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Summary: We study the nonparametric maximum likelihood estimate (NPMLE) of the cdf or sub -
distribution functions of the failure time for the failure causes in a series system. The study is motivated
by a cancer research data (from the Memorial Sloan-Kettering Cancer Center) with interval-censored time
and masked failure cause. The NPMLE based on this data set suggests that the existing masking models
are not appropriate. We propose a new model called the random partition masking (RPM) model, which
does not rely on the commonly used symmetry assumption (namely, given the failure cause, the probability
of observing the masked failure causes is independent of the failure time) (see Flehinger et al. (1996)). The
RPM model is easier to implement in simulation studies than the existing models. We discuss the algorithms
for computing the NPMLE and study its asymptotic properties. Our simulation and data analysis indicate
that the NPMLE is feasible for a moderate sample size.
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§1. Introduction. We study the nonparametric maximum likelihood estimate (NPMLE) of the sub-
distribution function (scdf) of the failure time T for the failure cause C F s

j0(t) = P (T ≤ t, C = j) (or
equivalently the joint cumulative distribution function (cdf) FT,C(t, c) = P (T ≤ t, C ≤ c)) in a J-component
series system when T is subject to interval censoring and C is subject to masking. A series system means it
stops functioning as soon as one of its J constituent components fails. The competing risks (CR) observation
on (T,C) can be described as follows. Let the random variable Xj denote the lifetime of the jth component,
j = 1, ..., J , by the definition of a series system, T = min{X1, ...,XJ}. It is assumed that the probability
of a system failure due to simultaneous failures of two or more distinct components is 0, thus there exists a
unique positive integer C associated with T , say XC = T .

The study is motivated by a cancer research data set (from the Memorial Sloan-Kettering Cancer Center
between 1985 and 1990) that we are analyzing. In this study, 375 women with stages I - III unilateral invasive
breast cancer are surgically treated and followed periodically. Here T is the time to relapse of cancer and C
is the type of cancer at relapse, which can be either one of the total seven (i.e., J = 7). When the relapse
is diagnosed at a follow-up time for a patient, there may be one or more types of cancer cells detected. In
such cases, sometimes it is impossible to determine when the cancer occurs and which type of cancer relapses
first. Thus the relapse time T is only known to lie within two consecutive follow-up time points, say L and
R (L < T ≤ R), that means it is interval censored or right censored by the end of the follow-up. Moreover,
the type of cancer that occurs first is only known to belong to M, the set of all types of cancer cells detected
at the follow-up time. Then C is said to be masked by M (called the minimum random set (MRS) in the
literature, see Guess et al. (1991)). There are no second stage data in our breast cancer data set. In fact, in
this cancer study, further investigation of M would not give a clue on which type of cancer occurred first.
We call such data interval-censored (IC) and masked competing risks (ICMCR) data. Moreover, if T is right
censored, it is assumed that “its MRS is unknown or missing” (Mukhopadhyay (2006, p.80613)). Thus the
ICMCR observation has the form (L,R,Mo), where Mo = M if T is not right censored and Mo = Cr

(= {1, 2, · · · , J}) otherwise.

The study of the estimation of the cdf or scdf in the competing risk literature can date back to 1970’s
(e.g., Peterson (1977)). In the current literature, most researchers study the inference on the right-censored
(RC) competing risks data in the parametrical context (see Miyakawa (1984), Guess et al. (1991), Reiser et

al. (1995), Lin et al. (1996), Mukhopadhyay and Basu (1997, 2007), Sen et al. (2001), Flehinger et al. (2001),
Basu et al. (1999), Dewanji and Sengupta (2003), and Craiu and Reiser (2006) etc.). They do not work
on the masked failure cause and use the EM algorithm or Bayesian approach to find the estimators. Dinse
(1982) and (1986) study the nonparametric estimation of FT,C with RC competing risks data. Flehinger
et al. (1998) provide a semi-parametric approach with masked causes of failure. Some people study the
inference on the RC data with masked causes of failure (see e.g., Craiu and Reiser (2006)) or with the second
stage data (see e.g., Craiu and Duchesne (2004)). Not so many people study estimation problem with the
interval-censored competing risks data. Groeneboom et al. (2008b) as well as Hudgens et al. (2001) study
the NPMLE with IC data but without masking on C. Basu et al. (2003) study the IC data with masked
causes of failure in the parametric context using Bayesian approach and Gibbs sampling in which they assume
the competing risks are independent. Maathuis and Wellner (2008) relate their bivariate estimation problem
to estimation problem with the competing risk data without masking. The nonparametric estimation of the
scdf with ICMCR data has not been studied in the literature.

Some researchers in the CR data literature consider estimating the cause-specific hazard functions (see
Dewanji and Sengupta (2003), Crau and Duchesne (2004)). Notice that if the hazard function exists, it is
equivalent to the cdf (or scdf). While the hazard function may not exist, the cdf or scdf always exists.

The nonparametric estimation of the scdf with ICMCR data is quite different from the univariate
censored data. The data studied in Hudgens et al. (2001) and Groeneboom et al. (2008b) do not involve
masking. Even though Dinse (1982) proposes the NPMLE with right-censored and masked CR data long
time ago, its asymptotic properties has not been established due to the technical difficulties.

One may think the nonparametric estimation of the scdf with the ICMCR data is a special case of
the bivariate IC data since they both estimate the bivariate distribution functions. In fact, it is the
opposite. In some sense, the non-parametric estimation with bivariate IC data is a special case of the
one with ICMCR data. The reason is as follows. In both cases the NPMLE puts weights only to the
maximum intersections (MIs, see the definition in Example 1.1), but the MIs with bivariate IC data are
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of the form of one rectangle set, while the MIs with ICMCR data are of the form of a rectangle or the
union of several disjoint rectangles, as explained in the following example.
Example 1.1. First consider a bivariate IC data set with (L1i, R1i]×(L2i, R2i] (denoted by Iis): (2, 5]×(1, 6],
(1, 3]×(1, 3], (4, 7]×(1, 4], (2, 3]×(5, 7]. A MI B is a non-empty intersection of some Iis such that Ii∩B either

equals B or ∅ (the empty set) for each Ii. For these 4 data, there are 3 MIs:
(2, 3] × (5, 6]
(2, 3] × (1, 3] (4, 5] × (1, 4]

.

Even though we arrange them as a matrix, They are all of the form of a single rectangle.
Next consider a set of ICMCR data with J = 4. (Li, Ri] ×Mis (denoted by Iis) are (1, 3] × {1, 3, 4},

(1, 2]×Cr, (2, 5]×{1, 2, 4} and (1, 6]×{2}. For this data set, there are 3 MIs: (1, 2]×{1, 3, 4}, (2, 3]×{1, 4},
(1, 2]×{2} and (2, 5]×{2}. Only the last two MIs (1, 2]×{2} and (2, 5]×{2} are of the form of a rectangle,
like the case in the bivariate IC data. If all MIs in an ICMCR data happen to be of the form of a rectangle,
the estimation reduces to the bivariate IC data. Notice that for competing risks data without masking, each
MI is of the form of a single rectangle as in the bivariate IC data.

It is well known that with censored data one needs to find all the MI’s before computing the NPMLE.
In view of Example 1.1, since the MIs with ICMCR data are more complicated than the MIs with bivariate
IC data, the algorithm for finding all MIs for ICMCR data must be different from the algorithm for finding
all MIs for bivariate IC data such as the algorithm HeightMap of Maathuis (2005) and the support reduction
algorithm of Groeneboom et al. (2008a). The latter algorithms can’t be applied to the ICMCR data. Thus
we need develop new algorithms to find the maximum intersections and the NPMLE. It is not surprised that
the NPMLE of the scdf with ICMCR data and its asymptotic properties have not been investigated so far.

Nonparametric estimation of the scdf is quite important in analyzing real data. First, it is distribution
free and is appropriate if it is difficult to find a suitable parametric model to fit the data. Secondly, if
one tries to apply a parametric model to a data set, the parametric assumption needs to be validated by a
nonparametric estimator. Otherwise, the statistical analysis based on the parametric assumption is nonsense.

The rest of this paper is organized as follows. In §2, we introduce the NPMLE with its algorithm, the
random partition masking (RPM) model for ICMCR data and the related assumptions. Since the ICMCR
data are first studied in our paper, this model is the first model ever proposed for the ICMCR data in the
literature. One can construct a different model (called the Conditional masking probability (CMP) model)
which relies on the commonly used symmetry assumption for masking (see Flehinger et al. (1996)):
S1 fM|T,C(A|t, c) = P (M = A|T = t, C = c) = fM|C(A|c) ∀ t.
S1 means that given the failure cause, the probability of observing the masked failure causes is somewhat
independent of the failure time. In addition to the critic that the symmetry assumption “is done purely for
mathematical convenience without practical justification” (see Mukhopadhyay and Basu (2007, p.33115)), it
is often not satisfied in practice (see Example 2.1). In Remarks 2.1 and 3.2, we show that the RPM model
has the following advantages over the CMP model:
(1) The CMP model relies on the symmetry assumptions but the RPM model does not;
(2) It is much simpler for implementation in simulation studies under the RPM model.
In §3 we establish the asymptotic properties of the NPMLE of the underlying scdf under the discrete
assumption on inspection times. We also present the simulation results of the asymptotic properties of the
NPMLE under various continuous assumptions on the inspection times. Moreover, we present the empirical
rates of convergence based on the simulations. In §4, we present a data analysis on a cancer research data of
size 375. The simulation study and data analysis suggest that the NPMLE procedure is feasible. We use the
self-consistency algorithm to obtain the estimates on the maximal intersections(MI’s, see §2). A key step in
this algorithm is to find the exact MI’s, which are described in Appendix I. A simpler algorithm for finding
the pseudo MI’s is given in §3.2, where the pseudo MI’s are not the exact ones but cover the exact MI’s,
thus in some situations, to save the computing time, we can use pseudo MI’s to replace the exact ones. In
§5, we present the conclusion and discussion.

§2. The NPMLE and the RPM Model. The formal definition of the nonparametric likelihood function
can be easily given without a proper model for the ICMCR data. However, in order to validate the nonpara-
metric likelihood function and establish asymptotic properties of the NPMLE, we need set up a probability
model and determine the identifiability conditions under which the NPMLE can be consistent.

First we introduce some notations. Define Fs
0(t) = (F s

10(t), F
s
20(t), · · · , F s

J0(t))
′, where B′ is the transpose

of the matrix B. Then the true bivariate cumulative distribution function, denoted as F0 satisfies F s
0j(t) =
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F0(t, j) − F0(t, j − 1) and F0(t, y) =
∑[y]

j=1 F s
j0(t) where [y] = max{c ∈ Cr : c ≤ y} and

∑J
j=1 = F s

j0(∞) = 1.

For each Fs ∈ Fs =
∏J

1 F with
∑J

j=1 F s
j (∞) = 1 where F is the collection of all non-decreasing and right-

continuous functions, define µFs(Ii) =

{ ∑

j∈Mi
(F s

j (Ri) − F s
j (Li)) if Ii = (Li, Ri] × Mi, Li < Ri

∑

j∈Mi
fs

j (Li) if Ii = [Li, Ri] × Mi, Li = Ri
with i =

1, · · · , n where fs
j (t) = F s

j (t)−F s
j (t−). If F̂ s

jn(t), the NPMLE of F s
j0(t), is consistent for j = 1, 2, · · · , J , then

the NPMLE of F0, denoted as F̂n(t, c) is also consistent for c = 1, 2, · · · , J . Thus we can find the NPMLE of
F0 by obtaining the NMPLE of its scdf. Though the main focus in on the estimation of the scdf, we still will
use the bivariate cumulative distribution function to interpret something if necessary, especially comparison
between RPM and CMP models.
§2.1. The NPMLE. Let (Li, Ri,Mi), i = 1, ..., n, be i.i.d. copies of (L,R,Mo). Then the generalized
likelihood function, according to the idea of Kiefer and Wolfowitz (1956), is

Λn(Fs) = Πn
i=1µFs(Ii). (2.1)

Our goal is to compute the NPMLE of Fs
0 where Λn(F̂s

n) = maxFs∈Fs Λn(Fs). Let Aj , j = 1, · · ·, m, be
the maximal intersections Ajs (see Example 1.1) induced by Ii’s. It can be shown that the NPMLE of Fs

0

assigns weights only to MI’s (see §1 in Appendix III). The rigorous algorithm for finding all the exact MI’s
is given in Appendix I.

Denote the weight assigned by the NPMLE to Aj by sj . It follows that (2.1) can be expressed as
Λn(s) =

∏n
i=1[

∑m
j=1 δijsj ], where s = (s1, s2, · · · , sm−1), s ∈ Ds, Ds = {s : sj ≥ 0, s1 + s2 + · · ·+ sm−1 ≤ 1},

sm = 1 − ∑m−1
j=1 sj and δij = 1(Aj⊂Ii). Let ŝ be the NPMLE of s, a NPMLE of Fs

0 can be given by

F̂ s
cn(t) = F̂n(t, c) − F̂n(t, c − 1) and F̂n(t, c) =

∑

j: Aj⊂(−∞,t]×(−∞,c]

ŝj , c = 1, 2, · · · , J (2.2)

(see, for example, Wong and Yu (1999)).
For the ICMCR data, a MI Aj has the form (aj , bj ]×Wj , where Wj ⊂ Cr and Wj 6= ∅, and thus it is not

a singleton. If Aj is not a singleton, the distribution of the weight sj over Aj is not uniquely determined. The

F̂s
n in (2.2) is a standard approach, which assigns the weight ŝj to the point (bj , c), where c = maxh∈Wj

h. It
turns out that the non-uniqueness of the NPMLE would not affect its consistency under certain regularity
conditions (see Theorem 3.1 in §3.1 and the simulation results in §3.2). In general, the NPMLE does not
have an explicit solution. An algorithm to be implemented is
the self-consistent (SC) algorithm which is described as follows:

At step 1, let s
(1)
j = 1/m for j = 1, 2, · · · ,m.

At step h (h ≥ 2),

s
(h)
j =

n
∑

i=1

1

n

δijs
(h−1)
j

∑m
k=1 δiks

(h−1)
k

, j = 1, 2, · · · ,m and h ≥ 2. (2.3)

Stop at convergence, which means ||s(h) − s(h−1)|| is small enough.
By the similar way as in Turnbull (1976), it can be shown that when h → ∞, s(h) converges to the

NPMLE ŝ which maximizes Λn. Then an NPMLE of Fs
0 can be computed through (2.2).

§2.2. The RPM Model for the ICMCR Data. An important issue is to specify a probability model
so that the likelihood function Λn(Fs =

∏n
i=1 µFs(Ii) is valid. Basu et al. (2003) point out that almost all

existing models for competing risk data with masking are based on the symmetry assumption S1.
Remark 2.1. It is shown in §6 of Appendix III that under certain assumptions, the RPM model and the
CPM model are equivalent. Moreover, S1 is valid iff S2 holds.
S2 For each t, fT (t) > 0 implies fT,C(t, c) > 0 ∀ c ∈ C.
Example 2.1. Consider a discrete case. Suppose that J = 2, the survival time T ∈ {1, 2} and the failure
cause C ∈ {1, 2}. There are two partitions denoted as P1 = ({1}, {2}) and P2 = ({1, 2}). Suppose that
P (T = 1) = P (T = 2) = 0.5, fT,C(1, 1) = 0, fT,C(2, 1) > 0 and P (∆ = 1) = P (∆ = 2) = 1/2 where ∆
denotes the random index of the partitions. Assume a model with two censoring variables Y1 and Y2 such
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that P (Y1 = 1, Y2 = 2) = 1. Then fM|T,C(Cr|t, c) is not constant in t if c = 1. That is, the symmetry
assumption S1 fails. But it can be shown that the NPMLE of F0 is consistent for t ∈ {1} ∪ ([2,∞) and is
asymptotically normally distributed (see the proof in §2 of Appendix III).

The NPMLE in Figure 1 in §4 suggests that S2 is not valid for our cancer research data. Thus we
shall propose a new model to formalize these data forms, which consists of an interval censorship model for
generating (L,R) and a masking model for generating Mo.

First, we introduce the mixed case interval censorship model (see Schick and Yu (2000)) for speci-
fying (L,R). Let K be a positive random integer representing the number of inspection times. Let Y

(
def
= {Yk,j : j = 1, 2, · · · , k, k = 1, 2, · · ·}) be an array of random variables such that −∞ < Yk,1 <

Yk,2 < · · · < Yk,k < ∞, which are the inspection times when an individual is subject to total of k in-
spections. Then given the event {K = k}, let (L,R) denote the endpoints of the random interval among
(Yk,0, Yk,1], (Yk,1, Yk,2], · · · , (Yk,k, Yk,k+1) which contains T , where Yk,0 = −∞, Yk,k+1 = ∞.

Second, we propose a masking model. Let P be the collection of all possible partitions of Cr. A partition
Ph = (Ph1, Ph2, · · · , Phkh

) satisfies that Phi ⊂ Cr, Phi 6= ∅, ⋃kh

i=1 Phi = Cr and Phi

⋂

Phj = ∅ ∀ i 6= j. By
the definition, for each given partition Ph and given value of C, say C = c, there exists a unique i such that
C = c ∈ Phi (the interpretation of a partition is explained in Remark 2.3). The number of possible partitions,
denoted by nP , is finite. Thus there are nP ! different ways to order these partitions. Let P1, P2, · · · , PnP

be one such ordering on the partitions. Then we can define a random variable, say ∆, taking values on
{1, 2, · · · , nP} which are the indexes on the partitions, with the density function f∆. Once a partition
(Ph1, Ph2, · · · , Phkh

) is chosen after the failure occurs, Mo can be uniquely determined through the formula

Mo =

{ Cr if T > Yk,k

Phi if C ∈ Phi, T ≤ Yk,k,
conditioning on K = k and ∆ = h.

The RPM model for ICMCR data can be summarized as follows by assuming that (T,C) and (K,∆,Y)
are independent. Conditioning on K = k and ∆ = h,

(L,R,Mo) =







(Yk,0, Yk,1, Phj) if C ∈ Phj , Phj ∈ Ph, T ≤ Yk,1,
(Yk,i−1, Yk,i, Phj) if C ∈ Phj , Phj ∈ Ph, Yk,i−1 < T ≤ Yk,i, i = 2, · · · , k,
(Yk,k, Yk,k+1, Cr) if T > Yk,k.

Then the full likelihood function is

Lfull =
n

∏

i=1

∞
∑

k=1

∑

h: Mi∈Ph

k
∑

j=0

fYK,j ,YK,j+1,K,∆(Li, Ri, k, h)
∑

c∈Mi

∫ Ri

Li

dFT,C(t, c)

=
[

n
∏

i=1

∑

k

∑

h: Mi∈Ph

k
∑

j=0

fYK,j ,YK,j+1,K,∆(Li, Ri, k, h)
]

n
∏

i=1

∑

c∈Mi

∫ Ri

Li

dFT,C(t, c)

∝
n

∏

i=1

µFT,C
(Ii). (2.4)

This justifies the formal likelihood function in (2.1).
The model we considered here is a brand new one in the following senses.
(1) The nonparametric model for both interval censoring and masking has not been studied so far.
(2) The masking model is different from all existing approaches in the literature.
Verify that the derivation in (2.4) does not rely on the symmetry assumption S1. Thus the new model

does not rely on the symmetry assumption at all. We call the old model the conditional masking probability
(CMP) model as they depend on the CMP (see S1) and we call the new model the RPM model for the
obvious reason. In view of Remark 2.1, the CMP model can be viewed as a special case of the RPM model.
This is a significant contribution to the theory for analyzing the CR data.
Remark 2.2. Even though nobody has done it in the literature, one can construct a model for the ICMCR
data based on the symmetric assumption S1. Let’s call it Model 2. Under Model 2 and the RPM model, it
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makes no difference in obtaining the MLE or NPMLE, but it does make a difference in the proofs of asymp-
totic properties of the estimates. By Remark 2.1 and Example 2.1, the consistency cannot be established
under Model 2 but it can be established under the RPM model. In applications, the symmetry assumption
is often not satisfied. Thus the new model is less restrictive than the old one. Moreover, it is much easier to
carry out simulation studies under the new model.

There is a realistic interpretation to the partition in industrial data. When a TV set breaks down,
there is often an procedure to find out the failure cause. Suppose that there are J causes and P2 =
({1}, {2}, {3, 4, ..., J}) is a partition. The partition P2 can be interpreted as follows: In the process of
determining the cause of failure in a J-component series system, exactly two steps will be taken. Steps 1
and 2 can determine whether the failure is due to causes 1 and 2, respectively. If the failure is not due to
these two causes, no further investigation will be taken for cost saving. However, it is only one of the six
examination schemes corresponding to P2 and each has two steps. The first step can be either of the three
inspections:

(1) whether the cause is due to part 1;

(2) whether the cause is due to part 2;

(3) whether the cause is not due to parts 1 and 2.

There is also a realistic interpretation to the partition in medical data. For instance, in the breast cancer
data to be analyzed in the paper, a relapse can be classified to 7 types of cancer. If the length between
two follow-ups are short enough, it is likely that there is just one type of cancer and the partition can be
viewed as ({1}, {2}, ..., {J}). Otherwise, there are several types of cancer that occur between L and R. For
instance, a patient has breast cancer (type 1) and lung cancer (type 3) at relapse, then the partition can be
viewed as ({1, 3}, {j}, j = 2, 4, 5, 6, 7), as well as ({1, 3}, {2, 4, 5, 6, 7}), etc.. It is not important to precisely
identify the partition, as far as the NPMLE is concerned.

Remark 2.3. It is worth mentioning that in the aforementioned engineering applications, one may choose
the value of ∆ randomly, but in the medical applications like our cancer research, the nature chooses the
value of ∆.

Remark 2.4. The new masking model is akin to the case 1 interval censorship (C1) model. In the C1
model, there is a random partition {(−∞, Y ], (Y,∞)} (denoted by {I1, I2}) of the space (−∞,∞) based
on the random inspection time Y . The observation on the survival time T is Ij where T ∈ Ij . In our
masking model, there is a random partition {P∆,1, ..., P∆,k∆

} of the space {1, ..., J}. The observation on C
is M = P∆,j where C ∈ P∆,j . Thus the new masking model is more reasonable than the CMP model.

§2.3. Identifiability Assumptions. As to be shown in Example 2.3, without suitable identifiability
condition, the NPMLE is not consistent. One may think of a quite strong identifiability condition as follows.

A1 For each t in the range of finite L or R, let Wt,j , j = 1, · · · ,mt be all the values of Mo satisfying
P (Mo = Wt,m|L = t or R = t) > 0, then the rank of the matrix (φ(Wt,1)

′, · · · , φ(Wt,mt
)′) is J , where

φ(Wi,m) = (1(1∈Wi,m),1(2∈Wi,m), · · · ,1(J∈Wi,m)).

For discrete L and R, given a random sample from the ICMCR data, if n is large enough then one can check
whether A1 holds through the sample data by the condition as follows.

A1∗ For each t ∈ X, where X denotes the collection of all distinct values from L1,..., Ln, R1,...,Rn, let Wt,1,...,
Wt,mt

be all the distinct values of Mi’s with Li = t or Ri = t, then rank(φ(Wt,1)
′, · · · , φ(Wt,mt

)′) is J .

It is obvious that if A1∗ is false, A1 might still be true, as it is hard to say whether n is indeed large
enough. For continuous L and R, A1 is difficult to verify through the sample. In fact given t, with probability
1 there is just 1 observation (Li, Ri,Mi) such that Li = t or Ri = t, then mt = 1 and rank(φ(Wt,1)

′) = 1 < J .

Since the inspection times may depend on the failure components, the consistency region for each
NPMLE of the scdf may vary component by component.

Remark 2.5. A1 ensures that the NPMLE of Fs
0(t) is consistent for each t in the range of L or R, provided

t < τ for some τ . Example 2.2 below suggests that under a weaker condition, the boundary point τ should
depend on the component c, say τc.

Example 2.2. Let the domain of (T,C) be {0, 1, 2} × {1, 2, 3}. Consider the case 1 model with the
censoring variable Y1,1 ∼ Bin(1, p) for some p ∈ (0, 1), define P1 = ({1}, {2}, {3}) and P2 = ({1, 3}, {2}).
Let P (Y1,1 = 0,∆ = 1) = P (Y1,1 = 1,∆ = 2) = 1/2. It can be easily verified that the NPMLE of F s

20(1) is
consistent but not the NPMLE’s of F s

10(1) and F s
30(1). So we need to define a bound, say τc such that the

NPMLE of the scdf F s
c0(t) is not consistent for each t ∈ (τc,∞).
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In view of Example 2.2, we shall give a weaker identifiability condition. For a better presentation, we
first consider it under discrete assumptions. In fact, if one assumes that the censoring vector (L,R) takes
on finitely many values, since M also takes on finitely many values, the current estimation problem reduces
to a multinomial distribution problem, and it can be shown that under certain regularity conditions and
under the RPM model, the NPMLE of Fs

0 is consistent and asymptotically normally distributed, and the
asymptotic covariance matrix can be estimated by the inverse of the Fisher information matrix.

Since a follow-up study often lasts for a certain period of time and carries out the inspections at some
fixed times, we can assume that the inspection times Yk,i’s only takes values from the set S = {t1, · · · , td}
with −∞ = t0 < t1 < · · · < td, where d < ∞ with P (Yk,i = tj) > 0 for some i and j, then the observations

are of the form Il = (til
, tjl

] × Ml for some til
< tjl

and Ml ∈ J (
def
= {A 6= ∅ : A ⊂ Cr}), l = 1, · · · , n.

Moreover, when the sample size n is large enough, each values of S will be observed. Thus, under the finite
discrete assumption and by the definition of MI, if n is large enough, the sample MI’s will be same as the
population MI’s which have finitely many distinct values and the form is (tj−1, tj ] × M with M ∈ J for
j = 1, · · · , d or (td,∞) × Cr.

Let A = {Aj : j = 1, · · · ,m} be the collection of all the MI’s, then the weight assigned by an Fs ∈ Fs to
each Aj , denote sj = µFs(Aj) =

∑

c∈Mj
(F s

c (Rj) − F s
c (Lj)) where (Lj , Rj) ∈ {(t0, t1), (t1, t2), · · ·, (td−1, td),

(td,∞)} and Mj ∈ J . The log likelihood function can be expressed as Ln(s) =
∑n

i=1 log[
∑m

j=1 δijsj ]. Denote
the NPMLE of so

j = µF
s
0
(Aj) by ŝj for j = 1, · · · ,m. We can show that each NPMLE of sj ’s in Example 2.2

is consistent (by Theorem 3.1 in §3). However, this is not so in Example 2.3.
Example 2.3. Let J = 4, T ∈ {1, 2}. Consider the case 1 model, that is, K = 1 w.p.1 and the censoring
variable U = Y1,1 ∈ {1, 2}. Order the partitions as P1 = ({1}, {2}, {3}, {4}), P2 = ({1, 2}, {3, 4}), and
P3 = ({1, 3}, {2, 4}). Let the conditional density of ∆ given U be f∆|U (1|1) = 1, f∆|U (2|2) = f∆|U (3|2) =
1/2. When n is large enough, the possible observations are (−∞, 1] × {1}, (−∞, 1] × {2}, (−∞, 1] × {3},
(−∞, 1]×{4}, (1,∞)×{1, 2, 3, 4}, (−∞, 2]×{1, 2}, (−∞, 2]×{3, 4}, (−∞, 2]×{1, 3} and (−∞, 2]×{2, 4} with
sizes N1, ... N9, respectively. Then the MI’s are (−∞, 1]×{1}, (−∞, 1]×{2}, (−∞, 1]×{3}, (−∞, 1]×{4},
(1, 2] × {1}, (1, 2] × {2}, (1, 2] × {3} and (1, 2] × {4} with weights s1, ... s8, respectively. The NPMLE of
(s1, ..., s8) is

ŝ1 = N1

W1
, ŝ3 = N3

W1
, ŝ5 = W3 − N1+N2

W1
− α, ŝ7 = α,

ŝ2 = N2

W1
, ŝ4 = N4

W1
, ŝ6 = W2 − W3 + N3−N2

W1
+ α, ŝ8 = 1 − ŝ1 − · · · − ŝ7,

(2.5)

where max{0,
N2 − N3

W1
+ W3 − W2} ≤ α ≤ min{W3 −

N1 + N3

W1
,W2 + W3 +

N2 − N3

W1
},

W1 =
∑5

i=1 Ni, W2 = N6

N6+N7
, and W3 = N8

N8+N9
(see the derivation in §3 of Appendix III). It is easy to

verify that ŝi are consistent for i = 1, 2, 3, 4 but not for i = 5, 6, 7, 8.
Verify Examples 2.1 and 2.2 satisfy A2 below, but Example 2.3 does not.

A2 Let Ai,j = (ti−1, ti]×Bi,j , j = 1, · · · , ki, i = 1, · · · , d be all the distinct population MI’s, where Bi,j ’s are
induced by Wi,m, m = 1, · · · , wi with P (Mo = Wi,m, L = ti−1) > 0 and P (Mo = Wi,m, R = ti) > 0.
Then for each possible (i, j), there exists some constant gi,j,m’s such that φ(Bi,j) =

∑wi

m=1 gi,j,mφ(Wi,m).
A2 is weaker than A1. Verify that A1 and A2 imply that for a given random sample,
A3 if n is large enough then the matrix (φ(M1)

′, · · · , φ(Mn)′) is of rank J .
If A3 does not hold, it is likely that there is no consistent estimator of Fs

0. Thus A1∗ and A3 can be
used to check whether A2 holds or not.

§3. Asymptotic Properties of the NPMLE. We shall study the asymptotic properties under discrete
or continuous assumptions. Under the discrete assumptions, we shall establish its properties by rigorous
proofs. Under continuous assumptions, we are also working on the consistency proof of the NPMLE in
a paper under preparation, and in this section, we shall present simulation studies that suggest that the
NPMLE is consistent.
3.1. Theorems. Under discrete assumptions, we have the following theorems.
Theorem 3.1 (Consistency). Suppose that the inspection time takes values from S = {t1, · · · , td} with
0 ≤ t1 < · · · < td < ∞, and A2 holds. Then ŝ → so almost surely.
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Theorem 3.2 (Asymptotic Normality). Assume that the inspection time takes values from S =
{t1, · · · , td} with 0 ≤ t1 < · · · < td < ∞, A2 holds and denote ŝj = µ

F̂s
n
(Aj) and so

j = µF
s
0
(Aj) > 0

for each Aj ∈ A, j = 1, · · · ,m. Then
√

n







ŝ1 − so
1

...
ŝm−1 − so

m−1






is asymptotically normal distributed with mean

0 and dispersion matrix I−1 where I = −E(
∂2Ln(Fs

0)
∂s∂s′

).

For a better presentation, the proofs of the two theorems are given in §9 and §10 of Appendix III. From

the last two theorems, the consistent estimator of I can be given by Î = −∂2Ln(F̂s
n)

∂s∂s′
. Furthermore, for

c = 1, · · · , J ,
√

n(F̂ s
cn(t)−F s

c0(t)) is asymptotically normally distributed with F̂ s
cn being defined by equation

(2.2). A consistent estimator of the asymptotic variance of F̂cn(t) is 1
nu′Î−1u where u is a (m−1)×1 vector

with ith entry ui = 1(Ai ⊂ (−∞, t] × [c, c]).

Remark 3.1. We may construct confidence regions or testing hypotheses based on the asymptotic normality
established in Theorem 3.2 under the discrete assumption. In particular, in the literature of competing risks
data with masking, most people focus on parametric analysis, but none of them check the validity of their
parametric assumptions, because the asymptotic properties of the nonparametric NMLE of Fs

0 have not been
established so far. Our results in Theorem 3.2 can be applied to test H0: F s

c = F s
co for c = 1, · · · , J , where

F s
co is a given scdf with or without parameters. Due to the length of the paper, we shall address this issue

in a future project.

§3.2. Simulation. We shall first present some simulation results which suggest that with ICMCR data
the NPMLE is feasible at least for sample sizes up to 800 and J = 4, even if we use the alternative simpler
but slower algorithm (see §3.2.2). Our simulation results also suggest that under A1 the NPMLE of Fs

0 is
consistent if T is continuous.

The implementation of the RPM model in the simulation can be described as follows:

First choose densities fC , fT |C , f∆, fK|∆, and f(Yk,1,...,Yk,k)|∆,K with fK|∆(k|·) > 0.

1. Generate C ∼ fC , say, C = j.

2. Conditional on C = j, generate T ∼ fT |C(·|j), say, T = t, now (T,C) = (t, j).

3. Generate ∆ ∼ f∆, say, ∆ = h. Then M = Phl where j ∈ Phl.

4. Generate K ∼ fK|∆(·|h), say, K = k, then (Yk,1, ..., Yk,k) ∼ f(Yk,1,...,Yk,k)|∆,K(·|h, k), say,
(Yk,1, Yk,2, · · · , Yk,k) = (yk,1, yk,2, · · · , yk,k) with yk,1 < · · · < yk,k.

5. Conditional on ∆ = h, K = k, (T,C) = (t, j), and Yk,i = yk,i, find i such that t ∈ (yk,i−1, yk,i]. If i ≤ k,
then (L,R,Mo) = (yk,i−1, yk,i, Phl) where j ∈ Phl for some 1 ≤ l ≤ ||Ph||, the number of elements in
Ph. Otherwise, let (L,R,Mo) = (yk,k,∞, Cr).

Repeat this procedure n times, we obtain the needed observations.

In the foregoing implementation scheme, it is assumed that ∆, K and Y are dependent. In our simula-
tion, we let ∆, K and Y be independent for simplicity.

Remark 3.2. It is more complicated to implement a simulation study with the CMP model than with
the RPM Model. Under the CMP Model, in order to generate Mo, one has to solve for fM|C ’s subject to
constraints S1 and the hidden constraints

∑

A:A∈J fM|C(A|c) = 1. Then generate M based on fM|C(·|j),
replacing aforementioned Step 3. This can be done but is not as simple as the procedure for generating M
under the RPM model(see Step 3 above).

§3.2.1. Simulation Results. Based on the RPM model, we generate observations under various dis-
tributions, compute the NPMLE of the scdf at four different quantiles of the conditional distribution
F (t|c) = P (T ≤ t|C = c), and compare them to the true values. In our simulation studies, we let J = 4,
and allow K to take values up to 16. We consider both continuous Yi’s (in Examples 3.1, 3.2 and 3.3)
and discrete Yi’s (in Example 3.4), which are specified in their examples. In all examples, we assume that
fC(1) = 1/40, fC(2) = 1/40, fC(3) = 36/40, fC(4) = 2/40 and assume that M is generated through (3.1)
with P (∆ = 1) = 8

10 , P (∆ = 2) = P (∆ = 3) = 1
10 , and P1 = ({1}, {2}, {3}, {4}), P2 = ({1, 2}, {3, 4}),

P3 = ({1, 3}, {2, 4}). Verify that these partitions satisfy assumption A3 at least. However, fT |C and fY
are specified in each example. We computed the estimators through the SC-algorithm with the error bound
0.0001 for sample sizes n = 100, 200, 400 and 800. The simulation results in Examples 3.1-3.4 are given in
Tables 1-4 in Appendix II, respectively.
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Example 3.1 (Log-normal Distribution). By T ∼ LN(µ, σ), we mean log T ∼ N(µ, σ2). Let T |(C =
j) ∼ LN(5, 5−j

2 ) and Yi ∼ U(2(i − 1), 2i) for i = 1, · · · ,K.

Example 3.2 (Exponential Distribution). Let P (T ≤ t|C = j) = 1−e−t/2(j−1)

, t > 0, and Yi ∼ U(0, 10),
for i = 1, · · · ,K.

Example 3.3 (Uniform Distribution). Let fT |C(t|1) = 1
81(t ∈ (0, 8)); fT |C(t|2) = 1

71(t ∈ (0, 7));

fT |C(t|3) = 1
61(t ∈ (0, 6)); fT |C(t|4) = 1

51(t ∈ (0, 5)), and Yi ∼ U(2(i − 1), 2i) for i = 1, · · · ,K.

Example 3.4 (Discrete inspection times). Let (T,C) have a distribution as in Example 3.1, but
the distribution of (∆,K,Y) is specified as follows. Let the domain of the inspection times be B, where
B = {2.155, 3.012, 3.283, 3.419, 3.881, 4.405, 5, 5.675, 6.442, 6.499, 7.312, 7.616, 8.299, 8.447, 10.98, 14.27}.
Let fK(k) =

{

0.1 if k ∈ {3, 5, 7, 9, 13}
0.5 if k = 16.

Conditional on K = k, we choose the first k values from the 16

ordered numbers in B.

From the results in Tables 1 through 4 under different distributions, we notice that for each risk com-
ponent, the sample mean of the estimated probability is around the true value, and the standard error is
getting to zero as n increases. Thus these simulated results suggest that |F̂ s

jn(t)−F s
j0(t)| → 0 as n → ∞ for

the relevant values of t.

Remark 3.3. In view of Remark 2.1, the conditions in the 4 examples in our simulation satisfy the
symmetry assumption S1. However, it is much easier to generate the pseudo observation under the RPM
model than under the old CMP model.

§3.2.2. An alternative approach for finding the MI’s. A key process in computing the NPMLE
through (2.3) is to find all the MI’s. A rigorous algorithm is given in Appendix I, which is somewhat
cumbersome and complicated. There is an alternative simpler approach for finding a collection of pseudo
MI’s, which can replace the role of all MI’s. The algorithm for finding the pseudo MI’s is as follows.

Assume that the observations are Ii = (li, ri] × Mi, i = 1, 2, · · · , n. For each j ∈ Cr,

1. let Gj = {(lj,i, rj,i] × {j} : i = 1, 2, · · · , nj} be the collection of sets of the form (li, ri] × {j} where
j ∈ Mi, i ∈ {1, ..., n};

2. find the MI’s induced by the aforementioned (lj,i, rj,i]’s, denoted by (ak, bk]’s;

3. for each (k, j), treat (ak, bk] × {j} as a true MI induced by Ii’s.

The aforementioned approach yields more “MI’s” than the approach in Appendix I, but both of them

lead to the same estimator of F s
c0. In Tables 5 and 6 in Appendix II, we display ratio(t, j) (

def
=

2·|F̂j1(t)−F̂j2(t)|
(F̂j1(t)+F̂j2(t))

),

where F̂j1 and F̂j2 are the estimators of the jth scdf at time t under the first approach and the alternative
approach, respectively, under assumptions in Examples 3.1 and 3.4. The ratio(t, j)’s are very small (< 1%).
Thus they suggest that the two estimators from the different approaches can give us the same result under
the tolerance given in the self-consistency algorithm.

The alternative approach is simple to remember and easy to implement, but is slower than the rigorous
one as it creates more pseudo MI’s to replace the true MI’s. When the sample size is large enough, their differ-

ence in computing time is quite small (see Table 7 in Appendix II, where Ratio =
Time used in Approach 1
Time used in Approach 2

).

However, these two approaches will never be the same unless the largest observation is not right censored.

§3.2.3. Empirical Rates of Convergence. In Appendix III we show that the NPMLE of the ICMCR
data under the discrete inspection times is asymptotically normal. Example 3.4 satisfies the assumptions
that the inspection times are discrete and by comparing the rates given in Table 11 with the value 0.7071,
we can find the empirical rate of convergence is close to n1/2, which is exactly as shown in the theorem. For
the univariate case, there is the same result for the discrete inspection times, see Yu et al. (1998a,b), which
means there are some connections between the ICMCR data and univariate interval-censored data under the
discrete inspection times. Similarly, the results on the rate of convergence r of the NPMLE of the cdf FT of
a univariate random variable T under the case 2 model can be the references for our further study on the
rate of convergence of the NPMLE for the continuous inspection times.

(1) Groeneboom and Wellner (1992) conjecture that r = (nlnn)1/3 under the assumption that FT and FU,V

have strictly positive and continuous derivatives at T = x and (U, V ) = (x, x) where (U, V ) are two
random inspection times in the case 2 model.

(2) Groeneboom (1996) proves r = n1/3 under the assumptions that FT is continuous with bounded deriva-
tive fT (x) ≥ c0 > 0, x ∈ (0,M), for some constant c0 and M . (U, V ) are two continuous random
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inspection times in the case 2 model with the following additional conditions:

(2.1) fU and fV are continuous with fU (x) + fV (x) > 0 for ∀ x ∈ [0,M ];

(2.2) fU,V is continuous with uniformly bounded partial derivatives, except at a finite number of points,
where left and right (partial) derivatives exist;

(2.3) P (V − U < ǫ0) = 0 for some ǫ0 ∈ (0, 1
2M ].

Tables 8 through 11 given in Appendix II show the empirical convergent rates based on the data
from Examples 3.1-3.4. Notice that (100ln100

200ln200 )1/3 = 0.7575, (200ln200
400ln400 )1/3 = 0.7618, (400ln400

800ln800 )1/3 = 0.7653,

limn→∞( nlnn
2nln(2n) )

1/3 = ( n
2n )1/3 = (1

2 )1/3 = 0.7973. We consider fs
30(t) mainly.

In Examples 3.1 and 3.3, fs
30(t) is positive, continuous and bounded on [0,M ] for some constant M

such that the quantile t ∈ [0,M ], obviously it is bigger than some c0 for t ∈ (0,M). In both examples
P (Yk,i − Yk,i−1 < η) = 0 for some η ∈ (0, 1

2M ]. Thus, Example 3.1 and 3.3 satisfy the assumptions given
in (2). By comparing the rates given in Tables 8 and 10 with the computed value 0.7973, we can find that
almost all of the rates have a trend to be away from 0.7071 and oscillating increase to some value which is
maybe 0.7973, thus it suggests that the convergent rate is n1/3.

In Example 3.2, fs
30 is the density function of the exponential distribution which is strictly positive

continuous. The inspection times are also positive continuous and the joint distribution of Yi’s are positive
in the same domain. Thus at each quantile t for risk 3, fs

30(t) satisfies the conditions given in (1). By
comparing the rates given in the three rows of each block of Table 9 to the values 0.7575, 0.7618 and 0.7653,
respectively, we can find most of the rates have a trend to deviate from 0.7071 and be around 0.7575, 0.7618
and 0.7653 respectively for each n, thus it suggests that the convergent rate is (n log n)1/3.

§4. Data Analysis. Our proposed procedure is applied to a standard breast cancer relapse follow-up study
based on data from 375 women with stages I - III unilateral invasive breast cancer surgically treated at
Memorial Sloan-Kettering Cancer Center between 1985 and 1990. The median follow-up duration was 46
months. If a patient did not relapse toward the end of the study, then her relapse time was right censored.
Of the 375 observations, 288 were right censored (no relapse), the other 87 patients had relapses. When
cancer relapses, there may be several types of cancer diagnosed, and it was not clear which cancer relapsed
first. These data consist of 7 risk components described as follows.

Cause (1) (2) (3) (4) (5) (6) (7)
name Breast Lung Bone Liver Mediastinum Supraclavicular OTHER
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Figure 1. Empirical scdf for each type of cancer.
The observed masked competing risks contain {1}, {2}, {3}, {4}, {5}, {6}, {7}, {1, 3}, {1, 5}, {4, 5},

{4, 6}, {5, 7}, {5, 6, 7}, {1, 2, 3, 4, 5, 6, 7}. The observation {1} means that we know the breast cancer relapse
first; {4, 6} means that type of cancer that relapse first is either the liver cancer or supraclavicular. Thus it
contains masking and it can be verified that the data satisfy assumption A3 at least. The empirical scdfs are
given in Figure 1. According to Figure 1, the relapse rate for the Breast cancer is the smallest. Notice that
these patients are all breast cancer patients after surgery. This analysis suggests that the relapse is mainly
not due to breast cancer. During the study time, the highest relapse rate is from the fifth type of cancer.
§5. Conclusion and Discussion.

This paper proposes a RPM model to estimate the scdfs based on the ICMCR data. We also compare
the proposed model with the existed CMP model to obtain that our model is easier implemented in the
simulation and the real data analysis and less restrictive.

We developed an algorithm to find the Mis and use a self-consistency algorithm to estimate the scdfs
and is applied to the simulations and real data analysis. In the simulations we find when the sample size
increases, the estimates are closer and closer to the true value. Also we compute the empirical rate of
convergence. In the theoretical part, we give the proofs of the consistency and the asymptotical normality
under the discrete inspection times. We will give the proof for the continuous inspection times in the future
work. Also in the future work, we can provide some hypothesis to test whether a parametric model is valid
or not.
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Appendix I. Algorithm For Finding MI’s.

Recall that (li, ri,Mi), i = 1, 2, · · · , n, are the observations, and Ii is as in (2.1).

Step 1. For each j = 1, 2, · · · , J , construct Gj , which is a collection of all Ii’s with j ∈ Mi. Notice that
Gj ’s are not a partition.

Step 2. For each j = 1, 2, · · · , J , find the MI’s induced by the Ii’s in Gj . In particular, denote Gj =

{Ij,i, i = 1, 2, · · · , nj}, where Ij,i =

{

(lj,i, rj,i] ×Mj,i if lj,i < rj,i

[lj,i, rj,i] ×Mj,i if lj,i = rj,i
, and proceed in two sub-steps as follows.

Step 2.1 (find the MI’s induced by the interval part of Ij,i’s (with j fixed)). Let Ends[j] be a collection
of 2nj elements such that each Ij,i induces two elements xj,2i−1 and xj,2i of Ends[j], namely, xj,2i−1 =
(lj,i,Mj,i, 0,EI) and xj,2i = (rj,i,Mj,i, 1,EI), where EI = 1(lj,i = rj,i). Notice that the third component,
say SI, in xj,k is the side indicator whether its first component is a right end-point of Ij,i.

Let OrderedEnds[j] be the set of ordered statistics in the first coordinates of the elements in the set
Ends[j]. The ordering is in the sense as follows. For each pair of elements in Ends[j], if their first coordinates
are not equal, then order them in an obvious way; if they are equal but SI’s are not, then check the exact
indicators: if both EI = 1, then the element with SI = 1 is assumed to be bigger; otherwise, the element with
SI = 1 is assumed to be smaller; finally, if x and y in the set Ends[j] are the same, order them according to
their indices. Denote OrderedEnds[j] = {(ej,i,Mj,i, ki) : i = 1, 2, · · · , 2nj , ki ∈ {0, 1}}, where the masking
parts Mj,i and the side indicators ki go with the ordering.

Then we construct a new collection MGj as follows.

1. Initialize i = 1 and MGj = ∅.
2. If i reaches 2nj , then stops; otherwise, pick the pair {(ej,i, Mj,i, ki), (ej,i+1, Mj,i+1, ki+1)} from

OrderedEnds[j].

3. Check whether (ki, ki+1) = (0, 1). If it is true, then go to next step; otherwise, go back to 2 with i
replaced by i + 1.

4. Let M∗ = Mj,i

⋂Mj,i+1, add the intersection element (ej,i, ej,i+1]×M∗ to MGj , replace i by i+1,
then go back to 2.

The elements in MGj ’s are candidates of MI’s.

Step 2.2 (narrow down the masking part for each element in MGj). First denote MGj = {(el,i, er,i] ×
M∗

i , i = 1, 2, · · · ,mj},
0. Initialize i = 1 and IMGj = ∅.
1. If i reaches mj + 1, then stop; otherwise, pick the ith element, say (el,i, er,i] × M∗

i from MGj . If
|M∗

i | > 1, go to next step to compare with the nj elements (lk, rk]×Mk in Gj ; otherwise, add (el,i, er,i]×M∗
i

to IMGj , replace i by i + 1 and go back to 1. Here |.| denotes the size of the set.

2. Initialize k = 1.

3. If k reaches nj +1, then add (el,i, er,i]×M∗
i to IMGj , go back to 1 with i replaced by i+1; otherwise,

pick an element (lk, rk] ×Mk from Gj , if (el,i, er,i] ⊂ (lk, rk], then go to next step; otherwise, go back to 3
with k replaced by k + 1.

4. If |M∗
i

⋂Mk| < |M∗
i |, replace M∗

i by M∗
i

⋂Mk, then go to next step; otherwise, go back to 3 with
k replaced by k + 1.

5. If |M∗
i | = 1, then add (el,i, er,i]×M∗

i to IMGj , go back to 1 with i replaced by i + 1; otherwise, go
to 3 with k replaced by k + 1.

Now IMGj is the set of all MI’s induced by Ii’s in Gj (see §4 in Appendix III), j = 1, ..., J . Notice
that these MI’s are not the true MI’s induced by all Ii’s.

Step 3 (find the true MI’s). The true MI’s induced by Ii’s can be obtained through the following sub-steps.

0. Fix a j ∈ {1, ..., J}, initialize k = 1, i = 1.

1. If k reaches |IMGj | + 1, then stops. Otherwise, pick an element (el,k, er,k] × M∗
k from IMGj . If

|M∗
k| = 1 or M∗

k = ∅, then go back to 1 with k replaced by k + 1; otherwise, go to next step.

2. If i reaches |⋃s∈M∗

k
\{j} IMGs| + 1, then go back to 1 with k replaced by k + 1 and i replaced

by 1. Otherwise, pick an element (el,i, er,i] × M∗
i from

⋃

s∈M∗

i
\{j} IMGs with (el,i, er,i] × M∗

i ⊂ IMGs

for some s ∈ M∗
i \{j}. If el,k < el,i ≤ er,k ≤ er,i or el,k ≤ el,i ≤ er,k < er,i or el,i < el,k ≤ er,i ≤ er,k or

el,i ≤ el,k ≤ er,i < er,k, then replace (el,k, er,k]×M∗
k by (el,k, er,k]×∅, replace (el,i, er,i]×M∗

i by (el,i, er,i]×∅,
and go back to 1 with k replaced by k + 1 and i replaced by 1; otherwise, go to next step.
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3. If [(el,i, er,i] ×M∗
i ] ⊂ (el,k, er,k] ×M∗

k, replace (el,k, er,k] ×M∗
k by (el,k, er,k] × ∅, then go back to 1

with k replaced by k + 1 and i replaced by 1; otherwise, go to next step.
4. If [(el,k, er,k] × M∗

k] ⊂ (el,i, er,i] × M∗
i , replace (el,i, er,i] × M∗

i by (el,i, er,i] × ∅, then go back to 2
with i replaced by i + 1; otherwise, go to next step.

5. The only possible condition now is that these two elements are disjoint, thus go back to 2 with i
replaced by i + 1.

Repeat this procedure for j = 1, ..., J , set FMG =
⋃J

j=1{(el,i, er,i]×M∗
i ∈ IMGj : M∗

i 6= ∅}, which is
the set of true MI’s induced by all Ii’s (see §5 in Appendix III).
Example I. We shall explain this algorithm by a simple example. Assume that J = 3, and there are
5 observations: O1 = (2, 4] × {1, 2}, O2 = (1, 5] × {1}, O3 = (3, 5] × {2, 3}, O4 = (−∞, 2] × {1, 2}, and
O5 = (5,+∞) × {1, 2, 3}.
Step 1. Construct Gj ’s as follows.

G1 = {(2, 4] × {1, 2}, (1, 5] × {1}, (−∞, 2] × {1, 2}, (5,∞) × {1, 2, 3}};
G2 = {(2, 4] × {1, 2}, (3, 5] × {2, 3}, (−∞, 2] × {1, 2}, (5,∞) × {1, 2, 3}};
G3 = {(3, 5] × {2, 3}, (5,∞) × {1, 2, 3}}.

Step 2. Find the MI’s induced by Ii’s in each group Gj . Here we consider group G1 only for illustration
purpose. This step has two sub-steps.
Step 2.1 Find the MI’s w.r.t. the interval part.

1. Construct Ends[1] from G1: Ends[1] = {(2, {1, 2}, 0), (4, {1, 2}, 1), (1, {1}, 0), (5, {1}, 1), (−∞, {1, 2}, 0),
(2, {1, 2}, 1), (5, {1, 2, 3}, 0), (∞, {1, 2, 3}, 1)}.

2. Order the endpoints in Ends[1] as follows.
OrderEnds[1] = {(−∞, {1, 2}, 0), (1, {1}, 0), (2, {1, 2}, 1), (2, {1, 2}, 0), (4, {1, 2}, 1), (5, {1}, 1), (5, {1, 2, 3}, 0),

(∞, {1, 2, 3}, 1)},
3. Obtain the set of initial MI’s induced by I1,i’s. MI1 = {(1, 2]× {1}, (2, 4]× {1, 2}, (5,∞)× {1, 2, 3}}

Step 2.2. Narrow down the masked competing risks in MI1 to obtain:
IMG1 = {(1, 2] × {1}, (2, 4] × {1}, (5,∞) × {1, 2, 3}} since (2, 4] ⊂ (1, 5] and {1} ⊂ {1, 2}.
By the same way, we can find the other two MI’s for G1 and G2 as the following:
IMG2 = {(−∞, 2] × {1, 2}, (3, 4] × {2}, (5,∞) × {1, 2, 3}},
IMG3 = {(3, 5] × {2, 3}, (5,∞) × {1, 2, 3}}.

Step 3. Find the true MI’s induced by all Ii’s.
Pick each elements from IMG1

⋃

IMG2

⋃

IMG3, if the masked competing risks
(MCR) part has only one element, then put it into the final MI set denoted by FMG; otherwise check
this element with other elements in IMG1

⋃

IMG2

⋃

IMG3 to see whether it is smallest with rules given
in the algorithm. Then IMGj becomes

IMG1 = {(1, 2] × {1}, (2, 4] × {1}, (5,∞) × ∅},
IMG2 = {(−∞, 2] × ∅, (3, 4] × {2}, (5,∞) × ∅},
IMG3 = {(3, 5] × ∅, (5,∞) × {1, 2, 3}}.
Then by picking up the elements from

⋃3
j=1 IMGj with MCR 6= ∅, we can obtain the MI’s: FMG =

{(1, 2] × {1}, (2, 4] × {1}, (3, 4] × {2}, (5,∞) × {1, 2, 3}}.
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Appendix II. Tables.
Table 1. Continuous inspection times with log-normal survival distribution (Example 3.1).

Risk 1 t=3.0124 t=5 t=8.2990 t=14.271
True Value 0.01 0.0125 0.015 0.175

n=100 0.0097(0.0114) 0.0124(0.0127) 0.0162(0.0155) 0.0220(0.0265)
n=200 0.0095(0.0082) 0.0120(0.0089) 0.0153(0.0106) 0.0197(0.0173)
n=400 0.0098(0.0058) 0.0122(0.0062) 0.0154(0.0075) 0.0188(0.0113)
n=800 0.0100(0.0043) 0.0122(0.0045) 0.0148(0.0051) 0.0182(0.0082)

Risk 2 t=3.419 t=5 t=7.3116 t=10.98
True Value 0.01 0.0125 0.015 0.0175

n=100 0.0082(0.0112) 0.0115(0.0126) 0.0142(0.0143) 0.0191(0.0227)
n=200 0.0097(0.0084) 0.0125(0.0089) 0.0153(0.01) 0.019(0.0138)
n=400 0.0096(0.0058) 0.0119(0.0063) 0.0144(0.0072) 0.0184(0.0103)
n=800 0.01(0.0044) 0.0121(0.0044) 0.0145(0.0051) 0.0178(0.0069)

Risk 3 t=3.881 t=5 t=6.442 t=8.447
True Value 0.36 0.45 0.54 0.63

n=100 0.3665(0.0647) 0.4466(0.0673) 0.5315(0.0609) 0.6236(0.0648)
n=200 0.365(0.0492) 0.4489(0.0479) 0.5337(0.0485) 0.6234(0.0486)
n=400 0.365(0.0351) 0.4506(0.0359) 0.5345(0.0347) 0.6259(0.0359)
n=800 0.3638(0.0266) 0.4503(0.0259) 0.5352(0.0257) 0.6255(0.0276)

Risk 4 t=4.405 t= 5 t=5.675 t=6.499
True Value 0.02 0.025 0.03 0.035

n=100 0.0172(0.0184) 0.0228(0.0204) 0.03(0.0218) 0.0338(0.0224)
n=200 0.0186(0.0135) 0.0246(0.0154) 0.0304(0.0161) 0.0342(0.0168)
n=400 0.0184(0.0099) 0.0246(0.0109) 0.0309(0.0111) 0.0343(0.0113)
n=800 0.019(0.0073) 0.0249(0.0078) 0.0309(0.0087) 0.0341(0.0092)
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Table 2. Continuous inspection times with exponential survival distribution (Example 3.2).

Risk 1 t=0.5108 t=0.6931 t=0.9163 t=1.204
True Value 0.01 0.0125 0.015 0.0175

n=100 0.0013(0.0068) 0.0023(0.0088) 0.0038(0.0113) 0.0054(0.013)
n=200 0.0017(0.0069) 0.0035(0.0096) 0.0059(0.0121) 0.0083(0.0137)
n=400 0.0035(0.0084) 0.0055(0.0103) 0.0088(0.0123) 0.0126(0.0129)
n=800 0.0044(0.0084) 0.0075(0.0101) 0.0109(0.0108) 0.0147(0.0108)

Risk 2 t=1.022 t=1.386 t=1.833 t=2.408
True Value 0.01 0.0125 0.015 0.0175

n=100 0.0017(0.0076) 0.0030(0.0097) 0.0047(0.0122) 0.0077(0.0147)
n=200 0.0026(0.008) 0.0047(0.0104) 0.0077(0.0124) 0.0106(0.0136)
n=400 0.0033(0.0076) 0.0061(0.0097) 0.0096(0.0114) 0.0137(0.0117)
n=800 0.0057(0.0079) 0.0092(0.009) 0.0125(0.0091) 0.0163(0.0084)

Risk 3 t=2.0433 t=2.7726 t=3.6652 t=4.8159
True Value 0.36 0.45 0.54 0.63

n=100 0.3403(0.1204) 0.4416(0.1118) 0.5390(0.0993) 0.6352(0.0795)
n=200 0.3552(0.0906) 0.4474(0.0824) 0.5382(0.0738) 0.6309(0.0608)
n=400 0.3559(0.0686) 0.4474(0.0612) 0.5419(0.056) 0.6332(0.0442)
n=800 0.3611(0.0543) 0.4510(0.0474) 0.5414(0.041) 0.6319(0.0337)

Risk 4 t=4.087 t=5.5452 t=7.3303 t=9.6318
True Value 0.02 0.025 0.03 0.035

n=100 0.0167(0.0199) 0.02377(0.022) 0.0301(0.0219) 0.0356(0.0216)
n=200 0.0176(0.0152) 0.0243(0.0153) 0.0295(0.0146) 0.0346(0.0143)
n=400 0.0188(0.0114) 0.0246(0.0109) 0.0302(0.0104) 0.0349(0.0106)
n=800 0.0200(0.0079) 0.0250(0.0076) 0.0304(0.0072) 0.0349(0.0073)
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Table 3. Continuous inspection times with uniform survival distribution (Example 3.3).

Risk 1 t=1.6 t=3.2 t=4.8 t=6.4
True Value 0.005 0.01 0.015 0.02

n=100 0.0039(0.0077) 0.0097(0.0121) 0.0147(0.0146) 0.0211(0.0172)
n=200 0.0045(0.0065) 0.0097(0.0088) 0.0147(0.0107) 0.0217(0.0125)
n=400 0.0049(0.005) 0.0097(0.0064) 0.0144(0.0076) 0.0212(0.0092)
n=800 0.0051(0.0038) 0.0102(0.0047) 0.0147(0.0056) 0.0205(0.0063)

Risk 2 t=1.4 t=2.8 t=4.2 t=5.6
True Value 0.005 0.01 0.015 0.02

n=100 0.0028(0.0073) 0.0078(0.0116) 0.0132(0.0145) 0.0183(0.0174)
n=200 0.0033(0.0059) 0.0086(0.0088) 0.0145(0.0106) 0.0200(0.0121)
n=400 0.0038(0.0048) 0.0090(0.0061) 0.0146(0.0072) 0.0203(0.0085)
n=800 0.0047(0.0038) 0.0096(0.0047) 0.0145(0.0053) 0.0205(0.0064)

Risk 3 t=1.2 t=2.4 t=3.6 t=4.8
True Value 0.18 0.36 0.54 0.72

n=100 0.1783(0.0657) 0.3387(0.0726) 0.5490(0.0761) 0.7121(0.0762)
n=200 0.1811(0.0494) 0.3532(0.0587) 0.5443(0.057) 0.7131(0.0553)
n=400 0.1774(0.039) 0.3484(0.0439) 0.5463(0.0447) 0.7161(0.0416)
n=800 0.1782(0.0289) 0.3549(0.0333) 0.5441(0.0334) 0.7180(0.0325)

Risk 4 t=1.0 t=2.0 t=3.0 t=4.0
True Value 0.01 0.02 0.03 0.04

n=100 0.0065(0.0121) 0.0181(0.018) 0.0284(0.0215) 0.0409(0.0239)
n=200 0.0081(0.0108) 0.0197(0.0136) 0.0293(0.0158) 0.0417(0.0174)
n=400 0.0087(0.0083) 0.0196(0.0095) 0.0299(0.0116) 0.0421(0.0127)
n=800 0.0094(0.0063) 0.0205(0.007) 0.0297(0.0083) 0.0414(0.0089)
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Table 4. Discrete Inspection Times with log-normal survival distribution (Example 3.4).

Risk 1 t=3.0124 t=5 t=8.299 t=14.271
True Value 0.01 0.0125 0.015 0.175

n=100 0.0105(0.0108) 0.0131(0.0125) 0.0164(0.0147) 0.0191(0.016)
n=200 0.0098(0.0075) 0.0122(0.0085) 0.0149(0.0098) 0.0177(0.0111)
n=400 0.0103(0.0056) 0.0130(0.0063) 0.0158(0.007) 0.0184(0.0079)
n=800 0.0098(0.0038) 0.0124(0.0044) 0.0150(0.005) 0.0176(0.0056)

Risk 2 t=3.4192 t=5 t=7.3116 t=10.98
True Value 0.01 0.0125 0.015 0.0175

n=100 0.0093(0.0106) 0.0119(0.0119) 0.0146(0.0136) 0.0168(0.0152)
n=200 0.0096(0.0074) 0.0119(0.0084) 0.0143(0.0094) 0.0166(0.0106)
n=400 0.0098(0.0053) 0.0121(0.0061) 0.0145(0.0069) 0.0168(0.0077)
n=800 0.0101(0.0037) 0.0126(0.0042) 0.0150(0.0049) 0.0176(0.0054)

Risk 3 t=3.881 t=5 t=6.4417 t=8.4472
True Value 0.36 0.45 0.54 0.63

n=100 0.3594(0.0479) 0.4499(0.053) 0.5404(0.0556) 0.6303(0.0593)
n=200 0.3609(0.0346) 0.4503(0.0379) 0.5406(0.0396) 0.6303(0.0409)
n=400 0.3605(0.0244) 0.4499(0.0262) 0.5399(0.0269) 0.6294(0.0283)
n=800 0.3601(0.0173) 0.4498(0.0182) 0.5404(0.0189) 0.6304(0.0194)

Risk 4 t=4.4051 t= 5 t=5.6752 t=6.4989
True Value 0.02 0.025 0.03 0.035

n=100 0.0201(0.0151) 0.0250(0.0172) 0.0297(0.0195) 0.0347(0.0213)
n=200 0.0204(0.0112) 0.0254(0.0126) 0.0304(0.0145) 0.0354(0.0156)
n=400 0.0199(0.008) 0.0248(0.0091) 0.0300(0.01) 0.0348(0.0108)
n=800 0.0199(0.0058) 0.0249(0.0064) 0.0297(0.0071) 0.0345(0.0077)
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Table 5. The estimator’s difference between the two estimating approaches.

Risk 1 0.01 0.0125 0.015 0.0175

n=100 0.0184% 0.0088% 0.0222% 0.0588%
n=200 0.0095% 0.0073% 0.0076% 0.0409%
n=400 0.0035% 0.0026% 0.0024% 0.0195%
n=800 0.0005% 0.0006% 0.0002% 0.004%

Risk 2 0.01 0.0125 0.015 0.0175

n=100 0.0068% 0.0054% 0.0226% 0.0226%
n=200 0.002 % 0.0025% 0.003% 0.0167%
n=400 0.0007% 0.0016% 0.0026% 0.0187%
n=800 0.001% 0.0003% 0.0004% 0.0053%

Risk 3 0.36 0.45 0.54 0.63

n=100 0.048% 0.0047% 0.0054% 0.0073%
n=200 0.0021% 0.0026% 0.003% 0.0049%
n=400 0.0011% 0.0013% 0.0015% 0.0029%
n=800 0.0001% 0.0001% 0.0001% 0.0002%

Risk 4 0.02 0.025 0.03 0.035

n=100 0.0195% 0.0145% 0.0114% 0.0099%
n=200 0.0092% 0.0059% 0.0061% 0.005%
n=400 0.0029% 0.0037% 0.0029% 0.0028%
n=800 0.0014% 0.0003% 0.0001% 0.0001%

Example 3.1: Continuous Inspection Times with Log-normal Distributions.
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Table 6. The estimator’s difference between the two estimating approaches.

Risk 1 0.01 0.0125 0.015 0.0175

n=100 0.4765% 2.0849 % 5.2561 % 6.1354 %
n=200 0.0756% 0.2992% 2.0916% 2.173%
n=400 0.0118% 0.1366% 0.2395% 0.3477%
n=800 0.0032% 0.0792% 0.0769% 0.1404%

Risk 2 0.01 0.0125 0.015 0.0175

n=100 1.5985% 2.5269 % 2.9074% 2.9642%
n=200 0.4713% 1.2595% 1.6482% 1.9564%
n=400 0.433% 0.6464% 0.8852% 1.2499%
n=800 0.0922% 0.1632% 0.2996% 0.4908%

Risk 3 0.36 0.45 0.54 0.63

n=100 0.1387% 0.145% 0.1522% 0.3052 %
n=200 0.0281% 0.0238% 0.0225% 0.139%
n=400 0.0022% 0.0016% 0.0012% 0.0447%
n=800 0.0001% 0.0002% 0.0003% 0.0162%

Risk 4 0.02 0.025 0.03 0.035

n=100 0.4002 % 0.3021% 0.1096% 0.211%
n=200 0.261% 0.3662% 0.3703% 0.1812%
n=400 0.2188% 0.2144% 0.2% 0.0456%
n=800 0.0449% 0.0463% 0.0489% 0.0157%

Example 3.4: Discrete Inspection Times with Log-normal Distribution.
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Table 7. The time’s difference between the two estimating approaches.

Size Time of 1st Approach Time of 2nd Approach Ratio

n=100 85.684 124.692 0.687
n=200 1120.276 1462.347 0.766
n=400 11378.34 13632.84 0.835
n=800 126122.0 138022.9 0.914

Example 3.1: Log-normal Distribution. Tolerance=0.0001.

Size Time of 1st Approach Time of 2nd Approach Ratio

n=100 4.361 7.708 0.566
n=200 9.661 19.894 0.486
n=400 32.953 76.164 0.433
n=800 93.624 162.833 0.575

Example 3.4: Discrete Inspection Times. Tolerance=0.00001.

Table 8. Empirical convergent rates for the continuous inspection times.

Risk 1 t=3.01242 t=5 t=8.298976 t=14.27113

ŜE200

ŜE100
0.7142 0.7018 0.6869 0.6510

ŜE400

ŜE200
0.7155 0.6922 0.7005 0.6524

ŜE800

ŜE400
0.7325 0.7278 0.6895 0.7245

Risk 2 t=3.419236 t=5 t=7.3115745 t=10.97960

ŜE200

ŜE100
0.7479 0.7057 0.7017 0.6068

ŜE400

ŜE200
0.6942 0.7053 0.7212 0.7458

ŜE800

ŜE400
0.7501 0.7000 0.6997 0.6661

Risk 3 t=3.880992 t=5 t=6.441652 t=8.447229

ŜE200

ŜE100
0.7601 0.7112 0.7955 0.7494

ŜE400

ŜE200
0.7128 0.7501 0.7166 0.7383

ŜE800

ŜE400
0.7584 0.7214 0.7404 0.7680

Risk 4 t=4.405106 t=5 t=5.675232 t=6.498934

ŜE200

ŜE100
0.7340 0.7569 0.7348 0.7505

ŜE400

ŜE200
0.7298 0.7078 0.6933 0.6761

ŜE800

ŜE400
0.7371 0.7110 0.7776 0.8145

Example 3.1: Ratios in Log-normal Distributions.
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Table 9. Empirical convergent rates for the continuous inspection times.

Risk 1 t=0.5108256 t=0.6931472 t=0.9162907 t=1.2039733

ŜE200

ŜE100
1.0169 1.0877 1.0782 1.0493

ŜE400

ŜE200
1.2045 1.0722 1.0112 0.9423

ŜE800

ŜE400
1.0101 0.9805 0.8835 0.8378

Risk 2 t=1.021651 t=1.386294 t=1.832581 t=2.407946

ŜE200

ŜE100
1.0510 1.0638 1.0198 0.9208

ŜE400

ŜE200
0.9510 0.9387 0.9177 0.8648

ŜE800

ŜE400
1.0434 0.9296 0.8021 0.7113

Risk 3 t=2.043302 t=2.772589 t=3.665163 t=4.815891

ŜE200

ŜE100
0.7529 0.7365 0.7430 0.7643

ŜE400

ŜE200
0.7568 0.7429 0.7595 0.7273

ŜE800

ŜE400
0.7922 0.7750 0.7321 0.7626

Risk 4 t=4.086605 t=5.545177 t=7.330326 t=9.631782

ŜE200

ŜE100
0.7629 0.6973 0.6649 0.6610

ŜE400

ŜE200
0.7475 0.7103 0.7173 0.7443

ŜE800

ŜE400
0.6948 0.6959 0.6888 0.6859

Example 3.2: Ratios in Exponential Distributions.
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Table 10. Empirical convergent rates for inspection times with the uniform distribution (Ex. 3.).

Risk 1 t=1.6 t=3.2 t=4.8 t=6.4

ŜE200

ŜE100
0.8486 0.7251 0.7348 0.7294

ŜE400

ŜE200
0.7733 0.7298 0.7058 0.7385

ŜE800

ŜE400
0.7560 0.7327 0.7384 0.6798

Risk 2 t=1.4 t=2.8 t=4.2 t=5.6

ŜE200

ŜE100
0.8132 0.7614 0.7274 0.6951

ŜE400

ŜE200
0.8063 0.6900 0.6836 0.7045

ŜE800

ŜE400
0.7978 0.7636 0.7287 0.7517

Risk 3 t=1.6 t=2.4 t=3.2 t=4.8

ŜE200

ŜE100
0.7514 0.8077 0.7492 0.7257

ŜE400

ŜE200
0.7888 0.7492 0.7841 0.7529

ŜE800

ŜE400
0.7429 0.7583 0.7468 0.7813

Risk 4 t=1.0 t=2.0 t=3.0 t=4.0

ŜE200

ŜE100
0.8887 0.7570 0.7318 0.7296

ŜE400

ŜE200
0.7703 0.7010 0.7352 0.7266

ŜE800

ŜE400
0.7617 0.7356 0.7153 0.7030
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Table 11. Empirical Convergent Rates for the discrete inspection times and continuous survival time
(Example 3.4).

Risk 1 t=3.01242 t=5 t=8.298976 t=14.27113

ŜE200

ŜE100
0.6887 0.6815 0.6659 0.6961

ŜE400

ŜE200
0.7465 0.7455 0.7110 0.7078

ŜE800

ŜE400
0.6807 0.6971 0.7209 0.7140

Risk 2 t=3.419236 t=5 t=7.3115745 t=10.97960

ŜE200

ŜE100
0.6951 0.7026 0.6894 0.6991

ŜE400

ŜE200
0.7263 0.7262 0.7312 0.7244

ŜE800

ŜE400
0.6845 0.6880 0.7098 0.7064

Risk 3 t=3.880992 t=5 t=6.441652 t=8.447229

ŜE200

ŜE100
0.7214 0.7155 0.7128 0.6901

ŜE400

ŜE200
0.7050 0.6911 0.6777 0.6915

ŜE800

ŜE400
0.7078 0.6944 0.7048 0.6861

Risk 4 t=4.405106 t= 5 t=5.675232 t=6.498934

ŜE200

ŜE100
0.7437 0.7329 0.7419 0.7308

ŜE400

ŜE200
0.7124 0.7243 0.6898 0.6951

ŜE800

ŜE400
0.7264 0.7043 0.7100 0.7096
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This appendix may become a technical report for shortening the paper
Appendix III We shall give the proofs of the statements and theorems in the paper.
§1. Proposition 1. The NPMLE of F0 assigns weights, say, s1, s2, · · ·, sm only to the corresponding
MI’s A1, A2, · · · , Am.
Proof: It suffices to show that if B is a set such that B ∩ (∪m

k=1Ak) = ∅ and Fs is a scdf vector such that
µFs(B) > 0, then there exists another scdf vector Fs∗ such that µFs∗(B) = 0 and Λn(Fs∗) > Λn(Fs).

For convenience, write Ii = (Li, Ri]×Mi, i = 1, ..., n. Suppose that there are total of n1+2 distinct values
of Li’s and Ri’s, including −∞ and ∞, say a0 = −∞ < a1 < a2 < · · · < an1+1 = ∞. Then the elements in
the set {(al, c) : l = 1, ..., n1; c = 1, ..., J} form a grid that partitions the space [−∞,∞] × [−∞,∞] with
components B = (al−1, al]× {c} or (al−1, al]× (c− 1, c). Moreover, it can be shown that each element B in
the grid satisfies that

1. B ∩ Aj = ∅ or B for each Aj , j = 1, 2, · · · ,m.
2. B ∩ Ii = ∅ or B for each Ii, i = 1, 2, · · · , n.

Suppose that Fs assigns some positive weight to at least one non-MI set Blc (that is, Blc∩
⋃m

j=1 Aj = ∅),
then one of the following cases must happen:

1. Blc = (al−1, al] × (c − 1, c). Denote B∗
1 the collection of these non-MI’s;

2. Blc = (al−1, al]×{c} and Blc ∩ Ii = ∅ for all i = 1, 2, · · · , n. Denote B∗
2 the collection of these non-MI’s;

3. Blc = (al−1, al] × {c}, but Blc ∩ Ii 6= ∅ for some i. Denote B∗
3 the collection of these non-MI’s.

Thus Bk

⋂

(∪m
j=1Aj) = ∅ for any Bk ∈ B∗

1

⋃B∗
2

⋃B∗
3 by the aforementioned assumptions.

Suppose that the weight assigned by Fs on Bk is wk > 0 and define an new Fs∗ as follows.
1. In case 1 or 2, Fs∗ moves wk

m to each of the m Aj ’s, that is,

µFs∗(Blc) =

{

µFs(Blc) if Blc 6= Bk and Bk ∈ ⋃3
i=1 B∗

i ,
0 if Blc = Bk,

and µFs∗(Aj) = µFs(Aj)+
wk

m > µFs(Aj). Thus for each i = 1, 2, · · · , n, µFs∗(Ii) = µFs(Ii)+
∑m

j=1
wk

m 1(Aj ⊂
Ii) > µFs(Ii). Then we obtain

Λn(Fs∗) =

n
∏

i=1

µFs∗(Ii) >

n
∏

i=1

µFs(Ii) = Λn(Fs).

2. In case 3 for Bk ∈ B∗
3 , if Bk ∩ Ii 6= ∅ for some i, then without loss of the generality, we can assume

that Bk ⊂ Ii for i = 1, 2, · · · , nk, but Blc ∩ Ii = ∅ for the rest i’s, and j = 1, 2, · · · ,mk, mk < m such that
Aj ⊂ ⋂nk

i=1 Ii. Then F ∗ moves wk

mk
to each of the mk Aj ’s, that is,

µFs∗(Blc) =







µFs(Blc) if Blc ∈ B∗
1

⋃B∗
2 ,

0 if Blc = Bk,
µFs(Blc) if Blc 6= Bk and Blc ∈ B∗

3

and

µFs∗(Aj) =

{

µFs(Aj) + wk

mk
for j = 1, 2, · · · ,mk,

µFs(Aj) for j = mk + 1, · · · ,m.

Thus ∃ at least an i such that µFs∗(Ii) = µFs(Ii) +
∑mk

j=1
wk

mk
1(Aj ⊂ Ii) > µFs(Ii). Thus we have

Λn(Fs∗) =

n
∏

i=1

µFs∗(Ii) >

n
∏

i=1

µFs(Ii) = Λn(Fs).

Either of them tell us that if F̂s
n is the NPMLE, then the weights assigned by F̂s

n have to be on the MI’s
only.
§2. Proof of the claim in Example 2.1: Based on the model in Example 2.1, we can show that the
possible observations are (−∞, 1]×{1, 2}, (−∞, 1]×{2}, (1, 2]×{1}, (1, 2]×{2}, and (1, 2]×{1, 2} with sizes
N1, N2, N3, N4 and N5 respectively where N1 + N2 + N3 + N4 + N5 = n. Thus the MI’s are (−∞, 1]× {2},
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(1, 2] × {1} and (1, 2] × {2} with weights s1, s2 and s3 respectively. Then we can set up the log-likelihood
function:

Ln(s1, s2, s3) =
1

n
(N1 + N2) log s1 + N3 log s2 + N4 log(1 − s1 − s2) + N5 log(1 − s1)

under the constraint s1 + s2 + s3 = 1. By the differentiation on the weights and setting them equal 0, we
can have

N1 + N2

s1
− N4

1 − s1 − s2
− N5

1 − s1
= 0,

N3

s2
− N4

1 − s1 − s2
= 0.

Solving them yields

ŝ1 =
N1 + N2

n
, ŝ2 =

(n − N1 − N2)N3

n(N3 + N4)
.

Since fT,C(1, 1) = 0 and P (T = 1) = P (T = 2) = 1/2, we have fT,C(1, 2) = α1 = 1/2, fT,C(2, 1) = α2/2 > 0
and fT,C(2, 2) = α3/2 > 0 for some α2 > 0, α3 > 0 with α2 + α3 = 1. By the SLLN, we have w.p.1,

N1

n
→ P (T = 1, C = 2, (L,R) = (−∞, 1),∆ = 2) =

α1

2
= 1/4,

N2

n
→ P (T = 1, C = 2, (L,R) = (−∞, 1),∆ = 1) =

α1

2
= 1/4,

N3

n
→ P (T = 2, C = 1, (L,R) = (1, 2),∆ = 1) = α2/4,

N4

n
→ P (T = 2, C = 2, (L,R) = (1, 2),∆ = 1) = α3/4,

N5

n
→ P (T = 2, C = 1 or 2, (L,R) = (1, 2),∆ = 2) = (α2 + α3)/4 = 1/4.

Thus w.p.1, we have

ŝ1 → 1/2 = fT,C(1, 2), ŝ2 → α2/4(1 − 1/2)

α2/4 + α3/4
= α2/2 = fT,C(2, 1),

thus the estimators are consistent.
Denote s = (s1, s2)

′, then by the NPMLE property, we have ∂Ln(ŝ)
∂s

= 0 where ŝ = (ŝ1, ŝ2). Then by the
first Taylor expansion we have

∂Ln(so)

∂s
=

∂2Ln(so)

∂s2
(so − ŝ) + oP (||so − ŝ||).

Due to the consistency, for n large enough, ||ŝ(ω) − so|| < 1
n for each ω ∈ Ω where Ω denotes the sample

space, then we have when n → ∞, oP (
√

n||so − ŝ||) → 0.
¿From the SLLN it follows w.p.1

∂Ln(so)

∂s
=

(

N1+N2

ns1
− N4

n(1−s1−s2)
− N5

n(1−s1)
N3

ns2
− N4

n(1−s1−s2)

)

→
(

1 − α3/4
(1−1/2−α2/2) −

1/4
1−1/2

α2/4
α2/2 − α3/4

1−1/2−α2/2

)

=

(

0
0

)

= E(
∂Ln(so)

∂s
),

then by CLT,
√

n∂Ln(so)
∂s

→ N(0, I) in distribution where

I = −∂2Ln(so)

∂s2
=

(

1 − 1
α3

− 1
α3

− 1
α3

1
α2

− 1
α3

)
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is the Fisher Information matrix which can verified that it is positive definite. Thus we can obtain
√

n(so −
ŝ) → N(0, I−1) in distribution.
§3. Derivation of the NPMLE in Example 2.3: Based on the notations and the model given in
Example 2.3, we can derive the log-likelihood function under the constraint

∑8
i=1 si = 1

Ln(s) = N1 log s1 + N2 log s2 + N3 log s3 + N4 log s4 + N5 log(1 − s1 − s2 − s3 − s4)

+ N6 log(s1 + s2 + s5 + s6) + N7 log(1 − s1 − s2 − s5 − s6)

+ N8 log(s1 + s3 + s5 + s7) + N9 log(1 − s3 − s5 − s7).

Set the derivative on each sj equal zero to obtain

∂Ln

∂s1
=

N1

s1
− N5

1 − s1 − s2 − s3 − s4
+

N6

s1 + s2 + s5 + s6

− N7

1 − s1 − s2 − s5 − s6
+

N8

s1 + s3 + s5 + s7
− N9

1 − s1 − s3 − s5 − s7
= 0,

∂Ln

∂s2
=

N2

s2
− N5

1 − s1 − s2 − s3 − s4
+

N6

s1 + s2 + s5 + s6
− N7

1 − s1 − s2 − s5 − s6
,

∂Ln

∂s3
=

N1

s3
− N5

1 − s1 − s2 − s3 − s4
+

N8

s1 + s3 + s5 + s7
− N9

1 − s1 − s3 − s5 − s7
= 0,

∂Ln

∂s4
=

N1

s4
− N5

1 − s1 − s2 − s3 − s4
= 0,

∂Ln

∂s5
=

N6

s1 + s2 + s5 + s6
− N7

1 − s1 − s2 − s5 − s6

+
N8

s1 + s3 + s5 + s7
− N9

1 − s1 − s3 − s5 − s7
= 0,

∂Ln

∂s6
=

N6

s1 + s2 + s5 + s6
− N7

1 − s1 − s2 − s5 − s6
= 0,

∂Ln

∂s7
=

N8

s1 + s3 + s5 + s7
− N9

1 − s1 − s3 − s5 − s7
= 0.

Solve them to get the NPMLE given in (2.5).
§4. Statement in the end of Step 2.2 of the Algorithm in Appendix I: For j = 1, 2, · · · , J , IMGj

is the set of all MI’s induced from the observations in Gj .
Proof: If there is an element from IMGj , say (el,i, er,i]×M∗

i is not a MI, then either (1) there is an element
from Gj , say (lk, rk]×Mk, such that (el,i, er,i]

⋂

(lk, rk] 6= φ and (el,i, er,i] 6⊂ (lk, rk], (2) ∃(lk, rk]×Mk such
that (el,i, er,i] ⊂ (lk, rk], but M∗

i 6⊂ Mk,
If case (1) is true then we either have el,i < lk < er,i < rk, or lk < el,i < lr < er,i, or el,i < lk < rk < er,i.

But each of them is a contradiction to Step 2.1 of Step 2 in the algorithm where we order all the end points.
Case (2) is impossible since Step 2.2 of Step 2 in the algorithm guarantees no such condition exists. .

§5. Statement in the end of Step 3 of Algorithm in Appendix I. Let MG =
⋃J

j=1 IMGj . If two
elements, say (el,i, er,i]×M∗

i and (el,j , er,j ]×M∗
j for i 6= j from MG are not disjoint, then ∃ (el,k, er,k]×M∗

k ∈
MG for some k such that [(el,k, er,k] ×M∗

k] ⊂ [(el,i, er,i] ×M∗
i ]

⋂

[(el,j , er,j ] ×M∗
j ].

Proof: If [(el,i, er,i]×M∗
i ] ⊂ [(el,j , er,j ]×M∗

j ], then [(el,i, er,i]×M∗
i ]

⋂

[(el,j , er,j ]×M∗
j ] = (el,i, er,i]×M∗

i ∈
MG for k = i and by the symmetry, same for the case that [(el,j , er,j ] ×M∗

j ] ⊂ [(el,i, er,i] ×M∗
i ].

Otherwise, we have (el,i, er,i]
⋂

(el,j , er,j ] = (el, er] with el,i ≤ el = el,j < er = er,i ≤ er,j or el,j ≤ el =
el,i < er = er,j ≤ er,i and M = M∗

i

⋂M∗
j 6= φ. By Step 2.1. of Step 2 in the algorithm, the ordered end

points of el,i, er,i, el,j and er,j would be in the group Gs for some s ∈ M. Thus if there are no any other end
points appearing between el and er, then (el,k, er,k]×M∗

k = (el, er]×M∗
k would be appearing in Gs as a MI
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for some M∗
k ⊂ M; otherwise, el ≤ el,k ≤ er,k ≤ er based on the definition of MI and M∗

k ⊂ M if the end
points el,k, er,k appears between el and er, so [(el,k, er,k] ×M∗

k] ⊂ [(el,i, er,i] ×M∗
i ]

⋂

[(el,j , er,j ] ×M∗
j ]. .

§6. Proof of Remark 2.1. Denote νc(A) = fM|C(A|c) and νt,c(A) = fM|T,C(A|t, c). Notice that if
T > YK,K then Mo 6= M (see Mukhopadhyay (2006, p.80613)), and

if T ≤ YK,K , C ∈ A ∈ Ph and ∆ = h then Mo = M = A. (6.1)

We shall first state two lemmas.

Lemma 6.1. For each A ∈ J νc(A) =

{

0 if c /∈ A
∑

h: A∈Ph
f∆(h) if c ∈ A.

Thus νc(A) is constant in c ∈ A .

Lemma 6.2. ∀ A ∈ J νt,c(A) =

{ ∑

h: A∈Ph
f∆(h) if c ∈ A and fT,C(t, c) > 0

0 if c /∈ A or fT,C(t, c) = 0.
Now we shall prove that S1 holds iff S2 holds.
Suppose that S2 holds. Consider two types of A ∈ J . (1) νc(A) = 0 for some c ∈ A and (2) otherwise.

In case (1), by Lemma 6.1 f∆(h) = 0 for each partition Ph with A ∈ Ph. It follows from Lemma 6.2 that
νt,c(A) = 0 and thus νt,c(A) = νc(A). In case (2), that is, A ∈ J with νc(A) > 0. If fT (t) > 0, then
fT,C(t, c) > 0 by S2, and it follows from Lemmas 6.1 and 6.2 that νt,c(A) = νc(A). In other words, S1 holds
in both cases (1) and (2).

Now suppose that S1 holds. Then ∀ A ∈ J with νc(A) > 0, νc(A) = νt,c(A) for all (t, c) with fT (t) > 0.
Then by Lemmas 6.1 and 6.2 fT,C(t, c) > 0, that is, S2 holds.

The equation νc(A) =
∑

h: A∈Ph
f∆(h) if c ∈ A and A ∈ J unique determine νc(·) through f∆(·), say

νc = g(f∆). Notice that ||P|| ≥ ||J ||. By properly selecting a subset of P, one can find an inverse g−1 such
that f∆ = g−1(νc). Under this restriction as well as under S1, the RPM and the CMP model are equivalent.

§7 Proof of Lemma 6.1. For each A ∈ J and c ∈ A,

νc(A) =P{M = A|C = c}
=

∑

h

P{M = A|C = c,∆ = h}f∆(h) (see (6.1))

=
∑

h

P{C ∈ A,A ∈ Ph|C = c,∆ = h}f∆(h) (by the definitions of ∆ and M)

=
∑

h: A∈Ph

P{C ∈ A|C = c,∆ = h}f∆(h) (as A and Ph are not random)

=
∑

h: A∈Ph

P{C ∈ A|C = c}f∆(h) (as (T,C) ⊥ (∆, YK,K))

=
∑

h: A∈Ph

f∆(h), c ∈ A.

§8 Proof of Lemma 6.2. For each A ∈ J and c ∈ A,

νt,c(A) =P{M = A|C = c, T = t}
=

∑

h

P{M = A|C = c, T = t,∆ = h}f∆(h) (see (6.1))

=
∑

h

P{C ∈ A,A ∈ Ph|C = c, T = t,∆ = h}f∆(h) (by the definitions of M and ∆)

=
∑

h: c∈A∈Ph

P{C = c|C = c, T = t,∆ = h}f∆(h) (as A and Ph are not random)

=
∑

h: c∈A∈Ph

P{C = c|C = c, T = t}f∆(h) (as (T,C) ⊥ (∆, YK,K))

=
∑

h: c∈A∈Ph

1(fT,C(t,c)>0)f∆(h)
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=1(fT,C(t,c)>0)

∑

h: c∈A∈Ph

f∆(h) (as (T,C) ⊥ (∆, YK,K))

=

{ ∑

h: A∈Ph
f∆(h) if c ∈ A and fT,C(t, c) > 0,

0 if c /∈ A or fT,C(t, c) = 0.

§9 Proof of Theorem 3.1: Define ak = (a1, · · · , ak), g(ak,M, k) = P (Yk,1 = a1, · · · , Yk,k = ak,M =
M,K = k) and Bs = {(ak,M, k) : g(ak,M, k) > 0, ai ∈ S,M ∈ J , a1 < · · · < ak, k ≤ d} with a0 = −∞.

Verify that

ÃL(F ) = E{log µFs((L,R] ×M)} =
∑

(ak,M,k)∈Bs

g(ak,M, k)hk(s,ak,M)

with

hk(s,ak,M) =

k
∑

i=1

m
∑

l=1

so
l 1(Al⊂(ai−1,ai]×M) log(

m
∑

j=1

sj1(Aj⊂(ai−1,ai]×M))

+
m

∑

l=1

so
l 1(Al⊂(ak,∞)×Cr) log(

m
∑

j=1

sj1(Aj⊂(ak,∞)×Cr)).

It is easy to verify that hk(s) is maximized by s ∈ Ds if and only if

m
∑

j=1

sj1(Aj⊂(ai−1,ai]×M) =

m
∑

l=1

so
l 1(Al⊂(ai−1,ai]×M)

for i = 1, · · · , k and
m

∑

j=1

sj1(Aj⊂(ak,∞)×Cr) =

m
∑

l=1

so
l 1(Al⊂(ak,∞)×Cr).

Notice that the total number of distinct equations are bigger than or equal to m − 1, then by A2 we can
have that sj = so

j for j = 1, · · · ,m. Thus ŝo maximizes ÃL(F ) and any other values s in Ds that maximizes
ÃL(F ) will coincide with so on A.

Note that by the SLLN Ln(Fs
0) → ÃL(Fs

0) almost surely. By the definition of the NPMLE, we have

Ln(F̂s
n) ≥ Ln(Fs

0). Consequently,

lim
n→∞

inf Ln(F̂s
n) ≥ lim

n→∞
inf Ln(Fs

0) = ÃL(Fs
0) almost surely.

Define Ω′ = {limn→∞ inf Ln(F̂s
n) ≥ ÃL(Fs

0)}. Fix an ω ∈ Ω′, since (ŝ1,n(ω), ..., ŝm,n(ω)) is a finite and
bounded vector, for each of its subsequence, there is a convergent subsequence. Let (s∗1, ..., s

∗
m) be a limiting

vector of (ŝ1,n(ω), ..., ŝm,n(ω)), that is, for some subsequence {kn} such that ŝj,kn
(ω) → s∗j for j = 1, · · · ,m.

Thus if we can show ÃL(Fs∗) ≥ ÃL(Fs
0), then we obtain the desired result where Fs∗ is a distribution function

coinciding with s∗ = (s∗1, · · · , s∗m−1).
Let tkn

(ak,M, k) denote the value of the random variable

1

n

n
∑

i=1

[

k
∑

l=1

1((Ti,Ci)∈(al−1,al]×M,Mi=M,Li=al−1,Ri=al) log(

m
∑

u=1

ŝu,kn
1(Au⊂(al−1,al]×M))

+ 1(Ti>ak,Li=ak,Ri=∞) log(

m
∑

u=1

ŝu,kn
1(Au⊂(ak,∞)×Cr))]

at the point ω. By the definition of Ω′, limn→∞ inf
∑

(ak,M,k)∈Bs
g(ak,M, k)tkn

(ak,M, k) ≥ ÃL(F0). It is easy

to verify that tkn
(ak,M, k) → g(ak,M, k)hk(s∗,ak,M) for each (ak,M, k) ∈ Bs. Note that tkn

(ak,M, k) ≤ 0,
from Fatou’s Lemma,

lim
n→∞

sup
∑

(ak,M,k)∈Bs

tkn
(ak,M, k) = − lim

n→∞
inf

∑

(ak,M,k)∈Bs

(−tkn
(ak,M, k))

≤−
∑

(ak,M,k)∈Bs

lim
n→∞

inf(−tkn
(ak,M, k)) →

∑

(ak,M,k)∈Bs

g(ak,M, k)hk(s∗,ak,M) = ÃL(Fs∗).
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Thus we obtain ÃL(Fs
0) ≤ ÃL(Fs∗). As Fs

0 maximizes ÃL(Fs), we conclude that ÃL(Fs∗) = ÃL(Fs
0) and therefore

s∗j = so
j for each j = 1, · · · ,m. Since ω is arbitrary and P (Ω′) = 1, the consistency is thus established.

§10 Proof of Theorem 3.2: Denote a0 = −∞, ak = (a1, · · · , ak),
g(ak,M, k) = P (Yk,1 = a1, · · · , Yk,k = ak,M = M,K = k) and
Bs = {(ak,M, k) : g(ak,M, k) > 0, ai ∈ S,M ∈ J , a1 < · · · < ak, k ≤ d}. Then

Ln(Fs) =
1

n

n
∑

i=1

log µFs((Li, Ri] ×Mi)

=
1

n

n
∑

i=1

∑

(ak,M,k)∈Bs

(
k

∑

j=1

1(Li = aj−1, Ri = aj ,Mi = M) log(µFs((aj−1, aj ] × M))

+ 1(Li = ak, Ri = ∞,Mi = Cr) log(µFs((ak,∞) × Cr))).

Also we can verify that

ÃL(Fs) = E{log µFs((L,R] ×M)}

=
∑

(ak,M,k)∈Bs

g(ak,M, k)[

k
∑

i=1

m
∑

l=1

so
l 1(Al⊂(ai−1,ai]×M) log(

m
∑

j=1

sj1(Aj⊂(ai−1,ai]×M))

+
m

∑

l=1

so
l 1(Al⊂(ak,∞)×Cr) log(

m
∑

j=1

sj1(Aj⊂(ak,∞)×Cr))]

=
∑

(ak,M,k)∈Bs

[

k
∑

i=1

g(ak,M, k)

m
∑

l=1

so
l 1(Al⊂(ai−1,ai]×M) log(

m
∑

j=1

sj1(Aj⊂(ai−1,ai]×M))]

+
d

∑

i=1

[(
∑

(ak,M,k)∈Bs

1(ak=ti)g(ak,M, k))
m

∑

l=1

so
l 1(Al⊂(ti,∞)×Cr) log(

m
∑

j=1

sj1(Aj⊂(ti,∞)×Cr))]

=
d

∑

i=0

d
∑

v=i+1

[(
∑

(ak,M,k)∈Bs,(ti,tv)=(au−1,au),1≤u≤k

g(ak,M, k)
m

∑

l=1

so
l 1(Al⊂(ti,tv ]×M))

· log(
m

∑

j=1

sj1(Aj⊂(ti,tv ]×M))]

+

d
∑

i=1

[(
∑

(ak,M,k)∈Bs

1(ak=ti)g(ak,M, k))

m
∑

l=1

so
l 1(Al⊂(ti,∞)×Cr) log(

m
∑

j=1

sj1(Aj⊂(ti,∞)×Cr))]

where t0 = −∞.
If we order all possible distinct observations from 1 to β, say {I1, I2, · · · , Iβ} with the form Ih =

(ti, tv] × M for ti, tv ∈ S ⋃{−∞} or Ih = (ti,∞) × Cr for ti ∈ S, and define

ph =

{

∑

(ak,M,k)∈Bs,(au−1,au)=(ti,tv),1≤u≤k g(ak,M, k)
∑m

l=1 so
l 1(Al⊂Ih) if Ih = (ti, tv] × M

∑

(ak,M,k)∈Bs
1(ak=ti)g(ak,M, k)

∑m
l=1 so

l 1(Al⊂Ih) if Ih = (ti,∞) × Cr,

then we can rewrite

ÃL(Fs) =

β
∑

h=1

ph log(

m
∑

l=1

slδhl)

where δhl = 1(Al⊂Ih). Thus by the assumptions, ph > 0 for h = 1, 2, · · · , β.

Letting I = −E(
∂2Ln(Fs

0)
∂s∂s′

), we can verify

∂2Ln(Fs
0)

∂s∂s′
→ E(

∂2Ln(Fs
0)

∂s∂s′
) = −I a.s..
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It follows that
∂2Ln(Fs

0)

∂s∂s′
= −I + oP (1). (T1)

Since ∂Ln

∂s
is an (m − 1) × 1 vector, ∂2Ln

∂s∂s′
is (m − 1) × (m − 1) matrix. Verify that

I = nE(
∂Ln(Fs

0)

∂s

∂Ln(Fs
0)

∂s′
) = −∂2 ÃL(Fs

0)

∂s∂s′

=(

β
∑

h=1

ph
(δhu − δhm) · (δhv − δhm)

(
∑m

l=1 δhlso
l )

2
)(m−1)×(m−1)

=UU′

where

U =











(δ11−δ1m))
√

p1
∑

m

l=1
δ1lso

l

· · · (δβ1−δβm)
√

pβ
∑

m

l=1
δβlso

l

...
...

...
(δ1(m−1)−δ1m)

√
p1

∑

m

l=1
δ1lso

l

· · · (δβ(m−1)−δβm)
√

pβ
∑

m

l=1
δβlso

l











Now we show that I is nonsingular.
Assume M1,M2, · · · ,Mw be the distinct MI’s w.r.t. MCR part. For each u ∈ {1, 2, · · ·, w}, let

Aj = (tj−1, tj ] × Mu for j = 1, 2, · · · , du with du ≤ d be the MI’s, since tj is the right endpoint of Aj

w.r.t. the interval part, by reordering the observations Ii = (li, ri] × Wi with Mu ⊂ Wi, i = 1, 2, · · · , n,
without loss of generalization, we can assume that the right endpoint of these Ii’s w.r.t. the interval part
is equal to tj for j = 1, · · · , du. Thus Ii

⋂

Aj = ∅ for j > i, i = 1, 2, · · · , du, which is an upper triangle
matrix. By combining all these upper triangle matrices for u = 1, 2, · · · , w together, putting the Ii’s that
repeated appearing in these upper matrices into the same positions in the new matrix, then rearranging the
observations Ii, i = 1, 2, · · · , n such that for j > i, i = 1, 2, · · · ,m − 1, Ii

⋂

Aj = ∅, the matrix of U has the
upper triangle matrix form

U =

















√
p1

s0
1

· · · · · · · · (δβ1−δβm)
√

pβ
∑

m

l=1
δβlso

l

0
√

p2

s0
2+δ21s0

1
· · · · · · · (δβ2−δβm)

√
pβ

∑

m

l=1
δβlso

l

...
...

...
...

...
...

0 0 · · ·
√

pm−1

s0
m−1

+
∑

m−1

l=1
δmlso

l

· · · (δβ(m−1)−δβm)
√

pβ
∑

m

l=1
δβlso

l

















Since so
i > 0 and pi > 0 for i = 1, 2, · · · ,m − 1, then it follows that matrix U is of full rank and UU′ is

nonsingular and has the upper triangle matrix form. Then I = UU′ is also nonsingular.
By first order Taylor expansion for F̂s

n around Fs
0, we have

∂L(F̂s
n)

∂s
=

∂Ln(Fs
0)

∂s
+

∂2Ln(Fs
0)

∂s∂s′
∆n + op(||∆n||)

=
∂Ln(Fs

0)

∂s
− I∆n + op(||∆n||) by Eq. (T1)

where ∆n = (ŝi − so
i )(m−1)×1 = (µF̂n

(Ai) − µF
s
0
(Ai))(m−1)×1.

Let Ωn = {infi≤m ŝi = 0}, then
∂Ln(F̂s

n)
∂s

= 0 by the definition of the NPMLE and
∂Ln(F̂s

n)
∂s

= 0 except
on the event Ωn.

Since each Ai ∈ A is of the form either (ti−1, ti] × Mj or (ti,∞) × Cr, by the last consistency theorem,
µ
F̂s

n
((ti−1, ti] × Mj) → µF

s
0
((ti−1, ti] × Mj) a.s. which is equivalent to ŝi → so

i a.s. And with the given

assumptions, we can have

P (Ωn) → 0 a.s. when n → ∞.
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Then by CLT we have
√

n
∂Ln(Fs

0)
∂s

is asymptotically normal with mean 0 and dispersion matrix I. That
is √

n
∂Ln(Fs

0)

∂s
→ N(0, I)

which implies
√

n
∂Ln(Fs

0)

∂s
∼ N(0, I) + oP (1).

This shows that
√

n∆n = I−1
√

n
∂Ln(Fs

0)
∂s

+ oP (1) → N(0, I−1) when n → ∞. Thus we can obtain the
desired result.
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