
CONSISTENCY OF THE GMLEWITH MIXED CASE INTERVAL-CENSORED DATABy Anton Schick and Qiqing YuBinghamton UniversityApril 1997. Revised December 1997, Revised July 1998Abstract. In this paper we consider an interval censorship model in which the end-points of the censoring intervals are determined by a two stage experiment. In the �rststage the value k of a random integer is selected; in the second stage the endpoints aredetermined by a case k interval censorship model. We prove the strong consistency inthe L1(�)-topology of the nonparametric maximum likelihood estimate of the underlyingsurvival function for a measure � which is derived from the distributions of the endpoints.This consistency result yields strong consistency for the topologies of weak convergence,pointwise convergence and uniform convergence under additional assumptions. Theseresults improve and generalize existing ones in the literature.Short Title: Interval censorship model.AMS 1991 Subject Classi�cation: Primary 62G05; Secondary 62G20.Key words and phrases: Nonparametric maximum likelihood estimation; current status data; case kinterval-censorship model.1. IntroductionIn industrial life testing and medical research, one is frequently unable to observe the randomvariable X of interest directly, but can observe a pair (L;R) of extended random variables suchthat �1 � L < X � R � 1:For example consider an animal study in which a mouse has to be dissected to check whether atumor has developed. At the time of dissection we can only infer whether the tumor is present,or has not yet developed. Thus, if we let X denote the onset of tumor and Y the time of thedissection, then the corresponding pair (L;R) is given by(L;R) = � (�1; Y ); X � Y;(Y;1); X > Y:If X and Y are independent, then this model is called the case 1 interval censorship model (Groene-boom and Wellner (1992)) and the data pair (L;R) is usually replaced by the current status data1



(Y; I[X � Y ]), where I[A] is the indicator function of the set A. Examples of the current statusdata are mentioned in Ayer et al. (1955), Keiding (1991) and Wang and Gardiner (1996).Another interval censorship model is the case 2 model considered by Groeneboom and Wellner(1992). Consider an experiment with two inspection times U and V such that U < V and (U; V ) isindependent of X. One can only determine whether X occurs before time U , between times U andV or after time V . More formally, one observes the random vector (U; V; I[X � U ]; I[U < X � V ]).In this model (L;R) = 8><>: (�1; U); X � U;(U; V ); U < X � V;(V;1); X > V:Note that (L;R) is a function of the random vector (U; V; I[X � U ]; I[U < X � V ]). However, Vcannot be recovered from the pair (L;R) on the event fX � Ug. Thus the pair (L;R) carries lessinformation than the vector (U; V; I[X � U ]; I[U < X � V ]).The case 1 and case 2 models are special cases of the case k model (Wellner, 1995). In thismodel there are k inspection times Y1 < � � � < Yk which are independent of X, and one observesinto which of the random intervals (�1; Y1]; : : : ; (Yk;1) the random variable X belongs. Notethat the case k model for k > 2 can be formally reduced to a case 2 model with U and V functionsof X and the inspection times Y1; : : : ; Yk. The resulting U and V are then no longer independentof X violating a key assumption used in deriving consistency results for the case 2 model.While the case 1 model gives a good description of the animal study mentioned above, a dataset from a case k model (k � 2) is di�cult to �nd in medical research since it is very unlikely thatevery patient under study has exactly the same number of visits. Finkelstein and Wolfe (1985)presented a closely related type of interval-censored data in comparing two di�erent treatments forbreast cancer patients. The censoring intervals arose in the follow-up studies for patients treatedwith radiotherapy and chemotherapy. The failure time X is the time until cosmetic deteriorationas determined by the appearance of breast retraction. Each patient had several follow-ups andthe number of follow-ups di�ered from patient to patient. One only knows that the failure timeoccurred either before the �rst follow-up, or after the last follow-up or between two consecutivefollow-ups. Other examples of such type of interval-censored data can be found in AIDS studies(Becker and Melbye (1991); Aragon and Eberly (1992)).In this paper we assume that the pair (L;R) is generated as a mixture of case k models. Thisformulation encompasses the various case k models and the data setting occurring in Finkelsteinand Wolfe (1985). A precise de�nition of this mixture model is given in Section 2.Let F0 denote the unknown distribution function of X. This distribution function is commonlyestimated by the generalized maximum likelihood estimate (GMLE). Ayer et al. (1955) derived anexplicit expression of the GMLE for the case 1 model. However, in general the GMLE does nothave an explicit solution. In deriving a numerical solution for the GMLE, Peto (1973) used theNewton-Raphson algorithm; Turnbull (1976) proposed a self-consistent algorithm; Groeneboomand Wellner (1992) proposed an iterative convex minorant algorithm. A detailed discussion of2



some computational aspects is given in Wellner and Zhan (1997).Various consistency results are available for the GMLE. In the case 1 model, Ayer et al.(1955) proved the weak consistency of the GMLE at continuity points of F0 under additionalassumptions on G, the distribution function of Y . The uniform strong consistency of the GMLEhas been established by Groeneboom and Wellner (1992), van de Geer (1993, Example 3.3a),Wang and Gardiner (1996) and Yu et al. (1998a) for continuous F0 using various assumptions andtechniques. In the case 2 model, the uniform strong consistency of the GMLE has been establishedby Groeneboom and Wellner (1992), van de Geer (1993, Example 3.3b), and Yu et al. (1998b) forcontinuous F0.In Section 2 we shall obtain the strong L1(�)-consistency of the GMLE for our mixture ofcase k models for some measure �. This result shows that the L1(�)-topology is the appropriatetopology as it gives consistency without additional assumptions in the case k models. Convergencein stronger topologies such as the topologies of weak convergence and uniform convergence requiresadditional conditions. This is pursued in Section 3. In the process we also point out some erroneousconsistency claims in the literature. The proof of the L1(�)-consistency is given in Section 4. Itexploits the special structure of the likelihood for this model and does not require any advancedtheory. Section 5 collects various other proofs.2. Main ResultsWe begin by giving a precise de�nition of our model. This is done by describing how theendpoints L and R are generated. Let K be a positive random integer and Y = fYk;j : k =1; 2; : : : ; j = 1; : : : ; kg be an array of random variables such that Yk;1 < � � � < Yk;k. Assumethroughout that (K;Y) and X are independent. On the event fK = kg, let (L;R) denote theendpoints of that random interval among (�1; Yk;1]; (Yk;1; Yk;2]; : : : ; (Yk;k;1) which contains X.We refer to this model as the mixed case model as it can be viewed as a mixture of the various casek models.In some clinical studies, an examination is performed at the start of the study and follow-upsare scheduled one at a time till the end of the study. This can be modeled by taking Yk;j =Pj�1i=1 �iand K = supfk � 1 : Pk�1i=1 �i � �g, where �1; �2; : : : denote the (positive) inter-follow-up timesand � is the length of the study. In this case K may not be bounded. For example, if the inter-follow-up times are independent with a common exponential distribution, then K � 1 is a Poissonrandom variable; thus K is unbounded, yet E(K) <1. In general, if the inter-follow-up times areindependent and identically distributed, then E(K) <1.To de�ne the GMLE, let (L1; R1); : : : ; (Ln; Rn) be independent copies of the pair (L;R) de�nedabove and de�ne the generalized likelihood function �n by�n(F ) = nYj=1[F (Rj)� F (Lj)]; F 2 F ;3



where F is the collection of all nondecreasing functions F from [�1;+1] into [0; 1] with F (�1) =0 and F (+1) = 1. We think of F0 as a member of F . Note that �n(F ) depends on F only throughthe values of F at the points Lj or Rj , j = 1; : : : ; n. Thus there exists no unique maximizer of�n(F ) over the set F . However, there exists a unique maximizer F̂n over the set F which is rightcontinuous and piecewise constant with possible discontinuities only at the observed values of Ljand Rj , j = 1; : : : ; n. We call this maximizer F̂n the GMLE of F0.De�ne a measure � on the Borel �-�eld B on R by�(B) = 1Xk=1P (K = k) kXj=1 P (Yk;j 2 B j K = k); B 2 B:We are now ready to state our main result, namely the (strong) L1(�) consistency of the GMLE.2.1. Theorem. Let E(K) <1. Then R jF̂n � F0j d�! 0 almost surely.The condition E(K) < 1 implies the �niteness of the measure � and of the expectationE[log(F0(R) � F0(L))]. These two latter conditions play an important role in our proof given inSection 4.One referee pointed out that results of van de Geer's (1993) (namely her Lemma 1.1 andTheorem 3.1) may be used to prove a result very similar to our Theorem 2.1 with the help of someinequalities suggested by this referee. This alternative proof leads to L1(~�)-consistency for some�nite measure ~� that is equivalent to our measure � and does not require the �niteness of E(K).Actually, such a result implies our result in view of the following simple lemma which we statewithout a proof.2.2. Lemma. Let �1 and �2 be two �nite measures and g; g1; g2; : : : be measurable functionsinto [0; 1]. Suppose that �2 is absolutely continuous with respect to �1. Then R jgn � gj d�1 ! 0implies R jgn � gj d�2 ! 0.We have decided to present our original proof since it is direct and elementary and sinceE(K) <1 is a rather mild assumption that is typically satis�ed in applications.In the remainder of this section we mention some corollaries of Theorem 2.1. The �rst one is ofinterest when the inspection times are discrete. It follows from the fact that �(fag)jF̂n(a)�F0(a)j �R jF̂n � F0j d� for every a 2 R and generalizes the consistency results given in Yu et al. (1998a,b)for the case 1 and case 2 models with discrete inspection times.2.3. Corollary. Let E(K) < 1. Then F̂n(a) ! F0(a) almost surely for each point a with�(fag) > 0.In the next corollary we state results for a measure � that depends on the distribution of Land R and is easier to interpret than �. We take � to be the sum of the marginal distributions ofL and R: �(B) = P (L 2 B) + P (R 2 B); B 2 B:4



In view of the set inclusionfL 2 Bg [ fR 2 Bg � 1[k=1 k[i=1fK = k; Yk;i 2 Bg;we have �(B) � 2�(B). Thus we immediately get the following corollary.2.4. Corollary. Let E(K) <1. Then the following are true.(1) R jF̂n � F0j d� ! 0 almost surely.(2) F̂n(a)! F0(a) almost surely for each point a with �(fag) > 0.
3. Other Consistency ResultsIn this section we shall show that under additional assumptions strong L1(�)-consistencyimplies strong consistency in other topologies such as the topologies of weak convergence, pointwiseconvergence and uniform convergence. Throughout we always assume that E(K) is �nite so that� is a �nite measure and P (
�) = 1 by Theorem 2.1, where
� = f limn!1Z jF̂n � F0j d� = 0g:Although the results of this section are formulated for the measure � de�ned in the previoussection, they are true for any �nite measure for which the GMLE is strongly L1-consistent as onlythe �niteness of � and P (
�) = 1 are used in their proofs. These proofs are deferred to Section 5.Let a be a real number. We call a a support point of � if �((a� �; a+ �)) > 0 for every � > 0.We call a regular if �((a � �; a]) > 0 and �([a; a + �)) > 0 for all � > 0. We call a strongly regularif �((a � �; a)) > 0 and �([a; a + �)) > 0 for all � > 0. We call a a point of increase of F0 ifF0(a+ �)� F0(a� �) > 0 for each � > 0.In view of the inequality � � 2�, su�cient conditions for the �rst three of the above conceptsare obtained by replacing � be �. As these su�cient conditions are in terms of the distribution ofL and R, they are easier to interpret and thus more meaningful from an applied point of view.Ayer et al. (1955) established the weak consistency of the GMLE at regular continuity points ofF0 in the case 1 model. Our �rst proposition gives a strong consistency result for regular continuitypoints in our more general model.3.1. Proposition. For each ! 2 
� and each regular continuity point a of F0, F̂n(a;!)! F0(a).The next two propositions address weak convergence on an open interval and on the entireline.3.2. Proposition. Suppose every point in an open interval (a; b) is a support point of �. ThenF̂n(x;!) ! F0(x) for every continuity point x of F0 in (a; b) and every ! 2 
�. If also F0(a) = 0and F0(b�) = 1, then F̂n(x;!)! F0(x) for all continuity points x of F0 and all ! 2 
�.5



3.3. Proposition. If every point of increase of F0 is strongly regular, then F̂n(x;!)! F0(x) forall continuity points of F0 and all ! 2 
�.Combining these propositions with Corollary 2.3 yields the following results on pointwise con-vergence on open intervals and on the entire line.3.4. Corollary. Suppose every point x in an open interval (a; b) is a support point of � andsatis�es �(fxg) > 0 if x is a discontinuity point of F0. Then F̂n(x;!)! F0(x) for every x in (a; b)and every ! 2 
�. Moreover, if F0(a) = 0 and F0(b�) = 1, then F̂n(x;!) ! F0(x) for all x 2 Rand all ! 2 
�.3.5. Corollary. If every point of increase of F0 is strongly regular and if �(fag) > 0 for eachdiscontinuity point a of F0, then F̂n(x;!)! F0(x) for all x 2 R and all ! 2 
�.The next proposition addresses uniform convergence.3.6. Proposition. Suppose that F0 is continuous and that, for all a < b, 0 < F0(a) < F0(b) < 1implies �((a; b)) > 0. Then the GMLE is uniformly strongly consistent, i.e.,supx2R jF̂n(x)� F0(x)j ! 0 a.s.:This proposition generalizes the strong uniform consistency results given by Groeneboom andWellner (1992) for the case 1 and 2 models. In the case 1 model they require that F0 and G,the distribution function of Y , are continuous and that the probability measure �F0 induced byF0 is absolutely continuous with respect to � (�F0 << �). Proposition 3.6 does not require thecontinuity of G and weakens the absolute continuity requirement. In the case 2 model Groeneboomand Wellner assume that F0 is continuous and that the joint distribution of U and V has a Lebesguedensity g such that g(u; v) > 0 if 0 < F0(u) < F0(v) < 1. Their assumption implies that the measure� has a Lebesgue density which is positive on the set ft : 0 < F0(t) < 1g and therefore implies that�((a; b)) > 0 if 0 < F0(a) < F0(b) < 1. Consequently, Proposition 3.6 improves and generalizestheir result.Proposition 3.6 also generalizes the strong uniform consistency results given by van de Geer(1993) for the case 1 and 2 models under the assumption that F0 is continuous and �F0 << �. Thelatter implies that �((a; b)) > 0 if 0 < F0(a) < F0(b) < 1. However, if � is discrete, its support isdense in (0;+1), and F0 is exponential, then the assumption in Proposition 3.6 is satis�ed, but�F0 << � is not true.In clinical follow-ups, the studies typically last for a certain period of time, say [�1; �2]. It isoften that F0(�2) < 1 in which case the conditions in Proposition 3.6 are not satis�ed. In thisregard, Gentleman and Geyer (1994) claimed a vague convergence result in their Theorem 2 andHuang (1996) claimed a uniform strong consistency result in his Theorem 3.1. Both of their resultsas stated imply the uniform strong consistency of the GMLE on [�1; �2] in the case 1 model, if F06



is continuous and the inspection time Y is uniformly distributed on [�1; �2]. The following exampleshows that this is not true.3.7. Example. Consider current status data (Y1; I[X1 � Y1]); : : : ; (Yn; I[Xn � Yn]), where thesurvival times X1; : : : ;Xn are uniformly distributed on [0; 3] and the inspection times Y1; : : : ; Yn areuniformly distributed on [1; 2]. Then F0 is the uniform distribution function on [0; 3] and � is theuniform distribution on [1; 2]. Note that on the event Snj=1fXj > 2 > Yj ; Yj < Yi; i = 1; : : : ; n; i 6=jg we have F̂n(1) = 0, and on the event Snj=1fXj � 1 � Yj ; Yj > Yi; i = 1; : : : ; n; i 6= jg we haveF̂n(2) = F̂n(2�) = 1. Both events have probability 1/3. Since F0(1) = 1=3 and F0(2) = F0(2�) =2=3, we see that F̂n(x) does not converge to F0(x) almost surely for x = 1; 2 and F̂n(2�) does notconverge to F0(2�) almost surely. This shows that pointwise convergence on the closed interval[�1; �2] to a continuous F0 is not implied by the condition: �([a; b]) > 0 for all a and b such that�1 � a < b � �2.The following proposition indicates how to �x the assumptions.3.8. Proposition. Suppose the following four conditions hold for real numbers �1 < �2.(1) F0 is continuous at every point in the interval (�1; �2];(2) either �(f�1g) > 0 or F0(�1) = 0;(3) either �(f�2g) > 0 or F0(�2�) = 1;(4) for all a and b in (�1; �2), 0 < F0(a) < F0(b) < 1 implies �((a; b)) > 0.Then the GMLE is uniformly strongly consistent on [�1; �2], i.e.,supx2[�1;�2] jF̂n(x)� F0(x)j ! 0 a.s.:
4. Proof of Theorem 2.1Recall that L may take the value �1 and R the value +1. The normalized log-likelihood isLn(F ) = 1n nXj=1 log [F (Rj)� F (Lj)]; F 2 F :By the strong law of large numbers (SLLN), Ln(F ) converges almost surely to its meanL(F ) = E(log [F (R)� F (L)]) = 1Xk=1P (K = k)E(hF;k(Yk;1; : : : ; Yk;k) j K = k);where hF;k(y1; : : : ; yk) = kXj=0(F0(yj+1)� F0(yj)) log(F (yj+1)� F (yj));7



for �1 = y0 < y1 < � � � < yk < yk+1 = 1. Here and below we interpret 0 log 0 = 0 andlog 0 = �1.It is easy to check that, for each positive integer k and real numbers y1 < � � � < yk, theexpression hF;k(y1; : : : ; yk) is maximized by a function F 2 F if and only if F (yj) = F0(yj) forj = 1; : : : ; k. Since supfjp log pj : 0 � p � 1g < 1, jhF0;kj is bounded by k. Since K has �niteexpectation, we see that L(F0) is �nite. Hence F0 maximizes L(�) over the set F and any otherfunction F 2 F that maximizes L(�) satis�es that F = F0 a.e. �.Let fFng be a sequence in F . By a pointwise limit of this sequence we mean an F 2 F suchthat Fn0(x) ! F (x) for all x 2 R and some subsequence fn0g. Helly's selection theorem (Rudin(1976), pg 167) guarantees the existence of pointwise limits. Let now 
0 be the set of all samplepoints ! for which the sequence fF̂n(�;!)g has only pointwise limits F such that L(F ) � L(F0). Inview of the above discussion, for each ! 2 
0, all the limit points of fF̂n(�;!)g equal F0 a.e. � andthis gives that R jF̂n(x;!) � F0(x)j d�(x) ! 0. Thus the desired result follows if we show that 
0has probability 1. Let Q̂n denote the empirical estimator of Q, the distribution of (L;R). By theSLLN, 
0 = fLn(F0) ! L(F0)g has probability 1, and so does 
U = fQ̂n(U) ! Q(U)g for everyBorel subset U of � = f(l; r) : �1 � l < r � 1g. Thus we are done if we show that 
0 containsthe intersection 
� of 
0 and TU2U 
U for some countable collection U of Borel subsets of �.Let � be a positive integer. Then there are �nitely many extended real numbers�1 = q0 < q1 < q2 < � � � < q� =1such that �((qi�1; qi)) < 2�� for i = 1; : : : ; �. Now form the sets U0; : : : ; U2� by setting U2i�1 =(qi�1; qi) for i = 1; : : : ; �, and U2i = [qi; qi] for i = 0; : : : ; �. Let U� denote the collection of allnonempty sets of the form Uij = � \ (Ui � Uj) for 0 � i � j � 2�. We shall take U = S� U�.Let now ! belong to 
�. Let Fn denote the distribution function de�ned by Fn(x) = F̂n(x;!)and Qn the measure de�ned by Qn(A) = Q̂n(A;!). Let F be a pointwise limit of fFng. Forsimplicity in notation we shall assume that Fn(x)! F (x) for all x 2 R. We shall show thatL(F0) � lim infn!1 Ln(F̂n)(!) � lim supn!1 Ln(F̂n)(!) � L(F ):The �rst inequality follows from Ln(F̂n)(!) � Ln(F0)(!), a consequence of the de�nition of theGMLE, and the fact that Ln(F0)(!) ! L(F0) by the choice of !. Thus we only need to establishthe last inequality. For this note that Ln(F̂n)(!) can be expressed asZ� log [Fn(r)� Fn(l)] dQn(l; r):The desired inequality is thus equivalent tolim supn!1 Z� log [Fn(r)� Fn(l)] dQn(l; r) � Z� log [F (r)� F (l)] dQ(l; r): (4.1)8



Now �x a positive integer � and a negative integer q. ThenZ� log [Fn(r)� Fn(l)] dQn(l; r) � Z� q _ log [Fn(r)� Fn(l)] dQn(l; r)� XU2U�Mn(U)Qn(U);where Mn(U) = sup(l;r)2 �U q _ log [Fn(r)� Fn(l)]and �U is the closure of U . It is easy to check that Mn(U) = q _ log [Fn(rU ) � Fn(lU )], whererU = supfr : (l; r) 2 Ug and lU = inffl : (l; r) 2 Ug. ThusMn(U)!M(U) := q _ log [F (rU )� F (lU )] = sup(l;r)2 �U q _ log [F (r)� F (l)]:Also, by the choice of !, Qn(U)! Q(U) for all U 2 U�. Therefore we can conclude thatXU2U�Mn(U)Qn(U)! XU2U�M(U)Q(U):Let now m(U) = inf(l;r)2 �U q _ log [F (r)� F (l)]; U 2 U�:Using the bound jq _ log(x)� q _ log(y)j � e�qjx� yj; 0 � x; y � 1;it is easy to verify thatM(U)�m(U) � e�q sup(l;r)2 �U[F (rU )� F (r) + F (l)� F (lU )]; U 2 U�:This shows the following.(1) If U = �\ [(qi�1; qi)�(qj�1; qj)], thenM(U)�m(U) > 2=� implies either F (qi)�F (qi�1) >eq=� or F (qj)� F (qj�1) > eq=�;(2) if U = � \ [[qi; qi]� (qj�1; qj)], then M(U)�m(U) > 2=� implies F (qj)� F (qj�1) > eq=�;(3) if U = � \ [(qi�1; qi)� [qj ; qj ]], then M(U)�m(U) > 2=� implies F (qi)� F (qi�1) > eq=�.Of course, if U contains only one point, then M(U)�m(U) = 0. Using this, we deriveXU2U�(M(U)�m(U))Q(U) � 2� + jqj XU2U�Q(U)I[(M(U) �m(U)) > 2=�]� 2� + jqj �Xi=1 P (qi�1 < L < qi)I[F (qi)� F (qi�1) > eq=�]+ jqj �Xj=1 P (qj�1 < R < qj)I[F (qj)� F (qj�1) > eq=�]� 2� + jqj(1 + �e�q)21��:9



In the last step we use the facts thatP (qi�1 < L < qi) + P (qi�1 < R < qi) � 2�((qi�1; qi)) � 21��and that at most 1 + �e�q among the terms F (q1)� F (q0); : : : ; F (q�)� F (q��1) exceed eq=�.Combining the above shows thatlim supn!1 Z� log [Fn(r)� Fn(l)] dQn(l; r)� Z�q _ log [F (r)� F (l)] dQ(l; r) + 2� + jqj(1 + �e�q)21��:The desired inequality (4.1) follows from this by �rst letting �!1 and then q ! �1.5. Proof of the PropositionsFix ! 2 
�. Abbreviate F̂n(�;!) by Fn. Let F be a pointwise limit of Fn. Without loss ofgenerality, assume that limn!1 Fn(x) = F (x) for all x. SetD = fx 2 R : F (x) 6= F0(x)g:Since R jFn � F0j d�! 0 and � is a �nite measure in view of the assumption E(K) <1, we have�(D) = 0.Proof of Proposition 3.1: We need to show thatD does not contain regular continuity points ofF0. Let x0 be a continuity point of F0. If x0 belongs to D, then F (x0) 6= F0(x0) and the continuityof F0 at x0 and the monotonicity of F and F0 yield that there exists a positive � such that either(x0 � �; x0] or [x0; x0 + �) is contained in D. Thus either �((x0 � �; x0]) = 0 or �([x0; x0 + �)] = 0,and x0 is not regular. �Proof of Proposition 3.2: Let x0 be a continuity point of F0 which is also an interior pointof S, the set of support points of �. Then x0 does not belong to D; otherwise, there exist, foreach � > 0, support points x1 and x2 of � and a positive � such that (x1 � �; x1 + �) is containedin (x0 � �; x0] and (x2 � �; x2 + �) is contained in [x0; x0 + �) and this leads to the contradiction�(D) > 0 . This shows that F (x) = F0(x) for all continuity points x of F0 that belong to theinterior of S and proves the �rst part of Proposition 3.2. The second part follows from the �rstpart and the monotonicity of F and F0. �Proof of Proposition 3.3: Suppose every point of increase of F0 is strongly regular. We shallshow that D does not contain continuity points of F0. Let x0 be a continuity point of F0. If x0 isa point of increase of F0, then it is strongly regular and hence regular and cannot belong to D byProposition 3.1. Suppose now x0 is not a point of increase of F0. Then again x0 cannot belong toD. Otherwise, either F (x0) > F0(x0) or F (x0) < F0(x0) and we shall show that each leads to thecontradiction �(D) > 0. In the �rst case, b := supfx : F0(x) = F0(x0)g is a point of increase of F0,10



b > x0 and F (b�) � F (x0) > F0(x0) = F0(b�); thus [x0; b) � D and, since b is strongly regular byour assumption, �(D) � �((x0; b)) > 0. In the second case, a := inffx 2 R : F0(x) = F0(x0)g is apoint of increase of F0, a < x0 and F (a) � F (x0) < F0(x0) = F0(a); thus [a; x0) � D and, since ais strongly regular by our assumption, �(D) � �([a; x0)) > 0. This shows that D does not containcontinuity points of F0, which is the desired result of Proposition 3.3. �Proof of Proposition 3.6: Make the assumptions of Proposition 3.6. Then D is empty; oth-erwise, we can use the continuity of F0 to construct an open interval, that contains a point ofincrease of F0 and is contained in D, and arrive at the contradiction �(D) > 0. Since D is empty,Fn converges to F0 pointwise and hence uniformly as F0 is continuous. This proves Proposition3.6. �Proof of Proposition 3.8: We shall only give the proof in the case �(f�1g) > 0 and F0(�2�) = 1.We shall show that D \ [�1; �2] = 0. This implies that Fn(x) ! F0(x) for all x 2 [�1; �2], and, bythe continuity assumption on F0, this convergence is even uniform on [�1; �2].It follows from Corollary 2.3 that F (�1) = F0(�1). This gives the desired result if F0(�1) = 1.Thus assume from now on that F0(�1) < 1. We are left to show that D1 = D \ (�1; �2] is empty.If D1 were not empty, we could use the continuity assumption on F0, the monotonicity of F0 andF and F (�1) = F0(�1) < F0(�2�) = 1 to show that D1 contains an open interval (a; b) such that0 < F0(a) < F0(b) < 1 and �1 < a < b < �2 and arrive at the contradiction �(D) � �((a; b)) > 0.Acknowledgement. We thank the referees, the Associate Editor and Professor Tj�stheimfor helpful remarks. Special thanks go to one referee for an elaborate report that suggested analternative proof, provided additional references and raised interesting questions.6. ReferencesAragon, J. and Eberly, D. (1992). On convergence of convex minorant algorithms for distributionestimation with interval-censored data. J. of Computational and Graphical Statistics, 1, 129-140.Ayer, M., Brunk, H.D., Ewing, G.M., Reid, W.T. and Silverman, E. (1955). An empirical distri-bution function for sampling incomplete information. Ann. Math. Statist., 26, 641-647.Becker, N.G. and Melbye, M. (1991). Use of a log-linear model to compute the empirical sur-vival curve from interval-censored data, with application to data on tests for HIV positivity.Austral. J. Statist., 33, 125-133.Finkelstein, D.M. and Wolfe, R.A. (1985). A semiparametric model for regression analysis ofinterval-censored failure time data. Biometrics, 41, 933-945.Gentleman, R. and Geyer, C. J. (1994). Maximum likelihood for interval censored data: Consis-tency and computation. Biometrika, 81, 618-623.Groeneboom, P. and Wellner, J. A. (1992). Information bounds and nonparametric maximumlikelihood estimation. Birkh�auser Verlag, Basel.11
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