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Abstract: We propose an approach to simultaneously test the assumptions of independence

and goodness-of-fit for a multiple linear regression (LR) model Y = β′X+W . If E(|Y ||X) =

∞, then the claims on the distributions of all existing test statistics for the LR model are

false, e.g., the real sizes (i.e., the probabilities of type I error) of Stute’s test (1997) and Sen

& Sen’s test (2014) with a nominal size of 5% can be ≥ 33% or even 99%. Our test is valid

even if E(|Y ||X) = ∞. Thus it is more realistic than all the existing tests. Our approach

is called the MD approach, as it is based on the difference between two estimators of the

marginal distribution (MD) FY . We establish the asymptotic properties of the MD test.

The simulation study suggests that the MD approach has certain advantages over existing

tests even when E(Y |X) exists, though it is not uniformly most powerful. We apply the MD

approach to 3 real data sets.
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1. Introduction. We propose a new approach for the diagnostic plotting method and

for simultaneously testing the assumptions of independence and goodness-of-fit for a multiple

linear regression model, called the marginal distribution (MD) plot and MD test, respectively.

The MD approach has certain advantages over the existing methods.

Let (X1, Y1), ..., (Xn, Yn) be i.i.d. observations from a joint cumulative distribution

function (cdf) Fx,Y , with density function fx,Y , where X is a p-dimensional random vector

and Y is a response variable. Let FY |x and fY |x be the conditional cdf and density function,

respectively. Data analysis depends on the regression model for Fx,Y .

A common regression model is the linear regression (LR) model,

Y = β′X+W , where W has the baseline cdf Fo (FW = Fo = FY |x(·|0)), β ∈ Rp, (1.1)

the p-dimensional euclidean space, and β′ is the transpose of β. The coordinates of X can be

dependent e.g., X = (Z,Z2, ..., Zp)′, where Z is a random variable. The LR model is often

formulated by

Y = α+ β′X+ ǫ, where E(ǫ|X) = 0. (1.2)

If the conditional variance V ar(W |X) does not depend on X, it is called an ordinary linear

regression (OLR) model, otherwise, it is called a weighted linear regression (WLR) model.

Remark 1. Advantages that the LR model is specified by Eq. (1.1) rather than Eq. (1.2) are:

(1) Eq. (1.2) but not (1.1) requires that E(Y |X) exists;

(2) In general, β but not α is identifiable under censorship models (Yu and Wong (2002));

(3) It is often less important to estimate α than β, the effect of the covariate X on Y .

Under the OLR model, the semi-parametric MLE (SMLE) (if Fo is discontinuous), the

least squares estimator (LSE), and the modified SMLE (MSMLE) are all consistent estimators

of β (see Yu and Wong (2002, 2003 and 2004)) if fx,Y ∈ Θlse, where

Θlse = {Fx,Y : Σx is non-singular and Cov(X, Y ) exists}, (1.3)

and Σx is the p × p covariance matrix of X. If E(Y |X) does not exist, but E(lnfW (W ))

exists, Yu and Wong (2002) show that the MSMLE is still consistent, and if the cdf FW is
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discontinuous, then the SMLE and the MSMLE β̃ satisfy P (β̃ 6= β infinitely often) = 0.

However, the LSE is inconsistent if E(|Y ||X) does not exist (see Example 4.6).

The log linear regression model is a special case of h(Yi) = β′g(Xi) + Wi, where h(·)

and g(·) are functions of Yi and Xi, respectively. By redefining Y as h(Y ), it can be viewed

as a LR model. Other generalizations are the generalized additive model (gam) (see Hastie

and Tibshirani (1990) and Wood (2006)), the partially linear model (plm) (Hardle (1994)),

and the generalized partially linear single-index model (gplsim) (Carroll, et al. (1997)). The

Cox regression model (Cox and Oakes (1984)) and the generalized linear model (Nelder and

Wedderburn, (1972)) are also common regression models.

Let Θ be the collection of all possible Fx,Y . In order to apply a certain LR model in

Eq. (1.1), say Θ0, among so many choices for Fx,Y , it is important to check whether the data

fit the model Θ0. There are many model diagnostic tests for a LR model in the literature

(see, for instance, Gonzalez-Manteiga and Crujeiras (2014)).

A simple test is the t-test (or F-test) (see e.g., Example 2.1 or Draper and Smith (1966)).

Ramsey’s RASET test (Ramsey (1969)), the Harvey Collier test (1976) and the Rainbow test

for linearity (Utts (1982)) are also well-known tests. Another test, called the gam test (see

Wood (2006), or Section 2), is also a common test of a LR model. The aforementioned existing

tests are the test of Ht
0: ξ(·) ≡ 0, where ξ(X) = E(Y |X) − β′X. In order to establish the

distribution theories for the tests, each of these tests imposes certain regularity conditions on

Fx,Y , which specifies a parameter space for Fx,Y , say Θp, under which the test is valid. The

Θp depends on the specific test and is a certain common regression model that contains Θ0.

Thus Θp 6= Θ. If Fx,Y /∈ Θp, these tests are invalid (see Stute (1997)), in the sense that the

(asymptotic) distributions specified for these tests are false.

Stute (1997) proposed the first test of the model in (1.2) that the parameter space Θp

does not belong to any aforementioned common regression model and thus is more realistic

than the existing tests before then. If W and X are independent (W ⊥ X), the LR model is

an OLR model. Many goodness-of-fit tests for an OLR model crucially use the independence
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of W and X. Stute’s test can not distinguish the OLR model from the WLR model. Sen and

Sen (2014) proposed a test, called the SS-test hereafter, that can simultaneously check these

two crucial model assumptions, i.e., it tests

H0: Y = β′X+W and W ⊥ X against H1: H0 is false. (1.4)

The SS-test is based on the pairwise distance between points in the sample and assuming

Fx,Y ∈ Θlse (see (1.3)), among other regularity conditions. The latter assumptions specify

the parameter space Θp within which their test is valid. This Θp is not a subset of any

common regression model. Thus it is also more realistic than the existing tests of H0 in (1.4).

Remark 2. It is interesting to point out the following facts: (1) If H0 is true and Fx,Y ∈

Θlse, then most existing tests are valid. (2) If H0 is not true and Fx,Y ∈ Θlse, then most

existing tests are invalid (see Examples 4.1 and 4.2 in Section 4), except Stute’s test and the

SS-test. (3) However, if H0 is true but E(|Y ||X) = ∞, then all the existing tests including

Stute’s test and the SS-test are invalid (see Example 4.5 in Section 4).

The MD approach we propose in this paper for testing H0 in Eq. (1.4) compares two

estimators of FY : one is the empirical distribution function (edf) and the other makes use of

a consistent estimator of Fo (see (1.1) and (3.4)) and the MSMLE of β instead of the LSE

unless one feels confident that E(|Y ||X) < ∞. The main reasons that the MD test can be

valid for testing H0 in Eq. (1.4) when E(|Y ||X) = ∞ are as follows.

(1) The estimator of Fo given in (3.4) does not involve estimating E(Y |X = 0) or E(Y |X)

as in the existing tests, including Stute’s test and the SS-test.

(2) The MSMLE of β is consistent under Ho in Eq. (1.4), at least if Fx,Y ∈ Θm ∪Θd, where

Θm = {Fx,Y ∈ Θ : E(|lnfY |x(Y |0)|) < ∞} and Θd = {Fx,Y ∈ Θ : Fo is discontinuous}

(Yu and Wong (2002)).

Thus the parameter space of the MD test is more realistic than the parameter spaces of all

the existing tests, including Stute’s test and the SS-test.

The paper is organized as follows. The drawbacks of most existing tests are discussed

in Section 2. The MD approach and its theoretical justification, as well as its asymptotic
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distribution are introduced in Section 3. The simulation results on comparing various tests

are presented in Section 4. Data analysis is given in Section 5. Some concluding remarks are

given in Section 6. Some proofs of the lemmas and theorems are put in Appendix.

2. The drawbacks of most existing tests in the literature. In order to compare various

existing tests of model (1.2), it is of interests to compare the parameter spaces Θp of these

tests. Ideally, Θp is Θ, which consists of all possible Fx,Y .

Most existing LR model diagnostic tests actually test

H∗
0 : ξ(·) = 0 against H∗

1 : ξ(·) 6= 0, where ξ(X) = E(Y |X)− β′X− α and (2.1)

Fx,Y ∈ Θp, a subset of a common regression model. In order to establish the asymptotic

distribution for the test statistic, certain constraints on ξ(·) are needed. For example, the

t-test and the F-test set ξ(X) = θg(X), and the parameter space is Θp = Θt, where

Θt = {Fx,Y : Y = β′X+ θ′g(X) +W , W ⊥ X, g(·) is given }. (2.2)

Thus they really test Ht
0: θ = 0 against Ht

1: θ 6= 0. The rejection regions of these tests are

based on the (asymptotic) distributions of the test statistics, which are established based on

the model Θt. If Fx,Y /∈ Θt, the test is invalid. It suffices to give a counterexample as follows.

Example 2.1. Consider the case that X is a random variable, E(X4) < ∞, E(W ) = α and

ξ(x) = θx2. Denote Θ0 = {Fx,Y : Y = βX+W} and Θt
p = {Fx,Y : Y = βX+θX2+W}. A

t-test for the simple LR model is a test ofHt
0: θ = 0 againstHt

1: θ 6= 0. Given a random sample

from Fx,Y , denote Y = (Y1, ..., Yn)
′ and A =







X1 −X X2
1 −X2

...
...

Xn −X X2
n −X2







n×2

, the n × 2 matrix.

The LSE

(

β̂
θ̂

)

= (A′A)−1A′Y =

(

X2 −X(X) X3 −X2(X)

X3 −X2(X) X4 −X2(X2)

)−1
(

XY −X(Y )

X2Y −X2(Y )

)

. If

Fx,Y ∈ Θt
p, then conditional on Xi’s, COV (

(

β̂
θ̂

)

) is σ2
W (A′A)−1 and

the t-test rejects H0 if
|θ̂|

ŜW

√

(0, 1)(A′A)−1(0, 1)′
>

{

1.96 if n is large
t0.025,n−3 if W ∼ N(α, σ2),

(2.3)
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where S2
W = 1

n−3

∑n
i=1(Yi − Y − β̂(Xi −X))2 and the size of the test is 0.05. The validity of

the t-test relies on the assumption that Fx,Y ∈ Θt
p, i.e., Y = βX+ θX2 +W . Otherwise, the

(asymptotic) distribution of the test statistic in (2.3) is false. For instance, if E(Y |X) = X3

and X ∈ U(−1, 1) (the uniform distribution), then Fx,Y /∈ Θt
p and (β̂, θ̂)

a.s.→ (β, θ) = (1, 0).

Consequently, the test does not reject Ht
0, though both Ht

0 and Ht
1 are incorrect, as E(Y |X) =

X3 6= X.

Write X = (X1, ..., Xp)
′. The parameter space of the gam test is

Θplm = {Fx,Y : Y = β′X+
∑q

j=1 gj(Xj) +W}, (2.4)

where β = (0, ..., 0, βq+1, ..., βp)
′ and q ≤ p. Thus Θplm is a special case of the plm model

and ξ(X) =
∑q

j=1 gj(Xj). The gam test fits the data to a partially linear model using

the local scoring algorithm, which iteratively fits weighted additive models by backfitting.

The backfitting algorithm is a Gauss-Seidel method for fitting additive models, by iteratively

smoothing partial residuals. The algorithm separates the parametric from the nonparametric

part of the fit, and fits the parametric part using weighted linear least squares with the

backfitting algorithm. It tests Hgam
0 : ξ(·) = 0 v.s. Hgam

1 : ξ(·) 6= 0. Again the rejection

region is based on the asymptotic distribution of the test statistic, which is established under

the assumption that Fx,Y ∈ Θplm. If X is a random variable and X ⊥ W (see Eq. (2.4)),

then the gam test is a valid test of H0 against H1 in Eq. (1.4), provided that n is very large.

Otherwise, it is not. For instance, if the data are from a Cox’s model with a bivariate random

vector X and the baseline distribution is a uniform distribution, then E(Y |X) is not of the

form of a plm model and the gam test is invalid.

It is easy to see that Θ ⊃ Θplm ⊃ Θt
p ⊃ Θ0. If the data are from the Cox model with a

covariate vector, then Fx,Y 6∈ Θt
p ∪Θplm, so neither of the hypotheses among Ht

0, H
t
1, H

gam
0

and Hgam
1 is correct. In applications, we often really do not know whether Fx,Y belongs to

any particular regression model Θp specified for those tests, just like we do not know whether

Fx,Y ∈ Θ0. Thus most of the existing tests have such a drawback.
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If the data are not from the parameter spaces specified by the existing tests then these

tests are invalid, and thus these tests are just a random guessing. Actually, in such cases, it

is often that these tests are worse than random guessing. In Example 4.1 of Section 4, for a

sample of size 300 from the Cox model h(t|x) = ho(t)e
β′x, the gam test with level 0.05 does

not reject both the simple linear regression model Y = β′X+W and the weighted LR model

with a probability at least 0.99. There is a good explanation for that. In view of Eq. (2.2)

and (2.4), the current tests including the gam test try to find out whether θ = 0 in Eq. (2.2)

or gi(·) = 0 in Eq. (2.4). For a Cox’s model, θ = 0 or gi(·) = 0 is somewhat true. Thus the

gam test is less likely to reject Ht
1: θ = 0 or the LR model Θ0.

Stute’s test is based on the supx | 1√
n

∑n
i=1[Yi − α̂ − β̂′Xi]1(Xi ≤ x)|, making use of

invariancy and the empirical process. Here (α̂, β̂) is the LSE. Notice that the model in (1.1)

is different from the one in Eq. (1.2) or Eq. (1.4). Stute’s test is a valid test of the model in

(1.2). Sen and Sen (2014) establish the asymptotic distribution of their test under 4 scenarios

based on whether E(Y |X) = α+ β′X or X ⊥ ǫ (see (1.2)), assuming Fx,Y ∈ Θlse (see (1.3)).

Thus the parameter spaces Θp of Stute’s test and the SS-test are more realistic than those

of the other existing tests, as an Fx,Y in these Θp does not have to belong to any common

regression model. However, all these tests do not allow E(|Y ||X) = ∞. Our simulation study

suggests that if E(Y |X) does not exist then P (H1|H0) (the probability of type I error) of the

SS-test or Stute’s test with a nominal size of 5% can be ≥ 33% or even 99% (see Examples

4.4 and 4.5), as well as ≤ 5%. Thus a valid test allowing E(|Y ||X) = ∞ is long overdue.

3. The MD Approaches. The notations and some preliminary results are introduced in

§3.1. The MD diagnostic plotting method and the MD test are introduced in §3.2, §3.3 and

§3.4. Their theoretical justification is given in §3.5 and §3.6. The proofs of the lemmas and

theorems are all relegated to the appendices for a better presentation.

3.1. Preliminary. Given Fx,Y ∈ Θ, define W = Y |(X = 0), thus FW = Fo = FY |x(·|0).

We first consider the test of the OLR model specified in (1.4). Thus

Θ0 = {Fx,Y : Y = β′X+W , where W ⊥ X, β and FW are unknown}. (3.1)
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The next lemma characterizes various common regression models and motivating the MD

approach for the LR model as well as some other regression models.

Lemma 1. If W ⊥ X, then FY |x is a function of (Fo, β), FY (t) = E(FY |x(t|X)), and

FY |x(t|x) =







1− (1− Fo(t))
eβ

′x

if (X, Y ) follows the continuous Cox model,
Fo(t− β′x) if (X, Y ) follows the LR model,
Fo(t− g(x)) if (X, Y ) follows the gam, or plm, or gplsim model,

where g(·) is unknown and is defined for various models as follows. Under the gam model,

g(x) =
∑p

j=1 fj(xj), x = (x1, ..., xp)
′ and fi is a function; under the plm model, g(x) =

γ′u +
∑q

j=1 fj(zj), where γ and u ∈ Rp−q, x′ = (u′, z1, ..., zq); under the gplsim model,

g(x) = f1(γ
′u) + θ′z, where x′ = (u′, z′).

For convenience, we write FY (t) = FY (t;β), as FY is a function of the unknown parameter

β. Given Fx,Y and β, define another random variable Y ∗ = β′X + W ∗, where FW∗(·) =

FY |x(·|0) and X ⊥ W ∗. By Lemma 1, the cdf of Y ∗ is

FY ∗(t) (= FY ∗(t;β)) = E(Fo(t− β′X)) (denoted also by F ∗(t) or F ∗(t;β)). (3.2)

Theorem 1. If Fx,Y ∈ Θ0 (see Eq. (3.1)), then

(a) Fo(·) = FY |x(·|0) = FY ∗|x(·|0),

(b) FY |x = FY ∗|x,

(c) FY = FY ∗ (= F ∗).

If Fx,Y ∈ Θ \Θ0 then

(e) Fo(·) = FY |x(·|0) = FY ∗|x(·|0),

(d) FY |x 6= FY ∗|x,

Notice that if Fx,Y ∈ Θ0 as in (3.1), E(Y |X) may not exist. By the theorem,

F ∗ =

{

FY if Y = β′X+W ,
FY ∗ if Y 6= β′X+W .

The equation and Theorem 1 motivate the MD plot and the MD test. Given data (Xi, Yi)’s

from Fx,Y , if Fx,Y ∈ Θ0 in (3.1), then β in F ∗(t;β) is uniquely determined by Fx,Y . It is

often that β in F ∗(t;β) is also uniquely determined by Fx,Y even if Fx,Y /∈ Θ0, such as in
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Examples 4.4 and 4.5 (in §4), or the case that Fx,Y ∈ Θlse (see (1.3)). One estimates β by

the LSE if one feels confident that Θp = Θlse, or by the MSMLE otherwise. Consider, for

example, the LSE β̂ assuming Fx,Y ∈ Θlse. Then β can be uniquely determined by Fx,Y

through β = Σ−1
x Cov(X, Y ), as β̂ = (XX′ −X(X′))−1(X′Y −X′(Y ))

a.s.→β.

3.2. The MD plot. The MD plot is

to plot y = F̂Y ∗(t) and y = F̂Y (t) or together with its 95% confidence band, where

F̂Y (t) =
1
n

∑n
i=1 1(Yi ≤ t), F̂ ∗(t) = 1

n

∑n
i=1 F̂o(t− β̂′Xi), β̂ is a consistent estimator of β i.e.,

the LSE if one feels confident that Fx,Y ∈ Θlse, or the SMLE if Fo is discontinuous, or the

MSMLE otherwise, 1(A) is the indicator function of an event A, the 95% confidence band is

F̂Y (t) ± 1.96

√

F̂Y (t)(1− F̂Y (t))/n, and F̂o is a consistent estimator of Fo to be introduced

in Eq. (3.4). If the two curves are close, in particular, if the curve of y = F̂Y ∗(t) lies within

the confidence band of F̂Y , then it suggests that the model does fit the data. If the curve of

y = F̂Y ∗(t) lies outside the confidence band of F̂Y , then it suggests that the model does not

fit the data.

The key of our MD approach is to construct an estimator of the baseline cdf Fo, say F̂o,

which satisfies that for each t, F̂o(t)
P→Fo(t) ∀ Fx,Y ∈ Θ. We now explain how to construct

the estimators F̂o and F̂ ∗. Since Fo = FY |x(·|0), it is desirable that fx(0) > 0, where fx is

the density function of X, though this is not always true for the given fx. However, since

β′X+W = β′(X− a) + β′a+W, and W ⊥ X iff W ⊥ (X− a),

without loss of generality (WLOG), we shall assume hereafter that the zero vector satisfies

fx(0) > 0 and Y1, ..., Ym are the Yi’s where ||Xi|| ≤ δn and δn → 0 (e.g., δn = cn
−1

3p (3.3)

c = 2r and r is the inter-quartile-range). Otherwise, let M satisfy fx(M) > 0, X̌ = X−M

and W̌ = β′M + W , hence Y = β′X + W yields Y = β′X̌ + W̌ and fx̌(0) = fx(M) > 0.

Moreover, it is desirable, though not necessary, that M is a mode of fx, so that there are

more Xi’s in the neighborhood of M. Recall that a (population) mode M of Fx satisfies that

P (||X−M|| < δ) ≥ P (||X− a|| < δ) ∀ small δ > 0 and for all a ∈ Rp, where || · || is a norm.
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Given a random sample of size n with Xi ∈ Rp, in constructing F̂o, it is often to estimate

M by M̂ first and then modify Xi by X̌i = Xi − M̂. There are several ways to estimate

M. For instance, one can let M̂ = argmaxa#{Xi : ||Xi − a|| ≤ δn}, that is, the number

of elements in the set {Xi : ||Xi − a|| ≤ δn} is maximized by letting a = M̂. Another way

is to first construct a p− dimensional grid with ⌊n 1
3 ⌋ cells as follows. Here ⌊x⌋ is the largest

integer that is not greater than x. Suppose the data are contained in a p dimensional box

B = [l1, r1] × · · · × [lo, rp], break each interval [li, ri] into ⌊n 1
3p ⌋ equal intervals. Then there

are roughly ⌊n 1
3 ⌋ cells in the grid, say B1, ..., B⌊n

1
3 ⌋. Let Bj be the cell that the number of

elements Xi’s in Bj achieves the largest value among all possible cells. Then let the center

of Bj be the estimator M̂. The second way is more convenient. If n = 100 and p = 3, the

number of elements in the cell Bj would be at least 20. If p ∈ {1, 2}, then a mode can be

estimated by plotting Xi’s and finding where the data are more concentrated. Notice that

both M and M̂ are not uniquely determined. Hereafter, WlOG, we assume M̂ = 0.

Under the assumption in (3.3), the edf F̂o based on Y1, ..., Ym is a consistent estimator

of Fo(t) for all Fx,Y ∈ Θ. Let F̂ ∗ be the edf based on the n × k pseudo observations

Ŷij = β̂′Xi + Yj , i ∈ {1, 2, ..., n} and j ∈ {1, ...,m}, where β̂ is the SMLE if there exist more

than 3 ties in Yi − β̂′Xi’s (see Yu and Wong (2003), or Example 4.4 in Section 4), otherwise

β̂ is the MSMLE or the LSE. In particular,

F̂ ∗(t) =
1

n

n
∑

i=1

F̂o(t− β̂′Xi) =
1
n2

∑

i,j 1(Yi + β̂′Xj ≤ t, ||Xi|| ≤ δn)
1
n

∑n
k=1 1(||Xi|| ≤ δ)

(3.4)

(F̂o(t) =

∑

i 1(Yi ≤ t, ||Xi|| ≤ δn)
∑

i 1(||Xi|| ≤ δn)
(δn is as in (3.3))).

Remark 3. One may wonder whether a naive estimator of Fo is the edf F̌o based on Ŵi’s

(= Yi − β̂′Xi). This F̌o is a consistent estimator of Fo if H0 in Eq. (1.4) is true. Then F ∗

can be estimated by F̌ ∗(t) = 1
n

∑n
i=1 F̌o(t − β̂′Xi). The drawback of this naive approach is

that if H0 in Eq. (1.4) is false then F̌o is not consistent. In both Examples 4.1 and 4.2, F̌ ∗

suggests that the data fit the incorrect models Θ0. Moreover, it requires E(|Y ||X) < ∞. Thus

it does not serve our purpose of a diagnostic tool.
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If the curve of F̂Y ∗(t) lies either entirely outside or entirely inside the confidence band of

F̂Y (t), then the indication is quite clear. Otherwise, it is quite subjective to say whether the

two curves are close. Thus it is desirable to derive certain statistical tests.

3.3. The MD tests. The MD plotting method leads to a class of tests as follows.

T1 =

∫

|F̂Y (t)− F̂ ∗(t)|dF̂Y (t), T2 = sup
t≤maxi Yi

|F̂Y (t)− F̂ ∗(t)|, (3.5)

T3 =

∫

W(t)(F̂Y (t)− F̂ ∗(t))dG(t), or T4 =

∫

W(t)|F̂Y (t)− F̂ ∗(t)|kdG(t),

where k ≥ 1, W(·) is a weight function, and dG is a measure, e.g., dt, dF̂o, dF̂Y and dF̂ ∗(t).

The percentiles of these Tj ’s can be estimated by two ways:

A. Derive the asymptotic distribution of these Ti’s (see Theorem 3 and §3.6);

B. Make use of the modified bootstrap method as follows.

B.1. Obtain β̂, an estimator of β based on (Xi, Yi)’s under H0, e.g., the LSE if it is sure that

Fx,Y ∈ Θlse, otherwise, the MSMLE.

B.2. Take a random sample of size m (see Eq. (3.3)) from the Xi’s in a neighborhood of 0 and

another random sample of size n−m from the Xi’s outside the neighborhood. It yields

a sample of Xi’s, say X
(1)
1 , ..., X(1)

n .

B.3. If there is no tie in Ŵi’s (= Yi −X′
iβ̂’s), construct a continuous distribution function F̃o

satisfying F̃o(t) = F̂o(t) at the discrete points of F̂o. Otherwise, set F̃o = F̂o.

B.4. Generate a random sample of size n from F̃o, say, W
(1)
1 , ......, W

(1)
n .

B.5. Let Y
(1)
i = β̂′X(1)

i +W
(1)
i , i = 1, ..., n.

B.6. Now, obtain an MD test statistic value, say T (1), based on (X
(1)
i , Y

(1)
i )’s and Eq.(3.5).

B.7. Repeat the previous 6 steps a large number of times, say 100 times, obtain T (j) for j = 1,

......, 100. Thus the desired percentile can be estimated by these T (j)’s.

The MD tests are valid tests of HMD
0 : FY = FY ∗ against HMD

1 : FY 6= FY ∗ , where Y ∗ is

defined in §3.1. Thus the probability of type II error for testing H0 in (1.4) may be large if

H0 is not true but FY ∗ = FY . Their parameter space is at least ΘMD = Θlse ∪ Θm ∪ Θd to
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be proved in §3.5. In view of Lemma 1, the baseline cdf Fo(t) = FY |x(t|0) is well defined for

each Fx,Y ∈ Θ.

3.4. About the WLR model. We can also consider another test of a WLR model

H0: Y = β′X+W , where W = α+ g(X)ǫ, and ǫ ⊥ X, (3.6)

ǫ is a random variable with variance σ2
ǫ = 1, and g(·) is a function. Define Y w

i = Yi/g(Xi),

then Y w
i = β′Xi/g(Xi)+α/g(Xi)+ ǫwi , where ǫ

w
i = (Wi−α)/g(Xi). Under the WLR model,

there exist estimators of (α, β) and g(Xi) in the literature (see Draper and Smith (1966)),

say (α̂, β̂) and ĝ(Xi). Define Y ∗
ij by

Y ∗
ij = β̂′Xi + Yj/ĝ(Xi), i = 1, ..., n and j = 1, ..., m. (3.7)

Then the MD plot and MD test for the WLR model can be derived in a similar way as those

for the OLR model in (1.4). We skip the details.

3.5. Theoretical justification of the MD approach. It can be shown that under certain

condition, F̂ ∗ is consistent, thus the MD plot makes sense, and the MD test is a consistent

test of HMD
0 , that is, the probability of type II error P (H0|H1) → 0 if FY 6= FY ∗ . Moreover,

under certain regularity conditions, we establish the asymptotic distribution of the process

√
n(F̂ ∗ − F̂Y ) so that the asymptotic distribution is of the MD tests follow.

Lemma 2. Suppose
√
nP (||X|| ≤ δn) → ∞, then supt∈R |F̂o(t)− Fo(t)| = op(1).

Remark 4. If 0 is a mode of X and δn = 2rn
−1

3p (see (3.3)), then
√
nP (||X|| ≤ δn) → ∞.

To establish the convergence of F̂ ∗(t), the following regularity assumption may be needed.

sup
t∈R

| 1
n

n
∑

j=1

[Fo(t− β̂′Xj)− Fo(t− β′Xj)]| = op(1), (3.8)

and β̂
a.s.→β or P (β̂ 6= β infinitely often) = 0 (satisfied by the SMLE and the MSMLE if Fo is

discontinuous (see Yu and Wong (2002, 2003, 2004))).

Lemma 3. Eq. (3.8) is satisfied if either (i) Fo is continuous and β̂
a.s.→β, or (ii) Fx,Y ∈

Θ0 ∪Θd and β̂ is the SMLE or MSMLE, or (iii) Fx,Y ∈ Θlse and β̂ is the LSE.
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Notice that Fx,Y does not need to belong to Θ0 in cases (i) and (iii) of the lemma.

Theorem 2. If (Xi, Yi), i = 1, ..., n, are a random sample from Fx,Y ∈ Θ and if zero vector

is a mode of X, then for all β ∈ Rp,

sup
t∈R

| 1
n

n
∑

i=1

F̂o(t− β′Xi)− E(Fo(t− β′X))| = op(1). (3.9)

Moreover, assume that either of the three sufficient conditions stated in Lemma 3 holds, then

sup
t∈R

|F̂ ∗(t; β̂)− FY ∗(t;β)| = sup
t∈R

| 1
n

n
∑

i=1

F̂o(t− β̂′Xi)− E(Fo(t− β′X))| = op(1). (3.10)

Theorem 3. Suppose that Y = βX +W , Fo is discontinuous, β̂ is either the SMLE or the

MSMLE, X ⊥ W and P (X = 0) = q > 0. Then

√
n

(

F̂ ∗(t)− F̂Y (t)

)

converges in distribution to D1(t)− FY (t)D2 −D3(t), t ∈ [−∞,∞]

where D2 = D1(∞), D1(t) and D3(t) are Brownian bridges with zero mean and covariance

Cov(D1(t), D1(s)) =q−1

∫ (∫

1(w + βx ≤ t)dFX(x)

∫

1(w + βx ≤ s)dFX(x)

)

dFo(w)

− 2FY (t)FY (s) +

∫

Fo(t− βx)Fo(s− βx)dFX(x)

+ FY (t)[Fo(s)− FY (s)] + FY (s)[Fo(t)− FY (t)], (3.11)

Cov(D3(t), D3(s)) =FY (t ∧ s)− FY (t)FY (s),

Cov(D1(t), D3(s)) =

∫ ∫

1(w + βx ≤ t)1(w ≤ s)dFX(x)dFo(w)− FY (t)FY (s)

+

∫

Fo(t− βx)Fo(s− βx)dFX(x)− FY (t)FY (s).

The proofs of Theorems 2 and 3 put in Appendix I and Appendix II, respectively. In

Theorems 2 and 3, we make use of some simple assumptions. But we believe that these

assumptions can be weakened. For instance, the condition of
√
nP (||X|| ≤ δn) → ∞ in

Theorem 2 can be replaced by
√
nδn → ∞, provided that fx is both continuous and positive

at the origin. The condition P (X = 0) > 0 in Theorem 3 can be replaced by P (X = a) > 0
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for some a due to (3.4). The other assumptions in Theorem 3 can also be weakened, but the

proofs would be much longer and more difficult.

Remark 5. The main idea of the proof of Theorem 3 can be explained as follows. Under the

assumptions in Theorem 3, Fo is discontinuous and Y = βX +W . Then the SMLE and the

MSMLE β̂ of β satisfy P (β̂ 6= β i.o.) = 0 (Yu and Wong (2002 and 2003)). As a consequence,

P (β̂ = β if n is large enough)=1. If n is large, then WLOG, we can assume β̂ = β and thus

F̂ ∗(t)− F̂Y (t) =
1
n2

∑n
j=1

∑n
i=1 1(Yi + βXj ≤ t,Xi = 0)

1
n

∑n
k=1 1(Xk = 0)

− 1

n

n
∑

i=1

1(Yi ≤ t)

def
= G(U, V, Z), where G(U, V, Z) = U

V − Z, (3.12)

and U , V and Z are defined in an obvious way. U is a typical U-statistic. V and Z are

two sample means of i.i.d. random variables with finite expectations. One can show that

G(U, V, Z)
.a.s.→ G(E((U, V, Z))) = FY (t)q

q − FY (t). The asymptotic variance of the process

√
n(F̂ ∗(t)− F̂Y (t)) can be derived by the delta method, which can be simplified as follows.

σ2 =
E(Fo(t− [(β′X2) ∨ (β′X3)]))− F 2

Y (t)

q
− E(F 2

o (t− β′X))− 2E(Fo(t− (β′X) ∨ 0))

+ 2Fo(t)FY (t) + FY (t), where X2 and X3 are i.i.d. from X.

The covariance can also be simplified but is skipped for simplicity.

Remark 6. Eq. (3.9) and Eq. (3.10) are the theoretical justification of the MD approach.

First, Eq. (3.10) implies that under certain regularity conditions, e.g. the 3 sufficient condi-

tions in Lemma 3, F̂ ∗(·, β̂) is a consistent estimator of FY ∗ That is if n is large and H0 is

true, the curves of F̂Y and F̂Y ∗ , which are equal, should be very close. On the other hand,

if Fx,Y /∈ Θ0 it is likely (though not always) that FY 6= FY ∗ and thus F̂Y and F̂Y ∗ are not

close. Thus the MD plot is a good diagnostic method for the model Θ0 in (1.4) or (3.6).

3.6. Justification of the bootstrap approach. There are two approaches to determine

the percentiles of the MD test statistics Ti’s: One is to establish the asymptotic distribution

of Ti’s under H0, making use of Theorem 3, that is, making use of formula (3.11) or (3.12).

The alternative is to make use of the bootstrap method as in §3.3. The first approach is
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actually the common approach in constructing a test. However, there is a drawback in this

approach, namely, the distribution of the test may be false if H0 is false, e.g., the gam test

is invalid if Fx,Y belongs to a Cox’s model and thus it makes type II error with probability

≥ 90% (see Example 4.1). In our case, formula (3.11) is false if Y 6= β′X+W or W 6⊥ X.

In contrast, the advantage of bootstrapping distribution of F̂ ∗−F̂Y is that its distribution

is valid even if H0 is false. Thus, in our simulation, we did not make use of Theorem 3. The

main idea of the bootstrapping MD test is that one can generate a pseudo random sample of

the regression data based on the original sample of Xi’s and based on the sample Y1, ..., Ym in

the neighborhood of a support point of Fx, say 0. In view of Theorem 2, this pseudo random

sample satisfies the following properties:

1) If the model fits the data, the pseudo random sample is from a model which is approxi-

mately the same as the true model Θ0 specified by H0 in Eq. (1.4) (due to Eq. (3.9)).

2) Otherwise, ∀ Fx,Y ∈ Θ, the pseudo random sample is from a model which is exactly the

same as the model Yo = β̂′X+Wo with the baseline cdf FWo
= F̂o ≈ Fo and Wo ⊥ X.

3) Moreover, if Fx,Y satisfies the assumptions in Theorem 2, then the pseudo random sample

is from a model which is approximately the same as the model Y ∗ = β′X + W ∗ with

the baseline cdf FW∗ = Fo, W
∗ ⊥ X, and F̂ ∗ approximate the same as F ∗(·;β) with

β = lim β̂ a.s. (due to Eq. (3.10)).

Property 3 is interesting, but not important. Properties 1 and 2 are important. In

particular, if the data do not fit the model in Ho, then it is often that F̂Y and F̂ ∗ are quite

different. Thus if FY 6= FY ∗ , or P (FY 6= F̂ ∗) = 1 as in property 2, P (H0|H1) → 0, as n → ∞.

That is, the MD test is a consistent model test of HMD
0 : FY = FY ∗ for all Fx,Y , or at least

for all Fx,Y under certain regularity conditions.

4. Simulation Results. We compare the MD tests T1 and T2 (see Eq. (3.5)) to the SS-test,

or the gam test (using R package“gam”), or the t-test (see Example 2.1), which are all relevant

for testing H0 in Eq. (1.4) or (3.6), under different parameter spaces Θp. Since Stute’s test

is not relevant to H0, we did not compare it, though our simulation results indicate that its
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size with a nominal size of 0.05 may be ≥ 0.38% if E(Y |X) does not exist. In the simulation

study in Sen and Sen (2014), the data are all from the LR models that may or may not satisfy

H0 in Eq. (1.4). In addition to the models similar to those in Sen and Sen (2014), we also

consider models that are from the Cox model, or E(Y |X) may not exist, or X 6⊥ W . In all

cases, the replication is 5000. We only report the results on T1, as T1 is better than T2 most

of the time in our simulation. P̂ (H1|H0) and P̂ (H0|H1) are the estimated P (H1|H0) and

P (H0|H1), respectively. We estimate β by the LSE in the first 3 examples, and by the SMLE

or the MSMLE in Examples 4.4 and 4.5, as E(Y |X) does not exist only in Examples 4.4 and

4.5, and it is faster to compute the LSE. We ignore MD plots in Examples 4.4, 4.5 and 4.6 to

cut the length of the paper.

Example 4.1. We generated data (Xi, Yi), i = 1, ..., n from the Cox model h(t|X) =

ho(t) exp(X), where ho = 1(t ≥ 0), X ∼ U(−4/k, 4), k ≈ n0.7, and n is between 60 and 300.

We fitted the data to the OLR or WLR model Y = βX +W .

The Cox model does not belong to any LR model. The Cox model can be viewed as

a partially linear regression model or a gam model, but the gam test is invalid, as X 6⊥

Y − βX − E(Y |X). The t-test is also invalid, as discussed in Example 2.1.

For such data with a sample size n = 200, the residual plots (see panels (1,2) and (1,3) in

Figure 1) and the MD plot (see panel (2,1)) suggest that the OLR model may not fit the data,

but a WLR model with a weight function
√

|(X − 4)31(X < 3.7) + (X − 4.5)31(X ≥ 3.7)|

might work (see the residual plot in panel (2,2)). However, the MD plot (see panel (2,3))

suggests that the WLR model does not fit the data neither. Thus the MD plots are better.

We applied the MD test, the SS-test and the gam test to these models. Since neither

the OLR model nor the WLR model fit the data, P̂ (H0|H1) and P̂ (H2
0 |H1

1 ) are presented in

the top half of Table 1. The simulation results suggest that the MD test T1 and the SS-test

perform very well for testing the incorrect OLR model, even when n = 60. The MD test can

detect that the data do not fit the WLR model for large sample sizes such as n ≥ 200. The

gam test almost never rejects the OLR model and the WLR model for the data from the Cox
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model with the sample sizes n ≤ 300. The SS-test cannot detect the incorrect WLR model

for n ≤ 300. Here T1 for the WLR model is the modified one specified in §3.4 and Eq. (3.7).
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MD plot for OLR (Xi,residual) for WLR MD plot for WLR

Figure 1. Residuals and MD plots under the Cox Model or the WLR model

For comparison sake, we also generated random samples from another WLR model:

Y = X +W , where W ⊥ X, W ∼ N(1, X + 0.3) and X ∼ U(0, 2).

Under this model, we carried out two sets of simulation studies. We first fitted the data to

the OLR model Y = βX +W , where W ⊥ X. The residual plots (see panels (3,2) and (3,3))
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and the MD plot (see panel (4,1)) of Figure 1 suggest that the OLR model does not fit the

data, but a WLR model might work (see panels (4,2) and (4,3)). The naive estimator F̌ ∗

(see Remark 3) suggests that the data from the Cox model and from the WLR model all fit

the OLR model (see panels (1,1) and (3,1)). Thus it is useless. We also applied the same

three tests to the WLR model. Since the data were from the WLR model, thus we computed

P̂ (H0|H1) for fitting the OLR model and P̂ (H2
1 |H2

0 ) for fitting the WLR model, where H2
0 :

the model is the WLR model v.s. H2
1 : H2

0 is not true. The simulation results are presented

in the bottom half of Table 1. The nominal sizes of these tests are 0.05.

Test model: OLR | WLR
Data Test: T1 SS gam | T1 SS gam

n P̂ (H0|H1) | P̂ (H2
0 |H2

1 )
Cox 60 0.01 0.06 1.00 | 0.78 0.96 1.00

100 0.00 0.00 1.00 | 0.55 0.96 1.00
200 0.00 0.00 1.00 | 0.19 0.95 1.00
300 0.00 0.00 1.00 | 0.02 0.94 1.00

P̂ (H0|H1) | P̂ (H2
1 |H2

0 )
WLR 60 0.03 0.00 0.59 | 0.04 0.05 0.08

120 0.00 0.00 0.60 | 0.04 0.05 0.07

Table 1. Simulation Results in Example 4.1

The simulation results suggest that the SS-test is a little bit more powerful than the MD

test if the data are from the WLR model, but the MD test is more powerful than the SS-test

if the data are from the Cox model.

Example 4.2. Consider two OLR models: (1) Y = Cβ +W , and (2) Y = Cβ + θZ3 +W ,

where β = 1, θ = 3, W ∼ U(0, 1), C ∼ U(−1/k, 1) and Z1 ∼ bin(1, (C +1/k) ∗ 0.9), k ≈ n0.7,

Z2 ∼ U(0, 1), Z3 = Z2Z1 and W ⊥ (C,Z1, Z2). We generated random samples (Ci, Yi)’s

from the first model and another random samples (Ci, Yi)’s (without Z3i’s) from the second

model with n ∈ {60, 200}. The first sample satisfies the OLR model (1.4), but the second

sample does not satisfy the OLR model with X = C, as C and Z3 are correlated and thus

C 6⊥ (3Z3 +W ). We fit these two data sets to the first model.

In Figure 2, we present the various plots with n = 200. Notice from Figure 2 that the
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residual plots in panels (1,2), (2,1), (3,2) and (4,1) suggest both data sets fit Model 1. The

MD plots (see panels (2,2) and (4,2)) suggest the first data set but not the second data set

fits Model 1. The naive plot F̌ ∗ in panel (3,1) (see Remark 3) is not as good as the MD plot

in panel (4,2).
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Figure 2. Residuals and MD plots for fitting Model 1

We also compared various tests: the MD test T1, the gam test, the SS-test and the t-test.

The first data set is from Model 1, thus we computed P̂ (H1|H0). The second data set is not
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from Model 1, thus we computed P̂ (H0|H1). The t-test and the gam test are invalid, even

though Model 2 is an OLR model. The simulation results are given in Table 2.

model (1) model (2)

P̂ (H1|H0) P̂ (H0|H1)
n T1 SS gam t-test T1 SS gam t-test
60 0.04 0.05 0.00 0.05 0.24 0.35 0.96 > 0.96
200 0.05 0.05 0.00 0.05 0.01 0.00 0.96 > 0.96

Table 2. Simulation Results in Example 4.2

The four tests all have sizes smaller than the nominal size 0.05. The t-test is not applicable

if the data are from the second model (see Example 2.1). Nevertheless, we present the rate

of the t-test not rejecting θ = 0 (though P (H0|H1) = 1, as the correct model is Model 2,

not Model 1). The gam test performs quite poorly. It simply cannot detect the wrong model

in this case. The MD test and the SS-test perform well for n = 60 and extremely well for

n = 200. It seems that the MD test is more powerful than the SS-test in this case if n is

moderate, but not for a large n.

Example 4.3. The MD approach is based on the semi-parametric method and it is expected

to work well when the sample sizes are large. We now consider a case that the sample size is

not very large. We generated data with the sample sizes n = 20 and 50 from the OLR model:

Y = X +W , where X ∼ U(0, 1) and FW (t) = 1− e−5t, t > 0.

For this data set, we may test three hypotheses:

Case 1: H0: Y = βX +W v.s. H1: Y 6= βX +W .

Case 2: H1
0 : α = 0 v.s. H1

1 : α 6= 0.

Case 3: H2
0 : β = 0 v.s. H2

1 : β 6= 0.

That is, in either of the three cases, the correct assumption isH0: the model is Y = X+W

with E(W ) = α, and both H1
i and H2

1 are special cases of H0. Notice that in both cases, the

null hypotheses are false, as α = 0.2 and β = 1.

The MD plot (see panel (2,3)) and the residual plots in Figure 3 suggest that the model

Y = βX +W is appropriate. In particular, the curve 1− F̂ ∗ lies within the confidence band
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of 1− F̂Y . The scatter plot of (Xi, Yi)’s (see panel (1,1)) suggests that β 6= 0 but α = 0. The

MD plot in panel (2.2) both suggest that β 6= 0, as the curve 1− F̂ ∗ lies outside the confidence

band of 1 − F̂Y . But the MD plot in panel (2.1) raises some doubt on whether α = 0. The

t-test, the MD test and the SS-test are all valid. Notice that the data fit the model in H0.

We present the estimates of the probabilities of errors in Table 3. The simulation suggests

that the MD approach works even for small sample sizes, but the SS-test is more powerful.
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Figure 3. MD plots for a sample size n = 20

P̂ (H1|H0) P̂ (H1
0 |H1

1 ) P̂ (H2
0 |H2

1 )
n T1 SS t T1 SS t T1 SS t
20 0.004 0.002 0.05 0.043 0.028 0.041 0.286 0.033 0.050
50 0.003 0.000 0.05 0.001 0.000 0.071 0.145 0.000 0.064

Table 3. Simulation Results in Example 4.3

Example 4.4. Let Z be a Cauchy random variable with the density function fZ(t) =
1

π(1+t2) ,

FX(t) = (0.5 + 0.5F|Z|(t))1(t ≥ 0), and FW (t) = 0.51(t ≥ 0) + 0.5FZ(t). (4.1)
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Consider Model 1: Y = X + W , where X ⊥ W . Then E(W ) and σx do not exist, but

E(lnfW (W )) exists. Let (X1, Y1), ..., (Xn, Yn) be i.i.d. from the model Y = X +W , where

n ∈ {25, 50, 100, 200}. It is proved in Appendix that the SMLE and the MSMLE are β = 1

with probability 1 (w.p.1) if n is large enough. The simulation study suggests that the LSE

of β is not consistent as expected. The upper half of Table 4 presents the simulation results

on the estimates P̂ (H1
1 |H1

0 ), of the MD test T1, the gam test and the SS-test. Our simulation

results suggest that with the nominal size 0.05, T1 has P (H1|H0) ≤ 0.05, but the SS-test

and the gam test have P (H1|H0) converging to 0.33 and 0.9+, respectively. Thus the results

suggest that the MD test is a valid test for H0 in Eq. (1.4), but not the SS-test and the other

existing tests. Since the SS-test has a P̂ (H1|H0) converging to 0.33, the SS-test cannot be a

test of both H0 in (1.4) and the assumption E(|Y ||X) < ∞. It is interesting to see that the

MD approach works well even with a sample size as small as 25.

P̂ (H1
1 |H1

0 ) | P̂ (H2
0 |H2

1 )
T1 gam SS | T1 T1 T1

n | b = 1 b = 10 b = 300
Ex. 4.4 25 0.03 0.66 0.31 | 0.95 0.94 0.86

50 0.03 0.78 0.33 | 0.93 0.58 0.17
100 0.03 0.86 0.33 | 0.81 0.27 0.01
200 0.04 0.91 0.33 | 0.65 0.15 0.00

Ex. 4.5 25 0.04 1.00 0.98 | 0.96 0.94 0.90
50 0.04 1.00 0.99 | 0.93 0.90 0.67
100 0.03 1.00 1.00 | 0.91 0.77 0.46
200 0.04 1.00 1.00 | 0.82 0.74 0.27

Table 4. Simulation Results in Examples 4.4 and 4.5

We also generated random sample (Xi, Yi)’s from Model 2: Y = b exp(X) +W , and test

the model Y = βX + W , where FX(t) = 0.41(t ≥ 1) + 0.121(t ≥ 0) + 0.48F|Z|(t), FW is

as in Eq. (4.1) and b ∈ {1, 10, 300}. The SMLE or MSMLE β̂ = b(e − 1) 6= b if n is large

(see Appendix). Our simulation study on T1 yields P̂ (H2
0 |H2

1 ) given at the top right of Table

4. Though P̂ (H2
0 |H2

1 ) has not reached 0 yet when n = 200 and b = 1 or 100, the tendency

indicates P̂ (H2
0 |H2

1 ) → 0, and the results suggest that the MD test is consistent. However,
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the convergence speed depends on the model, the larger the b, the faster. This is also why

we replace fX in Model 2. In view of P̂ (H1
1 |H1

0 ) for the gam test and the SS-test, there

is no point to compute P̂ (H2
0 |H2

1 ) for the other existing tests. Example 4.5. The models

in Example 4.4 satisfy E(|lnfW (W )|) < ∞. Under this assumption, it is proved that the

MSMLE of β is consistent. Now let the two models in Example 4.4 remain the same except

that FW is replaced by FW (t) = 0.5[1(t ≥ 0) +
∫ t

e
s−1(lns)−2ds1(t > e)]. Then both E(W )

and E(lnfW (W )) do not exist. We generate (Xi, Yi) from these two models, and test H0 as

in Eq. (1.4). The simulation results are presented in the bottom half of Table 4. The results

suggest that the MD tests are valid even if E(|lnfW (W )|) = ∞, though P̂ (H2
0 |H2

1 ) converges

slower than those in Example 4.4. Notice that P̂ (H1
1 |H1

0 ) for the gam test and the SS-test

with nominal size 0.05 converges to 1.00, even worse than the case of Example 4.4.

Example 4.6. We generated data from the model Y = X +W , where FW is as in Eq. (4.1)

andX ∼ bin(1, 0.5). For n ∈ {100, 1000}, the sample means (SE’s) of the LSE are 5.85 (61412)

and 6.10 (144392), respectively. It suggests that the LSE does not converges.

5. Data Analysis. We present data analysis of three sets of real data. The MD plots and

residual plots of the three data sets are presented in Figure 4. We use the MSMLE in the

MD approach.

Example 5.1. Divusa Data set (Faraway (2016), p.30). The data set records divorce rates

Y in the USA from 1920 to 1996 (X), with n = 77. The fitted values and response variables

roughly lie along the 45 degree line (see panel (1,1)), while the residual plot (1,2) suggests

the violation of linearity assumption or time correlation of residuals. The MSMLE β̂ = 0.1.

The MD plot does not support the linear model (see panel (1,3)). The MD tests, the SS-test

and the gam test all reject H0 in (1.4) with p-values ≈ 0.00.

Example 5.2. Sat Data set (Faraway (2016), p.86). The data were collected to study

the relationship test score Y and the salary X with n = 50. Both fitted values plot and

residual plot (see panels (2,1) and (2,2)) suggest that the linearity assumption may not be

true, agreeing with the MD plot (see panel (2,3)). The MSMLE β̂ = −6.431. The p-values
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are 0.05, 0.01, 0.13 and 0.34 for T1, T2, the gam test and the SS-test, respectively. Thus the

MD tests reject H0 as in (1.4), but not the gam test and the SS-test. The MD tests are better

than the gam test and the SS-test here.
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Figure 4. Diagnostic plots for 3 real data sets

Example 5.3. Cars Data set (Ezekiel (1930)). The data give the speed X of cars and the

distances Y taken to stop and were recorded in the 1920s with n = 50. The MD plot (see

panel (3,3)) and the plot in panels (3,1) and (3,2) suggest that the linearity assumption is

correct. The p-values are 0.66, 0.68, 0.11 and 0.86 for T1, T2, the gam test, and the SS-test,

respectively. They all support the LR model. It is worth mentioning that there are 26 distinct

values of Yi − β̃Xi’s and 34 ties. For instance, there are 8 ties at 8. The SMLE and MSMLE

β̃ = 2 and the LSE β̂ = 3.96.
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It is worth mentioning that the MD plots (see panels (1,3), (2,3) and (3,3)) clearly indicate

that F̂ ∗ is either within or mostly outside the confidence band of the edf. The gam test and

the SS-test reject H0: Y = βX+W only in Example 5.1, whereas the MD tests reject H0 in

Examples 5.1 and 5.2. Moreover, the MD tests agree with the MD plots in these three data

sets. But the gam test and the SS-test disagree with the residual plots and MD approaches in

Example 5.2. Thus in these examples, the MD approaches perform better than the residual

plots, the SS-test and the gam test.

6. Concluding Remark. It is well known that if Fx,Y ∈ Θlse, then most existing tests are

valid if Fx,Y ∈ Θ0, except some parametric tests. It is interesting to notice from Examples

4.4 and 4.5 that the gam test and the SS-test (as well as Stute’s test) can have a size much

greater than the nominal size 0.05 if H0 is true but E(|Y ||X) = ∞. Thus the distributions

claimed about these tests are false if H0 is true and E(Y |X) does not exist. But the MD test

is a valid test of H0 against H1 in Eq. (1.4), even if either E(Y |X) does not exist or H0 is

false. Notice that our simulation results indicates that none of the MD test and the SS-test

is uniformly more powerful than the other in the cases that the SS-test is valid. Example 4.1

suggests that the MD tests are more powerful if the data are from the Cox model. On the

other hand, if FY = FY ∗ but H0 in (1.4) fails, then the SS-test is more powerful than the MD

test. The MD test is a valid test of HMD
0 : FY = FY ∗ , though it is not a consistent test of H0

in (1.4) if FY |x 6= FY ∗|x but FY = FY ∗ .

7. Appendix I. We present the proofs of the lemmas and theorems in Section 3 and the

proofs of some examples in Section 4 here.

Proof of Lemma 1. FY (t) = E(FY |x(t|X)) is trivially true. Notice that Cox’s model is

specified by hY |x(t|x) = ho(t)e
β′x, and

SY |x(t|x) = exp(−
∫

u≤t
hY |x(u|x)du) = exp(−

∫

u≤t
ho(u)due

β′x) = (So(t))
eβ

′x

.

Under the LR model Y = β′X+W , FW (t) = Fo(t) = FY |x(t|0). Since W ⊥ X by assumption

and W = Y − β′X, it is easy to yield FY |x(t|x) = Fo(t− β′x).

The proofs for the gam model and the plm model are similar and are skipped.
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Proof of Theorem 1. Notice that FY |x and FY ∗|x are two conditional cdf and both

conditional on the same random variable X. FY ∗|x is the cdf satisfying E(Y |X) = β′X with

parameter β. If Y = β′X+W , then statements (a), (b) and (c) are trivially true by Lemma

1 and Eq. (3.2). Otherwise, statement (d) is also trivially true and statement (f) follows from

Lemma 1, as Y ∗ = β′X +W . If statement (e) is false, then FY |x(t|X) = FY ∗|x(t|X) ∀ t. It

follows that fY |x(t|X) = fY ∗|x(t|X) ∀ t and

fx,Y (X, t) = fY |x(t|X)fx(X) = fY ∗|x(t|X)fx(X) = fx,Y ∗(X, t), ∀ t.

Notice that fx,Y and fx,Y ∗ are two density functions. The last equation contradicts the

assumption that (X, Y ) is not from the model Y = β′X+W . Thus statement (e) holds.

The next lemma is needed in the proofs of Lemmas 2 and 3. Its proof will be given later.

Lemma 4. Suppose that G is a cdf, Gn(t) → G(t) and Gn(t−) → G(t−) pointwisely, Gn ≥ 0,

and Gn is non-decreasing for n ≥ 1. Then supt∈R |Gn(t)−G(t)| = o(1).

Proof of Lemma 3. Denote F1(t) = E(Fo(t − β′X)). By the strong law of large numbers

(SLLN), 1
n

∑n
i=1 Fo(t− β′Xi)

a.s.→F1(t). Denote F̌n(t) =
1
n

∑n
i=1 Fo(t− β̂′Xi). F̌n and F1 are

both cdf’s. We shall prove the next three statements one by one:

(a) F̌n(t)
a.s.→F1(t) for each t; (b) F1(t) is continuous; (c) supt |F̌n(t)− F1(t)|a.s.→0. (8.1)

∀ ǫ > 0, ∃ N > 0 such that Fo(−N) + 1− Fo(N) < ǫ and P (||X|| > N) < ǫ.

Notice that Fo is uniformly continuous on the closed interval [−2N, 2N ]. Thus

∃ δ ∈ (0, N) such that |Fo(x)− Fo(y)| < ǫ whenever |x− y| < δ and x, y ∈ [−2N, 2N ].

Let Ωo = {β̂ → β, 1
n

∑n
i=1 1(||Xi|| > N) → P (||X|| > N)}. By assumption and the SLLN,

P (Ωo) = 1. Given ω ∈ Ωo, abusing notation, write F̌n(t;ω) = F̌n(t) and Xi(ω) = Xi, then ∃

nω such that |(β̂ − β)′Xi| < δ whenever n ≥ nω and ||Xi|| ≤ N .

Let n ≥ nω, ui = t − β̂′Xi, vi = t − β′Xi, A1i = {||Xi|| ≤ N , and ui or vi ∈ [−N,N ]},

A2i = {||Xi|| ≤ N , and ui and vi /∈ [−N,N ]}, and Aoi = {||Xi|| > N}. Then

|Fo(t− β̂′Xi)− Fo(t− β′Xi)|
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









< ǫ if 1(A1i) = 1 (as |ui − vi| ≤ δ and |ui| ∨ |vi| ≤ 2N)
= |Fo(ui)− Fo(vi)| < ǫ if 1(A2i) = 1 and ui, vi < −N (as Fo(ui), Fo(vi) < ǫ)
= |1− Fo(ui)− (1− Fo(vi))| < ǫ if 1(A2i) = 1 and ui, vi > N
≤ 1 otherwise.

=> | 1
n

n
∑

i=1

(Fo(t− β̂′Xi)− Fo(t− β′Xi))| ≤
1

n

n
∑

i=1

[ǫ1(A1i ∪ A1i) + 1(Aoi)]

<ǫ+
1

n

n
∑

i=1

1(||Xi|| > N) (n ≥ nω)

≤2ǫ if nω → ∞. (8.2)

Since w is arbitrary in Ωo, P (Ωo) = 1, and ǫ is arbitrary, statement (a) in (8.1) holds. That

is, P (Ω1) = 1, where Ω1 = {ω : F̌n(t;ω) → F1(t) ∀ t}. If F1 is continuous and ω ∈ Ω1, then

supt |F̌n(t;ω) − F1(t)| → 0 by Lemma 4. Thus statement (c) in (8.1) holds, and it further

yields Eq. (3.8). It remains to prove (b) in (8.1). A heuristic arguement is as follows.

|F1(t)− F1(t−)| =
∫

Fo(t− β′x)− Fo((t− β′x)−)dFx(x) =

∫

0dFx(x) = 0 ∀ t,

where F1(t−) = limx↑t F1(x). A rigorous proof is similar to the proof in (8.2). For a given

t, if |t − y| ≤ δ, then |u − v| ≤ δ, where u = t − β′X and v = y − β′X. Let A1 = {||X|| ≤

N, |u| ∧ |u| ≤ N}, A2 = {||X|| ≤ N, |u| ∧ |v| > N}, and Ao = {||X|| > N}.

|F1(t)− F1(y)| =
∫

Fo(t− β′x)− Fo(y − β′x)dFx(x)

≤
∫

A1∪A2∪Ao

|Fo(t− β′x)− Fo(y − β′x)|dFx(x)

≤
∫

A1

ǫdFx(x) +

∫

A2

ǫdFx(x) +

∫

Ao

dFx(x)

≤2ǫ.

Proof of Lemma 2. Define an(t, s) =
1
n

∑n
i=1 1(Yi ≤ t, ||Xi|| ≤ s),

bn(s) =
1
n

∑n
i=1 1(||Xi|| ≤ s), a(t, s) = P (Y ≤ t, ||X|| ≤ s), b(s) = P (||X|| ≤ s).

So F̂o(t) =
an(t,δn)
bn(δn)

and Fo(t) = limn→∞
a(t,δn)
b(δn)

.

By Lemma 4, we have

lim
n→∞

sup
t∈R

|a(t, δn)
b(δn)

− Fo(t)| = 0. (8.3)

27



By the empirical process results (see Kosorok (2009)),

sup
t∈R,s∈R

|an(t, s)− a(t, s)| = Op(1/
√
n)

Notice by the fact an(t, δn) ≤ bn(δn), we have

|an(t, δn)
bn(δn)

− a(t, δn)

b(δn)
| ≤ |bn(δn)− b(δn)

b(δn)
|+ |an(t, δn)− a(t, δn)

b(δn)
|.

We can bound the first term by Chebyshev inequality, P (| bn(δn)−b(δn)
b(δn)

| > η) ≤ 1
η2nb(δn)

. The

supremum of the second term is of order, supt∈cR |an(t,δn)−a(t,δn)
b(δn)

| = Op(
1√

nb(δn)
). So we have

sup
t∈R

|F̂o(t)−
a(t, δn)

b(δn)
| = op(1), (8.4)

provided
√
nb(δn) → ∞. Eq. (8.3) and Eq. (8.4) yield supt∈R |F̂o(t)− Fo(t)| = op(1).

Proof of Theorem 2. By Lemma 2, Eq. (3.9) follows from

sup
t∈R

| 1
n

n
∑

i=1

[F̂o(t− βXi)− Fo(t− βXi)]| ≤ sup
t∈R

|F̂o(t)− Fo(t)| = op(1).

Moreover, by Lemma 2, we have

sup
t∈R

| 1
n

n
∑

i=1

[F̂o(t− β̂Xi)− Fo(t− β̂Xi)]| ≤ sup
t∈R

|F̂o(t)− Fo(t)| = op(1).

Also by Eq. (3.8),

sup
t∈R

| 1
n

n
∑

i=1

[Fo(t− β̂Xi)− Fo(t− βXi)]| = op(1).

The Central Limit Theorem and the previous two inequalities yield

sup
t∈R

| 1
n

n
∑

i=1

[F̂o(t− β̂Xi)− E(Fo(t− β′X))| = op(1).

Notice that a sufficient condition of Eq. (3.8) is Fx,Y ∈ Θlse.

If Y is discontinuous, and Fx,Y ∈ Θ0, then the SMLE β̂ satisfies that P (β̂ = β) → 1.

Hence, Eq. (3.10) follows directly from Eq. (3.8).
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Proof of Lemma 4. For each η > 0, define D = {t ∈ R : Gn(t) − G(t−) > η}. Since G is

non-decreasing and bounded, there are finite elements in D. Consider the following separation

on the whole real line t0 < t1 < t2 < ... < tM , s.t

(a) G(t0) < η.

(b) 1−G(tM ) < η.

(c) Every element in D should be one of t′ks.

(d) G(tk−)−G(tk−1) < η for all k = 0, 1, ...,M .

So supt∈R |Gn(t)−G(t)| ≤ max{T1, T2, T3, T4}, where

T1 = max0≤k≤M−1 supt∈(tk,tk+1)
|Gn(t)−G(t)|,

T2 = max0≤k≤M |Gn(tk)−G(tk)|,

T3 = supt≤t0 |Gn(t)−G(t)|,

T4 = supt>tM |Gn(t)−G(t)|.

By monotonicity,

supt∈(tk,tk+1)
|Gn(t)−G(t)|

≤ max{|Gn(tk+1−)−G(tk)|, |G(tk+1−)−Gn(tk)|

≤ max{|Gn(tk+1−)−G(tk+1−)|+ |G(tk+1−)−G(tk)|, |G(tk+1−)−G(tk)|+ |G(tk)−Gn(tk)|}

≤ 2η, provided n is large enough.

Hence T1 ≤ 2η, when n is large enough. By the convergence conditions, T2 ≤ η, when n

is large enough. Notice T3 can be bounded by

max{Gn(t0), G(t0)} ≤ max{|Gn(t0)−G(t0)|+G(t0)} ≤ 2η, provided n is large enough.

Similar argument yields T4 ≤ 2η when n is large. Since η is arbitrary, the lemma holds.

Proofs in Examples 4.4 and 4.5. The SMLE and the MSMLE are proposed by Yu and

Wang (2002). The SMLE and the MSMLE of β under the model Y = β′X + W maximize

L =
∏n

i=1 f(Yi − a′Xi) and Lm =
∏n

i=1
F (Yi−a′xi+h)−F (Yi−a′xi−h)

2h , respectively, over all

possible cdfs F and all possible values of a ∈ Rp, where f(t) = F (t) − F (t−), h = o(1/n) is

predetermined (e.g., h = n−1/5), as Wi’s are i.i.d., and Wi = Yi − β′Xi by the assumption. If

the solution of the SMLE is not uniquely determined, Yu and Wong suggested to choose the
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one which is closest to the LSE. For illustration, we shall show that the SMLE of β is 1 and

b(e− 1) for the data from Models 1 and 2 in these two examples, respectively.

For each a, L is maximized by f(t) = f̂a(t), the density function of the edf based on

Yi − a′Xi, i ∈ {1, ..., n}. If the data are from Model 1, then Yi = Xi +Wi, P (Wi = 0) = 0.5

and P (Wi 6= Wj |WiWj 6= 0) = 1. Then L =
∏n0

i=1 f(Xi(1 − a))
∏

i>n0
f(Wi + (1 − a)Xi),

where n0 =
∑n

i=1 1(Wi = 0). If n is large, then n0 ≈ n/2 and L achieves its maximum

(n0

n )n0( 1n )
n−n0 at a = 1 w.p.1. That is, L is maximized by the SMLE β̂ = 1.

If the data are from Model 2, i.e., Y = beX + W , then (Xi, Yi) takes 6 types of val-

ues: (0, b), (1, be), (0, b + w), (1, be + w), (x, bex), and (x, bex + w), where x,w /∈ {0, 1}.

Yi − aXi ∈ {b, be− a, b+Wi, be+Wj − a, beXk − aXk, be
Xh +Wk − aXh}, where Xi, Xj , Xk

and Xh are distinct observations (/∈ {0, 1}). If a = b(e − 1), then the first 2 elements equal

b, and P (Yi − b(e − 1)Xi = b) ≈ 0.4 + 0.12, whereas the last four elements, b +Wi, Wj + b,

b exp(Xk)−b(e−1)Xk, b exp(Xh)+Wh−b(e−1)Xh are distinct for a reason similar to Model

1. Thus one can show that the SMLE of β is b(e− 1) if n is large.

Notice that Lm =
∏n

i=1(F (Yi − aXi + h) − F (Yi − aXi − h)) × (2h)−n and if h is very

small, then F (Yi − aXi + h)− F (Yi − aXi − h)) = fa(Yi − aXi) Thus one can show also that

the MSMLE of β is the same as the SMLE if n is large in these two examples. For a more

rigorous proof, see Yu and Wong (2002).

8. Appendix II. Proof of Theorem 3. The proof of Theorem 3 can be found in Liu and

Yu (2017) (see http://www.math.binghamton.edu/ftp/disc.pdf).
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