~

F

n

(x). Thus

the following result is immediate.

3.2. Theorem. Let x be a regular point. Then

^

F

n

(x)� F

0

(x) =

1

n

n

X

j=1

I[Y

j

= x]

g(x)

(�

j

� F

0

(x)) + o

p

(n

�1=2

):

Consequently, n

1=2

(

^

F

n

(x)� F

0

(x)) is asymptotically normal with mean 0 and variance

F

0

(x)(1� F

0

(x))

g(x)

:

This asymptotic variance can be consistently estimated by

^

F

n

(x)(1�

^

F

n

(x))

N

n

(x)

:

Also, if x

1

< � � � < x

m

are regular points, then n

1=2

(

^

F

n

(x

1

)�F

0

(x

1

); : : : ;

^

F

n

(x

m

)�F

0

(x

m

))

is asymptotically normal with mean vector 0 and diagonal covariance matrix.
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Let us now address e�ciency considerations. For this �x a regular point x. It follows

from the above theorem that

^

F

n

(x) has inuence function  given by

 (�; Y ) =

I[Y = x]

g(x)

(�� F

0

(x)):

We shall now show that  is the e�cient inuence function for estimating F

0

(x). This

will show that

^

F

n

(x) is a least dispersed regular estimator of F

0

(x). The reader unfamiliar

with these concepts should consult the monograph by Bickel et al. (1993). Let H be the

set of all measurable functions such that

R

h dF

0

= 0 and

R

h

2

dF

0

<1. For h 2 H de�ne

a sequence F

n;h

of distribution functions by

F

n;h

(t) =

Z

(�1;t]

(1 + n

�1=2

h

n

) dF

0

; t 2 R;

where h

n

= hI[2jhj � n

1=2

]�

R

hI[2jhj � n

1=2

] dF

0

. Then

n

1=2

(F

n;h

(x)� F

0

(x))! H(x) =

Z

(�1;x]

h dF

0

:

The tangent (or score function) �

h

associated with the perturbed distributions F

n;h

is given

by

�

h

(�; Y ) = H(Y )

�

�

F

0

(Y )

�

1��

1� F

0

(Y )

�

=

H(Y )(�� F

0

(Y ))

F

0

(Y )(1� F

0

(Y ))

:

Finally, it is easy to check that

E( (�; Y )�

h

(�; Y ) = H(x):

Since this holds for all h 2 H and since  is a tangent, i.e.,  = �

h

for some h 2 H with

H(Y ) = I[Y = x]F

0

(x)(1�F

0

(x))=g(x), we obtain that  is the e�cient inuence function

if G is known. However,  is also the e�cient inuence function if G is unknown as the

tangents for G are orthogonal to the tangents f�

h

: h 2 Hg for F

0

.
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4. Concluding Remarks

The main results of our paper are given in Theorems 2.1 and 3.2. Theorem 2.1

gives the strong consistency at each point in A, while Theorem 3.2 obtains asymptotic

normality at regular points. Thus

^

F

n

(x) is both strongly consistent and asymptotically

normally distributed at each regular point x. Typically, consistency fails to hold for points

of increase that are not in the closure of A. Also, the asymptotic normality result may not

hold for nonregular points as the following example shows.

4.1. Example. Assume that A consists of just four points, namely a

1

< a

2

< a

3

< a

4

,

and that 0 < F (a

1

) < F (a

2

) = F (a

3

) < F (a

4

) < 1. On the event A

n

= f

~

F

n

(a

1

) �

~

F

n

(a

2

) �

~

F

n

(a

3

) �

~

F

n

(a

4

)g we have

^

F

n

(a

i

) =

~

F

n

(a

i

), i = 1; : : : ; 4, and on the event

B

n

= f

~

F

n

(a

1

) �

~

F

n

(a

2

) �

~

F

n

(a

4

);

~

F

n

(a

1

) �

~

F

n

(a

3

) �

~

F

n

(a

4

);

~

F

n

(a

2

) >

~

F

n

(a

3

)g, we have

^

F

n

(a

i

) =

~

F

n

(a

i

) for i = 1; 4 and

^

F

n

(a

2

) =

^

F

n

(a

3

) =

�

F

n

where

�

F

n

=

N

�

n

(a

2

) +N

�

n

(a

3

)

N

n

(a

2

) +N

n

(a

3

)

:

It follows from the SLLN that P (A

n

[ B

n

) ! 1. This shows that the asymptotic dis-

tribution of

p

n(

^

F

n

(a

2

) � F

0

(a

2

);

^

F

n

(a

3

) � F

0

(a

3

))

T

is the same as that of

p

n(

~

F

�

n

(a

2

) �

F

0

(a

2

);

~

F

�

n

(a

3

)� F

0

(a

3

))

T

, where (

~

F

�

n

(a

2

);

~

F

�

n

(a

3

)) = (

~

F

n

(a

2

);

~

F

n

(a

3

)) if

~

F

n

(a

2

) �

~

F

n

(a

3

)

and

~

F

�

n

(a

2

) =

~

F

�

n

(a

3

) =

�

F

n

if

~

F

n

(a

2

) >

~

F

n

(a

3

). An application of Slutsky's Theorem

yields that the asymptotic distribution of

p

n(

~

F

�

n

(a

2

) � F

0

(a

2

);

~

F

�

n

(a

3

) � F

0

(a

3

))

T

is the

distribution of the bivariate random vector Z

�

de�ned by

Z

�

=

�

Z

�

1

Z

�

2

�

=

�

Z

2

Z

3

�

I[Z

2

� Z

3

] +

g(a

2

)Z

2

+ g(a

3

)Z

3

g(a

2

) + g(a

3

)

�

1

1

�

I[Z

2

> Z

3

];

where Z

2

and Z

3

are independent normal random variables with zero means and variances

F (a

2

)(1�F (a

2

))=g(a

2

) and F (a

3

)(1�F (a

3

))=g(a

3

), respectively. One can check that the

distributions of Z

�

1

and Z

�

2

are not normal.

The corollaries in Section 2 address uniform strong consistency under di�erent sets of

assumptions. Corollary 2.3 implies that the GMLE is uniformly strongly consistent on A if

11



F is continuous and A is closed. Corollary 2.4 gives uniform consistency on A if this set is

generated by an increasing sequence. If F is increasing and A � fx 2 R : 0 < F (x) < 1g,

then the assumptions of Corollary 2.4 imply that each point in A is regular and thus in

view of Theorem 3.2 the asymptotic normality at each point in A.

Corollary 2.5 is of interest from a theoretical point of view as it provides conditions

that guarantee the uniform strong consistency on the entire line. From a practical point

of view the imposed conditions are rather unrealistic. For example, if F is the uniform

distribution on [0; 1], then A has to contain a dense subset of [0; 1]. But distributions

G with this property are rarely encountered in practice. Note also that the assumptions

of Corollary 2.5 rule out the existence of regular points so that we cannot conclude the

asymptotic normality from Theorem 3.2.

It is an open question whether the parametric convergence rate holds at each point

in A. Since one can show that

~

F

n

has parametric convergence rate at each point in A, we

conjecture that the GMLE has the same property although the limit might not be normal

as Example 4.1 shows.

Groeneboom and Wellner (1992) showed that the GMLE is uniformly strongly con-

sistent if F

0

and G are continuous and P

F

0

<< P

G

. The latter means that the probability

measure P

F

0

induced by F

0

is absolutely continuous with respect to the probability measure

P

G

induced by G. In view of our Corollary 2.5 we expect the uniform strong consistency

also if F

0

is continuous and if G is a mixture of a continuous distribution function and a

discrete distribution function which satis�es the assumptions in Corollary 2.5.

Groeneboom and Wellner (1992) showed that under the additional assumption that F

0

and G have positive derivatives at a point t

0

, the convergence rate of

^

F

n

(t

0

) is n

1=3

. It is an

open question whether the rate n

1=3

is still valid without this additional assumption. It is

also not known whether the rate can be improved under additional smoothness assumptions

on F

0

and G.

Our parametric convergence rate n

1=2

in Theorem 3.2 is in contrast to the nonpara-

12



metric convergence rate n

1=3

under their assumptions. Our Theorem 3.2 is trivially true

under the assumption that both X and Y take on the same �nitely many values. In this

case, the problem reduces to the estimation of the parameters of a multinomial distri-

bution function, which is a parametric problem giving the usual n

1=2

convergence rate.

This simple fact was noticed without proof by Peto (1973) and Turnbull (1976) as they

both conjectured (incorrectly) that the GMLE has a convergence rate n

1=2

in general.

We established the parametric convergence rate of the GMLE for the �rst time under the

assumption that X and Y may take in�nitely many values.

5. References

Ayer, M., Brunk, H.D., Ewing, G.M., Reid, W.T. and Silverman, E. (1955). An empirical

distribution function for sampling incomplete information. Ann. Math. Statist. 26,

641-647.

Becker, N.G. and Melbye, M. (1991). Use of a log-linear model to compute the empirical

survival curve from interval-censored data, with application to data on tests for HIV

positivity. Austral. J. Statist., 33, 125-133.

Bickel, P.J., Klaassen, C.A.J., Ritov, Y. and Wellner, J.A. (1993). E�cient and adap-

tive estimation for semiparametric models. The Johns Hopkins University Press,

Baltimore.

Billingsley, P. (1968). Convergence of probability measures. Wiley, New York.

Finkelstein, D.M. (1986). A proportional hazards model for interval-censored failure time

data. Biometrics, 42, 845-854.

Groeneboom, P. and Wellner, J. A. (1992). Information bounds and nonparametric max-

imum likelihood estimation. Birkh�auser Verlag, Basel.

Keiding. N. (1991) Age-speci�c incidence and prevalence: A statistical perspective (with

discussion) J. Roy. Statist. Soc. Ser. A, 154, 371-412.

Peto, R. (1973). Experimental survival curve for interval-censored data. Appl. Statist.,

22, 86-91.

Turnbull, B. W. (1976). The empirical distribution function with arbitrary grouped,

censored and truncated data. J. Roy. Statist. Soc. Ser. B, 38, 290-295.

Wang, Z. and Gardiner, J. C. (1996). A class of estimators of the survival function from

interval-censored data. Ann. Statist., 24, 647-658.

13


