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Abstract: We consider nonparametric estimation based on interval-censored competing

risks data with masked failure causes. The generalized maximum likelihood estimator of

the joint survival function of the failure time and the failure cause is studied under mixed

case interval censorship and random partition masking. Strong consistency in the L1(µ)-

topology is established for some finite measure µ derived from the underlying censoring and

masking distributions. Under additional regularity assumptions we also establish the strong

consistencies in the topologies of weak convergence, point-wise convergence and uniform

convergence.
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§1. Introduction. We consider the consistency of the generalized maximum likelihood

estimator (GMLE) of the joint cumulative distribution function (cdf) FT,C of the failure

time T and the failure cause C, based on interval-censored and masked competing risks

data, called the ICMCR data hereafter.

An excellent review of the competing risks analysis in engineering and biomedical ap-

plications can be found in Crowder (2001). Most studies in the literature are about the

statistical inferences for right-censored data with or without masked failure cause. Hudgens

et al. (2001) study the nonparametric inference for interval-censored data with exact com-

peting risks. Basu et al. (2003) discuss the Bayesian inference for ICMCR data under a

parametric set-up on FT,C . Groeneboom et al. (2008) provide the proof of the consistency

of the GMLE of FT,C based on case 1 interval-censored data without masked failure cause.

Wang et al. (2011) present an ICMCR cancer research data and some simulation results

on the asymptotic properties of the GMLE with ICMCR data. This paper establish the

consistency of the GMLE of FT,C with ICMCR data.

An ICMCR observation contains the information on the failure time and the associated

failure cause of a J-component series system which stops functioning as soon as one of its J

constituent components fails. Assume that the systems under study are non-repairable, the

observation on the failure time T and the failure cause C of such systems can be described as

follows. Let the random variable Xj denote the lifetime of the jth component, j = 1, 2, · · · , J .

Let T = min{X1, X2, · · · , XJ}. It is assumed that the probability of a system failure due to

simultaneous failures of two or more distinct components is 0. Thus there exists a unique

positive integer C associated with each system failure time T , say XC = T . It is often in

medical research or industrial experiments that T is interval censored and it is only known

that T ∈ (L,R], where −∞ ≤ L < R ≤ ∞. There are at least four different models for the

interval censoring proposed by Ayer et al. (1995), Groeneboom and Wellner (1992), Wellner
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(1995) and Schick and Yu (2000). We shall make use of the mixed case model proposed by

Schick and Yu (2000), as it is more realistic.

To determine the cause C of the failure, one may not be able to pinpoint the exact one.

In examining a failed system, one may first check parts one by one in detecting the failure

cause and may stop at some point due to cost saving if it makes no sense economically to

continue. Thus the failure cause C is masked by M, a subset of integers which is called

the minimum random set (MRS) (see Guess et al. (1991)). There are two possible models

for the masking. One is called the conditional masking probability (CMP) model based

on the symmetry assumption, which “is done purely for mathematical convenience without

practical justification” (see Mukhopadhyay and Basu (2007, p.33115)). The other one is

introduced in Wang et al. (2011) and is called the random partition masking (RPM) model

which does not make use of the symmetry assumption. The practical justification for the

RPM model will be introduced in section 2. The RPM model has the following advantages

over the CMP model (see Wang et al. (2011)):

(1) If J = 2, the CMP model is a special case of the RPM model;

(2) The CMP model relies on the symmetry assumptions but the RPM model doesn’t.

One of the symmetry assumptions is stated as follows

S1 fM|T,C(A|t, c) is constant in t (see Flehinger et al. (1996))

which is often not satisfied (see Example 6.1 in §6).

Thus we shall make use of the RPM model for masking. The mass assigned by the

GMLE of a cdf with univariate interval-censored data is unique, but it is no longer always

true for ICMCR data and it may not be consistent.

Example 1.1. Suppose that T is subject to case 1 interval censoring with censoring variable

Y = 1 w.p.1., the possible observations on C are of the forms Wj = {1, 2}, {3, 4}, {1, 3}

or {2, 4}. Let nj be the number of the observations of form Wj , j = 1, 2, 3, 4. Denote
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pc = P (T ≤ 1, C = c), c ∈ {1, 2, 3, 4}. Then the GMLEs of pc are not unique: p̂2 = r1 − p̂1,

p̂3 = r2−p̂1 and p̂4 = 1−p̂1−p̂2−p̂3, where p̂1 is arbitrary in [max{0, r1+r2−1},min{r1, r2}],

r1 = n1/(n1 + n2) and r2 = n3/(n3 + n4) (see the derivation in Example 6.1 ). There are

infinity many GMLE solutions for pi’s. Moreover, it is easy to show that the limit of the

interval [max{0, r1 + r2 − 1},min{r1, r2}] is not a singleton, thus p̂1 is not consistent.

In the literature such non-uniqueness of the GMLE for bivariate interval-censored data

is discovered out by Gentleman and Vandal (2002) and is called “mixture non-uniqueness”.

The bivariate cdf is not identifiable in the region where such non-uniqueness would hap-

pen. Thus identifiability conditions are needed for the GMLE being consistent in bivariate

censoring.

Simulation results in Wang et al. (2011) suggest that under certain conditions, the

GMLE of FT,C with ICMCR data is consistent, at least in a subset of the range of (T,C).

Our main task in this paper is to study the identifiability conditions and to give a rigorous

proof of the consistency of the GMLE. We use the framework in Schick and Yu (2000).

The rest of the paper is organized as follows. In section 2, we introduce the model for

ICMCR data and derive the likelihood function in the nonparametric context. In section 3,

we give the main result, the L1(µ)-consistency of the GMLE for some finite measure µ. In

section 4, we provide the consistency results in the topologies of weak convergence, point-

wise convergence and uniform convergence. In section 5, some proofs of the statements in

the previous sections are provided. Section 6 is the Appendix.

§2. The ICMCR Model and the GMLE. We shall propose an ICMCR model which

consists of two parts: the mixed case interval censorship model for the failure time T and

the RPM model for the failure cause C.

First, we introduce the mixed case interval censorship model. Let K be a positive

random integer and Y = {Yk,j : j = 1, 2, · · · , k, k = 1, 2, · · ·} be an array of random variables
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such that Yk,1 < Yk,2 < · · · < Yk,k. Given the event {K = k}, let (L,R) denote the vector of

the endpoints of the random interval among (Yk,0, Yk,1], (Yk,1, Yk,2], · · · , (Yk,k, Yk,k+1), which

contain T where Yk,0 = −∞ and Yk,k+1 = ∞.

Second, we introduce the RPM model. Let Cr = {1, 2, · · · , J} be the set of the labels

associated with the failure causes (or competing risks) which is also the range of C and J

be the collection of all the non-empty subsets of Cr. One may not observe the exact C, but

rather a random subset M of Cr which contains C. If the failure time T is right-censored,

then the failure cause is completely unknown and we set M = Cr. If T is not right-censored,

M is obtained as follows. Let P denote the set of all regular partitions. A regular partition

is a collection Ph = {Ph1, · · · , Phkh
} of pairwise disjoint non-empty subsets of Cr whose

union is Cr. By the definition, given a regular partition and given a c ∈ Cr, there is a unique

member of the partition which contains c. The set P has finitely many elements, say nP ,

and its elements can be ordered as P1, · · · , PnP
. Let ∆ denote a random variable taking

values in {1, · · · , nP}. Given the events {∆ = h} and {T is not right-censored}, M equals

the (unique) random member of the partition Ph which contains C.

For example, P1 = {{1}, {2}, · · · , {J}}, P2 = {{1}, {2}, {3, 4, · · · , J}) and P3 = {Cr}

are three such partitions. The partition P2 can be interpreted as follows: in the process

of determining the cause of failure in a system, exactly two steps will be taken. The first

step can determine whether the failure is due to cause 1, and the second step can determine

whether the failure is due to cause 2. If the failure is not due to these two causes, then the

cause will be in {3, 4, · · · , J}, no further investigation will be taken for cost saving. Then

M =







{1} if C = 1
{2} if C = 2
{3, 4, · · · , J} otherwise

(2.1)

Thus, once the partition scheme (Ph1, Ph2, · · · , Phkh
) is chosen after the failure occurs, then

M can be uniquely determined. However, it is worth mentioning that the aforementioned
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inspection scheme is only one of the six examination procedures corresponding to P2. The

first step can be either of the three inspections:

(1) whether the cause is due to part 1;

(2) whether the cause is due to part 2;

(3) whether the cause is not due to parts 1 and 2.

The second step can be either of the 2 remaining inspections. Thus P2 corresponds to total

of 6 (= 3!) examination schemes. All the 6 of them result in M in (2.1).

The random vector (T,C,K,∆,Y) may not be observed, instead, (L,R) is the observ-

able random vector on T and M is the observable random variable on C, where

M =

{ Cr if T > Yk,k

Phi if C ∈ Phi and T ≤ Yk,k,
given K = k and ∆ = h.

The aforementioned scheme for masking is based on the partition on Cr and thus is called

the random partition model for masking. Thus the ICMCR data can be modeled as follows.

Given K = k and ∆ = h, (L,R,M) is given by

(L,R,M) =

{

(Yk,i−1, Yk,i, Phj) if Yk,i−1 < T ≤ Yk,i, C ∈ Phj , Phj ∈ Ph, i ∈ {1, 2, · · · , k}
(Yk,k, Yk,k+1, Cr) if T > Yk,k.

A1 The random vectors (T,C) and (K,∆,Y) are independent.

Let (Li, Ri,Mi), i = 1, ..., n be i.i.d. copies of (L,R,M). The generalized likelihood

function in the nonparametric context is

Λn(F ) = Πn
i=1µF ((Li, Ri] ×Mi), where F is a bivariate cdf.

The GMLE of F maximizes Λn(F ) over all bivariate cdf’s F .

Let F0 = FT,C for convenience and Fs
0(t) = (F s

10(t), · · · , F s
J0(t))

′, where F s
j0(t) = P (T ≤

t, C = j) and A′ is the transpose of the matrix A. Denote by F the collection of functions

F on [−∞,∞]2 satisfying F (−∞,−∞) = 0, F (∞,∞) = 1,

F (x, y) =
∑

c≤y,c∈Cr

F s
c (x) ∀ (x, y) ∈ [−∞,∞]2 (2.2)
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and F s
c (x) is nondecreasing in x ∀ c ∈ Cr. One can extend the domain of FT,C and its

GMLE to [−∞,∞]2 in an obvious way. Notice that the space of all cdf’s is not complete

but F is. For each F ∈ F , let Fs(t) = (F s
1 (t), F s

2 (t), · · · , F s
J (t))′ where F s

1 , ... , F s
J are given

in (2.2). Let Fs be the collection of all such Fs. Obviously, Fs
0 is a member of Fs and F0 is

a member of F . For convenience, we define GFs(t,m)
def
= φ(m) · Fs(t) =

∑

j∈m F s
j (t), where

φ(A)
def
= (1(1∈A),1(2∈A), · · · ,1(J∈A)) A ∈ J . (2.3)

∀ w = (L,R] × M , define µF (w) = GFs(R,M) − GFs(L,M), which is measurable. Thus

0 ≤ GFs ≤ 1 and 0 ≤ µF ≤ 1. Then the normalized log likelihood function is

Ln(F ) =
1

n

n
∑

i=1

log(GFs(Ri,Mi) − GFs(Li,Mi)).

Note that Ln(F ) depends on F only through the values of F at the points (Li, j) or

(Ri, j), i = 1, 2, · · · , n and j = 1, 2, · · · , J . Thus the maximizer of Ln(F ) over the set F

is not unique. However, there exists a unique maximizer F̂n over the set F which is right

continuous and piecewise constant with possible discontinuities only at the observed values

of (Ri, j)’s or (Li, j)’s. We call F̂n the GMLE of F0. Denote the corresponding GMLE of

Fs
0 by F̂s

n, where F̂s
n(t) = (F̂ s

1n(t), · · · , F̂ s
Jn(t))′. In general, the GMLE does not have an

explicit solution. Wang et al. (2011) propose to find a numerical solution of the GMLE

through the self-consistency algorithm.

§3. Main Results. We assume E(K) < ∞ which is a very mild assumption, as explained

in Schick and Yu (2000). Define a measure µ on the product σ-field B = A× BJ by

µ(B) =

∞
∑

k=1

P (K = k)

k
∑

i=1

P ((Yk,i,M) ∈ B|K = k), B ∈ B, (3.1)

where A is the Borel σ-field on ℜ and BJ is the power set of J . Define another measure ν

on A by

ν(A) =

∞
∑

k=1

P (K = k)

k
∑

i=1

P (Yk,i ∈ A|K = k), A ∈ A. (3.2)
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Notice that

µ(B) =
∞
∑

k=1

P (K = k)
k

∑

i=1

P (Yk,i ∈ A|K = k)P (M ∈ W |K = k, Yk,i ∈ A), (3.3)

for B = A × W with W ∈ BJ . By the assumption E(K) < ∞, we have

µ(B) =
∞
∑

k=1

P (K = k)
k

∑

i=1

P ((Yk,i,M) ∈ B|K = k) ≤∑∞
k=1 P (K = k)k = E(K) < ∞;

ν(A) =
∞
∑

k=1

P (K = k)
k

∑

i=1

P (Yk,i ∈ A|K = k) ≤
∞
∑

k=1

k · P (K = k) = E(K) < ∞.

The main L1(µ)-consistency result is stated as follows with its proof relegated to §5.

Theorem 3.1. Suppose that A1 holds and E(K) < ∞. Then
∫

|G
F̂s

n
− GF

s
0
|dµ → 0 a.s..

In general, we do not have F̂n(t, c) → F0(t, c) ∀ t < τ (see Example 3.1), where τ does

not depend on c as in the univariate case.

Example 3.1. Let the range of (T,C) be {0, 1, 2} × {1, 2, 3} with partitions on Cr: P1 =

{{1}, {2}, {3}} and P2 = {{1, 3}, {2}}. Assume the case 1 model with the censoring variable

U ∼ Bin(1, p) for some p > 0 and define the conditional density function f∆|U (1|0) = 1 and

f∆|U (2|1) = 1. It is obvious that F̂ s
2n(1) is consistent but F̂ s

1n(1) and F̂ s
3n(1) are not.

For each t ∈ ℜ, we call t a support point of ν if ν(t − ǫ, t + ǫ) > 0 for every ǫ > 0.

Denote by S the collection of all the support points of ν. Denote

W = {t ∈ S : ∀ (k, i), ∃ an open set Ok,i ( 6= ∅) such that t ∈ Ok,i and P (Yk,i ∈ Ok,i) = 0}.

Lemma 3.1. ν(W) = 0.

Proof: Since ν(W) =
∑∞

k=1 P (K = k)
∑k

i=1 P (Yk,i ∈ W|K = k) > 0. The lemma follows

from the definition of W.

Though Theorem 3.1 is applicable to Example 3.1, it does not tell whether F̂n is consis-

tent at a given point (t, c). Thus, if we want to obtain the consistency for the GMLE of each

sub-distribution function, we need additional assumptions. First we give two definitions.
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Definition 3.1. We say that fC is identifiable at c if ∃ {Wi}k
i=1 such that φ({c}) =

∑k
i=1 giφ(Wi) for some constant gi’s, and Wi ∈ Phi

with f∆(hi) > 0 ∀ i.

Definition 3.2. We say that F is identifiable at (r, c) ∈ S × Cr if either P (T > r) = 1

or ∃ {(li, ri] × Wi}w
i=1 with li, ri ∈ S ∪ {−∞} such that (1) maxi li < r = mini ri, (2)

P (M = Wi|(L,R) = (li, ri)) > 0, and (3) φ({c}) =
∑w

i=1 giφ(Wi) for some constant gi’s.

A sufficient condition that fC is identifiable at each c is as follows.

A2 The matrix (φ(M1)
′, · · · , φ(Mw)′) (see (2.3)) is of rank J , where M1,M2, · · · ,Mw are

all the distinct values of M such that P (M = Mα) > 0, α = 1, 2, · · · , w.

The following example may be helpful in understanding A2, Definitions 3.1, 3.2 and

some regularity conditions.

Example 3.2 Let J = 4, T ∈ {1, 2}. Consider the case 1 model, that is, K = 1 w.p.1 and

the censoring variable U = Y1,1 ∈ {1, 2}. Order the partitions as P1 = ({1}, {2}, {3}, {4}),

P2 = ({1, 2}, {3, 4}), and P3 = ({1, 3}, {2, 4}). Let f∆|U (1|1) = 1, f∆|U (2|2) = f∆|U (3|2) =

1/2. When n is large enough, the possible observations are (−∞, 1] × {1}, (−∞, 1] ×

{2}, (−∞, 1] × {3}, (−∞, 1] × {4}, (1,∞) × {1, 2, 3, 4}, (−∞, 2] × {1, 2}, (−∞, 2] × {3, 4},

(−∞, 2] × {1, 3} and (−∞, 2] × {2, 4} with sizes N1, ... N9, respectively. Then the MI’s

are (−∞, 1] × {1}, (−∞, 1] × {2}, (−∞, 1] × {3}, (−∞, 1] × {4}, (1, 2] × {1}, (1, 2] × {2},

(1, 2]×{3} and (1, 2]×{4} with weights s1, ... s8, respectively. The GMLE of (s1, ..., s8) is

ŝ1 = N1

W1

, ŝ3 = N3

W1

, ŝ5 = W3 − N1+N2

W1

− α, ŝ7 = α,

ŝ2 = N2

W1

, ŝ4 = N4

W1

, ŝ6 = W2 − W3 + N3−N2

W1

+ α, ŝ8 = 1 − ŝ1 − · · · − ŝ7,

where max{0,
N2 − N3

W1
+ W3 − W2} ≤ α ≤ min{W3 −

N1 + N3

W1
,W2 + W3 +

N2 − N3

W1
},

W1 =
∑5

i=1 Ni, W2 = N6

N6+N7

, and W3 = N8

N8+N9

(see the derivation in §6). It is easy to

verify that ŝi are consistent for i = 1, 2, 3, 4 but not for i = 5, 6, 7, 8.

In this example, A2 is satisfied and C is identifiable but F is identifiable only at those

points (t, c) at which the Wj ’s related to t can satisfy A2. Thus the consistency results can

be hold only for some special region.
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Lemma 3.2. Suppose that A2 holds. For each c ∈ Cr, ∃ uc ∈ S such that F is identifiable

at (uc, c). Moreover, if F is identifiable at (uc, c), then F is identifiable at (t, c) for almost

all t (with respect to the measure ν) in the set {s : s ≤ uc, s ∈ S}.

For proof, see §6. For c ∈ Cr, define τc = sup{t ∈ S : F is identifiable at (t, c)}.

Remark 3.1. It is shown in §6 that the collection {(li, ri]×Wi : i = 1, 2, · · · , wτ} satisfying

the conditions in Definition 3.2 does not depend on r for r < τc. By Lemma 3.2, F is identi-

fiable at (t, c) for almost all t ∈ S∩Γc, where Γc =

{

(−∞, τc] if F is identifiable at (τc, c)
(−∞, τc) otherwise.

The proof of the following (strong) L1(ν)-consistency for the GMLE is given in §5.

Theorem 3.2. Suppose that E(K) < ∞ and assumption A2 holds. Then ∀ c ∈ Cr,
∫

Γc

|F̂ s
cn(t) − F s

c0(t)|dν(t) → 0 a.s..

Based on this theorem and define Γ =
⋂

c∈Cr
Γc, we can have the following result.

Corollary 3.1. If E(K) < ∞, A2 holds and c ∈ Cr, then
∫

Γ
|F̂n(t, c) − F0(t, c)|dν(t)

a.s.→0.

Proof: By definition, we have

∫

Γ

|F̂n(t, c) − F0(t, c)|dν(t) =

∫

Γ

|
∑

j≤c

(F̂jn(t) − Fj0(t))|dν(t)

≤
∫

Γ

∑

j≤c

|F̂jn(t) − Fj0(t)|dν(t) ≤
∑

j≤c

∫

Γj

|F̂jn(t) − Fj0(t)|dν(t) → 0 a.s.

Moreover, if P ((TI({a}),M = M) > 0 and denote w = {a} × M , by Theorem 3.1,

µ(w)|G
F̂s

n
(a,M) − GF

s
0
(a,M)| ≤

∫

|G
F̂s

n
− GF

s
0
|dµ → 0.

So we have the following corollary.

Corollary 3.2. If E(K) < ∞, w = {a} ×M and µ(w) > 0, then G
F̂s

n
(a,M)

a.s.→GF
s
0
(a,M).

Similarly, if P (TI({a})) > 0 for some a ∈ Γ, by Corollary 3.1, ∀ c ∈ Cr,

ν({a})|F̂n(a, c) − F0(a, c)| ≤
∫

Γ

|F̂n(t, c) − F0(t, c)|dν(t) → 0.

So we have following corollary.
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Corollary 3.3. If E(K) < ∞, A2 holds, a ∈ Γ, ν({a}) > 0 and c ∈ Cr, then

F̂n(a, c)
a.s.→F0(a, c).

Fixing c ∈ Cr, if P (TI({a})) > 0 for some a ∈ Γc, by Theorem 3.2,

ν({a})|F̂cn(a) − Fc0(a)| ≤
∫

Γ

|F̂cn(t) − Fc0(t)|dν(t) → 0.

So we have following corollaries.

Corollary 3.4. If E(K) < ∞, A2 holds, a ∈ Γc and ν({a}) > 0, then F̂cn(a)
a.s.→Fc0(a).

Corollary 3.5. Suppose that S = {t1, t2, · · · , td} with d < ∞, E(K) < ∞ and A2 holds.

Then the GMLE F̂ has the following properties.

1. F̂T (tj) is consistent for tj ∈ S;

2. f̂C|T (c|tj) is consistent for tj ∈ Γc ∩ S;

3. f̂(tj , c) = f̂C|T (c|tj)f̂T (tj) is consistent for tj ∈ Γc ∩ S.

Proof: Since the inspection times are finite discrete, there are observations Oi with the

form (−∞, tj ] × Mi for Mi ∈ Ph. Since µ(Oi) > 0, by Corollary 3.2, we can obtain

G
F̂s

n
(tj ,Mi)

a.s.→GF
s
0
(tj ,Mi)

⇒
∑

Mi∈Ph

G
F̂s

n
(tj ,Mi)

a.s.→
∑

Mi∈Ph

GF
s
0
(tj ,Mi)

⇒F̂T (tj)
a.s.→FT (tj), which is the first statement.

For each tj ∈ S, ν(tj) > 0. Since tj ∈ Γc, by Corollary 3.4, F̂ s
cn(tj)

a.s.→F s
c0(tj). Then

we obtain F̂ s
cn(tj) − F̂ s

cn(tj−1)
a.s.→F s

c0(tj) − F s
c0(tj−1), which yields f̂s

cn(tj)
a.s.→fs

c0(tj). Thus

f̂C|T (c|tj) =
f̂s

cn(tj)

F̂T (tj)−F̂T (tj−1)

a.s.→ fs
c0(tj)

FT (tj)−FT (tj−1)
= fC|T (c|tj) by the continuous mapping,

where t0 = −∞. Thus the second statement holds. Similarly, by the continuous mapping,

the third statement follows from statements 1 and 2.

If we define a measure V based on the distribution of the endpoints L and R with the

MRS M, then we can interpret the consistency easier than µ by the following definition:

V (B) = P (L ×M ∈ B) + P (R ×M ∈ B) for B ∈ B
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Then in view of the set inclusion

{L ×M ∈ B} ∪ {R ×M ∈ B} ⊂
∞
⋃

k=1

k
⋃

i=1

{K = k, Yk,i ×M ∈ B}

we have V (B) ≤ 2µ(B). Thus we have following corollary:

Corollary 3.6. Suppose E(K) < ∞. Then

(1)
∫

|G
F̂s

n
− GF

s
0
|dV

a.s.→0;

(2) G
F̂s

n
(a,M)

a.s.→GF
s
0
(a,M) ∀ w = {a} × M with V (w) > 0.

§4. Consistency Results in other topologies. Suppose that E(K) < ∞ and A2 holds.

Hereafter, we shall fix a c ∈ Cr and denote Ων,c = { lim
n→∞

∫

Γc

|F̂ s
cn(t)− F s

c0(t)|dν(t) = 0} and

pc = P (C = c). Then P (Ων,c) = 1 by Theorem 3.2. Let x be a real number, we say that x is

regular if ν((x−ǫ, x]) > 0 and ν([x, x+ǫ)) > 0 ∀ ǫ > 0; x is strongly regular if ν((x−ǫ, x)) > 0

and ν((x, x+ǫ)) > 0 ∀ ǫ > 0; and x is a point of increase of F s
c0(·) if F s

c0(x+ǫ)−F s
c0(x−ǫ) > 0

∀ ǫ > 0. Given ω ∈ Ων,c, define Dc = {t ∈ Γc : lim
n→∞

F̂ s
cn(t;ω) 6= F s

c0(t)}. By Theorem 3.2,

∫

Γc

|F̂ s
cn(t;ω) − F s

c0(t)|dν =

∫

Dc

|F̂ s
cn(t;ω) − F s

c0(t)|dν +

∫

Γc\Dc

|F̂ s
cn(t;ω) − F s

c0(t)|dν → 0.

⇒
∫

Dc

|F̂ s
cn(t;ω) − F s

c0(t)|dν → 0. ⇒ ν(Dc) = 0.

The first proposition gives the strong consistency for the regular continuity points.

Proposition 4.1. Suppose that E(K) < ∞, A2 holds and x is a regular continuity point of

F s
c0(·) in Γc. Then F̂ s

cn(x) → F s
c0(x) a.s..

Proof: It suffices to show that ∀ ω ∈ Ων,c, Dc does not contain any regular continuity

points of F s
c0(·). Otherwise, if x0 is a regular continuity point of F s

c0(·) and x0 ∈ Dc,

then lim
n→∞

F̂ s
cn(x0;ω) 6= F s

c0(x0). It follows that there exist δ > 0 and N1 > 0 such that

|F̂ s
cn(x0;ω) − F s

c0(x0)| > δ if n > N1, that is, F̂ s
cn(x0;ω) − F s

c0(x0) > δ or F̂ s
cn(x0;ω) −

F s
c0(x0) < −δ. By the continuity of F s

c0(·) at x0, given ǫ > 0, ∃ N2 > 0 such that |F s
c0(x) −

F s
c0(x0)| < δ

n ∀ n > N2 and |x − x0| < ǫ. If |F̂ s
cn(x0;ω) − F s

c0(x0)| < δ for x ∈ [x0, x0 + ǫ),

12



then

F̂ s
cn(x0;ω) − F̂ s

cn(x;ω) + F̂ s
cn(x;ω) − F s

c0(x0) > δ

⇒F̂ s
cn(x;ω) − F s

c0(x0) > δ + F̂ s
cn(x;ω) − F̂ s

cn(x0;ω)

⇒F̂ s
cn(x;ω) − F s

c0(x0) > δ (by nondecreasing monotonicity of F̂ s
cn(·;ω))

⇒F̂ s
cn(x;ω) − F s

c0(x) + F s
c0(x) − F s

c0(x0) > δ

⇒F̂ s
cn(x;ω) − F s

c0(x) > δ + F s
c0(x0) − F s

c0(x) > δ − δ

n
=

(n − 1)δ

n
→ δ > 0

⇒ lim
n→∞

F̂ s
cn(x;ω) − F s

c0(x) > 0.

Similarly we can show that

if F̂ s
cn(x0;ω) − F s

c0(x0) < −δ, for x ∈ (x0 − ǫ, x0], then limn→∞ F̂ s
cn(x;ω) − F s

c0(x) < 0.

Either of them implies lim
n→∞

F̂ s
cn(x;ω) 6= F s

c0(x). It follows that either (x0 − ǫ, x0] ⊂ Dc

or [x0, x0 + ǫ) ⊂ Dc. Consequently ν((x0 − ǫ, x0]) = 0 or ν([x0, x0 + ǫ)) = 0. In other words,

x0 is not regular, contradicting the assumption that x0 is a regular point. The contradiction

implies that F̂ s
cn(x0;ω) → F s

c0(x0).

The next two propositions give the consistency at the continuity point of F s
c0.

Proposition 4.2. Suppose that E(K) < ∞, A2 holds, (a, b) ⊂ Γc and (a, b) ⊂ S.

(1) If x is a continuity point of F s
c0(·) in (a, b), then F̂ s

cn(x)
a.s.→F s

c0(x).

(2) If F s
c0(a) = 0, F s

c0(b−) = pc, and F s
c0(·) is continuous at x, then F̂ s

cn(x)
a.s.→F s

c0(x).

Proof: Fix an ω ∈ Ων,c. Let x0 be a continuity point of F s
c0(·) in (a, b) which is also an

interior point of S. We shall show that x0 6∈ Dc. Otherwise, by the similar arguements as in

the proof of Proposition 3.1, ∃ ǫ > 0 such that [x0, x0 + ǫ) ⊂ Dc and (x0− ǫ, x0] ⊂ Dc. Since

(a, b) ⊂ S, ∃ support points x1, x2 ∈ (a, b) and η > 0 such that (x1 −η, x1 +η) ⊂ (x0 − ǫ, x0]

and (x2−η, x2+η) ⊂ [x0, x0+ǫ). Moreover, since ν(x1−η, x1+η) > 0, ν(x2−η, x2+η) > 0,

we have ν(x0 − ǫ, x0] > ν(x1 − η, x1 + η) > 0 and ν[x0, x0 + ǫ) > ν(x2 − η, x2 + η) > 0 ⇒

ν(Dc) > 0 which leads to a contradiction. This implies that the first statement of the

13



proposition holds.

Hereafter, assume that F s
c0(a) = 0 and F s

c0(b−) = pc. Then by the monotonicity of

the sub-distribution function, ∀ point x ≤ a, 0 ≤ F s
c0(x) ≤ F s

c0(a) = 0, thus lim
x↑a

F s
c0(x) =

F s
c0(a) = lim

x↓a
F s

c0(x) (due to the right continuity of a sub-distribution function). It follows

that each x ≤ a is a continuity point of F s
c0. In a similar manner, we can show that each

x ≥ b is a continuity point of F s
c0.

First prove a 6∈ Dc, i.e., F̂ s
cn(a;ω) → F s

c0(a). Otherwise, since F s
c0(a) = 0 for all x ≤ a,

F s
c0(x) = 0, a is a continuous point of F s

c0(x), by the similar arguments as in the first

paragraph, ∃ δ > 0 such that [a, a + δ) ⊂ Dc. By the assumption, ∃ some support point

x ∈ (a, a + δ) such that ν(x − δ0, x + δ0) > 0 for some δ0 > 0, thus we have ν[a, a + δ) > 0.

It implies ν(Dc) > 0, which leads to a contradiction. So F̂ s
cn(a;ω) → F s

c0(a).

Furthermore, if F s
c0(a) = 0, then by the monotonicity of the sub-distribution functions,

∀ point x ≤ a, 0 ≤ F̂ s
cn(x;ω) ≤ F̂ s

cn(a;ω) → F s
c0(a) = 0, which implies that F̂ s

cn(x;ω) →

F s
c0(x). Similarly, we can get the same result for each point x ≥ b. These two resuts together

with statement (1) yield statement (2).

Proposition 4.3. Suppose that E(K) < ∞ and A2 holds. If every point of increase of

F s
c0(·) in Γc is strongly regular, then F̂ s

cn(x)
a.s.→F s

c0(x) ∀ continuity point x of F s
c0(·) in Γc.

Proof: Fix an ω ∈ Ων,c. We show that every continuity point of F s
c0(·) in Γc is not in Dc.

Let x0 be a continuity point of F s
c0(·). If x0 is a point of increase of F s

c0(·), then by the

assumption, it is strongly regular, hence it is regular and x0 /∈ Dc by Proposition 4.1. If x0 is

not a point of increase of F s
c0(·) and x0 ∈ Dc, we shall show that it leads to a contradiction.

Now suppose x0 ∈ Dc, then lim
n→∞

F̂ s
cn(x0;ω) 6= F s

c0(x0). There are two possibilities: (1)

lim
n→∞

F̂ s
cn(x0;ω) > F s

c0(x0) and (2) lim
n→∞

F̂ s
cn(x0;ω) < F s

c0(x0).

In case (1), let b := sup{x : F s
c0(x) = F s

c0(x0)}. Then ∀ δ > 0, F s
c0(b+δ)−F s

c0(b−δ) > 0

by the monotonicity and the definition of b, thus b is a point of increase of F s
c0(·) and b > x0.
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By the monotonicity of F̂ s
cn(x;ω), ∀ x ∈ [x0, b),

lim
n→∞

F̂ s
cn(x;ω) ≥ lim

n→∞
F̂ s

cn(x0;ω) > F s
c0(x0) = F s

c0(x),

thus [x0, b) ⊂ Dc. Since b is strongly regular by our assumption, ν(Dc) ≥ ν((x0, b)) > 0,

which leads to a contradiction.

Similarly in case (2), let a := inf{x : F s
c0(x) = F s

c0(x0)}. Then a is a point of increase

of F s
c0(·) and a < x0. For each x ∈ [a, x0),

lim
n→∞

F̂ s
cn(x;ω) ≤ lim

n→∞
F̂ s

cn(x0;ω) < F s
c0(x0) = F s

c0(x),

thus [a, x0) ⊂ D. Since a is strongly regular by our assumption, ν(Dc) ≥ ν((a, x0)) > 0,

which also leads to a contradiction.

These propositions together with Corollary 3.4 yield the following results on the point-

wise consistency in open intervals and in the entire Γc.

Corollary 4.1. Suppose that E(K) < ∞, A2 holds, (a, b) ⊂ Γc ∩ S, and ν({x}) > 0 if x is

a discontinuity point of F s
c0(·) and x ∈ (a, b). Then F̂ s

cn(x)
a.s.→F s

c0(x) ∀ x ∈ (a, b). Moreover,

if F s
c0(a) = 0 and F s

c0(b−) = pc, then F̂ s
cn(x)

a.s.→F s
c0(x) ∀ x ∈ Γc.

Corollary 4.2. Suppose that E(K) < ∞, A2, holds, every point of increase of F s
c0(·) is

strongly regular and ν({x}) > 0 for each discontinuity point x of F s
c0(·). Then

F̂ s
cn(x)

a.s.→F s
c0(x) ∀ x ∈ Γc.

The next two propositions give the uniform consistency in an interval.

Proposition 4.4. Suppose that E(K) < ∞, A2 holds and F s
c0(·) is continuous. If x < y <

τc and 0 < F s
c0(x) < F s

c0(y) < pc imply ν((x, y)) > 0, then supx∈Γc
|F̂ s

cn(x) − F s
c0(x)|a.s.→0.

Proof: Fix an ω ∈ Ων,c. We shall first show that Dc = ∅. Otherwise, ∃ x0 ∈ Dc.

If lim
n→∞

F̂ s
cn(x0;ω)−F s

c0(x0) = d > 0 for some d, then letting b := sup{x ∈ Γc : F s
c0(x) =

F s
c0(x0)}, we have ∀ δ > 0, F s

c0(b+δ)−F s
c0(b−δ) > 0 by the monotonicity and the definition
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of b. So b is a point of increase of F s
c0(·). Since F s

c0(·) is continuous by the assumption,

0 < F s
c0(b + δ0) − F s

c0(b) < d/2 < d for some δ0 > 0, and ∀ x ∈ (b, b + δ0),

lim
n→∞

F̂ s
cn(x;ω) − F s

c0(x)

= lim
n→∞

F̂ s
cn(x;ω) − lim

n→∞
F̂ s

cn(x0;ω) + lim
n→∞

F̂ s
cn(x0;ω) − F s

c0(x0) + F s
c0(x0) − F s

c0(x)

≥d − d/2 = d/2 > 0

by the monotonicity. It follows that (b, b + δ0) ⊂ Dc. ⇒ ν(Dc) > 0, which leads to a

contradiction. The proof for the case lim
n→∞

F̂ s
cn(x0;ω) − F s

c0(x) = d < 0 is similar. Thus

Dc = ∅ and F̂ s
cn(·;ω) point-wisely converges to F s

c0(·).

Given ǫ > 0 and given x0 ∈ Γc, by continuity and monotonicity of F s
c0(·), we can

choose finitely many points {a0, a1, · · · , ak} such that a0 < a1 < · · · < ak, a0 = −∞, 0 ≤

F s
c0(ai) − F s

c0(ai−1) < ǫ for each i = 1, 2, · · · , k. Then ∃ N > 0 such that if n > N then

|F̂ s
cn(ai;ω)−F s

c0(ai)| < ǫ for all i = 1, 2, · · · , k by the point-wise convergence given in the last

paragraph. Since x0 ∈ (aj−1, aj) for some j ≤ k, |F s
c0(y0) − F s

c0(x0)| < ǫ ∀ y0 ∈ [aj−1, aj ].

Moreover, ∀ n,m > N ,

|F̂ s
cn(ai;ω) − F̂ s

cm(ai−1;ω)|

≤|F̂ s
cn(ai;ω) − F s

c0(ai)| + |F s
c0(ai) − F s

c0(ai−1)| + |F s
c0(ai−1) − F̂ s

cm(ai−1;ω)| < 3ǫ.

Then by the monotonicity of F̂ s
cn(·;ω) and F̂ s

cm(·;ω), we obtain

|F̂ s
cn(x0;ω) − F̂ s

cm(x0;ω)| ≤|F̂ s
cn(x0;ω) − F̂ s

cn(ai;ω)| + |F̂ s
cn(ai;ω) − F̂ s

cn(ai−1;ω)|

+|F̂ s
cn(ai−1;ω) − F̂ s

cm(ai;ω)| + |F̂ s
cm(ai;ω) − F̂ s

cm(ai−1;ω)|

+|F̂ s
cm(ai−1;ω) − F̂ s

cm(x0;ω)| < 11ǫ.

Since x0 is arbitrary, thus we can say F̂ s
cn(·;ω) converges uniformly to F s

c0(·).
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Since a follow-up study often lasts for a certain period of time, say [τ1, τ2], so it is likely

that F s
c0(τ2) < pc or F s

c0(τ1) > 0. Then the condition in Proposition 4.4 is not satisfied.

Thus we present the following proposition.

Proposition 4.5. Suppose that for each c ∈ Cr,

(1) F s
c0(·) is continuous on (τ1, τ2];

(2) either ν({τ1}) > 0 or F s
c0(τ1) = 0;

(3) either ν({τ2}) > 0 or F s
c0(τ2−) = pc;

(4) for all a and b in (τ1, τ2) ∩ Γc, 0 < F s
c0(a) < F s

c0(b) < pc implies ν((a, b)) > 0.

Then the GMLE satisfies supx∈[τ1,τ2]∩Γc
|F̂ s

cn(x) − F s
c0(x)| → 0 a.s.

Proof: We only give the proof for the case ν({τ1}) > 0 and F s
c0(τ2−) = pc. We shall

show in the next paragraph that ν(Dc ∩ [τ1, τ2]) = 0, which implies that F̂ s
cn(x;ω) → F s

c0(x)

point-wisely for all x ∈ [τ1, τ2]∩Γc and by the continuity assumption on F s
c0(·), we can have

the convergence is uniform on [τ1, τ2] ∩ Γc.

By Corollary 3.4, we have F̂ s
cn(τ1;ω) → F s

c0(τ1). So it is done if F s
c0(τ1) = pc. Now

assume that F s
c0(τ1) < pc. Then D1 = Dc ∩ [τ1, τ2] is empty. Otherwise, by the continuity

of F s
c0(·), and the monotonicity of F s

c0(·) and F̂ s
cn(·;ω), we have

lim
n→∞

F̂ s
cn(τ1;ω) = F s

c0(τ1) < F s
c0(τ2−) = pc.

Then by an arguement similar to the proof of Proposition 4.4, we can show that D1 contains

an open interval (a, b) such that 0 < F s
c0(a) < F s

c0(b) < pc and τ1 < a < b < τ2. However, it

leads to a contradiction, as ν(Dc) ≥ ν(D1) ≥ ν((a, b)) > 0.

§5. Proofs of the theorems in §3.

Proof of Theorem 3.1. We shall prove this theorem in three steps.

Step 1 (preliminary). By the strong law of large numbers (SLLN) for each F ∈ F ,
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Ln(F ) = 1
n

∑n
i=1 log µF ((Li, Ri] ×Mi)

a.s.→E{log µF ((L,R] ×M)} = L(F ), where

L(F ) = E(E(log µF ((L,R] ×M)|K = k,∆ = h))

=
∞
∑

k=1

nP
∑

h=1

P (K = k,∆ = h)E([
k−1
∑

i=0

|Ph|
∑

j=1

µF0
((Yk,i, Yk,i+1] × Phj) log µF ((Yk,i, Yk,i+1] × Phj)

+ µF0
((Yk,k, Yk,k+1) × Cr) log µF ((Yk,k, Yk,k+1) × Cr)]|K = k,∆ = h)

=

∞
∑

k=1

nP
∑

h=1

P (K = k,∆ = h)E(HF,k,h(Y, Ph)|K = k,∆ = h)

HF,k,h(y, Ph) =

k−1
∑

i=0

|Ph|
∑

j=1

µF0
((yk,i, yk,i+1] × Phj) log µF ((yk,i, yk,i+1] × Phj)

+ µF0
((yk,k, yk,k+1) × Cr) log µF ((yk,k, yk,k+1) × Cr)

for −∞ = yk,0 < yk,1 < · · · < yk,k < yk,k+1 = ∞, and 0 log 0
def
= 0 and log 0

def
= −∞.

For each positive integer k and real numbers yk,1 < yk,2 < · · · < yk,k, verify that

(1)
∑k−1

i=0

∑|Ph|
j=1 µF ((yk,i, yk,i+1] × Phj) + µF ((yk,k, yk,k+1) × Cr) = 1 for each F ∈ F ; (2)

sup{|x log x| : x ∈ [0, 1]} < 1; (3) |HF0,k,h| ≤ (k+1) · |Ph| (by (2)). It follows from Shannon-

Kolmogorov inequality (see Ferguson, 1996) and statements (1) and (3) that HF,k,h(y, Ph)

is maximized by a function F ∈ F iff µF ((yk,i, yk,i+1]× Phj) = µF0
((yk,i, yk,i+1]× Phj) and

µF ((yk,k, yk,k+1) × Cr) = µF0
((yk,k, yk,k+1) × Cr), which are equivalent to

GFs(yk,i+1, Phj) − GFs(yk,i, Phj) = GF
s
0
(yk,i+1, Phj) − GF

s
0
(yk,i, Phj),

for 0 ≤ i < k and 1 ≤ j ≤ |Ph|, and 1 − GFs(yk,k, Cr) = 1 − GF
s
0
(yk,k, Cr).

Thus we can say HF,k,h(y, Ph) is maximized by a function F ∈ F iff

GFs(yk,i, Phj) = GF
s
0
(yk,i, Phj) for i = 1, 2, · · · , k, j = 1, 2, · · · , |Ph|. (5.1)

Moreover, by statements (2) and (3),

|L(F0)| ≤
∞
∑

k=1

nP
∑

h=1

P (K = k,∆ = h)(k + 1) · |Ph| ≤ J · (E(K) + 1) < ∞.
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Thus from Shannon-Kolmogorov inequality (see Ferguson, 1996) we have the statement:

AS1 (1) The cdf F0 maximizes L(·) over the set F . (2) Any other F in F maximizes L(·)

iff GFs = GF
s
0

a.e. µ (that is, for each possible (k, h), (5.1) holds a.e. (w.r.t. measure µ) in

the set {(yk,i, Phj) : i = 1, · · · , k and j = 1, · · · , |Ph|}).

Step 2 (existence of the limit of an arbitrary subsequence of the GMLE). Let R2 =

{(l, r) : −∞ ≤ l < r ≤ +∞} and let α be an arbitrary positive integer, then there are

finitely many extended real numbers,

−∞ = q0 < q1 < · · · < qβ < ∞, such that µ((qi−1, qi) × J ) < 2−α.

Now form the sets U0, U1, · · · , U2β by setting U2i−1 = (qi−1, qi), i = 1, 2, · · · , β, U2i =

[qi, qi], i = 0, 2, · · · , β. Let Uα denote the collection of all nonempty sets of the form

Uij = R2 ∩ (Ui × Uj), 0 ≤ i ≤ j ≤ 2β. Then we take U =
⋃

α Uα.

Let Ω be the sample space. For each ω ∈ Ω, let {F̂s
n(t, ω)} = {(F̂ s

1n(t, ω), · · · , F̂ s
Jn(t, ω)}

be a sequence of GMLEs of Fs
0(·), since F̂ s

jn(·;ω) is monotone and bounded for each j =

1, · · · , J , by Helly’s selection theorem, ∃ a subsequence {n′} such that F̂s
n(t, ω) → Fs(t, ω)

where Fs(t, ω) is the corresponding limit function and denoted by Fs
ω. So G

F̂
s

n′
(·,ω)(t,m) =

∑

j∈m F̂ s
jn′(t;ω) → ∑

j∈m F s
j (t;ω) = GFs

ω
(t,m) point-wise for each t ∈ ℜ, m ∈ J and for

some F ∈ F with the corresponding function F in F by Fω(t, c) =
∑

j≤c(F
s
ω(t))j , where

c ∈ Cr. Now let Ω0 be the set of all sample points ω such that each point-wise limit GFs
ω

of

the sequence {G
F̂s

n(·,ω)} satisfies L(Fω) ≥ L(F0), thus for each ω ∈ Ω0, all the limit points

of {G
F̂s

n(·,ω)} equal GF
s
0

a.e. µ in view of (AS1) in Step 1 and this implies

lim
n′→∞

∫

ℜ×J

|G
F̂

s

n′
(·,ω)(t,m) − GF

s
0
(t,m)|dµ(t,m) = 0.

Thus the desired result follows if we can show Ω0 has probability 1.

Let Q̂n be the empirical estimator of Q, the distribution of (L,R,M). By SLLN,

ΩU,W = {ω : Q̂n(U,W ;ω) → Q(U,W )} has probability 1 for each Borel subset U of R2 and
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W ∈ J , so does Ω′ = {ω : Ln(F0;ω) → L(F0)} and Ω∗ = Ω′ ∩ (
⋂

U∈U

⋂

W∈J ΩU,W ), thus

P (Ω∗) = 1. We are done if we can show that Ω∗ ⊂ Ω0.

For ω∗ ∈ Ω∗, to simplify the notations, let G∗
n(t,m) = G

F̂s
n(·,ω∗)(t,m) which is the

GMLE of the distribution function, for t ∈ ℜ, m ∈ J and

Qn(U,W ) = Q̂n(U,W ;ω∗), U ∈ B(R2), W ∈ J .

Without loss of the generality, assume {n} = {n′}. Let G∗ be a point-wise limiting

function of {G∗
n} where G∗ denotes GF

s
ω∗

. If denoting Fω∗ by F∗, obviously L(F∗) ≤ L(F0).

Also, L(F0) ≤ lim inf
n→∞

Ln(F̂n;ω∗), because Ln(F0;ω
∗) ≤ Ln(F̂n;ω∗) by the definition of

GMLE and the fact that Ln(F0;ω
∗) → L(F0) by the choice of ω∗. If we can show that

lim sup
n→∞

Ln(F̂n;ω∗) ≤ L(F∗) (5.2)

then L(F0) ≤ L(F∗). Notice that L(F∗) depends on ω∗ ∈ Ω∗. It will further conclude that

Ω0 contains Ω∗ by the arbitrary choice of ω∗, and thus has probability 1. In addition,

lim sup
n→∞

∫

ℜ×J

|G
F̂s

n
(t,m) − GF

s
0
(t,m)|dµ(t,m) = 0 (5.3)

for each ω ∈ Ω0. Thus this theorem follows if we can prove (5.2).

Step 3 (to prove that statement (5.2) holds for each ω∗ ∈ Ω∗). Notice that

Ln(F ∗
n) =

∫

R2×J

log(µF∗
n
((l, r] × m))dQn(l, r,m)

Inequality (5.2) can be written as

lim sup
n→∞

∫

R2×J

log(µF∗
n
((l, r] × m))dQn(l, r,m) ≤

∫

R2×J

log(µF∗
((l, r] × m))dQ(l, r,m)

(5.4)

Fix a positive integer α and a negative integer γ. Then
∫

R2×J

log(µF∗
n
((l, r] × m))dQn(l, r,m) ≤

∫

R2×J

γ ∨ log((µF∗
n
((l, r] × m))dQn(l, r,m)

≤
∑

U∈Uα,W∈J

Mn(U,W )Qn(U,W )
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where Mn(U,W ) = sup{γ ∨ log(µF∗
n
((l, r] × W )) : (l, r) ∈ U}, U is the closure of U. Let

rU = sup{r : (l, r) ∈ U} and lU = inf{l : (l, r) ∈ U}. Then for each U ∈ Uα and W ∈ J ,

(1) rU = sup{r : (l, r) ∈ U} and lU = inf{l : (l, r) ∈ U}, as (lU , rU ) ∈ U ;

(2) γ ∨ log(x) is a bounded continuous function of x on (0, 1] for each γ ∈ (−∞, 0];

(3) µF∗
n
(B) → µF∗

(B) for each B with the form (a, b] × W .

Mn(U,W ) = sup{γ ∨ log(µF∗
n
((l, r] × W )) : (l, r) ∈ U}

=γ ∨ log(µF∗
n
((lU , rU ] × W )) (by definitions of lU , rU and Mn(U,W ))

→γ ∨ log(µF∗
((lU , rU ] × W )) (by the aforementioned statements (2) and (3))

= sup{γ ∨ log(µF∗
((l, r] × W )) : (l, r) ∈ U}

def
= M(U,W ),

By the choice of ω∗, Qn(U,W ) → Q(U,W ) for all U ∈ Uα and W ∈ J . It follows that

∑

U∈Uα,W∈J

Mn(U,W )Qn(U,W ) →
∑

U∈Uα,W∈J

M(U,W )Q(U,W ).

Let m(U,W ) = inf{γ ∨ log(µF∗
((l, r] × W )) : (l, r) ∈ U}. It follows from the bound

that |γ ∨ log(x) − γ ∨ log(y)| ≤ e−γ |y − x| for 0 ≤ x, y ≤ 1, we have the inequality

M(U,W ) − m(U,W ) ≤ e−γ sup{µF∗
((lU , rU ] × W ) − µF∗

((l, r] × W ) : (l, r) ∈ U}

=e−γ sup{
∑

j∈W

(F s
∗j(rU ) − F s

∗j(lU )) −
∑

j∈W

(F s
∗j(r) − F s

∗j(l)) : (l, r) ∈ U}

=e−γ sup{
∑

j∈W

(F s
∗j(rU ) − F s

∗j(r) + F s
∗j(l) − F s

∗j(lU )) : (l, r) ∈ U}

=e−γ sup{
∑

j∈W

(F s
∗j(rU ) − F s

∗j(r)) +
∑

j∈W

(F s
∗j(l) − F s

∗j(lU )) : (l, r) ∈ U}

=e−γ sup{µF∗
((r, rU ] × W ) + µF∗

((lU , l] × W ) : (l, r) ∈ U} for U ∈ Uα, W ∈ J .

This implies that
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(1) if U = R2 ∩ [(qi−1, qi) × (qj−1, qj)], then M(U,W ) − m(U,W ) > 2/α implies either

µF∗
((qi−1, qi] × W ) > eγ/α or µF∗

((qj−1, qj ] × W ) > eγ/α;

(2) if U = R2∩[[qi, qi]×(qj−1, qj)], then M(U,W )−m(U,W ) > 2/α implies µF∗
((qj−1, qj ]×

W ) > eγ/α;

(3) if U = R2∩[(qi−1, qi)×[qj , qj ]], then M(U,W )−m(U,W ) > 2/α implies µF∗
((qi−1, qi]×

W ) > eγ/α;

(4) if U = R2 ∩ [{a} × {b}] , then M(U,W ) − m(U,W ) = 0.

The aforementioned statements yield

∑

U∈Uα,W∈J

(M(U,W ) − m(U,W ))Q(U,W )

≤2/α + |γ|
∑

U∈Uα,W∈J

Q(U,W )1((M(U,W ) − m(U,W )) ≥ 2/α)

≤2/α + |γ|
β

∑

i=1

∑

W∈J

P (qi−1 < L < qi,M = W )1(µF∗
((qi−1, qi] × W ) > eγ/α)

+ |γ|
β

∑

i=1

∑

W∈J

P (qi−1 < R < qi,M = W )1(µF∗
((qi−1, qi] × W ) > eγ/α)

≤2/α + |γ|
β

∑

i=1

P (qi−1 < L < qi,M ∈ J )1(µF∗
((qi−1, qi] × Cr) > eγ/α)

+ |γ|
β

∑

i=1

P (qi−1 < R < qi,M ∈ J )1(µF∗
((qi−1, qi] × Cr) > eγ/α)

≤2/α + |γ|(1 + αe−γ)21−α.

The last step make use of the inequality

P (qi−1 < L < qi,M ∈ J ) + P (qi−1 < R < qi,M ∈ J ) ≤ 2µ((qi−1, qi) × J ) ≤ 21−α

and the fact that at most 1 + αe−γ of the terms

µF∗
((q0, q1] × Cr), µF∗

((q1, q2] × Cr), · · · , µF∗
((qβ−1, qβ ] × Cr) exceed eγ/α.
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Thus we have

lim sup
n→∞

∫

R2×J

log(µF∗
n
((l, r] × m))dQn(l, r,m)

≤
∫

R2×J

γ ∨ log(µF∗
((l, r] × m))dQ(l, r,m) + 2/α + |γ|(1 + αe−γ)21−α

→
∫

R2×J

γ ∨ log(µF∗
((l, r] × m))dQ(l, r,m) as α → ∞

→
∫

R2×J

log(µF∗
((l, r] × m))dQ(l, r,m) as γ → −∞ (which is (5.4) or (5.2)).

Proof of Theorem 3.2. Given an A ∈ A, define an event TI(A) = {L ∈ A or R ∈ A},

then P (TI(A) ∩ {M ∈ W}) = P (TI(A))P (M ∈ W |TI(A)), which is equivalent to

µ(B) =

∞
∑

k=1

P (K = k)

k
∑

i=1

P (Yk,i ∈ A|K = k)P (M ∈ W |L ∈ A or R ∈ A)

= ν(A)P (M ∈ W |TI(A)) with ν(A) > 0.

By Lemma 3.2 and the definition of Γc, for almost all t ∈ Γc∩S, F is identifiable at (t, c).

Then by Remark 3.1, ∃ W1, · · · ,Ww, w < ∞ with fM|TI({t})(Wi) = P (M = Wi|TI({t})) > 0

and some constants gi’s such that

φ({c}) =
∑w

i=1 giφ(Wi) for almost all t ∈ Γc ∩ S. (5.5)

By Theorem 3.1,
∫

|G
F̂s

n
− GF

s
0
|dµ

a.s.→0 ⇒
∑

M∈J

∫

ℜ

|G
F̂s

n
(t,M) − GF

s
0
(t,M)|dµ(t,M)

a.s.→0

⇒
∑

M∈J

∫

S

|G
F̂s

n
(t,M) − GF

s
0
(t,M)|dµ(t,M)

a.s.→0

⇒
∑

M∈J

∫

S∩Γc

|G
F̂s

n
(t,M) − GF

s
0
(t,M)|dµ(t,M)

a.s.→0.

Then we have for each i = 1, 2, · · · , w, w.p.1,
∫

S∩Γc

|G
F̂s

n
(t,Wi) − GF

s
0
(t,Wi)|dµ(t,Wi)→0.

⇒
∫

S∩Γc

|G
F̂s

n
(t,Wi) − GF

s
0
(t,Wi)|fM|TI({t})(Wi)dν(t)→0.
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By Lemma 3.2, fM|TI({t})(Wi) > 0 for almost all t ∈ S ∩Γc. Since M is finite and discrete,

we can define hi(t) = fM|TI({t})(Wi), notice that S∗ denotes the set of all points in S

except the set of ν-measure zero, then hi(t) > 0 ∀ t ∈ S∗ ∩ Γc, i.e., S∗ ∩ Γc ⊆ {hi(t) >

0} = {hi(t) ≥ 1/m} ∪ {0 < hi(t) < 1/m} for each arbitrary positive integer m. If we

define Am = S∗ ∩ Γc ∩ {hi(t) ≥ 1/m} and Bm = S∗ ∩ Γc ∩ {0 < hi(t) < 1/m}, then

Am ∪ Bm = S∗ ∩ Γc and Am ∩ Bm = ∅. Thus we have, w.p.1,

∑

M∈J

∫

S∩Γc

|G
F̂s

n
(t,M) − GF

s
0
(t,M)|dµ(t,M)

=

∫

S∩Γc

|G
F̂s

n
(t,Wi) − GF

s
0
(t,Wi)|fM|TI({t})(Wi)dν(t)

=

∫

S∗∩Γc

|G
F̂s

n
(t,Wi) − GF

s
0
(t,Wi)|fM|TI({t})(Wi)dν(t)

=

∫

Am

|G
F̂s

n
(t,Wi) − GF

s
0
(t,Wi)|hi(t)dν(t) +

∫

Bm

|G
F̂s

n
(t,Wi) − GF

s
0
(t,Wi)|hi(t)dν(t)

≥ 1

m

∫

Am

|G
F̂s

n
(t,Wi) − GF

s
0
(t,Wi)|dν(t) +

∫

Bm

|G
F̂s

n
(t,Wi) − GF

s
0
(t,Wi)|hi(t)dν(t)

≥ 1

m

∫

Am

|G
F̂s

n
(t,Wi) − GF

s
0
(t,Wi)|dν(t),

which implies limn→∞

∫

Am
|φ(Wi)(F̂

s
n(t) − Fs

0(t))|dν(t) = 0 w.p.1.

Since m is arbitrary, let m → ∞, then A1 ⊆ A2 ⊆ · · · ⊆ S∗ ∩ Γc and S∗ ∩ Γc ⊇ B1 ⊇

B2 ⊇ · · · ⊇ ∅ and ν(S ∩ Γc) < ∞. Thus w.p.1,

lim
n→∞

∫

S∗∩Γc

|φ(Wi)(F̂
s
n(t) − Fs

0(t))|dν(t)

= lim
n→∞

(

∫

Am

|φ(Wi)(F̂
s
n(t) − Fs

0(t))|dν(t) +

∫

Bm

|φ(Wi)(F̂
s
n(t) − Fs

0(t))|dν(t))

≤ lim
n→∞

(

∫

Am

|φ(Wi)(F̂
s
n(t) − Fs

0(t))|dν(t) +

∫

Bm

|φ(Wi)(F̂
s
n(t) + Fs

0(t))|dν(t))

≤ lim
n→∞

(

∫

Am

|φ(Wi)(F̂
s
n(t) − Fs

0(t))|dν(t) + 2

∫

Bm

dν(t))

(as 0 ≤ φ(Wi)F̂
s
n(t), φ(Wi)F

s
0(t) ≤ 1)

= lim
n→∞

(

∫

Am

|φ(Wi)(F̂
s
n(t) − Fs

0(t))|dν(t) + 2ν(Bm))
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= lim
n→∞

∫

Am

|φ(Wi)(F̂
s
n(t) − Fs

0(t))|dν(t) + 2ν(Bm) (as ν is a finite positive measure).

⇒ lim
n→∞

∫

S∗∩Γc

|φ(Wi)(F̂
s
n(t) − Fs

0(t))|dν(t) ≤ lim
m→∞

2ν(Bm)
a.s.
= 0.

⇒
∫

S∗∩Γc

|gi| · |φ(Wi)(F̂
s
n(t) − Fs

0(t))|dν(t)
a.s.→0 (see (5.6)). (5.6)

So we can have

∫

S∗∩Γc

|F̂ s
cn(t) − F s

c0(t)|dν(t)

=

∫

S∗∩Γc

|φ({c})(F̂s
n(t) − Fs

0(t))|dν(t)

=

∫

S∗∩Γc

|(
w

∑

i=1

giφ(Wi))(F̂
s
n(t) − Fs

0(t))|dν(t)

≤
w

∑

i=1

∫

S∗∩Γc

|gi||φ(Wi)(F̂
s
n(t) − Fs

0(t))|dν(t) → 0 a.s. by (5.6).

Let S∗c be the complement of S∗. Since
∫

S∗c∩Γc
|F̂ s

cn(t)− F s
c0(t)|dν(t) = 0 by Theorem 3.1,

∫

Γc

|F̂ s
cn(t) − F s

c0(t)|dν(t)

=

∫

S∗∩Γc

|F̂ s
cn(t) − F s

c0(t)|dν(t) +

∫

S∗c∩Γc

|F̂ s
cn(t) − F s

c0(t)|dν(t)

=

∫

S∗∩Γc

|F̂ s
cn(t) − F s

c0(t)|dν(t) → 0 a.s.
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§6. Appendix II.

Example 6.1. Consider a discrete case. Suppose that J = 2, T ∈ {1, 2} and C ∈ {1, 2}.

There are two partitions denoted by P1 = ({1}, {2}) and P2 = ({1, 2}). Suppose that

P (T = 1) = P (T = 2) = 0.5, fT,C(1, 1) = 0, fT,C(2, 1) > 0 and P (∆ = 1) = P (∆ = 2) =

1/2, where ∆ denotes the random index of the partitions. Assume the case 2 model with

P (Y1 = 1, Y2 = 2) = 1. Then fM|T,C(Cr|t, c) is not constant in t if c = 1. That is, the

symmetry assumption S1 fails. But the GMLE of F0 is consistent for t ∈ {1} ∪ ([2,∞) and

is asymptotically normally distributed.

Proof of Example 6.1. Based on the model in Example 1.1, we can show that the possible

observations are (−∞, 1]×{1, 2}, (−∞, 1]×{2}, (1, 2]×{1}, (1, 2]×{2}, and (1, 2]×{1, 2}

with sizes N1, N2, N3, N4 and N5 respectively where N1 +N2 +N3 +N4 +N5 = n. Thus the

MI’s are (−∞, 1]× {2}, (1, 2]× {1} and (1, 2]× {2} with weights s1, s2 and s3 respectively.

Then we can set up the log-likelihood function:

Ln(s1, s2, s3) =
1

n
(N1 + N2) log s1 + N3 log s2 + N4 log(1 − s1 − s2) + N5 log(1 − s1)

under the constraint s1 + s2 + s3 = 1. By the differentiation on the weights and setting

them equal 0, we can have

N1 + N2

s1
− N4

1 − s1 − s2
− N5

1 − s1
= 0,

N3

s2
− N4

1 − s1 − s2
= 0.

Solving them yields

ŝ1 =
N1 + N2

n
, ŝ2 =

(n − N1 − N2)N3

n(N3 + N4)
.

Since fT,C(1, 1) = 0 and P (T = 1) = P (T = 2) = 1/2, we have fT,C(1, 2) = α1 = 1/2,

fT,C(2, 1) = α2/2 > 0 and fT,C(2, 2) = α3/2 > 0 for some α2 > 0, α3 > 0 with α2 + α3 = 1.

By the SLLN, we have w.p.1,

N1

n
→ P (T = 1, C = 2, (L,R) = (−∞, 1),∆ = 2) =

α1

2
= 1/4,
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N2

n
→ P (T = 1, C = 2, (L,R) = (−∞, 1),∆ = 1) =

α1

2
= 1/4,

N3

n
→ P (T = 2, C = 1, (L,R) = (1, 2),∆ = 1) = α2/4,

N4

n
→ P (T = 2, C = 2, (L,R) = (1, 2),∆ = 1) = α3/4,

N5

n
→ P (T = 2, C = 1 or 2, (L,R) = (1, 2),∆ = 2) = (α2 + α3)/4 = 1/4.

Thus w.p.1, we have

ŝ1 → 1/2 = fT,C(1, 2), ŝ2 → α2/4(1 − 1/2)

α2/4 + α3/4
= α2/2 = fT,C(2, 1),

thus the estimators are consistent.

Denote s = (s1, s2)
′, then by the GMLE property, we have ∂Ln(ŝ)

∂s
= 0 where ŝ = (ŝ1, ŝ2).

Then by the first Taylor expansion we have

∂Ln(so)

∂s
=

∂2Ln(so)

∂s2
(so − ŝ) + oP (||so − ŝ||).

Due to the consistency, for n large enough, ||ŝ(ω) − so|| < 1
n ∀ ω ∈ Ω where Ω denotes the

sample space, then we have when n → ∞, oP (
√

n||so − ŝ||) → 0.

From the SLLN it follows w.p.1

∂Ln(so)

∂s
=

(

N1+N2

ns1

− N4

n(1−s1−s2)
− N5

n(1−s1)
N3

ns2

− N4

n(1−s1−s2)

)

→
(

1 − α3/4
(1−1/2−α2/2) −

1/4
1−1/2

α2/4
α2/2 − α3/4

1−1/2−α2/2

)

=

(

0
0

)

= E(
∂Ln(so)

∂s
),

then by CLT,
√

n∂Ln(so)
∂s

→ N(0, I) in distribution where

I = −∂2Ln(so)

∂s2
=

(

1 − 1
α3

− 1
α3

− 1
α3

1
α2

− 1
α3

)

is the Fisher Information matrix which can verified that it is positive definite. Thus we can

obtain
√

n(so − ŝ) → N(0, I−1) in distribution.
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Derivation of Example 1.1. Under given assumptions and notations in the example, the

log likelihood function is

L1ln(p1 + p2) + n2ln(1 − p1 − p2) + n3ln(p1 + p3) + n4ln(1 − p1 − p3),

denote n1+n2+n3+n4 as the total number of the observations. Then the normal equations

are n1

p1+p2

− n2

1−p1−P2

+ n3

p1+p3

− n4

1−p1−p3

= 0, n1

p1+p2

− n2

1−p1−p2

= 0, n3

p1+p3

− n4

1−p1−p3

= 0 which

reduce to n1

p1+p2

− n2

1−p1−p2

= 0, n3

p1+p3

− n4

1−p1−p3

= 0. Solving them leads to the GMLEs in

Example 1.1.

Derivation of Example 3.2. Based on the notations and the model, we can derive the

log-likelihood function under the constraint
∑8

i=1 si = 1

Ln(s) = N1 log s1 + N2 log s2 + N3 log s3 + N4 log s4 + N5 log(1 − s1 − s2 − s3 − s4)

+ N6 log(s1 + s2 + s5 + s6) + N7 log(1 − s1 − s2 − s5 − s6)

+ N8 log(s1 + s3 + s5 + s7) + N9 log(1 − s3 − s5 − s7).

Set the derivative on each sj equal zero to obtain

∂Ln

∂s1
=

N1

s1
− N5

1 − s1 − s2 − s3 − s4
+

N6

s1 + s2 + s5 + s6

− N7

1 − s1 − s2 − s5 − s6
+

N8

s1 + s3 + s5 + s7
− N9

1 − s1 − s3 − s5 − s7
= 0,

∂Ln

∂s2
=

N2

s2
− N5

1 − s1 − s2 − s3 − s4
+

N6

s1 + s2 + s5 + s6
− N7

1 − s1 − s2 − s5 − s6
,

∂Ln

∂s3
=

N1

s3
− N5

1 − s1 − s2 − s3 − s4
+

N8

s1 + s3 + s5 + s7
− N9

1 − s1 − s3 − s5 − s7
= 0,

∂Ln

∂s4
=

N1

s4
− N5

1 − s1 − s2 − s3 − s4
= 0,

∂Ln

∂s5
=

N6

s1 + s2 + s5 + s6
− N7

1 − s1 − s2 − s5 − s6

+
N8

s1 + s3 + s5 + s7
− N9

1 − s1 − s3 − s5 − s7
= 0,
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∂Ln

∂s6
=

N6

s1 + s2 + s5 + s6
− N7

1 − s1 − s2 − s5 − s6
= 0,

∂Ln

∂s7
=

N8

s1 + s3 + s5 + s7
− N9

1 − s1 − s3 − s5 − s7
= 0.

Solve them to get the NPMLE given in the example.

Proof of Lemma 3.2. Fix c ∈ Cr. By assumption A2, there are some constant gα’s such

that

φ({c}) =

w
∑

α=1

gαφ(Mα). (6.1)

Given N values of K with the corresponding inspection times, say, (ki, yki,1, · · · , yki,ki
),

i = 1, · · · , N , the possible values of (L,R,M) from these N sets of inspection times are

(−∞, yki,1, Vi), (yki,1, yki,2, Vi), · · ·, (yki,ki−1, yki,ki
, Vi), (yki,ki

,∞, Cr), where Vi ∈ Phi
for

some hi. By A2 and the definitions of S and ν (defined before Definition 3.1), there is at

least a finite N such that

(1) P (∆ = hi|(Yki,1, · · · , Yki,ki
) = (yki,1, · · · , yki,ki

),K = ki) > 0, i = 1, ..., N ;

(2) for each α ∈ {1, ..., w}, Mα = Viα
for some iα ∈ {1, ..., N};

(3) SN = {yki,j : j = 1, · · · , ki, i = 1, 2, · · · , N} ⊂ S.

Let t1 < t2 < · · · < tm be all the distinct values of the elements in SN .

Now we verify that F is identifiable at (r, c) with r = minα ykiα ,1 by taking (lα, rα] ×

Wα = (−∞, ykiα ,1]× Viα
, α = 1, · · · , w that satisfy the three conditions in Definition 3.2 as

follows.

(1) Notice that maxα lα = −∞ < r = minα rα by the choices of lα and r.

(2) Since {(−∞, yki,1] × Vi : Vi ∈ Phi
, i = 1, · · · , N} ⊇ {(−∞, ykiα ,1] × Mα : α = 1, · · · , w},

it implies that for each Mα = Viα
, ∃ hi with P (∆ = hi|(L,R) = (−∞, yki,1)) > 0 such

that Mα ∈ Phi
. Thus it implies P (M = Mα|(L,R) = (−∞, ykiα ,1)) > 0.

(3) We have φ({c}) =
∑w

i=1 giφ(Mi) by (6.1).
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Thus F is identifiable at (r, c), where r ∈ S. Let Sc be the set of all t in S such that F

is identifiable at (t, c). Then we have just shown that Sc is not empty.

Now let uc ∈ Sc. Then ∃ {(li, ri] × Wi}wτ

i=1 where (li, ri) = (yki,ji−1, yki,ji
) for some

ji ≤ ki such that the three conditions in Definition 3.2 hold for these (li, ri)’s by letting

r = uc. Denote S∗ = S \ W, then Lemma 3.1 yields ν(S \ S∗) = 0. For any t < r with

t ∈ S∗, due to the aforementioned {(li, ri] × Wi : i = 1, 2, · · · , wτ}, there exists (l0i , r
0
i ] × Wi

such that l0i < t ≤ r0
i for each i = 1, · · · , wτ . In fact, since t < r ≤ ri for i = 1, · · · , wτ ,

based on the model, we have

(l0i , r
0
i ) =

{

(li, ri) = (yki,ji−1, yki,ji
) (which is given above) if t ∈ (li, ri]

(yki,ji−s−1, yki,ji−s), 1 ≤ s < ji with t ∈ (yki,ji−s−1, yki,ji−s] otherwise.

Since t ∈ S∗, by the definition of S∗, Yk,i is defined at t for some (k, i). Then for this

pair of (k, i), P (∆ = h|Yk,i = t) is well defined for each h. Thus P (∆ = h|R = t) is well

defined for each h and P (∆ = h|R = t) > 0 for some h. Then there exists (l∗, t∗]×Ws,h for

t∗ = t and some l∗ < t∗ such that P (∆ = h|(L,R) = (l∗, t∗)) > 0 and Ws,h ∈ Ph, where l∗

could be −∞.

If we set wt = wτ +1, l0wt
= l∗, r0

wt
= t∗ and Wwt

= Ws,h, then we can verify (l0i , r
0
i ]×Wi,

i = 1, 2, · · · , wt, satisfy the three conditions in Definition 3.2 as follows.

(1) Obviously, l0i , r
0
i ∈ S ∪ {−∞} and l0i < t ≤ r0

i for i = 1, 2, · · · , wt, then we have

maxi l0i < t = mini r0
i .

(2) For each i = 1, 2, · · · , wt, ∃ hi such that P (∆ = hi|(L,R) = (l0i , r
0
i )) > 0 by the given

assumptions, then it implies that P (M = Wi|(L,R) = (l0i , r
0
i )) > 0.

(3) Moreover, φ({c}) =
∑wt

i=1 g0
i φ(Wi) =

∑wτ

i=1 g0
i φ(Wi) by setting g0

wt
= 0.

Thus F is identifiable at (t, c) for almost all t ∈ S and t < uc.

Proof of Remark 3.1. An obvious result from Lemma 3.2 is that if F is also identifiable

at (τc, c), then {(li, ri] × Wi : i = 1, 2, · · · , wτ} satisfy the three conditions in Definition 3.2
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and thus φ({c}) =
∑wτ

i=1 giφ(Wi) for some constant gi’s. Thus the latter linear combination

can be applied to almost all t ∈ (−∞, τc] ∩ S.

Otherwise, consider a sequence in S∗, say y1 < y2 < · · · < τc such that lim
m→∞

ym = τc.

By Lemma 3.2 and the definition of τc, F is identifiable at (ym, c), so ∃ {(lm,i, rm,i] ×

Wm,i : i = 1, 2, · · · , wm} satisfying the three conditions in Definition 3.2 for each ym, define

Sym
= {Wm,1,Wm,2, · · · ,Wm,wym

} be the set of distinct values of Wm,i, i = 1, 2, · · · , wm,

thus Sym
⊂ J and φ({c}) =

∑wym

i=1 gm,iφ(Wm,i) for some constant gm,i’s with wym
≤ J

based on the random partition masking model and assumption A2 for each m. Since J is

finite, the possibilities of Sym
are also finite, say there are NS distinct Sym

’s, denoted by

S1, S2, · · · , SNS
. If we define a map H : {ym : m = 1, 2, · · ·} → {Si : i = 1, 2, · · · , NS},

then H−1(Si) ⊂ {ym : m = 1, 2, · · ·} for each i = 1, 2, · · · , NS , where H−1 is defined in

an obvious way and
⋃NS

i=1 H−1(Si) = {ym : m = 1, 2, · · ·}. Since ym → τc, at least ∃ a

subsequence H−1(Sj) = {ym1
: m1 = 1, 2, · · ·} ⊂ {ym : m = 1, 2, · · ·} for some 1 ≤ j ≤ NS

such that ym1
→ τc as m1 → ∞. Since Sm1

= Sj = {W1,W2, · · · ,Ww}, w ≤ J for each m1

and φ({c}) =
∑w

i=1 giφ(Wi) for some constant gi’s, then by Lemma 3.2 and the definition

of τc, this linear combination can be applied to almost all t ∈ (−∞, τc) ∩ S.
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