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Abstract. In this paper we consider an interval censorship model in which the end-
points of the censoring intervals are determined by a two stage experiment. In the first
stage the value k of a random integer is selected; in the second stage the endpoints are
determined by a case k interval censorship model. We prove the strong consistency in
the L (u)-topology of the nonparametric maximum likelihood estimate of the underlying
survival function for a measure p which is derived from the distributions of the endpoints.
This consistency result yields strong consistency for the topologies of weak convergence,
pointwise convergence and uniform convergence under additional assumptions. These
results improve and generalize existing ones in the literature.
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1. Introduction

In industrial life testing and medical research, one is frequently unable to observe the random
variable X of interest directly, but can observe a pair (L, R) of extended random variables such
that

—o0<L<X<R<o0.

For example consider an animal study in which a mouse has to be dissected to check whether a
tumor has developed. At the time of dissection we can only infer whether the tumor is present,
or has not yet developed. Thus, if we let X denote the onset of tumor and Y the time of the
dissection, then the corresponding pair (L, R) is given by

(*OOaY)a X S Ya
(Y, 00), X>Y.

L. ={

If X and Y are independent, then this model is called the case 1 interval censorship model (Groene-

boom and Wellner (1992)) and the data pair (L, R) is usually replaced by the current status data
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(Y, I[X <Y]), where I[A] is the indicator function of the set A. Examples of the current status
data are mentioned in Ayer et al. (1955), Keiding (1991) and Wang and Gardiner (1996).
Another interval censorship model is the case 2 model considered by Groeneboom and Wellner

(1992). Consider an experiment with two inspection times U and V' such that U < V and (U, V') is
independent of X. One can only determine whether X occurs before time U, between times U and
V or after time V. More formally, one observes the random vector (U, V, I X < U], I[U < X < V]).
In this model

(o0, U), X <U,

(L,R) =< (U,V), U<X <V,
(V,00), X >V

Note that (L, R) is a function of the random vector (U, V,I[X < U|,I[U < X < V]). However, V
cannot be recovered from the pair (L, R) on the event {X < U}. Thus the pair (L, R) carries less
information than the vector (U, V,I[X < U, I[lU < X <V]).

The case 1 and case 2 models are special cases of the case k model (Wellner, 1995). In this
model there are k inspection times Y; < --- < Y}, which are independent of X, and one observes
into which of the random intervals (—oo, Y], ..., (Yk,00) the random variable X belongs. Note
that the case k model for £ > 2 can be formally reduced to a case 2 model with U and V functions
of X and the inspection times Y7,...,Ys. The resulting U and V are then no longer independent
of X violating a key assumption used in deriving consistency results for the case 2 model.

While the case 1 model gives a good description of the animal study mentioned above, a data
set from a case k model (k > 2) is difficult to find in medical research since it is very unlikely that
every patient under study has exactly the same number of visits. Finkelstein and Wolfe (1985)
presented a closely related type of interval-censored data in comparing two different treatments for
breast cancer patients. The censoring intervals arose in the follow-up studies for patients treated
with radiotherapy and chemotherapy. The failure time X is the time until cosmetic deterioration
as determined by the appearance of breast retraction. Each patient had several follow-ups and
the number of follow-ups differed from patient to patient. One only knows that the failure time
occurred either before the first follow-up, or after the last follow-up or between two consecutive
follow-ups. Other examples of such type of interval-censored data can be found in AIDS studies
(Becker and Melbye (1991); Aragon and Eberly (1992)).

In this paper we assume that the pair (L, R) is generated as a mixture of case k models. This
formulation encompasses the various case k models and the data setting occurring in Finkelstein
and Wolfe (1985). A precise definition of this mixture model is given in Section 2.

Let Fjy denote the unknown distribution function of X. This distribution function is commonly
estimated by the generalized maximum likelihood estimate (GMLE). Ayer et al. (1955) derived an
explicit expression of the GMLE for the case 1 model. However, in general the GMLE does not
have an explicit solution. In deriving a numerical solution for the GMLE, Peto (1973) used the
Newton-Raphson algorithm; Turnbull (1976) proposed a self-consistent algorithm; Groeneboom

and Wellner (1992) proposed an iterative convex minorant algorithm. A detailed discussion of
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some computational aspects is given in Wellner and Zhan (1997).

Various consistency results are available for the GMLE. In the case 1 model, Ayer et al.
(1955) proved the weak consistency of the GMLE at continuity points of Fy under additional
assumptions on G, the distribution function of Y. The uniform strong consistency of the GMLE
has been established by Groeneboom and Wellner (1992), van de Geer (1993, Example 3.3a),
Wang and Gardiner (1996) and Yu et al. (1998a) for continuous Fj using various assumptions and
techniques. In the case 2 model, the uniform strong consistency of the GMLE has been established
by Groeneboom and Wellner (1992), van de Geer (1993, Example 3.3b), and Yu et al. (1998b) for
continuous Fjp.

In Section 2 we shall obtain the strong L (p)-consistency of the GMLE for our mixture of
case k models for some measure p. This result shows that the L;(u)-topology is the appropriate
topology as it gives consistency without additional assumptions in the case £ models. Convergence
in stronger topologies such as the topologies of weak convergence and uniform convergence requires
additional conditions. This is pursued in Section 3. In the process we also point out some erroneous
consistency claims in the literature. The proof of the L;(u)-consistency is given in Section 4. It
exploits the special structure of the likelihood for this model and does not require any advanced

theory. Section 5 collects various other proofs.

2. Main Results

We begin by giving a precise definition of our model. This is done by describing how the
endpoints L and R are generated. Let K be a positive random integer and Y = {Y, ; : k =
1,2,....5 = 1,...,k} be an array of random variables such that Yy, < -+ < Yjx. Assume
throughout that (K,Y) and X are independent. On the event {K = k}, let (L, R) denote the
endpoints of that random interval among (—oo, Y 1], (Yi.1, Yk 2], ..., (Yi x, 00) which contains X.
We refer to this model as the mized case model as it can be viewed as a mixture of the various case
k models.

In some clinical studies, an examination is performed at the start of the study and follow-ups
are scheduled one at a time till the end of the study. This can be modeled by taking Y} ; = 23;11 &
and K = sup{k > 1: Zf:_ll & < 7}, where £1,&,... denote the (positive) inter-follow-up times
and 7 is the length of the study. In this case K may not be bounded. For example, if the inter-
follow-up times are independent with a common exponential distribution, then K — 1 is a Poisson
random variable; thus K is unbounded, yet E(K) < co. In general, if the inter-follow-up times are
independent and identically distributed, then E(K) < oo.

To define the GMLE, let (L1, Ry), ..., (Ly, R,) be independent copies of the pair (L, R) defined
above and define the generalized likelihood function A,, by

M(F) = [[IF(Ry) - (L)), Fer,
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where F is the collection of all nondecreasing functions F' from [—o0, +00] into [0, 1] with F(—oc0) =
0 and F'(+00) = 1. We think of Fj as a member of F. Note that A,,(F) depends on F only through
the values of F' at the points L; or R;, 7 = 1,...,n. Thus there exists no unique maximizer of
A, (F) over the set F. However, there exists a unique maximizer E,, over the set F which is right
continuous and piecewise constant with possible discontinuities only at the observed values of L;
and R;j, 7 =1,...,n. We call this maximizer F,, the GMLE of Fy.

Define a measure i on the Borel o-field B on R by

oo k
uwB)=> P(K=k))Y P(Y,;€B|K=Fk), BeB.

k=1
We are now ready to state our main result, namely the (strong) L;(u) consistency of the GMLE.

2.1. Theorem. Let E(K) < co. Then [|F, — Fy|du — 0 almost surely.

The condition E(K) < oo implies the finiteness of the measure p and of the expectation
Ellog(Fo(R) — Fo(L))]. These two latter conditions play an important role in our proof given in
Section 4.

One referee pointed out that results of van de Geer’s (1993) (namely her Lemma 1.1 and
Theorem 3.1) may be used to prove a result very similar to our Theorem 2.1 with the help of some
inequalities suggested by this referee. This alternative proof leads to Li(ji)-consistency for some
finite measure i that is equivalent to our measure p and does not require the finiteness of E(K).
Actually, such a result implies our result in view of the following simple lemma which we state

without a proof.

2.2. Lemma. Let uy and us be two finite measures and g, g1, g2, ... be measurable functions

into [0,1]. Suppose that us is absolutely continuous with respect to uy. Then [|g, — g|du; — 0
implies [ |g, — g| dus — 0.

We have decided to present our original proof since it is direct and elementary and since
E(K) < oo is a rather mild assumption that is typically satisfied in applications.

In the remainder of this section we mention some corollaries of Theorem 2.1. The first one is of
interest when the inspection times are discrete. It follows from the fact that p({a})|F}, (a)—Fy(a)| <
S |E,, — Fy| dp for every a € R and generalizes the consistency results given in Yu et al. (1998a,b)

for the case 1 and case 2 models with discrete inspection times.

2.3. Corollary. Let E(K) < co. Then F,(a) — Fy(a) almost surely for each point a with
u({a}) > 0.

In the next corollary we state results for a measure v that depends on the distribution of L
and R and is easier to interpret than u. We take v to be the sum of the marginal distributions of
L and R:

v(B)=P(Le B)+P(Re B), BebB.
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In view of the set inclusion

o0

k
{LeBYu{ReB}C |J | J{K =Fk.Yi; € B},

k=1:=1
we have v(B) < 2u(B). Thus we immediately get the following corollary.
2.4. Corollary. Let E(K) < oo. Then the following are true.

(1) [|F, — Fy|dv — 0 almost surely.
(2) F,(a) = Fy(a) almost surely for each point a with v({a}) > 0.

3. Other Consistency Results

In this section we shall show that under additional assumptions strong Lj(u)-consistency
implies strong consistency in other topologies such as the topologies of weak convergence, pointwise
convergence and uniform convergence. Throughout we always assume that F(K) is finite so that

p is a finite measure and P(€2,) = 1 by Theorem 2.1, where

Q, = { lim /|Fn — Fyldu = 0}.
n— oo

Although the results of this section are formulated for the measure p defined in the previous
section, they are true for any finite measure for which the GMLE is strongly L;-consistent as only
the finiteness of p and P(€,,) = 1 are used in their proofs. These proofs are deferred to Section 5.

Let a be a real number. We call a a support point of p if p((a —e,a +¢€)) > 0 for every € > 0.
We call a regular if u((a —€,a]) > 0 and u([a,a +€)) > 0 for all € > 0. We call a strongly regular
if u((a —€e,a)) > 0 and p(la,a +€)) > 0 for all e > 0. We call a a point of increase of Fy if
Fy(a+¢€) — Fy(a —€) > 0 for each € > 0.

In view of the inequality v < 2u, sufficient conditions for the first three of the above concepts
are obtained by replacing u be v. As these sufficient conditions are in terms of the distribution of
L and R, they are easier to interpret and thus more meaningful from an applied point of view.

Ayer et al. (1955) established the weak consistency of the GMLE at regular continuity points of
Fj in the case 1 model. Our first proposition gives a strong consistency result for regular continuity

points in our more general model.

3.1. Proposition. For each w € Q, and each regular continuity point a of Fy, F,,(a;w) — Fy(a).

The next two propositions address weak convergence on an open interval and on the entire

line.

3.2. Proposition. Suppose every point in an open interval (a,b) is a support point of y. Then

F, (z;w) — Fy(z) for every continuity point x of Fy in (a,b) and every w € Q,,. If also Fy(a) =0
and Fy(b—) = 1, then F, (x;w) — Fy(z) for all continuity points x of Fy and all w € Q,,.
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3.3. Proposition. If every point of increase of Fy is strongly regular, then F, (xz;w) — Fy(x) for
all continuity points of Fy and all w € €2,,.

Combining these propositions with Corollary 2.3 yields the following results on pointwise con-

vergence on open intervals and on the entire line.

3.4. Corollary. Suppose every point x in an open interval (a,b) is a support point of yu and
satisfies pn({x}) > 0 if & is a discontinuity point of Fy. Then F,(x;w) — Fy(z) for every x in (a,b)
and every w € Q,,. Moreover, if Fy(a) = 0 and Fy(b—) = 1, then F,(z;w) — Fy(z) for all x € R
and all w € Q,.

3.5. Corollary. If every point of increase of Fy is strongly regular and if u({a}) > 0 for each
discontinuity point a of Fy, then Fn(fc;w) — Fy(x) for all z € R and all w € §2,,.

The next proposition addresses uniform convergence.

3.6. Proposition. Suppose that Fy is continuous and that, for all a < b, 0 < Fy(a) < Fy(b) < 1
implies p((a,b)) > 0. Then the GMLE is uniformly strongly consistent, i.e.,

sup |F,,(z) — Fo(x)| = 0 a.s..
z€ER

This proposition generalizes the strong uniform consistency results given by Groeneboom and
Wellner (1992) for the case 1 and 2 models. In the case 1 model they require that Fy and G,
the distribution function of Y, are continuous and that the probability measure pp, induced by
F, is absolutely continuous with respect to p (pup, << p). Proposition 3.6 does not require the
continuity of G and weakens the absolute continuity requirement. In the case 2 model Groeneboom
and Wellner assume that Fj is continuous and that the joint distribution of U and V' has a Lebesgue
density ¢ such that g(u,v) > 0if 0 < Fy(u) < Fy(v) < 1. Their assumption implies that the measure
p has a Lebesgue density which is positive on the set {#: 0 < F(¢) < 1} and therefore implies that
p((a,b)) > 0if 0 < Fy(a) < Fy(b) < 1. Consequently, Proposition 3.6 improves and generalizes
their result.

Proposition 3.6 also generalizes the strong uniform consistency results given by van de Geer
(1993) for the case 1 and 2 models under the assumption that Fj is continuous and p, << p. The
latter implies that u((a,b)) > 0 if 0 < Fy(a) < Fo(b) < 1. However, if u is discrete, its support is
dense in (0,+00), and Fj is exponential, then the assumption in Proposition 3.6 is satisfied, but
1r, << p is not true.

In clinical follow-ups, the studies typically last for a certain period of time, say [r1,7]. It is
often that Fy(72) < 1 in which case the conditions in Proposition 3.6 are not satisfied. In this
regard, Gentleman and Geyer (1994) claimed a vague convergence result in their Theorem 2 and
Huang (1996) claimed a uniform strong consistency result in his Theorem 3.1. Both of their results

as stated imply the uniform strong consistency of the GMLE on [71, 73] in the case 1 model, if Fj
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is continuous and the inspection time Y is uniformly distributed on [y, 72]. The following example

shows that this is not true.

3.7. Example. Consider current status data (Y1,1[X; < Yi]),..., (Y., I[X, < Y,]), where the
survival times X1, ..., X,, are uniformly distributed on [0, 3] and the inspection times Y7,...,Y,, are
uniformly distributed on [1,2]. Then Fj is the uniform distribution function on [0, 3] and pu is the
uniform distribution on [1,2]. Note that on the event U;L:1{Xj >2>Y,Y, <Y, i=1,...,n,1#
7} we have F,, (1) = 0, and on the event U;L:1{Xj <1<Y,Y;>Y,i=1,...,n,i# j} we have
F,.(2) = F,,(2—) = 1. Both events have probability 1/3. Since F(1) = 1/3 and F(2) = Fy(2—) =
2/3, we see that F,(z) does not converge to Fy(z) almost surely for z = 1,2 and F,(2—) does not
converge to Fj(2—) almost surely. This shows that pointwise convergence on the closed interval
[T1,72] to a continuous Fj is not implied by the condition: p([a,b]) > 0 for all a and b such that
<a<b< .

The following proposition indicates how to fix the assumptions.

3.8. Proposition. Suppose the following four conditions hold for real numbers 11 < T5.

(1) Fy is continuous at every point in the interval (1y, T2];

(2) either pu({r1}) >0 or Fy(ry) = 0;

(3) either p({r2}) > 0 or Fy(12—) = 1;

(4) for all a and b in (11,72), 0 < Fy(a) < Fy(b) < 1 implies u((a,b)) > 0.
Then the GMLE is uniformly strongly consistent on |11, 7o, i.e.,

sup | E,(z) — Fo(z)] = 0 as..

z€[T1,72]

4. Proof of Theorem 2.1

Recall that L may take the value —oo and R the value +o00. The normalized log-likelihood is
L,(F)= %z": log [F(R;) — F(L;)], FecF.
j=1
By the strong law of large numbers (SLLN), £,,(F') converges almost surely to its mean
L(F) = B(log [F(R) ~ F(L)]) = >° P(K = D)E(hp (Vi Vi) | K = ),

k=1

where
k

hew(n, - ue) = Y (Folyin) — Foly;) 1og(F(y;41) — F(y;)),

J=0



for —oc0 = yg < y1 < -+ < yYp < yYry1 = oo. Here and below we interpret OlogO) = 0 and
log0) = —oc

It is easy to check that, for each positive integer k& and real numbers y; < --- < yg, the
expression hgk(y1,...,yx) is maximized by a function F' € F if and only if F(y;) = Fy(y;) for
g =1,...,k. Since sup{|plogp| : 0 < p < 1} < 1, |hp, k| is bounded by k. Since K has finite
expectation, we see that L£(Fp) is finite. Hence Fy maximizes £(-) over the set F and any other
function F' € F that maximizes £(-) satisfies that F' = Fj a.e. p.

Let {F,} be a sequence in F. By a pointwise limit of this sequence we mean an F' € F such
that F, (z) — F(z) for all z € R and some subsequence {n'}. Helly’s selection theorem (Rudin
(1976), pg 167) guarantees the existence of pointwise limits. Let now €' be the set of all sample
points w for which the sequence {F},(-;w)} has only pointwise limits F' such that £(F) > £L(Fy). In
view of the above discussion, for each w € Q', all the limit points of {F,(-;w)} equal Fy a.e. p and
this gives that [ |E, (z;w) — Fy(z)| dp(x) — 0. Thus the desired result follows if we show that €/
has probability 1. Let ), denote the empirical estimator of Q, the distribution of (L, R). By the
SLLN, Qo = {£,(Fy) = L(F,)} has probability 1, and so does Qp = {Q,,(U) = Q(U)} for every
Borel subset U of A = {(I,r) : —o0 <1 < r < oco}. Thus we are done if we show that €’ contains
the intersection €, of €}y and ﬂUeu Qp for some countable collection U of Borel subsets of A.

Let « be a positive integer. Then there are finitely many extended real numbers
—00=¢qo<q1 <q2<---<(gg=00

such that pu((gi—1,q;)) <27 for ¢ = 1,..., 3. Now form the sets Up,...,Uss by setting Us;_1 =
(Gi-1,q;) for i = 1,....3, and Uy; = [gi,q;] for i = 0,...,3. Let U, denote the collection of all
nonempty sets of the form U;; = AN (U; x Uj) for 0 < i < j <25. We shall take U = |, Uy.

Let now w belong to €,. Let F,, denote the distribution function defined by F, (z) = F), (z; w)
and Q, the measure defined by Q,(A) = Q.(A;w). Let F be a pointwise limit of {F,}. For
simplicity in notation we shall assume that F, (z) — F(x) for all z € R. We shall show that

L(Fy) < liminf £, (F,)(w) < limsup £, (F,,)(w) < L(F).

n—oo n— oo

The first inequality follows from L, (F,)(w) > L, (Fy)(w), a consequence of the definition of the
GMLE, and the fact that £, (Fp)(w) — ( Fy) by the choice of w. Thus we only need to establish
the last inequality. For this note that £, (F),)(w) can be expressed as

[ og £ ()~ Fu ) dQu0.1).
A

The desired inequality is thus equivalent to

lim sup/ log [F,.(r) — F,(1)]dQ,(l,r) < / log [F'(r) — F(1)]dQ(l,r). (4.1)
A A

Tn— 00
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Now fix a positive integer « and a negative integer g. Then

/ log [F,.(r) — F,(1)]dQ,(l,r) < / qVlog [F,(r) — F,(1)]dQ,(I,r)
A A
<) ML(U)Qa(U),

Uel,

where

M, (U) = sup qVlog [F,(r) — F,(I)]
(1,r)eU

and U is the closure of U. It is easy to check that M, (U) = q V log [F,(ry) — F.(ly)], where
ry =sup{r: (l,r) € U} and Iy = inf{l: ([,r) € U}. Thus
My, (U) = M(U) :=q Vlog [F(ry) — F(ly)] = sup qVlog [F(r) = F(I)].
(I,r)eu
Also, by the choice of w, Q,,(U) — Q(U) for all U € U,. Therefore we can conclude that
> Mu(U)Qu(U) = Y MU)Q(U).
Uely Uely

Let now

m(U) = inf _qVleg [F(r)—F()], UE€U,.
(L,r)eU

Using the bound
lg Viog(z) —qViog(y)| <e |z —y[, 0<z,y<1,

it is easy to verify that

MU) - m(U) <e™ 1 (ZSI;pU[F(rU) —F(r)+ F()— F(ly)], U e€eU,.

This shows the following.
(1) U = AN[(gi—1,4:) % (¢j—1,q;)], then M(U)—m(U) > 2/« implies either F(q;)—F(q;—1) >
e1/a or Fla;) — Flg; 1) > 9o
(2) if U =AN{g,aq] x (¢j-1.9;)], then M(U) — m(U) > 2/a implies F(q;) — F(gj-1) > e?/a;
(3) if U =AN[(gi-1,a) x [¢;,4]], then M(U) — m(U) > 2/« implies F(g;) — F(gi—1) > e’/ ov.

Of course, if U contains only one point, then M (U) — m(U) = 0. Using this, we derive

Y (MU) - m(U)QU) < % +lal Y QU)IMU) —m(U)) > 2/q]

Uel, Uel,
5 8
< ” + 4 ;P(Qil < L < q;)I[F(q;) — F(gi—1) > e/
8
+1al Y Plgj—1 < R < g))I[F(q;) — Flg;—1) > e?/q]
j=1

IN

2
- + |q|(1 + oze_q)Zl_o‘.
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In the last step we use the facts that
P(gi—1 < L < @)+ P(gi-1 < R<¢q) <2u((qi-1,4:)) <2'7°

and that at most 1 + ae™? among the terms F(q1) — F(qo), ..., F(qs) — F(qs—_1) exceed e?/a.

Combining the above shows that

lim sup/Alog [F,(r) — F,(1)]dQ,(l,r)

n— oo

< / g Vlog [F(r)— F()]dQ(l,r) + 2 + [q|(1 + ae™?)2' 7.
A o

The desired inequality (4.1) follows from this by first letting @ — oo and then ¢ — —oc.

5. Proof of the Propositions

Fix w € €,. Abbreviate F,(w) by F,. Let F be a pointwise limit of F,. Without loss of

generality, assume that lim,, . F,(z) = F(x) for all z. Set
D={zeR: F(x)# Fy(z)}.

Since [|F, — Fy|du — 0 and p is a finite measure in view of the assumption E(K) < oo, we have
u(D) =0.

PROOF OF PROPOSITION 3.1: We need to show that D does not contain regular continuity points of
Fy. Let g be a continuity point of Fy. If zg belongs to D, then F'(xg) # Fy(x() and the continuity
of Fy at ¢ and the monotonicity of F' and F{ yield that there exists a positive € such that either
(xo — €, 0] or [xg, o + €) is contained in D. Thus either u((xg — €, 20]) = 0 or u([zo,zo + €)] =0,

and g is not regular. [

PROOF OF PROPOSITION 3.2: Let xg be a continuity point of Fy which is also an interior point
of S, the set of support points of u. Then xy does not belong to D; otherwise, there exist, for
each € > 0, support points z; and x5 of p and a positive n such that (zy — 1,21 +n) is contained
in (xg — €,29] and (x9 — 1,29 + 1) is contained in [z(,z¢ + €) and this leads to the contradiction
u(D) > 0 . This shows that F(z) = Fy(x) for all continuity points = of F that belong to the
interior of S and proves the first part of Proposition 3.2. The second part follows from the first

part and the monotonicity of F' and Fj. U

PRrOOF OF PROPOSITION 3.3: Suppose every point of increase of Fy is strongly regular. We shall
show that D does not contain continuity points of Fy. Let x¢ be a continuity point of Fj. If x¢ is
a point of increase of Fp, then it is strongly regular and hence regular and cannot belong to D by
Proposition 3.1. Suppose now zq is not a point of increase of Fj;. Then again x(y cannot belong to
D. Otherwise, either F(zq) > Fy(zo) or F'(z¢) < Fy(z¢) and we shall show that each leads to the
contradiction (D) > 0. In the first case, b := sup{z : Fy(z) = Fy(z¢)} is a point of increase of Fy,
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b> xgand F(b—) > F(xo) > Fy(xg) = Fy(b—); thus [z¢,b) C D and, since b is strongly regular by
our assumption, u(D) > p((zg,b)) > 0. In the second case, a := inf{x € R: Fy(x) = Fy(zo)} is a
point of increase of Fy, a < xg and F(a) < F(zg) < Fo(zg) = Fo(a); thus [a,z¢) C D and, since a
is strongly regular by our assumption, pu(D) > p([a,zg)) > 0. This shows that D does not contain
continuity points of Fy, which is the desired result of Proposition 3.3. O

PROOF OF PROPOSITION 3.6: Make the assumptions of Proposition 3.6. Then D is empty; oth-
erwise, we can use the continuity of F{ to construct an open interval, that contains a point of
increase of Fj and is contained in D, and arrive at the contradiction u(D) > 0. Since D is empty,
F,, converges to Fy pointwise and hence uniformly as Fy is continuous. This proves Proposition
3.6. U

PROOF OF PROPOSITION 3.8: We shall only give the proofin the case ({71 }) > 0 and Fy(7o—) = 1.
We shall show that D N[y, 9] = 0. This implies that F, (x) — Fy(z) for all z € [ry, 2], and, by
the continuity assumption on Fjy, this convergence is even uniform on |7y, 79].

It follows from Corollary 2.3 that F(11) = Fo(71). This gives the desired result if Fy(m) = 1.
Thus assume from now on that Fy(m;) < 1. We are left to show that Dy = D N (71, 72| is empty.
If Dy were not empty, we could use the continuity assumption on Fy, the monotonicity of Fy and
F and F(11) = Fy(m1) < Fy(ma—) = 1 to show that D; contains an open interval (a,b) such that
0 < Fy(a) < Fy(b) <1 and 7 < a < b < 79 and arrive at the contradiction u(D) > u((a,b)) > 0.
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