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1. Introduction

We consider estimation of a joint distribution function of a bivariate random vector with

interval-censored data. The problem is applied to a marriage dataset, and so the variables

of interests are the ages at first marriage of a couple, denoted by X. We observe data on

individuals’ marital status over a period of 20 years. The data consist of uncensored, right-

censored, left-censored, interval-censored and missing observations. We use the estimate

of the joint distribution function to estimate the spousal age correlation and the marginal

distributions of males’ and females’ ages at first marriage.

A large literature examines age at first marriage, (see, for example, Goldin and Katz [1],

Loughran [2], Bloom and Bennett [3], and Keeley [4]). While marriage data naturally come

in bivariate coordinates, typical empirical studies consider univariate analysis and assume

a normal distribution for age. Furthermore, existing studies typically analyze age at first

marriage at a point in time, including individuals from diverse backgrounds and ignoring

the dynamics in individuals’ changing marital status. Some recent studies apply univariate

duration analysis to assess age at first marriage such as Aassve et al [5] and Berrington

and Diamond [6]. However, these studies do not tackle all the censoring aspects of the

panel data and ignore the joint feature of partnership. Because spousal age correlation

significantly deviates from zero, a bivariate analysis seems more appropriate.

Transition models are widely used to analyze panel data. Some applications, such as

estimation of transition probabilities and first passage times in match/partnership forma-

tion, require knowledge of the exact timing of the transition and the joint observations of a

match (Wong [7,8]). Very often in matching data sets, the transition information of some

agents is either missing or is only known to lie within a certain interval (interval censored).

Existing methods handle these data by dropping unknown or missing event timing or miss-

ing partners’ information, and often assume a completely parametric form of the predictor
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for the first passage times.

We propose a bivariate interval censorship model which allows observations in each vari-

ate of the random vector X be uncensored, right censored, left censored, interval censored

and missing. The model is applicable to non-parametric, parametric and semi-parametric

approaches associated with some meaningful covariates. In this paper, we consider the

non-parametric approach and assume that the joint distribution function F0 of X is totally

unknown. We propose to estimate F0 by the generalized (non-parametric) maximum like-

lihood estimator (GMLE). We propose a feasible algorithm to obtain the GMLE. We then

establish the consistency and asymptotic normality of the GMLE under a set of reasonable

assumptions.

Our approach builds on the statistical literature that examines univariate and mul-

tivariate interval-censored data. For univariate interval-censored data, Groeneboom and

Wellner [9] propose a univariate case 2 interval censorship model in which there are exactly

two follow-ups for each individual. Under this model, observations either fall before the

first follow-up time, between the two follow-up times or after the second follow-up time.

In reality, there was rarely a follow-up study in which each individual was followed exactly

twice. Schick and Yu [10] propose a univariate mixed case interval censorship model, which

allows the number of follow-ups to be random. While these two models do not allow un-

censored observations, Yu, Wong and Li [11] extend the mixed case model to a univariate

mixed interval-censorship model. The model allows both interval-censored observations and

uncensored observations.

For multivariate interval-censored data, Wong and Yu [12] propose a multivariate case

2 interval censorship model. Betensky and Finkelstein [13] also consider- non-parametric

estimation with bivariate interval-censored data. Van der Vaart and Wellner [14] and Yu et

al [15] establish consistency of the GMLE under a multivariate mixed case model. Again,
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these models do not allow uncensored observations.

The major difference between the aforementioned studies and our paper lies on the

unique structure of our dataset. The dataset contains observations that are uncensored, right

censored, left censored, and interval censored. It also contains missing observations. That is,

the information on a particular variate is missing completely, either because a respondent

did not give the information on the spouse or the information was obviously ridiculous.

Missing data without covariates do not contribute any information in the univariate case.

Thus they can be deleted from the data set and the univariate interval censorship models

do not consider such missing data. However, missing data in a variate of the bivariate

random vector do contain information. Thus, the main innovative feature of our paper is

the formation of a multivariate interval censorship model that allows all types of exact,

censored and missing data and that fits the marriage data.

We make two additional contributions. First, we propose a feasible and efficient algo-

rithm for finding the collection of all MIs. Second, we propose a method to simplify the

self-consistent algorithm. Typical methods for obtaining the GMLE based on univariate

interval-censored data is the self-consistent algorithm (see Turnbull [16]). The algorithm is

based on finding all maximal intersections of the observed intervals (for the definition of the

maximal intersection (MI), we refer to Section 3). The self-consistent algorithm can easily

be extended to the multivariate interval censoring. However, there are two computational

problems which need to be addressed. The first problem is that it is difficult to find the col-

lection of all MIs in a multivariate interval censoring setting. To the best of our knowledge,

Betensky and Finkelstein [13] is the first study that discusses an algorithm for finding MIs

with bivariate interval-censored data. However, their algorithm is less efficient than ours

and is for a different type of data (see Remark 4 of our paper). The second problem is that

for a large dataset such as our marriage dataset (with 11,774 observations), the original
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self-consistent algorithm can be time consuming and may not be feasible. In this paper, we

propose to simplify the self-consistent algorithm.

Our results show that the marginal distribution of age at the first marriage has a

single peak and is skewed to the right, in contrast to the common assumption of normal

distribution in regression analyses. More intriguingly, our results indicate a serious problem

when ignoring all kinds of censored and missing data, and the bivariate nature of a matching

data. We compare our results with those that consider only univariate case and drop all

censored and missing data. For example, using the same data source as that in our paper,

Gould ([17], p.5, p.23, and Figure 3a on p.42) shows that the age at first marriage distribution

has an increasing slope, which is in stark contrast with our results.

In Section 2, we describe the data and propose a statistical partnership model. Section

3 presents a method to estimate the GMLE of the joint distribution function. In Section 4,

we present the joint distribution of the data and illustrate the idea via a subset of the data.

In Section 5. we prove the consistency and the asymptotic normality of the GMLE under

certain regularity assumptions. Section 6 is a concluding remark.

2. Model Description

The data for this analysis are from the National Longitudinal Survey of Youth 1979-98

(NLSY). The 1979-98 cross-sectional and supplemental samples consist of 11,774 respon-

dents, who were between the ages of 14 and 22 in 1979. The samples were core nationally

representative random samples. Interviews were conducted yearly from 1979 through 1994;

since then data were recorded bi-annually.

Because our focus is on age at first marriage, we use only the first marriage spell, even

though longer marriage histories are available. In particular, the variables of interests are

the first marriage ages of these youths and their (future) spouses. This is a bivariate random

vector.
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There are two ways to determine when marriage occurs for respondents. First, we

use the reported ages at first marriage. This results in exact data. Second, if there is no

report on the ages at first marriage, we impute the ages using data on the respondent’s

marital status. Starting from 1978, respondents were asked about their marital status; if

there was a change from singlehood to marriage, we have interval-censored data of the first

marriage. There were 9009 out of 11,774 respondents who were ever married, of which 8891

cases contain the known age at first marriage of the respondent but not the spouse after

applying the methods described above, and the remaining 118 cases contain no information

concerning age at first marriage.

The ages of spouses in responses may not refer to their ages at first marriage. So, from

the age variable we may only know that the spouses’ first marriage happened at or prior

to the current marriage year. Another problem relating to spouses’ ages is that it is poorly

recorded. Among the 9009 ever marriage cases, only 1535 cases contain spouses’ age data.

Among those non-missing data, 11.8 percent were below 15 years of age, and 6.91 percent

were below age 8. To make it reasonable, we assume that ages that fall below 12 at the first

marriage are missing.

Thus, we have exact observations on respondents whose first marriage age is known. In

addition, three types of censored observations are present.

a. Some respondents were left-censored, with a starting marital status in 1979 being not

single. Only their ages in 1979 were recorded.

b. Before 1994, some respondents were single, became non-responsive for a couple of years

in their annual responses and then became married or divorced. Some but not all did

not give their ages at first marriage in their responses. Thus the first marriage ages

were interval censored for this portion of respondents, but were exact for the rest.

c. Between 1994 and 1998, respondents changed their marital status in the biannual re-
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sponses (even though they did not become non-responses). Some but not all did not

give their ages at first marriage in their responses. Thus their first marriage ages were

also interval censored.

d. By the end of the follow-up, some individuals had not married yet; thus we have right-

censored observations on these individuals.

e. If the first marriage age of a respondent was right censored, the information on the

spouse was missing. Otherwise, the age of the spouse of a respondent may or may

not have been reported (even though they did not become non-respondents). If it was

reported, it was not reported whether it was the age at the spouse’s first marriage.

Thus we only have left-censored observations.

In order to formulate a model for this data set, we make use of the following notations.

Imagine that we have a couple and a bivariate random vector X = (X1, X2)t, where Xt is

the transpose of the vector X and X1 and X2 are the first marriage ages of the male and

female, respectively. (Either the female is the spouse of the male respondent at his first

marriage or the male is the spouse of the female respondent at her first marriage.) For

i = 1, 2, our model is a mixture of various case k models and a right censorship model. In

particular, Let K1 and K2 be random nonnegative integers. For i = 1, 2, if Ki = 0, Xi is

subject to right censoring, namely, there is a random variable Yi,0,0 such that we observe

(min(Xi, Yi,0,0),1(Xi ≤ Yi,0,0)), where 1(·) is an indicator function. If Ki > 0 then Xi is

subject to a case Ki model, with the age at the j-th follow-up Yi,Ki,j , j = 1, ... , Ki. Thus,

if K1 > 0 and K2 > 0, K1 and K2 are the numbers of follow-ups for the male and the female

whose exact first marriage ages were not reported, respectively. Y1,K1,j and Y2,K2,j are the

ages of the male and female at the j-th follow-up time, respectively. For convenience, let

Yi,Ki,0 = −∞ (though we could also let Yi,Ki,0 = 0) and Yi,Ki,Ki+1 = ∞ for i = 1, 2 and

Ki ≥ 1. To deal with the situation that the information was missing, if Ki = 1, there are
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two possibilities for Yi,Ki,1:

(1) Yi,Ki,1 ∈ (0,∞). It corresponds to the univariate case 1 interval censoring.

(2) Yi,Ki,1 = 0. It corresponds to missing information on Xi and we have Xi ∈ (0,∞].

Denote K = (K1,K2), Y = {(Yi,Ki,j : i = 1, 2; j = 1, ...,Ki} ∪ {Y1,0,0, Y2,0,0}. We assume

that the observable random vector is (L1, R1, L2, R2), where for i = 1 or 2,

(Li, Ri) =



















(Xi, Xi) if Ki = 0 and Xi ≤ Yi,0,0 (exact),
(Yi,0,0,∞) if Ki = 0 and Xi > Yi,0,0 (right-censoring)
(0,∞) if Ki = 1 and Yi,1,1 = 0 (missing),
(Yi,Ki,j−1, Yi,Ki,j) if Ki ≥ 1, Yi,Ki,1 > 0, Yi,Ki,j−1 < Xi ≤ Yi,Ki,j ,

j = 1, ...., Ki + 1 (interval censoring).

(2.1)

Notice that the first condition in (2.1) covers no censoring, the second condition covers right

censoring, the third condition covers missing cases, and finally interval censoring and left

(right) censoring are covered in the fourth condition. We also make use of the following

assumptions.

A1. X and (K, Y) are independent.

A2. P{Ki = 0} > 0, i = 1, 2.

A1 is a typical identifiability condition. Assumption (2.1) together with Assumption

A1 formulate a general bivariate interval censorship model that allows possible exact obser-

vations and missing observations. It includes the models studied by Wong and Yu [12] and

van der Vaart and Wellner [14], which do not allow exact observations and missing data, by

letting P{Ki = 0} = 0 and P{Ki = 1 and Yi,1,1 = 0} = 0, i = 1, 2.

Assumption (2.1) together with Assumptions A1 and A2 formulate a general bivariate

interval censorship model that allows exact observations. A2 emphasizes that there are exact

observations. Assumption A2 distinguishes the current model from the models studied by

Wong and Yu [12] and van der Vaart and Wellner [14].

We want to estimate the joint distribution function F0 of (X1, X2), where

F0(x) = P{X1 ≤ x1, X2 ≤ x2} and x = (x1, x2).
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For convenience, we make use of the observable rectangle I, that is,

I =







[L1, R1] × (L2, R2] if L1 = R1 and L2 < R2,
(L1, R1] × (L2, R2] if L1 < R1 and L2 < R2,
(L1, R1] × [L2, R2] if L1 < R1 and L2 = R2,

3. Method of estimation

Let (Li1, Ri1, Li2, Ri2, Ii) be i.i.d. copies of (L1, R1, L2, R2, I). Kiefer and Wolfowitz

[18] first introduced the concept of the generalized likelihood function. Under the multi-

variate interval censoring, the generalized likelihood function becomes Λn =
∏n

i=1 µF (Ii),

where µF is the measure induced by an unknown distribution function F , i.e., µF (Ii) =
∫

(x,y)∈Ii
dF (x, y). Let τ1 be the maximum finite value of L1 and R1 and τ2 be the maximum

finite value of L2 and R2. Let τ01 and τ02 be the smallest possible age for a male and female

to marry, respectively.

Define a maximal intersection, A, with respect to the Ii’s to be a nonempty finite

intersection of the Ii’s such that for each i, A∩Ii = ∅ or A. Let {A1, ..., Am} be the collection

of all possible distinct MIs. For our marriage study data set, typically, [x, x] × [y, y] (the

intersection of observations [x, x] × (0,∞] and (0,∞] × [y, y]) is an MI. Moreover, (τ1,∞] ×

[y, y] is another MI (the intersection of observations (τ1,∞] × (0,∞] and (0,∞] × [y, y]) .

Using an argument similar to Wong and Yu [12], it can be shown that the GMLE of

F0(x) which maximizes the generalized likelihood function, Λn, must assign all the proba-

bility masses to the sets A1, ..., Am. Thus it suffices to maximize the generalized likelihood

function of the following form:

Λn =
n

∏

i=1

µF (Ii) =
n

∏

i=1

[
m

∑

j=1

1(Aj ⊂ Ii)sj ], (3.1)

where s (= (s1, ..., sm−1)t) ∈ Ds, sm = 1 − s1 − · · · − sm−1, and Ds = {s; si ≥ 0, s1 + · · · +

sm−1 ≤ 1}. Denote the GMLE of s by ŝ and that of F0 by F̂n.
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The sjs can be obtained by the self-consistent algorithm described by Turnbull [16]

for univariate interval-censored data as follows: Let s
(0)
j = 1/m for j = 1, ...,m. Denote

δij = 1(Aj ⊂ Ii). At the h-step, update sj by

s
(h)
j =

n
∑

i=1

1

n

δijs
(h−1)
j

∑m
k=1 δiks

(h−1)
k

, j = 1, ...,m, h ≥ 1. (3.2)

Repeat until the sj ’s converge. The justification of the convergence of this method for

multivariate interval-censored data is similar to that given in Turnbull [16] for univariate

data. The algorithm is easy to implement. A more efficient algorithm may be obtained

by mimicking the algorithms for univariate interval-censored data discussed in Wellner and

Zhan [19].

Given a GMLE ŝ, the GMLE of F0(x) is not uniquely defined on an MI unless the MI

is a singleton. A GMLE of F0(x) can be obtained as follows:

F̂n(x) =
∑

Aj⊂[0,x1]×[0,x2]

ŝj . (3.3)

The GMLE of s may not be unique under multivariate interval censoring, however, the

GMLE of µF (Ii) is uniquely determined for each i (see Yu, Wong and He [20]).

Hereafter, we address two issues concerning the empirical implementation of computing

the GMLE. We first propose an algorithm for searching for the MIs, and then a method to

simplify the self-consistent algorithm.

The following algorithm is a feasible algorithm for implementing any bivariate interval-

censored data. The algorithm can be generalized to handle multivariate interval-censored

data.

1. (Search all the MIs of the observable intervals corresponding to (Li1, Ri1)s).

Partition the observations (Li1, Ri1)s into two groups: the group of all exact obser-

vations (i.e. Li1 = Ri1) and the group of all interval-censored observations (i.e.
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Li1 < Ri1). Let e1 < e2 < · · · < em0
be all the distinct exact observations. Let

l1 < l2 < · · · < lm1
be all the distinct values of Li1s such that Li1 < Ri1 and

r1 < r2 < · · · < rm2
be all the distinct values of Ri1s such that Li1 < Ri1. Let

(li1 , ri1), ..., (lik
, rik

) be all possible intervals such that

(a) li1 , ..., lik
∈ {l1, ..., lm1

},

(b) ri1 , ..., rik
∈ {r1, ..., rm2

},

(c) (lij
, rij

) ∩ {l1, ..., lm1
, r1, ..., rm2

} is empty for each j.

Delete the pairs (lij
, rij

) for which the interval (lij
, rij

] contains some ei given above.

Denote the remaining pairs by (p1, q1), ..., (pm3
, qm3

) and denote pm3+1 = qm3+1 = e1,

..., and pm4
= qm4

= emo
. Notice that a1 = (p1, q1], ..., am3

= (pm3
, qm3

], am3+1 =

[pm3+1, qm3+1], ..., am4
= [pm4

, qm4
] are all the MIs of the observable intervals cor-

responding to (Li1, Ri1)s. By reordering, without loss of generality (WLOG), we can

assume that a1 ≤ a2 ≤ · · · ≤ am4
, that is, the endpoints of these MIs ais satisfy

p1 ≤ q1 ≤ p2 ≤ · · · pm4
≤ qm4

.

2. (Search all the MIs of the observable intervals corresponding to (Li2, Ri2)s).

The method is the same as in Step 1. Let ui and vi, i = 1, ..., m5, be the endpoints of

the resulting MIs bis, and assume that u1 ≤ v1 ≤ u2 ≤ v2 ≤ · · · ≤ um5
≤ vm5

.

3. A substitution of MIs. Let A∗
1, .., A∗

m be all the distinct product sets of the form

ai×bj. These A∗
h may not be MIs of Iis, but they can play the role of the MIs in finding

a GMLE of F . It can be shown that each A∗
j is either a subset of an MI or does not

intersect with each MI. One can stop here and take these A∗
j s as substitutions of the

MIs, or go to the next step to find all the real MIs.

4. Search for real MIs.

4.1. For each Aj, one can find the smallest intersection Bj of Iis which contains Aj

in the following steps.

11



4.1.1. If A∗
j ⊂ I1, let Bj = I1.

4.1.2. For i = 2, ..., n, if A∗
j ⊂ Ii then update Bj by Bj ∩ Ii. That is, let Bj ∩ Ii be

the new Bj. By definition, each side of the intersection of Bj ∩ Ii is the closest one,

among the two corresponding sides of Bj and Ii, to the rectangle A∗
j . Bj obtained at

the end of this step is a potential MI that contains Aj.

4.2. For each Bj resulting from Step 4.1.2, check whether it is an MI. It can be shown

that if Bj is an MI, then it either does not intersect with all the other Bk, k 6= j, or is a

subset of some Bk. Thus if there exists a Bk such that Bj ∩Bk 6= ∅ and Bj ∩Bk 6= Bj,

then Bj is not an MI.

4.3. Let A1, ..., Am be all the distinct MIs resulting from Step 4.2.

Remark 3. Two methods are proposed in the above algorithm for finding the MIs. One

method is to find all real MIs and the second is to find a substitution of the collections of all

MIs (ending at Step 3). The advantage of the second method is the symmetry of the A∗
j s,

which are arranged in a rectangular array of rectangles. The disadvantage of the method is

that it may increase the computational burden.

Application of formula (3.2) in implementing the self-consistent algorithm can be time-

consuming when the sample contains over 10,000 observations. To overcome this difficulty,

we propose a method to simplify the self-consistent algorithm.

We recognize that some distinctive observations bear the same data information in

our sample. In other words, the data set contains many replications. By reordering the

observable rectangles, without loss of generality, we can assume that I1, ..., IM are all the

distinct Iis and the number of replications are N1, ..., NM , respectively. Then (3.2) can be

replaced by

s
(h)
j =

M
∑

i=1

Ni

n

δijs
(h−1)
j

∑m
k=1 δiks

(h−1)
k

, j = 1, ...,m, h ≥ 1. (3.4)

For the marriage study, M = 724, which is much smaller than n = 11, 774.
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Remark 4. The self-consistent algorithm (3.2) and the definition of the MIs are similar

to those proposed in Wong and Yu [12], Betensky and Finkelstein [13] and van der Vaart

and Wellner [14]. Wong and Yu [12], and van der Vaart and Wellner [14] do not discuss the

algorithm for finding all MIs, Betensky and Finkelstein [13] propose an algorithm. There

are two differences between thei algorithm and ours.

(1) Data forms are different. In their set-up, observed intervals in each coordinate are of

the form [a, b], where as in our set-up they are of the form either (a, b] or [c, c].

(2) They develop their algorithm directly from the definition of the MIs, without consider-

ing efficiency. In fact, one reason that Wong and Yu [12] do not discuss the algorithm

in their paper is that an algorithm can be formed directly from the definition of the

MIs. The algorithm proposed in this paper is faster.

4. Data analysis on the marriage study

4.1. Data analysis on a subsample

The sample contains 11,774 observations. For illustration purpose, we present a sample

of 100 observations shown in Table 1. Let us explain the entries in the first few rows of the

table.

1. Among the 7 cases, a female respondent was 22 years old in 1979. She was not married

by the end of the study.

2. A female respondent was 19 years old in 1979. She reported that she was married and

her spouse was 19 years old in 1979.

3. Among 8 cases, a female respondent was 21 years old in 1979. She reported that she

was divorced, but did not report her former spouse’s age.

4. A male respondent was 17 years old in 1979. He reported that he was married but did

not report his spouse’s age.

Put Tables 1 and 2 here.
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The GMLE of the joint survival function S(x, y) = P{X1 > x,X2 > y} is given in

Table 2. The entries in the first column are the ages of the males. The entries in the first

row are the ages of the females. In Table 2, the first entry in each cell corresponding to

ages (i, j) is the GMLE of the survival function S(i, j) and the second entry is its standard

deviation.

It is worth mentioning that for the current sub-sample, since the sample size is small,

the information matrix Ĵ (= −∂2Ln(F̂n)
∂s∂st ) is singular. Thus, we cannot use Ĵ−1 to estimate

the covariance matrix of F̂n. The standard deviation of the GMLE in Table 2 were obtained

by the procedure developed in Yu, Wong and He [20]. We skip the details.

Since the largest observations for males and females are 40 and 39, respectively, it is not

appropriate to compute the correlation between X1 and X2. However, we can compute the

conditional correlation between X1 and X2, given X1 ≤ 40 and X2 ≤ 39. The conditional

correlation is 0.59.

We want to emphasize that the current sample is not a random sample of the original

dataset, in a sense that we collected certain typical cases for illustration only. Thus, it is

not surprising that there is a mismatch of the survival function in Table 2 and the density

function of the whole data set displayed in §4.2.

4.2. Data analysis on the full data set

We computed the GMLE of F0 and the correlation coefficient between X1 and X2,

which is 0.82. The program was written in C (language) and the computation was performed

on a Pentium III personal computer. Even though the size of the marriage data is large

(n = 11774), it took less than 5 minutes to obtain these estimates. The graph of the GMLE

of the joint density function of (X1, X2) is given in Figure 1. The shape of the distribution

does not resemble a typical joint normal distribution.

Note from Figure 1 that there is a sharp jump in the joint density function f at (42, 44),
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and similarly at the marginal density functions (see Figure 2). This is mainly due to the

property of the GMLE and the fact that (1) the largest observations in the data set for male

and female are 42 and 44, respectively, and they are both exact observations, and (2), there

was a portion of the population that were not married by the end of the study. It is well

known that the GMLE is not stable at the endpoints. For the current analysis, we should

ignore the value of the distribution at the endpoints.

Put Figures 1 and 2 here

Figure 2 presents a plot of the marginal density for males and females. The vertical

lines correspond to the median age at first marriage. The median age difference is 2. After

the peak age of the first marriage for males, the two densities become more similar.

Note that the marginal density is equivalent to the density of the waiting time with a

shift. The marginal density is skewed to the right and does not follow a normal distribution,

as assumed widely in marriage studies.

These results differ remarkably from Gould [17], who uses the same data set as ours to

study the marriage and career decisions of young men. Gould reduces the sample to male

only cases and ignores interval censoring issues, the sample size is n = 2155 (Gould ([17],

p.5 and p.23)), out of total of 11,774. His plot of the distribution of age at first marriage

(Gould ([17], Figure 3a, p.42)) shows an upward-sloping curve, becoming flat only after age

30! The plot is peculiar not only because it is non-intuitive to have more people married at

older ages, but also it does not at all resemble what we have found in the data.

Further, the result of the waiting time to the first marriage distribution (and the hazard

rate, not shown) having a single peak indicates that an exponential model cannot match

the data, as used widely in the theoretical marriage-search literature. So, caution must be

taken when analyzing transition data, whether it is in marriage, the entry of firms, merger,

jobs or firms turnover and so on.
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5. Asymptotic properties of the GMLE

We shall establish the asymptotic properties of the GMLE making use of the following

assumptions.

A3. (L1, R1, L2, R2) takes on finitely many values and F0 is discrete.

A4. P{X1 > τ1, X2 > τ2} > 0, P{X1 < τ01 or X2 < τ02} = 0, P{(X1, X2) = (x, y)} > 0,

P{X1 = x,X2 > τ2} > 0 and P{X1 > τ1, X2 = y} > 0, for each x ∈ [τ01, τ1] and

y ∈ [τ02, τ2].

In this study, all data in NLSY were rounded off to integers (number of years). There were

11,774 respondents and the follow-up lasted for 20 years. Thus we can assume that A3

holds. A4 says that there are still men (or women) having their first marriage beyond the

age of τ1 (or τ2). Denote A the collection of the subsets of the forms (τ1,∞] × (τ2,∞],

[x, x] × (τ2,∞], (τ1,∞] × [y, y], [x, x] × [y, y], where x ∈ [τ01, τ1] and y ∈ [τ02, τ2].

Theorem 1. Under assumptions A1 and A3, µF̂n
(Ii) → µF0

(Ii) a.s. for each i.

Theorem 2. Under assumptions A1, A2 and A3 the GMLE F̂n(x, y) is strongly consistent

at each (x, y) ∈ {x ≤ τ1, y ≤ τ2}.

Theorem 3. Under assumptions A1, A2, A3 and A4,
√

n







ŝ1 − so
1

...
ŝm−1 − so

m−1






is asymptot-

ically normal with mean 0 and dispersion matrix J−1, where so
j = µF0

(Aj). A strongly

consistent estimator of J is given by Ĵ = −∂2Ln(F̂n)
∂s∂st . Furthermore,

√
n[F̂n(x) − F0(x)]

is asymptotically normally distributed for all x ∈ A. A consistent estimate of the asymp-

totic variance of F̂n(x) is 1
nctĴ−1c, where c is a (m − 1) × 1 vector with the i-th entry

ci = 1(Ai ⊂ [0, x1] × [0, x2]) unless F0(x) = 1.

Under assumptions A1, A2, A3 and A4, the problem becomes an estimation problem

of multinomial distribution and it follows from standard argument that the GMLE F̂n is

asymptotically normally distributed and the convergence rate is in
√

n. The proofs are very

similar to the proofs in Wong and Yu [12], and thus they are put in a technical report
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(see Wong and Yu [21]). Under the assumptions in Theorem 3, the GMLE F̂n is also

asymptotically efficient. The proof of this assertion is straightforward and is omitted.

6. Conclusion

We have proposed a feasible algorithm to estimate the GMLE of a bivariate random vec-

tor with uncensored, right-censored, left censored, interval censored and missing data. We

consider a non-parametric approach and the GMLE is shown to be consistent and asymp-

totically normal The algorithm proposed in this paper, that aims at searching for all the

MIs and simplifying the self-consistent algorithm, substantially reduces the computational

burden.

Throughout the paper we have focused on developing the GMLE for the bivariate age

distribution and the algorithm for computation. Because the model is new, we feel that

we should first understand the properties of the estimator and its implementation. The

discrete assumption we have imposed in the paper arises logically from the marriage data

set. However, the method proposed is also valid for continuous random variables. The

proofs of the theorems for the continuous random variables are more difficult to construct.

We intend to work on it in a future project.

Results reflect that ignoring interval-censored data and the bivariate aspect of the data

may produce an erroneous picture about the age distribution. Because empirical studies in

workers’ job transition and the formation of new firms (univariate cases), or marriage market

transition and merger activities (bivariate cases) have gained much attention recently, we

hope to offer a new technology for analyzing data so that more appropriate structure can

be put to advance our understanding in interesting phenomena. Selectivity issues relating

to match formation are outside the scope in this paper and is left for future work. The

model can also be extended to include multi-dimensional traits, covariates, or parametric

and semi-parametric analyses. We leave such topics for future work.
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Table 1. A sample of the Data Set

L1 R1 L2 R2 Ni

0 100∗ 41 100 7
0 19 0 19 1
0 100 0 21 8
0 17 0 100 1
0 17 16 16 1
0 19 0 16 1
0 20 13 13 1
0 100 0 17 1
0 100 39 39 2

17 17 0 31 1
18 20 0 100 1
40 40 0 100 1
41 100 0 100 15
31 31 0 14 1
0 100 21 23 1
0 25 24 24 4
0 20 18 18 18
0 20 0 100 5
0 34 24 24 1
0 37 29 29 1
0 100 22 24 1

30 30 0 27 1
24 24 0 16 1
0 33 24 24 1

18 18 0 20 2
0 20 30 30 1
0 16 14 14 1
0 100 22 30 1
0 27 28 28 2
0 27 18 18 3

29 29 0 15 1
21 21 0 30 1
0 100 18 19 9
0 30 19 19 3

* 100 is in place of ∞ to illustrate right censoring and (0, 100) represents a missing

observation.

20



ages 13 14 16 18 19 23 24 28 29 30 39
16 0.938 0.921 0.894 0.578 0.347 0.319 0.229 0.203 0.189 0.176 0.137

0.028 0.032 0.036 0.063 0.067 0.065 0.059 0.057 0.056 0.055 0.049
17 0.745 0.728 0.724 0.504 0.289 0.262 0.205 0.188 0.181 0.176 0.137

0.118 0.119 0.119 0.111 0.109 0.107 0.088 0.071 0.059 0.055 0.049
18 0.550 0.533 0.528 0.470 0.289 0.262 0.205 0.188 0.181 0.176 0.137

0.163 0.164 0.164 0.131 0.109 0.107 0.088 0.071 0.059 0.055 0.049
19 0.449 0.431 0.427 0.427 0.256 0.229 0.191 0.181 0.176 0.176 0.137

0.086 0.086 0.086 0.086 0.078 0.075 0.065 0.058 0.055 0.055 0.049
21 0.396 0.379 0.374 0.374 0.203 0.176 0.176 0.176 0.176 0.176 0.137

0.074 0.074 0.074 0.074 0.059 0.055 0.055 0.055 0.055 0.055 0.049
24 0.387 0.374 0.374 0.374 0.203 0.176 0.176 0.176 0.176 0.176 0.137

0.074 0.074 0.074 0.074 0.059 0.055 0.055 0.055 0.055 0.055 0.049
29 0.381 0.374 0.374 0.374 0.203 0.176 0.176 0.176 0.176 0.176 0.137

0.074 0.074 0.074 0.074 0.059 0.055 0.055 0.055 0.055 0.055 0.049
30 0.333 0.327 0.327 0.327 0.203 0.176 0.176 0.176 0.176 0.176 0.137

0.062 0.062 0.062 0.062 0.059 0.055 0.055 0.055 0.055 0.055 0.049
31 0.327 0.327 0.327 0.327 0.203 0.176 0.176 0.176 0.176 0.176 0.137

0.062 0.062 0.062 0.062 0.059 0.055 0.055 0.055 0.055 0.055 0.049
40 0.307 0.307 0.307 0.307 0.192 0.166 0.166 0.166 0.166 0.166 0.128

0.061 0.061 0.061 0.061 0.044 0.042 0.042 0.042 0.042 0.042 0.042

Table 2. The GMLE of the survival function
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Proofs

We shall establish consistency and asymptotic normality of the GMLE studied in Wong

and Yu’s paper “A BIVARIATE INTERVAL CENSORSHIP MODEL FOR PARTNERSHIP

FORMATION” in this part.

A.1. Consistency of the GMLE

By assumption A3, τ1 and τ2 are both finite. Under the finite discrete assumption,

there are finitely many possible values of I, say M of them. WLOG, we can assume that

the first M Ii’s are all the distinct possible values.

Theorem 1. Under assumptions A1 and A3, µF̂n
(Ii) → µF0

(Ii) a.s. for each i.

Proof of Theorem 1. Let Ni =
∑n

j=1 1(Ij = Ii). We shall first show that

P{I = Ii} = µF0
(Ii)g(Ii), where g does not depends on F0.

Here, abusing notation, we treat Ii as a fixed value, instead of a random rectangle. Let f0

be the density function of (X1, X2). In particular, by (2.1) there are 3 types of observations

Ii. The first type is of form Ii = [t, t] × (a, b], where t is a positive integer, a and b are

non-negative integers or ∞,

P{I = Ii}

=
b

∑

u>a

f0(t, u)P{K1 = 0, Y1,K1,0 ≥ t,K2 ≥ 1, Y2,K2,j−1 < u ≤ Y2,K2,j , j ∈ {1, ...,K2 + 1}}

=µF0
(Ii)P{K1 = 0, Y1,K1,0 ≥ t,K2 ≥ 1, Y2,K2,j−1 = a, Y2,K2,j = b, j ∈ {1, ...,K2 + 1}}

Thus, g(Ii) = P{K1 = 0, Y1,K1,0 ≥ t,K2 ≥ 1, Y2,K2,j−1 = a, Y2,K2,j = b, j ∈ {1, ...,K2 +1}}.

The second type is of the form Ii = (a1, b1] × (a2, b2]. It can be derived in a similar

manner as for the first type that

g(Ii) = P{Ki ≥ 1, Yi,Ki,ji−1 = ai, Yi,Ki,ji
= bi, ji ∈ {1, ...,Ki + 1}, i = 1 and 2}.
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The third type is of the form Ii = (a, b] × [t, t] with

g(Ii) = P{K2 = 0, Y2,K2,0 ≥ t,K1 ≥ 1, Y1,K1,j−1 = a, Y1,K1,j = b, j ∈ {1, ...,K1 + 1}}.

The normalized log likelihood function is

Ln(F ) =
1

n

M
∑

i=1

NilnµF (Ii).

Let  L(F ) := E(Ln(F )). Then

 L(F ) =
M
∑

i=1

µF0
(Ii)g(Ii)lnµF (Ii)

=
M
∑

i=1

µF0
(Ii)g(Ii)ln{µF (Ii)g(Ii)} −

M
∑

i=1

µF0
(Ii)g(Ii)lng(Ii). (6.1)

It is important to notice that the second summand in (6.1) does not depend on F . Since

M
∑

i=1

µF0
(Ii)g(Ii)ln{µF0

(Ii)g(Ii)} is finite,

by the Shannon-Kolmogorov inequality and (6.1), we have

 L(F ) <  L(F0) unless µF (Ii) = µF0
(Ii) for i = 1, ..., m. (6.2)

By the strong law of large numbers (SLLN),

lim
n→∞

Ln(F̂n) ≥ lim
n→∞

Ln(F0) (as F̂n maximizes Ln(·))

= lim
n→∞

1

n

n
∑

i=1

Wi (where Wi = lnµFo
(Ii))

= E(W1) (by SLLN, as Wis are i.i.d.)

=  L(F0) almost surely. (6.3)
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Let Ω′ denote the event on which lim
n→∞

Ln(F̂n) ≥  L(F0). Fix an ω ∈ Ω′, let F ∗ be a limit

point of F̂n(·, ω) in the sense that µF̂kn
(Ii) → µF̂∗(Ii) for each i and for some subsequence

{kn} of positive integers tending to infinity. Since lnµF (Ii) < 0, it follows that

 L(F0) ≤ lim
n→∞

Ln(F ) = lim
n→∞

1

n

M
∑

i=1

NilnµF (Ii) (by (6.3))

≤
M
∑

i=1

µF0
(Ii)g(Ii)lnµF∗(Ii) (by Fatou’s lemma)

= L(F ∗).

That is,  L(F ∗) ≥  L(F0). By the foregoing inequality and (6.2), we conclude that  L(F ∗) =

 L(F0) and consequently µF∗(Ii) = µF0
(Ii) for all i. Since ω is arbitrary in Ω′, F ∗ is an

arbitrary limiting point of F̂n and Ω′ has probability one, the theorem is proved.

Theorem 2. Under assumptions A1, A2 and A3 the GMLE F̂n(x, y) is strongly consistent

at each (x, y) ∈ {x ≤ τ1, y ≤ τ2}.

Proof of Theorem 2. It can be shown that under assumptions A1, A2 and A3

P{X1 is uncensored|X1 = t ≤ τ1} > 0 and P{X2 is uncensored|X2 = t ≤ τ2} > 0.

By Theorem 1 µF̂n
(Ii) → µF0

(Ii) a.s. for each Ii of form Ii = [t, t] × (0, c]. Given

(x, y) ∈ {x ≤ τ1, y ≤ τ2}, F̂n(x, y) =
∑

t≤x µF̂n
([t, t] × (0, y]). There are only finitely many

summands in the foregoing summation by assumption A3 Thus F̂n(x, y) → F0(x, y) a.s.

A.2. Asymptotic normality of the GMLE.

For the marriage study, it is reasonable to assume that

A4. P{X1 > τ1, X2 > τ2} > 0, P{X1 < τ01 or X2 < τ02} = 0, P{(X1, X2) = (x, y)} > 0,

P{X1 = x,X2 > τ2} > 0 and P{X1 > τ1, X2 = y} > 0, for each x ∈ [τ01, τ1] and

y ∈ [τ02, τ2].

A4 says that there are still men (or women) having their first marriage beyond the age

of τ1 (or τ2). Under assumptions A1, A2, A3and A4, the problem becomes an estimation
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problem of multinomial distribution and it follows from standard argument that the GMLE

F̂n is asymptotically normally distributed and the convergence rate is in
√

n.

Denote A the collection of the subsets of the forms (τ1,∞] × (τ2,∞], [x, x] × (τ2,∞],

(τ1,∞] × [y, y], [x, x] × [y, y], where x ∈ [τ01, τ1] and y ∈ [τ02, τ2]. It can be shown that if

n is large enough, each subset in A is an MI. In fact, [x, x] × [y, y] is the intersection of

observable rectangles [x, x] × (0,∞] and (0,∞] × [y, y]; [x, x] × (τ2,∞] is the intersection of

[x, x] × (0,∞] and (0,∞] × (τ2,∞]; (τ1,∞] × [y, y] is the intersection of (0,∞] × [y, y] and

(τ1,∞]× (0,∞]; (τ1,∞]× (τ2,∞] is the intersection of (0,∞]× (τ2,∞] and (τ1,∞]× (0,∞].

Let so
j = µF0

(Aj) for Aj ∈ A. Then by assumptions A3 and A4, so
j > 0 for all j. Verify

that

 L(F ) =
M
∑

h=1

g(Ih)
m

∑

j=1

so
j1(Aj ⊂ Ih)ln

∑

j

sj1(Aj ⊂ Ih). (7.1)

Let

ph = g(Ih)
m

∑

j=1

so
j1(Aj ⊂ Ih).

We can rewrite (7.1) as

 L(F ) =
M
∑

h=1

phln
m

∑

j=1

sj1(Aj ⊂ Ih) =
M
∑

h=1

phln
m

∑

j=1

sjδhj .

By assumptions A3 and A4, ph > 0, h = 1, ..., M . Set J = −E( ∂2Ln(F0)
∂s∂st ), where ∂Ln

∂s is an

(m − 1) × 1 vector and ∂2Ln

∂s∂st is an (m − 1) × (m − 1) matrix. Verify that

J = nE(
∂Ln(F0)

∂s

∂Ln(F0)

∂st
) = − ∂2  L

∂s∂st
= (

M
∑

h=1

ph
(δhi − δhm)(δhj − δhm)

(
∑m

k=1 δhkso
k)2

)(m−1)×(m−1)

and J = UU t, where U =







(δ11−δ1m)
√

p1
∑

m

k=1
δ1kso

k

· · · (δM1−δMm)
√

pM
∑

m

k=1
δMkso

k· · · · ·
(δ1(m−1)−δ1m)

√
p1

∑

m

k=1
δ1kso

k

· · · (δM(m−1)−δMm)
√

pM
∑

m

k=1
δMkso

k






.
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We now show that J is nonsingular. Let xj be the upper-right vertex of Aj , j = 1, ...,

m − 1. By reordering the Ij ’s, WLOG, we can assume that the upper-right vertex of Ii is

equal to xi, i = 1, ..., m− 1. Thus Ii ∩Aj = ∅ for j > i, i = 1, ..., m− 1. Then the matrix

U has the upper triangle matrix form

U =

















√
p1

so
1

· · · · · · · · (δM1−δMm)
√

pM
∑

m

k=1
δMkso

k

0
√

p2

so
2+δ21so

1
· · · · · · · (δM2−δMm)

√
pM

∑

m

k=1
δMkso

k

...
...

...
...

...
...

0 0 · · ·
√

pm−1

so
m−1

+
∑

m−2

k=1
δ(m−1)kso

k

· · · (δM(m−1)−δMm)
√

pM
∑

m

k=1
δMkso

k

















.

Recall so
i > 0 and pi > 0 for i = 1, ..., m − 1. It follows that the matrix U is of full rank

and J = UU t is nonsingular.

It is easy to verify that

∂2Ln(F̂n)

∂s∂st
→ E(

∂2Ln(F0)

∂s∂st
) = −J.

It thus follows that

∂Ln(F̂n)

∂s
=

∂Ln(F0)

∂s
− J∆n + op(‖∆n‖),

where ∆n is the (m−1)-dimensional column vector with entries ŝi−so
i = µF̂n

(Ai)−µF0
(Ai),

i = 1, . . . ,m − 1. Let Ωn = {infi≤m ŝi = 0}. Verify that

0 =
∂Ln(F̂n)

∂s
except on the event Ωn,

and by Theorem 1 and assumptions A1, A2, A3 and A4, P(Ωn) → 0 as n → ∞. It follows

from the central limit theorem that
√

n∂Ln(F0)
∂s is asymptotically normal with mean 0 and

dispersion matrix J . This shows that ∆n = J−1 ∂Ln(F0)
∂s + op(n−1/2). Thus we have the

following result.

Theorem 3. Under assumptions A1, A2, A3 and A4,
√

n







ŝ1 − so
1

...
ŝm−1 − so

m−1






is asymptot-

ically normal with mean 0 and dispersion matrix J−1. A strongly consistent estimator of
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J is given by Ĵ = −∂2Ln(F̂n)
∂s∂st . Furthermore,

√
n[F̂n(x) − F0(x)] is asymptotically normally

distributed for all x ∈ A. A consistent estimate of the asymptotic variance of F̂n(x) is

1
nctĴ−1c, where c is a (m − 1) × 1 vector with the i-th entry ci = 1(Ai ⊂ [0, x1] × [0, x2])

unless F0(x) = 1.

Under the assumptions in Theorem 3, the GMLE F̂n is also asymptotically efficient.

The proof of this assertion is straightforward and is omitted.
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