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Abstract. We consider nonparametric two-sample problems of testing the equality of two continuous dis-
tribution functions ¥ and G. Whether or not the Wilcoxon test is admissible within the class of all tests
and whether or not the two-sided Wilcoxon test is admissible within the class of all rank tests are two
longstanding open questions (Lehmann (1959 and 1986) and Ferguson (1967)). In this paper, we establish
a sufficient condition that the Wilcoxon test is admissible in these two-sample problems. As an application,
we show that for some special cases, the Wilcoxon test is admissible within the class of all tests and the
two-sided Wilcoxon test is admissible within the class of all rank tests. The author believes that the sufficient
condition can be used to solve the longstanding open questions in Lehmann (1959) on a case-by-case basis,
but is unable to produce a unified proof for all cases.

1. Introduction. One of the basic problems of statistics is the two-sample problem of testing the
equality of two distributions. A typical example is the comparison of a treatment with a control, where the
hypothesis of no treatment effect is tested against the alternative of a beneficial effect. When normality of
samples distributions is in doubt, people may make no specific assumption on distribution functions other
than continuity in the two-sample testing problem.

Let X1, ..., X;, be a random sample from a continuous distribution function F and Y3, ..., Y,, be
another random sample from a continuous distribution function G. Assume X;s and Y;s are independent.
One wishes to test Hy: F = G (F(xz) = G(z) for all z) against the alternative H;: F < G (F(z) < G(x)
for all z) yet F(z) < G(z) for some z. Another alternative is Hy: F > G yet F(z) > G(z) for some z.
The testing problem is invariant under the group of all continuous and strictly monotone transformations.
For this problem, the terms “invariant test” and “rank test” are synonymous. It is known that there is no
uniformly most powerful rank test of Hy against H;. The Wilcoxon rank sum test and the Fisher-Yates test
are two most commonly applied procedures for this two-sample problem (see Ferguson (1967)). Both tests
are locally best and thus are admissible within the class of all rank tests (see Ferguson (1967)). However, the
admissibility of these two tests in the class of all tests has been a difficult and unsolved problem (Lehmann
(1959, p. 240, and 1986, p. 322), and Ferguson (1967)).

One two-sided alternative hypothesis is Hs: either H; or Hs is true. The testing problem is still invariant
under the group of continuous and strictly monotone transformations. However, “The theory here is still less
satisfactory than in the one-sided case” (Lehmann (1959, p. 240)). The Wilcoxon test and the Fisher-Yates
test need not even be unbiased (Sugiura (1965)), and “it is not known whether they are admissible within
the class of all rank tests” (Lehmann (1959, p. 240) and (1986, p. 322)).

Another two-sided alternative is Hy: F(z) # G(z) for some z. Note that the only invariant test in
this testing problem is a constant, i.e., ¥o(-) = . However, 1, is inadmissible at every significant level
a (€ (0,1)) (Lehmann (1986)).

In this note, we establish a sufficient condition that a member from a class of linear rank tests, including
the Wilcoxon test, the Fisher-Yates test, the Savage test and the median test, is admissible for testing Hy
against H; under the continuous set-up within the class of all tests or within the class of all rank tests, where
1 =1, 2, 3, 4. In particular, we apply the result to show that for some special cases, the Wilcoxon test and
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the Fisher-Yates test are admissible. The results partially answer the two longstanding open questions in
Lehmann (1959) for the first time.

In Section 2, we present notations. In Section 3, we introduce a continuous parametric two-sample
problem for which the admissibility problem is much easier to attack. In Section 4, we shall relate this
problem to the classical two-sample problem and establish a sufficient condition for admissibility in the
latter problem. In Section 5, we consider the application of the result in Section 4. In Section 6, we make
some comments.

2. Notations. Let O be a class of distribution functions under consideration. Denote by F the class
of all continuous distribution functions. Let X = (X1,...,X;,) and Y = (¥3,...,,Y,)’ be two independent
random samples from two populations with distribution functions F' and G € O, respectively, where X' is
the transpose of the vector X. Let X (1) < -+ < X(y,) and Y3y < --- < Y() be order statistics of X and Y,
respectively, and let N = m + n. Denote the pooled sample Z' = (Z1, ..., Zy) = (X', Y’) and denote R(Z;)
the rank of Z; in the pooled sample, and denote R; = R(X(;)), Rmy; = R(Y(;)) and R = (R, ..., Ry). It is
obvious that the joint distribution function of Z is Fz(z) =[]~ F(2:) H;L:Tﬁl G(zj)-

Recall that a test ¢ satisfies ¥(-) € [0,1]. Let Er,c(¢(Z)) (or simply Ef gt) denote the expectation of
¥(Z) with respect to F' and G. For testing against H;, where i = 1, ..., 4, a test ¢ is said to be admissible
if there is no test ¢¢ such that Err¢o < Err¢ and Epgpo > Ep gy for all F, G € ©, where F and G
satisfy either Hy or H;, and at least one strict inequality holds. A test ¢g is said to be as good as ¢, if
Erréo < Errp¢ and Epgoo > Er,g¢ for each pair of F' and G where F' and G satisfy either Hy or H; and
F,G € ©. Given a subset A of the real line, denote AV the product set A x --- x A of N factors.

The Wilcoxon test is of the following form:

#(Z) = 1ipzy¢n,m + V(@)1 nz)=i or r)» (2.1)
where [ < 7, 17 is an indicator function, v(-) € [0,1) on {z: L(z) =1 or 1},

L(Z) = Z clS(Ri) + Z C2S(Rm+]’),

c1 and cp are distinct constants, ¢; < c2, and S(-) is a real-valued strictly increasing function. A common
treatment is to set y(-) = ¢, a constant. By properly defining (-), we can obtain a test with a desirable size
a. When S(r) = r for all 7 and (¢1,¢2) = (0,1), ¢ is the Wilcoxon test. When S(r) is the expected value
of the rth order statistic of a sample of size N from a standard normal distribution and (e1,¢2) = (0,1),
¢ is the Fisher-Yates test. (2.1) also includes the Savage test and the median test. The test given in (2.1)
actually includes both one-sided and two-sided tests by allowing [l = —oo or r = co. For example, if [ = —c0
and v = 0, (2.1) becomes ¢(Z) = 1[1,(z)>r-

3. A Continuous Parametric Two-sample Problem. In order to attack the more difficult classical
problem, we first formulate an appropriate problem for testing two continuous distribution functions from
the regular exponential family.

Let £ be a N x 1 vector with coordinates §; < --- < {n. Let F; and G}, be two continuous distribution
functions with density functions

N
fa=fag =2k @ilisete—1/mer1/m)
i=1
N
9p = e = 2k ) Pilfse(ei1/kecr1/h)])
i=1
where k£ > 2/ min{|§; —§;|,7 # j} and g = (g1, ...,gn) and p = (p1, ..., pn) are probability vectors. Let Fy (&)
be the collection of distribution functions with the above forms and with fixed k and £. Note that Fg(€)
belongs to the regular exponential family. Let t, s and u be (N — 1) x 1 vectors, with coordinates

ti =t(Z) = Z Livielei—1/ki+1/k)]> Si = 8i(Z) = Z Lixjelei—1/ke1/K]

m
j=1 j=1



and u; = t; + s;, respectively. The ¢;’s and s;’s are jointly complete and sufficient for F, and Gy, (or (q, p))
and the joint probability density function f of Z is proportional to Hil Py H;VZI q]S-j, ie.,

N N z) W z)-0 z)w z)-0
flz) o (t) (u_t>1[zemet( JwHu@ e = py(u, t)et()w a0,

where t - s is the inner product of the vectors t and s, (JZ) = N!/ vazl tl, ty = n— Zfi_ll
m—N s, h(u,t) = (V) (V) Lmeap, @ = (UN,[6 — 1/k,& + 1/k])N, 6 and w are all N — 1 dimensional
vectors with coordinates

tia SN =

0; = log(g;/qn) and w; =log((p;/a;)/(pn/an)),

respectively. It is ready to see that Hy is the same as w = 0 (i.e., w; = 0V 4), Hy is corresponding to w # 0,
and w > 0 (i.e. w; > 0V j) implies H;.

Given a test ¢ which is a function of (u,t), let Cyy = {t : ¥(u,t) < 1}. Let ur, ¢, (u,-) denote the
measure induced by the conditional distribution function of t given u. We say Cy 4, is convex a.s.ur, a, (4, ),
in the sense that if t; € Cy,¢,, where pur, ¢, (u,t;) >0, i =1, 2, and if t3 = at; + (1 —a)ts, where a € (0,1)
and pr, g, (u,tz) > 0, then t3 € Cyg,. It can be shown that ¢ given in (2.1) is not a function of the
complete and sufficient statistic (u,t). Thus we define a new test

$1 = Er,c,(4(Z)|u,t). (3.1)
Verify that ¢ is a function of (u,t) and ¢ # ¢, but
Ep,c,91 = Er,c,0 YV Fg,Gp € Fi(§)- (3:2)

By ¢1, we convert the continuous nonparametric two-sample problems to a continuous parametric two-sample
problem.

Lemma 3.1. When © = Fi(§), fori =1, 2, 3, 4, the test 1 = ¢1(u,t) for testing w = 0 against H; is
admissible, if for all u, (1) Cyg, is convez a.s.ur, c,(u,-), (2) ¢1(u,to) > 0 implies that 3 a vector b such
that b- (t —tg) <0V t €Cyg4, and t # to, where b >0 fori=1,b <0 fori=2,b >0 orb <0 for
1 =3, and b is arbitrary for ¢ = 4.

The proof of the lemma is a minor modification of Theorem 4.1 in Yu (2000). For the convenience of
readers, we include the proof in the appendix. The following lemma points out that one only needs to verify
condition (2) of Lemma 3.1 for ¢;.

Lemma 3.2. Consider the problem of testing Hy against H; with © = Fi(€),i=1 2, 3, 4. Let ¢ and ¢
be given by (2.1) and (8.1), respectively. Then condition (1) of Lemma 3.1 holds for ¢1.

Proof. We only give the proof for the test against H; as the proofs for the rest of the cases are similar.
‘We shall give the proof in 4 steps.

Step 1 (Notations). The coordinates of the random vector Z, Z;’s, are distinct a.s.. Let Zay <o <
Z(n) be order statistics of Z1, ..., Zn, and let

t,? = Z?:l 1[Yj=Z(i)] and 82? = Z‘;n:l ].[ijz(i)], 1= ]., ceny N. (33)

Then t? + s7 =1 for all ¢ a.s.. Let t°® = (¢9,...,t%)’. Verify that t and t° satisfy

o
t; = Z t7, j=1,..,N —1, where 0; = stj ug, up = 0 and o¢ = 0. (3.4)

>0 1

Step 2 (Linearity of t as a function in t°). Given u, let T" be the set of all the possible values of t,

and for each t € T, let Ty = {t° : t° satisfies (3.4)}. Eq. (3.4) can be viewed as a linear map from Ugeru T
to T, say

t = A,t° for each t° € Ti and for each t € T". (3.5)

The entries of the (N — 1) x N matrix A, can easily be identified by (3.4). Verify that A, does not depend
on t for each fixed u.



Step 3 (Linearity of L in t°). Verify that Zl 1t =m, >
are all distinct,

=1 s] = m and for each Z whose coordinates

m N
L(Z) = Z Z Lix =20 + ZCQS m+j Z Y5 =Z(m)]
=1 h=1
N N
=) S(h)(ca— )ty +c1 Y S(h)
h=1 h=1
=a-t°+c, (3.6)

where a = (ay,...,ay) and c are defined in an obvious way. Verify that a and ¢ are not functions of u and
(3.6) holds w.p.1 as Z has distinct coordinates w.p.1. Furthermore, a; < --- < ay as § is strictly increasing
and ¢; < co. Note that ¢ is a function of t° a.s., thus abusing notations, we write

¢ = d(Z) = d(u,t) = $(t°).

Step 4 (Conclusion). Fix a Z with distinct coordinates and fix (u,t) = (u(Z),t(Z)). Let |T| be the
cardinality of the set Ti. Then (3.1) yields

br(w.8) = 3 o) (37)

tocTy

In view of (3.6), we can write

¢ = ljagoteg,m) + V(%) Ljatore=t or r- (3.8)

We say that {t°: ¢(t°) < 1} is convex in t°, if t3 = aty + (1 — a)ta, where a € (0,1), t; € {t°: #(t°) < 1},
t=1and 2, and t3 € {t°: ¢(t°) <1}, then t3 € {t°: ¢(t°) < 1}. It is trivially true that {t°: ¢(t°) < 1}
is convex in t°, as there do not exist t; # to such that t3 = at; + (1 — a)t2 with a € (0,1) and t; € {t°:
@(t°) < 1}. The last statements is due to the fact that the coordinates of t; are either 0 or 1. In view of
(3.7

Cug, ={t €TV : t = Autg, tg € {t: $(t°) < 1}},

and thus Cy ¢, is also convex in t. o

4. The main result. = We present a sufficient condition for determining whether a linear rank test is
admissible in the classical two-sample problem.
Theorem 4.1. Consider the problem of testing Hy against H; (i =1, 2, 3 or /). Let ¢ be a test of form
(2.1). Then ¢ is admissible within the class of all tests when © = F, if for every k and & condition (2) of
Lemma 3.1 holds for ¢1 defined in (8.1) when © = F(§).
Proof. Let i be an arbitrary integer among 1, 2, 3, and 4. Suppose ¢; satisfies condition (2) of Lemma
3.1. Then by Lemmas 3.1 and 3.2, ¢; is admissible for testing Hy against H; when © = Fi(§).

Given a measure v, by vV, we mean a product measure. We say that a measurable function d(z)
(z = (21,...,2n)) is approximately continuous at a point zo with respect to a measure v, if V ¢,6 > 0, 3 a
neighborhood O(z,r) of zg with radius r such that

vN({(2) € O(z,7) : d(2) — d(z0)| > €}) _ ,
vN({(z) € O(z,7)}) -

Denote pr the measure induced by a distribution function F'. To prove the theorem, it suffices to show
the following statement:

Given a measure v induced by a continuous distribution function, if Ep p¢o < Epr¢ and Epgoo >

Erg¢ for each pair of F, G € F where ur and pg are absolutely continuous with respect to v and

F # G, then ¢g = ¢ a.s. vV




Without loss of generality, we only need to consider the case that v is the same as the Lebesgue measure
N on the N-dimensional Euclidean space. We shall show that if ¢ = ¢ a.s. is not true, then it leads to a
contradiction.

By (3.8), ¢ is constant in a neighborhood of every point z whose coordinates are all distinct. Since ¢q is
measurable, it is approximately continuous almost everywhere (Munroe (1953)). If ¢9 = ¢ a.e. is not true,
then there is a point n = (71, ...,7n) such that its coordinates are all distinct,

¢o is approximately continuous at 1 and ¢o(n) # ¢(n). (4.1)

Let & < --- < &y be the order statistics of 7y, ...,mny. Since (u,t) is a sufficient and complete statistic
for (Fp, Gy) or (p,q), we can define a test

$2(u,t) = Er, q,(¢0(Z)|u, t). (4.2)

By definition and (3.1), ¢1 and ¢2 are both constant in the neighborhood of 1, O(n,1/k). Verify that
#(n) = ¢1(n), as ¢ is constant in a neighborhood of every point z whose coordinates are all distinct and 7 is
such a point. Then by (4.1) and by taking & large enough

¢2 # ¢ for each z € O(n,1/k). (4.3)

Furthermore,
Er,c,(¢1 — ¢2) = EF,c,(¢ — ¢o)-

Since ¢ is as good as ¢,

EFq,Gp(¢1 — ¢2) = EFq,Gp(¢ — ¢0) =0 for all Fq,Gp S fk(g),

as ¢ is admissible when © = F(&). It follows that ¢; = ¢2 on Q, as ¢; and ¢, are both functions of (u,t),
which is complete and sufficient for (Fy, Gp). Thus ¢1 = ¢2 a.s on O(n,1/k) (C ), which contradicts (4.3).

Verify that ¢q is arbitrary, thus the contradiction shows that ¢ is admissible within the class of all tests.
We can also assume ¢q is a rank test, thus the above contradiction shows that ¢ is admissible within the
class of all rank tests. This completes the proof of the theorem. o

5. Applications. In this section, we apply the theorem to show that the tests of form (2.1) are admissible
in some special cases. In particular, in Theorem 5.1, we assume max{m,n} < 2 but the size of the test is

arbitrary, and in Theorem 5.2, we assume that the size of the test is < —#~ but m and n are arbitrary.

Theorem 5.1. Consider the problem of testing Hy against H; with © Z F, where i =1, 2, 8, 4. Suppose
either (1) min{n,m} = 1 or (2) max{n,m} = 2 but v(-) = 0. Let ¢ be a test of form (2.1). Then ¢ is
admissible within the class of all tests

Proof. We only give the proof for testing against H;, as the others are very similar. Replacing ¢+ 1 by [
in (3.6), (2.1) becomes

¢ =liato<y) +7(t°)1ja.to=y, Where y(:) € [0,1).

In view of Theorem 4.1, in order to prove the admissibility of ¢, it suffices to verify condition (2) of
Lemma 3.1. Hereafter, we fix u and assume that t, satisfies ¢;(u,tg) > 0.

Case n = 1. If all the coordinates of to are zero, then 3 t§ € Ti, such that a-tJ <! as ¢1(u,tg) > 0.
For each t, every t° € T satisfies a-t° < a-t$ <. Consequently ¢(t°) =1 and thus ¢(u,t) =1 in view of
(3.6). Thus, t ¢ Cyu,g¢,.

Without loss of generality, we can assume that there is only one coordinate of tg, say, the igth coordinate,
that is not zero, and it must be 1. Let b be a N — 1 dimensional vector whose igth coordinate is 2 and the
rest are 0. Note that b > 0. Then b- (t —tg) =2- (0 — 1) < 0 for all t # to, thus condition (2) holds.

Case m = n = 2. There are at most two coordinates of to that are not zero: either (2.a) there are
exactly two coordinates of ty being 1 in tg, say, the indexes of the two coordinates are ko and jg, or (2.b)
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the koth coordinate of tg is 2, or (2.c) the koth coordinate of tg is 1 and the rest coordinates are all zero, or
(2.d) all the coordinates of to are 0.

Consider case (2.a). Since 2?;1 u; < N =4, either (2.a.1) at least one of the koth and joth coordinates
of u (say the koth) is 1, or (2.a.2) both the koth and joth coordinates of u are two.

In case (2.a.1), let b = (b1, b2,b3) be such that by, = 2, bj, = 1, and the other by, = 0. Verify that b
satisfies condition (2). In fact in case (2.a.1), every point t satisfies b - (t — tg) < 0 if t # tg, as the koth
coordinate of t is at most 1 and the joth coordinate of t is at most 2.

In case (2.a.2), let kg < jo and define b as above, then the only point t # to satisfying b- (t —tg) > 0
has the kgth coordinate being 2. We shall show next that the latter point t ¢ Cy ¢,. Since ¢1(u,tg) > 0,
by (3.7) there is a t§ € Ti, such that ¢(t3) > 0. Verify that a-t°> < a-tJ V t° € T, as kg < jo and
a1 < --- < ap, where a = (a1, ...,an). As consequences, ¢(t°) = 1 by (3.8) and ¢1(u,t) = 1 by (3.7). It
follows that t ¢ Cy,4,. Thus condition (2) holds.

Consider case (2.b) or (2.c). Let b be such that its kgth coordinate is 1 and the rest are zero. Then
condition (2) holds.

Consider case (2.d). By assumption in the theorem, ¢ is a non-randomized test. Since ¢(u,tq) > 0,
there is t§ € Ty, such that ¢(t3) = 1. Verify that for each t € TV, if t° € T} then a-t° < a-t$. Consequently,
#1(u,t) = 1. Thus condition (2) holds.

The proof for the case m = 1 is similar. This concludes the proof of the theorem. o
Theorem 5.2. Consider the problem of testing Hy against Hz (or Hy). Let ¢ = ljapog(,r)] +Y1ato=t or 1]
where | = w +1,r= w —1anda=(1,2,...,N). Then ¢ is admissible within the class of all
tests.

Proof. It suffices to show that for each u,
(B) if ¢(u,to) > 0, then there is a vector b such that (1) b > 0 or b <0 and (2) for each t, b-(t —tg) >0
and t # to imply that ¢(t°) =1 for all t° € Tg.

By (3.7), statement (B) implies that ¢;(u,t) = 1 and thus t ¢ Cy4,. It follows that condition (2) of
Lemma 3.1 holds. As a consequence, ¢ is admissible by Theorem 4.1.

If ¢(u,to) > 0, then by (3.7) there exists a t§ € T, such that ¢(t3) > 0. By the assumption on ¢ in
the theorem, one of the following must be true:

1. The first n coordinates of t§ are 1 and the rest are zero;
2. The first n — 1 coordinates and the (n + 1)st coordinate of t§ are 1 and the rest are zero;
3. The last n coordinates of t§ are 1 and the rest are zero;
4. The last n — 1 coordinates and the mth coordinate of t§ are 1 and the rest are zero.
Let t9;, and %9 ;,+; be first and the last nonzero coordinates of to, respectively.

In the first two cases, let b be the vector such that its (i1, ...,41 + j)th coordinates are (j + 1,7,...,1)
and the rest are zero. It is obvious that b > 0.

Verify that if case 1 is true, then there is no t # to such that b- (t — tg) > 0. The reason is as follows.
By (3.3), (3.4) and (3.5), the (1, ..., i1 + j — 1)th coordinates of u and to are the same and u;,; > the
(41 + j)th coordinate of to, where u; is the ith coordinate of u. Then b - (t — tg) > 0 implies t = to.

Now if case 2 is true and if b - (t — tg) > 0 and t # to, then (3.3), (3.4) and (3.5) and the structure of
tg in case 2 imply that T3 consists of only one element t° and the first n coordinates of t° are 1 and the rest
are zero. Verify that the point t satisfies a-t° < a-t$ < [, thus ¢(t°) = 1 and consequently, ¢;(u,t) = 1.
So statement (B) holds.

On the other hand, if either case 3 or case 4 is true, let b= —(N —1,...,2,1). Thus b < 0.

Verify that if case 3 is true, then there is no t # to such that b- (t —tg) > 0. The argument is somewhat
similar to that for case 1. So statement (B) holds.

Now if case 4 is true and if b- (t — tg) > 0 and t # tg, then (3.3), (3.4) and (3.5) imply that T} consists
of only one element t° and the last n coordinates of t® are 1 and the rest are zero. Verify that the point t°
satisfies a-t° > a - tJ > r, thus ¢(t°) = 1 and consequently, ¢1(u,t) = 1. So statement (B) holds. o
Remark 1. Unlike Theorem 5.1, the test ¢ stated in Theorem 5.2 is the Wilcoxon test. It is worth
mentioning that for the cases considered in Theorem 5.2, the Wilcoxon test is a representative of other tests
of form (2.1). In fact, as pointed out in the proof, there are only four cases that ¢ > 0, and the test ¢ =1
if case 1 or 3 is true and = v if case 2 or 4 is true. In the form of (2.1), given ¢; < ¢z and b # (1,...,,N)
but b < by < --- < by, it is easy to find [, and rp such that the test ¢ in Theorem 5.2 is the same as
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Lbtog(lo,rs)] T YL[b-to=ty or ry)- Consequently, the Wilcoxon test, the Fisher-Yates test and the median test
are admissible in the cases mentioned in Theorems 5.1 and 5.2.
Remark 2. It is easy to modify the proof of Theorem 5.2 to show the following results:
1. For testing against H1, ¢ = l[g.to<;] + V1[a.to=;] is admissible within the class of all test when © = F
if the size of ¢ is < %
2. For testing against Hn, ¢ = lja.go>r] + Y1[a.to=r] is admissible within the class of all test when © = F
if the size of ¢ is < 2.

Remark 3. Admissibility within the class of all rank tests is different from admissibility within the class
of all tests. A standard t-test is not a rank test. If a test is admissible within the class of all tests, it is
admissible within the class of all rank tests, but not vice-verse.

6. Comments. The paper makes progress in attacking two well-known open questions in Lehmann’s
famous textbook “Testing statistical hypotheses” (1959). To the best of the author’s knowledge, the open
questions were not settled in any special case before. The main difficulty is that the problems were not
tractable.

The significance of the current paper is Theorem 4.1, not Theorems 5.1 and 5.2. Theorem 4.1 provides a
sufficient condition for admissibility of the Wilcoxon test and makes the open problems solvable. Theorems
5.1 and 5.2 demonstrate that Theorem 4.1 can indeed be used to solve the open questions for some special
sample sizes, or for some special significance levels a. At this moment, the author believes that Theorem 4.1
can be used to show that the non-randomized Wilcoxon test is admissible for each sample size n and each
attainable significance level a on a case-by-case basis, but is unable to produce a unified proof.

Note that the sufficient condition in Theorem 4.1 is applicable for a wide class of linear rank tests
including the Fisher-Yates test and the median test. In Section 5, we apply the theorem and show that the
Wilcoxon test is admissible in some special cases. The cases considered in Section 5 are some special cases
in in practice. They were chosen because the proofs are relatively easy to follow and thus it makes the paper
more readable. It is possible to establish admissibility results for the Wilcoxon test in additional cases other
than those listed in Theorems 5.1 and 5.2 and Remark 2. Thus the results in Section 5 are not the only
cases that Theorem 4.1 is applicable.

We further point out that Theorem 4.1 is a sufficient condition and may not be a necessary condition.
In view of the inadmissibility results on the randomized Wilcoxon tests, it is possible that the tests of form
(2.1) maybe inadmissible within the class of all tests if © = F(£) for some special cases. However, it is still
not clear whether the tests of form (2.1) is admissible within the class of all tests when ® = F. Indeed,
Theorem 5.2 already presents a different result on the continuous two-sample problem from the one on the
discrete set-up. If n,m > 4 and the assumption of Theorem 5.2 holds, each non-randomized Wilcoxon test
with v = ¢ € (0,1) is inadmissible in the discrete set-up (see Yu (2000)) but is admissible in the continuous
set-up.

The test of form (2.1) is a rank test if 7y is a constant. However, if v is not a constant, it may not be
a rank test. The test of form (2.1) may not be of practical importance, as probably nobody would use a
randomized test in the application. However, it is important in the statistics theory, as is well known that
without the concept of randomized tests, the Lehmann-Pearson Lemma would not exist. The latter lemma
is a foundation of the theory on testing statistical hypotheses.
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A SUFFICIENT CONDITION FOR ADMISSIBILITY OF THE WILCOXON TEST
IN THE CLASSICAL TWO-SAMPLE PROBLEM

For the convenience of readers, in this appendix, we give the proof of Lemma 3.1, which is a minor
modification of Theorem 4.1 in Yu (2000). Given an arbitrary test ¢, we say a u-section of ¢ is admissible
for testing w = 0 against H; if there is no test ¢ such that Er, g, ([¢ —*]ju) < 0and Ef, g, ([¢ —]ju) >0
for all F,,, G, € Fi(§) with F, < G, and with at least one strict inequality.

For testing against H;, Lemma 3.1 follows from Lemmas A.1 and A.2 below. For testing against Hy or
Hj3 or Hy, the proof is almost identical to the proof given below.

Lemma A.1l. For testing Hy against Hy when © = Fi(§), a test ¢ as (2.1) is admissible if every u-section
of ¢ is admissible for testing w = 0 against H;.
Lemma A.2. Consider the problem of testing Hy against Hy when © = Fi(£€). Let ¢ be a one-sided test
satisfying conditions (1) and (2) of Lemma 3.1, then every u-section of ¢ is admissible for testing w = 0
against Hy.
Proof of Lemma A.1. Assume every u-section of ¢ is admissible for testing w = 0. Since ¢; < p;,
i < N, imply F, < Gy, it suffices to consider testing against Hj: ¢; < p; for i =1, ..., N — 1, but p # q,
or equivalently, w > 0 but w # 0. Let us denote the set of all possible values of u by U, and let ug be an
extreme point of the convex hull of /. Note that I/ consists of finitely many elements. If ¢ is as good as ¢,
then
> MZhut e tpa(u,t) — f(u,t)] >0 VO and Vw >0, (7.1)
ueld
with equality when w = 0. Con51der a hyper-plane b - (u — ug) = 0 which supports the convex hull of ¢/
at u and such that b- (u —up) < 0 for all u € U and u # uy. It is important to notice that 6 in (7.1) is
arbitrary, though w is restricted. In (7 1) let § = vb, and multiply (7.1) by e *P%, Letting v — oo yields

Zh u, t)e™ *[¢pa(uo, t) — ¢(uo,t)] > 0 for all w > 0, (7.2)

with equality when w = 0. Smce each u-section of ¢ is admissible, (7.2) implies
Z h(ug, t)e™ *[p2(ug, t) — ¢(uo, t)] = 0 for all w > 0.
t

Since {w : w > 0} contains a nonempty N — 1 dimensional open set, t is complete and sufficient for the
conditional distribution pr, g, (1o,-). Thus ¢(ug,t) = ¢2(up, t) for all possible t. In the latter case, we can
replace U by U\ {up} in (7.1) and repeat the argument for an extreme point of ¢ \ {ug}. After finitely many
steps we must either arrive at a contradiction or conclude ¢ = ¢ for all possible (u,t). o

Proof of Lemma A.2. We shall show that if the u-section of ¢ is not admissible, then we can reach a
contradiction.

Suppose a u-section of ¢ is dominated by a different test ). Then there must exist some point (u, to)
such that ¢(u,to) > ¥(u,to). Otherwise, it could not be true that Er, r, ([¢ — ¥]lu) = 0. Because ¢ =0
for all non-extreme points t of Cy 4 by condition (2), we see that to must belong to the complement of Cy ¢
or be an extreme point of Cy 4. Consequently, w =vb > 0V v > 0, where b is the vector in condition (2).
Thus w = vb is a proper parameter under H;. Letting w = vb, the fact that u-section of ¥y dominates the
one of ¢ gives

0 <e ™% > [(u,t) — g(u, t)]h(u, t)e™* (7.3)
t
< Z [¢(u7t) - ¢(u’t)]h’(ua t)evb.(t_tO) + W’(U, t0) - ¢(uv tO)]h(u’ t0)
tE€Cu,0\{to}
(as ¢ =1 on Cy ;), where Cy, ; is the complement of Cy 4. Taking limits on both sides of (7.3) as v — oo
yields 0 < ¢ (u, to) ¢(u,to) by condition (2), which contradicts the assumption that ¢ < ¢ at (u,tg). This
completes the proof of the lemma. o



