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Abstract: Slutsky’s Theorem has important applications in biostatistics. Several general-

izations of Slutsky’s Theorem are presented. For instance, we study the limiting distribution

of Yn/Xn when Xn → 0 in distribution. Then the sequence of random varibles tends to an

extended random variable.
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1. Introduction. We study the generalization of the Slutsky’s Theorem in this short note.

Slutcky’s Theorem is an important theorem in the elementary probability course and plays

an important role in deriving the asymptotic distribution of varies estimators. Thus Slutsky’s

Theorem also has important applications in biostatistics. Let Xn, Yn and X be random

variables and a be a constant. Slutsky’s Theorem states as follows.

If Yn
D
−→a and Xn

D
−→X, then Yn +Xn

D
−→a+X and YnXn

D
−→aX.

There are some simple generalizations of the theorem. For instance, it is trivially true

that assuming a 6= 0,

if Yn
D
−→a and Xn

D
−→X, then Xn/Yn

D
−→X/a. (1)

We shall study some non-trivial generalizations.

For instance, if a = 0, is the statement (1) also valid under certain assumptions ? More-

over, one may wonder whether another generalization of Slutsky’s Theorem is as follows.

If Yn
D
−→a and Xn

D
−→X, then Yn/Xn

D
−→a/X, (2)

or ±1/Xn
D
−→± 1/X, with a certain modification. A well-known result is as follows.

Proposition 1. (Mann & Wald (1943)). Statement (2) holds if P (X = 0) = 0.

These problems are interesting. We show in section 2 that the necessary and sufficient

condition for statement (2) holds with a 6= 0 is FXn
(0−) → FX(0−); and that for statement

(1) holds with a = 0 and P (Yn = 0) → 1 is P (Xn = 0) → P (X = 0); among other results.

2. Main Results. In order to study the possible extensions of statements (1) and (2),

we first study some simple examples. Notice that if a = 0 or {X = 0} 6= ∅, W = a/X

involves 0
0 or a

0 . Conventionally, 0/0 can be defined as 0 or 1. In this note, we define

a/0 =

{

∞ if a > 0
1 if a = 0
−∞ if a < 0.

Then {W = ±∞} 6= ∅, and W is called an extended random variable.

Moreover, if P (X = 0) > 0, then P (X = ±∞) > 0,

lim
t→−∞

FW (t) = P (X = 0) > 0 if a < 0 and lim
t→∞

FW (t) = P (X 6= 0) < 1 if a > 0.
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In general, statements (1) and (2) are false, and two counterexamples are as follows.

Example 1. Let X ∼ bin(1, 0.5), the Bernoulli distribution, X2n+1 = X and X2n = X − 1
2n ,

n ≥ 1. Then Xn
D
−→X. F1/X(t) = 0.51(t ≥ 1), where 1(A) is the indicator function of

the event A. Notice that F1/X is a degenetate cdf, i.e., limt→∞ F1/X(t) < F1/X(∞) = 1

and P (1/X = +∞) = 0.5. However, P (1/X2k < 0) = P (X = 0) = 0.5, k ≥ 1, and

F1/Xn
(0−) = F1/Xn

(0) =
{

0.5 if n is even
0 if n is odd.

Thus, 1/Xn diverges in distribution. Letting

Yn = 1, then Yn
D
−→a = 1, but Yn/Xn diverges in distribution. i.e., statement (2) fails.

Moreover, let Zn = 1
n . Then Zn → 0, but both Zn/Xn and Xn/Zn diverge in distribution,

as Zn/Xn =

{

1
n×01(X = 0) + 1(X=1)

n → ∞1(X = 0) if n is odd

−1(X = 0) + 1(X=1)
n−1 → −1(X = 0) if n is even.

Example 2. Let X ∼ bin(1, 0.5), Xn = X + 1/n, and Yn = c/n, n ≥ 1, where c > 0. It can

be verified that Xn
D
−→X, 1/Xn

D
−→1/X and Yn

D
−→0. Notice that

Yn/Xn = c1(X = 0) + c
n+11(X = 1) → c1(X = 0),

Xn/Yn = 1(X = 0)/c+ n+1
c 1(X = 1) → 1(X = 0)/c+∞1(X = 1).

Thus, c = 1 iff Yn/Xn
D
−→0/X iff Xn/Yn

D
−→X/0. In other words, if c 6= 1, both statements

(1) and (2) do not hold.

Remark 1. Examples 1 and 2 indicate that under the assumptions in Slutsky’s Theorem,

(1) it is not always true that 1/Xn
D
−→1/X;

(2) Slutsky’s Theorem is not applicable to the sequence of extended random variables

Yn/Xn, unless additional assumptions are imposed.

In Proposition 1, a sufficient condition is given, that is, P (X = 0) = 0. It is an interesting

problem to find the necessary and sufficient condition for the generalization of Slutsky’s

Theorem as in Eq. (2). To this end, we first establish two lemmas.

Lemma 1. Let X be a random variable. Then

F1/X(t) =







FX(0−)− FX(s−) if t < 0
FX(0−) if t = 0
FX(0−) + 1− FX(s−) if t > 0,

where s = 1/t; (3)

F−1/X(t) =







FX(−1/t)− FX(0−) if t < 0
1− FX(0−) if t = 0
1− FX(0−) + FX(−1/t) if t > 0.

(4)
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Remark 2. By the lemma, F1/X(−∞) = 0 and P (1/X = ∞) = P (X = 0). Moreover,

F−1/X(−∞) = P (X = 0) and P (−1/X = ∞) = 0.

Remark 3. If Yn = −1 and statement (2) holds, then Yn/Xn
D
−→ − 1/X. By defining

Y = −X, one may derive the expression of F−1/X as follows. Letting s = 1/t,

F−1/X(t) =F1/Y (t)

=







FY (0−)− FY (s−) if t < 0
FY (0−) if t = 0
FY (0−) + 1− FY (s−) if t > 0

=







FX(−1/t)− FX(0) if t < 0
1− FX(0) if t = 0
1− FX(0) + FX(−1/t) if t > 0,

which is false (see Eq. (4)), as FX(0) 6= FX(0−), unless P (X = 0) = 0. The problem in

deriving F−1/X through Y = −X is due to 1
−X = −∞ if X = 0, but 1

Y = ∞ if Y = −X = 0.

Proof of Lemma 1. It suffices to prove the lemma in these three cases:

(a) t = 0, (b) t ∈ (−∞, 0) and (c) t ∈ (0,∞).

Case (a). If t = 0 then

F1/X(0) = P (1/X ≤ 0 & X < 0) + P (1/X ≤ 0 & X = 0) + P (1/X ≤ 0 & X > 0)

= P (1/X ≤ 0 & X < 0) = P (X < 0) = FX(0−),

F−1/X(0) = P (−1/X ≤ 0 & X > 0) + P (−1/X ≤ 0 & X = 0) + P (−1/X ≤ 0 & X < 0)

= P (−1/X ≤ 0 & X > 0) + P (−1/X ≤ 0 & X = 0)

= P (X > 0) + P (X = 0)

= 1− FX(0−).

Case (b). If t < 0, then

F1/X(t) = P (1/X ≤ t & X < 0) + P (1/X ≤ t & X = 0) + P (1/X ≤ t & X > 0)

= P (1/X ≤ t & X < 0)

= P (1/t ≤ X < 0)

= FX(0−)− FX(s−), where s = 1/t,

F−1/X(t) = P (−1/X ≤ t & X < 0) + P (−1/X ≤ t & X = 0) + P (−1/X ≤ t & X > 0)
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= P (−1/X ≤ t & X = 0) + P (−1/X ≤ t & X > 0)

= P (X = 0) + P (−1/t ≥ X > 0)

= P (−1/t ≥ X ≥ 0)

= FX(−1/t)− FX(0−).

Case (c). If t > 0, then

F1/X(t) = P (1/X ≤ t & X < 0) + P (1/X ≤ t & X > 0) + P (1/X ≤ t & X = 0)

= P (X < 0 & 1/X ≤ t) + P (X > 0 & 1/X ≤ t)

= P (X < 0) + P (X ≥ 1/t)

= FX(0−) + 1− FX(s−), where s = 1/t,

F−1/X(t) = P (
−1

X
≤ t & X > 0) + P (

−1

X
≤ t & X < 0) + P (

−1

X
≤ t & X = 0)

= P (X > 0) + P (X < 0 & X ≤ −1/t) + P (X = 0)

= P (X ≥ 0) + P (X ≤ −1/t)

= 1− FX(0−) + FX(−1/t).

Lemma 2. Assume that Xn
D
−→X. Then ±1/Xn

D
−→± 1/X iff FXn

(0−) → FX(0−).

Proof. Notice that t is a continuous point of a cdf FX(t) iff P (X = t) = 0. For each t, letting

s = 1/t, SX = 1− FX , and SXn
= 1− FXn

, it follows from Lemma 1 that

F1/Xn
(t) =







FXn
(0−)− FXn

(s−) if t < 0
FXn

(0−) if t = 0
FXn

(0−) + SXn
(s−) if t > 0,

and F1/X(t) =







FX(0−)− FX(s−) if t < 0
FX(0−) if t = 0
FX(0−) + SX(s−) if t > 0.

If t 6= 0, then t is a continuous point of F1/X iff s = 1/t is a continuous point of FX . On the

other hand, if t = 0 then s = ∞, and P (1/X = 0) = P (X = ±∞) = 0, as X is a random

variable. As a consequence, t = 0 is a continuous point of F1/X(t). By the assumption that

Xn
D
−→X, and in view of the expressions of F1/X and F1/Xn

given above, if t is a continuous

point of F1/X , then

F1/Xn
(t) → F1/X(t) iff FXn

(0−) → FX(0−).
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Consequently, 1/Xn
D
−→1/X iff FXn

(0−) → FX(0−).

By comparing F−1/Xn
and F−1/X (see Eq. (4) in Lemma 1), as comparing F1/Xn

and

F1/X in the previous paragraph, one can prove that −1/Xn
D
−→−1/X iff FXn

(0−) → FX(0−).

We skip the details.

Corollary. Suppose that Xn
D
−→X and Yn

D
−→a, then

Yn ± 1/Xn
D
−→a± 1/X iff FXn

(0−) → FX(0−).

Proof. Assume that Xn
D
−→X and Yn

D
−→a. We shall first prove that

FXn
(0−) → FX(0−) iff a± 1/Xn

D
−→a± 1/X (5)

It can be shown that

Fa+ 1

Xn

(t) =







FXn
(0−)− FXn

(s−) if t < a
FXn

(0−) if t = a
FXn

(0−) + SXn
(s−) if t > a

and Fa+ 1

X

(t) =







FX(0−)− FX(s−) if t < a
FX(0−) if t = a
FX(0−) + SX(s−) if t > a

where s = 1/(t − a). If t 6= a, then t is a continuous point of Fa+1/X iff s = 1/(t − a) is a

continuous point of FX . On the other hand, if t = a then s = ∞, and P (1/X = 0) = P (X =

±∞) = 0. As a consequence, t = a is a continuous point of F1/X(t). By the assumption

that Xn
D
−→X, and in view of the expressions of Fa+1/X and Fa+1/Xn

given above, if t is a

continuous point of Fa+1/X , then

Fa+1/Xn
(t) → Fa+1/X(t) iff FXn

(0−) → FX(0−).

Consequently, a+ 1/Xn
D
−→a+ 1/X iff FXn

(0−) → FX(0−). Thus (5) holds.

In order to prove the corollary, in view of (5) it suffices to show that

Yn + 1/Xn
D
−→a+ 1/X iff a+ 1/Xn

D
−→a+ 1/X. (6)

Let y = t be a continuous point of Fa+1/X(y), then ∀ ǫ > 0, ∃ η > 0 such that

|Fa+1/X(y)− Fa+1/X(t)| < ǫ whenever |y − t| ≤ η.
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Let t − ηo and t + ηo be two continuous points of Fa+1/X satisfying ηo ∈ (0, η] (as the

set of continuous points of Fa+1/X is dense). For the given ǫ > 0 above, ∃ no such that

P (|Yn − a| > ηo) < ǫ whenever n ≥ no. We now prove (6).

(=>). P (a+
1

Xn
≤ t, |Yn − a| ≤ ηo) = P (Yn +

1

Xn
≤ t+ (Yn − a), |Yn − a| ≤ ηo)

∈(P (Yn +
1

Xn
≤ t− ηo, |Yn − a| ≤ ηo), P (Yn +

1

Xn
≤ t+ ηo, |Yn − a| ≤ ηo)). (7)

Notice that if n ≥ no, then

|P (a+
1

Xn
≤ t, |Yn − a| ≤ ηo)− P (a+

1

Xn
≤ t)| = P (a+

1

Xn
≤ t, |Yn − a| > ηo) ≤ ǫ,

|P (Yn +
1

Xn
≤ t− ηo, |Yn − a| ≤ ηo)− P (Yn +

1

Xn
≤ t− ηo)| < ǫ,

|P (Yn +
1

Xn
≤ t+ ηo, |Yn − a| ≤ ηo)− P (Yn +

1

Xn
≤ t+ ηo)| < ǫ.

These three inequalities yield

P (Yn +
1

Xn
≤ t− ηo)− 2ǫ ≤ P (a+

1

Xn
≤ t) ≤ P (Yn +

1

Xn
≤ t+ ηo) + 2ǫ. (8)

Since Fa+1/X is continuous at t− ηo and t+ ηo, (8) and (7) yield

Fa+1/X(t− ηo)− 2ǫ ≤ lim
n→∞

Fa+1/Xn
(t) ≤ lim

n→∞
Fa+1/Xn

(t) ≤ Fa+1/X(t+ ηo) + 2ǫ.

Since ǫ is arbitrary and Fa+1/X is continuous at t, letting ηo → 0 yields limFa+1/Xn
(t) =

Fa+1/X(t). That is, a+ 1/Xn
D
−→a+ 1/X.

(<=). In a similar manner as in deriving (8), one can show

P (a+
1

Xn
≤ t− ηo)− 2ǫ ≤ P (Yn +

1

Xn
≤ t) ≤ P (a+

1

Xn
≤ t+ ηo) + 2ǫ. (9)

Since Fa+1/X is continuous at t− ηo and t+ ηo, (9) yields

Fa+1/X(t− ηo)− 2ǫ ≤ lim
n→∞

FYn+1/Xn
(t) ≤ lim

n→∞
FYn+1/Xn

(t) ≤ Fa+1/X(t+ ηo) + 2ǫ.

Since ǫ is arbitrary and Fa+1/X is continuous at t, limFYn+1/Xn
(t) = Fa+1/X(t).

The next theorem is the main result.

Theorem 1. Assume that a 6= 0, Yn
D
−→a and Xn

D
−→X. Then
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FXn
(0−) → FX(0−) iff Yn/Xn

D
−→a/X.

Proof. Since a 6= 0, it yields (a) a > 0 or (b) a < 0. In view of Remark 3, we shall give the

proof separately in these two cases. For simplicity, we put the proof of case (b) in Appendix,

and only give the proof of case (a) here.

In case (a), we can define Y ∗
n = Yn/a,X

∗
n = Xn/a andX∗ = X/a. Then Yn/Xn = Y ∗

n /X
∗
n

and a/X = 1/X∗. By the given assumptions and Slutsky’s theorem, Xn
D
−→X and Yn

D
−→a 6= 0

iff X∗
n

D
−→X∗ and Y ∗

n
D
−→1. Thus, without loss of generality, we can assume a = 1, i.e., Yn

D
−→1.

(<=). By Lemma 1, t = 0 is a continuous point of F1/X(t) and F1/X(0) = FX(0−).

Thus statement (2) yields FYn/Xn
(0) → F1/X(0) = FX(0−). Consequently, statement (2)

also implies that ∀ ǫ > 0 and δ ∈ (0, 0.1), ∃ no such that

|FYn/Xn
(0)− FX(0−)| < ǫ and P (|Yn − 1| > δ) < ǫ whenever n ≥ no. (10)

Verify that

{Xn < 0} ={Yn/Xn ≤ 0, Xn < 0, |Yn − 1| ≤ δ} ∪ {Xn < 0, |Yn − 1| > δ}

∪ {Yn/Xn > 0, Xn < 0, |Yn − 1| ≤ δ}

={Yn/Xn ≤ 0, |Yn − 1| ≤ δ} ∪ {Xn < 0, |Yn − 1| > δ};

{Yn/Xn ≤ 0} ={Yn/Xn ≤ 0, |Yn − 1| ≤ δ} ∪ {Yn/Xn ≤ 0, |Yn − 1| > δ}.

=> |P (Xn < 0)− P (Yn/Xn ≤ 0)| ≤ 2ǫ and

|FXn
(0−)−FX(0−)| ≤ |P (Xn < 0)− P (Yn/Xn ≤ 0)|+ |P (Yn/Xn ≤ 0)− FX(0−)| ≤ 3ǫ

(by (10)), if n ≥ no. Since ǫ is arbitrary, FXn
(0−) → FX(0−).

(=>). Now assume that FXn
(0−) → FX(0−), Yn

D
−→1 and Xn

D
−→X. Then 1/Xn

D
−→1/X

by Lemma 2. It suffices to show the statement as follows.

If Yn
D
−→a = 1 and 1/Xn

D
−→1/X, then Yn/Xn

D
−→a/X. (11)

If we let Zn = 1/Xn, then Eq. (11) looks like Slutsky’s theorem. Notice that Slutsky’s

Theorem is proved under the assumption that Z is a random variable and a is an arbitrary
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constant. Since Z = 1/X is an extended random variable, and Examples 1 and 2 suggest that

the extension of Slutsky’s theorem may not be true if Z = 1/X and a = 0, we shall prove

statement (11) rigorously.

Let y = t be a continuous point of F1/X(y), then ∀ ǫ > 0, ∃ η > 0 such that

|F1/X(y)− F1/X(t)| < ǫ whenever |y − t| ≤ η. (12)

Let t−ηo and t+ηo be two continuous points of F1/X satisfying ηo ∈ (0, η]. Let g(Yn) = t/Yn.

Since g(x) is continuous at x = 1, for the given ηo, ∃ δ ∈ (0, 1/2) such that |t/Yn − t| ≤ η0

whenever |Yn−1| ≤ δ. For the given ǫ > 0 above, ∃ no such that P (|Yn−1| > δ) < ǫ whenever

n ≥ no. Thus

P (
Yn

Xn
≤ t, |Yn − 1| ≤ δ) = P (

1

Xn
≤

t

Yn
, |Yn − 1| ≤ δ)

∈(P (
1

Xn
≤ t− ηo, |Yn − 1| ≤ δ), P (

1

Xn
≤ t+ ηo, |Yn − 1| ≤ δ)), (13)

if n ≥ no. Notice that

P (Yn/Xn ≤ t) =P (1/Xn ≤ t/Yn, |Yn − 1| ≤ δ) + P (Yn/Xn ≤ t, |Yn − 1| > δ),

P (1/Xn ≤ t+ ηo) =P (1/Xn ≤ t+ ηo, |Yn − 1| ≤ δ) + P (1/Xn ≤ t+ ηo, |Yn − 1| > δ), (14)

P (1/Xn ≤ t− ηo) =P (1/Xn ≤ t− ηo, |Yn − 1| ≤ δ) + P (1/Xn ≤ t− ηo, |Yn − 1| > δ)]. (15)

Since F1/X is continuous at t− ηo and t+ ηo,

F1/X(t)− 2ǫ ≤ F1/X(t− ηo)− ǫ (by (12), as ηo ∈ (0, η))

= limP (1/Xn ≤ t− ηo)− ǫ (as F1/X is continuous at t− ηo)

≤ lim
n→∞

P (Yn/Xn ≤ t) (by (13), (15) and P (Yn − 1| > δ) < ǫ)

≤ lim
n→∞

P (Yn/Xn ≤ t)

≤ limP (1/Xn ≤ t+ ηo) + ǫ (by (13), (14) and P (Yn − 1| > δ) < ǫ)

= F1/X(t+ ηo) + ǫ (as F1/X is continuous at t+ ηo)

≤ F1/X(t) + 2ǫ (by (12), as ηo ∈ (0, η)).
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Since ǫ is arbitrary, FYn/Xn
(t) → F1/X(t) if F1/X is continuous at t. Thus (11) holds.

In Theorem 1, we impose the condition a 6= 0. Notice that in Proposition 1, it allows

a = 0 but assumes P (X = 0) = 0. It follows from P (X = 0) = 0 and Xn
D
−→X that

FXn
(0−) → FX(0−). The next two examples illustrate what may happen if P (X = 0) > 0

and a = 0. The complication is due to 0
0 .

Example 3. Let X ∼ bin(1, p), W ∼ U(−1, 1), X ⊥ W , Xn = X + 1
n and Yn = W/n.

Then Xn → X and Yn → 0. Moreover, Yn

Xn

= W1(X = 0) + W1(X=1)

n(1+ 1

n
)

→ W1(X = 0) 6= 0
X .

Furthermore , it is also not true that Xn/Yn
D
−→X/0, as

Xn

Yn
=

1(X = 0)

W
+1(X = 1)

n+ 1

W
→

1(X = 0)

W
+1(X = 1)[∞1(W ≥ 0)−∞1(W < 0)] 6=

X

0
.

Example 4. LetX ∼ bin(1, p),W ∼ U(−1, 1),X ⊥ W ,Xn = X+ 1
n and Yn = W

n [1+(−1)n].

Then Xn → X, Yn → 0, FXn
(0−) → FX(0−), and 1/Xn

D
−→1/X. Moreover,

Yn/Xn =

{

2W [1(X = 0) + 1(X = 1) 1
n(1+ 1

n
)
] → 2W1(X = 0) if n is even

0 if n is odd.

Since P (W1(X = 0) 6= 0) = 1 − p > 0, Yn/Xn diverges in distribution. Moreover, Xn/Yn

diverges too.

In view of Examples 1, 2, 3 and 4, if a = 0 then the generalization of Eq. (2) does

not relate to FXn
(0−) → FX(0−). In particular, FXn

(0−) → FX(0−) does not imply

Yn/Xn converges in distribution, vice verse, Yn/Xn converges in distribution does not imply

FXn
(0−) → FX(0−).

Theorem 2. Suppose that P (Yn = 0) → 1 and Xn
D
−→X. Then

(a) Yn/Xn
D
−→0/X iff P (Xn = 0) → P (X = 0);

(b) Xn/Yn
D
−→X/0 iff FXn

(0−) → FX(0−) and FXn
(0) → FX(0);

(c) Xn/Yn
D
−→X/0 iff P (Xn = 0) → P (X = 0).

Proof. We first prove statement (a). Notice that

Fa/X(t) = 1(t ≥ 0)P (X 6= 0) + 1(t ≥ 1)P (X = 0) and

FYn/Xn
(t) = 1(t ≥ 0)P (Xn 6= 0 = Yn) + 1(t ≥ 1)P (Xn = 0 = Yn) + P (Yn/Xn ≤ t, Yn 6= 0).
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Since 0/X ∈ {0, 1}, P (X = 0)+P (X 6= 0) = 1 ≤ P (Xn = 0)+P (Xn 6= 0 = Yn) +P (Yn 6= 0)

and P (Yn 6= 0) → 0, statement (a) is trivially true.

We now prove statement (b). Since X/a = −∞1(X < 0) +∞1(X > 0) + 1(X = 0),

FX/a(t) = P (X < 0) + 1(t ≥ 1)P (X = 0). (16)

Since P (Yn = 0) → 1, ∀ ǫ > 0, ∃ no such that P (Yn 6= 0) < ǫ whenever n ≥ no. For n ≥ no,

FXn/Yn
(t) =P (Xn/Yn ≤ t, Yn = 0) + P (Xn/Yn ≤ t, Yn 6= 0)

=P (Xn < 0, Yn = 0) + 1(t ≥ 1)P (Xn = 0, Yn = 0) + P (Xn/Yn ≤ t, Yn 6= 0).

|FXn/Yn
(t)−Fn(t)| < ǫ, where

Fn(t) =(P (Xn < 0, Yn = 0) + 1(t ≥ 1)P (Xn = 0, Yn = 0)). (17)

Since X/a is an extended random variable, and FX/a(t) is continuous at t 6∈ {1,±∞},

Xn/Yn
D
−→X/a iff FXn/Yn

(t) → FX/a(t) if t /∈ {1,±∞}. (18)

Since Fn(t) and FX/a(t) are both constant on (−∞, 1) and [1,∞), respectively, and ǫ is

arbitrary, (16) and (18) yield

Xn/Yn
D
−→X/a iff lim

n→∞
FXn/Yn

(0) = FX/a(0) and lim
n→∞

FXn/Yn
(1) = FX/a(1). (19)

By Eq. (17), |FXn/Yn
(0)− FXn

(0−)| < ǫ, |FXn/Yn
(1)− FXn

(0)| < ǫ, FX/a(0) = FX(0−) and

FX/a(1) = FX(0), hence statement (19) yields

Xn/Yn
D
−→X/a iff limn→∞ FXn

(0−) = FX(0−) and limn→∞ FXn
(0) = FX(0). This

completes the proof of statement (b).

Since P (Xn = 0) = FXn
(0)−FXn

(0−) and P (X = 0) = FX(0)−FX(0−), statement (c)

follows from statement (b).

Notice that it is not necessary to assume Xn
D
−→X in Theorem 2. It is assumed in

Theorem 2 that P (Yn = 0) → 1, but not in the next theorem.
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Theorem 3. Suppose that Yn
D
−→0 and Xn

D
−→X. Then

(a) Yn

Xn

D
−→0/X iff P (|Yn/Xn − 1| < δ) → P (X = 0) ∀ δ ∈ (0, 0.1);

(b) Xn

Yn

D
−→X/0 iff P (|Xn

Yn

− 1| < δ) → P (X = 0) ∀ δ ∈ (0, 0.1), and P (Xn

Yn

< 0) → P (X < 0).

Remark 4. Notice that P (| Yn

Xn

− 1| < δ) → P (X = 0) and P (|Xn

Yn

− 1| < δ) → P (X = 0) are

not equivalent, as Xn/Yn is not continuous at (Xn, Yn) = (0, 0).

Proof of Theorem 3. We shall give the proof in 3 steps.

Step 1 (preliminary). ∀ ǫ > 0, ∃ s ∈ (0, 1) and ∃ no such that

(i) FX(t) is continuous at t ∈ {−s, s},

(ii) P (X ∈ (−s, 0) ∪ (0, s)) < ǫ,

(iii) |P (Xn ∈ (−s, 0) ∪ (0, s))− P (X ∈ (−s, 0) ∪ (0, s))| < ǫ if n ≥ no (by (i), as Xn
D
−→X),

(iv) P (|Yn| > δ) < ǫ if n ≥ no (as Yn
D
−→0), where δ < ǫs.

Consequently,

|Yn/Xn| ≤ |Yn|/s ≤ δ/s < ǫ ∀ (Xn, Yn) ∈ {Xn /∈ (−s, s), |Yn| ≤ δ}; (20)

|Xn/Yn| ≥ s/|Yn| ≥ s/δ > 1/ǫ ∀ (Xn, Yn) ∈ {Xn /∈ (−s, s), |Yn| ≤ δ}. (21)

P (Xn ∈ (−s, 0) ∪ (0, s)) ≤ |P (Xn ∈ A)− P (X ∈ A)|+ P (X ∈ A) < 2ǫ (22)

by (ii) and (iii), where A = (−s, 0) ∪ (0, s). By (20) and (21),

P (|Xn/Yn| ≥ 1/ǫ) =P (|Yn/Xn| ≤ ǫ) (23)

≥P ({|Yn/Xn| ≤ ǫ} ∩ {Xn /∈ (−s, s), |Yn| ≤ δ})

≥P ({Xn /∈ (−s, s), |Yn| ≤ δ}) (by (20))

≥P (Xn /∈ (−s, s))− P (|Yn| > δ)

≥1− P (Xn ∈ (−s, s))− ǫ (if n ≥ no)

→1− P (X ∈ (−s, s))− ǫ (as no → ∞)

→1− P (X = 1)− ǫ as s ↓ 0.

Step 2 (prove statement (a)).

12



(=>) Since Fa/X(t) = 1(t ≥ 1)P (X = 0) + 1(t ≥ 0)P (X 6= 0),

FYn/Xn
(1+ δ)−FYn/Xn

(1− δ) → P (X = 0) for the continuous points x = 1± δ of FX(x)

that satisfying x → 1. It follows P (|Yn/Xn − 1| < δ) → P (X = 0) if δ ∈ (0, 0.1).

(<=). Since P (|Yn/Xn − 1| < δ) → P (X = 0) if δ ≈ 0+, it follows from (23) that

limn→∞[P (|Yn/Xn| ≤ ǫ) + P (|Yn/Xn − 1| < δ)] ≥ 1− P (X = 0) + P (X = 0)− ǫ ∀ ǫ > 0 and

∀ δ ∈ (0, 0.1). That is, Yn/Xn
D
−→0/X, as 0/X ∈ {0, 1}.

Step 3 (prove statement (b)).

(=>) Since FX/a(t) = 1(t ≥ 1)P (X = 0) + P (X < 0),

FXn/Yn
(1 + t) − FXn/Yn

(1 − t) → P (X = 0) for the continuous points 1 ± t of FX that

satisfying t ↓ 0. It yields P (|Yn/Xn − 1| < δ) → P (X = 0) if δ ∈ (0, 0.1).

Moreover, P (Xn/Yn < 0) = FXn/Yn
(0−) → FX/a(0−) = P (X < 0).

(<=). Since P (Xn/Yn − 1| < δ) → P (X = 0) if δ ∈ (0, 0.1), it follows from (23) that

lim[P (|Xn/Yn| ≥ 1/ǫ) + P (|Xn/Yn − 1| < δ)] ≥ P (X 6= 0) + P (X = 0) − ǫ ∀ ǫ > 0. Since ǫ

is arbitrary, P (|Xn/Yn| > M) → P (X 6= 0) ∀ M > 2 and P (|Xn/Yn − 1| < δ) → P (X = 0).

Moreover, P (Xn/Yn ∈ (−∞, 1) ∪ (1,∞)) → 0. If P (Xn/Yn < 0) → P (X < 0), then

P (Xn/Yn > 2) → P (X > 0) and FXn/Yn
(t) → P (X < 0) + 1(t ≥ 1)P (X = 0) if t 6= 1.

Corollary. Suppose that Xn
D
−→X, Yn

D
−→a = 0 and P (Yn ≥ 0) → 1. Then Xn/Yn

D
−→X/a

iff P (|Xn/Yn)− 1| < δ) → P (X = 0) ∀ δ ∈ (0, 0.1).

Notice that Theorem 2 can also be viewed as a corollary of Theorem 3. It seems that

Theorem 3 can be further modified to study Yn/Xn
D
−→Z1(X = 0) and Xn/Yn

D
−→Z1(X =

0) − 1(X 6= 0) where Z depends on {Yn/Xn}n≥1, rather than on a/X alone, if Yn/Xn does

converge in distribution.

Reference.

Mann, H. B.; Wald, A. (1943). ”On Stochastic Limit and Order Relationships”. Annals of

Mathematical Statistics. 14 (3): 217-226.
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Appendix. We give the proof of case (b) in Theorem 1 here. In case (b), a < 0. Define

Y ∗
n = −Yn/a, X

∗
n = −Xn/a and X∗ = −X/a. Then Yn/Xn = Y ∗

n /X
∗
n and a/X = −1/X∗.

By the given assumptions and Slutsky’s theorem, Xn
D
−→X and Yn

D
−→a < 0 iff X∗

n
D
−→X∗ and

Y ∗
n

D
−→ − 1. Thus, without loss of generality, we can assume a = −1, i.e., Yn

D
−→ − 1. By

Lemma 2, it suffices to prove that Yn

Xn

D
−→− 1

X iff 1
Xn

D
−→ 1

X .

(<=). Let y = t be a continuous point of F−1/X(y), then ∀ ǫ > 0, ∃ η > 0 such that

|F−1/X(y)− F−1/X(t)| < ǫ whenever |y − t| ≤ η. (a0)

Let t − ηo and t + ηo be two continuous points of F−1/X satisfying ηo ∈ (0, η]. Let g(Yn) =

−t/Yn. Since g(x) is continuous at x = −1, for the given ηo, ∃ δ ∈ (0, 1/2) such that

| − t/Yn − t| ≤ η0 whenever |Yn + 1| ≤ δ. For the given ǫ > 0 above, ∃ no such that

P (|Yn + 1| > δ) < ǫ whenever n ≥ no. Thus

P (
Yn

Xn
≤ t, |Yn + 1| ≤ δ) = P (−

1

Xn
≤ −

t

Yn
, |Yn + 1| ≤ δ)

∈(P (−
1

Xn
≤ t− ηo, |Yn + 1| ≤ δ), P (−

1

Xn
≤ t+ ηo, |Yn + 1| ≤ δ)), (a1)

if n ≥ no. Notice that

|P (Yn/Xn ≤ t)− P (−1/Xn ≤ −t/Yn, |Yn + 1| ≤ δ)| ≤ P (Yn/Xn ≤ t, |Yn + 1| > δ) < ǫ,

|P (−1/Xn ≤ t+ ηo)− P (−1/Xn ≤ t+ ηo, |Yn + 1| ≤ δ)| < ǫ, (a2)

|P (−1/Xn ≤ t− ηo)− P (−1/Xn ≤ t− ηo, |Yn + 1| ≤ δ)| < ǫ. (a3)

F−1/X(t)− 2ǫ ≤ F−1/X(t− ηo)− ǫ (by (a0), as ηo ∈ (0, η))

= limP (−1/Xn ≤ t− ηo)− ǫ (as F−1/X is continuous at t− ηo)

≤ lim
n→∞

P (Yn/Xn ≤ t) (by (a1), (a3) and P (Yn + 1| > δ) < ǫ)

≤ lim
n→∞

P (Yn/Xn ≤ t)

≤ limP (−1/Xn ≤ t+ ηo) + ǫ (by (a1), (a2) and P (Yn + 1| > δ) < ǫ)

= F−1/X(t+ ηo) + ǫ (as F−1/X is continuous at t+ ηo)

≤ F−1/X(t) + 2ǫ (by (a0), as ηo ∈ (0, η)).
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Since ǫ is arbitrary, FYn/Xn
(t) → F−1/X(t) if F−1/X is continuous at t,thus, Yn

Xn

D
−→− 1

X .

(=>). Let y = t be a continuous point of F−1/X(y), then ∀ ǫ > 0, ∃ η > 0 such that

|F−1/X(y)− F−1/X(t)| < ǫ whenever |y − t| ≤ η. (a4)

Let t − ηo and t + ηo be two continuous points of F−1/X satisfying ηo ∈ (0, η]. Letting

g(Yn) = −Yn ∗ t, since g(x) is continuous at x = −1, for the given ηo, ∃ δ ∈ (0, 1/2) such

that | − Yn ∗ t − t| ≤ η0 whenever |Yn + 1| ≤ δ. For the given ǫ > 0 above, ∃ no such that

P (|Yn + 1| > δ) < ǫ whenever n ≥ no. Thus

P (−
1

Xn
≤ t, |Yn + 1| ≤ δ) = P (

Yn

Xn
≤ −Yn ∗ t, |Yn + 1| ≤ δ)

∈(P (
Yn

Xn
≤ t− ηo, |Yn + 1| ≤ δ), P (

Yn

Xn
≤ t+ ηo, |Yn + 1| ≤ δ)), (a5)

if n ≥ no. Notice that

|P (−1/Xn ≤ t)− P (Yn/Xn ≤ −Yn ∗ t, |Yn + 1| ≤ δ)| ≤ P (−1/Xn ≤ t, |Yn + 1| > δ) < ǫ,

|P (Yn/Xn ≤ t+ ηo)− P (Yn/Xn ≤ t+ ηo, |Yn + 1| ≤ δ)| < ǫ, (a6)

|P (Yn/Xn ≤ t− ηo)− P (Yn/Xn ≤ t− ηo, |Yn + 1| ≤ δ)| < ǫ, (a7)

Since F−1/X is continuous at t− ηo and t+ ηo,

F−1/X(t)− 2ǫ ≤ F−1/X(t− ηo)− ǫ (by (a4), as ηo ∈ (0, η))

= limP (Yn/Xn ≤ t− ηo)− ǫ (as F−1/X is continuous at t− ηo)

≤ lim
n→∞

P (−1/Xn ≤ t) (by (a5), (a7) and P (Yn + 1| > δ) < ǫ)

≤ lim
n→∞

P (−1/Xn ≤ t)

≤ limP (Yn/Xn ≤ t+ ηo) + ǫ (by (a5), (a6) and P (Yn + 1| > δ) < ǫ)

= F−1/X(t+ ηo) + ǫ (as F−1/X is continuous at t+ ηo)

≤ F−1/X(t) + 2ǫ (by (a4), as ηo ∈ (0, η)).

Since ǫ is arbitrary, F−1/Xn
(t) → F−1/X(t) if F−1/X is continuous at t,thus,− 1

Xn

D
−→− 1

X .

15


