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This course will cover parametric, non-parametric and semi-parametric maximum like-
lihood estimation under the Cox regression model and the linear regression model, with
complete data and various types of censored data. The right censorship model, double
censorship model, the mixed case interval censorship model and the mixture censorship
model will be used to formulate the censored data. Multivariate censorship models and the
two-sample problem may also be introduced.
Reference Textbooks:
1. Analysis of survival data, by Cox and Oakes.
2. Survival Analysis, by Rupert G. Miller, JR.
3. The Statistical Analysis of Interval-censored Failure Time Data, by J. Sun.
The lecture notes would be the textbook, posted in my website.

Math 557 MWF 8-9:30 am
Classroom : WH 329

Office: WH 132
Office hours: M 4:05-5:05pm in my office;

Tu 7:00pm-8:00pm through zoom
https://binghamton.zoom.us/j/8265526594?pwd=d3l6OGx1cmZ4M3cxZEJwVGd1RGcrUT09
Meeting ID: 826 552 6594

Passcode: 031320
Grading: 50%hw&quiz + 20%exam+ 30%final;
B = 75
Homework due Wednesday, email to qiyu@binghamton.edu

Homework assigned during a week is due next Wednesday in class.
use pdf format if it is pictures, do not zip

Remind me if you do not see it by Saturday morning !
There is a homework due this Friday.
Sample of the Latex homework is in report and hw-solution items in my website

under Data Analysis item.
Quiz: Once a week on Friday,

Quiz formulas on Math 447 and 448 (at my personal website).
https://www2.math.binghamton.edu/p/people/qyu/qyu personal
Midterm Exam: Oct. 21(M)
Final: Dec. 12 Th, 8-10am

You can bring one page with R commands and formulas in exams, bring a simple calculator.

The lecture note is also on my website “Course materials for Survival Analysis”
First item is the recent lecture note, and item 2 is the cumulative one.

Chapter 1. Introduction.
§1. Two main characters of survival analysis.

Suppose X is a random variable,
with the cumulative distribution function (cdf),

F (x) = P (X ≤ x).
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Assume X1, ..., Xn are independently and identically distributed (i.i.d.) from F .

Statistical inferences:

{
estimation
testing hypotheses,

on S = 1− F (called the survival function) or the parameters in a certain model.
In particular, there are three different types:

parametric, i.e. F (x) = Fo(x; θ), where θ ∈ Θ, a parameter space, e.g., U(a, b);
nonparametric, i.e., F is only known to be a c.d.f.
semi-parametric, i.e., in between the above two e.g. Y = α+βZ+ ǫ, Fǫ unknown.

In survival analysis, X is often
time to death of a patient after a treatment,
time to failure of a part of a system, etc.

Two main character of survival analysis:
(1) X ≥ 0,
(2) incomplete data.

(1) X ≥ 0, referred as survival time or failure time.
By S, it is much intuitive for doctors to compare different treatments or systems,
S(2 years) −−−−−−− the chance of surviving more than 2 years.
F (2 years) −−−−−−− the chance of dying within 2 years.

the larger the survival probability S, the better.
(2) Incomplete data.
Definition: An observation on Xi is called

{

complete (exact, or uncensored) if the exact value of Xi is observed;
incomplete o.w..

A data set is called

{
complete if all observations are exact;
incomplete otherwise.

An incomplete observation on Xi is called interval censored (IC) if Xi ∈ Ii, an interval with
endpoints Li and Ri being observed.
An IC observation can thus be represented by an extended random vector (Li, Ri).

(Li, Ri) is called







right censored (RC) if Ri =∞
left censored (LC) if Li = −∞
strictly interval censored (SIC) if 0 < Li < Ri <∞.

§1.2. Right censoring.
§1.2.1. Representations of an RC observation:

(Li, Ri) —- a vector,
Ii = (Li,∞) —- an interval,
(Li, 0) —- a vector,
Li+,

Representations of an exact observation:
(Li, Ri) = (Xi, Xi)
Ii = [Xi, Xi] —- an interval,
(Li, 1) —- a vector,
Li.

Definition: A RC data set —- observations are either exact or RC, but there exist exact
observations. Representations of RC data:

(Li, Ri), i = 1, ..., n, —- random vectors,
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where (Li, Ri) =

{
(Xi, Xi) if the observation is exact,
(Li,∞) if the observation is RC,

Ii, i = 1, ..., n, —— random intervals,

where Ii =

{
[Xi, Xi] if the observation is exact,
(Li,∞) if the observation is RC.

(Li, δi), i = 1, ..., n, —- random vectors,
where δi = 1

(the i-th observation is exact), and

1A =
{

1 if A happens
0 o.w.

is the indicator function of the event A.

Li+ or Li, i = 1, ..., n.
Example of RC data:
1. Mortality data (population census, for computing the life expectancy of the population).

Let Xi be the age at which the i-th person died.
Then at a census, we either knew Xi if the person died,
or knew Li+ if he/she was alive, where Li was his/her age then.

2. Type I censoring. (A testing on the lifetimes of n tires in a lab).
Each individual was followed by a fixed time c.
Each X(i) was recorded unless X(i) > c. We observe

X(1), ..., X(i), c+, ..., c+, or c+, ..., c+,

where X(1) ≤ · · · ≤ X(i) are order statistics of observed exact values of X1, ..., Xn.
3. Type II censoring.

Observation ceases after d failures.

X(1), · · · , X(d), c, ..., c, c+, ..., c+

where d is a predetermined number and Xd = c.
4. Progressive Type II censoring.

Select n samples and determine d and r1, ..., rd, where
∑d
i=1 ri + d = n. Observation

ceases after d failures, at the i-th failure, withdraw ri experiments randomly, 1 ≤ i ≤ d.
5. Random censoring.

In a medical follow-up study of 5 years, n cancer patients are enrolled (not necessary
from the beginning). X is the time to death of a patient since a certain treatment (after
the enrollment). We either know X or know X > 5− B, where B is the beginning time of
the treatment for the individual since the start of the study.

Graphical illustration for X and Y

Exact observation
∣
∣
∣
∣
∣
∣
∣

X
• − − −−−−−−−−−−−−−−−−−−−−− →

treated fail
← −− study period −− →

∣
∣
∣
∣
∣
∣
∣

Right-censored observation
∣
∣← −−−−−−−−−−−−X −−−−−−−−−−−−− →

∣
∣

∣
∣
∣
∣

• − − −−−−−−−−−−−−−−−−−−−−
treated

∣
∣
∣
∣

−−− →
fail

← −−−−−−−−−− study period −−−−−−−−−−− →
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Leukaemia data
Gehan, 1965 recorded times of remission (not worsen) of leukaemia patients.
Some were treated with drug 6-mercaptopurine (6-MP),
the others were serving as a control.

Table 1.1 (Cox and Oakes (1984) (pages 7,8)). Time of remission (weeks).
Group 0 (6-MP): 6+, 6, 6, 6, 7, 9+, 10+, 10, 11+, 13, 16, 17+, 19+, 20+, 22, 23, 25+, 32+,
32+, 34+, 35+ (m=21),
Group 1 (control): 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23 (n=21).

§1.2.2. The right censorship model (RC model) Assume:
X – survival time, Y — censoring variable.
X and Y are independent (X ⊥ Y ) i.e., P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y).

Observable random vector (L,R) =

{
(X,X) if X ≤ Y
(Y,∞) if X > Y .

Equivalent observations: (Z, δ) (= (min(X,Y ),1(X≤Y ))).
Graphical illustration for Y and X

Exact observation
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

X
• − − −−−−−−−−−−−−−−−−−−−−− →

treated fail
∣
∣← −−−−−−−−−−−−−−−−−−− Y −−− →

← −− study period −− →

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Right-censored observation
∣
∣← −−−−−−−−−−−−X −−−−−−−−−−−−− →

∣
∣

∣
∣
∣
∣
∣
∣

• − − −−−−−−−−−−−−−−−−−−−−
treated
∣
∣← −−−−−−−−−−−Y −−−−−−−− →

∣
∣
∣
∣
∣
∣

−−−− →
fail

← −−−−−−−−−− study period −−−−−−−−−−− →
Note: (1) If Y = c w.p.1, it becomes type I censoring. How to express in the graph ?

(2) This model is not applicable to type II censoring, as well as progressive type II
censoring.

§1.2.3. Two incorrect approaches for RC data (before 1958):
Method 1. Discard all RC observations;
Method 2. Treat RC observations as exact observations.

Question: What is wrong?
Intuition:

Treating living people as dead ones, does it shorten or extend life expectancy ?
Only keeping death data shortens the true life expectancy.

Rigorous Reasoning:
For complete data, X1, ..., Xn (i.i.d. from X),
if µ = E(X) exists, an estimator of µ is X (=

∑n
i=1Xi/n).

The properties of X:
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E(X) = µ (unbiased);
X → µ with probability one (w.p.1) (strongly consistent);

Nonparametric estimators of F and S are

F̂ (x) =

n∑

i=1

1(Xi≤x)/n (= 1(X≤x)) and Ŝ(x) =

n∑

i=1

1(Xi>x)/n (= 1(X>x))

−−Empirical distribution function (edf) and Empirical survival function, respectively.
Their properties:

f̂(x) = 1
n

∑n
i=1 1(Xi=x) = 1(X=x).

µ̂ =
∑

x xf̂(x) = X.

E(F̂ (x)) = F (x) (unbiased) Why ? (see properties of X or 1(X≤x))

F̂ (x)→ F (x) w.p.1. (strongly consistent) Why ?
Using method 1, we have

m =
∑n
i=1 1(Xi≤Yi) exact observations.

So the “sample mean” is

µ̃ =

∑n
i=1Xi1(Xi≤Yi)
∑n
i=1 1(Xi≤Yi)

? or =

∑m

i=1
X∗

i

m ?

Question: (1) E(µ̃) = µ ? (2) µ̃→ µ a.s. ?

E(µ̃) = µ? (∗)

Or

E(µ̃) =
E(
∑n
i=1Xi1(Xi≤Yi))

E(
∑n
i=1 1(Xi≤Yi))

=
E(Xi1(Xi≤Yi))

E(1(Xi≤Yi))
? (∗∗)

Counter-example: Suppose n = 2, Xi, Yi are i.i.d. from bin(1,1/2)+1.
µ = E(X) = ?
⊢: E(µ̃) 6= µ.

E(µ̃) =

{∫
tfµ̃(t)dt ?

∑

t tfµ̃(t) ?

µ̃ = g(X1, X2, Y1, Y2) =
X11(X1≤Y1)+X21(X2≤Y2)

1(X1≤Y1)+1(X2≤Y2)

E(g(X)) =
∑

x g(x)fx(x)
fX1,X2,Y1,Y2(x, y, u, v) = fX1(x)fX2(y)fY1(u)fY2(v) by the RC model.

case X1 Y1 X2 Y2 µ̃ = t =
X11(X1≤Y1)+X21(X2≤Y2)

1(X1≤Y1)+1(X2≤Y2)
fµ̃(t) t× fµ̃(t)

1 1 1 1 1 1+1
1+1 = 1 1/16 1/16

2 2 1 2 1 0+0
0+0 =∞ 1/16 ∞

3 1 2 1 1 1/16
4 2 2 2 1 1/16
· · · · · · · ·

16 · · · · · · ·
sum ∞ =

∑

t tfµ̃(t)

Thus µ̃ is biased, and both (*) and (**) fail.
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Remark. Here we define 0
0 =∞. If we define 0

0 = 1 or = 0 or 0
0 being undefined, we can

also show µ̃ is biased.
Question: µ̃

a.s.−→µ ?

lim
n→∞

µ̃ =
limn→∞

∑n
i=1Xi1(Xi≤Yi)/n

limn→∞
∑n
i=1 1(Xi≤Yi)/n

=
limn→∞ U

limn→∞ V
X1(X≤Y )

/

1(X≤Y )

=E(U)/E(V ) w.p.1.

=
E(X11(X1≤Y1))

E(1(X1≤Y1))

=
?

?

case X Y X1(X≤Y ) p p×X1(X≤Y )

1 1 1 1 1/4 1/4
2 2 1 0 1/4 0
3 1 2 1 1/4 1/4
4 2 2 2 1/4 2/4

E(X1(X≤Y )) 4/4

E(X1(X ≤ Y )) =
∑

x x1(x ≤ y)fX(x)fY (y) = (1 ∗ 1 + 2 ∗ 0 + 1 ∗ 1 + 2 ∗ 1) ∗ 1
4 = 1, ...

The 2nd counterexample. If Y ≡ 1 and X has a df f(x) =

{
1/3 if x ∈ (0, 1)
2/3 if x ∈ (1, 2).

, then

(1) µ = 7/6, but w.p.1 limn→∞ µ̃ = 1/6
1/3 = 1/2. E(µ̃) =

{∫
tfµ̃(t)dt ?

∑

t tfµ̃(t) ?
(hw)

(2) The “edf” is

F̃ (x) =

∑n
i=1 1(Xi≤Yi,Xi≤x)
∑n
i=1 1(Xi≤Yi)

W.p.1. its limit is

E(1(X≤Y,X≤x))

E(1(X≤Y ))
(=

P (X ≤ 1, X ≤ x)

P (X ≤ 1)
) (Why ?)

When x = 1, limn→∞ F̃ (1) = 1 6= 1/3 = F (1).
Thus both estimators are inconsistent.

Remark. In the derivation of Examples 1 and 2, we are making use of the right censorship
model. These examples illustrate the importance of a correct approach in dealing with
censored data.
§1.2.4. Homework:

1. Verify (1) and (2) above.
2. Are the modified edf and sample mean consistent if using the second method ?

Justify your statement.
3. Using simulation to check whether the modified edf and sample mean consistent if

using the first and second methods.
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§1.3. Case 1 interval-censoring.
Definition. If a data set only contains RC observations and LC observations, it is called
case 1 IC data (C1 data) or current status data.
Example. Consider an animal sacrifice study in which a laboratory animal has to be
dissected to check whether a tumor has developed. In this case, X is the onset of tumor
and Y is the time of the dissection, and we only can infer at the time of dissection whether
the tumor is present or has not yet developed.

Other examples are mentioned in Ayer et al. (1955), Keiding (1991) and Wang and
Gardiner (1996).

LC : • − − −−−−−−−−−o−−−−−−− | − −−−−−−−−−−− → time t

0 X Y

RC : • − − −−−−−−−−−−−−−−−−−| − −−−−−o−−−−− → time t

0 Y X

The case 1 interval censorship model:
Assume:

Y is a random inspection time;
X and Y are independent;

The observable random vector is (L,R) =

{
(−∞, Y ) if X ≤ Y
(Y,∞) if X > Y .

Equivalent forms:

Interval: I =

{
(−∞, Y ] if LC
(Y,∞) if RC.

vector: (Y, δ), where δ = 1(X≤Y ).
Given a sample from the C1 model, is it possible all are right censored ?

For example, for a sample of size 2, say (Y1, δ1), (Y2, δ2), can they all be right censored ?
§1.4. Double censoring
Definition. If a data set contains RC, LC and exact observations, but not SIC observations,
it is called a doubly-censored data (DC data).
Example. Leiderman et al. (1973) presented a study on the time needed for an infant to
learn to perform a particular task (crawling) during the first year. The sampled infants were
all born within 6 months of the start of the study. At the time of the start of the study,
some children had already known how to perform the task; so their observed times were
left-censored. Some children learned the task during the time-span of the study, and their
ages were recorded. At the end of the study, some of the children had not yet learned the
task, and hence their observed times were right-censored.

The double censorship model:
Assume

(Z, Y ) is a random censoring vector;
Z ≤ Y w.p.1.;
X and (Z, Y ) are independent;
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The observable random vector is (L,R) =







(−∞, Z) if X ≤ Z
(X,X) if Z < X ≤ Y
(Y,∞) if X > Y .

Equivalent forms:

Interval: I =







(−∞, Z] if X ≤ Z
[X,X] if Z < X ≤ Y
(Y,∞) if X > Y .

LC :
∣
∣← −− −−−− −Z −− −−− →
∣
∣← −− X −− →

∣
∣

• − −− −−−−− −− →
born crawl

Ex : • − −
∣
∣← −−
∣
∣← −−

− →
∣
∣ Z

RC :

−− →

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−− −− →
−X− −− →

∣
∣

−− Y −− →
← −

• −− −−
∣
∣← − −X−

Z = 0
∣
∣← − Y− →

window of inspection

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−− →
−− →

∣
∣

← −

Remark. We could also set Z = time at birth - time to starting study, which may take
negative values.
§1.5. Case 2 interval censoring.
Definition If a data set contains SIC observations and/or RC or LC observations, but not
exact observations, it is called a case 2 IC data (C2 data).
Example. In medical research when each patient had several follow-ups and the event
of interest was only known to take place either before the first follow-up, or between two
consecutive follow-ups, or after the last one.

Graphical illustration

0−−− −− • − − −− • − − −−−− − • −− −− • − − −−− →
inspection times: Y1 Y2 Y3 Yk

LC : X
SIC : X
RC : X

Examples of C2 data can be found in breast cancer research (Finkelstein and Wolfe,
1985) and AIDS studies (Becker and Belbye, 1991).
Possible models:
1.5.1. A simple model:
Groeneboom and Wellner (1992) proposed the following case 2 interval-censorship model.

Assume:
1. U and V are random inspection times such that U < V w.p.1;
2. X and (U, V ) are independent;
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3. The observable random vector is

(L,R) =







(−∞, U) if X ≤ U
(U, V ) if U < X ≤ V
(V,∞) if X > V .

Remark. In a follow-up study, each patient has N visits, where N ≥ 1 is a random
integer. The inspection times are Y1 < · · · < YN . It is reasonable to assume that X and
(N , {Yi : i ≥ 1}) are independent. Then, on the event {N = k}, define

(U, V ) =







(Y1, Y2) if X ≤ Y1
(Yk−1, Yk) if X > Yk
(Yi−1, Yi) if Yi−1 < X ≤ Yi, i ∈ {2, ..., k}

where Y0 = 0. Then (U, V ) and X are not independent. In other words, the case 2 model
is simple, but its assumption is not realistic.
1.5.2. An alternative model: Wellner realized the drawback and proposed the Case k
IC model, in which each patient has exactly k visits. Case 1 and Case 2 are special case of
the case k models. However, it is not realistic except the case 1 model.
1.5.3. Another model: Petroni and Wolfe (1994) assume that inspection times Yj ’s can
only be taken at yi’s, where

y1 < y2 < · · · < yk,
which are predetermined together with k (can be viewed as the reservation time), and
q(yi) = P (a patient keeps the appointment at time yi) ∈ (0, 1].
This results in inspection times Y1 < · · · < YN , together with their distribution, where

N is again a random integer (N ≥ k or N ≤ k ?) Define Y0 = −∞ and YN+1 =∞.
Assume that X and (Y1, Y2, ...) are independent.
Then (L,R) = (Yj−1, Yj) if X ∈ (Yj−1, Yj ] for some j.
This model assumes that Yj ’s are discrete, taking only k values.
The real data are actually continuous.

1.5.4. A realistic model for C2 data (mixed case IC model, Schick and Yu (2000)):
Assume:

N is a random positive integer;
Y1 < Y2 < · · · < Yk < · · · are inspection times;
Conditional on N = k, X and {Y1, ..., Yk} are independent
(or for simplicity, X, N , and (Yi, i ≥ 1} are independent);
The observable random vector is

(L,R) =







(−∞, Y1) if X ≤ Y1
(Yi, Yi+1) if Yi < X ≤ Yi+1, i = 1, ..., N − 1
(YN ,∞) if X > YN .

Remark .
1. When N = k w.p.1, it is called a case k model, where k = 1, 2, ...
2. The mixed case IC (MIC) model can be viewed as a mixture of various case k models.
3. When Yi’s are discrete and N ≤ k, then the model becomes the model in §1.5.3.

Example of generating 100 observations under the mixed case IC model through
simulation.
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Main idea:
generate X ∼ fX ;
generate N ∼ fN ;
generate Y1, ..., YN ∼ fY:
find j such that Yj−1 < X ≤ Yj to obtain (L,R).
repeat 100 times.

Two examples of generating Yi’s:
(1) Generate N Zi ∼ exp(λ), Y1 = Z1, Y2 = Y1 + Z2, ...., YN = YN−1 + ZN .
(2) generate Yj ∼ U(2j, 2j + 2), j = 1, ..., N .

A simulation example using (2). Assume N ∼ Poisson(5)+1, X ∼ exp(3) (E(X) = 3).
L=rep(0,100) # initialize L
R=rep(0,100) # initialize R
for (i in 1 : 100) { # loop for 100 data
N=rpois(1,5) + 1 # generate 1 random variable from Poisson(5) +1
X=rexp(1,1/3) # generate 1 random variable from exp(3)
J=1:N # J is a vector of (1,2,...,N)
Y=runif(N,0,2)+2*J # generate N rv from U(2j,2j+2), j=1,...,N
if (X <= Y [1]) {
L[i] = 0
R[i] = Y[1]
}
else {
if (X > Y [N]) {
L[i] = Y[N]
R[i] = 1000
}
else {
j=length(Y[Y<X])+1
L[i] = Y[j-1]
R[i] = Y[j]
} } }
U=c(L,R)
dim(U)=c(100,2) # matrix of dimension 100 × 2
U # print the matrix

Remark. An incorrect approach for dealing with C2 data is to treat the midpoints of IC
observations as exact observations.
Question: What is wrong with the following way of generating C2 data ?

X=rexp(100)
L=X-1
R=X+1

§1.6. Mixed IC censoring.
Definition. If a data set contains both exact and SIC observations, and/or RC or LC
observations, it is called a mixed IC data (MIC data). It is also called partly IC data.
Example. (the National Longitudinal Survey of Youth 1979-98 (NLSY)). The 1979-98
cross-sectional and supplemental samples consist of 11,774 respondents, who were between
the ages of 14 and 22 in 1979. Interviews were conducted yearly from 1979 through 1994;
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since then data were recorded bi-annually. One entry is the age at first marriage. There are
SIC, exact, RC and LC observations in the data.
Possible models:
A simple model (MIC model (1), Yu et al. (1995)):

Assume:
1. (U, V ) is an extended random censoring vector such that U < V w.p.1;
2. X and (U, V ) are independent;
3. The observable random vector is

(L,R) =

{
(X,X) if X /∈ (U, V ]
(U, V ) if X ∈ (U, V ].

Remark. In reality, U and V are
−∞ and the left censoring variable, respectively, if left censoring occurs;
the right censoring variable and ∞, respectively, if right censoring occurs,
the two consecutive inspection times if SIC occurs.

Then assumption 2 in the model is false according to the interpretation. However, like
the case 2 model for case 2 data, the model is very simple and easy to interpret for their
variables.
A realistic model (MIC model (2), Yu et al. (2001)):

Assume:
N is a random integer;
T , Y1 < Y2 < · · · < Yk < · · · are inspection times, Y0 = −∞;
X and (N,T, Y1, ..., Yk, ...) are independent;

(or conditional on N , X and (T, Y1, ..., Yk, ...) are independent;
P(N = 0) > 0 and P(N > 1) > 0;
The observable random vector is

(L,R) =







(X,X) if X ≤ T and N = 0
(T,∞) if X > T and N = 0
(−∞, Y1) if X ≤ Y1 and N ≥ 1
(Yi, Yi+1) if Yi < X ≤ Yi+1, i = 1, ..., N − 1 and N ≥ 1
(YN ,∞) if X > YN and N ≥ 1.

The model can be viewed as a mixture of a RC model and a mixed case interval
censorship model. That is,

FL,R(l, r) =
∑

k≥0

FL,R|N (l, r|k)fN (k).

Other models
Petroni and Wolfe (1994) and Huang (1999) construct two different models for the

mixed IC data. Huang’s model is basically a mixture of an uncensored model and a case
k model, and thus is a special case of our MIC model (2) with P(N = i) = 0 for i 6= 0 or
k and with T ≡ ∞. The formulation of Petroni and Wolfe’s model is basically the model
described in §1.5.3 with the additional assumption that X is discrete as well. Thus it limits
its extension to the continuous cases. Huang’s model requires that X may be observed in
the whole range of X, which is often not the case in reality.
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§1.7. Left censoring.
Easy.

§1.8.
Table 1. Classification of IC data












observations : LC SIC RC exact
RC data + +
LC data + +
C1 data + +
DC data + + +
C2 data + + +
MIC data + + + +












§1.9. Homework: Generate a set of C2 data under the mixed case interval censorship
model with a size of 100 and P(N = i) > 0, i = 1, ..., 8 and P(N ≤ 8) = 1. What will
you do if you want to estimate the F (x) ? (For example, one may consider the following

treatment: Let X∗
i =







Li+Ri

2 if SIC,
Li if RC,
Ri if LC,

then pretend that Xi is observed and its value is

X∗
i . Finally, estimate F (t) by

F̃ (t) =
1

n

n∑

i=1

1(X∗
i
≤t).)

What do you expect in terms of the asymptotic property (consistency) of your or the above
estimator ? Use the simulated data to compute the above estimate and compare to F (t)
(repeat 10 times) and the limiting value of the estimator (you can select only one specific
t).
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Chapter 2. Distribution of failure time
In survival analysis, X is the age at death or failure time.

§2.1. Hazard. Suppose that X is a r.v. with cdf F and density function f .
Definition. S(t) = P (X > t) is called the survival function of a r.v. X.
S(t−) = P (X ≥ t) is sometimes called the survival function of X (Cox and Oakes (1984)).
If X is continuous, S(t−) = S(t),

where S(t−) = limu↑t S(u).
S(x) = 1− F (x).

The d.f. of X, f(t) =

{
S(t−)− S(t) if X is discrete (why ?)
−S′(t) if X is continuous (why ?)

{
F (t)− F (t−) ...
F ′(t)

S(t) =

{∑

x>t f(x) if X is discrete
∫∞
t
f(x)dx if X is continuous.

.
Definition. h(t) = f(t)/S(t−) is called the hazard function of X. (wei2xian3 han2su4).

H(t) = − logS(t) is called the integrated (or cumulative) hazard of X.
Interpretation of h and H:

h(x) =

{
P (X = x|X ≥ x) if X is discrete ( why ?)

lim△→0
P (X∈[x,x+△)|X≥x)

△ if X is continuous (why ?)

H ′(t) =(− logS(t))′If X is continuous,

=f(t)/S(t)
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=h(t) if f(t) exists.

That is, H(t) =

∫ t

−∞
h(x)dx integrated hazard.

If X is discrete,

S(t) =
∏

xi≤t,xi∈Df

S(xi)

S(xi−)
(=

S(x1)

S(x1−)

S(x2)

S(x2−)

S(x3)

S(x3−)
· · · S(t)

S(t−)
) x1 < x2 < · · ·

=
∏

xi≤t,xi∈Df

(1− h(xi))

where Df = {x : f(x) = P (X = x) > 0} and
∏

a∈∅ a = 1. Thus

H(t) = − log
∏

xi≤t
(1− h(xi)) (≈

∑

xi≤t
h(xi) if h(xi) ≈ 0 for all i) (cumulated hazards).

The distribution of X refers to one of f , h, F , S and H, as they are equivalent if f exists.
Recall F (t) = P (X ≤ t),

S(t) = P (X > t),

f(t) =

{
−S′(t) cts
S(t−)− S(t) dis

h(t) = f(t)/S(t−),
H(t) = −lnS(t).

§2.2. Some distributions
For the purpose of parametric analysis later on, as well as for possible simulation

studies, we need to be familiar with certain distributions which are related to the survival
analysis. Thus we study some typical distributions here. Note that they all correspond to
some positive random variables. We thus use the following conventions.

f(x) (F (x), h(x), or H(x)), x ≥ 0 implies that f(x) = 0 etc. for x < 0;
S(x), x ≥ 0 implies that S(x)= ? for x < 0.

Note that E(X) =
∫∞
0
S(t)dt, if X is a survival time.

Reason: If X is a survival time, then

E(X) = E(
∫X

0
1dt) = E(

∫∞
0

1(t≤X)dt)

=
∫∞
0
E(1(t≤X))dt

=
∫∞
0
P (X ≥ t)dt

=
∫∞
0
S(t−)dt

=
∫∞
0
S(t)dt as the set D of discrete points of S(t) is countable and

∫

D
dt = 0.

If X is not a survival time, do we have E(X) =
∫∞
0
S(t−)dt ?

Try X = −1, SX(t) = 1(t < −1),
∫∞
0
SX(t−)dt= ?

E(X)= ?
Ans. ?
§2.2.1. Exponential distribution

f(x) = ρe−ρx, x > 0, ρ > 0; E(X) = 1/ρ.
S(x) = e−ρx, x > 0; (easy way to remember)
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h(x) = f(x)
S(x) = ρ, x > 0 (constant hazard);

H(x) =
∫ x

0
h(t)dt = ρx, x > 0 (or = −lnS(x));

F (x) = ?
§2.2.2. Weibull distribution

S(x) = e−(ρx)κ , x > 0 (easy way to remember);
f(x) = κρ(ρx)κ−1e−(ρx)κ , x > 0, ρ, κ > 0;
h(x) = κρ(ρx)κ−1, x > 0;
H(x) = (ρx)κ, x > 0;
F (x) = ?

§2.2.3 Log normal distribution
X has a log normal distribution if X = eZ , where Z ∼ N(ν, τ2) (= N(log ρ−1, τ2)), ρ, τ > 0,

f(x) =fZ(log x)
∣
∣
dz

dx

∣
∣ z = lnx

=
1√
2πτ

exp(
−(log x− ν)2

2τ2
)
1

x
ν = − log ρ

=
1√

2πτx
exp(

−(log x− (− log ρ))2

2τ2
)

=
1√

2πτx
exp(

−(log(xρ))2

2τ2
), x > 0,

S(t) =
∫∞
t
f(x)dx, h = f/S, H = −lnS and F (x) = ?

They cannot be simplified. Just remember lnX ∼ N(ν, τ2).
§2.2.4 Log-logistic distribution
X has the log-logistic distribution, if X = eT , where T = lnX has a logistic distribution.
The standard logistic survival function is So(x) = 1

1+exp(x) , x > 0 ?

It induces the location-scale parameter family

ST (x) =
1

1 + exp(x−ντ )
.

S(x) =SX(x)

=P{X > x}
=P{T > lnx}

=
1

1 + exp( lnx−ν
τ )

letting ν = − log ρ and κ = 1/τ (reparameterization),

=
1

1 + exp((lnx+ lnρ)κ)

=
1

1 + exp((ln(xρ))κ)

=
1

1 + (exp(ln(xρ)))κ

then S(x) =
1

1 + (ρx)κ
, x ≥ 0 (easy way to remember).

H(x) = log(1 + (ρx)κ), x ≥ 0. = −lnS(x)
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h(x) =
κρκxκ−1

1 + (ρx)κ
, x ≥ 0. = H ′(x)

f(x) =
κρκxκ−1

[1 + (ρx)κ]2
, x ≥ 0. = h(x)S(x)

F (x) =?

§2.2.5. Gompertz-Makeham distribution.

h(t) =ρ0 + ρ1e
ρ2t, t > 0, ρ0, ρ1 > 0 (easy way to remember),

H(t) =

∫ t

0

h(x)dx = [ρ0t+
ρ1
ρ2

(eρ2t − 1)], t > 0;

S(t) =e−H(t) = e−[ρ0t+
ρ1
ρ2

(eρ2t−1)], t > 0;

f(t) =− S′(t) = h(t)S(t) = · · · , t > 0;

F =?

Remark:
1. It is an exponential distribution if ρ1 = 0.
2. It is called Gompertz distribution if ρ0 = 0.

§2.2.6. Compound exponential distribution.
Suppose that each individual survival time is exponentially distributed

but that the rate varies randomly between individuals.
To represent this let P be a random variable

with density fP
and the conditional density of X given P = p is

fX|P (x|p) = pe−px, x > 0.

Then f(x) = fX(x) =
∫
pe−pxfP (p)dp. If P has gamma distribution with

fP (p) =
pα−1e−p/β

Γ(α)βα
, p, α, β > 0.

then

f(x) =

∫ ∞

0

pe−px
pα−1e−p/β

Γ(α)(β)α
dp =

∫ ∞

0

pαe−p(x+1/β)

Γ(α)(β)α
dp

=
Γ(α+ 1)( 1

x+1/β )α+1

Γ(α)(β)α

∫ ∞

0

p(α+1)−1e−p/
1

(x+1/β)

Γ(α+ 1)( 1
x+1/β )α+1

dp

=
Γ(α+ 1)

(x+ 1/β)α+1Γ(α)(β)α

=α(1/β)α(x+ 1/β)−α−1...?

The latter df is called the Pareto distribution, with ρ = αβ (the mean),

S(x) =(α/ρ)α(x+ α/ρ)−α, x > 0.

H(x) =α(−ln(α/ρ) + ln(x+ α/ρ)), x > 0.

h(x) =α/(x+ α/ρ), x > 0. (simplest).
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§2.2.7. Discrete distributions.
The common discrete random variables do not have concise forms for h and H. Thus so

far, we only consider continuous r.v.s. Now consider a binomial distribution. X ∼ bin(2, p).
f(x) = P (X = x) =

(
2
x

)
pxq2−x, x ∈ {0, 1, 2}, q = 1− p.

S(x) = P (X > x) =







1 if x < 0
1− q2 if x ∈ [0, 1), why ?
p2 if x ∈ [1, 2),
0 if x ≥ 2.

For h(x) = f(x)/S(x−),

need S(0−) = 1, S(1−) = 1− q2, S(2−) = p2,

h(x) =







q2 if x = 0
2pq
1−q2 if x = 1
p2

p2 if x = 2,

=







q2 if x = 0
2q
2−p if x = 1
1 if x = 2,

H(x) =







0 if x < 0
−ln(1− q2) if x ∈ [0, 1)
−2lnp if x ∈ [1, 2)
∞ if x ≥ 2.

§2.2.8. Proportional hazards (PH) model or Cox’s model.
An advantage of defining hazard functions is the introduction of the PH model. Define

τ = τT = sup{t : FT (t) < 1}

for a random variable T .
Definition. Let (X, Y ) be a random vector, where X ∈ Rp. We say (X, Y ) follows a
proportional hazards (PH) model or Cox’s regression model (Cox, 1972), if given X = x,
the hazard of Y |x is

h(y|x) = ho(y)c(x), for y < τ , (1)

where c(x) ≥ 0, c(·) takes at least two distinct values, and ho is a hazard function.
Remark 1. It is common to set c(x) = exp(βx) so that c(x) ≥ 0, where βx = β′x.
Remark 2. If the random variable is discrete, then the choice of c(x) = eβx may cause
problem. e.g. , if ho(y) = 0.5, c(x) = 3, P (Y = y|Y ≥ y,X = x) = h(y|x) = ho(y)c(x) > 1.
Two alternatives: either

(1) choose c(x) = exp(−eβx) to ensure that c(x) is between 0 and 1 (e0 = 1, e−∞ = 0),
(2) or restrict the parameter space B, the set that β belongs to.

For continuous random variable, we only need c(x) ≥ 0, as the hazard does not need to
belong to [0, 1], as long as it belongs to [0,∞].
Remark 3. In the original definition of the PH model (see Cox and Oakes (1984)), there
is no restriction y < τ . We shall show in Example 1 that if ho corresponds to a discrete
random variable, Eq. (1) without the restriction does not define a hazard function.

Hereafter, let p = 1.
Example 1. (Counterexample of Eq. (1) without y < τ). We shall consider an example of
discrete random variables. If T is discrete and P{T = τ) = fT (τ) > 0, then

hT (τ) = fT (τ)/ST (τ−) = fT (τ)/P (T ≥ τ) = fT (τ)/fT (τ) = 1

which is always true. It follows that for such a discrete random variable statement (1) does
not hold at τ , as

h(τ |x) = 1 6= 1× c(x) = ho(τ)c(x) as c(x) takes at least two values.
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It does not matter for continuous random variables, as one can eliminate τ from the support.
Example 2. If So(t) is a survival function of a continuous random variable, then

S(t|x) = (So(t))
eβx

satisfies the PH model h(t|x) = eβxho(t), t < τ . (2)

Reason: f(t|x) = −S′(t|x) = −eβx(So(t))
eβx−1S′

o(t) = eβxS(t|x) fo(t)So(t)
,

h(t|x) = f(t|x)
S(t|x) = eβxho(t).

Special cases of Eq. (2):
a. Weibull: So(t) = e−t

γ

, t > 0. S(t|x) = exp(−eβxtγ), t > 0.
h(t|x) = eβxγtγ−1, ho(t) = γtγ−1, t > 0.

b. Log-logistic: So(t) = 1
1+tκ . S(t|x) = ( 1

1+tκ )e
βx

, t > 0,

h(t|x) = exp(βx)κt
κ−1

1+tκ . ho(t) = κtκ−1

1+tκ , t > 0.

c. Logistic: So(t) = 1
1+et . S(t|x) = ( 1

1+et )e
βx

,

h(t|x) = exp(βx) 1
1+e−t , ho(t) = 1

1+e−t .
Remark.
The distribution generated from Case a is still a Weibull distribution for each (β, x).
The distribution generated from Case b may not be a log-logistic distribution unless β = 0.
The distribution in Case c corresponds to a random variable Y with negative values in
its domain, though it is often in survival analysis that we only consider the non-negative
domain. However, it still satisfies the PH model.

h(y|x) = ho(y)c(x) for y < τ , satisfies the PH model. (1)

S(t|x) = (So(t))
eβx

(2)

satisfies the PH model if X is continuous.
Definition. The family of the survival functions S(t|x) satisfies Eq. (2) for all possible
β is called a Lehmann family, or we can say that the distribution is from a proportional
integrated hazards (PIH) model, as

H(t|x) = −lnS(t|x) = eβx(−lnSo(t)) = eβxHo(t).

The PH model and the PIH model are the same for cts random variables, but are
different for discrete random variables. When Cox proposes the PH model, he distinguishes
the model from the Lehmann family or the PIH model. However, later in the literature, the
PIH model and the PH model are mistaken to be the same (see the textook by Sun (2006)
p.18). Example 3 shows that they are different.
Example 3. Suppose Y0 ∼ bin(2, p). Then its hazard function is

ho(t) =







(1− p)2 if t = 0,
2(1−p)
2−p if t = 1,

1 if t = 2.

Suppose h(y|x) = ho(y)c(x) for y = 0 or 1. Then

h(0|x) = (1− p)2c(x) yields f(0|x) = (1− p)2c(x) as S(0− |x) = 1.

h(1|x) = 2(1−p)
2−p c(x) yields f(1|x) = h(1|x)S(1− |x) = h(1|x)(1− f(0|x)

= 2(1−p)
2−p c(x)(1− (1− p)2c(x))
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f(2|x) = 1− f(0|x)− f(1|x).
Verify that f(·|x) defines a discrete density function (for c(x) ≤ 1. Why add it ??)
It follows h(y|x) = ho(y)c(x), y ∈ {0, 1}, that

S(0|x) = 1− (1− p)2c(x).

However, if p = 0.2 and c(x) = 0.3, PIH model:

(So(0))c(x) = (1−(1−p)2)c(x) ≈ 0.7360219 6= 0.808 ≈ 1−(1−p)2c(x) = S(0|x) (PHmodel).

It indicates that if ho is a hazard function of a discrete random variable, and h(t|x) =
ho(t)c(x), its cdf may not be of the form S(t|x) = (So(t))

c(x) or Equation (2).
§2.2.9. Accelerated lifetime (AL) model.
Definition. If So is a survival function and given a p dimensional vector V = v, X|v has a
survival function S(y|v) = So(y/ exp(βv)), β ∈ Rp, then we say X|v is from an accelerated
lifetime model (or the log-linear regression model). That is,

X/eβv = W and lnX = βv + lnW, where SW = So (and α = ElnW ).

Examples.
Weibull: S(y|x) = exp(−yκeαx), y > 0, α = −βκ. (So(y) = exp(−(ρy)γ)). (hw).
Log-logistic: S(y|x) = 1

1+(y exp(αx))κ . α = −β. (So(y) = 1
1+(ρy)κ ).

§2.3. Homework:
A.1. Let X1, ..., Xn be independent continuous nonnegative random variables with haz-

ard functions h1(·), ..., hn(·). Prove that X = min{X1, ..., Xn} has hazard function
∑

j=1 hj(t).
A.2. In a compound exponential distribution, let the rate be represented by the random

variable P . Prove that E(X) = E(1/P ) and Var(X) = 2E(1/P 2)− [E(1/P )]2.
A.3. Derive the integrated hazard function H(t|x) under the PH model in Example 3 of

§2.2.8.
A.4. Show that the two examples in §2.2.9 are indeed from the AL model. Moreover, one is

from the PH model and the other is not.
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Chapter 3. Parametric Analysis
§3.1. Introduction

Assume that
the failure time X has a df f = fo(x; θ),

where fo is known, θ is a parameter, θ ∈ Θ (parameter space),
the censoring vector has a df g(·), which does not depend on θ,
(L,R) is an extended observable random vector,
(Li, Ri, Xi), i = 1, ..., n, are i.i.d. copies of (L,R,X).
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Note that L ≤ X ≤ R and Li ≤ Xi ≤ Ri,

(L,R) is







RC if R =∞
LC if L = −∞
SIC if 0 < L < R <∞
exact if L = R.

Recall that if we observed X1 = x1, ..., Xn = xn,
the likelihood of a complete data is

l(φ) =

n∏

i=1

fo(xi;φ).

Note: θ (e.g. θ = 1) is a parameter and φ is a variable in Θ, as we do not know θ.
In particular,

l(θ)

{

=
∏n
i=1 P (Xi = xi) if X is discrete

≈∏n
i=1

P{Xi∈[xi,xi+△)}
△ if X is continuous,

where △ ≈ 0,

as P{X ∈ [x, x +△)} ≈ f(x)△. The MLE of θ maximizes l(φ), φ ∈ Θ. Abusing notation,
we may write l(θ), instead of l(φ). We shall modify this idea for IC data.
§3.2. Likelihood functions.

If (L,R) is discrete, extending the definition for complete data, we could call l(φ) the
likelihood function of the IC data (Li, Ri) = (li, ri), i = 1, ..., n, where

l(θ) =
n∏

i=1

P ((Li, Ri) = (li, ri)), θ is the true value.

Example 1 (RC model). Denote fY , FY and SY the df, cdf and survival function of Y ,
respectively.

P ((L,R) = (l, r)) =

{
P (X = l ≤ Y ) if exact
P (Y = l < X) if RC.

=

{
f(l)SY (l−) if exact
S(l)fY (l) if RC.

Why ?

Let 1e, 1r, 1l and 1s be the indicator functions of the events that the observation is exact,
RC, LC and SIC, respectively. Denote 1e,i, 1r,i, 1l,i and 1s,i in an obvious way.

P ((L,R) = (l, r)) = [f(l)SY (l−)]1e [S(l)fY (l)]1r .

Note that we ignored the true value θ in the above expression for simplicity,
as f = fo(x; θ), S = So(x; θ) and F = Fo(x; θ).

l(φ) =
n∏

i=1

{
[f(li)SY (li−)]1e,i [S(li)fY (li)]

1r,i
}

ignoring φ

=
{

n∏

i=1

{[fo(li;φ)]1e,i [So(li;φ)]1r,i}
}{

n∏

i=1

{[(SY (li−)]1e,i [fY (li)]
1r,i}

︸ ︷︷ ︸

why no φ?

}
.

20



Example 2 (DC model).

P ((L,R) = (l, r)) =







P (X = l, Z < l ≤ Y ) if exact
P (X > l = Y ) if RC
P (X ≤ r = Z) if LC

=







f(l)P (Z < l ≤ Y ) if exact
S(l)fY (l) if RC
F (r)fZ(r) if LC.

Note {Z ≥ l} ⊂ {Y ≥ l} as Z ≤ Y w.p.1.
Thus P (Z < l ≤ Y ) = P (Y ≥ l)− P (Z ≥ l) = SY (l−)− SZ(l−),

axix
y
↑ z < l < y

∣
∣ z > l ·

∣
∣

∣
∣ y > l ·

∣
∣

∣
∣ ·

l
∣
∣ −−−− · ← −

??
∣
∣ ·

∣
∣

· − − − −−− −−− −−− − → z axis
0 l

not part of sample space

P ((L,R) = (l, r)) = [f(l)(SY (l−)− SZ(l−))]1e [S(l)fY (l)]1r [F (r)fZ(r)]1l .

Thus l(φ)

=
n∏

i=1

{
[f(li)(SY (li−)− SZ(li−))]1e,i [S(li)fY (li)]

1r,i [F (ri)fZ(ri)]
1l,i
}

=
{

n∏

i=1

([fo(li;φ)]1e,i [So(li;φ)]1r,i [Fo(ri;φ)]1l,i)
}

n∏

i=1

([SY (li−)− SZ(li−)]1e,i [fY (li)]
1r,i [fZ(ri)]

1l,i).

Example 3 (Case k model, k ≥ 2).

P ((L,R) = (l, r)) =







P{l < X ≤ r, (Yj−1, Yj) = (l, r), j ∈ {2, ..., k}} if SIC
S(l)fYk

(l) if RC
F (r)fY1(r) if LC

=







(S(l)− S(r))
∑k
j=2 fYj−1,Yj (l, r) if it is SIC

S(l)fYk
(l) if it is right censored

F (r)fY1(r) if it is left censored

P ((L,R) = (l, r)) = [(S(l)− S(r))
k∑

j=2

fYj−1,Yj (l, r)]1s [S(l)fYk
(l)]1r [F (r)fY1(r)]1l .

Thus l(φ)

=
n∏

i=1

{
[(S(li)− S(ri))

k∑

j=2

fYj−1,Yj (li, ri)]
1s,i [S(li)fYk

(li)]
1r,i [F (ri)fY1(ri)]

1l,i
}

=
{

n∏

i=1

([So(li;φ)− So(ri;φ)]1s,i [So(li;φ)]1r,i [Fo(ri;φ)]1l,i)
}

×
{

n∏

i=1

([
k∑

j=2

fYj−1,Yj (li, ri)]
1s,i [fYk

(li)]
1r,i [fY1(ri)]

1l,i)
}
.
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Since the effect of the censoring vector can be factored out separately, and only the
first factor in l(φ) depends on φ we can discard the second factor.

Note that while we start our discussion under the assumption that (L,R) is discrete,
the definition of  L does not require that the (L,R) be discrete.
Definition. The likelihood function of the IC non-regression data is defined to be

 L(φ) =
{

n∏

i=1

{
[f(li)]

1e,i [S(li)− S(ri)]
1s,i [S(li)]

1r,i [F (ri)]
1l,i
}
,

where f(x) = fo(x;φ) in the parametric analysis.
In an obvious way, we write

 L(φ) =
∏

i: ex

f(li)
∏

i: rc

S(li)
∏

i: lc

F (ri)
∏

i: ic

(S(li)− S(ri))

=

n∏

i=1

[(fo(li;φ))δi(So(li;φ)− So(ri;φ))1−δi ]

(=

n∏

i=1

[(P (X = li))
δi(P (li < X ≤ ri))1−δi ] if X is dicrete),

where δi = 1(li = ri) and f(x) = fo(x;φ) in the parametric analysis.
Remark. Hereafter φ can be replaced by θ, ρ etc..
§3.2.2. Homework
1. Mimic examples 1-3 for the mixed case IC model and MIC model (1).
2. If one generates data by (Li, Ri) = (Xi − 1, Xi + 1), can the likelihood be written as

 L =
∏n
i=1(S(xi − 1)− S(xi + 1)) ? (prove or disprove it).

§3.3. MLE.
Definition. Suppose φ = θ̂ maximizes  L(φ), φ ∈ Θ. Then θ̂ is called the maximum
likelihood estimator (MLE) of θ.
Example 1. Suppose that X has an exponential distribution,
1. f(t) = ? (1) e−t Y,N,DNK; (2) e−t1(t ≥ 0) Y,N,DNK.

2. S(t) = ? (1) e−t Y,N,DNK; (2) e−t1(t ≥ 0) Y,N,DNK; (3) e−t1(t≥0) Y,N,DNK.
3. Find the MLE of ρ under the RC model.
Solution: Observe (Z1, δ1), ..., (Zn, δn), where Zi = min{Xi, Yi} and δi = 1(Xi≤Yi) ∀ i.

log  L(ρ) =
n∑

i=1

log{[1(Zi>0)ρe
−ρZi ]δi [e−ρZi1(Zi>0) ]1−δi} (= log(

∏

i: ex

f(li)
∏

i: rc

S(li)))

=
n∑

i=1

log{[ρe−ρZi ]δi [e−ρZi ]1−δi} Z(1) > 0

=
n∑

i=1

log{ρδie−ρZi} Z(1) > 0

=
n∑

i=1

δi log ρ− ρ
n∑

i=1

Zi. Z(1) > 0
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Taking derivative and letting it equal 0 yield

ρ̂ =

∑n
i=1 δi

∑n
i=1 Zi

.

Since ∂2L
∂ρ2 = −∑n

i=1 δiρ
−2 < 0, ρ̂ is the MLE of ρ, unless

∑n
i=1 δi = 0, as ρ > 0. In

the latter case, ρ = 0 uniquely maximizes  L, but it is not the MLE, as 0 /∈ (0,∞) = Θ. We
define ρ̂ = 0 so that ρ̂ is well defined.
Remark. Formally, we shall write  L(p) instead of  L(ρ) why ?
However, in deriving the MLE, it does not matter.

Recall that if we have complete data, i.e., δi ≡ 1, the MLE is n∑n

i=1
Xi

. Let h(x) = 1/x,

then n∑n

i=1
Xi

= h(X) is strongly consistent, as h is continuous. Furthermore, n∑n

i=1
Xi

is

also asymptotically normally distributed as σX <∞, h′ is continuous and h′(ρ) = −ρ−2 6= 0.
Here we used the following asymptotic results:

1. By the the strong law of large number, if µX is finite and h is a continuous function,

h(X) converges to h(µX) with probability one.

2. By the central limit theorem and Corollary of the Slutsky’s Theorem (Xn+Yn
D−→X+c

and XnYn
D−→X ∗c if Xn

D−→X and Yn
D−→c (a constant)), if σX is finite, h′ is continuous

at µX and h′(µX) 6= 0,

√
n(h(X)− h(µX))

σX |h′(µX)| converges in distribution to N(0, 1).

The above statements are valid even if X is an m× 1 random vector. In particular,

√
n(h(X)− h(µX))

√

(∂h(µX)
∂µ )tΣ∂h(µX)

∂µ

converges in distribution to N(0, 1).

where µ is an m × 1 vector, Σ is the covariance matrix of X and µt is the transpose of µ,
provided Σ is nonsingular, ∂h

∂µ is continuous at µ = µX and is not a zero vector at µ = µX .

3 common regression model s:
(1) the Cox regression model S(t|v) = SX|v(t|v) = (So(t))

exp(vβ);

(2) the accelerated lifetime model lnX = βV + lnW or W = X/eβv;
(3) the linear regression model X = βV +W or W = X −Vβ,

where X is the survival time, V is a p× 1 covariate vector, βv
def
= β′v, v = (v1, ..., vp)

′. and
So(t) = S(t|0) = SW is the baseline survival function.
Definition. The likelihood function of the IC regression data (li, ri,vi)’s is defined to be

 L =







∏n
i=1(fW (li − βvi))

δi(SW (li − viβ)− SW (ri − viβ))1−δi LR model
∏n
i=1(fW (li/e

viβ))δi(SW (li/e
viβ)− SW (ri/e

viβ))1−δi AL model
∏n
i=1(−d(SW (li))

exp(βvi)

dli
)δi((SW (li))

exp(βvi) − (SW (ri))
exp(βvi))1−δi Cox model
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Example 2. Suppose that (Zi, δi, Vi), i = 1, ..., n are i.i.d. RC regression data from
(Z, δ, V ), where Z = X ∧ Y , δ = 1(X ≤ Y ), X = βV + W , W , Y , V are independent
random variables, W ∼ Exp(1) and V = ±1. Derive the MLE of β if n = 3, δ1 = 1,
δ2 = 0 = δ3, Z2 = Z3, V1 = 1 and V2 = −1 = V3.
In the real case, Zi’s are given. Here is for exercises.

Sol. Observations: Z1 = X1 = W1 + β, Z2 = Y2 < X2 = W2 − β and Z3 = · · ·, δ1 = · · ·

 L =

n∏

i=1

(fW (Zi − β′vi))
δi(SW (Zi − β′vi))

1−δi Wi = · · ·?

=1(Z1−β≥0) exp(−(Z1

??
−β)) exp

(

− 1(Z2+β≥0)(Z2

??
+β)

)

exp

(

− 1(Z3+β≥0)(Z3 + β)

)

=1(β ≤ Z1) exp

(

− (Z1 − β)− 1(β ≥ −Z2)(2Z2 + 2β)

)

=

{
1(β≤Z1) exp(−Z1 + β) if Z1 < −Z2

1(β≤−Z2) exp(−Z1 + β) + 1(−Z2<β≤Z1) exp(−(Z1 + 2Z2)− β) if Z1 ≥ −Z2

In real data, either Z1 < −Z2 or Z1 > Z2. Only one case. To find the MLE of β,

(1) d
dβL(β) = 0 ... ??

(2) d logL
dβ = 0 ... ??

Or (3) otherwise. Which way ??

If Z1 < −Z2, then L(β) =

{

e−Z1+β if β ≤ Z1

0 if β > Z1,
L′(β) =

{

e−Z1+β > 0 if β ≤ or < Z1 ?
0 if β > Z1,

L′′(β) =

{

e−Z1+β > 0 if β < Z1

0 if β > Z1,
Conclusion ?

L(β) =

{

e−Z1+β (↑ in β) if β ≤ Z1

0 if β > Z1,
=> MLE β̂ = Z1.

If Z1 ≥ −Z2, then L(β) =







e−Z1+β if β ≤ −Z2

e−Z1−2Z2−β if β ∈ (−Z2, Z1]
0 if β > Z1

L′(β) =







e−Z1+β if β < −Z2

−e−Z1−2Z2−β if β ∈ (−Z2, Z1)
0 if β > Z1

L(β) =







e−Z1+β (↑) if β ≤ −Z2

e−Z1−2Z2−β (↓) if β ∈ (−Z2, Z1]
0 if β > Z1

=> MLE β̂ = −Z2.

Remark. Both answers are correct. In the survival analysis context, Zi ≥ 0. Thus
Z1 ≥ −Z2 and the MLE is β̂ = −Z2.

§3.3.2. Homework:

1. Show that ρ̂ = δ/Z in Example 1 is consistent under the RC model.

(Hint:
∑n
i=1 Zi =

∑n
i=1Xi1(Xi≤Yi) +

∑n
i=1 Yi1(Xi>Yi), or derive the df of Z.)
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2. Show that ρ̂ is asymptotically normally distributed under the RC model. That is

√
n(ρ̂− ρ) converges in distribution to a normal variate.

3. Give a 99% approximate confidence interval for ρ when n = 100. Try to give a 99%
confidence interval for ρ when n = 1 with ρ ≥ 1/ln50 and Y ≡ c.

4. Show that if X has a continuous cdf F with integrated hazard H(·) and Z = min{X, c},
where c is a fixed constant, then E(H(Z)) = F (c).

5. In the above example, if one uses the second incorrect approach to deal with the RC
data, the MLE will be ρ̃ = n∑n

i=1
Zi

. Derive the limit of the estimator and show that it

is not a consistent estimator of ρ.
6. Suppose that a random sample of size n is generated from a type I RC model with
X ∼ U(θ, 4), θ ∈ (0, 4) and P (Y = 3) = 1. Find the MLE of θ. Derive the mean and
variance of the MLE. Can we use the Cramer-Rao Lower Bound as the estimator of the
variance of the MLE ?

7. Suppose that (Zi, δi, Vi), i = 1, ..., n are i.i.d. RC regression data from (Z, δ, V ), where
Z = X ∧Y , δ = 1(X ≤ Y ), X = βV +W , W , Y , V are independent random variables,
W ∼ Exp(1) and V = ±1. Derive the MLE of β if n = 2, δ1 = 1, δ2 = 0, V1 = 1 and
V2 = −1.

§3.4. Numerical methods for MLE.
3.4.1. Newton-Raphson method.

If  L(φ) is continuous and Θ is compact, then the MLE of φ exists. However, the MLE
may not have closed form solution.

We can try the Newton Raphson method to derive it. Denote

L = log  L.

This is an iterative algorithm:
Step 1. Assign an initial value φ(1) to φ (∈ Rm).
Step k + 1, k ≥ 1. Given φ(k), up-date φ by

φ(k+1) = φ(k) −
(

∂2L
∂φ∂φt

∣
∣
φ=φ(k)

)−1
∂L
∂φ

∣
∣
φ=φ(k)

. (3.1)

Stop when ||φ(k+1) − φ(k)|| < ǫ, where ǫ is sufficiently small and

||z|| = maxi |zi| or =
√∑

i z
2
i .

Reason: By the first order Taylor expansion, (under certain condition on L),

∂L
∂φ
− ∂L
∂φ

∣
∣
φ=θ̂
≈ ∂2L
∂φ∂φt

∣
∣
φ=θ̂

(φ− θ̂)

Since ∂L
∂φ

∣
∣
φ=θ̂

= 0 under certain regularity conditions (as θ̂ maximizes L),

∂L
∂φ
≈ ∂2L
∂φ∂φt

∣
∣
φ=θ̂

(φ− θ̂)
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θ̂ ≈ φ−
(

∂2L
∂φ∂φt

∣
∣
φ=θ̂

)−1
∂L
∂φ

.

Equation (3.1) is based on the last equation with
(

∂2L
∂φ∂φt

∣
∣
φ=θ̂

)−1

replaced by
(

∂2L
∂φ∂φt

∣
∣
φ=φ(k)

)−1

.

Drawbacks of the algorithm:
1. (Convergence). It may need some regularity assumptions to guarantee the convergence

of the algorithm. For example, the algorithm may not converge even in the case that
we generate complete data from Weibull(2,2).

2. (Uniqueness). It may converge to a local extreme point, unless −L is convex in φ.

3. (Feasibility). It is often difficult to obtain the inverse matrix
(

∂2L
∂φ∂φt

)−1

if the dimension

of φ is large.
Example 1 (Log normal under the mixed case IC model)

Let Xi be a survival time and Ui = lnXi be a N(ztiβ, σ
2) variate, i = 1, ..., n, where zi

is a p× 1 covariate vector (non-random vectors), and β is a p× 1 parameter vector. Under
the mixed case IC model, Xi and thus Ui are not observed and we only observe (Li, Ri)
(Ui ∈ (Li, Ri]) and zi, i = 1, ..., n. We shall estimate β.

We consider Ui rather than Xi because Xi is nonnegative, while a normal variate can
be negative. The problem arises from linear regression for complete data. If U1, ..., Un are
observed,

Ui = lnXi = β′zi + ǫi, where ǫi’s are i.i.d. N(0, σ2),

the MLE of β, which is also called the least squares estimator, is

β̂ = (ZtZ)−1ZtU, where Z =





zt1
· · ·
ztn



 and U =





U1

· · ·
Un



 .

Here σ2 does not matter, even though, it is unknown.
Under the mixed case IC model, θ = (βt, σ)t and the log likelihood function is

L(θ) =ln
n∏

i=1

(S(li − ziβ;σ)− S(ri − ziβ;σ)) (ǫi = Ui − ziβ)

=ln
n∏

i=1

(F (ri − ziβ;σ)− F (li − ziβ;σ))

=
n∑

i=1

ln(Φ(
ri − β′zi

σ
)− Φ(

li − β′zi
σ

)) (if treating as i.i.d.),

where Φ(t) =
∫ t

−∞
1√
2π
e−x

2/2dx is the cdf of the N(0, 1). Since

d

dx
F (b(x)) = (

∫ b(x)

−∞
f(t)dt)′x = f(b(x))b′(x),

∂L(θ)

∂σ
=

n∑

i=1

∂
∂σΦ( ri−β

tzi

σ )− ∂
∂σΦ( li−β

tzi

σ )

Φ( ri−β
tzi

σ )− Φ( li−β
tzi

σ )
(lng(x))′x = g′(x)

g(x)
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=− σ−2

√
2π

n∑

i=1

e−
(ri−βtzi)

2

2σ2 (ri − βtzi)− e−
(li−βtzi)

2

2σ2 (li − βtzi)
Φ( ri−β

tzi

σ )− Φ( li−β
tzi

σ )

=− σ−1

√
2π

n∑

i=1

e−
(ri−βtzi)

2

2σ2 (ri−βtzi)
σ − e−

(li−βtzi)
2

2σ2 (li−βtzi)
σ

Φ( ri−β
tzi

σ )− Φ( li−β
tzi

σ )
formally. (3.2)

Recall that (l, r) ∈ {(−∞, r), (l, r), (l,∞)}. If li = −∞, then Φ( li−β
tzi

σ ) = 0 and thus

Φ′
σ( li−β

tzi

σ ) = 0. But we can nevertheless write Φ′
σ( li−β

tzi

σ ) = − (li−βtzi)
σ2 e−

(li−βtzi)
2

2σ2 , as it
still equals 0 for li = −∞. A similar argument can be applied to the case ri = ∞. In this

way, ∂L(θ)
∂σ can have a simpler form as in Eq. (3.2).

∂L(θ)

∂β
=−

n∑

i=1




e−

(ri−βtzi)
2

2σ2 − e−
(li−βtzi)

2

2σ2

Φ( ri−β
tzi

σ )− Φ( li−β
tzi

σ )

σ−1

√
2π

zi





=− σ−1

√
2π

n∑

i=1




e−

(ri−βtzi)
2

2σ2 − e−
(li−βtzi)

2

2σ2

Φ( ri−β
tzi

σ )− Φ( li−β
tzi

σ )
zi



 .

Here

∂L
∂β

=





∂L
∂β1· · ·
∂L
∂βp



 and
∂L
∂βt

= (
∂L
∂β1

· · · ∂L
∂βp

).

There is no closed form solution to the equation ∂L
∂β = 0 and ∂L

∂σ = 0. So we shall use the

Newton-Raphson method to obtain the MLE of

(
β
σ

)

:

(
β(k+1)

σ(k+1)

)

=

(
β(k)
σ(k)

)

−
(

∂2L
∂β∂βt

∂2L
∂σ∂β

∂2L
∂βt∂σ

∂2L
∂σ2

)−1
∣
∣
β=β(k),σ=σ(k)

( ∂L
∂β
∂L
∂σ

)
∣
∣
β=β(k),σ=σ(k)

.

One can pretend β and zi as ∈ R first, and adjust later on.
βzi → βtzi, z

2
i → ziz

t
i, etc. Their dimentions ?

∂2L(θ)

∂σ∂β
=

∂

∂σ

[
− σ−1

√
2π

n∑

i=1




e−

(ri−βtzi)
2

2σ2 − e−
(li−βtzi)

2

2σ2

Φ( ri−β
tzi

σ )− Φ( li−β
tzi

σ )
zi




]

=− [
∂

∂σ

σ−1

√
2π

]

n∑

i=1




e−

(ri−βtzi)
2

2σ2 − e−
(li−βtzi)

2

2σ2

Φ( ri−β
tzi

σ )− Φ( li−β
tzi

σ )
zi



− σ−1

√
2π

∂

∂σ

n∑

i=1




e−

(ri−βtzi)
2

2σ2 − e−
(li−βtzi)

2

2σ2

Φ( ri−β
tzi

σ )− Φ( li−β
tzi

σ )
zi





=− [
∂

∂σ

σ−1

√
2π

]
n∑

i=1




e−

(ri−βtzi)
2

2σ2 − e−
(li−βtzi)

2

2σ2

Φ( ri−β
tzi

σ )− Φ( li−β
tzi

σ )
zi



− σ−1

√
2π

n∑

i=1

zi

[Φ( ri−β
tzi

σ )− Φ( li−β
tzi

σ )]2

{

( ∂

∂σ
[e−

(ri−βtzi)
2

2σ2 − e−
(li−βtzi)

2

2σ2 ]− ∂

∂σ
[Φ(

ri − βtzi
σ

)− Φ(
li − βtzi

σ
)]
)
}
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=
σ−2

√
2π

n∑

i=1
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.

Some useful asymptotic results.
Under certain regularity conditions, the following asymptotic properties are valid

and are used for testing statistical hypotheses and constructing confidence intervals or con-
fidence regions for θ ∈ Θ ⊂ Rm.

A.
(

− ∂2L
∂φ∂φt

∣
∣
φ=θ̂

)1/2

(θ̂ − θ) is approximately N(0, Im) distributed if n is large, where Im

is a m×m identity matrix.
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B. (θ̂ − θ)t
(

− ∂2L
∂φ∂φt

∣
∣
φ=θ̂

)

(θ̂ − θ) is approximately χ2(m) distributed if n is large,

C. For testing H0: θ ∈ Θ0 v.s. H1: θ /∈ Θ0, an asymptotic test is the likelihood ratio test
and another test is a score test. Here
the likelihood ratio test is 1

(−2ln
 L(θ̃0)

 L(θ̂)
>χ2

α,d
)

where θ̂ and θ̃0 are the MLEs of θ in the

space Θ and Θ0, respectively, d = ||Θ|| − ||Θ0|| and ||Θ0|| is the dimension of Θ0;
The score test is based on ∂L

∂φ

∣
∣
φ=θ̃0

. In particular, if Θo = {θo}, then the test is

1(T>χ2
α,d

), where T =
(
∂L
∂φ

t
( −∂2L
∂φ∂φt )−1 ∂L

∂φ

)∣
∣
φ=θo

.

3.4.2. Monte-Carlo method.
Generate a large number N of potential values of θ, say t1, ..., tN .

Let θ̂ = arg maxti{ L(ti)}.
Remark. The drawback:

1. Time-consuming,
2. Do not guarantee to approximate the true MLE.

Example 2 A simulation study.
Generate RC data from SY (y) = exp(−(y/τ)γ), y > 0, τ = e6, γ = 1/3. µ = τΓ(1 + 1/γ).
Then pretend we do not know (τ, γ). Find its MLE.

#in R
library(survival)
#RC data
set.seed(1)
b=exp(6) # τ = e6

g=1/3 # γ = 1/3
y=rweibull(100,g,b) # mean(y) [1] 4145.353 # median(y) [1] 287.3097
c=runif(100,0,780) # censoring variable
d=as.numeric(y<=c)
m=y*d+c*(1-d)
#Monte Carlo
set.seed(1)

# Either use loop
N=200
L=0
M=c(0,0)

for(i in 1:N) {
bb=rnorm(1,b,100)
gg=rnorm(1,g,1/9)
a=prod(d*dweibull(m,gg,bb)+(1-d)*(1-pweibull(m,gg,bb))) # (m,d) given
if (L<a) {
L=a
M=c(gg,bb)
} }
> a
[1] 5.802791e-150
> L
[1] 2.207919e-149
> M #Monte Carlo estimate of
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[1] 0.3563931 388.9888333
> c(g,b) # true value
[1] 0.3333333 403.4287935

# Or use function
> b=exp(6)
> g=1/3
> bb=rnorm(N,b,100)
> gg=rnorm(N,g,1/9)
> a=1:N
> a=sapply(1:N, function(i)

prod(d*dweibull(m,gg[i],bb[i])+(1-d)*(1-pweibull(m,gg[i],bb[i]))))
> bb[a==max(a)]
> gg[a==max(a)]
3.4.3. R commands. R package provides some program to derive the MLE.
Probability Distribution Functions in R.

Let X be a random variable (rv).
Its cdf F (t) = P{X ≤ t},
density function (df) f(t) =

{
F ′(t) if X is continuous,
F (t)− F (t−) if X is discrete.

quantile Q(u) = F−1(u) = min{t : F (t) ≥ u}.
Example 2. X ∼ Weibull distribution with cdf
F (x|γ, τ) = 1− exp(−(x/τ)γ), x > 0

γ– shape, τ – scale,
pweibull(x,shape,scale) — F (x)
qweibull(x,shape,scale) — Q(x)
dweibull(x,shape,scale) — f(x).
rweibull(10,shape,scale) — 10 observations.

Remark. The list of all distributions is given in the next table.

Dist S name parameters
beta beta shape1, shape2

binomial binom size, prob
Cauchy cauchy location, scale

chi− square chisq df
exponential exp rate

F f df1, df2
gamma gamma shape, rate
geometric geom prob

hypergeometric hyper m, n, k
log − normal lnorm meanlog, sdlog
logistic logis location, scale

negative binomial nbinom size, prob
normal norm mean, sd
Poisson pois lambda

T t df
uniform unif min,max
Weibull weibull shape, scale
Wilcox wilcox m, n
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?dwilcox
The R presents MLE with regression data for additional distributions as follows.

1. weibull distribution S(t) = exp((−(αt)γ) = exp(−( tβ )γ) = exp(−( tβ )1/σ).

Standard form S(t) = exp(−tγ/θ), t > 0. µ = θ1/γΓ(1+1/γ). E(X2) = θ2/γΓ(1+2/γ).
With covariate in R, reparametrization:
SY (y|x, β, σ) = exp(−(y/eβ

′x)1/σ), y > 0, x′ = (1, x1, ..., xp)
lnY = β′x + σlnT , T ∼ Exp(1).
T = (Y/eβ

′x)1/σ. = Y 1/σ/eβ
′x/σ = Y γ/θ = (Y/τ)γ

2. exponential distribution
Standard form S(t) = exp(−t/θ), t > 0
With covariate in R, reparametrization:
SY (y|x, β) = exp(−y/eβ′x), y > 0.
lnY = β′x + lnT , T ∼ Exp(1). T = Y/eβ

′x = Y/θ
3. gaussian distribution

Standard form N(µ, σ2): f(t) = 1√
2πσ2

exp(− (t−µ)2
2σ2 ).

With covariate in R, reparametrization:

fY (y|x, β, σ) = 1√
2πσ2

exp(− (y−β′x)2

2σ2 )

or Y = β′x + σZ, Z ∼ N(0, 1).
4. logistic distribution

Standard form logistic(0, 1): S(t) = 1
1+exp(t) .

With covariate in R, reparametrization:
SY (y|x, β, τ) = 1

1+exp( y−β′x
τ )

,

Y = β′x + τT , T ∼ logistic(0, 1), with σT = π/
√

3.
5. lognormal distribution

Assume lnY = β′x + σ Z, where Z ∼ N(0, 1).
6. loglogistic distribution

lnY = β′x + τT , T ∼ logistic(0, 1).
Remark. With complete data,
Lognormal distribution: E(lnY |x) = β′x, and MLE = LSE.

Weibull dist.: E(lnY |x) = β′x + σ E(lnT )
︸ ︷︷ ︸

≈−0.596=0

, T ∼ Exp(1) and ln(E(T )) = 0. MLE 6= LSE.

Logistic distribution: E(Y |x) = β′x and MLE 6= LSE.
Log-logistic distribution: E(lnY |x) = β′x and MLE 6= LSE.
R command:

The parametric MLE is efficient under certain regularity assumptions. In particular,
if the residual plot suggests that certain parametric family is plausible, one can apply the
codes as follows.

library(survival)
zz=survreg(Surv(m,d)∼x, dist=”exponential”) #survreg in R =survReg in Splus
dist: (default: weibull), gaussian, logistic, lognormal and loglogistic
predict(zz,data.frame(x=130),se=T)
summary(zz)

Example 2. Notice that the scale in rweibull() is different from the scale in survreg().
Standard form: S(x|γ, τ) = exp(−xγ/θ), x > 0.
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In rweibull(), S(x|γ, τ) = exp(−(x/τ)γ), x > 0, and γ = shape and τ = scale,

However in survreg( · ∼ 1 ):
lnY = α+ σlnT , where T ∼ Exp(1), α =intercept and σ = scale
(in survreg( · ∼ x ): lnY = α+ βx+ σlnT for regression). E(T ) = 1, E(lnT ) = ?

Q: Relation between (γ, τ) and (σ, α) ? Y = exp(α)Tσ

SY (t) = P(eαTσ > t) = exp(−e−α/σt1/σ) = exp(−(t/eα)1/σ) = exp(−(t/τ)γ)

=> γ = 1/σ and τ = eα.

Example 3. Simulation under Exponential distribution. Understanding the parameter and
output.
> n=10
> y=rexp(n,2) mean(Y)=0.5
> c=runif(n,0,2)
> d=as.numeric(y<=c)
> m=y*d+c*(1-d)
> (zz=survreg(Surv(m,d)∼1,dist=”exponential”))

(Intercept) -0.5628376 # (= α̂, α = lnE(Y ) = ln 1
2 ≈ −0.693)

> predict(zz,data.frame(x=0),se=T)

$fit

0.5695905 v.s. mean(Y)=0.5

$se.fit

0.215285
> exp(zz$coef) # lnY = β′x + lnT (T ∼ Exp(1) or Y = eβ

′xT

(Intercept) lnY = α× 1 + 0× x+ lnT = β′x + σlnT

0.5695905
> predict(zz,data.frame(x=2),se=T)

=??

Remark. What does predict() estimate ?
zz=survreg(Surv(y,d)∼x, dist=””)

predict(zz,data.frame(x=3)) =estimate of







E(Y |X = 3) if logis or guassian or Exp
eE(log Y |X=3) if log-normal or loglogis
eα+3β if Exp or weibull

6= estimate of E(Y |X = 3) in general. Thus for log-normal or loglogis,
predict(zz,data.frame(x=3)) = exp(Ê(log Y |X = 3)) 6≈ E(Y |X = 3)

> summary(zz)
V alue Std.Error z p

(Intercept) −0.563 0.378 −1.49 0.14
is it valid ?

for Ho: intercept α = 0.

Question: Does the p-value support Ho ?
α =?
Why does the survreg suggest such a p-value ?

Remark. 1. Std.Error 6= σα̂
2. Std.Error ≈ σα̂ if n is very large.

> (u=mean(m)/mean(d))

[1] 0.5695905 # MLE of E(Y ) with RC data (= 1/2)
> mean(y)

32



[1] 0.4213111 # MLE y of E(Y ) with complete data.

S(t) = exp(−2t) = exp(−t/0.5) = exp(− t

eα
) = exp(−t/e−ln2)

lnY = α+ lnT , T ∼ Exp(1), eα = 1/2, α = −ln2

> log(u)
[1] −0.5628376 log(Ê(Y )) (see Summary(zz))

> log(1/2)
[1] -0.6931472 log(E(Y))

Example 2 in §3.4.2. (continued).
(Generate 100 RC data from SY (y) = exp(−(y/τ)γ), y > 0, τ = e6, γ = 1/3.)

((m,d) — 100 RC data from Monte Carlo example with τ = e6 and γ = 1/3):
> (zz=survreg(Surv(m,d)∼1))

Coefficients:
(Intercept)
5.985651
Scale= 2.781783
Loglik(model)=−342.3 Loglik(intercept only)= -342.3

> summary(zz)
V alue Std.Error z p

(Intercept) 5.99 0.371 16.14 1.33e− 58
Log(scale) 1.02 0.113 9.02 1.94e− 19

Scale= 2.78
Loglik(model)= −342.3 Loglik(intercept only)= -342.3

> (x= c(zz$scale, zz$coef))
[1] 2.781783 5.985651 # c(1/M[1],log(M[2])) is its approximation.

> c(1/M[1],log(M[2])) (Monte Carlo results)
[1] 2.805890 5.963551 T = (Y/eβ

′x)1/σ = (Y/τ)γ and x = 1.

> gg=1/x[1]
> bb=exp(x[2])
> prod(d*dweibull(m,gg,bb)+(1-d)*(1-pweibull(m,gg,bb)))

[1] 2.221519e-149 # > L = 2.207919e− 149 in Monte Carlo,
log L= log(2.207919*10**-140)
[1] -321.5699 v.s. -342.3 in survreg()

Now fit the data to another model with unrelated covariate
> x=rpois(100,1) # unrelated covariate
> (zz=survreg(Surv(m,d)∼x+I(xˆ 2))) # log y = 6 + 0 ∗ x+ 0x2 + 3 ∗ lnT , T ∼exp(1)

(Intercept) x I(x2)
5.9362703 1.4134716 −0.6472259

log y = α+ β1x+ β2x
2 + σlnT

Scale= 2.731045
Loglik(model)= -340.1 Loglik(intercept only)= -342.3
Chisq= 4.45 on 2 degrees of freedom, p= 0.11

> summary(zz)

33



V alue Std.Error z p
(Intercept) 5.936 0.533 11.13 8.98e− 29

x 1.413 1.062 1.33 1.83e− 01
I(x2) −0.647 0.360 −1.80 7.19e− 02

Log(scale) 1.005 0.113 8.92 4.81e− 19
Scale= 2.73
Loglik(model)= -340.1 Loglik(intercept only)= -342.3
Chisq= 4.45 on 2 degrees of freedom, p= 0.11
Number of Newton-Raphson Iterations: 5
n= 100

> z=summary(zz)
> names(z)

[1] ”call” ”df” ”loglik” ”iter” ”idf”
[6] ”scale” ”coefficients” ”var” ”table” ”correlation”
[11] ”parms” ”n” ”chi” ”robust”

> z$table
V alue Std.Error z p

(Intercept) 5.9362703 0.5333632 11.129884 8.975185e− 29
x 1.4134716 1.0615812 1.331478 1.830319e− 01

I(x2) −0.6472259 0.3596803 −1.799448 7.194787e− 02
Log(scale) 1.0046844 0.1126759 8.916585 4.808864e− 19

> z$var # covariance matrix
(Intercept) x I(x2) Log(scale)

(Intercept) 0.32635298 −0.38842957 0.095005834 0.016751330
x −0.38842957 1.08207114 −0.345080622 −0.015565844

I(x2) 0.09500583 −0.34508062 0.125869293 0.004110281
Log(scale) 0.01675133 −0.01556584 0.004110281 0.012808764

Remark. In parametric analysis, we want to make statistical inferences:
1. θ = ? (estimate θ with SD) (often use the MLE)
2. F (t; θ) = ? (estimate F (t; θ) with SD) (often use the MLE. How ?)
3. Y |(X = x) = ? (predict Y with given X = x with SD)
4. Test Ho: θ = θo.

MLE solutions under assumptions in Ex. 2. (Weibull)
V alue Std.Error z p

(Intercept) 5.99 0.371 16.14 1.33e− 58
Log(scale) 1.02 0.113 9.02 1.94e− 19

Scale= 2.78
1. Formula: T = Y γ/θ, or = Y 1/σ/eβ

′x/σ (with covariates),
h(η̂)−h(η)
|h′(η)|ση̂

D−→N(0, 1) (=> σh(η̂) ≈ |h′(η̂)|ση̂).

h(η̂)−h(η)
√

∂h(η)
∂η

t
Ση̂

∂h(η)
∂η

D−→N(0, 1)

Parameters are (β, σ) or (γ, θ).

survreg yields (β̂, σ̂) = (5.99, 2.78) with x = 1, (β, σ) = (6, 3).
The SE of β is 0.37 and the SE of σ = ?
σ = scale = exp(log(scale)) = h(log(scale)).
h′(x) = (ex)′ = ex = scale = 2.78,
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the SE of the estimate of log(scale) is 0.113.

the SE of is estimate of scale 0.113× 2.78 = 0.314.
2. parameters in pweibull: (γ, τ) = (1/σ, eβ

′x)), estimated by (1/2.78, exp(5.99)).

pweibull(t, 1/2.78, exp(5.99)). F̂ (t; γ̂, τ̂)
3. Ŷ |(X = x) = ? (predict Y with given X = x with SE)

predict(zz,x=1,se=T)
4. Test Ho: σ = 3. or β = ?

1
(
|1.02−ln3|

0.113 >1.96)

> abs(1.02-log(3))/0.113

[1] 0.695684 conclusion of the test ?

Example 4 (simulation study under weibull distribution). #complete data (uncensored)
> n=100
> b=exp(6) τ = e6

> g=1/3

> y=rweibull(n,g,b) # S(y) = exp(−(y/τ)γ) = exp(−

(y/eβx)1/σ

︷ ︸︸ ︷

(y/e6)1/3 ) = exp(−

yγ/θ
︷ ︸︸ ︷

y1/3/e2)
> exp(2*3)*3*2 µ = θ1/γΓ(1 + 1/γ), θ = e2, γ = 1/3

[1] 2420.573
> mean(y)

[1] 2224.555
> z=rexp(n)
> y=exp(6+3*log(z)) # log y=6+3ln(z), 2nd way to generate rweibull
> mean(y)

[1] 2117.473
> (zz=survreg(Surv(y)∼1, dist=”exponential”)) # Is it a correct model ?

(Intercept)

7.657979

Scale fixed at 1
> (zz=survreg(Surv(y)∼1)) # Is it a correct model ?

(Intercept)

6.259506

Scale= 2.570908

> y=rweibull(100,1/3, exp(6))
> zz=survreg(Surv(y)∼1)

> summary(zz)
V alue Std.Error z p

(Intercept) 5.747 0.2810 20.5 5.77e− 93
Log(scale) 0.979 0.0769 12.7 3.94e− 37

Scale= 2.66 # compare to previous 6.259506 and 2.570908
> zz=survreg(Surv(y)∼1, dist=”lognormal”) # Is it a correct model ?

> summary(zz)
V alue Std.Error z p

(Intercept) 4.8383 0.3014 16.1 < 2e− 16
Log(scale) 1.1034 0.0707 15.6 < 2e− 16

Scale= 3.01
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# compare to above outcomes and the outcome below. Conclusion ?
> lm(log(y)∼1) LSE

(Intercept)
4.838 does not fall in the CI based on the MLE of weibull.

> 5.75−2.66*0.56 (= α̂+ σ̂ ∗ E(ln(T )) in weibull)
[1] 4.263623

> y=rnorm(100,8,4)
> (zz=survreg(Surv(y)∼1,dist=”gaussian”))

(Intercept)
7.929682
Scale= 3.741224

> u=exp(y)
> (zz=survreg(Surv(u)∼1,dist=”lognormal”))

(Intercept)
7.929682
Scale= 3.741224

> summary(zz)
V alue Std.Error z p

(Intercept) 7.9297 0.3741 21.2 < 2e− 16
Log(scale) 1.3194 0.0707 18.7 < 2e− 16

Does the CI include the true value ?

> n=400
> z=rexp(n)
> x=runif(n)
> y=exp(6+2*x+3*log(z)) # lny = α+ β1 ∗ x+ 3 ∗ lnz
> mean(y) [1] 4714.647
> (zz=survreg(Surv(y)∼x, dist=”exponential”))

(Intercept) x
8.0369979 0.8000083

Is the MLE consistent ?

Scale fixed at 1
> summary(zz)

V alue Std.Error z p
(Intercept) 8.0370 0.0934 86.01 < 2e− 16

x 0.8000 0.1616 4.95 7.4e− 07
Scale fixed at 1
Does the CI include the true value ?

> (zz=survreg(Surv(y)∼x))
(Intercept) x

6.127987 1.750514
Scale= 2.775253

> summary(zz)
V alue Std.Error z p

(Intercept 6.1280 0.2702 22.7 < 2e− 16
x 1.7505 0.4605 3.8 0.00014

Log(scale) 1.0207 0.0392 26.0 < 2e− 16
Scale= 2.78
Does the CI include the true value ?
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Is the MLE consistent ?
> (zz=survreg(Surv(y)∼x, dist=”weibull”))

(Intercept) x
6.127987 1.750514

Scale= 2.775253
> (zz=survreg(Surv(y)∼x, dist=”lognormal”))
> summary(zz)

V alue Std.Error z p
(Intercept) 4.1332 0.3481 11.87 < 2e− 16

x 2.5232 0.6081 4.15 3.3e− 05
Log(scale) 1.2892 0.0354 36.46 < 2e− 16

Is the MLE consistent ?

Scale= 3.63 Does the CI of α include the true value ? Is it expected ?
> 6.13+2.78*(-0.56) (= α̂+ σ̂ ∗ E(ln(T )) in weibull)

[1] 4.57 ∈ CI of α based on LSE.
Does the CI of β1 include the true value ? Is it expected ?

> y=rnorm(100,8,4)
> u=log(y)
> (zz=survreg(Surv(u)∼x,dist=”gaussian”) ) Is the MLE consistent ?

(Intercept) x
4.133211 2.523191

Scale= 3.62989
> (zz=survreg(Surv(y)∼x,dist=”gaussian”)) compare to the MLE in the above case.

(Intercept) x
2737.883 4047.005

Scale= 12263.48
§3.4.4. Homework:

1. Generate a RC data set of size 100 from a Weibull distribution with κ = 2 and ρ = 1
(where S(t) = exp(−(ρt)κ)).

2. With the above data, estimate the MLE of the parameter using the Newton-Raphson
method
(you could use the command in R:
y=rweibull(100,1/2,1) # check whether the parameters are right
c=runif(100,0,2)
d=as.numeric(y <= c)
m=d*y+(1-d)*c
yy=survreg(Surv(m,d)∼ 1, dist=”weibull”)
but you need at least to derive the iteration formula.)

3. Estimate the covariance matrix of the MLE.
4. Derive a 95% confidence interval for ρ.
5. Test H0: κ = 1 v.s. H1: κ 6= 1 using the data you generated with size α = 0.1. This

is to test whether the distribution is actually from an Exp(ρ) rather from the Weibull
distribution.

6. Is the result in problem 5 as what you expected ? Why you say so?
7. If you have a sample of size 4, do you still expect to see what you expect in Problem

6? Do a simulation to check your answer.

8. Compute ∂2L
∂β∂βt for a weibull distribution S(t|β, σ) = exp(−(t/eβ

′x)1/σ), t > 0, with

x ∈ R6 and n RC data.
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§3.5. Consistency and Asymptotic Normality:
Two issues:

1. Is the MLE consistent ?
2. Is the MLE asymptotically normally distributed ?

They need to be verified for each problem. It is easy to verify if the MLE has a closed
form expression, e.g., in the example considered in §3.3. In general, it is not so trivial. We
shall illustrate the usual approach through the problem of estimating the parameter of an
exponential distribution under the C2 model. In particular, we assume:

1) X ∼ Exp(ρo),
2) (U, V ) has a joint c.d.f. G(u, v), where 0 ≤ U < V w.p.1.,
3) X and (U, V ) are independent;

4) (L,R) =







(U, V ) if X ∈ (U, V ],
(V,+∞) if X > V ,
(−∞, U) if X ≤ U .

Let (Xi, Ui, Vi, Li, Ri), i = 1, ..., n, be i.i.d. copies of (X,U, V, L,R).
The log likelihood function

L(ρ) =
∑

i: lc

logFo(Ri; ρ) +
∑

i: ic

log[So(Li; ρ)− So(Ri; ρ)] +
∑

i: rc

logSo(Li; ρ). (1.1)

Since So(t, ρ) = e−ρt, Eq. (1.1) yields that

L(ρ) =
∑

i,lc

log(1− e−ρRi) +
∑

i,ic

log(e−ρLi − e−ρRi)− ρ
∑

i,rc

Li. (1.2)

To find the MLE, we look at the normal equation ∂L
∂ρ = 0:

∑

i:lc

Ri exp(−ρRi)
1− exp(−ρRi)

−
∑

i:ic

Li exp(−ρLi)−Ri exp(−ρRi)
exp(−ρLi)− exp(−ρRi)

−
∑

i:rc

Li = 0.

There is no closed form expression for the MLE of ρo.
Thus we need to use the Newton-Raphson method to derive it.
§3.5.1. Existence of the MLE.

In some extreme case, the MLE may not exist.
However, one can always modify the MLE so that it is well defined.
Theorem 1. Suppose that X ∼ Exp(ρo). Under the C2 model, the MLE ρ̂ exists and
ρ̂ ∈ (0,+∞) unless

∑

i,rc 1 =
∑

i 1(Ri=∞) = n or
∑

i,lc 1 =
∑

i 1(Li=−∞) = n.
Q: P (

∑

i,rc 1 =
∑

i 1(Ri=∞) = n or
∑

i,lc 1 =
∑

i 1(Li=−∞) = n) = 0 ?
Proof. First assume that

∑

rc 1 < n and
∑

lc 1 < n. Verify from (1.2) that
(i) limρ→0+ L(ρ) = −∞;
(ii) limρ→+∞ L(ρ) = −∞;
(iii) L(ρ) is continuous in ρ.

It follows that the MLE ρ̂ exists and ρ̂ ∈ (0,+∞).
More specifically, by (i) and (ii), ∃ v > 1 such that
L(ρ) < L(1) if ρ /∈ [1/v, v].

Then L(ρ) is continuous on [1/v, v] and achieves its maximum in [1/v, v] (how about
(1/v, v) ?) Does the MLE always exist ?
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Remark. If
∑

rc 1 = n then L(ρ) (= −ρ∑rc Vi) is maximized uniquely by ρ = 0 /∈
(0,∞). Thus the MLE does not exist but we can define ρ̂ = 0. If

∑

lc 1 = n, then L(ρ)
(=
∑

lc log(1− e−ρUi)) is maximized uniquely by ρ =∞ /∈ (0,∞). Thus the MLE does not
exist but we can define ρ̂ = +∞. In this way, ρ̂ is properly defined in the whole sample
space and thus we can study its properties.
§3.5.2. Consistency of the MLE.

We assume:
1) X ∼ Exp(ρo),
2) (U, V ) has a joint c.d.f. G(u, v), where 0 ≤ U < V w.p.1.,
3) X and (U, V ) are independent;

4) (L,R) =







(U, V ) if X ∈ (U, V ],
(V,+∞) if X > V ,
(−∞, U) if X ≤ U ,

Hereafter, abusing notations, we write S = S(t) = e−ρt etc..
The normalized log likelihood function

l(ρ) =
1

n
{
∑

i: ic

log[S(Li; ρ)− S(Ri; ρ)] +
∑

i: rc

logS(Li; ρ) +
∑

i: lc

logF (Ri; ρ)}

=
1

n
{
∑

i: ic

log[S(Ui; ρ)− S(Vi; ρ)] +
∑

i: rc

logS(Vi; ρ) +
∑

i: lc

logF (Ui; ρ)}. (2.1)

=
1

n
(
∑

ic

log e−ρUi +
∑

ic

log(1− e−ρ(Vi−Ui))− ρ
∑

rc

Vi +
∑

lc

log(1− e−ρUi))

=
1

n
[
n∑

i=1

(log(1− e−ρ(Vi−Ui)))1(Xi∈(Ui,Vi]) +
n∑

i=1

(log(1− e−ρUi))1(Xi≤Ui)

− ρ
n∑

i=1

Ui1(Xi∈(Ui,Vi]) − ρ
n∑

i=1

Vi1(Xi>Vi)]

Theorem 2. Suppose that X ∼ Exp(ρo). Under the C2 model with P (0 < U < V ) = 1, ρ̂
defined in the remark behind Theorem 1 is strongly consistent.
Proof. Let µ(ρ) = E(l(ρ)) and
ρ∗(ω) be a limiting point of ρ̂(ω), where ω ∈ Ω, the sample space. We shall show

µ(ρ) ≤ µ(ρo) with equality iff ρ = ρo. (2.2)

ρ∗ = ρ∗(ω) ∈ (0,∞) and µ(ρ∗) ≥ µ(ρo) forall ω ∈ Ω∗ with P (Ω∗) = 1. Ω∗ = Ω? (2.3)

(2.2) and (2.3) imply that µ(ρ∗) = µ(ρo) and thus ρ∗ = ρo by (2.2). Moreover, since ρ∗ is
an arbitrary limiting point of ρ̂, it implies that ρ̂ → ρo w.p.1. In other words, (2.2) and
(2.3) imply that ρ̂ is strongly consistent. Note that a limiting point can be 0 or ∞.
Proof of (2.2): Write l(ρ) = l(L,R, ρ), where L = (L1, ..., Ln) and R = (R1, ..., Rn). Then

µ(ρ) (= E(l(L,R, ρ)))

=E(E(l(L,R, ρ)|U,V)) (U,V) = (U, V )? see (2.1))

=E(E[1(X≤U) logF (U ; ρ) + 1(X>V ) logS(V ; ρ) + 1(U<X≤V ) log(S(U ; ρ)− S(V ; ρ))|U, V ])?

=E[F (U ; ρo) logF (U ; ρ) + S(V ; ρo) logS(V ; ρ) + (S(U ; ρo)− S(V ; ρo)) log(S(U ; ρ)− S(V ; ρ))]?
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Define log 0 = −∞, and 0log0 = 0. Then µ(ρ) is uniquely maximized by ρ = ρo, due to the
following three statements:

(a) For each (u, v),
F (u; ρo) logF (u; ρ) + (S(u; ρo)− S(v; ρo)) log(S(u; ρ)− S(v; ρ)) + S(v; ρo) logS(v; ρ)

as a function of F (·, ρ) is uniquely maximized by
F (u; ρ) = F (u; ρo),
S(u; ρ)− S(v; ρ) = S(u; ρo)− S(v; ρo)

and S(v; ρ) = S(v; ρo) (see Remark below).
(b) statement (a) implies ρ = ρo as S(x, ρ) = e−ρx, x > 0.
(c) 0 ≥ µ(ρo) ≥ −3/e. (µ(ρ) = E(l(L,R, ρ))) before Eq.(2.2).
To prove (c) note that µ(ρo) = g(p1, p2) (given above),
each summand in g(p1, p2) is of the form xlnx,
0 ≥ x log x ≥ −1/e, for x ∈ [0, 1], ( check yourself why !)
and thus g(p1, p2) ≥ −3/e,
Thus (c) follows.
(a), (b) and (c) imply

µ(ρo) > µ(ρ) if ρ 6= ρo that is, (2.2) holds.

µ(ρ) = E(l(ρ)) =
∑

i f(i; θo) log f(i; θ) ≤ ∑i f(i; θo) log f(i; θo) with equality iff θ = θo if
µ(ρo) <∞), where f is the d.f. of trinomial distribution Multi(1, p1, p2, p3)

∑

i

f(i; θo) log
f(i; θo)

f(i; θ)
=

∫

f(x; θo) log
f(x; θo)

f(x; θ)
dν(x) ≥ 0, with equality iff θ = θo

where ν is the counting measure.
Remark. (a) is equivalent to say that g(·, ·) defined by

g(q1, q2) = p1 log q1 + p2 log q2 + p3 log q3, (where qi, pi ≥ 0,
∑

i pi =
∑

i qi = 1)
is uniquely maximized by q1 = p1 and q2 = p2. Class exercise.
Prove (2.3). We shall now construct Ω∗. To emphasize that ρ̂ is a function of n, we write
ρ̂ = ρ̂n. By definition of the modified MLE ρ̂ (why MMLE ?) l(ρ̂(ω))(ω) ≥ l(ρo)(ω) ∀ ω ∈ Ω.
Thus

liminfn→∞l(ρ̂) ≥ lim
n→∞

l(ρo) =µ(ρo) a.s. (by SLLN). (2.4)

l(ρ) =

n∑

i=1

log(1− e−ρUi)1(Xi≤Ui)

n
+

n∑

i=1

log(1− e−ρ(Vi−Ui))1(Xi∈(Ui,Vi])

n
by (2.1)

− ρ
n∑

i=1

Ui1(Xi∈(Ui,Vi])

n
− ρ

n∑

i=1

Vi1(Xi>Vi)

n
(= Z1(ρ) + Z2(ρ)− ρZ3 − ρZ4). (2.5)

For each ρ, the four summations in (2.5) all converges a.s. to their means, respectively.

P (l(ρ)→ µ(ρ)) = 1 for all ρ > 0.

However, it is not clear that P (l(ρ) → µ(ρ) for all ρ > 0) = 1 and P (l(ρ̂) → µ(ρ∗)) = 1
(ρ∗ as in (2.3)). Thus, we let K be the set of all positive rational numbers and ρo, Ωρ be
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the event such that (2.4) holds for all ρ ∈ K and the four summations in (2.5) converges
a.s. to their means, respectively, and let Ω∗ = ∩q∈KΩq).
Then P(Ω∗) (= P (∩q∈KΩq)) = 1 as K is countable.

For each ω in Ω∗, let ρ∗ be a limiting point of ρ̂ = ρ̂n(ω) in the sense that
ρ̂nj (ω)→ ρ∗ for a subsequence of {ρ̂n}n≥1, where ρ∗ may be +∞ or 0.

In order to prove inequality (2.3) (see (2.3) and (2.2)), it suffices to prove

µ(ρo) ≤ µ(ρ∗). (2.6)

We shall show (2.6) hereafter. Notice that

l(ρ̂(ω)) =

n∑

i=1

log(1− e−ρ̂(ω)Ui)1(Xi≤Ui)

n
+

n∑

i=1

log(1− e−ρ̂(ω)(Vi−Ui))1(Xi∈(Ui,Vi])

n

− ρ̂(ω)
n∑

i=1

Ui1(Xi∈(Ui,Vi])

n
︸ ︷︷ ︸

easy to handle ↓

−ρ̂(ω)
n∑

i=1

Vi1(Xi>Vi)

n
︸ ︷︷ ︸

easy

. (2.5∗)

We first show that it is impossible that ρ∗ = −∞ or 0. Assume ω ∈ Ω∗. If ρ∗ = +∞, then
Z1 < 0, Z2 < 0, Z3 > 0 (see (2.5)) and Eq. (2.5∗) implies that

l(ρ̂nj (ω)) ≤− ρ̂njZ4 = −ρ̂nj (ω)[

n∑

i=1

Vi
1(Xi>Vi)

n
](ω)→ −∞ (2.7)

Hence Eq. (2.7) and inequality (2.4) imply that

−∞ = lim
nj→∞

l(ρ̂(ω)) ≥ µ(ρo) (which is finite by (2.2)).

It reaches a contradiction. Thus ρ∗ = +∞ is impossible.
If ρ∗ = 0, last 2 terms in (2.5) equal 0 and the first two sums in Eq. (2.5∗) tend

log(0+) = −∞ ≥ µ(ρo) as n → ∞. It leads to a contradiction again. Thus ρ∗ = 0 is
impossible too.

Then for ω ∈ Ω∗, ρ∗ ∈ (0,+∞). For any m,M ∈ K satisfying m < ρ∗ < M ,
if nj is large enough, then m < ρ̂nj < M (why ?) Since log(1− e−ρx) ↑ in ρ, Z1 (in (2.5))

nj∑

i=1

log(1− e−mUi(ω))1(Xi(ω)≤Ui(ω))/nj ≤
nj∑

i=1

log(1− e−ρ̂nj
(ω)Ui(ω))1(Xi(ω)≤Ui(ω))/nj

≤
nj∑

i=1

log(1− e−MUi(ω))1(Xi(ω)≤Ui(ω))/nj .

In an obvious way, rewrite the above inequalities as

Ψnj (m,ω) ≤Ψnj (ρ̂nj (ω), ω) ≤ Ψnj (M,ω). (2.8)

=> liminfj→∞Ψnj (m,ω) ≤liminfj→∞Ψnj (ρ̂nj (ω), ω)

≤limsupj→∞Ψnj (ρ̂nj (ω), ω) ≤ limsupj→∞Ψnj (M,ω).(2.9)
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Since m,M ∈ K,

liminfj→∞Ψnj (m,ω) = limn→∞Ψn(m,ω) = E(log(1− e−mU )1(X≤U)). (2.10)

limsupj→∞Ψnj (M,ω) = limn→∞Ψn(M,ω) = E(log(1− e−MU )1(X≤U)). (2.11)

Recall the monotone convergence theorem:
If fn is a monotone convergent sequence, and fn → f and fn are all integrable,
then

∫
fn(x)dµ(x)→

∫
f(x)dµ(x).

Since g(ρ, ω) =log(1− e−ρU(ω))1(X(ω) ≤ U(ω)) is a monotone function of ρ,
g(m, ·) (or g(M, ·)) is an increasing function in m (or M) as m ↑ ρ∗ (or M ↓ ρ∗), and
E(g(m, ·)) =

∫
g(m,ω)dP (ω),

by the monotone convergence theorem, taking limits as m,M → ρ∗ yields

E(g(m, ·))→ E(g(ρ∗, ·)) and E(g(M, ·))→ E(g(ρ∗, ·)). (2.12)

Then it follows from (2.8) through (2.12) that the first summand Z1 in (2.5∗)

nj∑

i=1

log(1− e−ρ̂nj
(ω)Ui(ω))1(Xi(ω)≤Ui(ω))/nj → E(log(1− e−ρ∗U )1(X≤U)). (2.13)

(Remark: In (2.13), we are dealing limn→∞
∑n
i=1 gi(ρ̂n)/n, does SLLN work ?

Without the arguments from (2.8) through (2.12), we cannot conclude directly,

lim
n→∞

n∑

i=1

gi(ρ̂n)/n = lim
n→∞

n∑

i=1

lim
n→∞

gi(ρ̂n)/n,

even if all the limits make sense.)
Since the 2nd summand in (2.5∗) log(1− e−ρ(Vi−Ui)) is also a monotone function of ρ,

it can be shown that

nj∑

i=1

log(1− e−ρ̂nj
(ω)(Vi−Ui)(ω))1(Xi(ω)∈(Ui(ω),Vi(ω)])/nj

→E(log(1− e−ρ∗(V−U))1(X∈(U,V ])). (2.14)

Homework: Prove (2.14) by mimicking the proof of (2.13).
Thus, liminfnj→∞lnj (ρ̂nj (ω)) = µ(ρ∗), as the last two summations in (2.5∗) do not involve
ρ̂ and converge a.s. to their means, respectively. Then inequality (2.4) yields

µ(ρo)) ≤ lim
nj→∞

lnj (ρ̂nj (ω)) = µ(ρ∗), ∀ ω ∈ Ω∗,

which is Eq. (2.6). This concludes our proof.
Remark.

1. P (U < V ) = 1 6⇒ U 6⊥ V .
e.g. If U ∼ U(0, 1), V ∼ U(1, 2), and U ⊥ V , then P (U < V ) = 1.

2. P (U < V ) = 1 and sup{t : FU (t) < 1} > inf{t : FV (t) > 0} ⇒ U 6⊥ V .
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3.5.2.1. Homework: (1) Prove the two statements in the previous Remark.
(2) Prove (2.14) by mimicking the proof of (2.13).
In this section, let fo and f be two densities w.r.t. a measure µ (which does not have

to be continuous). Denote
I(fo, f) =

∫
fo(t)ln(fo/f)(t)dµ(t).

SK Inequality. If
∫
fo(t)lnfo(t)dµ(t) is finite, then

∫
fo(t)lnfo(t)dµ(t) ≥

∫
fo(t)lnf(t)dµ(t); with equality iff

∫
|f(t)− fo(t)|dµ(t) = 0.

KL inequality. I(fo, f) ≥ 0; with equality iff
∫
|f(t)− fo(t)|dµ(t) = 0.

It is worth mentioning that Kullback and Leibler (1951) proved that I(fo, f) exists,
though it may be ∞. Are these two inequalities equivalent ?
3.5.2.2. Homework: Given a counterexample to that

∫
fo(t)lnfo(t)dµ(t) is finite.

In his classical textbook, Ferguson (1996, p.114) showed that the MLE of θ is consistent
if the following conditions hold:

(A1) X1, ..., Xn are i.i.d. observations from f(·; θ), θ ∈ Θ and θo is the true value of θ;
(A2)

∫
|f(x; θ)− f(x; θo)|dµ(x) = 0 implies that θ = θo (identifiability);

(A3) limθn→θf(x; θn) ≤ f(x; θ) or limδ→0+ sup|θ−θ′|<δ f(x; θ′) = f(x; θ), ∀ x;
(A4) Θ is compact;

(A5) ∃ a function K(x) such that Eθo(|K(X)|) <∞ and log f(x;θ)
f(x;θo)

≤ K(x) ∀ (x, θ);

(A6) for all θ ∈ Θ, and sufficiently small δ > 0, sup|θ−θo|<δ f(x; θ) is measurable in x.
Remark. Suppose that Yij = µ+ αi + βj + ǫij , i, j ∈ {1, 2}, and ǫij ∼ N(0, 1). Then (A2)
fails and (µ+ α1, α2, β1, β2) is not identifiable. Counterexample: if θ = (µ, α1, α2, β1, β2) =
(0, 1, 2, 1, 2) and θ∗ = (µ∗, α∗

1, α
∗
2, β

∗
1 , β

∗
2) = (3, 1,−1, 1, 2), then

∫
|f(x; θ)− f(x; θ∗)|dx = 0.

Remark. The standard theory for proving the consistency of the MLE does not work
here, as it requires that Θ is compact, which is not the case here.

Casella and Berger (2001, p.516) presented a set of somewhat simpler but not stronger
sufficient conditions for the consistency of the MLE of θ in their popular textbook as follows:
In addition to the aforementioned (A1) and (A2), the following conditions also hold:

(A7) The densities f(x; θ) have common support, and f(x; θ) is differentiable in θ.
(A8) The parameter space Θ contains an open set A and the true parameter θo ∈ A.

Remark. (A8) fails for bin(n, p) with parameter (n, p) ∈ {1, 2, ...} × [0, 1].
(A7) fails for U(0, θ) with parameter θ > 0.
But it works for the current case.

Theorem 2∗. Suppose that X ∼ Exp(ρo). Suppose that (L1, R1), ...., (Ln, Rn) are i.i.d.
from the mixed case IC model, ρ̂ defined in the remark after Theorem 1 is consistent.
Proof. It suffices to verify assumption (A1), (A2), (A7) and (A8).

The df is f(l, r; ρ) ∝ (S(l; ρ)− S(r; ρ)) = (exp(−ρl)− exp(−ρr))1(0 ≤ l < r ≤ ∞).
(A1) is obviously true.
(A2) holds: If f(l, r; ρ) = f(l, r; θ) for all (l, r), then it is true also for r =∞.

f(l,∞; ρ) = f(l,∞; θ) for all l yields e−ρl = e−θl

=> ρl = θl for all l
=> ρ = θ.

(A7) holds: (1) The support is {(l, r) : 0 ≤ l < r ≤ ∞} and
it does not depends on the parameter ρ. So the support is common.
(2) ∂

∂ρf(l, r; ρ) = (−l exp(−ρl) + r exp(−ρr))1(0 ≤ l < r ≤ ∞) is also differentiable.

(A8) holds: Θ = (0,∞) and ρo ∈ Θ.
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§3.5.3. Asymptotic Normality of the MLE.
Hereafter, we prove the asymptotic normality under the assumption given in §3.5.

Theorem 3. Suppose that X ∼ Exp(ρo). Under the C2 model with P (0 < U < V ) = 1, the

MLE ρ̂ of ρ satisfies that
√
n(ρ̂− ρo) D−→N(0, σ2), where σ2 = −1/E(∂

2l(ρ)
∂ρ2 )

∣
∣
ρ=ρo

.

Proof. We shall show in 3 steps that for each t, P{
√
n(ρ̂−ρo)
σ ≤ t} → Φ(t), as n→∞.

Step 1 ( preliminary). Let Ωo be the subset of the sample space Ω such that

ρ̂→ ρo, limn→∞ 1(X < U) < 1 and limn→∞ 1(X ≥ V ) < 1. (3.0)

Then P(Ωo) = 1, as P (0 < U < V ) = 1 (is it possible that U =∞ or V = 0 ?)
Now for each ω ∈ Ωo (and suppress ω in the expressions), Eq. (2.1) yields

∂l(ρ)

∂ρ
=

1

n

n∑

i=1

Uie
−ρUi

1− e−ρUi
1(Xi≤Ui) +

1

n

n∑

i=1

(Vi − Ui)e−ρ(Vi−Ui)

1− e−ρ(Vi−Ui)
1(Ui<Xi≤Vi)

− 1

n

n∑

i=1

Ui1(Ui<Xi≤Vi) −
1

n

n∑

i=1

Vi1(Xi>Vi) (next expression is for ∂2l(ρ)
∂ρ2 )

=
1

n

n∑

i=1

(−Ui +
Ui

1− e−ρUi
)1(Xi≤Ui) +

1

n

n∑

i=1

(−(Vi − Ui) +
(Vi − Ui)

1− e−ρ(Vi−Ui)
)1(Ui<Xi≤Vi)

− 1

n

n∑

i=1

Ui1(Ui<Xi≤Vi) −
1

n

n∑

i=1

Vi1(Xi>Vi), how ?

∂2l(ρ)

∂ρ2
=− 1

n

n∑

i=1

U2
i e

−ρUi

(1− e−ρUi)2
1(Xi≤Ui) −

1

n

n∑

i=1

(Vi − Ui)2e−ρ(Vi−Ui)

(1− e−ρ(Vi−Ui))2
)1(Ui<Xi≤Vi). (3.1)

Both are continuous in ρ ∈ (0,+∞).
For each ω ∈ Ωo, for n large enough,

∑

lc 1/n < 1 and
∑

rc 1/n < 1 (due to (3.?)),

thus the MLE ρ̂(ω) ∈ (0,+∞) by Theorem 1. Since ∂l(ρ)
∂ρ (ω) exists,

∂l(ρ̂)

∂ρ
(=

∂l(ρ)

∂ρ
(ω)
∣
∣
∣
ρ=ρ̂(ω)

) = 0. (3.2)

Since ∂2l(ρ)
∂ρ2 (ω) is continuous in ρ, by the first order Taylor expansion,

∂l(ρ)

∂ρ
(ω)
∣
∣
∣
ρ=ρo

− ∂l(ρ)

∂ρ
(ω)
∣
∣
∣
ρ=ρ̂(ω)

=
∂2l(ρ)

∂ρ2(ω)

∣
∣
∣
ρ=ρ∗

(ρo − ρ̂(ω)) if ω ∈ Ωo, (3.3)

where ρ∗ is between ρo and ρ̂(ω), and thus by the assumption on Ωo,

ρ∗ → ρo, ∀ ω ∈ Ωo (due to ρ̂→ ρo).

Write l(ρ) =
1

n

n∑

i=1

log p(Xi, Ui, Vi, ρ) (see (2.1)), where

p(X,U, V, ρ) = F (U ; ρ)1(X≤U) × (S(U ; ρ)− S(V ; ρ))1(U<X≤V ) × S(V ; ρ)1(V <X) ;

define Z =
∂

∂ρ
log p(X,U, V, ρ)

∣
∣
ρ=ρo

,

then
∂l

∂ρ

∣
∣
∣
∣
ρ=ρo

= Z. (3.4)
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By (3.2), (3.3) and (3.4),

√
n · Z(ω) =

√
n(ρ̂(ω)− ρo)(−

∂2l(ρ∗)

∂ρ2
(ω)) if ρ̂(ω) ∈ (0,∞) (i.e., if ω ∈ Ωo & n ≈ ∞ (3.5)

but not just if ω ∈ Ωo !) By the CLT,

√
n(Z − E(Z))/σZ

D−→ N(0, 1). (3.6)

Step 2. ⊢:
√
n(ρ̂− ρo) D−→ N(0, τ2), for τ2 = σ2

Z/(E(∂
2l(ρo)
∂ρ2 ))2, if

E(Z) = 0, σ2
Z = E(Z2) = E((

∂

∂ρ
lnp(X,U, V, ρo))

2) = −E(
∂2lnp(X,U, V, ρo)

∂ρ2
) (3.7)

and
∂2l(ρ)

∂ρ2

∣
∣
∣
ρ∗
→E(

∂2l(ρo)

∂ρ2
) a.s.. (3.8)

Notice that (3.5), (3.7) and (3.8) yield

√
n(Z(ω)− E(Z))

σZ
=

√
n(ρ̂(ω)− ρo)

σZ

− ∂2l(ρ∗)

∂ρ2
(ω)

if ρ̂(ω) ∈ (0,∞).

{−√n(ρ̂− ρo)
∂2l(ρ∗)

∂ρ2
=
√
nZ} ⊃ {ρ̂ ∈ (0,∞)} (by (3.5)),

thus {−√n(ρ̂− ρo)
∂2l(ρ∗)

∂ρ2
6= √nZ} ⊂ {ρ̂ /∈ (0,∞)}, (3.9)

|P{√n(ρ̂− ρo)/τn ≤ t} − P{
√
n
Z

σZ
≤ t}| (τn = −σZ/∂

2l(ρ∗)
∂ρ2 )

=
∣
∣P{√n(ρ̂− ρo)/τn ≤ t}

− P{√n(ρ̂− ρo)/τn ≤ t, ρ̂ ∈ (0,∞)}+ P{√n Z
σZ
≤ t, ρ̂ ∈ (0,∞)} (= 0 by (3.5))

− P{√n Z
σZ
≤ t}

∣
∣

≤
∣
∣P{√n(ρ̂− ρo)/τn ≤ t} − P{

√
n(ρ̂− ρo)/τn ≤ t, ρ̂ ∈ (0,∞)}

∣
∣

+
∣
∣P{√n Z

σZ
≤ t, ρ̂ ∈ (0,∞)} − P{√n Z

σZ
≤ t}

∣
∣

≤P{ρ̂ /∈ (0,∞)}+ P{ρ̂ /∈ (0,∞)} (|P (A)− P (A ∩B)| ≤ P (Bc)) (by (3.9))

i.e., |P{√n(ρ̂− ρo)/τn ≤ t} − P{
√
n
Z

σZ
≤ t}| → 0, as n→∞ due to ρ̂→ ρo a.s. (3.10)

P{√n Z
σZ
≤ t} = P{√nZ − E(Z)

σZ
≤ t} → Φ(t) as n→∞,
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where Φ is the cdf of N(0, 1) (due to CLT),

thus

P{√n(ρ̂− ρo)/τn ≤ t}

=P{√n(ρ̂− ρo)/τn ≤ t} − P{
√
n
Z

σZ
≤ t}

︸ ︷︷ ︸

see (3.10)

+P{√n Z
σZ
≤ t}

→Φ(t)

Moreover, by Slustky’s theorem

Wn
D−→W and Tn

D−→ b imply that WnTn
D−→Wb,

letting Wn =
√
n(ρ̂− ρo)/τn and Tn = τn/τ ,

we have P{√n(ρ̂−ρo)/τ ≤ t} → Φ(t) or
√
n(ρ̂−ρo) D−→ N(0, τ2), and the claim is proved.

Step 3 (verify (3.7) and (3.8)).

E(Z) =E(
∂ log p(X,U, V, ρ)

∂ρ

∣
∣
ρ=ρo

)

=E(

∂p(X,U,V,ρ)
∂ρ

p(X,U, V, ρo)

∣
∣
ρ=ρo

)

=E(E(

∂p(X,U,V,ρ)
∂ρ

p(X,U, V, ρ)

∣
∣
ρ=ρo
|(U, V )))

=E
{
∂F (U ;ρ)
∂ρ

∣
∣
ρ=ρo

F (U ; ρo)
F (U ; ρo) +

∂S(V ;ρ)
∂ρ

∣
∣
ρ=ρo

S(V ; ρo)
S(V ; ρo)

+

∂(S(U ;ρ)−S(V ;ρ))
∂ρ

∣
∣
ρ=ρo

(S(U ; ρo)− S(V ; ρo))
(S(U ; ρo)− S(V ; ρo))

}

=E[
∂F (U ; ρ)

∂ρ

∣
∣
ρ=ρo

+
∂S(V ; ρ)

∂ρ

∣
∣
ρ=ρo

+
∂(S(U ; ρ)− S(V ; ρ))

∂ρ

∣
∣
ρ=ρo

]

=E[
∂(F (U ; ρ) + S(V, ρ) + S(U, ρ)− S(V, ρ))

∂ρ

∣
∣
ρ=ρo

]

=E(
∂1

∂ρ

∣
∣
∣
ρo

) = 0

Thus (3.7) holds. Verify that (by (3.1) and formula x
1−x = −1 + 1

1−x ),

−∂
2l(ρ)

∂ρ2

∣
∣
∣
ρ∗

=
1

n

n∑

i=1

−U2
i

1− e−ρUi
1(Xi≤Ui)

∣
∣
∣
ρ=ρ∗

+
1

n

n∑

i=1

U2
i

(1− e−ρUi)2
1(Xi≤Ui)

∣
∣
∣
ρ=ρ∗

(3.12)

+
1

n

n∑

i=1

−(Vi − Ui)2
1− e−ρ(Vi−Ui)

)1(Ui<Xi≤Vi)

∣
∣
∣
ρ=ρ∗

+
1

n

n∑

i=1

(Vi − Ui)2
(1− e−ρ(Vi−Ui))2

)1(Ui<Xi≤Vi)

∣
∣
∣
ρ=ρ∗

Applying the technique in proving Eq. (2.9) in the proof of Theorem 2 to the four summands
in (3.12), we can show

∂2l(ρ)

∂ρ2

∣
∣
∣
ρ∗
→E(

∂2l(ρo)

∂ρ2
) a.s. (homework) (3.13)

46



Thus (3.8) holds. It is worth mentioning that in (3.13),

∂2l

∂ρ2
=

∫ ∫ ∫
∂2

∂ρ2
lnp(x, u, v, ρ)dFn(x, u, v) and

E(
∂2l

∂ρ2
) =

∫ ∫ ∫
∂2

∂ρ2
lnp(x, u, v, ρ)dFo(x, u, v),

where Fn is the edf of Fo and Fo is the cdf of (X,U, V ). It is easy to show that

E(−∂
2l(ρo)

∂ρ2
) = E(

U2e−ρoU

(1− e−ρoU )2
1(X≤U)) + E(

(V − U)2e−ρo(V−U)

(1− e−ρo(V−U))2
)1(U<X≤V )).

Finally, verify that the Fisher information number (homework)

σ2
Z = E((

∂ log p(X,U, V, ρo)

∂ρ
)2) = −E(

∂2l(ρo)

∂ρ2
) = 1/τ2. (3.14)

Thus
√
n(ρ̂− ρo) D−→ N(0, τ2).

Comment. This proof can be replaced by the general theory, e.g. Cramér’s theorem.
However, we still need to verify conditions required by the theory. In particular, Cramér’s
theorem requires that there is a function K(x, u, v) such that Eρo(K(X,U, V )) < ∞ and

|d
2l(ρ;x,u,v)
dρ2 | is bounded by K(x, u, v) uniformly in some neighborhood of ρo.

§3.5.4. Homework:
(1) Prove (3.13).
(2) Prove Equation (3.14).
(3) Check the existence of the MLE of ρ of Exp(ρ) under the DC model
(4) Under the assumption in Theorem 2, compute µ(ρ) when (U, V ) = (i, i+2) w.p.1/2,
i = 1, 2.

Chapter 4. Univariate nonparametric estimation
§4.1. Introduction.

Suppose that
the failure time X ∼ FX (cdf),
(Xi, Li, Ri), i = 1, ..., n are i.i.d. from an extended random vector (X,L,R).

Question: Observed (Li, Ri)s,

FX =? without further restriction !

This is called a nonparametric estimation problem.
The parameter space can be viewed as

Θo = {F : F is a cdf}.

However, it is more convenient to set the parameter space as a compact space

Θ = {F : F (t) ↑, F : [−∞,∞]→ [0, 1], F (−∞) = 0 and F (∞) = 1 }.

47



Define an interval Ii =

{
(Li, Ri] if Li < Ri
[Li, Ri] if Li = Ri.

Let µF (·) be the measure induced by F such that

µF (Ii) =

{
F (Ri)− F (Li) if Li < Ri
F (Ri)− F (Li−) if Li = Ri.

Definition. The nonparametric likelihood function based on data (Li, Ri), i = 1, ..., n, is

 L(F ) =

n∏

i=1

µF (Ii), F ∈ Θ. (1.1)

Eq. (1.1) is the same as the parametric definition, except that f is replaced by f(t) =
F (t)−F (t−). In other words, it is assumed that F is discrete, though FX maybe continuous.

Definition. The generalized (or nonparametric) maximum likelihood estimator (GMLE)
of FX is an F = F̂ ∈ Θ such that

F̂ maximizes  L(F ) over Θ.

Remark.
1. The GMLE is also called the nonparametric MLE (NPMLE).
2. If F is discrete,  L(F ) is the same as the definition of parametric likelihood  L(φ) in §3.2.

§4.1.2. Homework.

Prove the following statement: If the data is complete, but Xi’s are not necessarily
distinct (there could be ties), then the GMLE of FX is given by

F̂ (x) =
1

n

n∑

i=1

1(Xi≤x).

F̂ above is called the empirical distribution function (edf).

Properties of the edf:

1. Given observations, it is a discrete cdf.

2. It gives equal weight 1
n to each observation.

3. The df at t is f̂(t) =

∑n

i=1
1(Xi=t)

n and F̂ (t) =
∑

x≤t f̂(x).

4. X =
∑

t tf̂(t).

> n=100
> x=rnorm(100)
> x=sort(x),
> plot(x,pnorm(x),type=’l’)
> lines(x,ecdf(x)(x),type=’s’),
> lines(x,p+1.96*sqrt(p*(1-p)/n),type=’s’, lty=3) p=?
> lines(x,p-1.96*sqrt(p*(1-p)/n),type=’s’, lty=3)
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§4.2. The RC model and the product-limit estimator (PLE).
Assume the RC model, i.e.,

Y ∼ G,
X ⊥ Y ,
observe (Z, δ) = (X ∧ Y,1(X≤Y )). Then

L(F ) = log  L(F ) = log
n∏

i=1

µF (Ii)

=
∑

i: ex

log f(Zi) +
∑

i: rc

logS(Zi), where f(x) = F (x)− F (x−).)

The GMLE of FX under the RC model is F̂pl = 1− Ŝpl, where

Ŝpl(t) =
∏

t≥Z(i)

(1− 1

n− i+ 1
)δ(i) ,

where Z(1) ≤ · · · ≤ Z(n) are order statistics of Zis and
δ(i) is the δj associated with Z(i).

Here we use the convention that x < x+ in our ordering.
The GMLE is called the PLE or Kaplan-Meier estimator (Kaplan and Meier (1958)).
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Example. n = 6,






order : 1 2 3 4 5 6
data : 3+, 2, 3, 5 3 0.5+
Z(i) : Z(5) Z(2) Z(3) Z(6) Z(4) Z(1)

δ(i) : 0 1 1 1 1 0






4.2.1. Understanding the PLE.
1. Redistribution to the right algorithm.
At each time point t, the PLE redistributes the weight Ŝpl(t−)

equally to each of the observations to the right of t including t.
In particular, let a1 < · · · < am be all the distinct points among uncensored Z1, ..., Zn,
the PLE only puts weights on these aks. Let

dk =
∑n
i=1 1(Li=Ri=ak), # of deaths at ak;

rk =
∑n
i=1 1(Zi≥ak), # of people in risk at ak.

(in Ex.1,





ai : 2 3 5
di : 1 ? 1
ri : 5 ? 1



)

a. The PLE Ŝpl(t) is constant at [ak−1, ak), k = 1, ..., m, where a0 = −∞.

b. For t < a1, Ŝpl(t) = 1.

c. For t = a1, Ŝpl distributes the mass 1 equally to each of the r1 observations to the right
of a1 (including a1).

Total r1 in risk, thus each with probability 1
r1

.

Since d1 deaths at a1,

⇒ Ŝpl = 1− d1
r1

(= P̂ (X > a1)). (Ŝpl(2) = 1− 1/5 = 4/5).

d. At ak, total of Ŝpl(ak−1) mass remains on [ak,+∞].

Ŝpl redistributes the mass Ŝpl(ak−1) equally to each observation in risk to the right,

thus each has probability
Ŝpl(ak−1)

rk

⇒ Ŝpl(ak) = Ŝpl(ak−1)(1− dk
rk

).
Ŝpl(3) = 4

5 (1− 2
4 ) = 2

5

Ŝpl(5) = 2
5 (1− 1

1 ) = 0

In Ex.1,






















ai : 2 3 5
di : 1 2 1
ri : 5 4 1

S(2−) = 1
f(2) = 1/5
S(2) = 1− 1

5
S(3−) = 4/5
f(3) = 4

5
2
4

S(3) = 4
5 (1− 2

4 )
S(5−) = 2

5
f(5) = 2

5
1
1

S(5) = 2
5 − 2

5
1
1 = 0





















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In Ex1. if Z(6) = 5+ then


















ai : 2 3 (3,∞)
di : 1 2
ri : 5 4

S(2−) = 1
f(2) = 1/5
S(2) = 1− 1

5
S(3−) = 4/5
f(3) = 4

5
2
4

S(3) = 4
5 (1− 2

4 )
S(t) = 2

5


















2. The above algorithm results in the expression

Ŝpl(t) =
∏

k: t≥ak
(1− dk

rk
).

Note that

Ŝpl(t) = Ŝpl(am), t > am. (2.1)

Thus F̂pl = 1− Ŝpl may not be a cdf. In particular,

lim
t→∞

F̂pl(t) = F̂pl(Z(n)) < 1 if δ(n) = 0. (2.2)

We define

Ŝpl(+∞) = 0,

so that F̂pl ∈ Θ, where F̂pl = 1− Ŝpl.
It means that the PLE puts weight Ŝpl(Z(n)) at ∞.

3. The PLE F̂pl(t) is nondecreasing in t, but may not be a proper cdf as (2.2) may
hold. There are several conventions:

Ŝpl(t) = 0







if t > Z(n) (convention 1); (is it a survival function ?)
if t ≥ Z(n) (convention 2); (is it a survival function ?)
if t ≥ Z(n) + c where c > 0 (convention 3). (is it a survival function ?)

However, it can be shown that only the last definition results in an GMLE and has optimal
asymptotic properties.

Ŝpl(t) =
∏

t≥Z(i)

(1− 1

n− i+ 1
)δ(i) =

∏

k: t≥ak
(1− dk

rk
).

The following table calculates the PLE using the Leukaemia data Group 0 (6-MP): 6+, 6,
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6, 6, 7, 9+, 10+, 10, 11+, 13, 16, 17+, 19+, 20+, 22, 23, 25+, 32+, 32+, 34+, 35+ (m=21),

Table 1. Calculation of PLE

Remission Reverse (1− 1
n−i+1 )δ(i) (1− dk

rk
) Ŝpl(ak)

Time Order (K)
6 21 20/21
6 20 19/20
6 19 18/19 18/21 18/21

6+ 18 1 18/21
7 17 16/17 16/17 18

21 · 1617
9+ 16 1 18

21 · 1617
10 15 14/15 14/15 18

21 · 1617 · 1415
10+ 14 1 18

21 · 1617 · 1415
11+ 13 1 18

21 · 1617 · 1415
13 12 11/12 11/12 18

21 · 1617 · 1415 · 1112
16 11 10/11 10/11 18

21 · 1617 · 1415 · 1012
17+ 10 1 18

21 · 1617 · 1415 · 1012
19+ 9 1 18

21 · 1617 · 1415 · 1012
20+ 8 1 18

21 · 1617 · 1415 · 1012
22 7 6/7 6/7 6·10·14·16·18

7·12·15·17·21
23 6 5/6 5/6 5·10·14·16·18

7·12·15·17·21
25+ 5 1 5·10·14·16·18

7·12·15·17·21
32+ 4 1
32+ 3 1 5·10·14·16·18

7·12·15·17·21
34+ 2 1 5·10·14·16·18

7·12·15·17·21
35+ 1 1 5·10·14·16·18

7·12·15·17·21

Which of these two is correct ?

Ŝpl(t) =







1 if t < 6,
18/21 if t = 6
96/119 if t = 7
... ...

or Ŝpl(t) =







1 if t < 6,
18/21 if t ∈ [6, 7)
96/119 if t ∈ [7, 10)
... ...

§4.2.1.2. Homework:
1. Apply the redistribution-to-the-right (RTR) method to the last 13 data from Table 1

and compute by hand the PLE. (Now n = 13 and use two ways!)
2. Suppose that X ∼ Bin(3, 1/3), Y ∼ Bin(1, 0.4). There are two observations (Z1, δ1)

and (Z2, δ2) under the RC model. Compute the mean of Ŝpl(t) for t ≤ 1.
Remark: Since we do not have observation beyond 1, we do not expect that we can make
decent inference on SX(t) for t > 1. However, we can estimate SX for t ≤ 1.

3. In # 2, is the PLE of SX an unbiased estimator for t ≤ 1 ?
Theorem 1. (Johanson (1978)). The PLE Ŝpl is a GMLE of SX (= 1− FX),
that is, it maximizes

∏n
i=1(S(Zi−)− S(Zi))

δi(S(Zi))
1−δi , F = 1− S ∈ Θ.

We only prove the theorem under a special case.
Suppose that there are only 3 distinct Zis say a1 < a2 < a3, among n observations. Denote
ck =

∑n
i=1 1(Xi 6=Zi=ak) ≥ 1, # of people censored at ak (may all be right censored),

dk =
∑n
i=1 1(Zi=Xi=ak) and

rk =
∑n
i=1 1(Zi≥ak). Then
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[−∞, a1), [a1, a1], (a1, a2), [a2, a2], (a2, a3), [a3, a3] and (a3,∞] is a partition of [−∞,+∞],

with the measure assigned by an F ∈ Θ to these intervals being p1, ,..., p7 (
∑7
i=1 pi = 1).

 L(F ) =
n∏

i=1

(f(Zi))
δi(S(Zi))

1−δi

=
3∏

k=1

(µF ([ak, ak])
∑n

i=1
1(Zi=Xi=ak)

3∏

k=1

(µF ((ak,+∞]))
∑n

i=1
1(Xi 6=Zi=ak)

=(

3∏

k=1

pdk2k)(p3 + p4 + p5 + p6 + p7)c1(p5 + p6 + p7)c2(p7)c3

≤
︸︷︷︸

= ?

(
3∏

k=1

sdk2k)(0 + s4 + 0 + s6 + s7)c1(0 + s6 + s7)c2(s7)c3 (if p1 + p2 = s2,

p3 + p4 = s4, p5 + p6 = s6, p7 = s7 and si = 0, i = 1, 3, 5)

=(

3∏

k=1

sdk2k)(s4 + s6 + s7)c1(s6 + s7)c2sc37 (note s2 + s4 + s6 + s7 = 1)

 L(F ) ≤[sd12 (s4 + s6 + s7)c1 ][sd24 (s6 + s7)c2 ][sd36 s
c3
7 ]

=sd12
(
1− s2)c1

(
s4
)d2(

s6 + s7
)c2(

s6
)d3(

s7
)c3

=sd12
(
1− s2)c1

( s4
s4 + s6 + s7

)d2( s6 + s7
s4 + s6 + s7

)c2( s6
s6 + s7

)d3( s7
s6 + s7

)c3
characters?

× (s4 + s6 + s7)d2+c2(s6 + s7)d3+c3

=sd12
(
1− s2)c1

( s4
s4 + s6 + s7

)d2( s6 + s7
s4 + s6 + s7

)c2( s6
s6 + s7

)d3( s7
s6 + s7

)c3

× (s4 + s6 + s7)d2+c2+d3+c3(
s6 + s7

s4 + s6 + s7
)d3+c3

=sd12
(
1− s2)c1+d2+c2+d3+c3 why?

( s4
1− s2

)d2(
1− s4

1− s2
)c2+d3+c3

×
( s6

1− s2 − s4
)d3(

1− s6
1− s2 − s4

)r3−d3

=sd12
(
1− s2)r1−d1

( s4
1− s2

)d2(
1− s4

1− s2
)r2−d2

×
( s6

1− s2 − s4
)d3(

1− s6
1− s2 − s4

)r3−d3
(as r1 = n, r2 = d2 + c2 + d3 + c3

and r3 = d3 + c3, where s2 + s4 + s6 + s7 = 1 and si ≥ 0)

=(s∗2)d1
(
1− s∗2)r1−d1(s∗4)d2

(
1− s∗4)r2−d2(s∗6)d3

(
1− s∗6)r3−d3 ; (2.3)

where s∗i ’s are defined in an obvious way, satisfying s∗i ∈ [0, 1].
Since the transformation from (s2, s4, s6) to (s∗2, s

∗
4, s

∗
6) is one-to-one and onto.

Thus,  L(F ) is maximized by setting s∗2i = di/ri for i = 1, 2, 3.
step (−∞, a1) {a1} (a1, a2) {a2} (a2, a3) {a3} (a3,∞)

1 p1 p2 p3 p4 p5 p6 p7
∑

i pi = 1
2 0 s2 0 s4 0 s6 s7

∑

i si = 1
3 0 s∗2 0 s∗4 0 s∗6 s∗7 s∗2k, s

∗
7 ∈ (0, 1)
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Relation between si and s∗i :
s2 = s∗2,
s4

1−s2 = s∗4,
s6

1−s2−s4 = s∗6.
It follows from the relation between si and s∗i that
 L(F ) is maximized by

s2 = d1/r1 = d1
n ,

s4 = (1− s2)s∗4 = r1−d1
r1

d2
r2

,
s6 = (1− s2 − s4)s∗6 = · · ·.

Consequently, Ŝpl(a1) = r1−d1
r1

, Ŝpl(a2) = r1−d1
r1

r2−d2
r2

, Ŝpl(a3) = r1−d1
r1

r2−d2
r2

r3−d3
r3

.

Ŝpl(t) =
∏

t≥ak(1− dk
rk

) = Ŝpl(ai) if t ∈ [ai, ai+1), i = 0, ..., 3. a0 = ? a4 = ?

§4.2.1.3. Homework:

4. Extend the proof of the GMLE from the case am = a3 to the general case by induction
on the number of distinct Zis. Notice that dk + ck ≥ 1, but ck = 0 is possible now.

§4.2.2. Properties of the PLE F̂ .

We shall first state the main results on the properties of the PLE and present some sim-
pler proofs under the assumption that the random variables take on finitely many values. Let

τ = sup{t : FZ(t) < 1}, where Z = X ∧Y , and D∗
Z =

{
{t : t ≤ τ} if P (X = τ ≤ Y ) > 0
{t : t < τ} otherwise.

Theorem 1. (Yu, Ai and Yu (2012)) Suppose that either under the RC model,
or the assumption X ⊥ Y in the RC model is weakened by the next two assumptions:

(1) Given r, ∃ G1(r) such that FY |X(r|t) = G1(r) a.e. in t on (r,∞) (w.r.t. µFX
).

(2) G1(·) does not depend on FX(·).

Then supt∈D∗
Z
|F̂ (t)− FX(t)| a.s.−→ 0 and supt |F̂ (t)− F∗(t)| a.s.−→ 0 where

F∗(t) =







FX(t) if t ∈ D∗
Z ∪ {∞}

FX(τ) if t ∈ (τ,∞) and P (X = τ ≤ Y ) > 0
FX(τ−) if t ∈ [τ,∞) and P (X = τ ≤ Y ) = 0.

.

Note. FX(t), t > τ , is not estimable as there is no observation beyond τ , unless FX(τ−) = 1.

Examples that G depends on FX :

(1) G = 1− (SX)r, where r > 0; (2) G(t) = [Go(t) + FX(t)]/2, where Go is a cdf.

For clarification, two instances of discrete fY |X are given as follows:

case (1)





t value : 2 3

fY |X(1|t) 1/3 1/2
fY |X(2|t) 1/3 1/6
fY |X(3|t) 1/3 1/3



 and case (2)





t value : 2 3 4

fY |X(1|t) 1/5 1/5 1/5
fY |X(2|t) 1/5 3/5 3/5
fY |X(3|t) 3/5 1/5 1/5



.

4.2.2.1. Homework. Verify that case (2) satisfies assumptions (1) and (2) but not case
(1) and the PLE is not consistent in case (1).

Several weaker results on the consistency were established earlier by Peterson (1977),
Phadia and Van Ryzin (1980), Shorack and Wellner (1986), Wang (1987), Stute and Wang
(1993) and Yu and Li (1994), among others.
In particular, Under the standard RC model,

* Peterson (1977), Phadia and Van Ryzin (1980), Shorack and Wellner (1986) showed
that the PLE Ŝ(t) is consistent if t < τ and if SX is discrete, or SX is continuous;

* Wang (1987) showed that the PLE Ŝ(t) is consistent if t ≤ Z(n);

* Stute and Wang (1993) showed that the PLE Ŝ(t) is consistent in the set
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DZ =

{
(−∞, τ ] if P (Y ≥ τ) > 0 or P (X = τ = 0)
(−∞, τ) otherwise.

but FX and FY do not have jumps in common;
* Yu and Li (1994) show that the PLE Ŝ(t) is consistent in DZ .

Remark. If X ⊥ Y , then P (X = τ ≤ Y ) = P (X = τ)P (τ ≤ Y ).
Otherwise, P (X = τ ≤ Y ) 6= P (X = τ)P (τ ≤ Y ).
Theorem 2. (Breslow and Crowley (1974), Gill (1983), Gu and Zhang (1993), Stute (1995),
Yu and Hsu (2015)). Suppose that the assumptions in Theorem 1 all holds,

Un(t) =
√
n

(

Ŝpl(t)− S∗(t)

S∗(t)

)

D−→ N(0, σ2(t)) for t < τ .

The asymptotic covariance of Ŝpl(t) and Ŝpl(s) is

nCov(Ŝpl(t), Ŝpl(s)) ≈ S∗(t)S∗(s)

∫ t∧s

0

1

S∗(x−)SY |X(x− |τ)S∗(x)
dF∗(x), t, s < τ,

where SY |X(y|x) = P (Y > y|X = x). The above two statements also hold ∀ t, s < ∞, iff
either (1) τ =∞, or (2) SX(τ−) > 0 or (3) SX(τ−) = 0, τ <∞ and στ = 0.

σ2
t =

∫ t

0

(S∗(t))2

SZ(x−)S∗(x)
dF∗(x) =







(S∗(t))2
∫ t

0
F ′

∗(x)
SZ(x−)S∗(x)

dx if cts

(S∗(t))2
∑

x≤t
S∗(x−)−S∗(x)
SZ(x−)S∗(x)

if discrete
... ...

if X ⊥ Y .

It follows that σ2
Ŝpl(t)

≈ σ2
t /n if X ⊥ Y , which can be estimated by

n(σ̂Ŝpl(t)
)2 =(Ŝpl(t))

2

∫ t

0

1

ŜZ(x−)Ŝpl(x)
dF̂pl(x) (Lebesgue-Stieltjes integral)

=(Ŝpl(t))
2
∑

k: ak≤t

Ŝpl(ak−)− Ŝpl(ak)

ŜZ(ak−)Ŝpl(ak)
(ak’s are distinct exact observations)

=(Ŝpl(t))
2
∑

k: ak≤t

f̂(ak)

ŜZ(ak−)Ŝpl(ak)
.

Note

Ŝpl(t) =
∏

i: Z(i)≤t
(1− 1

n− i+ 1
)δ(i) =

∏

i: Z(i)≤t
(1− δ(i)

n− i+ 1
).

ŜZ(t) = ŜY (t)Ŝpl(t) =
∏

i: Z(i)≤t
(1− 1

n− i+ 1
) =

n∑

i=1

1(Zi>t)

n
.

The GMLE of SY is also a PLE of SY .

ŜY (t) =
∏

i: Z(i)≤t
(1− 1

n− i+ 1
)1−δ(i) =

∏

i: Z(i)≤t
(1− 1− δ(i)

n− i+ 1
).
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Explain using RTR method.

Example. n = 6, ( data : 0.5+, 2, 3, 3, 3+ 5 )

ŜX(t) =
∏

i:Z(i)≤t(1−
δ(i)

n−i+1 ) =







1 if t < 2
(1− 0

6 )(1− 1
5 ) if t ∈ [2, 3)

(1− 0
6 )(1− 1

5 )(1− 1
4 )(1− 1

3 )(1− 0
2 ) if t ∈ [3, 5)

(1− 0
6 )(1− 1

5 )(1− 1
4 )(1− 1

3 )(1− 0
2 )(1− 1

1 ) if t ≥ 5

,

=







1 if t < 2
4
5 if t ∈ [2, 3)
4
5
3
4
2
3 if t ∈ [3, 5)

0 if t ≥ 5

,

ŜY (t) =
∏

i:Z(i)≤t(1−
1−δ(i)
n−i+1 )

=







1 if t < 0.5
(1− 1

6 ) if t ∈ [0.5, 2)
(1− 1

6 )(1− 0
5 ) if t ∈ [2, 3)

(1− 1
6 )(1− 0

5 )(1− 0
4 )(1− 0

3 )(1− 1
2 ) if t ∈ [3, 5)

(1− 1
6 )(1− 0

5 )(1− 0
4 )(1− 0

3 )(1− 1
2 )(1− 0

1 ) if t ≥ 5

=







1 t < 0.5

5
6 if t ∈ [ 12 , 3)
5
6
1
2 if t ∈ [3, 5)

5
6
1
2 if t ≥ 5

,

ŜZ(t) =
∏

i:Z(i)≤t(1−
1

n−i+1 ) = SY (t)SX(t)

=







1 if t < 0.5
(1− 1

6 ) if t ∈ [0.5, 2)
(1− 1

6 )(1− 1
5 ) if t ∈ [2, 3)

(1− 1
6 )(1− 1

5 )(1− 1
4 )(1− 1

3 )(1− 1
2 ) if t ∈ [3, 5)

(1− 1
6 )(1− 1

5 )(1− 1
4 )(1− 1

3 )(1− 1
2 )(1− 1

1 ) if t ≥ 5

,

=







1 t < 0.5
5
6 if t ∈ [0.5, 2)
5
6
4
5 if t ∈ [2, 3)

5
6
4
5
3
4
2
3
1
2 if t ∈ [3, 5)

0 if t ≥ 5

=







1 t < 0.5
5
6 if t ∈ [0.5, 2)
4
6 if t ∈ [2, 3)
1
6 if t ∈ [3, 5)
0 if t ≥ 5

A Simulation Study. Compare two estimators of SX(t):

(1) the PLE Ŝpl(t) and

(2) the incorrect estimate S̃(t) = 1
n

∑n
i=1 1(Zi>t) (esf).
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R Commands:
b=exp(6)
g=1/3
y=rweibull(100,g,b)
c=runif(100,0,780)
d=as.numeric(y<=c)
# d=ifelse(y>c, 0,1)
m=y*d+c*(1-d)
u=survfit(Surv(m,d)∼1) # PLE function in R
summary(u)

time n.risk n.event survival std.err lower95%CI upper95%CI
2.17e− 04 100 1 0.990 0.00995 0.971 1.000
2.62e− 02 99 1 0.980 0.01400 0.953 1.000
7.44e− 02 98 1 0.970 0.01706 0.937 1.000

...
...

...
...

...
...

...
u$time
u$surv
summary(u)$time
summary(u)$surv
plot(u,lty=1)

# lines(u$time, u$surv, type=”s”) What is the difference between them ?
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x=sort(m)
lines(x,1-ecdf(x)(x),type=”l”,lty=3)
# plot(m,survfit(Surv(m)∼1)$surv) What is the difference between them ?
(zz=survreg(Surv(m,d)∼1))
lines(x,1-pweibull(x,1/zz$scal,exp(zz$coef)),type=”l”,lty=2)
lines(x,1-pweibull(x,g,b),type=”l”,lty=4)
leg.names< −c(”ple”, ”mle”, ”zesf”, ”weib”)
legend(300, 0.88, leg.names, lty=c(1,2,3,4),cex=1.0)
u=survfit(Surv(m)∼1)
plot(u,lty=1)

§4.2.2.2. Homework:
1. Suppose that X ∼ Bin(3, 1/3), Y ∼ Bin(1, 0.4). Under the RC model, what is the

limit of Ŝpl(2) when n → ∞ ? What is the value of σ2
t with t = 0.5 in Theorem 2 ?

What is the value of σ2
Ŝpl

(0.5) when n = 2 ? Is it closed to σ2
t /n above ? What does it

tell you ?
2. Suppose X ∼ Exp(ρ), where E(X) = 1/ρ, and Y ∼ U(0, 4). Select a ρo. Generate 100

(and then 1000) RC data, plot using these data on the same figure, (1) the PLE Ŝpl,
(2) the true survival function S(·, ρo), (3) the S(·, ρ̂), where ρ̂ is the parametric MLE of
ρ, (4) the parametric MLE of the survival function of a normal distribution
N(µ, 1) using Monte Carlo method (or survreg(,dist=”gaussian”)) and (5)
the parametric MLE of the survival function of a U(θ, 5). (Skip U(θ, 5)) Make
comments on their deviations from the true S(t, ρ) at each time point t (separately for
n = 100 and n = 1000).

3. Using the data in problem #2, we can derive the confidence intervals for SX(t) based
on Ŝpl(t) and based on the two MLE estimates of SX (Exp(ρ) and N(µ, 1). They are

(Ŝ(t)− zα/2σ̂Ŝ(t), Ŝ(t) + zα/2σ̂Ŝ(t))

(S(t, ρ̂+ zα/2σ̂ρ̂), S(t, ρ̂− zα/2σ̂ρ̂)), and (S(t, µ̂− zα/2σ̂µ̂), S(t, µ̂+ zα/2σ̂µ̂)),

etc., respectively, where Φ(−zα) = α and Φ is the cdf of N(0, 1) (Actually, for the
U(θ, 5), one can use the Bootstrap method to get SE of the MLE). Both the ends are
curves and each pair of the curves induced by the ends of the confidence interval is
called a confidence band. Plot on the same figure the three (or two) confidence bands
and the true survival function S(, ρ).
R program for putting the two graphs on one paper.
par(mfrow=c(3,1))
x=(-35:45)/10
y=1-pnorm(1.65-x)
plot(x,y,type=”l”,lty=1 ,xlim=c(-3.5,4.5), ylim=c(0,1.0))
y=1-pnorm(1.65-2*x)
lines(x,y,lty=2)
y=1-pnorm(1.65-3*x)
lines(x,y,lty=3,col=1)
y=1-pnorm(1.65-4*x)
lines(x,y,lty=4,col=2)
leg.names< −c(”x1”,”x2”, ”x3”, ”x4”)

58



legend(-2.5, 0.77, leg.names, lty=c(1,2,3,4),cex=1.5)

#—————————–

x=rexp(100,0.5)

mean(x)

[1] 1.503257

z=rnorm(200,1.5,3)

u=rnorm(200,1.5,3)

v=3*z+4*u

u[max(v)]

[1] 2.364634

z[max(v)]

[1] -0.1354150

Idea for Monte Carlo Method in computing MLE of µ assuming N(µ, 1) and
based on some data:

1. Guess the range of µ and then generate 1000-10000 number in that range.

2. Compare the likelihoods with these numbers being µ

R code for Monte Carlo method:

x=rexp(100)

d=rbinom(100,1,0.9)

n=1000

m=runif(n,-1,4)

l=-10000

j=-1

for(i in 1:n){
y=m[i]

L=sum(d*log(dnorm(x,y,1)) + (1-d)*log(1-pnorm(x,y,1)))

if (L>l) {
l=L

j=i

}
}
m[j]

4. Suppose there are 6 right-censored observations (Zi, δi): (1,1), (2,0), (3,1), (2,1), (2,1),
(4,1). Compute the PLE ŜX and ŜY of SX and SY respectively, on [0,∞). Show
their product is the empirical survival function S̃(t) = 1

n

∑n
i=1 1(t<Zi). That is, S̃(t) =

ŜX(t)ŜY (t) for all t.

5. Suppose that (Zi, δi), i = 1, ..., 100, is a random sample of right-censored data and
suppose that the failure time X has an exponential distributions with the parameter ρ
and the censoring time Y = 2 with probability 1. The PLE Ŝpl and Ŝ1 = e−ρ̂t are both
estimators of SX . Compute their asymptotic standard deviations explicitly. Which is
bigger ? Hint: you may draw their graphs first.

6. If you want to estimate a cdf F based on a random sample of right-censored data
(Zi, δi), i = 1, ..., n, and you believe the cdf is an exponential distribution, what is your
estimator?
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7. Suppose X ∼ Exp(ρ), where E(X) = 1/ρ, and Y ≡ 2. Do a simulation study as
follows.
Select a ρo. Generate 3 RC data. Compute the PLE of S(t) and its Variance. Construct
a CI for S(t) based on the PLE for a t you select, but t ∈ (0, 2) with the significance
level you chose and the 3 data generated. Notice that your CI is a statistic, depends
only on the data.

We shall give a proof of Theorems 1 and 2 under the assumption that X ⊥ Y and
Z takes on finitely many values, with the largest values of Y is τ .
Let a1 < · · · < am be all the possible values of X ≤ τ and τ = am.
Assume that Y can only take values among ajs.
Let dk, ck and rk be defined as before (but these ak’s are defined differently from before). ?
The likelihood function becomes

 L(~p) =
m∏

i=1

pdii (
∑

j>i

pj)
ci .

Then the problem reduces to a parametric problem of multinomial distribution

(W1, ...,W2m−1) ∼M(n, cθ1, ..., cθ2m−1),

where for i = 1, ..., m, Wi = di, Wm+i = ci, θi = pi, θm+i =
∑

j>i pj , pi = P{X = ai} and

c = 1/
∑2m
i=1 θi. Here θi’s are function of ~p = (p1, ..., pm−1). The multinomial distribution

belongs to the exponential family and its consistency and asymptotic normality can be
proved by standard approach such as Cramér’s theorem (see, e.g., Ferguson (1996)) However,
it is not easy to verify the expression for the variance of Ŝpl from the inverse of the Fisher
information matrix. Thus we use a different approach.

The following consistency proof helps understanding the PLE.
A simple proof of Theorem 1. Under the given assumptions, we need to prove the
statement as follows.

sup
t≤am

|F̂ (t)− F∗(t)| a.s.−→ 0, where F∗(t) =
m∑

i=1

FX(ai)1(t ∈ [ai, ai+1)).

The PLE can be written as

Ŝpl(t) =
∏

k: t≥ak
(1− dk

rk
), .

Since m is finite,

dk
n

=
1

n

n∑

i=1

1(Zi=Xi=ak)

→ E(1(Z=X=ak)) a.s. by SLLN. (2.4)

= P (X = ak ≤ Y ) = P (X = ak)P (Y ≥ ak),

rk
n

=
1

n

n∑

i=1

1(Zi≥ak)

→ E(1(Z≥ak)) a.s. by SLLN.

= P (Y ≥ ak, X ≥ ak) = P (X ≥ ak)P (Y ≥ ak). (2.5)
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⊢: Ŝpl(t)→ SX(t) for t ∈ [ak−1, ak) a.s. where a0 = −∞ and am+1 =∞, (2.6)

by induction on k = 1, ..., m.
(Case k = 1). SX(t) = 1 and Ŝpl(t) = 1 for t < a1.

Thus Ŝpl(t)→ SX(t) for t ∈ [a0, a1) a.s..
(Case k < m). Assume that (2.6) holds.
(Case k + 1). For t ∈ [ak, ak+1),

Ŝpl(t) =Ŝpl(ak) =
∏

j: ak≥aj
(1− dj

rj
)

=
∏

j: j<k

(1− dj
rj

)(1− dk
rk

)

=Ŝpl(ak−1)(1− dk
rk

)

=Ŝpl(ak−1)(1− dk/n

rk/n
)

→SX(ak−1)(1− P (X = ak)P (Y ≥ ak)

P (X ≥ ak)P (Y ≥ ak)
) a.s.

(by induction assumption on k and by (2.4) and (2.5))

=SX(ak−1)(1− P (X = ak)

P (X ≥ ak)
)

=P (X > ak−1)
P (X > ak)

P (X ≥ ak)

=P (X > ak) ??

=SX(ak) = SX(t). (2.7)

Thus (2.6) holds for k + 1 as well. This completes the induction proof.
Since SX takes finitely many values, point-wise strong consistent implies uniform strong

consistency. Thus it completes the proof of Theorem 1 under the finite assumption.
The following proof makes the expression of σ2

Ŝpl(t)
more explicit than the inverse of

the Fisher information matrix.
A simple proof of Theorem 2. We shall now give a proof under the simple assumption
that X ⊥ Y , Y and X take on finitely many values before τ , FY (τ) = 1 and r1 = n.
Assume f(ak) = fX(ak) > 0, k = 1, ..., m + 1, where f(am+1) = P (X > am). Then

Ŝpl(t) =
∏

k: ak≤t(1 −
dk/n
rk/n

) is a function of d1, ..., dm and r1, ... , rm. Under these

assumptions, Theorem 2 becomes:

Un(t) =
√
n

(

Ŝpl(t)− SX(t)

SX(t)

)

D−→ N(0, σ2(t)) for t < τ .

The asymptotic covariance of Ŝpl(t) and Ŝpl(s) is

nCov(Ŝpl(t), Ŝpl(s)) ≈ SX(t)SX(s)

∫ t∧s

0

1

SX(x−)SY (x−)SX(x)
dFX(x), t, s ≤ τ. σ2(t) =?
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In particular, for t = aj , j < m, we can write

lnŜpl(t) = g(d1/n, r1/n, ..., dj/n, rj/n) =
∑j
i=1 ln(1− di/n

ri/n
).

That is, g(w) = ln(1− w1

w2
) + · · ·+ ln(1− w2j−1

w2j
),

where wt = (w1, w3, w4, w5, w6, ..., w2j),
as w2 = r1/n = n/n = 1 is a constant (note that w2m−1/w2m = 1 if f(am+1) = 0). Write

W = (W 1,W 3,W 4, ...,W 2j−1,W 2j)
t = (d1/n, d2/n, r2/n, ..., dj/n, rj/n)t, as

W 1 = 1
n

∑n
i=1 1(Xi = a1 ≤ Yi),

W 3 = 1
n

∑n
i=1 1(Xi = a2 ≤ Yi),

W 4 = 1
n

∑n
i=1 1(Zi ≥ a2), ...

Then
g(W) = lnŜX(t) and g(E(W)) = lnSX(t) (by (2.7)).

Then W is asymptoticall normally distributed and it follows from a corollary of Slutsky’s
theorem that so is g(W) = lnŜpl(t) with an asymptotic variance

σ2
lnŜpl(t)

≈ ∂g

∂wt

∣
∣
w=E(W)

Σ
∂g

∂w

∣
∣
w=E(W)

,

where Σ is the covariance matrix of W.

√
n(g(W)− g(E(W)))

D−→ N(0, σ2
1,t).

√
n(lnŜpl(t)− lnSX(t))

D−→ N(0, σ2
1,t).

√
n(h(lnŜpl(t))− h(lnSX(t)))

D−→ N(0, σ2(t)) where h(t) = et.

√
n(Ŝpl(t)− SX(t))

D−→ N(0, σ2(t)).

That is, Ŝpl(t) is asymptotically normally distributed with an asymptotic variance

σ2
2/n ≈ σ2

Ŝpl(t)
≈∂e

x

∂x

∣
∣
x=lnSX(t)

σ2
lnŜpl(t)

∂ex

∂x

∣
∣
x=lnSX(t)

≈(SX(t))2σ2
lnŜpl(t)

,

as Ŝpl(t) = eln(Ŝpl(t)).
For simplicity, for now, we let j = 2. Then

wt = (w1, w3, w4),
g(w) = ln(1− w1

w2
) + ln(1− w3

w4
), where w2 = 1.

∂g

∂w
=

(

1
−w2(1−w1

w2
)

1

−w2j(1−
w2j−1
w2j

)

w2j−1

w2
2j

(1−w2j−1
w2j

)

)t

=






−1
w2−w1

−1
w2j−w2j−1
w2j−1

w2j(w2j−w2j−1)






∂g

∂w

∣
∣
w=E(W)

=
(

−1
SX(a1)SY (a1−)

−1
SX(aj)SY (aj−)

fo(aj)
SX(aj−)SX(aj)SY (aj−)

)t

(by (2.4) & (2.5)),
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∑

= Cov(W) =
1

n
Cov(W) =

1

n
Cov(1(X=Z=a1),1(X=Z=a2),1(Z≥a2)),

Denote
∂g

∂w

∣
∣
w=E(W)

= (p1, p2, p3)t (= pt).

Denote
nΣ = (sih)(2j−1)×(2j−1).

Note that sih = shi.

s11 =E([1(X=Z=a1)]
2)− [E(1(X=Z=a1))]

2 = fo(a1)SY (a1−)(1− fo(a1)SY (a1−))




s12 s13
s22 s23
· s33





=





−E(1(X=Z=a1))E(1(X=Z=a2)) −E(1(X=Z=a1))E(1(Z≥a2))
E(1(X=Z=a2))− [E(1(X=Z=a2))]

2 E(1(X=Z=a2))− E(1(X=Z=a2))E(1(Z≥a2))
· E(1(Z≥a2))− [E(1(Z≥a2))]

2





=





−fo(a1)SY (a1−)fo(a2)SY (a2−) −fo(a1)SY (a1−)SX(a2−)SY (a2−)
fo(a2)SY (a2−)(1− fo(a2)SY (a2−)) fo(a2)SY (a2−)(1− SX(a2−)SY (a2−))

· SX(a2−)SY (a2−)(1− SX(a2−)SY (a2−))





Then ( p1 p2 p3 ) = (1, 1)

(
p1 0 0
0 p2 p3

)

,

nσ2
lnŜpl(t)

≈ npt
∑

p = (1, 1)

(
p1 0 0
0 p2 p3

)




s11 s12 s13
s12 s22 s23
s13 s23 s33









p1 0
0 p2
0 p3





(
1
1

)

.

Verify that

A = ( p1 0 0 )





s11 s12 s13
s12 s22 s23
s13 s23 s33









0
p2
p3



 = 0. (2.8)

By symmetry, A′ = A = 0 and

nσ2
lnŜpl(t)

≈(1, 1)

(
p1 0 0
0 p2 p3

)




s11 0 0
0 s22 s23
0 s32 s33









p1 0
0 p2
0 p3





(
1
1

)

=(1, 1)

(
p1p1s11 0

0 p2p2s22 + p2p3s23 + p3p2s23 + p3p3s33

)(
1
1

)

=p1p1s11 + p2p2s22 + p2p3s23 + p3p2s23 + p3p3s33 (2.9)

Then it yields

σ2
lnŜpl(t)

≈ 1

n

∑

ak≤t

fo(ak)

SX(ak−)SY (ak−)SX(ak)
. (2.10)

§4.2.2.3. Homework:
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8. Verify (2.8).
9. Using (2.9) to verify (2.10).
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§4.3. C1 model and GMLE.
Assume the case 1 interval censorship model, i.e.,

Each patient is followed once at time Y ∼ G;
X and Y are independent;
Observable random vector is

(L,R) =

{
(−∞, Y ) if X ≤ Y
(Y,+∞) if X > Y ,

or
(Y, δ), where δ = 1(X≤Y ). (vs. (X ∧ Y, δ))

It is more convenient to use (Y, δ). It corresponds to an interval

I =

{
(−∞, Y ] if X ≤ Y
(Y,+∞) if X > Y .

Given a random sample of size n, say (Yi, δi), i = 1, ..., n,
let a1 < · · · < am be all the distinct values of Yis. (m ≤ n or m ≥ n ?)

N−(aj) =
n∑

i=1

1(Xi≤Yi=aj),Let
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N+(aj) =

n∑

i=1

1(Xi>Yi=aj),

N(aj) =

n∑

i=1

1(Yi=aj).

The likelihood function is

 L(F ) =

n∏

i=1

µF (Ii) =
∏n
i=1[(F (Yi))

δi(S(Yi))
1−δi ]

=

m∏

j=1

[(F (aj))
N−(aj)(S(aj))

N+(aj)], F ∈ Θ, where

Θ = {F : F is a nondecreasing function on [−∞,+∞], F (−∞) = 0 and F (+∞) = 1 }.
That is

0 ≤ F (a1) ≤ F (a2) ≤ · · · ≤ F (am) ≤ 1.

Let sj = F (aj), the log likelihood is

L(F ) =

m∑

j=1

[N−(aj) log sj +N+(aj) log(1− sj)], 0 ≤ s1 ≤ · · · ≤ sm ≤ 1. (3.1)

∂L
∂sj

=
N−(aj)

sj
− N+(aj)

1− sj
= 0

⇒ sj = F̃ (aj) =
N−(aj)

N(aj)
. (3.2)

If F̃ ∈ Θ, or 0 ≤ s1 ≤ · · · ≤ sm ≤ 1, it is the GMLE (in fact,
each summand looks like the log likelihood of a binomial distribution Bin(N(aj), sj)).
Otherwise, it is not and the GMLE will be on the boundaries 0 ≤ si = sj ≤ 1, i 6= j.
Example 1. The observations (Yi, δi)s are (1, 1), (2, 0), (2, 1), (3, 1). n = 4.
a1 = 1, a2 = 2 and a3 = 3. m = 3.

N−(a1) = 1, N+(a1) = 0,
N−(a2) = 1, N+(a2) = 1,
N−(a3) = 1, N+(a3) = 0,

Then F̃ (t) =







0 if t < 1
1/1 if t ∈ [1, 2)
1
2 if t ∈ [2, 3)
1/1 if t ≥ 3.

F /∈ Θ. Thus F̃ is not a GMLE of F . GMLE = ? (homework).
Theorem 1. A GMLE of FX under C1 model is

F̂ (t) = F̂ (Y(j)) if t ∈ [Y(j), Y(j+1)), j = 0, 1, ..., n,

where Y(0) = −∞, Y(n+1) = +∞, and

F̂ (Y(j)) = max
i≤j

min
k≥j

∑

i≤h≤k δ(h)
k − i+ 1

, j = 1, ..., n, (3.3)
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and δ(h) is the δi associated with the order statistic Y(h), i.e. Yi = Y(h), provided F̂ ∈ Θ.
For proof, we refer to Ayer et al. (1955).

Remark.
1. The GMLE F̂ (t) is uniquely determined at each Yi.
2. The GMLE is not uniquely determined in the interval (−∞, a1) and (ai, ai+1), where
i ≥ 0, unless F̂ (ai) = F̂ (ai+1).

3. It can be shown that (homework) (3.3) is the same as

F̂ (Y(j)) = min
k≥j

max
i≤j

∑

i≤h≤k δ(h)
k − i+ 1

, (3.4)

F̂ (Y(j)) = max
i≤j

min
k≥i

∑

i≤h≤k δ(h)
k − i+ 1

, (3.5)

F̂ (Y(j)) = min
k≥j

max
i≤k

∑

i≤h≤k δ(h)
k − i+ 1

. (3.6)

Example 2. Find the GMLE based on 4 C1 observations, (1,0), (2,1), (3,0) and (3,1).

Sol. Ordered data:
(1, 0) (2, 1) (3, 1) (3, 0)
Y(1) Y(2) Y(3) Y(4)

[Y(3), Y(4)) = [3, 3) = ? It is more convenient

to use formula (3.5) (or (3.6)) which results in the following matrix. Let Aik =
δ(i)+···+δ(k)

k−i+1 .

Eq. (3.5)
i\k 1 2 3 4 mink Aik F̂ (Y(i))

1
δ(1)
1

δ(1)+δ(2)
2

δ(1)+δ(2)+δ(3)
3

δ(1)+···+δ(4)
4 m1 m1

2
δ(2)
1

δ(2)+δ(3)
2

δ(2)+δ(3)+δ(4)
3 m2 m1

∨
m2

3 (Aik)
δ(3)
1

δ(3)+δ(4)
2 m3 maxi≤3mi

4
δ(4)
1 m4 maxi≤4mi

maxiAik M1 M2 M3 M4

F̂ (Y(k)) minkMk mink≥2{Mk} min{M3,M4} M4

Eq. (3.6)

δ : 0 1 1 0 Eq.(3.5)
i\k 1 2 3 4 mink Aik F̂ (Y(i))
1 0 1/2 2/3 2/4 0 0
2 1 2/2 2/3 2/3 2/3
3 1/1 1/2 1/2 2/3
4 0 0 2/3

Mk = maxiAik 0 1 1 2/3
Eq. (3.6) F̂ (Y(k)) = minj≥kMj 0 2/3 2/3 2/3

The GMLE is uniquely defined at Yi’s i.e., 1, 2 and 3, as 0, 2/3 and 2/3,
and thus the GMLE is uniquely determined on the set (−∞, 1] and [2, 3], F̂ (t) = 0 and 2/3,
respectively, and it arbitrary on (1, 2) ∪ (3,∞).

The GMLE of F (t) =







1 if t =∞
↑ if t ∈ (3,∞)
2/3 if t ∈ [2, 3]
↑ if t ∈ (1, 2)
0 if t ≤ 1

. A GMLE is F̂ (t) =

{
1 if t =∞
2/3 if t ∈ [2,∞)
0 if t < 2

.
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Skip this page.

F̂ (Y(j)) = max
i≤j

min
k≥j

∑

i≤h≤k δ(h)
k − i+ 1

, j = 1, ..., n, (3.3)

Bij = mink≥j
δ(i)+···+δ(k)

k−i+1 , i ≤ j.
i\k 1 2 3 4 Bij F̂ (Y(j))

1
δ(1)
1

δ(1)+δ(2)
2

δ(1)+δ(2)+δ(3)
3

δ(1)+δ(2)+δ(3)+δ(4)
4

2
δ(2)
1

δ(2)+δ(3)
2

δ(2)+δ(3)+δ(4)
3 maxi≤jBij

3
δ(3)
1

δ(3)+δ(4)
2

4
δ(4)
1

steps 1 2 3

————————————– Bij = mink≥j
δ(i)+···+δ(k)

k−i+1 , i ≤ j.

i\k 1 2 3 4 Bi1 F̂ (Y(1)) Bi2 F̂ (Y(2)) Bi3 F̂ (Y(3)) Bi4 F̂ (Y(4))
1 0/1 1/2 2/3 2/4 0 0 1/2 1/2 1/2
2 1/1 2/2 2/3 2/3 2/3 2/3 2/3
3 1/1 1/2 1/2 2/3 1/2
4 0/1 0 2/3
step 1 1 1 1 2→ 3 ↓ 2→ 3 ↓ 2→ 3 ↓ 2→ 3 ↓

1 maxi≤jBij

# program for compute GMLE with C1 data using formula (3.3) –
(x=c(1,2,3,4,3,0,1,1,0,1) #(Y[1:5],delta[1:5]))
(dim(x)=c(5,2))
c1=function(data) {

ord = order(data[, 1])
data = data[ord, ]
s = table(data[, 1], data[, 2])
Nminus = s[, 2]
N = s[, 1] + s[, 2]
L = length(N)
pt = unique(data[, 1])
r = rep(0, L)
mat = matrix(0, L, L)
for(i in 1:L) {
for(j in i:L)
mat[i, j] = sum(Nminus[i:j])/sum(N[i:j])
}
r[1] = min(mat[1, ])
r[L] = max(mat[, L])
for(i in 2:(L - 1))
r[i] = max(apply(mat[1:i, i:L], 1, min))
cbind(pt, r)

}
c1(x)
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Obtain the GMLE through L(F ) directly:
The distinct observations Yi’s, 1,2,3, partition (−∞,∞) as 4 disjoint intervals.
Let the weight assigns by an F to these intervals as p1, ..., p4. Then the likelihood function

L =(p2 + p3 + p4)(p1 + p2)(p4)(p1 + p2 + p3)

≤(p1 + p2 + p3 + p4)(p1 + p2)(p4)(p1 + p2 + p3)

≤(q2 + q4)(q2)(q4)(q2) setting p1 + p2 + p3 = q2, p4 = q4

=(q2 + q4)(q2)2(q4) q2 + q4 = 1

=(q2)2(q4)

Thus q2 = 2/3, q4 = 1/3.
Eq.(3.5) yields F̂ (t) = 0, 2/3 and 2/3 at 1, 2, 3, respectively.

The distinct observations Yi’s, 1,2,3, partition (−∞,∞) as 4 disjoint intervals.
(−∞, (1, 2]( (3, ∞)
The innermost intervals are (1, 2] and (3,∞).
The GMLE F̂ assigns weights 2/3 and 1/3 to them.

Obtain the GMLE directly from  L in (3.1):
Ordered data: (1,0), (2,1), (3,1), (3,0).

L = ln(1− s1) + lns2 + lns3 + ln(1− s3), 0 ≤ s1 ≤ s2 ≤ s3 ≤ 1
Skip next page.

Remark: 9 Boundaries, but they can simplified:
s1 = 0; (⇐ s2 = 0; s3 = 0; )
s3 = 1; (⇐ s2 = 1; s1 = 1;)
s1 = s2; s2 = s3; ⇐ (s1 = s3).

(1)
s : critical pt (0, 1, 1/2) s1 = 0 s3 = 1 s1 = s2 others...
L : violating the constraint no need to check

(2) s1 = 0:
s : critical point (0, 1, 1/2) s2 = s3 s2 = 0 s3 = 1
L : violating the constraint no need to check

(3) s2 = s3:
s : critical point (0, 2/3, 2/3) s1 = 0 s3 = 1 s1 = s2 = s3
L : ln( 22

33 ) ln( 22

33 ) −∞ ln 1
24

(4) s1 = s2:
s : (1/2, 1/2, 1/2) s1 = 0 s3 = 1
L : ln 1

24 −∞ −∞
(5) s3 = 1: ...

Other boundaries can be skipped (see the above remark). GMLE = ?
§4.3.1.2. Homework.

1. Derive the GMLE of F using data from Example 1. Use three approaches: (1) use
formula (3.5); (2) derive directly from the likelihood function in (3.1) (see Remark: 9
boundaries). (3) Use R codes.

2. Assuming Y is discrete with finitely many values, show that the estimator F̃ in (3.2)
is a consistent estimator of FX(aj) and find its asymptotic variance.

3. Show that the definitions (3.4) of F̂ (Y(j)) is equivalent to (3.3). Hint: Inspect the

matrix (Aik)j×(n−j+1), where Aik =

∑

i≤h≤k
δ(h)

k−i+1 . Try first n = 3 or 4 and use induction
argument on j.
Consistency of the GMLE is only relevant for t ≤ τ , where τG = sup{t : G(t) < 1},

Y ∼ G and τ = τG. Consistency of the GMLE has been investigated by Ayer et al. (1955),
Groeneboom and Wellner (1992), Yu et al. (1998), and Schick and Yu (2000).
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Gentleman and Geyer (1994) claimed a vague convergence result in their Theorem 2
and Huang (1996) claimed a uniform strong consistency result in his Theorem 3.1.
Both of their results as stated imply
supx≤τ |F̂ (x)− FX(x)| a.s.−→ 0 in the C1 model, if FX is continuous and G′(x) > 0 on [0, τ ].
Example 3 after the next theorem shows that this is not true.
Theorem 2. Under the C1 model, the GMLE F̂ satisfies
(1) F̂ (a)→ FX(a) a.s. for each a ∈ A, where A = {a : P(Y = a) > 0} (Yu et al. (1998));
(2) limn→∞

∫
|F̂ (t)− FX(t)|dG(t) = 0 a.s. (Schick and Yu (2000));

(3) If FX is continuous in (0, τ ], P{Y = τ} > 0 or FX(τ) = 1, and the range of Y is

dense in [0, τ ], then supx≤τ |F̂ (x) − FX(x)| a.s.−→ 0, i.e., F̂ is uniformly strongly consistent
on (−∞, τ ] (Schick and Yu (2000)).
Example 3. Consider C1 data (Y1,1(X1≤Y1)), . . . , (Yn,1(Xn≤Yn)), where
the survival times X1, . . . , Xn are i.i.d. ∼ U(0, 3) and
the inspection times Y1, . . . , Yn are i.i.d. ∼ U(0, 2). τ = ?
⊢: F̂n(2) = 1 > 2/3 = FX(2) on an event B with P (B) > 1/6.
Let B = ∪nj=1Bj , where Bj = {Xj ≤ 1 ≤ Yj , Yj > Yi, i = 1, . . . , n, i 6= j} (with Yj = Y(n)

and δj = 1). On the event ∪nj=1Bj , we have F̂n(2) = F̂n(2−) = F̂ (Y(n)) = 1 (as Y(n) < 2,

F̂ (Y(n)) = max
i≤n

min
k≥n

∑

i≤h≤k δ(h)
k − i+ 1

= max
i≤n

∑

i≤h≤n δ(h)
n− i+ 1

=

∑

n≤h≤n δ(h)
n− n+ 1

= 1 (see (3.3))

(as Yj = Y(n) and δj = 1). The event has probability 1/3− 1
3·2n ≥ 1

6 , as it equals

P{∪nj=1Bj} =nP{X1 ≤ 1 ≤ Y1, Y1 > Yj , j = 2, ..., n}
(Bjs are disjoint events with the same probability)

=nP{X1 ≤ 1}P{1 ≤ Y1, Y1 > Yj , j = 2, ..., n} ?

=nP{X1 ≤ 1}E(1(1 ≤ Y1, Y1 > Yj , j = 2, ..., n))

=n(1/3)E(E(1(1 ≤ Y1, Y1 > Yj , j = 2, ..., n)|Y1))

=n(1/3)

∫ 2

1

E(1(1 ≤ y1, y1 > Yj , j = 2, ..., n)|Y1 = y1)
1

2
dy1

=
n

3

∫ 2

1

1

2
P{Yj < y1, j = 2, ..., n}dy1 = n

3

∫ 2

1
1
2 (y12 )n−1dy1

=
n

3

1

n
(
y1
2

)n
∣
∣
2

1

=
1

3
(1− 2−n).

That is P (F̂ (2−) = 1) ≥ P (∪jBj) = 1
3 − 1

3×2n .
Since FX(2) = FX(2−) = 2/3, we see that the following two statements are false:
F̂ (2−) converges to FX(2−) a.s. (P (F̂ (2−)→ FX(2−)) = 1),
and F̂ (x) converges to FX(x) a.s. for x = 2 (P (F̂ (2)→ FX(2)) = 1).

This shows that point-wise convergence on the closed interval [0, 2] to a continuous FX is
not implied by the condition: dG

dx > 0 for all x ∈ [0, 2].

Remark. In Example 3 the GMLE F̂ (t) is consistent for all t < τ (due to Proposition 3.2
in Schick and Yu (2000)), but not at τ or τ−.
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Question: Is F̂ (t) consistent for all t < τ under the C1 model ?
Example 4. Suppose that X ∼ Exp(1) and Y has a Poisson distribution with mean 1.
Then τ = ?

limn→∞ Ŝ(1) = SX(1) a.s. ? (SX(1) = e−1)
limn→∞ Ŝ(1.5) = SX(1.5) a.s. ? (SX(1.5) = e−1.5)

Answer: limn→∞
∫
|F̂ (t)− FX(t)|dG(t) = 0 a.s. (Theorem 2).

limn→∞ Ŝ(1) = SX(1) a.s. !
limn→∞ Ŝ(1.5) 6= SX(1.5) a.s..
limn→∞ Ŝ(1.5) = SX(1) a.s..

In fact, the GMLE is not consistent at t ∈ (i, i+ 1) for all integers i.
Note that under the RC model, the PLE Ŝpl(t) is always consistent for t < τ !

Peto (1973) and Turnbull (1976) conjectured that
for arbitrary FX and G, the GMLE is asymptotically normal at the usual n1/2 rate.

It was, however, shown by Groeneboom and Wellner (1992) that
this conjecture is false even if FX and G satisfy certain smoothness assumptions.

Indeed, their Theorem 3 below establishes that under differentiability assumptions on FX
and G the convergence is at the slower n1/3 rate and the limiting distribution is not normal.
Theorem 3. Let to be such that 0 < FX(to), G(to) < 1, and let FX and G be differentiable
at to, with strictly positive derivatives fo(to) and g(to), respectively. Then

n1/3
F̂ (to)− FX(to)

{ 12FX(to)SX(to)fo(to)/g(to)}1/3
D−→ 2Z, as n→∞,

where Z ≡ argmin(W (t) + t2) and W is the two-sided Brownian motion starting from 0.
i.e., ∀ ω in the sample space, Z(ω) = to, where W (to)(ω) + t2o ≤W (t)(ω) + t2 for t ≥ 0.

Definition. A real-valued continuous-time process W (t) is called a Guassian process
if each finite-dimensional vector (W (t1), ...,W (tm)) ∼ N(~µ(t),Σ(t)), where Σ(t) can be
singular and t = (t1, ..., tm), m ≥ 1; it is called a Wiener process, or a Brownian
Motion, if W (t) has independent increments and W (s+ t)−W (s) ∼ N(0, σ2t), ∀ t > 0,
Definition. A 3-dimensional stochastic process X = (X1, X2, X3) is called a Brownian
Motion if it satisfies

1. Xi’s are i.i.d. Wiener processes,
2. X(0) = (0, 0, 0),

Remark. The main assumption in Theorem 3 is that G is differentiable, i.e. Y is continuous.
There are many practical situations in which Y is discrete. In medical research, for

example, the data are often recorded as integers (to represent number of days, weeks etc).
Then the conclusion is different.
Let A∗ = A ∪ {−∞,∞} for a given set A (= {a : P(Y = a) > 0}). For x ∈ (−∞,+∞), let

x− := sup{a ∈ A∗ : a < x} and x+ := inf{a ∈ A∗ : a > x}. (x− ≤ x ≤ x+)

We say x is a regular point, if
(1) x belongs to A,
(2) x− and x+ belong to A∗,
(3) x− < x < x+ and
(4) FX(x−) < FX(x) < FX(x+).
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Example 5. What are the regular points in these sets:
5.1. A1 = the support set of the Poisson distribution.
5.2. A2 = the set of all positive fractions and FX(t) = 1− e−t, t > 0.
5.3. A3 = {0, 1, 2, 3} ∪ [4, 5] ∪ (6, 8], FX is U(2, 10) distribution.

Theorem 4. (Yu et al. (1998)). Let x be a regular point. Then n1/2(F̂ (x) − FX(x)) is
asymptotically normal with mean 0 and variance FX(x)(1− FX(x))/g(x). This asymptotic
variance can be consistently estimated by F̂ (x)(1− F̂ (x))/N(x). Also, if x1 < . . . < xm are
regular points, then n1/2(F̂ (x1)− FX(x1), . . ., F̂ (xm)− FX(xm)) is asymptotically normal
with mean vector 0 and diagonal covariance matrix.

Remark. Theorems 3 and 4 both allow X takes on infinitely many values.
Remark. Suppose that FX is strictly monotone and Y takes on finitely many values, say
at a1 < · · · < am, with F (a1) > 0 and F (am) < 1. For n large enough,

F̂ (ai) = F̃ (ai) (see (3.2)), i = 1, ...,m− 1.

Reason: Let ǫ = min{FX(a1), FX(ai) − FX(ai−1), i = 2, ...,m, SX(am)}. Then ǫ > 0. Let
Ω be the event that N−(aj)/n and N(aj)/n (see (3.2)) converge for j = 1, ..., m. Then for

each ω ∈ Ω, for n large enough, |F̃ (aj)− FX(aj)| < ǫ/3 for all j. It follows that

0 ≤ F̃ (a1) < FX(a1) + ǫ/3 < FX(a2)− ǫ/3 < F̃ (a2) < · · · F̃ (am) ≤ 1. (3.7)

As a consequence, F̃ is a GMLE.
In fact, the asymptotic covariance matrix of (F̂ (a1), ..., F̂ (am)) can be estimated by the

expression

Σ̂ =

(

− ∂2L
∂s∂st

∣
∣
st=(F̂ (a1),...,F̂ (am))

)−1

. (3.8)

Now L = ln
∏m
i=1 s

N−(ai)
i (1− si)N+(ai).

∂L
∂st

= (
N−(a1)

s1
− N+(a1)

1− s1
, ...,

N−(am)

sm
− N+(am)

1− sm
).

∂2L
∂s∂st

= −





N−(a1)
s21

+ N+(a1)
(1−s1)2 0 · 0
· · · · · ·
0 0 · · · N−(am)

s2m
+ N+(am)

(1−sm)2



 .

1

n

(

− ∂2L
∂s∂st

∣
∣
st=(F̂ (a1),...,F̂ (am))

)

(N−(aj) =
∑n
i=1 1(Xi ≤ aj = Yi))

→





FX(a1)g(a1)
F 2

X
(a1)

+ SX(a1)g(a1)
(SX(a1))2

0 · 0
· · · · · ·
0 0 · · · FX(am)g(am)

F 2
X
(am)

+ SX(am)g(am)
(SX(am))2



 a.s.

=





g(a1)
FX(a1)

+ g(a1)
SX(a1)

0 · 0
· · · · · ·
0 0 · · · g(am)

FX(am) + g(am)
SX(am)





=





g(a1)
FX(a1)SX(a1)

0 · 0
· · · · · ·
0 0 · · · g(am)

FX(am)SX(am)




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nΣ̂→





FX(a1)SX(a1)
g(a1)

0 · 0
· · · · · ·
0 0 · · · FX(am)SX(am)

g(am)



 a.s.

Theorem 4 is an extension of the above observation.
However, if FX is not strictly increasing on {a1, ..., am}, it is not true that

F̃ (ai) = F̂ (ai), i = 2, ...,m− 1, if n is large enough,

as (3.7) does not hold. In such a case, (3.8) is false.
Question. In application, how to determine when the censoring distribution G is continuous
or discrete ?

The important feature of a discrete Y is that there are ties among Yi’s.
If there are few ties, then one should consider Y is continuous.
Otherwise, discrete.

Question. If Y is continuous, how to construct a confidence interval (CI) for F (to)?
Note that by Theorem 3 and Theorem 2.4 of Banerjee and Wellner (2001),

n1/3(F̂ (to)− FX(to))
D−→ hZ,

where
h = {4FX(to)SX(to)fo(to)/g(to)}1/3.

Thus, a 95% CI for FX(to) is

F̂ (to)± n−1/3ĥQ0.025 = F̂ (to)± n−1/3ĥ0.99818

where Qα is the 100(1 − α) quantile of the distribution of Z (P{Z > Qα} = α), which is

provided in Groeneboom and Wellner (2001), and ĥ is an estimate of h, e.g.,

ĥ = {4F̂ (to)Ŝ(to)f̂(to)/ĝ(to)}1/3

f̂(t) =

∫
1

wn
K(

x− t
wn

)dF̂ (x),

wn is the window width, wn → 0, K(·) is a kernel (e.g., K(x) = 1
21(−1<x≤1)) and thus

f̂(t) =
F̂ (t+ wn)− F̂ (t− wn)

2wn
,

ĝ(t) =

∫
1

wn
K(

x− t
wn

)dĜ(x), (Lebesgue Stieltjes)

Ĝ(x) =
1

n

n∑

i=1

1(Yi≤x).

§4.3.1.3. Homework.
4. Let FX be Exp(ρ) (with mean 1/ρ) and Y ∼ U(0, 3/ρ).

4.a. Generate n = 400 case 1 data and compute F̂ (1/ρ).
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4.b. Repeat 4.a 50 times and compute

the sample mean F̂ (1/ρ) and sample variance S2
n.

4.c. Discuss the region on which the GMLE is consistent.
4.d. Repeat 4.a and 4.b, with n = 100 and compare S100

S400
to
√

400/100 and to ( 400
100 )1/3,

which is closer ?
5. Let Y be a discrete random variable taking values 1, 2, 3 and 4; and let X ∼ U(0, 5).

5.a. Generate 400 case 1 data and compute F̂ (3).

5.b. Repeat 4.a 50 times and compute the sample mean F̂ (3) and sample variance S2
n.

5.c. Discuss the region on which the GMLE is consistent.
5.d. Repeat 5.a and 5.b, with n = 100 and compare S100

S400
to
√

400/100 and to ( 400
100 )1/3,

which is closer ?
6. Under the assumption in Problem # 4, generate a random sample of n = 400 C1 data

from Exp(ρ). Plot the survival curves of S(t; ρo), the MLE and the GMLE on the same
graph. Now pretend the data (Yi, δi)’s are RC data, plot the survival curves of S(·; ρo),
the PLE and MLE curves. Make comments on the plots.
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§4.4. Self-consistent (SC) algorithm.
Under the RC model, C1 model and LC model, the GMLE of FX has a closed form

solution. However, this is not so in general.
There are several numerical methods to compute the GMLE:

1. The Newton-Raphson algorithm (Peto (1973));
2. The self-consistent algorithm (Turnbull (1976));
3. The convex minorant algorithm (Groeneboom and Wellner (1992)).

The self-consistent algorithm is easy to implemented, so we introduce it in this section.
Let I1, ..., In denote the observed intervals.

Define innermost intervals Aj , j = 1, 2, . . . ,m, induced by I1, ..., In to be all the disjoint
intervals which are non-empty intersections of these Ii’s

(e.g. Ik = Ik ∩ Ik is an intersection of Ii’s) such that

Aj ∩ Ii = ∅ or Aj ∀ i and j.
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Let the endpoints of the innermost intervals be aj and bj , j = 1, ..., m, where

a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ am ≤ bm.

The following example illustrates the procedure for finding innermost intervals.

Example 2.1. Suppose that there are five observed intervals Ii’s:
(1, 4], [2, 2], (2, 6], [5, 5], and (1, 6].

Then there are two exact observations,
I2 = [2, 2] and I4 = [5, 5], and

three censored intervals,
I1 = (1, 4], I3 = (2, 6] and I5 = (1, 6].

Furthermore, there are three innermost intervals,
A1 = [2, 2], A3 = [5, 5], and A2 = (2, 4].

1 2 3 4 5 6 7
(
( ·( ] · ]

]

(
( []( ] [] ]

]

s1 s2 s3

(δij)5×3 =








1 1 0
1 0 0
0 1 1
0 0 1
1 1 1








Peto (1973) shows that the GMLE of FX only
assigns weights, say s1, ..., sm, to the corresponding innermost intervals A1, ..., Am.

The generalized likelihood function  L can be simplified as

 L =  L(s1, ..., sm) =

n∏

i=1

[
∑

j

δijsj ], (4.1)

where δij = 1(Aj⊂Ii), st = (s1, ..., sm−1) ∈ Ds is the transpose of s,
Ds = {s : si ≥ 0, s1 + · · ·+ sm−1 ≤ 1} and
sm = 1− s1 − · · · − sm−1.

Turnbull (1976) proposes a self-consistent algorithm for obtaining the GMLE via an iterative
procedure as follows.

At step 1, let s
(1)
j = 1/m for j = 1, ...,m.

At step h, s
(h)
j =

∑n
i=1

1
n

δijs
(h−1)
j∑m

k=1
δiks

(h−1)

k

, j = 1, ...,m, h ≥ 2.

Stop when s(h) converges, i.e., ||s(h) − s(h−1)|| is small enough.

He shows that, as h→∞, s
(h)
j converges to the GMLE, ŝj , which maximizes  L and satisfies

the system of self-consistent equations

sj =
n∑

i=1

1

n

δijsj
∑m
k=1 δiksk

, j = 1, ...,m, s ∈ Ds. (4.2)

A solution s = ŝ to (4.2) is called a self-consistent estimator (SCE) of s.
An estimate F̂ (t) of F (t) can be uniquely defined for t ∈ [bi, ai+1] by

F̂ (bi) = F̂ (ai+1−) = ŝ1 + · · ·+ ŝi,
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but is not uniquely defined for t being in a non-singleton innermost interval
(Peto, 1973; Turnbull, 1976).

To avoid this ambiguity we define

F̂ (t) =
∑

j: Aj⊂(−∞,t]

ŝj =
∑

bj≤t
f̂(bj). (4.3)

where f̂(bj) = ŝj and (a, b] is an empty set if a = b.

Under the RC model, the definition of F̂ given by (4.3) reduces to the PLE.
Under the C1 model, it reduces to the max-min solution.
Remark 2.1 (continued).

s
(1)
1 = s

(1)
2 = s

(1)
3 = 1/3.

s
(h)
1 = 1

5 [
s
(h−1)
1

s
(h−1)
1 +s

(h−1)
2

+
s
(h−1)
1

s
(h−1)
1

+
s
(h−1)
1

s
(h−1)
1 +s

(h−1)
2 +s

((h−1))
3

],

s
(h)
2 = 1

5 [
s
(h−1)
2

s
(h−1)
1 +s

(h−1)
2

+
s
(h−1)
2

s
(h−1)
2 +s

(h−1)
3

+
s
(h−1)
2

s
(h−1)
1 +s

(h−1)
2 +s

((h−1))
3

],

s
(h)
3 = 1− s(h)1 − s(h)2 , h ≥ 2

Remark. An SCE of s can be viewed as
a critical point of  L(s), subject to the constraint on s.

The reason is as follows.
Given j ∈ {1, ...,m}, let s(ǫ) = (s1(ǫ), ..., sm−1(ǫ)) be defined by

sk(ǫ) =

{ sk
1+ǫ if k 6= j
sj+ǫ
1+ǫ if k = j,

=

{ sk
1+ǫ if k 6= j
sj−1
1+ǫ + 1 if k = j,

Write

Λj(ǫ) =lnL(s(ǫ)) =
n∑

i=1

ln
m∑

k=1

δiksk(ǫ) =>

∂Λj(ǫ)

∂ǫ

∣
∣
∣
∣
ǫ=0

=− n+
n∑

i=1

δij
∑m
k=1 δiksk

. (=
n∑

i=1

∑m
k=1 δik

−sk1(k 6=j)−(sj−1)1(k=j)
(1+ǫ)2

∑m
k=1 δiksk(ǫ)

∣
∣
∣
∣
ǫ=0

)

If s is the GMLE, then the value ǫ = 0 maximizes Λj(ǫ) for each j subject to ǫ ≥ 0.
In other words, we have

∂Λj(ǫ)

∂ǫ

∣
∣
∣
∣
ǫ=0

= −n(1− 1

n

n∑

i=1

δij
∑m
k=1 δiksk

) ≤ 0

with equality

1 =
1

n

n∑

i=1

δij
∑m
k=1 δiksk

(compare to (4.2)) sj =
∑n
i=1

1
n

δijsj∑m

k=1
δiksk

unless sj = 0.
Consequently, (4.2) holds. That is, the GMLE satisfies (4.2).
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Of course the fact that (4.2) holds for s does not implies that s is the GMLE,
but it implies that s is a critical point of the likelihood.

library(survival)
rm(list=ls())
p = 1/2
n = 100
gmle1=rep(0,10)
for(i in 1:10){

x = rexp(n,p) # survival time
y1 = rexp(n,p) # the next 3 lines are for Case 2 censoring pattern.
z = rexp(n,p)
y2 = y1+z
status = 2*as.numeric(x<=y1)+3*as.numeric(y1<x)*as.numeric(x<=y2)
+0*as.numeric(y2<x) # 3 lines for (L,R,status) used in Surv()
t1 = 0*(status==2)+y1*(status==3)+y2*(status==0) # L
t2 = y1*(status==2)+y2*(status==3)+100*(status==0) # R

# next two lines are SCE codes
my.surv = Surv(time=t1,time2=t2,event=status,type=”interval”)
temp = survfit(my.surv∼1) # works for PLE and self-consistent estimator
tt=summary(temp) #SCE of the i-th loop.
gmle1[i]=tt$surv[tt$time>=2][1] # = Ŝ(2) ? or Ŝ(2−) ?

}
tt #SCE of last loop.

time n.risk n.event survival std.err lower95%CI upper 95%CI
1.04 44.000 4.69e+ 00 0.4645 0.0508 0.3750 0.575
1.25 35.306 1.75e− 01 0.4622 0.0508 0.3726 0.573
1.50 33.131 1.43e− 03 0.4622 0.0508 0.3726 0.573
1.72 33.130 3.47e+ 00 0.4138 0.0517 0.3239 0.529
2.18 24.660 7.36e+ 00 0.2903 0.0526 0.2035 0.414
2.32 16.299 9.54e− 02 0.2886 0.0526 0.2019 0.413
3.04 15.203 1.18e+ 01 0.0639 0.0329 0.0233 0.175
4.21 2.369 3.74e− 08 0.0639 0.0329 0.0233 0.175
8.60 0.369 3.69e− 01 0.0000 NaN NA NA

dis normal
(s100=sd(gmle1))

[1] 0.07321893
Remark. In the above codes,

(t1, t2, event) =







(0, t2, 2) if LC at t2
(t1, t2, 3) if SIC in (t1, t2]
(t1, 100, 0) if RC at t1 (assuming t1 < 100, OW replace 100 by 109

Another way:
> l = c(-Inf,2,4,3,9)
> r = c(5,2,7,8,Inf)
> require(interval)
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> fit1=icfit(l,r) # SC algorithm codes
> summary(fit1)

Interval Probability
1 [2, 2] 0.2667
2 (4, 5] 0.5333
3 (9, Inf) 0.2000

§4.4.2. Homework.
1. Suppose our data consist of 5 intervals: (−∞, 5], [2,2], (4,7], (3,8], (9,+∞). Find all the

innermost intervals. Compute the GMLEs of s and F by two methods: directly from
differentiation and by the SC algorithm. Verify that it is a solution of the self-consistent
equation (4.2).

Eq. (4.2) is in the form of density function as ŝi = f̂X(bi). Its cumulative form is

H(x) =
n∑

i=1

1

n

µH(Ii ∩ (−∞, x])

µH(Ii)
(sj =

1

n

n∑

i=1

δijsj
∑m
k=1 δiksk

)

=
n∑

i=1

1

n
1(li≤x<ri)

H(x)−H(li)

H(ri)−H(li)
+

n∑

i=1

1(ri≤x,ri∈SH)

n
, H ∈ Θ, (4.4)

where SH is the support set of H, namely, x ∈ SH if |H(x+ ǫ)−H(x− ǫ)| > 0 ∀ ǫ > 0 (or
its density > 0). Eq. (4.4) is equivalent to

H(x) =

∫

l≤x<r

H(x)−H(l)

H(r)−H(l)
dQ̂(l, r) +

∫

r≤x
1(r∈SH)dQ̂(l, r), H ∈ Θ, (4.5)

where Q̂(l, r) =
n∑

i=1

1(li≤l,ri≤r)
n

(the edf of Q) and Q(l, r) = P (L ≤ l, R ≤ r).

Definition A solution H (or s) to (4.5) (or (4.2)) is called a self-consistent estimator (SCE)
of FX (or s).
Remark GMLE ⇒ SCE, but SCE 6⇒ GMLE.
Example 1. Six case 2 IC data: two (1,5] and (3,7], one (−∞, 3] and (5,+∞).

3 IIs: (1, 3], (3,5] and (5,7].

(

−∞ (1 3

](

5]( 7

]

∞)

Solving equation (4.2) (homework) yields two solutions for (s1, s2, s3):
(1/3, 1/3, 1/3) and (1/2, 0,1/2).

These two SCEs of s yield two SCEs of FX :

F̂ (t) =







0 if t < 3
1/3 if 3 ≤ t < 5
2/3 if 5 ≤ t < 7
1 if t ≥ 7;

and F̃ (t) =

{
0 if t < 3
1/2 if 3 ≤ t < 7
1 if t ≥ 7.

In this example, without using any algorithm, there are two ways to find the GMLE:
(1) derive directly from  L(F ), or
(2) find the SCE that has the largest  L(F ).

Verify (in hw) that  L(F̂ ) >  L(F̃ ).
Thus F̂ is a GMLE but F̃ is not a GMLE.
F̂ and F̃ both satisfy the summation equation in (4.5).
Thus F̂ and F̃ are SCEs.
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Remark Gu and Zhang (1993) defined an SCE H of FX to be a solution to the equation
in (4.5) without the restriction H ∈ Θ. They thought that the solution of (4.5) will belong
to Θ, as their proofs need the restriction. The following example show that their thought is
wrong and there is an H /∈ Θ but the H is a solution to (4.5).
Example 2 Six DC data.

N1 =
∑n
i=1 1(Li=Ri=2) = 1 ([2,2]), N2 =

∑n
i=1 1(Li=Ri=5) = 3 ([5,5]),

N3 =
∑n
i=1 1((Li,Ri]=(−∞,4]) = 1 and N4 =

∑n
i=1 1((Li,Ri)=(2,+∞)) = 1.

A solution H to the SC equation in (4.5) gives “mass”
(1/2,−1/4, 3/4) to points 2, 4 and 5.

Since H has jumps only at 2, 4 and 5, it suffices to verify (4.5) at −∞, 2, 4 and 5.

Verify as follows. H(x) =
∫

l≤x<r
H(x)−H(l)
H(r)−H(l)dQ̂(l, r) +

∫

r≤x 1(r∈SH)dQ̂(l, r). (L-Stieltjes)

H(−∞) = 0, RHD of (4.5) = N1

n 0 + N2

n 0 + N3

n 0 + N4

n 0 = 0 trivially.

H(2) = 1/2, RHD of (4.5) =
1

6
+

3

6
· 0 +

1

6

1/2− 0

1/4− 0
+

1

6
· 0 = 1/2.

H(4) = 1/4, RHD of (4.5) =
1

6
+

3

6
· 0 +

1

6
· 1 +

1

6

1/4− 1/2

1− 1/2
= 1/4.

H(5) = 1, RHD of (4.5) =
1

6
+

3

6
+

1

6
+

1

6

1− 1/2

1− 1/2
= 1.

Remark. The above examples illustrate that
1. A solution to the SC equation is a critical point under the constraint that

∑m
i=1 si = 1.

2. Moreover, the solution to the SC algorithm with initial point si ≥ 0 and
∑m
i=1 si = 1

is a critical point under the constraint that si ≥ 0 and
∑m
i=1 si = 1.

3. Finally, the solution to the SC algorithm with initial point si = 1/m is the GMLE.
§4.4.3. Homework.

2. Solve the two SCEs directly from Eq. (4.2) and (4.3) using the data in Example 1.
Derive the GMLE in two ways.

3. Define a second GMLE of FX in Example 1. Where are the GMLE uniquely defined in
the example ?

4. Derive an SCE in Example 2 using SC algorithm (using some program).
§4.5. SCE under DC model Assume the DC model. That is,

1. X and the censoring vector (Z, Y ) are independent;
2. Z < Y w.p.1.;
3. Observe (L,R) = (−∞, Z)1(X≤Z) + (X,X)1(Z<X≤Y ) + (Y,+∞)1(X>Y ).

Define τl = sup{x : max(SX(x), SZ(x)) = 1} and
τr = inf{x : min(SX(x), SY (x)) = 0}.
It is obvious that

if FX(τl) > 0 (or FX(τr) < 1), FX(x) is not identifiable for x < τl (or x > τr).
Thus in such cases, we only consider the estimation of FX(x) for x ∈ [τl, τr].
Denote Pc(x) = P{X is not censored|X = x} and

K(x) = P{Z < x ≤ Y }.
K(x) = Pc(x) if Pc(x) exists.

Turnbull (1974), Chang and Yang (1987), Chang (1990), Gu and Zhang (1993), and Yu and
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Li (2001) established consistency and asymptotic normality of the SCE with DC data under
various sets of regularity conditions such as follows.

The probability P{X ∈ (τl, τr] and K(X) = 0} = 0.(AS1)

P{L = τr} > 0 if FX(τr−) < 1; and P{R = τl} > 0 if FX(τl) > 0.(AS2)
∫

τl<u<τr

d[FY (u) + FZ(u)]

FZ(u)− FY (u)
<∞;(AS3)

K(x) = Pc(x) > 0 for all x ∈ (τl, τr);(AS4)

Z and Y take on finitely many values, say b1 < · · · < bN ,(AS5)

and 0 < FX(b1) < · · · < FX(bN ) < 1.

There are at most m IIs for each sample size n(AS6)

and µFX
(Aj) > 0 for each II Aj .

Theorem 1 (Yu and Li (2001)) Suppose that (AS1) and (AS2) hold, the SCE F̂ satisfies

lim
n→∞

sup
x∈[τl,τr ]

|F̂ (x)− FX(x)| = 0 almost surely,

lim
n→∞

sup
x
|F̂ (x)− FX(x)| = 0 almost surely if FX(τl) = 0 and FX(τr) = 1.

Theorem 2 (Yu and Li (2001)) Suppose that AS1 holds. Moreover either AS5 or AS6
holds; or AS2, AS3 and AS4 hold, τl < τr. Then the GMLE F̂ satisfies that

√
n(F̂ − FX)

converges in distribution to a Gaussian process Z(x) on [τl, τr]. Furthermore, the GMLE is
asymptotically efficient.
Theorem 3 (Turnbull (1974)) Suppose that the assumptions in Theorem 2 hold. Let b1 <
· · · < bk+1 be the distinct right endpoints of all the innermost intervals induced by the
observed intervals. Then the covariance matrix of the SCE (F̂ (b1), ..., F̂ (bk)) can be estimated

by (J(F̂ ))−1, where J(F ) = −
(

∂2L
∂F (bi)∂F (bj)

)

k×k
and L = ln L. Furthermore, J−1 is of the

form J−1 =









c1 d1 0 0 · · · 0 0
d1 c2 d2 0 · · · 0 0
0 d2 c3 d3 · · · 0 0
...

...
...

... · · ·
...

...
0 0 0 0 · · · dk−1 ck









.

Remark Under AS6 and under all the IC models discussed so far, the GMLE of the weights
on the II’s are consistent and let b1 < · · · < bk+1 be the right endpoints of the all possible
II’s, the (F̂ (b1), ..., F̂ (bk)) are asymptotically normal and their asymptotic covariance matrix
is the inverse of the Fisher information matrix (E(J(FX)))−1 and can be estimated by the
inverse of the empirical Fisher information matrix (J(F̂ ))−1.

We shall refer the proofs of the theorems to the literature. By means of the following
example, we explain the assumptions AS1-AS6.
Example 1 Let (Z, Y ) takes values (0.5, 2), (2, 4) and (4, 8), with probabilities g1, g2 and
g3, respectively, where g1 + g2 + g3 = 1, and let FX(x) = p11(x ≥ 1) + p21(x ≥ 5), where
p1 + p2 = 1. Derive all possible SCEs of FX based on Eq. (4.2) in §4.4. Derive the GMLE
of FX . Are they consistent and asymptotically normal ? (if g1 = g2 = g3 and p1 = p2).
Solution We first solve for SCE of s. Example 2 in §4.4 is a special case.
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τl = 1 and τr = 5.
Possible observed intervals: [1,1], (−∞, 2], [5,5], (4,+∞), (−∞, 4], (2,+∞).

————− 1—2——–4—5————

Possible IIs: [1,1], (2,4], [5,5] (when n is large enough), with weights s1, s2, s3.

Simple case: 1 of each 6 Ii’s. sj =
∑n
i=1

1
n

δijsj∑m

k=1
δiksk

, j = 1, ...,m (= 3).

s1 =
1

6
[
s1
s1

+
s1
s1

+
0

s3
+

0

s3
+

s1
s1 + s2

+
0

s2 + s3
]

s2 =
1

6
[

0

s1
+

0

s1
+

0

s3
+

0

s3
+

s2
s1 + s2

+
s2

s2 + s3
]

There are N1 (1, 1)’s or (−∞, 2)’s, N2 (5, 5)’s or (4,+∞)’s, N3 (2,+∞)’s and N4 (−∞, 4)’s
among n doubly-censored observations.

Eq. (4.2) of §4.4 becomes

s1 =
N1

n

s1
s1

+
N2

n
· 0 +

N3

n
· 0 +

N4

n

s1
s1 + s2

Can s1 = 0 ?

s2 =
N1

n
· 0 +

N2

n
· 0 +

N3

n
· s2
s2 + s3

+
N4

n

s2
s1 + s2

Can s2 = 0 ?

(we skip 1 equation in (4.2) as m = 3 but s1 + s2 + sm = 1).
Solving the equations yields two solutions of s:

(s1, s2) = (N1+N4

n , 0) and (s1, s2) = ( N1

N1+N3
, Un), where Un = N4

N2+N4
− N1

N1+N3
.

The first one is an SCE of s as si ≥ 0 and s1 + s2 ≤ 1. The second one is an SCE if and
only if Un ≥ 0. Let

1. H1 = N1+N4

n 1(x≥1) + N2+N3

n 1(x≥5).

2. H2 = N1

N1+N3
1(x≥1) + Un1(x≥4) + N2

N2+N4
1(x≥5).

Thus there are possible two SCEs of FX :
H1 or
H2 if Un ≥ 0.

The GMLE is F̂ =

{
H1 if Un < 0
H2 if Un ≥ 0.

The reason is as follows.
Theorem 4 Given interval-censored data (C1, C2, DC or MIC data), let Ai, i = 1, ..., m
be all the distinct IIs. Suppose ŝi, i = 1, ..., m are weights assigned to these IIs by an SCE,
respectively, and satisfies ŝj = 0⇒ s̃j = 0 for any other SCE with weights s̃i, i = 1, ..., m,
then ŝ is a GMLE.

The proof of the theorem utilizes the convexity of −ln L in (s1, ..., sk).
Note that GMLE is also an SCE.

If Un < 0, there is only one SCE of s, i.e. H1. Thus H1 is a GMLE if Un < 0.
If Un ≥ 0, there are two SCEs: H1 and H2.
Then one can use two ways to show H2 is the GMLE:

(1) Theorem 4,
(2)  L(H2) >  L(H1)

To prove the consistency of the GMLE, check (AS1) and (AS2) by Th. 1:
(AS1) P{X ∈ (τl, τr] and K(X) = 0} = 0, where K(x) = P{Z < x ≤ Y }.
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(AS2) (1) P{L = τr} > 0 if FX(τr−) < 1; and (2) P{R = τl} > 0 if FX(τl) > 0.
(Z, Y ) ∈ {(0.5, 2), (2, 4), (4, 8)} and X = 1 or 5.

Now verify them (when gi = 1/3 and pi = 1/2) as follows:
AS1: K(x) = 1/3 ∀ x ∈ (0.5, 2] ∪ (2, 4] ∪ (4, 8] ⊃ [1, 5] (= [τl, τr]).

Thus AS1 holds i.e. P (X ∈ [τl, τr] and K(X) = 0) = 0.
AS2: (1) P{L = τr} = P{X = 5, (Z, Y ) = (4, 8)} = 0.5/3 > 0 and F (τr−) = 1/2 < 1.

(2) P{R = τl} = P{X = 1, (Z, Y ) = (0.5, 2)} = 0.5/3 > 0 and F (τl) = 1/2 > 0.
Thus AS2 holds.

Thus the SCEs are consistent.
To discuss the asymptotic normality (see Theorem 2), verify that

(1) AS5 and AS6 fail, as FX(2) = p1 6< FX(4) = p1 and
(2) AS4 fails, as K(3) = P{Z < 3 ≤ Y } = g2 > 0, but Pc(3) is not defined.

Thus Theorem 2 is not valid. Does it mean that the GMLE is not asymptotically normal ?
Th. 3 is not valid. Is J−1 given in Th.3 the asymptotic covariance matrix of F̂ ?
We now establish the asymptotic normality directly. Note that

E(N1/n) = P{X = 1, (Z, Y ) = (0.5, 2) or (2, 4)} = p1(g1 + g2)

E(N2/n) = P{X = 5, (Z, Y ) = (4, 8) or (2, 4)} = p2(g2 + g3) (5.1)

E(N3/n) = P{X = 5, (Z, Y ) = (0.5, 2)} = p2g1

E(N4/n) = P{X = 1, (Z, Y ) = (4, 8)} = p1g3.

Un =
N4

N2 +N4
− N1

N1 +N4

a.s.−→ p1g3
p1g3 + p2(g2 + g3)

− p1(g1 + g2)

p1(g1 + g2) + p2g1
< 0,

as p1 = p2 and g1 = g2 = g3.
Thus for n large enough, there is only one SCE and one GMLE. That is H1.

⊢:
H1(t)− FX(t)

σH1(t)

D−→ N(0, 1), t ∈ [1, 5) (by the CLT),

Reason: H1(t) =

{

(N1 +N4)/n if t ∈ [1, 5)
1 if t ≥ 5

N1 =
∑n
i=1 1((Li, Ri) = (1, 1) or (−∞, 2)) and N4 =

∑n
i=1 1((Li, Ri) = (−∞, 4))

If t ∈ [1, 5) then H1(t) =
1

n

n∑

i=1

1((Li, Ri) ∈ {(1, 1), (−∞, 2), (−∞, 4)})

=1(X = 1, (Z, Y ) ∈ {(0.5, 2), (2, 4), (4, 8)})
=1(X = 1)

σ2
H1(t)

=

{

V ar(
∑n
i=1 1(Xi=1)/n) = p1p2/n if t ∈ [1, 5)

? if t ≥ 5
. (5.2)

By (5.1), L = N1lnF (1) +N2ln(1− F (4)) +N3ln(1− F (1)) +N4lnF (4), where F (5) = 1.

Verify the Fisher information matrix is

J/n = − 1

n

∂2L
∂(F (1), F (4))∂(F (1), F (4))t

=

(
N1

nF 2(1) + N3

n(1−F (1))2 0

0 N4

nF 2(4) + N2

n(1−F (4))2

)
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a.s.−→
( g1+g2

p1
+ g1

p2
0

0 g3
p1

+ g2+g3
p2

)

=

(
2 0
0 2

)

If (E(J))−1 is the covariance matrix of (H1(1), H1(4)), it contradicts (5.2) Why ??
§4.5.2. Homework

1. Let (Z, Y ) takes values (0.5, 2), (2, 4) and (4, 8), with positive probabilities g1, g2 and g3,
respectively, where g1 = g2 = g3 = 1/3, and let FX(x) = p11(x≥1)+p21(x≥3)+p31(x≥5),
where p1 = p2 = p3 = 1/3. In the following, you may assume n is sufficiently large.
1.a. Derive all possible SCEs of FX based on Eq. (4.2) in §4.4.
1.b. Find the limits of the SCEs directly.
1.c. Derive the GMLE of FX .
1.d. Are the SCEs consistent and asymptotic normal ? (Prove or disprove them).
1.e. Derive the asymptotic covariance matrix of the SCEs (F̂ (1), F̂ (3)).

2. Consider Example 1.
2.a. What are the limits of H1 and H2 ? (Note that Hi is a function of both sample
size n and t ∈ R1.
2.b. Are they consistent estimators of FX ?
2.c. Check whether AS1, AS2 and AS3 hold. AS3 can be interpreted as

∑

i: ui∈(τl,τr)

fY (ui) + fZ(ui)

SY (ui)− SZ(ui)
<∞.

2.d. Compute the Fisher information matrix −H = −E
(

∂2L
∂F (bi)∂F (bj)

∣
∣
F=FX

)

2×2
, where

(b1, b2) = (1, 4) and L = ln L.
2.e. Compute the covariance matrix of the vector (H1(1), H1(4)), denoted by Σ. Does
Σ = −H−1? Does it contradicts Theorem 3 ?

3. Prove that under the DC model, H = FX satisfies the self-consistent equation

H(x) =

∫

l≤x<r

H(x)−H(l)

H(r)−H(l)
dQ(l, r) + P{R ≤ x}, H ∈ Θ.

4. Under double censoring with Y = −X and Z = Y − 1, derive the function
E(1(X ≤ t, L ≤ t < R|(L,R) = (l, r)) of (l, r, t) for an FX you select,

and show that H = FX does not satisfies the SE equation.

References
* Chang, M. N. (1990). Weak convergence of a self-consistent estimator of the survival

function with doubly censored data. Ann. Statist., 18, 391-404.
* Chang, M.N. and Yang, G. (1987). Strong consistency of a self-consistent estimator of

the survival function with doubly censored data. Ann. Statist., 15, 1536-1547.
* Gu, M.G. and Zhang, C-H. (1993). Asymptotic properties of self-consistent estimator

based on doubly censored data. Ann. Statist., 21, 611-624.
* Tsai, W. and Crowley, J. (1985). A large sample study of the generalized maximum

likelihood estimators from incomplete data via self-consistency. Ann. Statist., 13, 1317-
1334.

* Turnbull, B. W. (1974). Nonparametric estimation of a survivorship function with dou-
bly censored data. JASA. 69, 169-173.

82



* Yu, Q.Q. and Li, L.X. (1994). On the strong consistency of the product limit estimator.
Sankhya, A. 56, 416-430.

* Yu, Q. Q. and Li, L.X. (2001). Asymptotic properties of the GMLE of self-consistent
estimators with doubly-censored data. Acta Math. Sinica. 17, 581-594.

§4.6. SCE under MIC model Consider MIC model (2) (mixture of RC model and mixed
IC model). Assume:

(1) N is a random integer;
(2) T , Y1 < Y2 < · · · < Yk < · · · are inspection times;
(3) X and (N,T, Yi, i ≥ 1} are independent;
(4) P(N = 0) > 0 and P(N > 1) > 0;
(5) The observable random vector is

(L,R) =







(X,X) if X ≤ T and N = 0
(T,∞) if X > T and N = 0
(−∞, Y1) if X ≤ Y1 and N ≥ 1
(Yi, Yi+1) if Yi < X ≤ Yi+1, i = 1, ..., N − 1 and N ≥ 1
(YN ,∞) if X > YN and N ≥ 1.

Let (Li, Ri), i = 1, ..., n, be an i.i.d. copies of (L,R).
Remark If one replaces (4) by N = 0 or 1 w.p.1, it can be used to formulate the DC data.
Hereafter, denote Hn an SCE of FX . Define

τ = sup{x : FX(x) < 1 and FT (x) < 1},
τY = sup{t : FYN

(t) < 1}.
τN = sup{i : fN (i) > 0}.

A point x is called a support point of a cdf F if |F (x + ǫ) − F (x − ǫ)| > 0 ∀ ǫ > 0. Denote
SF the set of all support points of F . If S(t) = exp(−t), t > 0, then SF = (0,∞) or [0,∞)?
People make use of the assumptions as follows:

(AS1) τY ≤ τ ;
(AS2) P{T or YN = τ} > 0 if FX(τ−) < 1.
(AS3) Hn is right continuous and SHn ⊂ {R1, ..., Rn};
(AS4) FX(τ) > 0 and ∪i≤τNSFYi

⊂ SFX
;

(AS5) ∪i≤τNSFYi
is a finite set and FX is strictly increasing on ∪i≤τNSFYi

.
(AS6) There are at most m IIs for each sample size n and µFX

(Aj) > 0 for each II Aj .
Theorem 1 (Yu, Li and Wong (1998,2000)) Suppose that AS1 and AS2 hold. Then the
SCE Hn satisfies

lim
n→∞

sup
x
|Hn(x)− FX(x)| = 0 a.s. if FX(τ) = 1 and lim

n→∞
sup
x≤τ
|Hn(x)− FX(x)| = 0 a.s..

Theorem 2 (Yu, Li and Wong (1998,2000)) Suppose that AS1 and AS2 hold. Moreover,
either AS5 holds or AS6 holds or AS3 and AS4 hold. Then

√
n(Hn(x)− FX(x))

D−→ Z(x) for x ≤ τ,

where Z is a Gaussian process on [0, τ ]. Let b1 < · · · < bk+1 be the right endpoints of all the
distinct IIs induced by the observed intervals. The covariance matrix of (Hn(b1), ..., Hn(bk))

can be estimated by −
(

∂2L
∂F (bi)∂F (bj)

)−1

k×k

∣
∣
F=F̂

and L = ln L.
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Remark. The assumptions AS1, AS4, AS5 and AS6 eliminate the case in which µFX
(Aj) =

0 for an II Aj . The following case is a situation when AS4-AS6 are violated.

X= 3,6, N= 0, 1, T= 8, Y1 = 4,5,

Then an II is (4, 5] and µFX
((4, 5]) = 0.

Remark. For IC data, −ln L is strictly convex in the interior of s ∈ Ds, where

Ds = {s : ~s = (s2, ..., sm), si ≥ 0,
∑m
i=2 si ≤ 1}, s1 = 1− s2 − · · · − sm.

Thus there is a unique GMLE of s. Moreover, if ŝ is the GMLE and s̃ 6= ŝ is an SCE, then

(1) ŝj = 0 implies s̃j = 0 for each j;

(2) there is at least one j such that s̃j = 0 < ŝj .

A function g is strictly convex if g(ax + (1 − a)y) < ag(x) + (1 − a)g(y) for each possible
pair of (x, y) and a ∈ (0, 1). Since

∑m
j=1 δijsj is linear in s ∈ Ds and −lnx is strictly convex

in x ∈ R1, as d2(−lnx)
dx2 = 1

x2 > 0, −ln L is strictly convex.

§4.6.2. Homework

1. Consider the MIC model (2). Suppose that

X takes values 1, 3 and 5 w.p.1.;

N takes values 0, 1 and 2 w.p.1.;

T = 7,

Y1 takes values 2 and 4 w.p.1;

Y2 = Y1 + 2.

1.a. Describe all possible observed intervals.

1.b. Derive all possible SCEs of FX . (Hint: If you properly group the observations, the
estimators are similar to H1 and H2 in Example 1 or Homework problem 1 of §4.5.)

§4.7. Case 2 data and the GMLE
The mixed case IC model is used to formulate case 2 data (without exact observations).
Let Y = {Yj : j ≥ 1} be a sequence of random variables such that Y1 < Y2 < · · ·. Y0 = −∞.

K be a positive random integer such that (K, Y) ⊥ X;

On the event {K = k}, let (L,R) =

{
(Yi−1, Yi) if Yi−1 < X ≤ Yi, i ∈ {1, 2, ..., k}
(Yk,∞) if X > Yk

,

Let ν be the measure that is the sum of the two measures induced by the marginal
distributions of observable extended random variables L and R.

∫ x

−∞ dν(t) =
∫ x

−∞(dP (L ≤ t) + dP (R ≤ t)).
∫∞
−∞ dν(t) = ?

Theorem 1. (Schick and Yu (2000)) Suppose E(K) < ∞. Let A = ∪i≤τKSFYi
, where

τK = sup{i : P{K = i} > 0}, and F̂ be a GMLE of FX . Then

1.
∫
|F̂ − FX | dν → 0 almost surely;

2. If P(Yi = a) > 0 for some i ≤ τK , then F̂ (a)→ FX(a) a.s.;

3. If A is dense in [0,∞) and FX is continuous, then supx |F̂ (x)− FX(x)| → 0 a.s..

Remark The assumption that E(K) <∞ can be removed.

Question: Relation between the 3 statements in the theorem ?

Question: Why not SCE ? Recall Th 1 in §4.5 says that
the SCE is consistent under DC model with AS1 and AS2.

Example 1 (inconsistent SCE with C2 data). Let K ≡ 2 (Y = (Y1, Y2)),
P (X = 2) = P (X = 4) = P (X = 6) = 1/3, P (Y = (1, 5)) = P (Y = (3, 7)) = 1/2.

If n is large enough, the observations are

N1 (−∞, 3], N2 (5,∞), N3 (3,7] and N4 (1,5].

84



IIs: (1,3], (3,5] and (5,7]
As in Example 1 of §4.5, there are two solutions to equation (4.2). They induce two SCEs
H1 and F̂ almost the same as in Example 1 of §4.5 for n large enough.

H1(t) =
N1 +N4

n
1(t≥3) +

N2 +N3

n
1(t≥7),

F̂ (t) =
N1

N1 +N3
1(t≥3) + Un1(t≥5) +

N2

N2 +N4
1(t≥7).

Note that under the assumption there F̂ = H1 if n is large enough.
However, in the current situation, F̂ 6= H1 if n is large enough, as pointed out next.

Note that Yi’s are discrete, thus we expect a GMLE is consistent at 1, 3, 5, 7.
The limit of H1(3) is

lim
n→∞

N1 +N4

n
= P{X = 2,Y = (3, 7)}+ P{X ≤ 4,Y = (1, 5)} = 1/2 6= 1/3 = FX(2).

Thus H1 is not consistent at 3.
Theorem 2. (Yu, Schick, Li and Wong (1998)) Under the mixed case model, if there are
only k+ 1 II’s with right endpoints bi for each sample size, FX is strictly increasing on bi’s,

then
√
n





F̂ (b1)− FX(b1)
· · ·

F̂ (bk)− FX(bk))




D−→ N(0k,Σk) as n→∞, where

Σk = −n
(

E(
∂2L

∂F (bi)∂F (bj)

∣
∣
F=FX

)

)−1

k×k

and the asymptotic covariance matrix of F̂ can be estimated by −
(

∂2L
∂F (bi)∂F (bj)

)−1

k×k

∣
∣
F=F̂

.

Theorem 3. (Groeneboom (1996)). Let FX be continuous with a bounded derivative fo
on [0,M ], satisfying fo(x) ≥ co > 0, x ∈ (0,M), for some constant co > 0. Let (Y1, Y2)
be the two continuous random inspection times in the Case 2 model, with df g(·, ·). Let g1
and g2 be the first and second marginal density of g, respectively. Suppose that the following
conditions are satisfied

(S1) g1 and g2 are continuous, with g1(x) + g2(x) > 0 ∀ x ∈ [0,M ];
(S2) g(·, ·) is continuous, with uniformly bounded partial derivatives, except at a finite number

of points, where left and right (partial) derivatives exist;
(S3) P{Y2 − Y1 < ǫo} = 0 for some ǫo with 0 < ǫo ≤ 1/(2M), so g does not have mass close

to the diagonal.
Then we have at each point to ∈ (0,M)

n1/3{2a(to)/fo(to)}1/3{F̂ (to)− FX(to)} D−→ 2Z∗,

where Z∗ is defined as in Theorem 2, and

a(to) =
g1(to)

FX(to)
+ k1(to) + k2(to) +

g2(to)

1− FX(to)
,
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k1(u) =

∫ M

u

g(u, v)

FX(v)− FX(u)
dv and k2(v) =

∫ v

0

g(u, v)

FX(v)− FX(u)
du.

The convergence rate for the GMLE
is n1/2 under the assumption of Theorem 2;
is n1/3 under another set of continuity assumptions given by Groeneboom (1996), and
is conjectured to be (n log n)1/3 under a set of continuity assumptions given by Groene-

boom and Wellner (1992).
Under the case 2 model, Groeneboom and Wellner (1992) establish the result as follows.

Suppose that FX and G have continuous derivatives,
with their densities fo(xo) > 0 and g(xo, xo) > 0, and
let F̃ be the estimator of FX , obtained at the first step of the iterative convex minorant
algorithm, starting the iterations with FX . Then the statistic

(nlnn)1/3 F̃ (x0)−FX(x0)

{ 3
4 (fo(x0))2/g(x0,x0)}1/3

D−→ 2Z∗,

where Z∗ is the last time where standard two - sided Brownian motion minus the
parabola y(t) = t2 reaches its maximum.

Conjecture (G&W (1992, p. 108)): The GMLE F̂ has the same asymptotic distribution
as F̃ . Thus, the convergence rate of the GMLE is conjectured to be (n log n)1/3 under the
same conditions mentioned above.
Remark. F̃ is not an estimator, because FX is unknown and thus it is impossible to start
the iterations from FX except in simulation.
Remark. The main differences between the assumptions in the above theorems that the
convergence rate varies are as follows.

1. The main assumption in Theorem 2 is that K is finite and Yi, i = 1, ..., K, takes on
finitely many values. Then the convergence rate is n1/2.

2. The main assumption in Theorem 3 is that (Y1, Y2) does not fall along a strip near the
diagonal y1 = y2, in addition to smoothness. Then the convergence rate is n1/3.

3. The main assumption in the conjecture of G&W (1992) is that
P{(Y1, Y2) ∈ N(xo, xo, ǫ)} > 0 for each neighborhood N(xo, xo, ǫ) of (xo, xo),
in addition to smoothness.

Then the convergence rate is (nlnn)1/3.
§4.7.2. Homework

1. a. Derive the limits of the SCEs in Example 1 and compare to FX .
b. Derive the asymptotic variance of the GMLE in Example 1.
c. Give an estimate of the variance in part b.

2. Suppose that F ∼ Exp(ρ), K = 2 w.p.1., Y1 ∼ Exp(ρ) and Y2 = Y1 + Z, where
Z ∼ Exp(ρ) and Z ⊥ Y1. let S2

n be the sample variance of the GMLE F̂ (2) based on
1000 simulations of random samples of size n. What do you expect S2

100/S
2
400 to be ?

State your reasoning.
3. Suppose that F ∼ Exp(ρ), K = 2 w.p.1., Y1 has a discrete uniform distribution on the

set {1, 2, ..., 9} and and Y2 = Y1 + 1. Let S2
n be the sample variance of the GMLE F̂ (2)

based on 1000 simulations of random samples of size n. What do you expect S2
100/S

2
400

to be ? State your reasoning.
4. Try simulation to # 2 and # 3 with hw10.r
5. Consider the model in Example 1. Try to construct two soltuions that satisfy the (pop-

ulation) self-consistent equation in Homework # 3 in §4.5.2. This example shows that
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unlike the DC model, the solution to the population SE equation is not unique. More-
over, the solution H(t) at t = R is also not unique.

Reference.
* Groeneboom, P. and Wellner, J. A. (1992). Information bounds and nonparametric

maximum likelihood estimation. Birkhäuser Verlag, Basel.
* Groeneboom, P. (1996). Lecture on inverse problems. In P. Bernard. (Ed.), Lectures on

probability and statistics. p. 157. Berlin, Springer-Verlag.
* Schick, A. and Yu, Q.Q. (2000). Consistency of the GMLE with mixed case interval-

censored data. Scand. J. Statist., 27, 45-55.
* Yu, Q. Q., Schick, A., Li, L. X. and Wong, G. Y. C. (1998). Asymptotic properties

of the GMLE in the case 1 interval-censorship model with discrete inspection times.
Canadian Journal of Statistics, 26, No. 4, 619-627.

§4.8. Application to model justification.
It is desirable to use parametric models instead of nonparametric models. Given a RC

data set of n = 100, one can try various MLEs (see Figure 4.8.1). They can be quite different.
How can we decide which to choose ?
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Fig. 4.8.1. MLEs of 4 parametric survival functions based on 100 observations
That is, one needs to justify why a certain type of model can be applied to the given

data, either from science (physics, biology, etc.) or from empirical data themselves.
A naive method is to plot the empirical cdf against the targetting parametric cdf,

replacing the parameters by their MLEs (see ch4.r):
1. Plot the GMLE of SX(t) and its 95% CI along t < τ based on the IC data.
2. Plot the MLE of SX(t) for the potential parametric model based on the IC data.
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3. If the MLE curve lies within the confidence band, the parametric model may fit the data.

Here, GMLE is given by







edf if the data is complete
PLE if data are RC
the max-min form if data are C1,
SCE otherwise.

Just survfit() ?

In the next figure, we add the GMLE curve together with the pointwise CI of the PLE.
It suggests to eliminate two distributions which two ?

One may further draw the pointwise CI curves of the other two and check which one of
them contains the GMLE better than the other.
The survival function of the Weibull distribution is

S(t; θ, κ) = e−(t/eθ)κ , t > 0, θ =intercept, τ = eθ,

A CI is e−(t/eθ̂±1.96SE)κ ,
The survival function of the lognormal distribution is

S(t : µ, σ) =
∫∞

lnt−µ
σ

1√
2π
e−x

2/2dx

A CI is S(t : µ, σ) =
∫∞

lnt−µ̂±1.96SD
σ

1√
2π
e−x

2/2dx
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Fig. 4.8.2. MLEs of 4 parametric survival functions based on 100 observations

The R codes for the CI plot in Figure 4.8.3 are as follows.

u=survfit(Surv(m,d)∼1)

plot(u$time, u$surv, type=”s”,lty=1, xlim=c(0,1500))

x=sort(m)

(zz=survreg(Surv(m,d)∼1,dist=”lognormal”))

w= summary(zz)$table[1,2] # SD of intercept

lines(x,1-plnorm(x,zz$coef-1.96*w,zz$scale),type=”l”,lty=5) # CI
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lines(x,1-plnorm(x,zz$coef+1.96*w,zz$scale),type=”l”,lty=5)

(zz=survreg(Surv(m,d)∼1))

w= summary(zz)$table[1,2] SD of intercept

lines(x,1-pweibull(x,1/zz$scal,exp(zz$coef-1.96*w)),type=”l”,lty=3) # CI

lines(x,1-pweibull(x,1/zz$scal,exp(zz$coef+1.96*w)),type=”l”,lty=3)

leg.names< −c(”ple”, ”weib”,”lognormal”)

legend(300, 0.88, leg.names, lty=c(1,3,5),cex=1.0)

The CI plots suggest a proper parametric distribution.

0 500 1000 1500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

u$time

u
$

s
u

rv

ple
weib
lognormal

Fig. 4.8.3. MLEs of 2 parametric survival functions based on 100 observations

We shall introduce several other methods here.

§4.8.1. Q-Q plot
For a complete data set

X1, ..., Xn from a cdf FX .
If we suspect FX belongs to a parametric distribution family, say

H0: FX = F (·, θ),
we can use probability plot to check.
First estimate the parameter θ by θ̂ (MLE etc.).

Plot of sample quantiles v.s. quantiles of F (·, θ̂) (Q-Q plot).
Let X(1) ≤ · · · ≤ X(n) be order statistics;

They are 100 1
n+1 , ..., 100 n

n+1 -th sample percentiles (quantiles) of the sample.

Let yi = sup{u : F (u, θ̂)) < i
n+1}, i = 1, ..., n.

— estimated population percentiles (quantiles).

Plot (yi, X(i)), i = 1, ..., n.
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If the plot is close to the line y = x, then F ≈ FX .
qqplot() is a function in R.
It only needs the sample and FX .
Recall the the 100p-th quantile of a cdf F is a

q = F−1(p), where F−1(p) = sup{q : F (q) < p}.

We first explain the reasoning of QQ-plot with complete data.
Complete data. Let a1 < · · · < am be distinct points among X1, ..., Xn. Since the edf
F̂ → FX a.s. on (0,∞), we expect the quantile functions (F̂ )−1 and F−1

X are close.

These (ai, F
−1
X (F̂ (ai))), i = 1, ..., m are around the line y = x or at least around

y = σx+ µ if σ 6= 1 or µ 6= 0 under H0.
The following are two QQ-plot graphs. The first one is 100 observations from Exp(1)

plotting against normal distribution using qqnorm(). The second is a QQ-plot of 100 obser-
vations from normal distribution plotting against normal distribution.
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Fig. 1. QQ-plot
For RC or IC data Suppose that X ∼ FX and (Li, Ri)’s are iid IC observations. If

we suspect that FX is some of given form, say FX = F∗(·, θ), we can also do QQ-plot as
follows.

1. Obtain the IIs based on observations (Li, Ri), i = 1, ..., n, denoted by Aj , j = 1, ..., m.

2. Obtain the GMLE of the distribution function FX , denoted by F̂∗. The GMLE F̂∗ is
redefined to be linear on each non-singleton Aj rather than a right continuous step
function with jumps only at the right endpoints of the Aj ’s, provided the Aj is a finite
set.

3. Obtain the MLE of the parameter θ, say θ̂, in F∗.
4. Denote the midpoint of the finite Aj ’s by mi’s. Plot (mi, F

−1
∗ (F̂ (mi), θ̂))’s for all i that

Ai is finite, which ideally should also be around y = x or y = σx+µ, in the latter case,
it suggests that FX(t) = F∗( t−µσ , θ).

§4.8.2. Hazard plot for RC data
(Zi, δi), i = 1, ..., n.

Plot sample integrated hazard v.s. integrated hazards of FX(·, θ̂).
To get sample integrated hazards:
a. Order Zi’s as Z[n] ≤ · · · ≤ Z[1]

(reverse order);
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b. Denote δ[i], i = 1, ..., n, correspondingly;

c. For each δ[k] = 0 (RC ones), the sample hazard is 0;

d. For each δ[k] = 1 (exact ones),

the sample hazard ĥ(Z[k]) is 1/k;

e. The sample integrated hazard at Z[k] is

Ĥ(Z[k]) = −
∑

i: Z[i]≤Z[k],δ[i]=1

log[1− ĥ(Z[i])].

(Ŝ(t) =
∏

i:Z(i)<t
(1− δ(i)

n+1−i ))

f. Plot (Ĥ(Z[k]), Ho(Z[k])), where δ[k] = 1 and Ho(x) = − logSX(x, θ̂)).

Example. Hazard plot. Use Sample 0 in Table 1.1 v.s. exponential distribution.

Table 1.2. Calculation of sample hazards
Patient Remission Reverse h(x) Integrated

Number Time Order (K) = f(x)/S(x−) Hazard
2 6 21 1/21 0.15
3 6 20 1/20 0.15
4 6 19 1/19 0.15
1 6+ 18
5 7 17 1/17 0.21
6 9+ 16
8 10 15 1/15 0.28
7 10+ 14
9 11+ 13

10 13 12 1/12 0.37
11 16 11 1/11 0.47
12 17+ 10
13 19+ 9
14 20+ 8
15 22 7 1/7 0.62
16 23 6 1/6 0.80
17 25+ 5
18 32+ 4
19 32+ 3
20 34+ 2
21 35+ 1

It is easy to see that 6+ > 6.
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Fig. 2. (Left) : Hazards plot.
Note that the Ĥ(6) appears three times as there are three exact observations at x = 6.

However, they are obviously the same. Thus we plot
(0.15, 6ρ), (0.21, 7ρ), (0.28, 10ρ), (0.37, 13ρ), (0.47, 16ρ), (0.62, 22ρ), (0.80, 23ρ),
where ρ =

∑n
i=1 δi/

∑n
i=1 Zi.

We explain the reasoning of Hazard plot with RC data.
Let a1 < · · · < am be distinct point among all exact observations. Since F̂pl → F∗ a.s.,

we expect sample cumulative hazard Ĥ → Ho a.s. (population cumulative hazard) a.s.,
thus (Ĥ(ai), Ho(ai)’s should be around the line y = x if we know FX completely.

3 ways for model checking:
(1) plot the cdf’s together with the CI band of one cdf (compare two cdf’s curves),
(2) QQ-plot (check for linearity),
(3) Hazard plot (check for linearity).

§4.8.3. Diagnostic plot under regression set-up with IC data
In parametric regression analysis, in addition to survival time X, we also observe co-

variate Z and the survival function is a function of β′Z, such as X = β′Z + W in linear
regression or S(t|z) = (So(t))

exp(β′z) in Lehmann Model (or Cox model), among others.
Typically, under the linear (or log-linear) regression there are 3 ways for model checking:

(1) plot the MLE of the parametric cdf of W together with its CI band and the GMLE,
(2) QQ-plot (check for linearity),
(3) The marginal distribution (MD) plot.

The MD plot: Instead plot the MLE F̃W and the GMLE F̂W , the MD approach plots the
GMLE ŜX(t) based on the IC data (Li, Ri)’s, and the MLE of SX under the parametric
assumption, denoted by S̃X , which is obtained as follows.

1. Let W1, ..., Wm be i.i.d. from the baseline distribution, where m is large, say 100.
2. Let Z∗

1 , ..., Z∗
m be i.i.d. from the empirical distribution of Zi’s.

3. Let X∗
i = Wi + β̂′Z∗

i , i = 1, ..., m.
4. Finally, plot the edf based on X∗

i ’s against the GMLE of SX(t).
For instance, under the log linear regression model, lnX = β′Z + W , where the baseline
survival function SW is either known (or known upto a parameter), the vectors

(lnLi − β′zi, lnRi − β′zi), i = 1, ..., n, are i.i.d. from SW ,
where either (µW , σW ) = (0, 1), or µW or σW is a parameter. One can plot SW against the
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GMLE of S(t) based on modified IC data (Li− β̂′zi, Ri− β̂′zi)’s, where β̂ is the parametric
MLE of β.

On the other hand, we can also use the following QQ-plot to check whether the IC
regression data satisfy a certain parametric distribution F∗. We now explain the QQ-plot
via the following example.
Example 1. If we suspect that conditional Z, lnX ∼ N(βtZ, σ2), where β is a p × 1
parameter and X is interval censored, we can use the following procedure to check the
assumption, based on our observations (Li, Ri, zi), i = 1, ..., n.

1. Compute the MLE of β, say β̂, based on observations (Li, Ri, zi).

2. Obtain the IIs based on (lnLi − β̂tzi, lnRi − β̂tzi), i = 1, ..., n, denoted by Aj , j = 1,
..., m.

3. Obtain the GMLE of the distribution function based on (lnLi− β̂tzi, lnRi− β̂tzi), i = 1,
..., n, denoted by F̂∗. The GMLE F̂∗ is redefined to be linear on each non-singleton Aj
rather than a right continuous step function with jumps only at the right endpoints of
the Aj ’s, provided the Aj is a finite set.

4. Plot (mi, F
−1
∗ (F̂ (mi))) for all possible i, where mi is either the midpoint or end points

of the finite Aj ’s.
If the assumption is correct, we expect a roughly linear plot.

The justification for the method is as follows.
ǫ = lnX − βtZ conditional on Z = z is normal distribution N(0, σ2).
Since Xi is interval censored by the random interval (Li, Ri],
ǫi (= lnXi−βtzi) is interval censored by the random interval (lnLi−βtzi, lnRi−βtzi],
which can be estimated by (lnLi − β̂tzi, lnRi − β̂tzi].
Since the MLE of β and the GMLE of F are consistent
under a certain regularity assumptions (see §3 and 4 ),
it should be approximately normally distributed.

We assume that conditional on Z = z, lnX has a normal distribution (N(βtz, 1)),
where β = (1, 1, 1). Z = (Z1, Z2, Z3), and
Z1, Z2 and Z3 equal 0 and ±1 with a certain probabilities.
X is under a mixed case interval censorship model.
The number of follow-up times K is a discrete uniform distribution on {1, 2, ..., 28}.
Conditional on K = k, the follow-up time Yi, i = 1, ..., k, satisfy lnYi = −5+

∑i
j=1 Uj ,

where Ui are i.i.d. from uniform distribution U(0, 1).
Here n = 374. The MLE of (β, σ) is (0.92, 1.02, 1.02, 1.06).
The resulting QQ-plot supports the normal regression model as we expected.
The method can be viewed as a pivotal method by choosing a function T of (X,Z, β)

so that T = T (X,Z, β) has a distribution function FT which does not depend on Z and T
is strictly increasing in X. For lognormal,

T = logX − βtZ.

In the above cases, T ∼ N(0, σ2).
In general, the procedure based on pivotal function is as follows:

1. Find a pivotal function T described as above.
2. Find the MLE β̂ of parameter β.
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3. Obtain the IIs based on (T (Li, zi, β̂), T (Ri, zi, β̂)), i = 1, ..., n, denoted by Aj , j = 1,
..., m.

4. Obtain the GMLE of the distribution function based on (T (Li, zi, β̂), T (Ri, zi, β̂)), i =
1, ..., n, denoted by F̂∗. The GMLE F̂∗ is redefined to be linear on each non-singleton
Aj , provided the Aj is a finite set.

5. Plot (mi, F
−1
∗ (F̂∗(mi))), for all possible i.

If the assumption is correct, we expect a roughly linear plot.

Example 2 Suppose that conditional on Z = z, X has a Weibull distribution. That is,

SX(x) = e−x
κeβ

tz
, x > 0. not a nice form

One of such pivoting functions is

T = Xκeβ
tZ = (

X

e
−βtZ

κ

)κ,

where T has an Exponential distribution with survival function ST (t) = e−t, t > 0.
If Xi is interval censored by (Li, Ri], then Ti is interval censored by (T (Li, zi, (β, κ)),

T (Ri, zi, (β, κ))] = (Lκi e
βtzi , Rκi e

βtzi ] = (Li,β,κ, Ri,β,κ]. Since (β, κ) are unknown and nei-

ther are Li,β,κ and Ri,β,κ, we replace β and κ by their MLE. Let F̂T be the GMLE of FT
based on the pivoted data (T (Li, zi, (β̂, κ̂)), T (Ri, zi, (β̂, κ̂))], i = 1, ..., n. Finally we plot
F̂∗ against FT , the exponential distribution Exp(1).

A nicer form is T = ( X
exp(β′z) )

κ with SX(x) = exp(−( x
exp(β′z) )

κ).

Remark. It is worth mentioning that under the Cox model, the first two approach, i.e.,
the parametric and GMLE of SW plots and the QQ-plot may not be feasible. The reason is
that there may not exists a pivotal function.
§4.8.3.2. Homework:

In the following, make comments on whether the plots suggest FX(x) = F∗(x−µσ ).

1. The Weibull distribution in Example 2 can also be re-parametrized as a location-scale
parameter family. Find the pivot function T and derive the distribution function FT .
What is the revision of the procedure for a diagnostic plot in Example 2 ?

2. Do a QQ-plot using sample 0 in Leukaemia data on page 2 v.s. exponential distribution
Exp(1). Do you think the exponential distribution is appropriate ? If so, what is your
guess of ρ according to the slope of fitting straight line ?

3. Q-Q plot:

3.a. Use sample 1 in Leukaemia data on page 2 v.s. exponential distribution.

3.b. Generated a random sample of size 100 from an exponential distribution v.s. ex-
ponential distribution, normal distribution.

4. Hazard plot. Generate a random sample of size 100 from a RC model, say

X ∼ Weibull distribution (nontrivial one),

Y ∼ Uniform distribution,

Draw a hazard plot v.s. Weibull (that you used) and a hazard plot v.s. a normal
distribution with the mean and variance equal those of the Weibull distribution you
used.
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5. Use sample 1 in Leukaemia data on page 2 to check whether Weibull distribution, ex-
ponential distribution, lognormal distribution, or log-logistic distribution is appropriate
for the data using the idea in the R-program in ch4.r.

Chapter 5. Semi-parametric Analysis
§5.1. Introduction. Suppose

X is a random survival time,
Z is a p× 1 covariate (explanatory) (random) vector
(which sometimes is assumed to be nonrandom);
X is subject to interval censoring;
Observable random vector is (L,R,Z).

The semi-parametric analysis deals with regression data. It assumes that X|Z satisfies a
certain model, i.e., Cox’s model or the LR model, but the baseline distribution FX|z(·|0) is
unknown.
Example 1. Cancer research. In addition to observe the failure time of a patient, we also
observe Zt = (Z1, Z2, Z3, Z4), where

Z1 — # of relatives who had cancer;
Z2 — age of the patient;
Z3 — tumor size;
Z4 — smoking habit.

Example 2. Two-sample problem. There are two independent samples,
Z = 1

(patient is from sample 1).

Two typical models are considered, among other models.
1. Proportional hazards (PH) model: Conditional on Z = z, the hazard function

h(t|z) = ψ(β, z)ho(t), t < τ, (1.1)

where τ = sup{t : So(t) > 0}, ho is a (baseline) hazard function, and ψ is a function of
(β, z). If So is a survival function of a continuous random variable, then

SX|Z(t|z) = (So(t))
ψ(β,z) (HX|Z(t|z) = ψ(β, z)Ho(t)) (1.2)

where So is a (baseline) survival function.
The PH model is also called the Cox regression model.
For an arbitrary random variable,
Eq. (1.1) defines a PH family (or model), and
Eq. (1.2) defines a Lehmann family or proportional integrated hazards family.
If S is absolutely continuous, then equations (1.1) and (1.2) are the same.
Otherwise, (1.1) and (1.2) are different models. None of them is a special case of the

other model.
(F (x)− F (a) =

∫ x

a
F ′(t)dt ∀ x)

2. Accelerated lifetime model: Conditional on Z = z,

X = Xo/ψ(β, z) (lnX = lnXo − lnψ(β, z)). (1.3)

SX|Z(t|z) = So(ψ(β, z)t) (So = SXo).
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Under either model, it is a parametric problem, if So is known, and is of a parametric form;
otherwise, it is a semi-parametric one (i.e., So is an arbitrary survival function).

Most usual forms of ψ:

{

eβ
tz ——- log linear;
log(1 + eβ

tz) ——- logistic.
ψ ≥ 0. (1.4)

§5.2. PH model with RC data.
§5.2.1. Continuous RC data.
Assume:

Conditional on Z = z, X ∼ F (·|z) with its hazard satisfies (1.1);
Y ∼ G;
(X,Z) and Y are independent;
F and G are absolutely continuous;
Observe (M, δ,Z) = (min{X,Y },1(X≤Y ),Z).
Let (Mi, δi, zi), i = 1, ..., n be i.i.d. copies of (M, δ,Z).
The log likelihood function is

L(β) =ln

n∏

i=1

(f(Mi|zi))1e,i(S(Mi|zi))1r,i

=ln[
∏

i: ex

h(Mi|zi)
n∏

i=1

S(Mi|zi)]

=
∑

i: ex,Mi<τ

lnψ(β, zi) +
∑

i: ex,Mi<τ

lnho(Mi) +
n∑

i=1

ψ(β, zi)lnSo(Mi).

This approach needs to estimate β and So in the same time.
Cox (1972) uses a conditional probability approach and a partial likelihood approach

with some assumptions to define a new likelihood function, which only involves β. We first
give the likelihood functions and then introduce the derivation.
Notation:

a1 < · · · < ag —- all the distinct exact observations.
By rearranging the index, assume Xi = ai, i = 1, ..., g.
Rj = R(aj) = {i : Mi ≥ aj},
φ(i) = ψ(β, zi), (see (1.4))
D = {i : δi = 1, i = 1, ..., n} (note that all exact observations are distinct),
Define a modified likelihood function

lik =
∏

i∈D

φ(i)
∑

k∈Ri
φ(k)

. (2.1)

The log likelihood

l(β) = lnlik =
∑

i∈D
[lnφ(i)− ln

∑

k∈Ri

φ(k)]. (2.2)

The Maximum Partial likelihood estimator MPLE β̂ of β is a value of b that maximizes l(b).

Remark. Under certain assumptions, the MPLE β̂ is consistent and asymptotically nor-

mally distributed. Its covariance matrix can be estimated by −
(
∂2l(β)
∂β∂βt |β=β̂

)−1

.
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Hereafter to the end of §5.2, let

ψ(β, z) = eβ
tz. (2.3)

Then (2.2) becomes

l(β) = lnlik =
∑

i∈D
[βtzi − ln

∑

k∈Ri

eβ
tzk ].

Example 1. 5 observations (Mi, δi, zi)’s: (2.5, 1, 2), (2, 0, 5), (4, 0, 1), (1, 1, 1), (7, 1, 2).
lik= ?
Sol: Reorder (Mi, δi, zi)’s as

(1, 1, 1), (2, 0, 5), (2.5, 1, 2), (4, 0, 1), (7, 1, 2),.
Rearrange (according to exact obs.) (Mi, δi, zi)’s as
(1, 1, 1), (2.5, 1, 2), (7, 1, 2), (2, 0, 5), (4, 0, 1),.
We use this order from now on.
3 exact observations: (a1, a2, a3) = (1, 2.5, 7).
D = {1, 2, 3},
R1 = R(1) = {1, 2, 3, 4, 5}, R2 = R(2.5) = {2, 3, 5}, R3 = R(7) = {3};
φ(i)’s are eβ , e2β , e2β , e5β , eβ ,

lik =
eβ

2e2β + e5β + 2eβ
· e2β

2e2β + eβ
· e

2β

e2β
=

1

(2 + e−β)(2eβ + e4β + 2)
.

§5.2.1.2. Homework
1. Derive the estimate of the covariance matrix of the MPLE β̂ under the assumptions in

this section and assuming (2.3).
2. Derive the MPLE of β in Example 1.
3. Construct a level-0.10 two-sided test for H0 : β2 = 0, where βt = (β1, β2). Give the

expression as explicitly as possible.
§5.2.2. Discrete RC data.

If Fo and G are continuous, the order statistics of the observations satisfy

M(1) < M(2) < · · · < M(n).

In this section, we consider the case that there are ties in the observations. Using the
idea of conditional probability, Cox suggests a likelihood function for the discrete RC data
as follows.
Notations:

a1 < · · · < ag are all distinct exact observations;
dj is the # of deaths at aj ;
Sj is the collection of all the combinations of selecting dj elements out of those in R(aj);
rj = |R(aj)|;
Rj = R(aj) = {i : Mi ≥ aj},
Dj = {i : δi = 1,Mi = aj};
φ(i) = ψ(β, zi) (often = eβzi).

A log likelihood is defined as

l(β) = ln

g
∏

j=1

∏

i∈Dj
φ(i)

∑

(i1,...,idj )∈Sj
φ(i1) · · ·φ(idj )

. (lik =
∏

i∈D
φ(i)∑

k∈Ri
φ(k)

)
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The MPLE β̂ of β maximizes l(β).
Remark. The likelihood l(β) is actually equivalent to

l(β) =







ln
∏g
j=1

∏

i∈Dj
φ(i)

∑

(i1,...,idj
)∈Sj

φ(i1)···φ(idj )
if δ(n) = 0;

ln
∏g−1
j=1

∏

i∈Dj
φ(i)

∑

(i1,...,idj
)∈Sj

φ(i1)···φ(idj )
if δ(n) = 1.

as h(x) = ψho(x), x < τ , where τ = sup{t : So(t) > 0},
as well as the last factor is 1 if δ(n) = 1.
Remark. For discrete r.v., the form of log likelihood function

L(β) =
∑

i: ex

lnψ(β, zi) +
∑

i: ex

lnho(Mi) +

n∑

i=1

ψ(β, zi)lnSo(Mi)

is not applicable, as h(t) = f(t)
S(t−) 6=

f(t)
S(t) and S(t|z) 6= (So(t))

exp(βz).

Remark. Under certain assumptions, the MPLE β̂ is consistent and asymptotically nor-

mally distributed. Its covariance matrix can be estimated by −
(
∂2l(β)
∂β∂βt |β=β̂

)−1

.

§5.2.2.2. Homework
1. Suppose that ψ is log linear and there are 6 data: (Mi, δi, (z1, z2))’s are

(4, 1, (1, 0)), (1, 0, (1, 1)), (5, 1, (0, 1)), (4, 1, (1, 0)), (1, 1, (0, 0)), (4, 0, (0, 1)).

Compute the MPLE of β̂ if it exists.
§5.2.3. Conditional probability approach in continuous case.
By continuous assumption, there are no ties in exact observations.
Since we shall make use of independence, we would not reorder the Mi’s.
For each uncensored time aj = Mi,

denote Rij = R(aj), j = 1, ..., g,
where g =

∑n
i=1 δi.

Cox made the following assumptions:
1. there is only one death at aj and thus we can pretend that

there is only one death in [aj , aj + ǫ) for a small ǫ;
2. death only occurs in [aj , aj + ǫ), j = 1, ..., g.

Then

P{the i-th person died in [aj , aj + ǫ)|the i-th person survived time aj) (0)

=P (Xi ∈ [aj , aj + ǫ)|Xi ≥ aj)
=P (Xi ∈ [aj , aj + ǫ))/P (Xi ≥ aj)
≈h(aj |zi)ǫ,

as h(t)ǫ = f(t)ǫ
S(t−) and P{the k-th death in [aj , aj + ǫ)} ≈ f(aj |zi)ǫ},

P{ a death in [aj , aj + ǫ)| each in Rij survives time aj} (1)
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(
=P{∪k∈Rij

Ak| ∩h∈Rij
Ch} (Ak = {Xk ∈ [aj , aj + ǫ)} and Ch = {Xh ≥ aj})

(as any one in the risk set may die)
)

=
∑

k∈Rij

P{ the k-th died in [aj , aj + ǫ)| each in Rij survives time aj}

=
∑

k∈Rij

P{Ak| ∩h∈Rij
Ch}

=
∑

k∈Rij

P{Ak|Ck ∩ ∩h∈Rij
,h 6=kCh}

=
∑

k∈Rij

P{Ak|Ck} (by independence of observations)

=
∑

k∈Rij

P{ the k-th died in [aj , aj + ǫ)| the k-th survived time aj}

≈
∑

k∈Rij

h(aj |zk)ǫ (by (0))

i.e.
∑

k∈Rij

P{Ak| ∩h∈Rij
Ch} ≈

∑

k∈Rij

h(aj |zk)ǫ (2)

Let Bi = {one death in [aj , aj + ǫ) from Rij , and each in Rij survived aj},

P{Ai|Bi}
=P{Ai|(∪h∈Rij

Ah) ∩ (∩k∈Rij
Ck)} (Ah = {Xh ∈ [aj , aj + ǫ)} and Ck = {Xk ≥ aj})

=P{Ai| ∩h∈Rij
Ch}

/
P{∪k∈Rij

Ak| ∩h∈Rij
Ch}

(as P (A|BC) = P (AC)
P (BC) =

P (AC)
P (C)

P (BC)
P (C)

if A ⊂ B)

≈ h(aj |zi)ǫ
∑

k∈Rij
h(aj |zk)ǫ

(by (1) and (2))

=
φ(i)

∑

k∈Rij
φ(k)

(since h(aj |zi) = φ(i)ho(aj)). (3)

Cox defines the conditional likelihood to be

lik =
∏

i∈D
P{Ai|Bi} =

∏

i∈D

φ(i)
∑

k∈Rij
φ(k)

.

§5.2.4. Partial likelihood approach in continuous case

Let that aj = Mij , j = 1, ..., g. Let
Aij = {the ij-th person died in [aj , aj + ǫ)} and
Bij = {one death in [aj , aj + ǫ) from Rij , and each in Rij survived aj}, i = 1, ..., g.
Then define a full likelihood under assumptions 1 and 2 as
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L = P{Ai1Bi1 · · ·AigBig}.
Since P (ABC) = P (A)P (B|A)P (C|AB),

L = P{Ai1Bi1 · · ·AigBig} =P{Bi1Ai1 · · ·BigAig}
=P (Bi1)P (Ai1 |Bi1)P (Bi2 |Bi1Ai1)P (Ai2 |Bi1Ai1Bi2)× · · ·
× P (Big |Bi1Ai1 · · ·Big−1Aig−1)P (Aig |Bi1Ai1 · · ·Big−1Aig−1Big )

=P (Ai1 |Bi1)P (Ai2 |Ai1Bi1Bi2) · · ·P (Aig |Ai1 · · ·Aig−1Bi1 · · ·Big )

× P (Bi1)P (Bi2 |Ai1Bi1) · · ·P (Big |Ai1 · · ·Aig−1Bi1 · · ·Big−1)

=P (Ai1 |Bi1)P (Ai2 |Bi2) · · ·P (Aig |Big ) (= lik)

× P (Bi1)P (Bi2 |Ai1Bi1) · · ·P (Big |Ai1 · · ·Aig−1Bi1 · · ·Big−1)

by independence.

lik = P (Ai1 |Bi1)P (Ai2 |Bi2) · · ·P (Aig |Big ). ((see (3) in §5.2.3))

Thus lik is also called the partial likelihood by Cox.
§5.2.5. Nonparametric estimation of So.
Under the PH model: h(t|z) = ψ(β, z)ho(t) and

if X is continuous then S(t|z) = (So(t))
ψ(β,z).

Baseline integrated hazard:
Ho(t) =

∫ t

0
ho(u)du (cts)

or
∑

u≤t ln(1− ho(u)) ≈∑u≤t ho(u) (discrete).
So(t) = exp(−Ho(t)).

There is no MPLE of So under Cox’s assumption, though
Cox’s maximum partial likelihood estimator (MPLE) of β is a semi-parametric estimator.
Cox proposes an estimator

Ŝo(t) = exp(−
∑

aj≤t

dj
∑

l∈R(aj)
φ̂(l)

). (4)

Note that if φ(i) = 1,

Ŝo(t) = exp(−
∑

aj≤t

dj
rj

) = exp(−
∑

aj≤t
ĥ(aj)).

Breslow (1972, JRSS,B) also proposes another estimator. They can be computed by R codes:
library(MASS)
library(survival)
u=coxph(Surv(m,d)∼ x)
y=survfit(u)
plot(y)

> library(MASS)
> library(splines)
> library(survival)
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> attach(gehan)
> gehan

pair time cens treat
1 1 1 1 control
2 1 10 1 6−MP
3 2 22 1 control
4 2 7 1 6−MP
5 3 3 1 control
6 3 32 0 6−MP

> coxph(Surv(time,cens)∼treat,gehan,method=”exact”) # discrete

coef exp(coef) se(coef) z p
treatcontrol 1.6282 5.0949 0.4331 3.759 0.00017

Likelihood ratio test=16.25 on 1 df, p=5.544e-05

n= 42, number of events= 30
> coxph(Surv(time,cens)∼treat,gehan,method=”breslow”)

coef exp(coef) se(coef) z p
treatcontrol 1.5092 4.5231 0.4096 3.685 0.000229

Likelihood ratio test=15.21 on 1 df, p=9.615e-05

n= 42, number of events= 30
> (x=coxph(Surv(time,cens)∼treat,gehan,method=”efron”))

coef exp(coef) se(coef) z p
treatcontrol 1.5721 4.8169 0.4124 3.812 0.000138

Likelihood ratio test=16.35 on 1 df, p=5.261e-05

n= 42, number of events= 30
> (x=coxph(Surv(time,cens)∼treat))

coef exp(coef) se(coef) z p
treatcontrol 1.5721 4.8169 0.4124 3.812 0.000138

Likelihood ratio test=16.35 on 1 df, p=5.261e-05

n= 42, number of events= 30
> summary(x)

n= 42, number of events= 30

coef exp(coef) se(coef) z Pr(> |z|)
treatcontrol 1.5721 4.8169 0.4124 3.812 0.000138 ∗ ∗ ∗

exp(coef) exp(−coef) lower.95 upper.95
treatcontrol 4.817 0.2076 2.147 10.81

Concordance= 0.69 (se = 0.041 )

Likelihood ratio test= 16.35 on 1 df, p=5e-05

Wald test = 14.53 on 1 df, p=1e-04

Score (logrank) test = 17.25 on 1 df, p=3e-05

> (y=survfit(x, conf.type=”log-log”)) # baseline survival function

n events median 0.95LCL 0.95UCL
42 30 13 8 22

> summary(y)
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time n.risk n.event survival std.err lower95%CI upper95%CI
1 42 2 0.964 0.0254 0.8604 0.991
2 40 2 0.926 0.0367 0.8098 0.973
3 38 1 0.907 0.0414 0.7834 0.962
...

23 7 2 0.169 0.0784 0.0516 0.344
> plot(y)
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1
.0

Fig. 1. Plot of So under the Cox model

Cox proposes Ŝo(t) = exp(−∑aj≤t
dj∑

l∈R(aj)
φ̂(l)

).

Breslow (1972, JRSS,B) also proposes another estimator of So (computed by R codes).
The third estimator is the SMLE which maximizes the likelihood function directly, where

Lo(F ) =

n∏

i=1

(S(Mi − |zi)− S(Mi|zi))δi(S(Mi|zi)))1−δi .

which corresponding to the PH model, and

 L(F ) =
∏

i: ex

[(So(Mi−))ψ(β,zi) − (So(Mi))
ψ(β,zi)]

∏

i: rc

(So(Mi))
ψ(β,zi). (5)

which corresponding to the Lehmann model. They are the same if X is continuous.
§5.2.5.2. Homework. 5 (Mi, δi, zi)’s: (2.5, 1, 2), (2, 0, 5), (4, 0, 1), (1, 1, 1), (7, 1, 2).

1 Which of the three MPLEs of β through coxph() is the solution in §5.2.1.2.
2 Derive Ŝo with three methods: (2.a) R program, (2.b) with Eq. (4) in this section, (2.c)

with Eq. (5) and β = β̂ derived in §5.2.1.2.
§5.3. Extension of PH model with IC data

The conditional probability approach does not work for IC data under the PH model.
Finkelstein (1986, Biometrics) first considers the extension of the PH model to IC data. She
defines the SMLE of β to be the one that maximizes the likelihood function

 L(β, So) = (5.3.1)
∏

i: Li<Ri

[(So(Li))
ψ(β,zi) − (So(Ri))

ψ(β,zi)]
∏

i: Li=Ri

[(So(Li−))ψ(β,zi) − (So(Ri))
ψ(β,zi)]
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β and So need to be estimated simultaneously.
Remark. The likelihood corresponds to proportional integrated hazards model, not really
the PH model, unless one assumes that X is continuous. If X is discrete, then the likelihood
under the PH model is different.
Since h(t) = f(t)/S(t−) and S(t) =

∏

xi≤t,xi∈Df
(1− h(xi)),

f(t|z) = h(t|z)S(t− |z), where Df is the set of points at which f > 0),
the correct generalized likelihood of the PH model with discrete IC data is

 L(β, ho) =
∏

i: Li<Ri

[S(Li|zi)− S(Ri|zi)]×
∏

i: Li=Ri

[h(Li|zi)S(Li − |zi)] (5.3.2)

where h(t|z) =

{
exp(βz)ho(t) if t < τ or t < M(n)

1 if t = τ or t = M(n)
,

S(t|z) =
∏

xi≤t,xi∈Dfo
(1− h(xi|z)), and

S(t− |z) =
∏

xi<t,xi∈Dfo
(1− h(xi|z)).

Notice that ho(t) = fo(t)/So(t−) and So(t−) =
∏

xi<t,xi∈Dfo
(1− ho(xi)).

Remark. The likelihood in (5.3.2) is actually applicable for both continuous and discrete
X|z, though (5.3.2) and (5.3.1) will result in different estimates (due to S(Li−) in 5.3.2)).

In order to compute the SMLE of So in both the PIH model (5.3.1) or the PH model
(5.3.2), let A1, ..., Am be the II’s induced by Ii’s, the observed intervals, and pj = µF (Aj).
Consider So of form

So(t) =
∑

j: Aj∩(t,∞] 6=∅
pj .

The variance of the SMLE β̂ can be estimated by a p× p matrix V̂11/n, where

(
V̂11 V̂12
V̂ t12 V̂22

)

= Ĵ−1, (J = − ∂2(lnL)/n
∂(βt,p1,...,pm−1)∂(βt,p1,...,pm−1)′

)

Ĵ is the empirical Fisher information matrix, i.e., minus the second partial derivatives matrix
of the 1

n log likelihood function with respect to (βt, p1, ..., pm−1), with all parameters replaced
by their SMLE. Note that lnL = O(n) and (lnL)/n = O(1).

Q: Σβ̂ = V11 ? Σβ̂ 6= V11 ? Σβ̂ ≈ V11 ? Σβ̂ = V11/n ? Σβ̂ 6= V11/n ? Σβ̂ ≈ V11/n ?

Finkelstein (1986, Biometrics) suggests to use the Newton-Raphson method to compute
the SMLE of (β, So). It turns out most of the time, the approach does not work. The reason
is that it is often that the SMLE of some pj is zero and the algorithm will lead to a point

which is not an SMLE but pj = 0 for some j. The derivative ∂  L
∂pj

< 0. Then the algorithm

has to stop. The following is such a counterexample.
Example 1. Consider fitting the PIH model with 5 observations from two groups, corre-
sponding to Zi = 0 or 1.
(Li, Ri, Zi) (2, 5, 0) (3, 4, 0) (5, 9, 1) (1, 6, 1) (7, 8, 0)

II : (3, 4] (5, 6] (7, 8]
weight : p1 p2 p3

p1 + p2 + p3 = 1, pi ≥ 0.

Note that the baseline survival function S satisfies
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S(4−) = 1,
S(4) = S(6−) = p2 + p3,
S(6) = S(8−) = p3 and
S(8) = 0.

The likelihood is

 L =[S(2)− S(5)][S(3)− S(4)][S(5)e
β − S(9)e

β

][S(1)e
β − S(6)e

β

][S(7)− S(8)]

=p1p1(p2 + p3)e
β

(1− peβ3 )p3 (simpler)

L = ln L = log[p21p3(1− p1)e
β

(1− peβ3 )] as p1 + p2 + p3 = 1.

The parameter space is Ω = {(β, p1, p3) : β ∈ (−∞,∞), p1 ≥ 0, p3 ≥ 0, p1 + p3 ≤ 1} with
p2 = 1− p1 − p3. For convenience, we write α = eβ hereafter. Thus,

L = 2 log p1 + log p3 + α log(1− p1) + log(1− pα3 ).

Since the likelihood function has only three variables, it can be shown by direct derivation
that the GMLE of (β, p1, p2, p3) is approximately (−0.461, 2/3, 0, 1/3).

The NR method points to p2 < 0, which maximizes L without constraint (see the figure
below). So it stops at the boundary.

But the SMLE needs to be searched on the boundaries: what are they ?) It reduces to
2 dimentions (α, pi).

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p1

p
3

p2<0
p2=0 on hypotenuse

parameter space

p2>0

initial point

NR step direction to max point

SMLE of (p1,p3)

Fig 2. Illustration of the drawback of NR method.
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A feasible algorithm for the GMLE.
It can be illustrated by the next figure.
Abusing notations, we identify S with a vector (S1, ..., Sm). Similarly, we identify S(i)

with (S
(i)
1 , ..., S

(i)
m ).

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
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0
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0
.6

0
.8
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.0

p1

p
3

initial point

move p1
move p2

move p3

SMLE of (p1,p3)

max L

Fig. 3. Illustration of the S-step in the feasible algorithm
Step 0. Let b(0) = 0 be the initial estimate of β and the GMLE of a survival function with

observations (Lj , Rj), j = 1, ..., n be the initial estimate of S(0).

Step i+ 1 (i ≥ 0). Let b(i) and S(i) be the updated values of b and S at Step i.
Do b=step and S-step as follows.

* (b-step) With S = S(i) fixed, find a b so that the log likelihood function L(S(i), ·)
increases. Denote the up-dated estimate b by b(i+1). In particular, one can use the NR
method to obtain the maximum point b of the log likelihood function with the given
S = S(i).

* (S-step) With b = b(i+1) fixed, search a non-increasing S (= (S1, ..., Sm)) so that the log
likelihood function L(·, b(i+1)) is maximized (or increases). Since Sj = pj+1 + · · ·+ pm
for some j, let p(i+1),0 = p(i). At Sub-step j (j = 1, ..., m), update (p1, ..., pm) by

(p
(i+1),j
1 , ...p

(i+1),j
m ), where p

(i+1),j
h = ph,uo and

ph,u =







p
(i+1),j−1

h
+u

1+u if h = j,

p
(i+1),j−1

h

1+u if h 6= j,

h = 1, ...,m, uo > 0 is a number maximizing L(b(i+1), S·,u) where S·,u = (S1,u, ..., Sm,u)
and Si,u = pi+1,u + · · ·+ pm,u.
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Note: If such uo is difficult to choose, one may choose a uo satisfying

L(b(i+1), S(i+1),j) > L(b(i+1), S(i+1),j−1). (3.1)

In particular, if ∂
∂u lnL(b(i+1), S·,u)

∣
∣
u=0

> 0, uo = ck ∂
∂u lnL(b(i+1), S·,u)

∣
∣
u=0

, where
S·,u = (S1,u, ..., Sm,u), c ∈ (0.1), and k is the smallest non-negative integer such that
Inequality (3.1) holds.

Stop at convergence.

Remark. The restriction u > 0 can be replaced by u > −p(i+1),j−1
h .

If X|z is not continuous, (5.3.1) is not the likelihood function of the PH model.
Now consider fitting Cox’s regression model (5.3.2).
First compute S(Li|zi)− S(Ri|zi) in the following table.

(L,R, z) S(L), S(R) S(L|z)− S(R|z) simplification
(2, 5, 0) 1, S(4|0) 1− (p2 + p3) p1
(3, 4, 0) 1, S(4|0) 1− (p2 + p3) p1
(5, 9, 1) S(4|1), 0 (1− eβp1)− 0 1− eβp1
(1, 6, 1) 1, S(6|1) 1− (1− eβp1)(1− eβ p2

p2+p3
) 1− (1− eβp1)(1− eβ p2

1−p1 )

(7, 8, 0) S(6|0), 0 p3 − 0 1− p1 − p2

The likelihood is L = ln
∏

i(S(Li|zi)− S(Ri|zi)) =

2lnp1 + ln(1− p1 − p2) + ln[1− eβp1] + ln[1− (1− eβp1)(1− eβ p2
1− p1

)]

§5.3.2. Homework.
1. Verify the GMLE of (β, p1, p2, p3) for the data related to the figure

is approximately (−0.461, 2/3, 0, 1/3).
You do not need to use the algorithm mentioned above.

2. Show that the GMLE of (β, p1, p2, p3) under likelihood (5.3.2) is (−0.288, 2/3, 0, 1/3)
(eβ = 3/4).

§5.4. Accelerated lifetime (AL) model and regression analysis with IC data
The AL model (or the log linear regression model) assumes that conditional on Z = z,

X = T/eβ
tz.

For simplicity, we consider p = 1. Then conditional on Z = z,

lnX = lnT − βz ( often written as lnY = βX + α+ ǫ)

lnT has a distribution which does not depend on β and Z, E(lnT ) = α and σ2
lnT = σ2.

For simplicity, we shall replace β, lnX and lnT by −β, X and α+ ǫ, respectively.
That is, the ordinary linear regression set-up:

X = βz + α+ ǫ, where E(ǫ) = 0 and V ar(ǫ) = σ2.

Here βz is interpreted as β′z. For simplicity, we only consider the univariate case.
Question: (α, β) = ?
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If one has complete data, (Xi, zi), i = 1, ..., n,
the least squares estimate (LSE) of β is the one that minimizes

SS(α, β) =
∑n
i=1(Xi − α− βzi)2.

The solution is

(
α̂
β̂

)

= (U tU)−1U tX, where U =





1 z1
...

...
1 zn



 and Xt = (X1, ..., Xn).

The least squares estimate can be viewed as the solution of

(α, β) = argmin r(a, b), where r(α, β) = n

∫

t2dF̂α,β(t),

where F̂α,β is the e.d.f. based on observations Wi(α, β) = Xi − α− βzi, i = 1, ..., n.
Moreover, the LSE is also the MLE under the normal distribution.

Thus it is the solution to the equation ∂ln L
∂β = 0 and ∂ln L

∂α = 0 under N(µ, σ).

Definition. So(t) = SX|Z(t|0) is called the baseline survival function.

Let W = α+ ǫ, τo = τCo , where Co = Y − βZ and τCo = sup{t : FCo(t) < 1}.
Under the standard right censorship model, we say that the parameter is identifiable if

S(t− bz) = So(t− βz) ∀ z and ∀ t ∈ D, where

D =







{t : t < τo} if P (Y = τY ) = 0 < SW (τo−)
{t : t ≤ τo} if P (Y = τY )SW (τo) > 0
(−∞,∞) if SW (τo−) = 0 or P (Y = τY )SW (τo−) > 0 = SW (τo)

=> (S(t),b) = (So(t), β) ∀ t ∈ D, where τM = sup{t : SM (t) > 0}.
Example 1. Suppose E(Xi) = µ + αi, i = 1, 2. Then (µ, α1, α2) is not identifiable. e.g,
E(X1) = 2 and E(X2) = 5 yield (µ, α1, α2) = (0, 2, 5) or (2, 0, 3), not uniquely determined.
Theorem 1. (Yu and Dong (2019)) Suppose that τo <∞. Then
(a) The survival function SW (t) is identifiable iff t ∈ D.
(b) The parameter β is identifiable iff Bz0 6= ∅, where z0 ∈ Dz such that τY − βzo = τo and

Bz0 =

{

(w1, z1, ..., wp, zp) : z1 − z0, ..., zp − z0 are linearly independent,

zi ∈ Dz, wi ∈ DW and wi + β′zi

{

≤ τY if P (Y = τY ) > 0
< τY otherwise

}

Theorem 2. (Yu and Dong (2019)) Suppose that τo =∞.
(a) The survival function SW (t) is identifiable for each t.
(b) The parameter β is identifiable iff ∃ z0 ∈ Dz such that Bz0 6= ∅, where
Bz0 =

{
(z1, ..., zp): z1 − z0, ..., zp − z0 are linearly independent, and zi ∈ Dz

}
. Here

z0 = 0 if 0 ∈ Dz, otherwise z0, ..., zp are linearly independent vectors belonging to Dz.
Remark. Under the standard right censorship model, a sufficient condition for identifia-
bility is So(τM ) = 0 and Z takes on p + 1 distinct values 0, z1, ..., zp and z1, ..., zp are
linearly independent.

Under right censoring, there are several estimators:
(1) Miller’s estimator. (1976, Biometrika).
(2) Buckley-James estimator (1979, Biometrika).
(3) M-estimator approach (Zhang and Li (1996, Annals of Statistics)
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(4) SMLE (Yu and Wong (2003,JSCS))
(5) Modified SMLE (Yu and Wong (2005, Technometics))

There are three issues for each estimator:
(1) How to justify the estimator ?
(2) How to derive the estimate ?
(3) Is it consistent or efficient ?

§5.4.1. Miller Estimator (1976, Biometrika). The estimator of (α, β) with RC data is

(α̂, β̂) = argmin
a,br(a,b) (that minimizes r(a,b) over all (a,b)), where

r(a,b) = n

∫

t2dF̂
a,b(t), F̂ = F̂

a,b is the GMLE of Fǫ based on (Wi(a,b), δi)’s,

and Wi(a, b) = Mi − a− bzi.
If FX(τY ) < 1, then Miller’s estimator is not consistent, as α = E(ǫ) is not identifiable.

Let si, ..., sm be the weight assigned by F̂ to the II’s. If the largest observation is right
censored, he suggested to pretend that it is exact to avoid assigning weight to +∞ and thus
r(α, β) = +∞. Note that si’s are only functions of β not of α, as changing α only shifts the
II’s and the corresponding intervals, but not the weights. If we let F̂o be the PLE based on
(Mi − βzi, δi)’s and F̂α the one based on (Mi −α− βzi, δi), then F̂α(t) = F̂o(t+α). Let η1,
..., ηm be all the distinct exact observations based on Mi − βzi’s.





α : 0 c
II ′s : ηj ηj − c

weights : sj sj





So we write sj = sj(β) and ηj = ηj(β). Denote wi(β) the weight assigned by F̂ to each
observation (Mi − βzi, δi) (treating each observation as one unit, even if there are ties).

Note that we may have ties at ηj , say, there are h exact observations such that Xik −
βzik = ηj for k = 1, ..., h. Then wik = sj/h for each k. Then

r(α, β) = n

n∑

i=1

(Mi − α− βzi)2wi(β).

Taking derivative of r(α, β) w.r.t. α and setting the derivative to be zero yield

α = α̂(β) =

n∑

i=1

wi(β)(Mi − βzi). (1.0)

Thus it suffices to search β̂ that minimizes

H(β) =
n∑

j=1

wj(β)[Mj − α̂(β)− βzi]2. (1.1)

Miller suggested the following iterative procedure:

1. Assign an initial value β =

∑

i: ex
Xi(zi−zu)

∑

j: ex
(zj−zu)2

, where zu ( Xu) is the average of zi’s (Xi’s)

corresponding to exact observations of Xi.
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2. Obtain the II’s, ηj(β) and the GMLE of sj(β)’s based on (Mi − βzi, δi) with the given
β, and compute wi(β).

3. Update β by

∑n

i=1
wi(β)Xi(zi−zw)

∑n

j=1
wj(β)(zj−zw)2

, where zw =
∑n
j=1 wjzj .

4. Repeat steps 2 and 3 until β converges or oscillates between two values. In the latter
case, take the midpoint as an estimate of β.

The variance of β can be estimated by

σ̂2
β̂

=

∑n
j=1 wj(β̂)(Mi − α̂− β̂zi)2

n
∑n
j=1 wj(β̂)(zi − zw)2

, comparing to σ2/
n∑

i=1

(zi − z)2.

The consistency and asymptotic normality were considered under the assumption that

P{X is not censored|X = t} > 0 for all possible t (1.2)

and the censoring distribution is of form

G(y|z) = Go(y − βz), where Go is a cdf.

However, the estimator has not been proved to be asymptotically efficient even under the
normal assumption.

Remark For IC data, if we replace the PLE by GMLE, the above procedure can be adopted,
provided we define that the GMLE only has jumps at midpoints of the II’s. However, the
consistency and asymptotic normality have not been verified.

§5.4.1.2. Homework. There are 4 observations (Mi, δi, zi)’s: (3, 1, 2), (4, 0, 1), (1, 1, 1),
(7, 1, 2). Find the Miller estimator of β under the linear regression model. Xi = βzi + ǫi.
You are able to find the solution explicitly, because there are at most 6 distinct values of
Ŝb(Ti(b)) (as a function of b) for each fixed i, where Ti = Mi − bzi.
§5.4.2. Buckley-James Estimator with RC data (1979, Biometrika).
First review the LR model with complete data. The LR model:

Xi = α+ β′zi + ǫi, i = 1, ..., n, β ∈ Rp, with i.i.d. observations (Xi, zi)’s.
The common estimator is the LSE, which is the solution to

argmin
a,b

n∑

i=1

(Xi − a− bzi)2 (= argmin
a,bn

∫

t2dF̂
a,b(t)),

where F̂ = F̂
a,b is the GMLE based on Xi − a− bzi’s.

Or the LSE of β is the root of

H(b) =
n∑

i=1

(Xi −X − b(zi − z))(zi − z) with a = X − bz

H(b) =
n∑

i=1

(Xi − bzi)(zi − z) (as
∑n
i=1(X − bz)(zi − z) = 0).
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Given RC data, (Mi, δi, zi)s, Buckley and James propose to estimate β by the “root” of

H(b) =
n∑

i=1

(X̂∗
i − bzi)(zi − z), where

X̂∗
i = X̂∗

i (b) = Miδi + (1− δi)[b′zi +

∑

t∈Ai
tf̂b(t)

Ŝb(Ti)
], (2.1)

Ai = {t : t > Ti, f̂b(t) > 0},

Ŝb is the PLE of S
T (b)

, the survival function based on (Ti(b), δi), i = 1, ..., n,

Ti = Ti(b) = Mi − b′zi, with b ∈ Rp, (T (β) = X − βZ = α+ ǫ if δ = 1),

f̂b and F̂b the PLE’s of the density function and the cdf, respectively.

It is worth mentioning that Ŝb depends on b as Ti’s depend on b.
If the largest observation T(n) among Ti’s is right censored, then

treat T(n) as uncensored (suggested by Buckley and James), or set Ŝb(T(n) + 1) = 0 if
δ(n) = 0.

The root of H(b) is called the Buckley and James estimator (BJE), denoted by β̂ and

α̂ = X̂∗ − β̂′z, where z = 1
n

∑n
i=1 zi and X̂

∗
= X̂

∗
(b) = (X̂∗

1 , ..., X̂
∗
n)′.

Remark. Buckley and James point out that the solution may not exist. In the latter case,
the BJE of β is modified as the zero-crossing point of H(b) if p = 1 (Lai and Ying (1991)).

One says that b̂ is a zero-crossing point (zcp) of a function H if H(b) changes its sign at

b = b̂. Then the BJE is well defined, though it may not be unique.
Question: If H(t) = 1(t ≤ 1), what is a zcp of H ?

Two ways of justifying the BJE:
(1) Conditional expectation.

Note that
E(X|Z) = α+ βZ.

We only observe M = X ∧ Y and

E(M |Z) 6= α+ βZ.

Define X∗ =Xδ + (1− δ)E(X|X > Y ) (= Xδ + (1− δ)E(X|δ = 0) (2.2)

6= X̂∗
i =Miδi + (1− δi)[b′zi +

∑

t∈Ai
tf̂b(t)

Ŝb(Ti)
]).

Then
E(X∗|Z) = α+ βZ.

Reason: Abusing notation, write Ez(W ) = E(W |Z), where W is a random variable. Then

Ez(X
∗) =Ez(Ez(X

∗|δ)))
=P (δ = 1)Ez(X

∗|δ = 1) + P (δ = 0)Ez(X
∗|δ = 0)
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=P (δ = 1)Ez(X|δ = 1) + P (δ = 0)Ez(Ez(X|X > Y )|δ = 0) (2.3)

=P (δ = 1)Ez(X|δ = 1) + P (δ = 0)Ez(Ez(X|δ = 0)|δ = 0) (by (2.2))

=P (δ = 1)Ez(X|δ = 1) + P (δ = 0)Ez(X|δ = 0)

=Ez(Ez(X|δ)) = Ez(X) = E(X|Z)

=α+ βZ.

If we could observe X∗
1 , ..., X∗

n, then H(b) =
∑n
i=1(X∗

i − bzi)(zi − z) = 0 leads to

the “LSE” β̂ =

∑n
i=1X

∗
i (zi − z)

∑n
j=1(zj − z)2

and α̂ = X∗ − β̂z. (2.4)

Since we cannot observe all X∗
i ’s, in view of (2.3) we replace X∗

i ’s by their predictors

X̂∗
i = Xiδi+Ê(Xi|Xi > Yi)(1− δi) (which is (2.1)), where

Ê(Xi|Xi > Yi) = β̂zi +

∑

t>Mi−β̂zi tf̂β̂(t)

Ŝ(Mi − β̂zi)
, (2.5)

E(βZ +W |W > Yi − βzi) (W = α+ ǫ)

and Ŝβ̂ is the PLE of SW based on observations (Mi − β̂zi, δi)’s, though β̂ is an estimate.

(2) An M-estimator based on N(µ, σ).

An M-estimator is the solution to ∂ln L
∂β = 0. The likelihood function for given RC data is

 L =

n∏

i=1

(f(Ti))
δi(S(Ti))

1−δi .

∂ln L

∂β
=

n∑

i=1

{δi
f ′

f
(Ti) + (1− δi)

−f
S

(Ti)}(−zi). (A)

Under N(µ, σ2) assumption, f(t) = 1√
2πσ2

exp(− (t−µ)2
2σ2 ),

f ′

f (t) = − t−µσ2 ,

f(t) = −
∫∞
t
f ′(x)dx = −

∫∞
t

f ′

f (x)f(x)dx =
∫∞
t

x−µ
σ2 f(x)dx. Then Eq. (A) yields

∂ln L

∂β
=

n∑

i=1

{δi
(Ti − µ)

σ2
+ (1− δi)

∫∞
Ti

(x− µ)f(x)dx

σ2S(Ti)
}zi. (2.6)

The normal equation H(b) is obtained by

replacing f and S by their PLE f̂b and Ŝb,

replacing µ by T
∗

and
multiplying σ2.

In other words, (2.1) is the same as

H(b) =
n∑

i=1

(T ∗
i − T ∗)zi, where T ∗

i = X̂∗
i − bzi.
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Notice

H(b) =
n∑

i=1

(Xi −X − b(zi − z))(zi − z)

=
n∑

i=1

(Xi − bzi))(zi − z)

=
n∑

i=1

(Xi −X − b(zi − z))zi (
n∑

i=1

(Xi −X − b(zi − z))z = 0)

The consistency and the asymptotic properties of the BJE have been established
under certain continuous assumptions by Lai and Ying (1991) and
under certain discrete assumptions by Kong and Yu (2006).

In addition, if ǫ ∼ N(µ, σ2), then the BJE is asymptotically efficient, just like the LSE.
Otherwise, it is not efficient.

On the other hand, under certain discontinuous assumptions,
the BJE may not have asymptotic normal distribution (see Kong and Yu (2006)).

Estimation of covariance matrix of the BJE, say Σβ̂ .
With complete data the BJE becomes the LSE. Under the assumption that ǫ1, ..., ǫn

are i.i.d. with variance σ2, given U (or zis), the covariance matrix of the LSE is

Σβ̂ = σ2(U ′U)−1. (2.7)

Reason:




X1
...
Xn



 =






z′1
...

z′n




β +





ǫ1
...
ǫn



 or X = Uβ + ǫ.

β̂ = (U ′U)−1U ′X = (U ′U)−1U ′(Uβ + ǫ) = (U ′U)−1U ′Uβ + (U ′U)−1U ′ǫ)

Cov(β̂) = (U ′U)−1U ′Cov(ǫ)((U ′U)−1U ′)′ = σ2(U ′U)−1

Formula (2.7) is valid no matter whether X|z is continuous or discrete.
Lai and Ying (1991, p.1389) present an estimator of Σβ̂ under smoothness assump-

tions with RC data. Kong and Yu (2006) present another estimator of Σβ̂ under discrete
assumptions with RC data. Both expressions are complicated and are not given here.

An estimator under the normal assumption is their empirical Fisher information matrix
(I(β̂))−1, where

I(β̂) =
n∑

i=1

(T ∗
i − T ∗)(zi − z){(T ∗

i − T ∗)(zi − z)}′/σ̂4

and σ̂2 is an estimator of σ2.
Denote m =

∑

i δi.
The parameter σ can be estimated in two ways.
If the largest Mi is not censored, then one can estimate it by

σ̂2 =
∑

i T
2
i f̂β̂(Ti)− (

∑

i Tif̂β̂(Ti))
2.
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Otherwise, we can use the least squares method as follows.
We can find the quantiles of F̂ (Ti) under N(0, 1), say qi’s.
Then we find the least squares estimate of (µ, σ) that minimizes

∑n
i=1 δi(

Ti−µ
σ − qi)2.

It can be shown that the LSE is
σ̂ = Tq−T ·q

q2−(q)2
,

where T = 1
m

∑n
i=1 δiTi,

q = 1
m

∑n
i=1 δiqi,

q2 = 1
m

∑n
i=1 δiq

2
i and

Tq = 1
m

∑n
i=1 δiTiqi.

An estimator of the variance of β̂ given by Buckley and James is

σ̂2
β̂

=
σ̂2
u

∑

i: ex(zi − zu)2
,

where σ̂2
u =

1
∑n
i=1 δi − 2

∑

i: ex

[Xi −Xu − β̂(zi − zu)]2,

Xu =

∑

i: exXi
∑n
i=1 δi

and zu =

∑

i: ex zi
∑n
i=1 δi

.

An alternative estimator of the variance of β̂ is

σ̃2
β̂

=
1

∑n
i=1 δi − 2

Σ−1
z σ̃2

ǫ ,

where σ̃ǫ =
∫

(t− µǫ,u)2dF̂β̂(t),

µǫ,u =
∫
tdF̂β̂(t),

Σ̃2
z =

∫

t<∞(z(t)− µz,u)(z(t)− µz,u)′dF̂β̂(t),

µz,u =
∫
z(t)dF̂β̂(t),

F̂β̂ is the modified PLE that moves the weight from +∞ to the largest observation,
and

z(t) =average of z in {zi : Ti(β̂) = t, i = 1, ..., n}.
The last two estimators try to mimic the expression σ2(U ′U)−1, but they are not consistent
estimators.

The extension of Buckley-James estimator to the IC data are considered by Li and Pu
(1999) and Rabinowitz, Tsiatis, and Aragon (1995).
An iteration algorithm for the BJE (Buckley and James (1979)).

1. Give initial values to β.
2. Obtain X̂∗

i ’s using (2.1) with the given β.

3. Update β using (2.4) with the given X̂∗
i ’s: α̂ = X̂∗ − β̂z and β̂ =

∑n

i=1
X∗

i (zi−z)∑n

j=1
(zj−z)2

.

4. Repeat steps 2 and 3 until β converges or oscillates between two values. In the latter
case, take the midpoint as an estimate of β.

Remark.
1. The algorithm may not converges to a solution of the BJE even if the BJE exits (see

Example 1 below).
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2. The BJE of β may not be unique. If there are both root and non-root zero-crossing point
to H(b), the iterative algorithm may present non-root zero-crossing-point of H(b).

R codes:
> library(MASS), library(survival), library(rms)
> set.seed(1000)
> fun=function() { # prepare a function for computing the BJE
y=b*x+w
d=ifelse(y>c, 0,1)
m=y*d+c*(1-d)
f=bj(Surv(m, d) ∼ x, link=”identity”,control=list(iter.max=50))
return(f$coef[2]) }
> n=20 # Set sample size.
> b=1 # Set β value.
> c=1

§A.1. Example 1. The algorithm yields a point which is the BJE.
> w=rbinom(n,1,0.5)
> x=rbinom(n,1,0.5)
> fun()

Coef S.E. Wald Z Pr(> |Z|)
Intercept 0.4444 0.1592 2.79 0.0052

x 0.9556 0.2664 3.59 0.0003
§A.2. Example 2. The algorithm cannot give an answer to a BJE. )

> w=rbinom(n,1,0.5)
> x=rbinom(n,1,0.5)
> fun()
No convergence in 80 steps
Failure in bj.fit
$fail
[1] TRUE

Note: The BJE of (a, b) is a zero crossing point of b: BJE=1.
(the data set is

[1,] 1 1 0
[2,] 1 1 0
[3,] 1 1 1
[4,] 1 0 1
[5,] 1 1 0
[6,] 1 0 1
[7,] 1 1 0
[8,] 1 0 1
[9,] 0 1 0
[10,] 1 0 1
[11,] 1 0 1
[12,] 1 0 1
[13,] 0 1 0
[14,] 1 1 0
[15,] 1 0 1
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[16,] 1 1 0

[17,] 1 1 0

[18,] 1 1 0

[19,] 1 1 0

[20,] 0 1 0

§A.3. Example 3. The algorithm oscillates and yields a point which is not the
BJE. # Then we generate another set of data and try again.

> n=20

> w=runif(n,0,1)

> x=rbinom(n,1,0.5)*0.5

> c=0.9

> fun()

Cycle period = 2

No convergence in 52 steps, but cycle found - average beta returned

> (bj(Surv(m, d) ∼ x, link=”identity”,control=list(iter.max=50)))
Coef S.E. Wald Z Pr(> |Z|)

Intercept 0.4655 0.1185 3.93 < 0.0001
x 1.1730 0.3931 2.98 0.0028

which is not the BJE, the BJE of (a,b) is a zero-crossing point (0.191187, 1.158995),
which is based on

the data (stored in qyu/data/reg/dis/new/simubin20)

0.90000000 0 0.5

0.22477293 1 0.0

0.90000000 0 0.5

0.42949612 1 0.0

0.83872464 1 0.5

0.90000000 0 0.5

0.90000000 0 0.5

0.90000000 0 0.5

0.87571891 1 0.0

0.90000000 0 0.5

0.09953812 1 0.0

0.52228869 1 0.5

0.80450739 1 0.0

0.32050270 1 0.0

0.84096155 1 0.5

0.90000000 0 0.5

0.90000000 0 0.5

0.61437741 1 0.5

0.50425090 1 0.0

0.90000000 0 0.5

A non-iterative algorithm for obtaining all BJE’s (for p = 1) (Yu and Wong (2002a)):

1. Let bij be the solution to an equation Ti(b) = Tj(b), where zi 6= zj and δi 6= δj Let
q1 < · · · < qm be all the distinct solutions bij ’s. Let q0 = −∞ and qm+1 =∞.
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2. (Case (1)). For each h = 0, 1, ..., m, first compute the PLE Ŝb for a b ∈ (qh, qh+1). e.g.,

let b =

{
the midpoint of the interval if 0 < i < m
q1 − 1 if i = 0
qm + 1 if i = m.

Then compute (M∗
i (b), z∗i (b))′s and b̂h =

∑n
j=1(zj − z)M∗

j
∑n
k=1(zk − z)z∗k

, where

M∗
i = Miδi + (1− δi)

∑

t>Ti(b)
f̂b(t)

∑n

j=1
Mj1(Tj(b)=t,δj=1)

∑n

k=1
1(Tk(b)=t,δk=1)

Ŝb(Ti(b))

z∗i = δizi + (1− δi)[

∑

t>Ti(b)
f̂b(t)

∑n

j=1
zj1(Tj(b)=t,δj=1)

∑n

k=1
1(Tk(b)=t,δk=1)

Ŝb(Ti(b))
]

If b̂h ∈ (qh, qh+1) then b̂h is a root of H(b) (see (2.8)) and thus is a BJE of β.
3. (Case (2)). Compute H(qi+) (use Ŝb for b ∈ (qi, qi+1), H(qi) and H(qi−) (use Ŝb for
b ∈ (qi−1, qi), i = 1, ..., m.

H(b) =
n∑

i=1

(M∗
i − bz∗i )(zi − z) (2.8)

If H(qi−)H(qi+) ≤ 0, or H(qi) = 0, then qi is a zero-crossing point of H and thus is a
BJE of β.

Remark. In computing H(b) is better off to use Eq. (2.8) rather than

H(b) =

n∑

i=1

(X̂∗
i (b)− bzi)(zi − z) where X̂∗

i (b) = Miδi + (1− δi)[bzi +

∑

t∈Ai
tf̂b(t)

Ŝb(Ti)
] (2.9)

because even though (M∗
i , z

∗
i ) depends on b, it is constant in b in each interval (qj , qj+1).

Remark. We shall make a correction on a mistake in the statement in Yu and Wong (2003).
The NPMLE Ŝb(Ti(b)) is constant in (bi−1, bi), where b1, b2, ... are the ordered solutions to
Tk(b) = Tj(b) with (δk, δj) 6= (0, 0), not only δk 6= δj as stated in Yu and Wong (2003) (see
Example 4). However, the above algorithm still works. The reason is as follows.

(1) (M∗
i , z

∗
i ) only need to be modified when δi = 0, and the modification depends on

Ŝb(Ti(b)) and f̂b(Tj(b)) where Tj(b) > Ti(b).

(2) If δi = δj = 1 and Ti(qk) = Tj(qk) ( 6= Th(qk) ∀ h /∈ {i, j}), then Ŝb(Ti(b)) is constant

if δi = 0, and f̂b(Ti(qk+)) + f̂b(Tj(qk−)) = f̂b(Ti(qk)).
Example. Let (M1, ...,M4) = (1, 2, 3, 4), (z1, ..., z4) = (0, 0, 1, 1), (δ1, ..., δ4) = (1, 0, 0, 1),
T(b) = (T1(b), ..., T4(b)) and Ŝb(T(b)) = (Ŝb(T1), ..., Ŝb(T4)). Mi − bzi = Mj − bzj leads to
b ∈ {3− 1, 4− 1, 4− 2} = {2, 3} if (δi, δj) 6= (0, 0); but it leads only to b = 2 if δi 6= δj . Since
T1(b) = 1, T2(b) = 2, T3(b) = 3− b and T4(b) = 4− b,

T(b) =







(1, 2+, 2+, 3) if b = 1
(1, 2+, 1+, 2) if b = 2
(1, 2+, 0.5+, 1.5) if b = 2.5
(1, 2+, 0+, 1) if b = 3
(1, 2+,−1+, 0) if b = 4

and Ŝb(T(b)) =







( 3
4 ,

3
4 ,

3
4 , 0) if b < 2

( 3
4 ,

3
8 ,

3
4 ,

3
8 ) if b = 2

( 2
3 ,

1
3 , 1,

1
3 ) if b ∈ (2, 3)

( 1
3 ,

1
3 , 1,

1
3 ) if b = 3

( 1
3 ,

1
3 , 1,

2
3 ) if b > 3
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which is not constant in (2,∞) (as claimed in Step 1 in Yu and Wong (2002a)). To find
the BJE, just check H(b) for b ∈ {2, 3, ...??} instead of checking all b ∈ (−∞,∞) (see
(2.9))!

Remark. If data are complete, both the BJE β̂BJ and the Miller estimator β̃M reduce to the
LSE. In fact, β̃M = argminb

∫
t2dF̂b(t), where F̂b is the PLE of Fo based onXi−X−b(zi−z)’s

is an extension of argmina,b
∑n
i=1(Xi − a− bzi)2/n, and b = β̂BJ is the zero-crossing point

of H(b) and H(b) is the extension of d
db

∑n
i=1(Xi − a− bzi)2.

Example 2.1. (Insulation data (Nelson 1973)). To evaluate a new Class-B insulation for
electric motors, temperature-accelerated life testing was conducted on 40 motorettes. The
main purpose was to estimate the distribution of insulation at the design temperature of
130oC. Ten motorettes were put on test at each of four temperatures (150oC, 170oC, 190oC,
and 220oC). Let z be the temperature (in oC) and X (or M) the logarithm of hours to
failure of an insulation at temperature x. The data are plotted in Figure 1, “+” stands for
right-censored observations and “·” stands for exact observations.
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Fig. 5.1. MSMLE vs. BJE  For Insulation Data

If one sets f̂b(M(n)(b)) = 0 when δ(n) = 0, rather than f̂b(M(n)(b)) = Ŝb(M(n)(b)),
no matter what initial point is used, the existing algorithms always result in an estimate
β̂1 = 0.0109, which is the unique solution to equation (2.3). The fitted line is plotted in

Figure 1 in broken line. β̂1 does not make sense, as it should be negative according to the
data (see Figure 1.). Yu and Wong (2002a) present an algorithm that can find all possible
solutions for the BJE. Using this algorithm, we found that there are exactly 3 zero-crossing
points: −0.0207, −0.0205 and −0.0193. They are approximately −0.02. We plot the BJE
fitted line corresponding to β̂ = −0.02 in Figure 1 (in solid line). It appears to be a reasonable
estimate and it is actually the semi-parametric MLE (SMLE).

If one sets f̂b(M(n)(b)) = Ŝb(M(n)(b)) (when δ(n) = 0), then there is just unique BJE

β̂ = −0.0193 and it is a root of H. The current R program yields the same value.
Table 4.1 presents two data sets, of sample size 30 each, generated from simulation.

Both set f̂b(M(n)(b)) = Ŝb(M(n)(b)) if δ(n) = 0.
The first data set has no zero-crossing point of the sum of least squares

and has exactly one solution to Eq. (2.3) with (a, b) = (5.750711, 0.807222)
The current R-program converges, and yields (6.7148, 0.7999)
The second one does not have a solution to Eq. (2.3),

117



but has a unique zero-crossing point at (a, b) = (7.237446, 1.078106).
The current R-program cannot converges, and yields (9.7784, 1.0734).
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






Data1 :
5.182270 0 8.533530
13.111501 0 2.663143
8.424795 0 1.969974
10.160930 1 9.660930
8.389024 0 8.689664
0.680877 1 0.180877
12.061478 0 7.999715
9.582826 1 9.082826
6.589164 0 9.442880
8.013080 0 1.630284
0.811283 1 0.311283
14.260701 0 1.824968
16.177659 0 3.087899
6.984444 0 9.305123
6.078930 0 5.328123
17.478192 0 7.680852
1.635554 0 8.539667
0.355867 0 4.190535
4.687164 1 4.187164
3.497800 1 2.997800
0.871094 1 0.371094
5.445252 1 4.945252
13.928942 0 0.590025
3.919157 1 3.419157
6.351499 1 5.851499
4.531607 1 4.031607
3.440897 0 8.922772
1.657479 1 1.157479
7.315708 1 6.815708
11.559872 0 3.293425























































































































Data2 :
14.822689 0 7.212610
6.457941 0 6.103648
8.239654 1 7.739654
0.805357 0 6.010412
11.343863 0 1.808932
6.929858 1 6.429858
7.445796 0 6.180522
15.379855 0 1.814571
0.419907 0 0.091820
17.549400 1 2.049400
16.841743 0 5.595673
7.904303 0 4.497519
2.657995 1 2.157995
3.772100 0 5.745633
7.480979 0 6.541589
4.419456 1 3.919456
1.416040 1 0.916040
9.712842 1 9.212842
15.500627 0 0.147172
15.202233 0 1.296472
0.235298 0 3.911587
0.271033 0 9.242885
11.917236 0 6.549110
0.532521 1 0.032521
14.215613 0 6.540187
14.370996 0 7.267528
1.883544 1 1.383544
1.508759 1 1.008759
15.451111 0 0.100477
15.694594 1 0.194594
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

.

Table 4.1. Simulation Examples
§5.4.2.2. Homework

1. There are 4 observations (Mi, δi, zi)’s: (3, 1, 2), (4, 0, 1), (1, 1, 1), (7, 1, 2). Show that
there is only one BJE of β under the linear regression model and it is 2.

2. Under interval censoring, (2.2) can be rewritten as

X∗
i = E(Xi|Xi ∈ Ii), where Ii is the i-th observed interval.

2.a. Verify (2.3) under the mixed case IC model with continuous random vectors.
2.b. Give an estimator of X∗

i corresponding expressions for (2.5) and give a correspond-
ing expressions for (2.6).

3. Derive the most possible “observations” and most possible BJE’s under the assumptions
in the simulation example A.2 when n = 1000.

§5.4.3. An M-estimation approach
Huber (1964) proposed an M-estimator
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which is a zero point of a score function
∑n
i=1 ψ(θ, Ti) (e.g., = ∂

∂θ lnL, but not always)
where θ is the parameter of interest and Ti’s are observations.
Modifying Huber’s M-estimation,
Zhang and Li (1996) consider another M-estimation approach with interval-censored data.
The idea is to find a zero point of an estimate of the score function ∂

∂b
ln L in b.

We shall first illustrate via RC data.
Note that the likelihood function can be written as

 L(b, S, f) =
n∏

i=1

(f(Mi − b′zi))δi(S(Mi − b′zi))1−δi .

Assuming that f and S are differentiable, the “MLE” of β is a critical point of  L, where

a critical point is a point that either  L is not differentiable or ∂  L
∂b = 0.

Moreover, to eliminate the effect of α, one needs to centralize zi in  L.
Thus the derivative of −ln L is

Φ =
n∑

i=1

(zi − z)
(

δi(
f ′

f
)(Mi − bzi)− (1− δi)(

f

S
)(Mi − bzi)

)

. (3.1)

Since (under certain assumptions)

∫

x>t

f ′(x)

f(x)
f(x)dx =

∫

x>t

df(x) = f(x)

∣
∣
∣
∣

∞

t

= −f(t),

as f(∞) = 0, we have

f

S
(t) =

−
∫

x>t
f ′(x)
f(x) f(x)dx

S(t)
=
−
∫

x>t
f ′(x)
f(x) dF (x)

S(t)
=

∫

x>t
f ′(x)
f(x) dS(x)

S(t)
.

Thus Φ = Φ(b, S,
f ′

f
) =

n∑

i=1

(zi − z)
(

δi(
f ′

f
)(Ti(b))− (1− δi)

∫

x>Ti(b)
f ′(x)
f(x) dS(x)

S(Ti(b))

)

,

where Ti(b) = Mi − bzi. Note that S, f and f ′ are all unknown. Thus they need to be

estimated. If one replaces S by its PLE and chooses f = 1√
2π
e−x

2/2 (thus (f ′/f)(x) = −x),

then

Φ = −
n∑

i=1

(zi − z)
(

δi(Ti(b))− (1− δi)
∫

x>Ti(b)
xdŜb(x)

Ŝb(Ti(b))

)

and the M-estimator reduces to the BJE. Thus the BJE is an M-estimator.
Zhang and Li suggest to look for a root of an estimate of Φ(b, S, f

′

f ), say

Φ(b, Ŝb,
f̃ ′b
f̃b

)
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where Ŝb is the PLE of So based on (Mi − bzi, δi)’s, and f̃b is a kernel estimator

f̃b(t) =
1

h

∫

K(
x− t
h

)dF̂b(x), with K ≥ 0,
∫
K(x)dx = 1,

the set {x : K ′(x) 6= 0} is not a null set, n−1/2/h→ 0

e.g., h = cn−1/5 and c is a predetermined constant. (3.2)

Examples of such kernels are

K(x) =
3

4
(1− x2)1(|x|≤1),

and
K(x) = (1− |x|)1(|x|≤1).

Other examples can be found in Härdle W. (1990, p.45). It is obvious that an M-
estimate can only be obtained by iterative algorithms. Zhang and Li show that under certain
regularity conditions, the M-estimator is consistent and is asymptotically efficient if the
initial point in the iterative algorithm is close enough to β. The asymptotic variance of the
M-estimator is expected to be (E(Φ(β)Φ′(β))−1 and can be estimated by Σ̂ =

(
n∑

i=1

(

δi[(
f̂ ′

f̂
)(Mi − bzi)]2 − (1− δi)(

f̂

Ŝ
)2(Mi − bzi)

)

(zi − z)(zi − z)′
)−1

,

where Ŝ, f̂ and f̂ ′ are estimates of So, fo and f ′o, respectively.
However, in practice, there are some outstanding computational issues with this approach:

1. it is not clear how to select an initial point that is really “close” to β.
2. It is not clear how to select a constant c in (3.2).
3. It is not clear what is an optimal choice of the kernel K.
4. A similar phenomenon like the BJE, which is also a special case of M-estimators, may

also occur. That is, there does not exist a zero point of Φ.
5. Even if one may obtain a zero point of Φ, it may not be the solution that is closed to

the maximum point of the likelihood (i.e., as point that is near a local maximum or
even a local minimum of the likelihood. Consequently, the estimate is not good.

An algorithm for the case p = 1 maybe as follows, assuming Φ(−∞)Φ(∞) < 0.
1. Choose a tolerance number η > 0, e.g., η = 0.00001.
2. Choose two numbers b1 and b2 such that Φ(b1)Φ(b2) < 0. WLOG, assume b1 > 0 If

Φ(bi) ∈ (−η, η) for an i ∈ {1, 2}, stop and let bi be the “estimate” (treat as a zero
point of Φ)). Otherwise, go to next step.

3. Let b3 = (b2 + b1)/2. If Φ(b3) ∈ (−η, η), stop and let b3 be the “estimate”. Otherwise,
go to next step.

4. Set bi+1 =

{
(bi−1 + bi)/2 if Φ(bi−1)Φ(bi) < 0
(bi−2 + bi)/2 if Φ(bi−2)Φ(bi) < 0

for i ≥ 2 iteratively until

either |bi − bi+1| < η (zero point),
or Φ(bi+1) ∈ (−η, η) (zero-crossing).

Remark. Verify that in the case of complete data,
Φ = −2(

∑n
i=1(zi − z)(Xi −X)− b∑n

i=1(zi − z)2).
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Thus Φ(−∞) > 0 and Φ(∞) < 0.
One expects that the assumption Φ(−∞)Φ(∞) < 0 holds in general.
Another algorithm is to find a minimum point of |Φ(b)| by Monte Carlo method.
That is, randomly select a sequence of values of b and
find the up-to-date minimum point until it is stable.
§5.4.3.2. Homework.

1. Derive the expressions of Φ when f is the density of U(0, θ) and when f(x) = e−x,
x > 0.

2. Give the expression of Φ when data are mixed IC type.
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§5.4.4. An SMLE approach
Recall we consider regression model Xi = βzi + Wi, i = 1, ..., n, where Wi = α + ǫi.

Yu and Wong (2003a,b,c) proposed the SMLE of (β, So), based on complete data, RC data
and IC data, respectively. The semi-parametric likelihood function is

 L =

n∏

i=1

µF (Ii − bzi), (4.1)

where F is a cdf, Ii’s are the observed intervals containing Xi, and Ii − c is a shift of Ii by
c units. The SMLE of (β, Fo) is

(β̂, F̂ ) = argmaxb,F { L(b, F ) : b ∈ Rp, F (t) ↑, F (−∞) = 0, F (∞) = 1}.

Remark. With complete data, the LSE minimizes

n∑

i=1

(Xi − α− bzi)
2 or

∫

t2dF̂ǫ(t).

The SMLE of (α, β, Fo) maximizes

 L(a,b, F ) =

n∏

i=1

fǫ(Xi − a− bzi).

Example 1. Consider a simple example of RC data, say,
3 (Mi, δi, zi)s are (1, 1, 1), (2, 0, 1), (3, 1, 0).

Let Ti(β) = Mi − βzi (Xi − βZi ∼ Fo(t) = FX|Z(t|0).

Ii’s are {X1}, (X2,∞), {X3}
Ii − bzi’s are {T1(b)}, (T2(b),∞), {T3(b)}.

 L(b, F ) =

n∏

i=1

µF (Ii − bzi) = f(1− b)S(2− b)f(3) Why ?

 L(b, F ) ≤f̂b(1− b)Ŝb(2− b)f̂b(3)

where Ŝb(t) is the PLE based on T1(b), T2(b), T3(b), and f̂b(t)= ?
The PLE Ŝb depends on the ranks of Ti(b) = Mi − bzi’s,
Let (r1, r2, r3) be the ranks of (T1 T2+ T3)(b)

( 1− b (2− b)+ 3 )
Ti(b)’s change their ranks after their ties: Mk − bzk = Mj − bzj with zk 6= zj .

1− b = 3 (T1(b) = T3(b)) and 2− b = 3 (T2(b) = T3(b)).
Their solutions are b1 = −2 and b2 = −1.

−2 and −1 partition (−∞,∞) into 5 disjoint intervals.
r1, r2, r3 remain constant in each interval.

b ∈ (−∞,−2) {−2} (−2,−1) {−1} (−1,∞)
ris (2, 3, 1) (1.5, 3, 1.5) (1, 3, 2) (1, 3, 2) (1, 2, 3)

µF̂b
(Ii − bzi)s ( 1

3 ,
1
3 ,

1
3 ) ( 2

3 ,
1
3 ,

2
3 ) ( 1

3 ,
1
3 ,

1
3 ) ( 1

3 ,
1
3 ,

1
3 ) ( 1

3 ,
2
3 ,

2
3 )

max  L no yes no no yes
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Each point in {−2} ∪ (−1,∞) is an SMLE of β. For examples

b ∈ (−∞,−2) {−2} (−2,−1) {−1} (−1,∞)
b = −3 −2 −1.5 −1 0

~T (b) = (1− b, (2− b)+, 3) (4, 5+, 3) (3, 4+, 3) (2.5, 3.5+, 3) (2, 4+, 3) (1, 2+, 3)
ris (2, 3, 1) (1.5, 3, 1.5) (1, 3, 2) (1, 3, 2) (1, 2, 3)

µF̂b
(Ii − bzi)s ( 1

3 ,
1
3 ,

1
3 ) ( 2

3 ,
1
3 ,

2
3 ) ( 1

3 ,
1
3 ,

1
3 ) ( 1

3 ,
1
3 ,

1
3 ) ( 1

3 ,
2
3 ,

2
3 )

max  L no yes no no yes

One SMLE of (β, Fo) is (β̂, F̂β̂(t)) = (−2, 231(t ≥ 3)).

How about (−2, 231(t ≥ 3)) + 1
31(t ≥ 5)? (−2, 231(t ≥ 3)) + 1

31(t ≥ 4)?

Example 2. Consider the simple linear regression (p = 1), with complete data, say
X = βZ + W , where W and Z ∼ Bin(1, 0.5) and β = 1. The possible values of the
observation (Z,X) are (0, 0), (0, 1), (1, 1) and (1, 2), denoted by (Zi, Xi), i = 1, ..., 4. Thus
there are 4 possible values of T (b), say, Ti(b) = Xi−bZi: 0, 1, 1−b, 2−b. Suppose a random
sample of size n contains N1, N2, N3 and N4 of them. One may consider

the parametric approach (say the MLE or the MME of (p, β), assuming W ∼ Bin(1, p);
the semi-parametric approach (the LSE of β, assuming FW is unknown);
the SMLE approach (assuming FW is unknown) as follows.

The empirical df

f̂b(Ti(b)) =







Ni

n if Ti(b) 6= Tj(b) ∀ j 6= i,
Ni+Nj

n if Ti(b) = Tj(b) for only one j 6= i
? otherwise

where i, j = 1, 2, 3, 4. (4.2)

The possible solutions b to the equations Ti(b) = Tj(b) are 0, 1, 1 and 2.
They partition (−∞,∞) into 7 intervals.





b : 0 1 2 OW
(T1, ..., T4) : (0, 1, 1− b, 2− b) = (0, 1, 1, 2) 0, 1, 0, 1 0, 1,−1, 0 no ties

f̂T (b) : (N1

n )N1 , (N2+N3

n )N2 , (N2+N3

n )N3 , (N4

n )N4





For n large enough, Ni ≈ n/4, and likelihood function (1.2) or (4.1)

L =
∏n
i=1 f̂b(Ti(b)) =







(N1+N3

n )N1+N3(N2+N4

n )N2+N4 ≈ (0.5)n if b = 1,

(N1

n )N1(N2+N3

n )N2+N3(N4

n )N4 ≈ (0.5)n/2(0.25)n/2 if b = 0,

(N1+N4

n )N1+N4(N2

n )N2(N3

n )N3 ≈ (0.5)n/2(0.25)n/2 if b = 2,

(N1

n )N1(N2

n )N2(N3

n )N3(N4

n )N4 ≈ (0.25)n otherwise,

(4.3)

is maximized by b = 1. Thus the SMLE of β is β̂ = 1 for all large n. consistent ? efficient ?
The SMLE of Fo is F̂ (t) = p̂1(t ≥ 0) + (1− p̂)1(t ≥ 1), where p̂ = (N1 +N3)/n.
The LSE β̃LSE = β + N1N4−N2N3

(N1+N4)(N2+N3)
. Thus,

P(β̃LSE 6= β i.o.) = 1.
The LSE β̃LSE satisfies

123



√
n(β̃LSE − β)

D−→ N(0, 1), and nσ2
β̃LSE

→ 1 as n→∞,
as the asymptotic variance σ2

β̃LSE
= 1

n .

It can be shown that
√
n(β̂ − β)

D−→ N(0, 0) and nσ2
β̂
→ 0.

The MLE does not have this property.

Remark: If p > 1, the solution to SMLE is little bit more complicated, but doable.

Lemma 5.4.1. Suppose that X = β′Z+W , where W and Z are uncorrelated, E(W ) = µ and
σ2
W = σ, β = (β1, ..., βp)

′, Z = (Z1, ..., Zp)
′ and Cov(Z) is diagonal. Then X = βiZi +W ∗,

where W ∗ = W +
∑

j 6=i βjZj. E(W ∗) = µ∗ and σ2
W∗ = σ2

2.

In other words, under the assumptions in Lemma 5.4.1, the estimator of β can be
estimated coordinate by coordinate. The assumption that Cov(Z) is diagonal is a key. If
Cov(Z) is not diagonal, find a matrix B such that BΣ(Z)B′ is diagonal. In application, let

Ĉov(Z) =
∑n
i=1 ZiZ

′
i − Z

′
Z, and find a matrix B such that BĈov(Z)B′ is diagonal. Then

let X∗ = βZ +W ∗, where X∗ = BX and Z∗ = BZ.

Without loss of generality, we assume that the dimensions of b and zi are 1.
For fixed b, the likelihood function is maximized by the GMLE of Fo based on Ii − bzi’s,

denoted by F̂b. The maximum of L is L(b, F̂b).
To find the SMLE of (β, Fo), it suffices to maximizes  L(b, F̂b).
Let a1 < · · · < am be all the solutions to equations of form
Mk − bzk = Mj − bzj , zk 6= zj , where Mi = Li or Ri, a0 = −∞ and am+1 =∞.
Note that the
GMLE F̂b(Lj−bzj) and F̂b(Rj−bzj)’s only depend on the ranks of Li−bzi’s and Ri−bzi’s.
and the ranks of Li − bzi’s and Ri − bzi’s are constant for b ∈ (ak, ak+1).
Thus for each fixed i,  L(b, F̂b) is constant in b on the interval (ai, ai+1). There are at most
2m+ 1 different values of L(b, F̂b)’s.

In the case of RC data with p = 1, there are finitely many such disjoint intervals and
the PLE and  L have explicit forms.
Thus, the SMLE can be obtained by a non-iterative algorithm.
Let A be the union of all ai’s, all midpoints (ai + ai+1)/2, and a1 − 1 and am + 1.
A point in A that maximizes  L(b, F̂b) over all b ∈ A is an SMLE of β.
We summarize as an algorithm:

1. Derive B and A, where B = {b : b =
Mi−Mj

zi−zj , zi 6= zj , (δi, δj) 6= (0, 0), 1 ≤ i < j ≤ n}.
Let a1 < · · · < am be the distinct elements of B.

2. Derive L(b) =  L(b, F̂b) for each b ∈ A.

3. The maximizer of L(b), b ∈ A is an SMLE of β, denoted by β̂. Moreover, if a, β̂ ∈
(ai, ai+1), then a is also an SMLE of β. The SMLE of So is Ŝβ̂ .

In the case of IC data, the GMLE may not have a closed form expression, one has to
use iterative algorithm to obtain the GMLE and thus the SMLE may be obtained by an
iterative algorithm.

The SMLE may not be unique, thus one can choose one that is close to the median of
all SMLE’s. Note that the median may not be an SMLE.

Question: If we have complete data and zi = 1 ∀ i, SMLE of β =? Is β identifiable ?

Ans. The SMLE of β is the b ∈ B that Ti1(b) = · · · = Tim(b), where m is the largest.
In particular, if W is continuous, then each b ∈ B is an SMLE of β, as the edf gives equal
weight to each Ti(b) if b 6∈ B; otherwise, the edf gives weight 2/n to Ti(b) (= Tj(b)) and 1/n
to the rest Tk(b)’s.
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Properties of the SMLE with RC data under certain regularity conditions:
1. If Fo is continuous and P{δ = 1} = 1, there are inconsistent SMLE’s and consistent

SMLE’s (see Yu and Wong (2003b)).
2. If Fo is discontinuous and there exists two distinct values of Z, say z1 and z2 such that
W + βX ≤ τY then P{β̂n 6= β infinitely often } = 0

or P{β̂n = β for large enough n} = 1.
3. The SMLE and the BJE cannot dominate each other. In particular, if W ∼ N(µ, σ2),

then the BJE is efficient, but not the SMLE.

It is conjectured that the SMLE β̂ (or β̂n) has the following properties:
4. If Fo is continuous, P{δ = 1} ∈ (0, 1) and under certain regularity conditions, then the

SMLE is consistent.
An inconsistent SMLE example. Let X = βZ +W , β = 1, Y ≡ 1 and
P (Z = 0) = P (Z = 0.6) = 0.5 = P (W ∈ (0, 0.1)) = P (W = 0.5)







type Z W M δ T # of T ′
is

1 0 (0, 0.1) (0, 0.1) 1 (0, 0.1) ≈ n/4
2 0 0.5 0.5 1 0.5 ≈ n/4
3 0.6 (0, 0.1) (0.6, 0.7) 1 (0.6− 0.6b, 0.7− 0.6b) ≈ n/4
4 0.6 0.5 1 0 1− 0.6b ≈ n/4








if n ≈ ∞.

B ⊂ (1/6, 2/6) ∪ {5/6} ∪ (1− 1/6, 1 + 1/6) ∪ (9/6, 10/6),

b T(1)(b) T(2)(b) T(3)(b) T(4)(b) p1p2p3p4 L
11
6 T3 = −0.5 < T4 = −0.1 < T1 = 0 < T2 = 0.5 (1/4k · (3/4)k · (3

4n )k · (3
4n )k)

1 T1 ≈ 0 = T3 ≈ 0 < T4 = 0.4 < T2 = 0.5 ( 4
n2 · 1

n2k−2 · (2/4)k · (2/4)k

L ≈







1
nk

1
nk

1
4k

1
4k

if b ∈ (1/6, 2/6)
1
nk

(k+1)k+1

nk+1
1

nk−1
1
4k

if b = 2/6
1
nn if b = 5/6

1
nk−1

1
nk−1

22

n2
1

22k
= 1

(4k)2k−2
4

(4k)2
1

22k
= 4

(4k)2k
1

22k
= 1

(4k)2k
4

22k
if b ∈ (5/6, 7/6)

1
(4k)k

(3/4)k( 3
4∗2k )k(3/8)k = 1

(4k)2k
(3
√

3/8)2k = largest if b ≥ 10/6

(1)

3k(3/8)2k = 27k/82k = (
√

27/8)2k 3k(3/8) ∗ 2 =
√

27/16 > 1.
5. If Fo is continuous, P{δ = 1} ∈ (0, 1) and under certain regularity conditions, then the

SMLE is asymptotically normal, with estimated asymptotic covariance matrix

Σ̂ =





n∑

i=1

(1− δi)
(

f̃(Ti(β̂))

Ŝβ̂(Ti(β̂))

)2

ziz
′
i





−1

, (4.1)

where f̃ is a kernel estimate of the df of Fo. Note that

ln(fδ(T (b))S1−δ(T (b))) = δlnf(T (b)) + (1− δ)lnS(T (b))

∂ln(fδ(T (b))S1−δ(T (b)))

∂b
= [−δ f

′
o(T (b))

fo(T (b))
+ (1− δ) fo(T (b))

So(T (b))
]Z
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Thus the conjecture says that the first term is missing in Σ̂.

6. If Fo is continuous, then the SMLE is not efficient. In fact, if Σ̂ in (4.1) is true, this is
obvious as the efficient covariance matrix is

E[(δ
f ′(T (b))

f(T (b))
+ (1− δ) f(T (b))

S(T (b))
)2ZZ ′]

We now verify property 1.
Assume that p = 1, W and z are both continuous independent random variables.
Let (Xi, zi), i = 1, ..., n are observations.

Then β̂ = X1−X2

z1−z2 Why ??

Xi, zi, β̂ are all continuous random variables.
β̂ = β + W1−W2

z1−z2 .

Let β̂n = max{b : b ∈ B}, then β̂n →∞ a.s., as min{|Z1 − Z2|} → 0 a.s..

That is, β̂n is an inconsistent SMLE.
On the other hand, the SMLE that is closest to the LSE is consistent.

We shall present some of the results in simulation studies. The main purpose is to study
the properties of the SMLE when Fo is arbitrary, i.e., continuous, or discontinuous but not
necessarily discrete. We assume that Z, W and Y are independent. We consider several
cases in our simulation studies:

(1) Fo is continuous (Examples 5, 6 and 7), or discrete (Example 3), or discontinuous but
not discrete (Examples 4).

(2) All the underlying distributions belong to the exponential family (Examples 5 and 7)
or Fo does not belong to the exponential family (other examples).
In the following examples, let X = βZ +W and E(W ) = α.

Example 3. Suppose W equals 13.5 and 38.5, with probabilities 0.5 and 0.5, respectively,
Z ∼ U(2, 3), Y ∼ U(24, 24.2), and (α, β) = (26, 1).

Example 4. Suppose W is a mixture of U(0, 0.5) and a unit point mass concentrated at
0.25, with probabilities 0.5 and 0.5, respectively, Z ∼ U(1, 2), Y ∼ U(0, 4), and (α, β) =
(0.25, 1).
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Table 1. Simulation Results on estimating (α, β)

(α, β) SMLE (α̂, β̃) BJE
Example 3 (discrete Fo).

n=32 average (13, 1) (0.941, 1.000) (-5.388, 1.749)
SE (0.044, 0.000) (22.368, 6.702)

n=200 average (13, 1) (0.360, 1.000) (1.388, 0.301)
SE (0.000, 0.000) (1.075, 0.255)

Example 4 (discontinuous Fo).
n=32 average (0.25, 1) (0.248, 1.001) (0.258, 0.997)

SE (0.038, 0.021) (0.142, 0.961)
n=200 average (0.25, 1) (0.250, 1.000) (0.247, 1.002)

SE (0.010, 0.000) (0.050, 0.033)
Example 5 (continuous Fo).

n=32 average (5, 1) (3.693, 1.415) (4.035, 0.884)
SE (3.784, 3.227) (2.106, 1.708)

n=200 average (5, 1) (4.701, 0.957) (4.701, 0.959)
SE (1.294, 0.693) (0.798, 0.753)

Example 6 (continuous Fo).
n=32 average (0, 2) (1.446, 2.129) (0.008, 2.001)

SE (5.411, 0.464) (0.291, 0.022)
n=200 average (0, 2) (0.821, 2.077) (-0.002, 2.000)

SE (0.876, 0.080) (0.093, 0.007)
Example 7 (continuous Fo).

n=32 average (0, 1) (-0.2093, 1.1651) (-0.0110, 1.0145)
SE (1.5933, 0.8971) (0.7867, 0.3814)

n=200 average (0, 1) (-0.2598, 1.1516) (0.0048, 0.9942)
SE (0.7068, 0.3831) (0.2350, 0.1116)

Hereafter denote Exp(µ, σ) a distribution with the df

f(x) = 1
σ e

−[ x−µ
σ +1]1(x>µ−σ).

Q: Does it belong to the exponential family ?
Example 5. Suppose W , Y and Z have distributions Exp(5, 2), Exp(3, 4) and Exp(2, 2),
respectively. (α, β) = (5, 1).
Example 6. Suppose W ∼ U(−1, 1), Z ∼ Exp(0, 19), Y ∼ Exp(0, 25), (α, β) = (0, 2).
Example 7. Suppose W ∼ N(0, 1), Y ∼ N(0, 6), Z ∼ N(2, 1), (α, β) = (0, 1).

The results of the above examples are summarized in Table 1. One can see that the
SMLE is better than the BJE under the exponential distribution, but vice verse under the
normal distribution.

Property 2 is proved for the following cases (1) complete-data and (2) right-censored
discrete data (Yu and Wong (2003a,b)). The proof for right-censored discontinuous data is
under preparing. The following example illustrates a proof under a simple assumption.
Example 8. (Magazine advertising (Chatterjee and Price ((22), p. 257)). In a study of rev-
enue from advertising, data were collected for 41 magazines in 1986. There was no censoring.
Let Z denote the number of pages of advertising and X the advertising revenue.
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The 41 data are plotted in Figure 1. Roughly speaking, there are three outliers in the
data set. They are (25, 50), (15, 49.7), (77, 6.6). The SMLE of β is unique for this data
set. The SMLE and the LSE are significantly different (see the first block of Table 2). The
entries in the second block of Table 2 are results after deleting the three outliers. From Table
2, it is seen that the SMLE of β does not change after deleting outliers, though the estimate
of α changes.

In Figure 1, we also plot the fitted straight lines with and without deleting those three
outliers. We further plot the fitted line by the SMLE method without deleting the outliers.
From Figure 1, it is seen that the fitted line by the SMLE approach using the original data
is very close to the least squares fitted line after deleting outliers. This suggests that the
SMLE is robust while the LSE is not.

Table 2. Results on estimating (α, β)
SMLE (SE) LSE (SE)

with outliers β 1.200 (0.196) 0.353 (0.1449)
α -1.427 (3.178) 7.604 (2.3466)

without outliers β 1.200 (0.1379) 1.238 (0.138)
α -0.642 (1.410) -0.962 (1.409)
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Fig. 1. SMLE v.s. LSE (Journal Data)

LSE with outlier

LSE without outlier SMLE with outlier

SMLE without outlier

millions of dollars

Consistency is proved for the mixed case IC model (Yu and Wong (2006)) and is under

preparation for the RC model. The latter case is quite complicated. Let f̂b(t) = Ŝb(t−)−
Ŝb(t). If W is continuous and there is no censoring, then

f̂b(Ti(b)) = 1/n ∀ i, except perhaps for two, at which f̂b(Ti(b)) = 2/n. (2.2)

Consequently,

 L(Ŝβ̂ , β̂) = 22/nn and  L(Ŝβ ,b) = 1/nn if b is not an SMLE

| 1
n

ln L(Ŝβ̂ , β̂)− 1

n
ln L(Ŝb,b)| =

{
1
n ln4 if b is not an SMLE
0 otherwise

(2.3)
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In other words, if W is continuous, the inconsistent SMLE β̂ also satisfies that

| 1
n

ln L(Ŝβ̂ , β̂)− 1

n
ln L(Ŝβ , β)| → 0

In a consistency proof, one may want to establish

lim
n→∞

[ 1

n
ln L(Ŝβ̂ , β̂)− E{ 1

n
lnL(So, β)}

]
= 0 a.s..

However, it does not work here, because E{ 1n lnL(So, β)} = −∞ due to
L(So) = (So(t−)− So(t))δ(So(t))1−δ = 0.

We consider a modification of the above equality in the proof.
Property 5 is still very difficult to prove. We find that a variant of the SMLE with

the RC data has similar properties with the SMLE. The estimator is a value of b that
maximizes

∏n
i=1(Ŝb(Ti(b))1−δi

instead of
∏n
i=1(f̂b(Ti(b))δi(Ŝb(Ti(b))1−δi ,

and is called the partial likelihood SMLE (PSMLE). Table 3 presents simulation studies
when W , Y and Z (= Z) have distributions Exp(3, 1), Exp(1, 1) and Exp(0, 1), respectively.
(α, β) = (3, 1).

Table 3. Simulation Results on estimating (α, β)
n β (σβ̂) SMLE(SE) PSMLE(SE) BJE(SE)

200 sample mean 1 1.06 1.18 0.58
sample SE (0.33) (0.47) (1.47) (1.23)
est. of SE 0.48 0.51

800 sample mean 1 1.00 1.01 0.86
sample SE (0.17) (0.20) (0.22) (0.64)
est. of SE 0.20 0.20

1000 sample mean 1 1.02 1.03 0.91
sample SE (0.15) (0.16) (0.17) (0.39)
est. of SE 0.17 0.18

Remark. Under the semiparametric model, X = α + β′Z + ǫ = β′Z + T , the location
parameter α = E(T ) is not identifiable under censoring. This is the major reason why
people do not consider the model X = α+β′Z + ǫ, where E(ǫ) = 0. In fact, if b is fixed, the
likelihood function

∏n
i=1 µF̂a,b

(Ii − a− b′zi) is constant in a ∈ R, where F̂a,b is the GMLE

of Fo based on Ii − a− b′zi’s
§5.4.4.2. Homework.

1. There are 4 observations (Mi, δi, zi)’s: (3, 1, 2), (4, 0, 1), (1, 1, 1), (7, 1, 2).
a. Find the SMLE of β under the linear regression model.
b. Find the PSMLE of β under the linear regression model.

2. Suppose n = 1000 right-censored observations are from the model with Y ≡ 1 and
X = βZ +W , where W ⊥ Z and β = 1. W and Z ∼ Bin(1, p), p ∈ (0, 1).

a. Derive the MME of (β, p) and SW , assuming β is unknown (as no closed form
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solution for the MLE).
b. Derive the SMLE of β and SW (without the Bin(1,p) assumption).
c. Derive the NPMLE of SM based on Mi’s only.
d. Derive the NPMLE of SX based on (Mi, δi)’s.
e. What are SW , SM and SX ?
d. What are the limits of the above estimators (you can assume p = 0.5) ?

§5.4.5. A modified SMLE (MSMLE) approach.
It is a little bit disappointed that the SMLE approach is not efficient when Fo is continuous,

though it is super efficient if Fo is discontinuous.
It may due to the reason that f(t) = F (t)− F (t−) in the nonparametric likelihood.

A modification is to replace f in  L by a smooth version, a kernel estimator of fo, i.e.,

f(t) =
1

h

∫

K((x− t)/h)dF (x),

where K(·) is a kernel. However, for most versions, it is difficult to find directly the maximum

point of  L, one can only find a critical point of  L, or a root to ∂ln L
∂b . Such approach is called

M-estimation approach, which requires that {x : K ′(x) 6= 0} is not a null set.
Yu and Wong (2005) propose a different modification for RC data. Let

fF (x) =

∫ ∞

−∞

1

h
K(

x− t
h

)dF (t), K(x) = 1
21(−1<x≤1), h > 0, limn→∞ h = 0 (5.1)

(e.g., h = O(n−1/5), as suggested in Härdle (1990, p.59 or p.91)), and
F̂b = 1− Ŝb be the PLE based on Ti(b) = Mi − bzi, i = 1, ..., n. Then

 L(Ŝb,b) =

n∏

i=1

[
(
[Ŝb(Ti(b)− h)− Ŝb(Ti(b) + h)]

2h
)δi(Ŝb(Ti(b)))1−δi

]
. (5.2)

Then estimate β by β̂ which maximizes  L(Ŝb,b, ) over b ∈ Rp.
β̂ is called the MSMLE of β. Then Ŝβ̂(t) is an MSMLE of So(t), where T ∼ Fo.
Let α = E(T ) if E(T ) exists.
Even if it does, it is well known (see Buckley and James (1979)) that there is no consistent
estimator of α under right censoring, unless some further assumptions are made.
Nevertheless, a natural estimator of α is

α̂ = a(β̂), where a(β̂) =

∫

x≤T(n)(β̂)
xdF̂β̂(x)

∫

x≤T(n)(β̂)
1dF̂β̂(x)

, (5.3)

where T(1) ≤ · · · ≤ T(n) are order statistics of Ti’s.
Though the MSMLE is motivated for continuous Fo,

it has some nice properties for arbitrary Fo (continuous or discontinuous).
Since 1

2h in (5.2) does not depend on b, it suffices to maximize for b ∈ Rp,

l(b) =
n∏

i=1

[
[Ŝb(Ti(b)− h)− Ŝb(Ti(b) + h)]δi(Ŝb(Ti(b)))1−δi

]
. (5.4)
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By a similar argument as for the SMLE, the new likelihood function takes on finitely many
values and is constant on intervals of the form (ai, ai+1), where a1 < · · · < am are all the
distinct values of

b =
Mi−Mj+kh

zi−zj , zi 6= zj , k = 0,±1,±2, and

{
δi = δn = 1 if k ∈ {0,±2},
δj > δi if k = ±1.

(5.5)

The argument is similar to that for the SMLE.
Thus it can be obtained by a non-iterative algorithm.
We need the following notation.

Let A be the set of points satisfies (5.5).
Let A1 be the set of ordered distinct elements of A;
Let a0 = −∞ and am+1 =∞;
Let A2 be the set consisting of a1 − 1, am + 1 and points ai−1+ai

2 , i = 2, ..., m.
Non-iterative algorithm:

1. Obtain A, A1 and A2;
2. Compute l(b) (see (5.4)) for each b ∈ A1 ∪ A2.
3. Each b that maximizes l(b) over b ∈ A1 ∪ A2 is an MSMLE of β. Moreover, if b is an

MSMLE and b ∈ (ai, ai+1), then each point in (ai, ai+1) is also an MSMLE.
Since A1 ∪A2 is finite and l(b) has a closed-form expression, the algorithm is non-iterative.

If Fo is discontinuous and there exists two distinct values of Z, say z1 and z2 such that
W + βzi ≤ τY , then P{β̂ 6= β i.o.} = 0.

Moreover, it is conjectured that
* If (Mi, δi, zi)’s are i.i.d. from the standard RC model, and β is identifiable then the

MSMLE β̂ is consistent without any additional assumptions (under preparation).
Simulation suggests that it is also efficient if the parametric MLE is.

In particular, it suggests that
if Fo is continuous, then the limit of nΣβ̂ attains the efficient lower bound of the

variance, i.e., −n
(
∂ log  L
∂β∂β′

)−1

.

The following are simulation results supporting the above conjectures. In our simulation,
we assume that T , Z and Y are independent.

We compare β̂ to the BJE in several cases as follows.
(A) Fo is continuous (Examples 5.1, 5.3, 5.5 - 5.7), or is neither discrete nor continuous

(Example 5.2).
(B) Fo is continuous but the regularity conditions in the Cramer-Rao theorem do not hold

(Examples 5.1, 5.5 and 5.6), or all underlying distributions are exponential distributions
so that they allow exchange of differentiation and integration (Example 5.7), or Fo is a
normal distribution function (Examples 5.3 and 5.5).

(C) There is no censoring (Examples 5.1- 5.3), or there is censoring (Examples 5.4-5.7).
In our simulation, for each case, we repeated 1000 times and computed the sample mean
and sample standard error (SE) of the 1000 estimates.
Example 5.1. Suppose T ∼ U(−1, 1) (the uniform distribution), Z ∼ U(0, 9)
and (α, β) = (0, 2).
Example 5.2. Suppose T is a mixture of U(0, 0.9) and a constant 0.45, with probabilities
(w.p.) 0.9 and 0.1, respectively, Z ∼ U(1, 2) and (α, β) = (0.45, 1).
Example 5.3. Suppose T ∼ N(0, 0.09), Z ∼ U(0, 9) and (α, β) = (0, 1).
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The results of the above examples are summarized in Table 1. In the two rows of each
block of Table 1, we present the sample averages and sample standard errors (SE) of the

MSMLE and the BJE. It is seen that β̂ dominates the LSE in the sense that SEβ̂ ≤ SELSE
in general, and SEβ̂ < SELSE unless T ∼ N(µ, σ2), provided n ≥ 200. In the next 4 cases,

there are right-censored data. Define Y c = Y − β′Z and τ = sup{t : P (Y c < t) < 1}.

Table 1. Simulation Results on estimating β without censoring.

SMLE parameter β LSE MSMLE β̂
Example 5.1. (continuous Fo)

n=32 Sample mean 2 1.996 1.993
SE 0.040 0.045

n=200 Sample mean 2 1.999 1.998
SE 0.016 0.014

Example 5.2. (discontinuous but not discrete Fo)
n=32 1.001 1 1.000 1.003

0.099 0.156 0.121
n=200 1.000 1 0.997 1.000

0.000 0.060 0.000
Example 5.3. (N(µ, σ2))

n=32 Sample mean 1 1.000 0.998
SE 0.022 0.025

n=200 Sample mean 1 1.0000 1.0000
SE 0.0083 0.0083
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Table 2. Simulation Results on estimating β with censoring.

β SMLE (SE) BJE (SE) MSMLE (SE) β̂
Example 5.4 (discontinuous). Fo(τ) < 1.

n=32 1 0.290 0.981
(0.700) (0.181)

n=200 1 0.750 1.002
(0.226) (0.061)

Example 5.5 (N(µ, σ2)). Fo(τ−) = 1.
n=32 1 1.000 0.995

(0.030) (0.042)
n=200 1 1.000 0.994

(0.011) (0.013)
Example 5.6 (continuous). Fo(τ−) = 1.

n=32 2 2.001 1.999
(0.022) (0.029)

n=200 2 2.077 2.000 2.000
(0.080) (0.007) (0.006)

Example 5.7 (Exp(µ, σ)). Fo(τ−) = 1.
n=32 1 0.930 1.298

(1.565) (1.832)
n=200 1 1.012 0.957 1.004

(0.693) (0.751) (0.274)

Example 5.4. Suppose T is a mixture of U(0, 0.5) and 51, w.p. 0.5 and 0.5, respectively,
Z ∼ U(1, 2), Y ∼ U(4, 4.1), and (α, β) = (25.625, 1).
Example 5.5. Suppose T ∼ N(0, 0.09), Z ∼ U(0, 9) and Y equals 0.5 and 39 w.p. 0.5 and
0.5, respectively. (α, β) = (0, 1).
Example 5.6. Suppose T ∼ U(−1, 1), Z ∼ Exp(0, 19), Y ∼ Exp(0, 25), (α, β) = (0, 2).
Example 5.7. Suppose T , Y and Z have distributions Exp(5, 2), Exp(3, 4) and Exp(2, 2),
respectively. (α, β) = (5, 1).

The simulation results of Examples 5.4 - 5.7 are summarized in Table 2. In Table 3, we
compare the sample variance of the MSMLE to the ELB under the exponential distribution
(Example 5.7). We do not compare β̂ to the ELB in other examples, as the ELB is not valid
in Examples 5.1, 5.2, 5.4 and 5.6, and as β̃BJE is efficient in Examples 5.3 and 5.5. In Table
4, we give the empirical relative efficiency of β̂ to the BJE, based on results not necessarily
in Tables 3 and 4. The following are main observations from our simulation.

(1) All the 7 examples suggest that the MSMLE β̂ is consistent, as the values of β are
all within 2 SE’s from the sample means and the SE’s are decreasing in n.

(2) The results suggest that unless Fo is a normal distribution, in general the MSMLE

β̂ is asymptotically more efficient than the BJE as the SE’s of β̂ are uniformly smaller than
those of the BJE when sample sizes are large in all but Examples 5.3 and 5.5, and the 7
examples include different types of distributions specified in cases (A), (B) and (C).

(3) If Fo is discontinuous, then SEβ̂ = 0 for large sample sizes, while the SE of the

BJE never equals 0. It suggests that (5.1) holds when Fo is neither discrete nor continuous,
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rather than only when Fo is discrete. Here we shall give a heuristic explanation as follows.
For simplicity, let h = 0 in 5.4), and consider the case of complete data in Example 5.2. Then

5.4) becomes l(b) =
∏n
i=1 f̂b(Ti(b)), where f̂b is the empirical density based on Ti(b)’s. Note

Ti(b) = Mi−bZi and Ti = Ti(β). Let n1 =
∑n
i=1 1(Ti=0.45). If n is large enough, one expects

that n1 ≥ 10. If b = β, then there are n1 Ti(b)’s that equal 0.45, thus l(β) =
(
n1

n

)n1
(
1
n

)n−n1
.

If b 6= β, then one expects that Ti(b)’s are all distinct and thus l(b) =
(
1
n

)n
. Now it is easy

to see that b = β is the MSMLE of β when n is large.
(4) Simulation results in Examples 5.3 and 5.7 further suggest that the MSMLE is

efficient. In Example 5.3, data are not censored and T ∼ N(µ, σ2). Thus the LSE is efficient.
Since SE2

β̂
/SE2

β̂LSE
= 1 (see Table 1), the MSMLE should also be efficient. In example 5.7,

the efficient lower bound (ELB) of β̂ is V ar(T )/(n · V ar(Z)) = 2.52/n (see (3.1)). It is seen
from Table 3 that when n = 800, the MSMLE practically attains the ELB. Note that, in
Table 3, σ̂2

β̂
stands for the sample variance in the simulation.

Table 3. Comparison between the SE of the MSMLE and the ELB

(
n : 32 100 200 400 800
√
nσ̂β̂ : 10.363 5.707 3.875 3.132 2.503

)

· · ·
(

√
n · ELB

2.5

)

(5) It is well known that if T ∼ N(µ, σ2) such as in Examples 5.3 and 5.5, the BJE is

efficient. From Table 2, we note that the BJE is still better than β̂ when n = 200 in Example
5.5, while SEβ̂ = SEβ̃BJE

in Example 5.3. The results have two opposite interpretations:

(5.a) β̂ with right-censored data is not efficient, (5.b) β̂ may be efficient but the sample size

is not large enough. In fact, from our simulation results,
SE2

β̂

SE2

β̃BJE

= 1.95, 1.40, 1.23, 1.16 for

n = 32, 200, 300, 400, respectively, in Example 5.5 and
SE2

β̃BJE

SE2

β̂

= 1 in Example 5.3. Thus

(5.b) is a more logical explanation. If so, it also suggests that β̂ is efficient in general.

Table 4. Estimates of the relative efficiency of β̂ to the BJE.





Example : 5.1 5.2 5.3 5.4 5.5 5.6 5.7

σ̂2

β̃BJE

σ̂2

β̂

: 1.3 ∞ 1.0 3.9 ? 1.8 3.7

Fo : unif. mixture normal mixture normal unif. expon.





See Observation (5) above for “?” in Table 4.
Example 5.8. (The Stanford heart transplant data). The data and detailed description
can be found in Miller (1981, p.156). In this data, right-censored survival time, indicator
of death, and five covariates including age of the recipient at the time of transplant were
recorded. n = 69. For illustrated purpose, several methods are compared using the logarithm
of time until death against age. The a priori guess H1 under the AL model would be that
younger patients fare better, that is H0 : β < 0. In Table 5, we compare the Miller
estimator, the BJE and the Cox procedure to the MSMLE. Note that the Cox model is

P (X > t|Z = z) = (S(t))e
bz

, where S is a baseline survival function. Thus we expect
H0 : b > 0 rather than β < 0 as in the simple linear regression model.
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The entries in Table 5 related to the Miller estimator and the Cox procedure as well
as their SE’s are taken from Miller (1981, p.156). As commented by Miller (1981, p162),
“The Cox method indicates there is a highly significant age effect. The Miller method says
there is no effect due to age.” The three BJE’s in Table 2 basically suggest that there is
no effect due to age. On the other hand, there is a unique MSMLE and is significantly
negative and confirms with both the a priori guess and the Cox procedure. For this data set,
taking h = n−1/5 yields β̂ = 0, which does not lead to a satisfactory estimate. We choose
h = 3n−1/5.

Table 5. Regression analysis on the Stanford heart transplant data
age at transplant v.s. all death

Miller (SE) BJE (SE) MSMLE (SE) Cox (SE)
H0 : β < 0 β < 0 β < 0 b > 0

-0.006 -0.028 (0.015) -0.036 (0.017) 0.058 (0.023)
0.004 (0.017)
0.002 (0.016)

Example 2.1 of the section on BJE (Insulation data (Nelson 1973)). In this data there
is unique MSMLE, which is −0.018, very close to the non-root zero-crossing point BJE
solutions −0.02. Thus it is a reasonable estimator. The SMLE is −0.0416. It is also quite
consistent with the trend.
§5.4.5.2. Homework.

1. There are 4 observations (Mi, δi, zi)’s: (3, 1, 2), (4, 0, 1), (1, 1, 1), (7, 1, 2). Find the
MSMLE of β under the linear regression model (with h = n−1/5).

2. Prove that the likelihood in (5.2) is a constant on the interval (ai, ai+1) as defined above
based on the data in problem 1, thus there are only finitely many values.
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Chapter 6. Testing (large sample tests)

Let X be the survival time and Z the covariate. There are several objectives in hypothesis
testing:

1. In order to apply certain regression model, check whether FX,Z belongs to some regres-
sion model, e.g. a PH model, a Lehman model, or an accelerated lifetime model.

Ho: hX|Z(x|z) = ho(x)eβz, or Ho: logX = βZ +W , where FX|Z(·|0) is unknown.
2. In order to apply a certain parametric model, say X ∼ F (·; θ), test

H0: F = F (·; θ), where the form F (·|·) is given.
3. H0: F = Fo, where Fo is a given cdf.
4. H0: θ = θo, where θ is a parameter of FX , such as the mean and the variance, or the

parameter in a certain parametric distribution.

In the elementary statistics course, we mainly deal with type 4 testing problems, where θ is
the parameter in a certain parametric distribution.
In data analysis, we deal with all the 4 types of testing problems.

There are two common approaches in constructing a test of a parameter:
(1) MLE approach: If β̂ is the MLE, then under certain assumption, a test for

H0: β = βo vs. H1: β 6= βo
is φ = 1((β̂ − βo)′J−1(β̂ − βo)|β=βo > χ2

α,p), where J = −
(
∂2ln L
∂β∂β′

)−1
, β ∈ Rp and

χ2
α,p is the (1− α)100-th percentile of the χ2 distribution with degree freedom p.

(Or φ1 = 1(|β̂ − βo|/σ̂β̂ > zα/2)).

(2) Score test approach: Under certain assumptions,

a test for H0: β = βo is φ = 1(U(β)′JU(β)|β=βo > χ2
α,p), where U(β) = ∂ln L

∂β .

There are some common approaches in the first 3 types testing problems.
(1) Kolmogorov test and Smirnov test.
(2) Convert to type (4). For example, for testing Ho: X = βZ +W , convert it to

H∗
o : θ = 0, assuming X = βZ + θZ2 +W .

§6.1. One sample nonparametric test
Hereafter denote F̂ (or Ŝ) the GMLE of Fo (or So).

(1) Two-sided level-α test for H0: So(t0) = p0, where p0 is known:
For RC data, under the RC model, φ = 1

(
|Ŝpl(t0)−p0|

σ̂
Ŝpl(t0)

≥zα/2)
,

where σ̂2
Ŝpl(t0)

is the estimate of

σ2
Ŝpl(t)

≈ So(t)2
∫ t

0

1

So(x−)SY (x−)So(x)
dFo(x)/n.

For IC data, the situation varies. If there are exact observations, in general, a test is

φ = 1
(
|Ŝ(t0)−p0|

σ̂
Ŝ(t0)

≥zα/2)
,

where Φ(zα) = 1− α, Φ is the cdf of N(0, 1), and σ̂2
Ŝ(t0)

is the estimate of σ2
Ŝ(t)

given in §4.
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If there is no exact observation, then there are three possible cases corresponding to
Theorems 2 and 3 and the conjecture in §4.7.

The convergence rates are n−1/2, n−1/3 and (nlnn)−1/3, respectively.
For each of the three cases, a test can be constructed, which is introduced in §4.7.

(2) Two-sided nonparametric level-α test for H0: FX = Fo, where Fo is a known cdf:
In complete data case, we often convert it to
Ho: µ = µo, where µ = E(X) and µo =

∫
tdFo(t). Then the test is

φ = 1(|T |>zα/2), where T =
X − µ
s/
√
n
, and s2 =

∑n
i=1(Xi −X)2

n− 1

Note E(X) =
∫
So(x)dx for nonnegative X. Thus the test statistic

T =
Uo
σ̂Uo

, where Uo =

∫ ∞

0

(Ŝpl(x)− So(x))dx.

This motivates, for RC data, the weighted Kaplan-Meier (WKM) statistic by Pepe and
Fleming (1989, Biometrics and 1991, JRSS. A.).
WKM test

T =
U

σ̂U
, where U =

∫ ∞

0

W (x)(Ŝpl(x)− So(x))dx, (1.1)

and W is a weight function, which may depend on Fo and SY . For example, let W (t) be an
estimate of P (X ∧ Y ≥ t) or 1− SY (t) etc.. In such a case,

σ2
U ≈

1

n

∫ τ

0

[
∫ τ

t
W (u)So(u)du]2

So(t−)So(t)SY (t−)
dFo(t),

where τ = sup{t : Fo(t) < 1, SY (t) < 1}. σ2
U can easily be estimated. The test φ with T

given by (1.1) is a location test for H0 above.
With IC data, under a discrete assumption or in the case that there exist exact obser-

vations, U in (1.1) has the following form:
Suppose there are m+ 1 finite innermost intervals with right end-points b1 < · · · < bm+1.
WLOG, we can assume that Fo(bm) < 1.
Suppose that W (t) = 1(t<τ), where τ can be estimated by the largest finite observation,
denoted by bm+1. Then

U =

∫ τ̂

0

(Ŝ(t)− So(t))dt =

m∑

i=0

Ŝ(bi)(bi+1 − bi)−
∫ τ

0

So(t)dt.

where b0 = 0. U can be rewritten as

U = b0 + (b2 − b1, ..., bm+1 − bm)(Ŝ(b1), ..., Ŝ(bm))t +

∫ τ

0

So(t)dt.

σ2
U = (b2 − b1, ..., bm+1 − bm)Σ(b2 − b1, ..., bm+1 − bm)t

where Σ is the covariance matrix of (Ŝ(b1), ..., Ŝ(bm)).
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For continuous IC data, the test statistic is not simple and needs to be investigated, as
it is the integration of a stochastic process and the convergence rate of the GMLE varies at
least in three different cases.

Kolmogorov test: The test is φ = 1(U>uα), where

U = sup
t
|F̂ (t)− Fo(t)|,

and the critical values uα can be computed from tables for RC data (Hall and Wellner.
(1980). Biometrika).

Smirnov test: The test is φ = 1(U>uα), where

U =

∫

(F̂ (t)− Fo(t))2dFo(t) or U =

∫ ∞

0

(F̂ (t)− Fo(t))2dW (t),

where W is a measure, and the critical values uα can be computed from tables for RC data
(Koriol and Green, (1976). Technometrics).

For IC data, one may use bootstrap method to find uα for both the Kolmogorov test
and the Smirnov test. For instance,

Given I1, ..., In,
(1) resample I∗1 , ..., I∗n, and get U1;
(2) repeat step 1 N times (including the first time), and get U1, ...., UN ;
(3) U1, ..., UN leads to an estimate of FU , and uα.

Another approach is simulation. Since So is known, we only need to estimate the censor-
ing distribution. We can make the assumption that the follow-up time takes values among
finite Li’s and Ri’s with equal probability. Then we can generate n observations 100 times,
and thus compute U 100 times and the 100(1− α) sample percentile of the 100 U values is
our estimate of uα.

§6.2. Two-sample problem
Suppose that there are two independent random samples with sizes n1 and n2, from

survival function S1 and S2, respectively. H0: S1 = S2, v.s. H1: S1(t) ≥ S2(t) for all t and
S1 6= S2.
(1) WKM statistic:

For RC data, a test is φ = 1(T>zα), where

T =
U

σ̂U
, where U =

∫ ∞

0

Ŵ (t)[Ŝ1(t)− Ŝ2(t)]dt,

σ̂2
U =

∫ ∞

0

[
∫∞
t
Ŵ (u)Ŝo(u)du]2

Ŝo(t)Ŝo(t−)[1− Ĝ1(t−)]
dF̂o(t)/n1 +

∫ ∞

0

[
∫∞
t
Ŵ (u)Ŝo(u)du]2

Ŝo(t)Ŝo(t−)[1− Ĝ2(t−)]
dF̂o(t)/n2,
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Ŝo is PLE based on pooled-sample, G1 and G2 are censoring cdf of samples 1 and 2, respec-
tively, and Ĝ1 and Ĝ2 are their PLEs based on samples 1 and 2, respectively.

For discrete IC data, we only consider

T =
U

σ̂U
, where U =

∫ τ

0

[Ŝ1(t)− Ŝ2(t)]dt,

where τ is a fixed constant. Since σ2
U = V ar(

∫ τ

0
Ŝ1(t)dt) + V ar(

∫ τ

0
Ŝ2(t)dt), it can be esti-

mated using an approach similar to the one discussed in §6.1.
(2) Kolmogorov test: The test is φ = 1(U>uα), where

U = sup
t
|F̂1(t)− F̂2(t)|.

We can use simulation to estimate uα. For instance, consider re-sample the pooled-sample
(Li, Ri), i = 1, ..., n1+n2, to generate two independent samples of sizes n1 and n2. Compute
the value of U with these two samples. Repeat it 100 times, use the upper 100(1 − α)
percentile to be an estimate of uα.
(3) Smirnov test Geskus and Groeneboom’s asymptotic results (1999) on smooth func-
tionals with IC data can be applied to the two-sample version of the test.
(4) Gehan’s generalized Wilcoxon test.
For RC data :

Notations: (Use M or M+ instead of (x ∧ y, δ) representation).
n1 observations in the first sample: ai or ai+’s;
n2 observations in the second sample: bi or bi+’s.

Uij =







1 if ai > bj or ai+ ≥ bj
(we know for sure that obs-i in sample 1 > obs-j in sample 2),

−1 if ai < bj or ai ≤ bj+
(we know for sure that obs-i in sample 1 < obs-j in sample 2),

0 if not sure.

U =
∑n2

j=1

∑n1

i=1 Uij . A test is φ = 1( U
σ̂U

>zα).

Question: σ2
U = ?

σ2
U is derived (Gehan, 1965, Biometrika), but is very complicated. Thus it is not pre-

sented here.
Mantel (1967, Biometrics) considered a different sample space and derived a different

but simpler variance:
1. Pool two samples together, and denoted by ci or ci+, i = 1, ..., n1 + n2.
The first n1 ci’s are the first sample, follows by the second sample. That is,
c1 = a1 (or c1+ = a1+), ..., cn1 = an1 (or cn1+ = an1+), ...,
cn1+1 = b1 (or cn1+1+ = b1+), ..., cn1+n2 = bn2 (or cn1+n2+ = bn2+).
2. Denote

Vkh =

{
1 if we know for sure obs-k > obs-h,
−1 if we know for sure obs-k < obs-h,
0 if not sure,

(2.1)

(for RC data, we know for sure obs-k > obs-h iff ck > ch or ck+ ≥ ch.)

Vk =

n1+n2∑

h=1

Vkh, (2.2)
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Let W be a random variable taking values
∑n1

i=1 Vki , where {k1, ..., kn1} is a selection
of n1 distinct integers from {1, ..., n1 + n2}.

V =

n1∑

k=1

Vk (2.3)

is a value of W . Under this sample space (permutation sample space, each permutation
has equal probability),

E(W ) = 0 and σ2
W = n1n2

n1+n2∑

k=1

V 2
k

(n1 + n2)(n1 + n2 − 1)
. (2.4)



E(W 2) =
∑

k1,...,kn1

1
(
n1+n2

ni

) (

n1∑

i=1

Vki)
2



 .

Mantel suggests that
W

σW

D−→ N(0, 1) as n→∞.

We observe W = V .
If H1 is true, V should be large. Thus a test is ψ = 1( W

σW
>zα). That is ψ = 1( V

σW
>zα).

Under such a set-up, U is a value of W , in fact U = V .

V =

n1∑

k=1

n1+n2∑

h=1

Vkh

=

n1∑

k=1

n1∑

h=1

Vkh +

n1∑

k=1

n1+n2∑

h>n1

Vkh

=

n1∑

k=1

n1∑

h=1

Vkh +

n1∑

i=1

n2∑

j=1

Uij

= 0 + U (as Vkh = −Vhk).

Thus σ2
W can be viewed as a pseudo variance of U (not really a variance of U) and

the Gehan’s generalized Wilcoxon test is

ψ = 1( U
σW

>zα). (2.5)

For IC data we are sure that observation-k > observation-h iff

either Lk > Rh or Rk > Lk = Rh.

Using this interpretation in (2.1), (2.4) still holds. Thus the generalized Wilcoxon test can
be extended to the IC data by using (2.5) directly.
Remark. For a random sample of RC data, say (Mi, δi), i = 1, ..., n.

ŜX(t) =
∏

i: M(i)≤t(1−
δ(i)

n−i+1 )→ SX(t) a.s.,
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ŜM (t) = 1
n

∑n
i=1 1(Mi > t)→ SM (t) a.s..

ŜM (t) = ŜX(t)ŜY (t) and P (M > t) = P (X > t)P (Y > t).

ŜM (t)/ŜX(t)→ SY (t) a.s.,
ŜM (t)/ŜX(t) = ŜY (t) ?

ŜY (t) =
∏

i: M(i)≤t(1−
1−δ(i)
n−i+1 )→ SY (t) a.s.,

Thus 1− δ = 1(Y < X) 6= 1(Y ≤ X) does not matter to the consistency of ŜY (t).
(5) Logrank test (Mantel (1966)) The test is a common test in medical research.
Notations:

c1, ..., cm+n are pooled RC observations (sample 1, sample 2).

Among the pooled-sample







t1 < · · · < tk are distinct exact times,
d·,i is the # of deaths at ti, i = 1, ..., k,
R(ti) is the set of individuals in risk at time ti.

dj,i = # of deaths from group j at time ti.
dj,· = # of deaths in group j.
rj,i = # of elements of group j in R(ti).
r·,i = r1,i + r2,i.

U =
∑k
j=1[d1,j − d·,j r1,jr·,j

].

U

σ̂U

D−→ N(0, 1), where σ̂2
U =

k∑

i=1

d·,i
r2,ir1,i(r·,i − d·,i)
r2·,i(r·,i − 1)

(2.6)

The level-α logrank test is φ = 1( U
σ̂U

<−zα).

Derivation of logrank test
Under continuous assumption and PH model,
zi = zi(t) = w(t)1

(observation i is from group 1)
, where w(t) is a weight function.

D = {i : observation i in pooled-sample died}.

S1 = S(t|0) and S2 = S(t|1), where S(t|z) = (So(t))
eβzi(t)

, (2.7)

H0: S1 = S2 is equivalent to β = 0.

lik =
∏

i∈D
eβzi(ci)

∑

h∈R(ci)
eβzh(ci)

U(β) =
d lnlik

dβ
=
∑

i∈D
[zi(ci)−

∑

j∈R(ci)
eβzj(ci)zj(ci)

∑

h∈R(ci)
eβzh(ci)

], −−− the score function.

U(0) =
∑

i∈D
[zi(ci)−

∑

j∈R(ci)
zj(ci)

|R(ci)|
] =

∑

i∈D
[zi(ci)−

∑

i∈D

∑

j∈R(ci)
zj(ci)

|R(ci)|
]

U(0) =

k∑

j=1

w(tj)[d1,j − d·,j
r1,j
r·,j

], as zi = 0 for i > n1.

If w(ti) = 1, U(0) =
∑n1

i=1[d1,j − d·,jr1,j
r·,j

], corresponding to the logrank test.
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The asymptotic variance of U(0) can be obtained by

σ2
U ≈ −

dU(β)

dβ

∣
∣
β=0

=
∑

i∈D
[

∑

j∈R(ci)
eβzjz2j

∑

h∈R(ci)
eβzh

−
∑

j∈R(ci)
eβzjzj

∑

l∈R(ci)
eβzlzl

(
∑

h∈R(ci)
eβzh)2

]|β=0

=
k∑

i=1

(w(ti))
2d·,i[

r1,i
r·,i
−
r21,i
r2·,i

]

=

k∑

i=1

[(w(ti))
2d·,i

r1,i
r·,i

r2,i
r·,i

] (2.8)

Note that the logrank test is a score test, not a test based on MLE. Thus the Fisher
information matrix is the variance of the score function.

σ̂2
U = −dU(β)

dβ

∣
∣
β=0

=
k∑

i=1

[d·,i
r1,i
r·,i

r2,i
r·,i

] if w(ti) = 1,

which equals (2.6) as d·,i = 1 by the continuity assumption.
A two-sided test ψ = 1

(|U(0)
σ̂U

|>zα/2)
is called a linear rank test, where

w(ti) = r·,i — generalized Wilcoxon test, Gehan (1965);
w(ti) = 1 —- logrank test Mantel (1965);
w(ti) = nŜpl(ti−) — Prentice (1978);

w(ti) = n(Ŝpl(ti−))k — Harrington and Fleming (1982).
Example in R.

x=coxph(Surv(time)∼ ag+log(wbc),data=leuk)
summary(x)

coef exp(coef) se(coef) z Pr(> |z|)
agpresent −1.0691 0.3433 0.4293 −2.490 0.01276 ∗
log(wbc) 0.3677 1.4444 0.1360 2.703 0.00687 ∗∗

exp(coef) exp(−coef) lower.95 upper.95
agpresent 0.3433 2.9126 0.148 0.7964
log(wbc) 1.4444 0.6923 1.106 1.8857

Concordance= 0.726 (se = 0.065 )
Rsquare= 0.377 (max possible= 0.994 )
Likelihood ratio test= 15.64 on 2 df, p=4e-04
Wald test = 15.06 on 2 df, p=5e-04
Score (logrank) test = 16.49 on 2 df, p=3e-04

Remark. The test statistics of the logrank test as all existing tests for the PH model are
based on the assumption that the data are from a model larger than the model in H0. In

particular, it assumes (2.7), that is, S1 = S(t|0) and S2 = S(t|1), where S(t|z) = (So(t))
eβz(t)

and z(t) is given. Then it tests H∗
o : β = 0 v.s. H∗

1 : β 6= 0, based on Eq. (2.7).
The size of the test is true as long as n is large, that is, when Ho is true.
If (2.7) does not hold, then it is not true that U

σU
≈ N(0, 1) and the test is not valid.

When does the assumption fail ?
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1. z(t) is mis-specified;
2. the data is from another regression model, e.g. a log linear regression model;
3. the data is not from any common regression model.

If the assumption fails, then the logrank test becomes a random guessing. One can check by
simulation study that it is possible that the logrank test rejects H0 with a probability 0.5,
a large probability, or with a small probability.

(6) The marginal distribution test (in two-sample problem) (Dong and Yu (2018)). The
logrank test needs the assumption that the data are from a PH model.

A test statistics for checking the PH model in the two-sample set-up is

T =

∫

|ŜX(t)− ŜX∗(t)|dŜX(t),

where ŜX is the PLE based on the pooled sample (Mi, δi)’s,
ŜX∗(t) = 1

n

∑n
i=1(Ŝ1(t))βZi and

Ŝ1(t) is the PLE based on the first sample. In particular, if the first sample is complete,
Ŝ1(t) 1∑n

i=1
1(Zi=1)

∑n
j=1 1(Mi > t, Zi = 1).

Notice that F̂1 = 1− Ŝ1 (the edf based on the first sample).
The critical value can be obtained by a modified bootstrap method.

Justification. SX,Z is a joint cdf, which does not need to be from any PH model.
SX is the marginal distribution.
If SX|Z is from a PH model, then

SX = E(SX|Z(·|Z)) = E((S1(t))βZ),

which can be estimated by ŜX∗(t) = 1
n

∑n
i=1(Ŝ1(t))βZi .

Otherwise, SX∗ = E((S1(t))βZ) satisfies the PH model.
For IC data

Self and Grossman (1986) consider the linear regression problem with IC data for a given
distribution with location-scale parameters and propose a marginal likelihood approach, the
marginal distribution of the ranks of the underlying survival times. Note that their problem
is essentially parametric even though they used a nonparametric approach. Rabinowitz et al.
(1995) proposed a class of score statistics to estimate parameters of the accelerated failure
time model with IC data. Finkelstein (1986, Biometrics) extended the logrank test to the IC
data. Satten (1996) consider rank-based inference in the proportional hazards model with
IC data. Both extended the logrank test for RC data.
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