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Abstract: Wong et al. (2018) studied the piecewise proportional hazards (PWPH) model with interval-

censored (IC) data under the distribution-free set-up. It is well known that the partial likelihood approach

is not applicable for IC data, and Wong et al. (2018) showed that the standard generalized likelihood

approach does not work neither. They proposed the maximum modified generalized likelihood estimator

(MMGLE) and the simulation results suggest that the MMGLE is consistent. We establish the consistency

and asymptotically normality of the MMGLE.
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1. Introduction. We shall establish the asymptotic properties of the maximum modified generalized

likelihood estimator (MMGLE) proposed by Wong et al. (2018) under the piece-wise proportional hazards

(PWPH) model, with interval-censored (IC) continuous survival time Y . The proportional hazards (PH)

model (Cox (1972)) is a common regression model. The PWPH model is a special PH model.

For a random variable Y , denote its survival function by SY (t ) = P (Y > t ), its density function by fY (t ),

and its hazard function by hY (t ) = fY (t )
SY (t−) . Given a covariate (vector) Z which does not depend on time Y ,

(Z,Y ) follows a time-independent covariate PH (TIPH) model if the conditional hazard function of Y |Z is

h(t |z) = hY |Z(t |z) = ho(t )eβ
′z, for t < τ, (1.1)

where β′ is the transpose of the p ×1 vector β, τ= sup{t : ho(t ) > 0}, and ho is a hazard function.

IC data consist of n time intervals with the end-points Li ≤ Ri , i = 1, ..., n, where the true survival time

Yi falls inside the interval. A realistic model for the IC data without exact observations is the mixed case

interval censorship model (see Schick and Yu (2000)), which is specified as follows. Let K be the number

of follow-up times for a patient. Conditional on K = k, Y and (Ck,1, ..., Ck,k ) are independent, where Ck,1,

..., Ck,k are the k follow-up times. Define (L,R) =∑K
i=0(CK ,i ,CK ,i+1)1(Y ∈ (CK ,i ,CK ,i+1], where 1(A) is the

indicator function of an event A, Ck,0 = 0 and Ck,k+1 =∞. Then (Li ,Ri ) are i.i.d. from (L,R). For the PH

model with IC data, it is assumed that Z and (Y ,K ,C) are independent, where C = {Cki : i ∈ {1, ...,k},k ≥ 1}.

The PH model has been extended to the time-dependent covariates PH (TDPH) model (see, e.g., Cox

and Oak (1984, p. 115), Therneau and Grambsch (2000), Zhang and Huang (2006), or Wong et al. (2017)).

A special case of the TDPH model is the PWPH model with k cut points formulated by Zhou (2001):

h(t |z) =
k∑

i=0
ho(t )eβi zi 1(t ∈ [ai , ai+1)), where a0 = 0 < a1 < ·· · < ak+1 =∞,

z = (z0, z1, ..., zk ) is a time-independent covariate vector. Wong et al. (2018) applied the PWPH model to

analyze their interval-censored cancer research data.

The common approach in the semi-parametric set-up under the PH model is the partial likelihood

approach. For the standard PH model, Finkelstein (1986) showed that this approach does not work if the
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data are interval censored and she proposed an approach based on the generalized likelihood:

L =L (β,So) =
n∏

i=1
[(S(Li |zi )−S(Ri |zi ))1−δi (S(Li −|zi )−S(Ri |zi ))δi ], (1.2)

where (L1,R1,z1), ..., (Ln ,Rn ,zn) are IC observations, δi = 1(Li = Ri ), So(·) = S(·|0) and S(t |z) is the con-

ditional survival function corresponding to h(t |z) in (1.1). The semi-parametric maximum likelihood

estimator (SMLE) of (β,So) maximizes L over all survival functions So and all possible values of β.

Moreover, under the PWPH model, it is shown (see Example 2.1 in Wong et al. (2018)) that β can be

non-identifiable if the following assumption is violated:

∃ a,b ∈ (SFL ∪SFR )∩ [c,∞) such that So(b) > So(a) > 0, (1.3)

where given a random variable, say Y , SFY is the support set of FY , in the sense that if x ∈ SFY then

FY (x +ε)−FY (x −ε) > 0 ∀ ε> 0 and SFL and SFR are defined in a similar manner.

Furthermore, in general, the SMLE of β under the likelihood function (1.2) may not be unique (see

Example 2.3 in Wong et al. (2018)). Both phenomena do not occur if Z is time-independent (see Wong and

Yu (2012)). They further established the identifiability condition:

Lemma 1. (Wong et al. (2018)). Assume h(t |z) = ho(t)eβ
′z1(t≥c). Under the mixed case IC model and

assuming that So is absolutely continuous, the parameter β is identifiable if assumption (1.3) holds. The

parameter So(c) is identifiable if β 6= 0 in addition to (1.3).

Moreover, they proposed a modification to the generalized likelihood and proposed an algorithm

to find the estimator of (β,So) that maximizes the modified generalized likelihood. Thus we call the

estimator the MMGLE.

We shall give the proof of the consistency and asymptotic normality of the MMGLE in this short note.

2. The Main Results. We study consistency of the MMGLE under the PWPH model with one cut point

assuming Y is continuous in this paper. In particular, we consider the model

hY |Z(t |z) = ho(t )exp(z′β1(t ≥ c)), where Z is a time-independent covariate vector. (2.1)

Y is subject to interval censoring under the mixed case IC model with the following up times Cki ’s and

the random number of follow-up times K . It is easy to show (see e.g., (Wong et al. (2018)) that under
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model (2.1), if Y is continuous, then SY |Z(t |z) =


So(t ) if t ≤ c

(So(c))1−eβ
′z

(So(t ))eβ
′z

if t > c.

Abusing notations,

write h(t |z) = hY |Z(t |z), S(t |z) = SY |Z(t |z) and f (t |z) = fY |Z(t |z). We assume that Z is a p ×1 random vector

and Z takes on p linearly independent values.

Let A1, ..., Am be all the innermost intervals (II) induced by Ii ’s. If the covariates are time-independent,

it is well known that in order to maximize L , it suffices to put the weights of So to the right-end points of

the IIs. Let t j ’s be the right-end point of the II’s, or c, or ±∞, and t0 =−∞< t1 < ·· · < tic = c < tic+1 < ·· · <

tm =∞. Write S j = So(t j ). For each i , let (li ,ri ) satisfy



tri ≤ Ri < tri+1 and tli ≤ Li < tli+1 if Li < Ri <∞

tri = tm and tli ≤ Li < tli+1 if Li < Ri =∞

tri = Ri and tli = tri−1 if Ri = Li .

Theorem 1. Suppose that h(t |z) = ho(t )eβ
′z1(t≥c), Y is continuous and subject to the mixed case IC model,

E(K ) <∞, and the identifiable condition in Lemma 1 is satisfied. Then the MMGLE of (So ,β) is consistent.

Proof. We shall give the proof in 4 steps. Abusing notation, write S(u)
o (t ) = S(t |u) and S(0)

o (t ) = So(t ). LetΩ

be the sample space.

Step 1 (preliminary). Under the mixed interval censorship model, by (1.2), the normalized generalized

log-likelihood becomes Łn(S,b)

= 1

n

n∑
j=1

log((S(c))1−eb′u j 1(L j ≥c)

(S(L j ))eb′u j 1(L j ≥c) − (S(c))1−eb′u j 1(R j ≥c)

(S(R j ))eb′u j 1(R j ≥c)

)

= 1

n

n∑
j=1

log(S(u j )(L j )−S(u j )(R j )), {S(u j )} ∈C .

where C is the collection of all nonincreasing functions S from [0,∞) into [0,1] with S(0) = 1 and S(∞) = 0.

By the strong law of large numbers (SLLN), Łn(S,b) converges almost surely to its mean

Ł(S,b) =E(log(S(Z)(L)−S(Z)(R))) = E(E(E(wS(Z) (C,K ))|Z)|K ), where

wS(u) (C,k) =(1−S(u)
o (Ck1)) log(1−S(u)(Ck1))+S(u)

o (Ckk ) logS(u)(Ckk )

+
k∑

i=2
(S(u)

o (Ck,i−1)−S(u)
o (Cki )) log(S(u)(Ck,i−1)−S(u)(Cki )).

Step 2. It can be verified that wS(u) (c,k) is maximized by a nonincreasing function S(u) ∈C , iff S(u)(cki ) =
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S(u)
o (cki ), i ∈ {1, ...,k}. Since sup{|p log p| : 0 ≤ p ≤ 1} ≤ 1, wS(u) (C,K ) is bounded by K + 1, and thus

Ł(S,b) is finite, as E(K ) <∞ by the assumption in the theorem. If the identifiable conditions hold, by

Lemma 1 and the Shannon-Kolmogorov inequality, we can conclude that (S(u)(t ),S(0)(t )) = (S(u)
o (t ),So(t ))

∀ t ∈ SFL ∪SFR and ∀ u ∈ SFZ . Recall that Z takes on p linearly independent values, say, u1, ..., up . As

a consequence, for j ∈ {1, ..., p}, b′u j = log(
log

S
(u j )

(t2)

S
(u j )

(t1)

log
S(0)(t2)

S(0)(t1)

) and β′u j = log(

log
S

(u j )
o (t2)

S
(u j )
o (t1)

log
So (t2)
So (t1)

), where c < t1 < t2 < τ

and t1, t2 ∈SFL ∪SFR , (S(u j )(t2),S(u j )(t1),S(0)(t2),S(0)(t1)) = (S
(u j )
o (t2),S

(u j )
o (t1),So(t2),So(t1)). Thus b =β.

Consequently, (So ,β) maximizes Ł(S,b) and any other nonincreasing function S ∈ C and b satisfying

Ł(S,b) = Ł(So ,β) satisfy S = So a.s. µ (the measure induces by dFL +dFR ) and b =β.

Step 3. `: liminfn→∞ Łn(Ŝn , b̂n)≥ liminfn→∞Łn(So ,β) = Ł(So ,β) a.s..

Let Ω0 = {ω ∈ Ω : Łn(So ,β)(ω)→(So ,β)}. Then P (Ω0) = 1 by the SLLN. Hereafter, we fix an ω ∈ Ω0 and

suppress it in the expressions of most random variables. For n > 0, let Bn(ω) be the collection of all the

distinct points 0, Li , Ri , c, where 1 ≤ i ≤ n. Write Bn = {qn, j : 1 ≤ j ≤ mn}, where 0 = q0 < qn,1 < ... <

qn,mn = ∞. Denote the intervals An, j = (qn, j−1, qn, j ] and let p0,n, j = So(qn, j−1)− So(qn, j ), 1 ≤ j ≤ mn .

Then
∑mn

j=1 p0,n, j = 1 and So(t ) =∑
An, j∈(t ,∞) p0,n, j for each t ∈ Bn . Moreover,

Łn(So ,β)(ω) = 1

n

n∑
j=1

log{So(c)1−eβ
′u j 1(L j ≥c)

So(L j )eβ
′u j 1(L j ≥c) −So(c)1−eβ

′u j 1(R j ≥c)

So(R j )eβ
′u j 1(R j ≥c)

}

= 1

n

n∑
j=1

log{(
∑

An,i∈(c,∞)
p0,n,i )1−eβ

′u j 1(L j ≥c)

(
∑

An,i∈(L j ,∞)
p0,n,i )eβ

′u j 1(L j ≥c)

− (
∑

An,i∈(c,∞)
p0,n,i )1−eβ

′u j 1(R j ≥c)

(
∑

An,i∈(R j ,∞)
p0,n,i )eβ

′u j 1(R j ≥c)

}.

Now we assign weight pn,i to each interval An,i with
∑mn

i=1 pn,i = 1.Then

Łn(S,b)(ω) = 1

n

n∑
j=1

log{(
∑

An,i∈(c,∞)
pn,i )1−eβ

′u j 1(L j ≥c)

(
∑

An,i∈(L j ,∞)
pn,i )eβ

′u j 1(L j ≥c)

− (
∑

An,i∈(c,∞)
pn,i )1−eβ

′u j 1(R j ≥c)

(
∑

An,i∈(R j ,∞)
pn,i )eβ

′u j 1(R j ≥c)

}.

Let Ŝ(u)
n (t) = (

∑
An,i∈(c,∞) p̂n,i )1−e

ˆb
′
nu1(t≥c)

(
∑

An,i∈(t ,∞) p̂n,i )e
ˆb
′
nu1(t≥c)

be the GMLE of S(u)(t) under Łn . In

particular, Ŝ(0)
n (t ) = Ŝn(t ) =∑

An,i∈(t ,∞) p̂n,i .

Let {Sn(x)} be a sequence in C . By a pointwise limit of this sequence we mean S∗ ∈ C such that

Sn′(x) → S∗(x) for all x and some sequence {n′}n′≥1. Let S(0)∗(t ) be the pointwise limit function of Ŝ(0)
n (t )
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for all t and for some subsequence {n′}n′≥1. Helly’s selection theorem guarantees the existence of pointwise

limits. Let b∗ be the limiting point of {b̂n} for some subsequence {n′′}n′′≥1 of {n′}.

Since Łn(Ŝn , b̂n)≥Łn(So ,β) by the definition of the GMLE, the claim in Step 3 is proved.

Step 4 (Conclusion). Let Q̂n denote the empirical estimator of Q, the distribution of (L,R,Z) and Ω′ =

{ω ∈Ω : Q̂n(l ,r,z)(ω) →Q(l ,r,z)−pointwisely in (l ,r,z)}. By the SLLN, P (Ω′) = 1. ΩU = {Q̂n(U ) →Q(U )}

a.s. for every Borel subset U of ∆= {(l ,r,u) : 0 ≤ l < r ≤∞,u ∈SFZ }. Let Sn denote the survival function

defined by Sn(x) = Ŝn(x;ω), bn defined by bn = b̂n(ω), and Qn the measure defined by Qn(A) = Q̂n(A;ω).

For simplicity in notation we shall assume that Sn(x) → S∗(x) for all x ∈ R and bn → b∗ .

Let ω ∈Ω′∩Ω0 hereafter. liminfn→∞ Łn(Ŝn , b̂n) ≥ Ł(So ,β), Sn(t ) → S∗(t ), for all t ∈ R and bn → b∗. We

shall show that

Ł(So ,β) ≤ liminf
n→∞ Łn(Ŝn , b̂n)(ω) ≤ limsup

n→∞
Łn(Ŝn , b̂n)(ω) ≤ Ł(S∗,b∗). (2.2)

By the previous discussion, it suffices to prove the last inequality.

Now let S(u)
n (t ) = Sn(c)1−eb′

nu1(t≥c)
Sn(t )eb′

nu1(t≥c)
. Since

Łn(Ŝn , b̂n)(ω) =
∫
∆

log(S(u)
n (l )−S(u)

n (r ))dQn(l ,r,u),

the desired inequality is thus equivalent to

limsup
n→∞

∫
∆

log(S(u)
n (l )−S(u)

n (r ))dQn(l ,r,u) ≤
∫
∆

log(S(u)∗(l )−S(u)∗(r ))dQ(l ,r,u). (2.3)

The inequality is proved in Lemma 2. It follows from inequality (2.2) that Ł(S∗,b∗) ≥ Ł(So ,β). As (So ,β)

maximizes L, we can conclude that Ł(S∗,b∗) = Ł(So ,β) and therefore S∗ = So , a.s. µ. If the identifiable

conditions (1.3) holds, we have b∗ =β.

In order to prove Inequality (2.3), we will introduce the Fatou’s Lemma with varying measures.

Theorem 2. Suppose that µn is a sequence of measures on the measurable space (S,Σ) such that µn(B) →

µ(B), ∀B ∈Σ. If fn non-negative integrable functions and f = liminfn→∞ fn , then∫
S

f dµ≤ liminf
n→∞

∫
S

fn dµn .

Theorem 2 is almost the same as Proposition 17 in Royden (1968), page 231, and so is the proof of

Theorem 2. The proof of Theorem 2 can also be found in the Appendix.
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Lemma 2. Inequality (2.3) holds.

Proof of Lemma 2 Since liminfn→∞− log(S(u)
n (l )−S(u)

n (r )) =− log(S(u)∗(l )−S(u)∗(r )), and − log(S(u)
n (l )−

S(u)
n (r )) ≥ 0. Qn(U ) →Q(U ) for every Borel subset U of ∆, where ∆= {(l ,r,u) : −∞≤ l < r ≤∞,u ∈DZ}.

Thus an application of Theorem 2 yields

limsup
n→∞

∫
∆

log(S(u)
n (l )−S(u)

n (r ))dQn(l ,r,u) =− liminf
n→∞

∫
∆
− log(S(u)

n (l )−S(u)
n (r ))dQn(l ,r,u)

≤−
∫
∆

liminf
n→∞ − log(S(u)

n (l )−S(u)
n (r ))dQn(l ,r,u)

=
∫
∆

log(S(u)∗(l )−S(u)∗(r ))dQ(l ,r,u).

Theorem 3. Suppose that the assumptions in Theorem 1 hold and the support set SFL ∪SFR ∪SFZ contains

finitely many elements. Then the MMGLE of (So ,β) is asymptotically normally distributed.

Proof. By assumption SFL ∪SFR = {t j }m
j=0 and m is finite. Then the parameter (So ,β) can be represented

by (So(t0), ...,S(tm),β), and the problem becomes an estimation problem of a multinomial distribution

subject to certain constraints. Thus the asymptotic normality follows and the asymptotic covariance

matrix can be estimated by the inverse of the empirical Fisher information matrix.
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Appendix

Proof of Theorem 2. We will prove something a bit stronger here. Namely, we will allow fn to converge

µ-almost everywhere on a subset B of S. We seek to show that
∫

B f dµ≤ liminfn→∞
∫

B fn dµn .

Let K = {x ∈ B | fn(x) → f (x)}. Thenµ(B\K ) = 0 and
∫

B f dµ= ∫
B\K f dµ, and

∫
B fn dµ= ∫

B\K fn dµ∀n ∈

N . Thus, replacing B by B \K we may assume that fn converge to f pointwise on B .

Recall that a simple function φ is of the form that φ(x) = ∑k
i=1αk 1(x ∈ Ai ), where Ai ’s are disjoint

measurable sets. Given a simple function φ we have
∫

B φdµ= limn→∞
∫

B φdµn . Hence, by the definition

of the Lebesgue Integral, it is enough to show that if φ is any non-negative simple function less than or

equal to f , then
∫

B φdµ≤ liminfn→∞
∫

B fn dµn

Let a be the minimum non-negative value of φ. Define A = {x ∈ B : φ(x) > a}.

We first consider the case when
∫

B φdµ=∞. We must have that µ(A) is infinite since
∫

B φdµ≤ Mµ(A),

where M is the (necessarily finite) maximum value of that φ attains.

Next, we define An = {x ∈ B : fk (x) > a ∀ k ≥ n}. We have that A ⊆⋃
n An ⇒ µ(

⋃
n An) =∞. But An is

a nested increasing sequence of functions, limn→∞µ(An) =µ(limn→∞ An) =∞. Thus, limn→∞µn(An) =

µ(A) =∞.

8



At the same time,
∫

B fn dµn ≥ aµn(An) ⇒ liminfn→∞
∫

B fn dµn =∞= ∫
B φdµ, proving the claim in

this case.

It suffices to prove the theorem in the case
∫

B φdµ <∞. We must have that µ(A) is finite. Denote,

as above, by M the maximum value of φ and fix ε > 0. Define An = {x ∈ B | fk (x) > (1− ε)φ(x) ∀ k ≥ n}.

Then An is a nested increasing sequence of sets whose union contains A. Thus, A − An is a decreasing

sequence of sets with empty intersection. Since A has finite measure (this is why we needed to consider

the two separate cases), limn→∞µ(A− An) = 0. Thus, there exists n such that µ(A− Ak ) < ε, ∀ k ≥ n. Since

limn→∞µn(A− Ak ) =µ(A− Ak ), there exists N such that µk (A− Ak ) < ε, ∀ k ≥ N . Hence, for k ≥ N ,∫
B fk dµk ≥ ∫

Ak
fk dµk ≥ (1−ε)

∫
Ak
φdµk .

At the same time,
∫

B φdµk = ∫
Aφdµk = ∫

Ak
φdµk +

∫
A−Ak

φdµk . Hence,

(1−ε)
∫

Ak
φdµk ≥ (1−ε)

∫
B φdµk −

∫
A−Ak

φdµk .

These inequalities yields that∫
B fk dµk ≥ (1−ε)

∫
B φdµk −

∫
A−Ak

φdµk ≥ ∫
B φdµk −ε

(∫
B φdµk +M

)
.

Hence, letting ε→ 0 and taking the liminf in n, we get that

liminfn→∞
∫

B fn dµk ≥ ∫
B φdµ.
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