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Abstract. In case 2 interval censoring the random survival time X of interest is not

directly observable, but only known to have occurred before Y , between Y and Z, or after

Z, where (Y; Z) is a pair of observable inspection times such that Y < Z. We consider

the large sample properties of the generalized maximum likelihood estimator (GMLE) of

the distribution function of X with case 2 interval-censored data in which the inspection

times are discrete random variables. We prove the strong consistency of the GMLE at the

support points of the inspection times and establish its asymptotic normality in the case

of only �nite many support points.
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1. Introduction

In many biomedical studies, the random survival time X of interest is never observed

and is only known to lie before an inspection time Y , between two consecutive inspection

times Y and Z, or after the inspection time Z. This censoring scheme is referred to as

case 2 interval censoring. Examples can be found in cancer studies (Finkelstein and Wolfe

(1985)) and AIDS studies (Becker and Belbye (1991); Aragon and Eberly (1992)). We

assume throughout that X and (Y; Z) are independent and that Y < Z with probability

one. We denote the distribution function of X by F

0

and the joint distribution function

of (Y; Z) by G. The available data for the case 2 interval-censorship model are thus

(Y

j

; Z

j

; I[X

j

� Y

j

]; I[Y

j

< X

j

� Z

j

]); j = 1; : : : ; n;

where (X

1

; Y

1

; Z

1

); : : : ; (X

n

; Y

n

; Z

n

) are independent copies of (X;Y; Z) and I[A] is the

indicator of the set A.

Groeneboom and Wellner (1992) considered the case 2 interval-censorship model with

continuous F

0

and absolutely continuous G. They proposed an iterative convex minorant

algorithm to calculate the GMLE and proved the uniform strong consistency of the GMLE.

They showed that the estimator of F

0

obtained at the �rst step of the iterative convex

minorant algorithm converges to F

0

at the (n logn)

1=3

rate and that its asymptotic distri-

bution is not normal. The asymptotic distribution of the GMLE remains unresolved. There

are other approaches to derive the GMLE. They include Peto's (1973) Newton-Raphson

algorithm and Turnbull's (1976) self-consistent algorithm.

In this paper, we assume that F

0

is arbitrary, but (Y; Z) is discrete. This assumption

is used by several authors (Becker and Melbye (1991); Finkelstein (1986)). Let

A = fa 2 R : P (Y = a) + P (Z = a) > 0g

be the set of all possible values of Y or Z. We establish the strong consistency of the

GMLE at each point in A. From this we can then infer the uniform strong consistency of

the GMLE if F

0

is continuous and A is dense in [0;1). This is done in Section 2.
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In Section 3 we consider the case of �nite A. We obtain the joint asymptotic normality

of the GMLE at the usual

p

n rate for the points in A and present a consistent estimator

of its asymptotic variance.

2. The consistency of the GMLE

Let B denote the set of all pairs (a; b) such that g(a; b) = P (Y = a; Z = b) > 0. In

other words, B is the set of all possible values of (Y; Z). For (a; b) 2 B, let

N

�

n

(a; b) =

1

n

n

X

j=1

I[X

j

� a; Y

j

= a; Z

j

= b];

N

o

n

(a; b) =

1

n

n

X

j=1

I[a < X

j

� b; Y

j

= a; Z

j

= b];

N

+

n

(a; b) =

1

n

n

X

j=1

I[X

j

> b; Y

j

= a; Z

j

= b];

N

n

(a; b) =

1

n

n

X

j=1

I[Y

j

= a; Z

j

= b]:

Then the generalized likelihood is given by

�

n

(F ) =

Y

(a;b)2B

F (a)

nN

�

n

(a;b)

[F (b)� F (a)]

nN

o

n

(a;b)

[1� F (b)]

nN

+

n

(a;b)

and the normalized generalized log-likelihood is

L

n

(F ) =

X

(a;b)2B

fN

�

n

(a; b) log[F (a)] +N

o

n

(a; b) log[F (b)� F (a)] +N

+

n

(a; b) log[1� F (b)]g:

Here and below we interpret 0 log 0 = 0 and log 0 = �1. In the above we let F range

over the set F

�

of all subdistribution functions. A function F

1

is called a subdistribution

function if F

1

= aF for some distribution function F and a number a 2 [0; 1]. Note

that �

n

(F ) and L

n

(F ) depend on F only through the values of F at the points a 2 A.

Thus there exists no unique maximizer of �

n

(F ) over the set F

�

. However, there exists a

unique maximizer

^

F

n

of �

n

(F ) over the set F

�

which satis�es

^

F

n

(x) = supf

^

F

n

(a) : a �

x;

P

n

j=1

(I[Y

j

= a] + I[Z

j

= a]) > 0g for all x 2 R. Here we interpret the supremum of the

empty set as 0. We call

^

F

n

the GMLE of F

0

.
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2.1. Theorem. The GMLE

^

F

n

satis�es

^

F

n

(a)! F

0

(a) almost surely for all a 2 A.

Proof: Verify that

L(F ) := E(L

n

(F )) =

X

(a;b)2B

g(a; b)h

a;b

(F )

with

h

a;b

(F ) = F

0

(a) log[F (a)] + [F

0

(b)� F

0

(a)] log[F (b)� F (a)] + [1� F

0

(b)] log[1� F (b)]:

It is easy to check that the expression h

a;b

(F ) is maximized by a nondecreasing function

F into [0; 1] if and only if F (a) = F

0

(a) and F (b) = F

0

(b). Thus F

0

maximizes L(F ) and

any other nondecreasing function into [0; 1] that maximizes L(F ) coincides with F

0

at the

points in A.

Note that L

n

(F

0

) =

1

n

P

n

j=1

 (X

j

; Y

j

; Z

j

), where  is the map de�ned by

 (x; y; z) = I[x � y] log(F

0

(y))+ I[y < x � z] log(F

0

(z)�F

0

(y))+ I[z < x] log(1�F

0

(z)):

Thus it follows from the SLLN that L

n

(F

0

) ! L(F

0

) almost surely. By the de�nition of

the GMLE, L

n

(

^

F

n

) � L

n

(F

0

). Consequently,

lim inf

n!1

L

n

(

^

F

n

) � lim inf

n!1

L

n

(F

0

) = L(F

0

) almost surely.

Let 


0

denote the event on which lim inf

n!1

L

n

(

^

F

n

) � L(F

0

) and, for each (a; b) 2 B,

N

�

n

(a; b)! F

0

(a)g(a; b), sup

n

N

�

n

(a; b) = 0 if F

0

(a) = 0, N

o

n

(a; b)! (F

0

(b)�F

0

(a))g(a; b),

sup

n

N

o

n

(a; b) = 0 if F

0

(b) = F

0

(a), N

+

(a; b)! (1� F

0

(b))g(a; b) and sup

n

N

+

n

(a; b) = 0 if

F

0

(b) = 1. Fix an ! 2 


0

. Let the function F

�

be a limit point of

^

F

n

(�; !) in the sense that

^

F

k

n

(a; !) ! F

�

(a) for all a 2 A and for some sequence fk

n

g of positive integers tending

to in�nity. We now show that

L(F

�

) � L(F

0

):

Let x

k

n

(a; b) denote the value of the random variable

N

�

k

n

(a; b) log(

^

F

k

n

(a)) +N

o

k

n

(a; b) log(

^

F

k

n

(b)�

^

F

k

n

(a)) +N

+

k

n

(a; b) log(1�

^

F

k

n

(b))
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at the point !. Thus, by the de�nition of 


0

,

lim inf

n!1

X

(a;b)2B

x

k

n

(a; b) � L(F

0

)

and

x

k

n

(a; b)! g(a; b)h

a;b

(F

�

)

for each (a; b) 2 B. Note also that x

k

n

(a; b) � 0 for all (a; b) 2 B. Thus an application of

Fatou's Lemma yields

lim sup

n!1

X

(a;b)2B

x

k

n

(a; b) =� lim inf

n!1

X

(a;b)2B

�x

k

n

(a; b)

��

X

(a;b)2B

lim inf

n!1

(�x

k

n

(a; b))

=

X

(a;b)2B

g(a; b)h

a;b

(F

�

)

= L(F

�

):

Combining the above yields L(F

0

) � L(F

�

). As F

0

maximizes L, we can conclude that

L(F

�

) = L(F

0

) and therefore F

�

(a) = F

0

(a) for all a 2 A. Since ! was arbitrary and 


0

has probability one, we can infer the desired result. �

If A is a �nite set, then it follows from the theorem that the GMLE is uniformly

strongly consistent on A. For arbitrary A, the uniform strong consistency of the GMLE

requires additional assumptions. The proofs of the following corollary and theorem are

similar to Yu, Schick, Li and Wong (1996) and are thus omitted here.

2.2. Corollary. Suppose that A is a closed set. Assume that F

0

(a�) = F

0

(a) for every

a 2 A for which there is a sequence of points fa

i

g

i�1

� A such that a

i

" a. Then the GMLE

is uniformly strongly consistent on A, i.e., sup

a2A

j

^

F

n

(a)� F

0

(a)j ! 0 almost surely:

We call a number x a point of increase of F

0

if either F

0

(x) < F

0

(y) for all y > x or

F

0

(y) < F

0

(x) for all y < x.
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2.3. Theorem. Suppose that F

0

is continuous and the closure of A contains the set

of all points of increase of F

0

. Then the GMLE is uniformly strongly consistent, i.e.,

sup

x2R

j

^

F

n

(x)� F

0

(x)j ! 0 almost surely.

3. The asymptotic normality of the GMLE

In this section we shall obtain the asymptotic normality of the GMLE under the

assumption that A contains �nitely many elements and

0 < F

0

(a) < F

0

(b) < 1 for all a; b in A such that a < b.

Note that under the current assumption the standard method for �nite parametric models

can be used.

Let F denote the set of all distribution functions F which satisfy 0 < F (a) < F (b) < 1

for all a; b in A with a < b. For F 2 F and a 2 A, let

L

n;a

(F ) =

X

b:(a;b)2B

�

N

�

n

(a; b)

F (a)

�

N

o

n

(a; b)

F (b)� F (a)

�

+

X

c:(c;a)2B

�

N

o

n

(c; a)

F (a)� F (c)

�

N

+

n

(c; a)

1� F (a)

�

;

L

n;a;a

(F ) =�

X

b:(a;b)2B

�

N

�

n

(a; b)

F

2

(a)

+

N

o

n

(a; b)

(F (b)� F (a))

2

�

�

X

c:(c;a)2B

�

N

o

n

(c; a)

(F (a)� F (c))

2

+

N

+

n

(c; a)

(1� F (a))

2

�

and

L

n;a;b

(F ) = L

n;b;a

(F ) =

N

o

n

(a; b)

(F (b)� F (a))

2

; a; b 2 A; a < b:

Then

L

n;a

(F ) =

@L

n

(F )

@F (a)

and L

n;a;b

(F ) = L

n;b;a

(F ) =

@

2

L

n

(F )

@F (a)@F (b)

; a; b 2 A:

Let a

1

< a

2

< � � � < a

m

denote the elements of A. For F 2 F , let

�

L

n

(F ) denote the

m-dimensional column vector with entries (

�

L

n

(F ))

i

= L

n;a

i

(F ), i = 1; : : : ;m, and

��

L

n

(F )

denote the m�m matrix with entries

(

��

L

n

(F ))

ij

= L

n;a

i

;a

j

(F ); i; j = 1; : : : ;m:

6



Finally set

J = nE[

�

L

n

(F

0

)(

�

L

n

(F

0

))

T

] = �E[

��

L

n

(F

0

)]:

The matrix J is positive de�nite since

J = D +

X

1�i<j�m

g(a

i

; a

j

)

F

0

(a

j

)� F

0

(a

i

)

(e

i

� e

j

)(e

i

� e

j

)

T

where D is the diagonal matrix with positive diagonal elements

d

ii

=

PfY = a

i

g

F

0

(a

i

)

+

PfZ = a

i

g

1� F

0

(a

i

)

; i = 1; : : : ;m;

and e

1

; : : : ; e

m

denote the standard basis in R

m

. It is easy to verify that

��

L

n

(

^

F

n

)! E[

��

L

n

(F

0

)] = �J:

It thus follows that on the event f

^

F

n

2 Fg

0 =

�

L

n

(

^

F

n

) =

�

L

n

(F

0

)� J�

n

+ o

p

(k�

n

k);

where �

n

is them-dimensional column vector with entries

^

F

n

(a

i

)�F

0

(a

i

), i = 1; : : : ;m. It

follows from the CLT that n

1=2

�

L

n

(F

0

) is asymptotically normal with mean 0 and dispersion

matrix J . This shows that �

n

= J

�1

�

L

n

(F

0

)+o

p

(n

�1=2

). Thus we have the following result.

3.1. Theorem. Suppose F

0

belongs to F . Then

n

1=2

0

B

@

^

F

n

(a

1

)� F

0

(a

1

)

.

.

.

^

F

n

(a

m

)� F

0

(a

m

)

1

C

A

is asymptotically normal with mean 0 and dispersion matrix J

�1

. A strongly consistent

estimator of J is given by �

��

L

n

(

^

F

n

).
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