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Abstract: We consider the piecewise proportional hazards (PWPH) model with interval-

censored (IC) relapse times under the distribution-free set-up. The partial likelihood approach

is not applicable for IC data, and the generalized likelihood approach has not been studied in

the literature. It turns out that under the PWPH model with IC data, the semi-parametric

MLE (SMLE) of the covariate effect under the standard generalized likelihood may not be

unique and may not be consistent. In fact, the parameter under the PWPH model with

IC data is not identifiable unless the identifiability assumption is imposed. We propose a

modification to the likelihood function so that its SMLE is unique. Under the identifiability

assumption, our simulation study suggests that the SMLE is consistent. We apply the method

to our cancer relapse time data and conclude that the bone marrow micrometastasis does not

have a significant prognostic factor.
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1. Introduction. We consider the semi-parametric estimation problem under the piece-wise

proportional hazards (PWPH) model, with interval-censored (IC) continuous survival time

Y . The proportional hazards (PH) model (Cox (1972)) specifies that a covariate vector Z has

a proportional effect on the hazard function of Y . This model provides powerful means for

fitting failure time observations to a distribution free model and for estimating the risk for

failure associated with a vector of covariates. The PWPH model is a special PH model.

IC data consist of n time intervals with the end-points Li ≤ Ri, i = 1, ..., n, where the

true survival time Yi falls inside the interval. Notice that (Li, Ri) is called left-censored if

Li = −∞, right-censored if Ri = ∞, strictly interval-censored if 0 < Li < Ri < ∞ and exact

if Li = Ri. For a random variable Y , denote its survival function by SY (t) = P (Y > t),

its density function by fY (t), and its hazard function by hY (t) =
fY (t)

SY (t−) . Given a covariate

(vector) Z which does not depend on time Y , (Z, Y ) follows a time-independent covariate PH

(TICPH) model or Cox’s regression model if the conditional hazard function hY |z satisfies

h(t|z) (= hY |z(t|z)) = ho(t)e
β′z, for t < τ , (1.1)

where β′ is the transpose of the p× 1 vector β, τ = sup{t : ho(t) > 0}, and ho is an unknown

baseline hazard function.

The Cox model has been extended to the time-dependent covariates proportional hazards

(TDCPH) model. Cox and Oak (1984, p. 115) give a typical example of time dependent

covariate in medical research, namely,

h(t|z) = eβz(t)ho(t), t < τ, where z = z(t) = 1(t≥a), (1.2)

and a is the admission time to a treatment for a patient. They also give another example of

time-dependent covariate. Zhou (2001) formulates a PWPH model with k cut points:

h(t|z) =
k

∑

i=0

ho(t)e
βizi1(t ∈ [ai, ai+1)), where a0 = 0 < a1 < · · · < ak+1 = ∞, (1.3)

z = (z0, z1, ..., zk)
′ is a time-independent covariate vector. Model (1.2) is a special case of the

PWPH model (1.3) with a single cut point at a. The TDCPH model has been commonly used

for right-censored (RC) data (see, for instance, Therneau and Grambsch (2000), Leffondre
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et al. (2003), Platt et al. (2004), Zhang and Huang (2006), Stephan and Michael (2007),

Masaaki and Masato. (2009), Leffondre et al. (2010)) and Wong et al. (2016). However, it

has not been studied under the interval censoring.

Let (Z1, Y1), ..., (Zn, Yn) be a set of regression data. For instance, in our cancer research

data set, Yi is the relapse time of a cancer patient after surgery, Zi is a vector with numerical

or categorical coordinates, containing information about the age, tumor size at surgery, nodal

number, bone marrow micrometastasis (bmm) or other information about the i-th patient.

We are interested in the conditional survival function SY |z instead of SY . In particular, we

consider a problem of studying the relation between the covariate bmm with IC relapse time

Y of a breast cancer patient after the surgery. The covariate bmm is a categorical variable

taking two values, say 1 (bmm positive) and 0 (otherwise). Some medical doctors suspect

that the bmm effect might depend on time T . To test this hypothesis, we consider a PWPH

model as follows.

* PWPH Model(1): Let h(t|z) = ho(t)e
β′z for t < τ , where β = (β1, β2)

′, z = (z1, z2)
′,

z1 =

{

1 if bmm= 1 and t < 4 years
0 ow,

and z2 =
{

1 if bmm= 1 and t ≥ 4 years
0 ow.

Or more general z = (z′1, z
′
2)

′, z1 = u1(t < a) and z2 = v1(t ≥ a), where a is a

fixed constant, u and v are time-independent covariate vectors.

Under the TDCPH model with RC data, a common approach is the partial likelihood

approach. However, this approach does not work even for interval censored data with time-

independent covariates. Thus Finkelstein (1986) proposed the generalized likelihood function

approach, making use of the generalized likelihood. Let SY |z(t|z) or simply S(t|z) be the

conditional survival function corresponding to h(t|z) in (1.1) and So(t) = SY |z(t|0). Given

IC data (Li, Ri,Zi) which may contain exact observations, the generalized likelihood is

L = L(β, So) =
n
∏

i=1

[(S(Li|Zi)− S(Ri|Zi))
1−δi(S(Li − |Zi)− S(Ri|Zi))

δi ], (1.4)

where δi = 1(Li = Ri). The semi-parametric maximum likelihood estimator (SMLE) of

(β, So), denoted by (β̂, Ŝo), maximizes L over all survival functions So(·) (= S(·|0)) and

all possible values of β. L defined in (1.4) is applicable to all IC data. In particular, it

is applicable to the double censorship model (Turnbull (1976)), which assumes Y ⊥ (U ,V)
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and (L,R) =







(Y, Y ) if U < Y ≤ V
(−∞,U) if Y ≤ U
(V,∞) if Y > V,

and it is possible that δi = 1. This is a model

for a data set that contains left-censored, right-censored and exact observations. L is also

applicable to the mixed case model (Schick and Yu (2000)) (with δi ≡ 0), as it assumes

(L,R) =







(−∞, C1) if Y ≤ C1

(Ci−1, Ci) if Y ∈ (Ci−1, Ci], i ∈ {2, ..., N}
(CN ,∞) if Y > CN ,

and Y ⊥ {N,C1, C2, ...}, where Ci is

the i-th follow-up time andN is a (random) number of follow-up times. If P (N = m) = 1, then

the mixed case model becomes the case m interval censorship model (see Groeneboom and

Wellner (1992)). They are models for a data set that contains interval-censored observations,

but not exact observations. Thus δi ≡ 0.

The semi-parametric problem under the PWPH model with IC data has not been studied

in the literature. Under PWPH model(1) with IC data, the parameter β is not identifiable

unless further assumptions are imposed (see Example 2.1). Moreover, in general, the SMLE of

β under the likelihood function (1.4) may not be unique (see Example 2.3). Both phenomena

do not occur if the covariates are time-independent (see Wong and Yu (2012)). In this paper,

we specify the identifiability condition for such problems. We propose an estimator of the

regression parameter β based on the non-parametric MLE (NPMLE) and discrete data. We

also study the estimation problem of deriving the SMLE. Under the identifiability condition,

the simulation results suggest that both estimators of β are consistent under the mixed case

IC model and the SMLE is more efficient. Moreover, the SMLE of So(a) is consistent unless

β = 0, even if a is always censored. Under the assumption that the censoring distribution

takes on finitely many values, the estimation problem becomes a multinomial distribution

problem and the asymptotic properties of the SMLE can be easily established (see (Examples

2.2 and 2.3). We have completed the proof of the consistency of the SMLE in the general

case and will be presented in a forthcoming paper due to the length of the proof.

The results in this paper can be extended to the general PWPH models. The main results

are given in section 2. Algorithms for deriving the SMLE are discussed there. Simulation

results are presented in section 3. Data analysis is in section 4. The detailed proofs of some

lemma and examples are relegated to Appendix.

2. The main results. We study the estimation problem under the PWPH model assuming
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Y is continuous in this section. For simplicity, we focus on the PWPH model with one cut

point most of the time. Since we would make use of the generalized likelihood function of

the form (1.4), we study the survival function under the model in §2.1 and investigate the

identifiability condition in §2.2 and study how to modify the likelihood in (1.4) under PWPH

model(1) in §2.3 and §2.4.

2.1. Survival functions. We study the general form of S(t|z(t)) for various z(t) listed in

section 1. Recall that ho(t) = hY |z(t|0) = h(t|0) and So(t) = SY |z(t|0) = S(t|0).

Proposition 1. Assume that SY |z(t|z(t)) satisfies the PH model. If So(t) is absolutely

continuous and non-negative. Then S(t|z(t)) = exp(−
∫ t

0
eβ

′z(x)ho(x)dx), t ≥ 0

Corollary 1. If So(t) is absolutely continuous and non-negative, then under model (1.3),

S(t|z(t)) =















(So(t))
e
β′
0
z0

if t ∈ (−∞, a1]

(So(a1))
e
β′
0
z0

( So(t)
So(a1)

)e
β′
1
z1

if t ∈ (a1, a2]
∏i

j=1(
So(aj)

So(aj−1)
)e

β′
j−1

zj−1

( So(t)
So(ai)

)e
β′
i
zi

if t ∈ (ai, ai+1], i ≤ k.

(2.1)

Remark 1. The family of survival functions {S : S(t) = (So(t))
eβ

′z
, β, z ∈ Rp}, is

called a Lehmann family or Lehmann model (Lehmann (1959)). If the covariates is not

time-dependent and Yi’s are continuous, these two models are the same (see Yu (2006)).

However, Corollary 1 indicates that the PH model and Lehmann model with time-dependent

covariates are different even if So is absolutely continuous. In particular, if So is the survival

function of the exponential distribution, that is, So(t) = e−t, t > 0, then the PH model

h(t|z(t)) = eβ
′z(t)ho(t) leads to (2.1), or S(t|z(t)) = (So(t))

eβ
′z(t)

(So(a))
z(t)(1−eβ

′z(t)), which

does not lead to the Lehmann model S(t|z(t)) = (So(t))
eβ

′z(t)

. Vice versa.

Corollary 2. Let So(t) be absolutely continuous. If the covariate vector Z = (W,Z2, Z3)
′,

where Z2 = U1(t < a), Z3(t) = V 1(t ≥ a), and W , U and V are time-independent random

variables, then S(t|z(t)) =

{

(So(t))
e(W,U,0)β

if t < a

(So(a))
e(W,U,0)β

( So(t)
So(a)

)e
(W,0,V )β

if t ≥ a,
where β = (β1, β2, β3)

′.

The findings in this section indicate that the semi-parametric likelihood function has

different forms depending on the covariates z(t) as well as the assumption on S(t|z(t)). In

fact, if S(t|z(t)) is not continuous then the expressions are different.

2.2. Identifiability conditions. We shall first study the identifiability condition for the

PWPH model(1), as it is related to whether we can get a consistent estimator. Without loss
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of generality (WLOG), we can assume that the covariates u and v ∈ Rp and take at least p

linearly independent values.

Given a random variable, say U , let SFU
be the support set of FU , in the sense that if

x ∈ SFU
then FU (x + ǫ) − FU (x − ǫ) > 0 ∀ ǫ > 0. Abusing notations, we write h(t|z) =

ho(t) exp(β
′z(t)) and f(t|z) is the conditional density function, etc..

Lemma 1. Assume the PH model h(t|u) = ho(t)e
β′u1(t≥a), with the parameter (β, So) and

without censoring. Then the parameter (β, So) is identifiable, provided that τ > a (see (1.1)).

Proof. We shall show that given f(·|·), (So, β) is identifiable. Note that given f(·|·), S(·|·) is

identifiable. The covariate satisfies Z(t) = U1(t ≥ a), where U is independent of t, and U and

β ∈ Rp. Moreover,U takes p linearly independent values. Let u be the realization ofU. Abus-

ing notations, S(t|u) =

{

So(t) if t < a or u = 0,

(So(a))
1−eβ

′u
(So(t))

eβ
′u

if t ≥ a and u 6= 0.
Since u is indepen-

dent of t, there exists to > a such that S(to|0) = So(to) > 0 and S(to|u) = So(a)(
So(to)
So(a)

)e
β′u

.

lnS(to|u) = lnSo(a) + eβ
′uln(So(to)

So(a)
) (which is a system of p linearly independent equations)

and So(t) = S(t|0) uniquely determined by S(·|z(·)). Thus (β, So) is identifiable.

Lemma 2. Assume h(t|u) = ho(t)e
β′u1(t≥a). Under the mixed case IC model and assuming

that So is absolutely continuous, the parameter β is identifiable if

∃ b, c ∈ (SFL
∪ SFR

) ∩ [a,∞) such that So(b) > So(c) > 0, (2.2)

where SFL
and SFR

are the support sets of the cdf ’s of L and R, respectively. The parameter

So(a) is identifiable if β 6= 0 in addition to assumption (2.2).

The proof is given in Appendix.

Remark 2. Lemma 2 can be extended to the PWPH model with k cut points, say

a0 = 0 < a1 < a2 < · · · < ak+1 = ∞. Then for i ∈ {0, 1, ..., k + 1}, βi in (1.3) is identifiable

if

∃ bi, ci ∈ (SFL
∪ SFR

) ∩ [ai, ai+1], such that So(bi) > So(ci) > 0;

moreover, So(ai) is identifiable if βi 6= 0 in addition to the aforementioned assumption.

Notice that under the TICPH model, β is identifiable provided that there exists a point

t ∈ SFL
∪ SFR

such that So(t) ∈ (0, 1). Thus β1 in model (1.3) is identifiable if there exists a
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point t ∈ SFL
∪ SFR

and t < a such that So(t) ∈ (0, 1). If assumption (2.2) is violated, the

parameter is not identifiable, as is the case in the next example.

Example 2.1. Suppose that hY |Z(t|z) = euβ1(t≥2)ho(t), Z = U1(t ≥ 2) and U takes on two

values. Under the mixed case interval censorship model, the parameter β is not identifiable

if So is also an unknown parameter (see the proof in Appendix).

The non-identifiability example in the proof of Example 2.1 is mainly due to the fact

that there is only one point in the set (SFL
∪SFR

)∩ [a,∞). Notice that under right censoring

with censoring variable C, and there are always two or more points in the set SFC
∩ [a,∞)

if inf{t : FC(t) < 1} > a and ho(t) > 0 for some t > a. Thus the parameter is always

identifiable under the right censorship model.

2.3. A non-parametric estimator of β. Under the PWPH models with the discrete

covariates, there is a simple consistent estimator of β based on the NPMLE. WLOG we shall

explain through PWPH Model(1)

h(t|u) = ho(t)e
β1u1(t<a)+β2u1(t≥a)

where the covariate u takes two discrete values, say 0 and 1. Then the simple consistent

estimator of β = (β1, β2) can be obtained as follows. Let S̆o and S̆1 be the NPMLE’s of

SY |U (·|u) based on the observations with ui = 0 and ui = 1, respectively. Both estimators

can be derived by the simple self-consistent algorithm (see Turnbull (1976)) as follows.

Recall that an intersection A of the observed intervals Ii =

{

[Li, Ri] if Li = Ri

(Li, Ri] if Li < Ri
is

called an innermost interval (II) if A ∩ Ii = A or ∅ for each Ii (see Turnbull (1976)). The

weight sj assigned to Aj by the NPMLE satisfies sj = limh→∞ s
(h)
j , where s

(0)
j = 1/m, and

s
(h+1)
j =

1

n

n
∑

i=1

s
(h)
j 1(Aj ⊂ Ii)

∑m
k=1 s

(h)
k 1(Ak ⊂ Ii)

, h ≥ 0, j = 1, ..., m.

To estimate β1, let q1 < · · · < qm (< a) be all the finite left-end points of the IIs induced

by the observations with ui = 0 and the IIs induced by the observations with ui = 1. Since

logS(t|1) = eβ1 logSo(t), β1 = log log S(t|1)
log So(t)

. It is well known that the NPMLE S̆(·|·) and S̆o

are consistent (see Turnbull (1976)), then a consistent estimator is β̆1 = 1
m

∑

j log
log S̆(qj |1)

log S̆o(qj)

due to continuity.
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To estimate β2, let (a <) g1 < · · · < gm be all the finite left-end points of the IIs induced

by the observations with ui = 0 and the IIs induced by the observations with ui = 1. Since

logS(t|1) = log(So(a))
eβ1

+ eβ2 log So(t)
So(a)

for t > a, β2 = log
log

S(t|1)

(So(a))e
β1

log
So(t)
So(a)

. Then a consistent

estimator is β̆2 = 1
m

∑

j log
log

S̆(gj |1)

(S̆o(a))e
β̆1

log
S̆o(gj)

S̆o(a)

.

Although the estimator β̆ = (β̆1, β̆2) is consistent, but it is not efficient (see Example

2.2). It is an ideal initial value of β if one decides to use the SMLE, which can be obtained

by an iterative algorithm.

2.4. The SMLE with IC data. The likelihood function with IC data is given by (1.4).

In particular, L =
∏n

i=1(S(Li|zi) − S(Ri|zi)). For the PH model, there are two differences

between right censoring and interval censoring:

(a) One can show that the SMLE is unique and is consistent under the standard RCmodel but

may not be so under the standard interval censorship model, unless further assumptions

are imposed (due to identifiability).

(b) The SMLE of So assigns weight to the cut point a under the IC model (see the proof of

Example 2.2) but not under the RC model (see Wong et al. (2016)).

Now we consider the PH model with IC data. Typically, let zi = (zi1, zi2, zi3)
′, where

zi2 = ui1(t < a), zi3(t) = vi1(t ≥ a), and (zi1, ui, vi) is the i-the observation of the time-

independent covariate vector. This is also the case in data analysis of our cancer data set.

Notice that setting wi = ui = 0 leads to the covariate zi(t) = ui1(t ≥ a).

Let A1, ..., Am be all the innermost intervals induced by Ii’s. If the covariates are time-

independent, it is well known that in order to maximize L, it suffices to put the weights of So

to the right-end points of the IIs. Let tj ’s be the right-end point of the II’s or a or ±∞ and

t0 = −∞ < t1 < · · · < tia = a < tia+1 < · · · < tm = ∞. Write Sj = So(tj). For each i, let

(li, ri) satisfy







tri ≤ Ri < tri+1 and tli ≤ Li < tli+1 if Li < Ri < ∞
tri = tm and tli ≤ Li < tli+1 if Li < Ri = ∞
tri = Ri and tli = tri−1 if Ri = Li.

Remark 3. We shall explain in the proof of Example 2.2 in Appendix that in order to

maximize L, it suffices to put the weights of So to tj ’s. This is different from the case of the

TICPH model or the case of the non-parametric likelihood. It is proved in Proposition 2 that

if one puts the weights to the right-end points of the IIs only, then the resulting estimator is
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not consistent.

Since we shall carry out data analysis on the cancer research data making use of PWPH

Model(1), by Corollary 2, the likelihood function of can be written as

L(β, So) =
∏

ri≤ia

((So(tli))
eβ

′v3i
− (So(tri))

eβ
′v3i

)

·
∏

li≤ia<ri

[(So(tli))
eβ

′v3i
− (So(a))

eβ
′v3i

(
So(tri)

So(a)
)e

β′v2i
]

·
∏

li>ia

(So(a))
eβ

′v3i
[(
So(tli)

So(a)
)e

β′v2i
− (

So(tri)

So(a)
)e

β′v2i
],

where v2i =





wi

0
vi



 , v3i =





wi

ui

0



 , β =





β1

β2

β3



. Moreover,

L(β, So) =
∏

ri<ia

(So(tli)
eβ

′v3i
− So(tri)

eβ
′v3i

) ·
∏

li>ia

[So(tli)
eβ

′v2i
− So(tri)

eβ
′v2i

] (2.3)

·
∏

li<ia<ri

[So(tli)
eβ

′v3i
− So(a)

eβ
′v3i−eβ

′v2i
So(tri)

eβ
′v2i

] ·
∏

li>ia

So(a)
eβ

′v3i−eβ
′v2i

·
∏

ri=ia

(So(tli)
eβ

′v3i
− So(a)

eβ
′v3i

) ·
∏

li=ia

[So(a)
eβ

′v3i
− So(a)

eβ
′v3i−eβ

′v2i
So(tri)

eβ
′v2i

].

The SMLE of (β, So) maximizes L(b, S) over all b ∈ Rp and all survival functions S.

Thus it maximizes L(b, S) among all (b, S) that satisfies ∂
∂β lnL(β, S)|β=b = 0. In fact, for the

complete data, if the sample size is not too large, one can use the Newton-Raphson method to

solve the MLE numerically. If the data are interval censored, the method often does not work

even with a time-independent covariate, such as the counterexample given in Appendix II.

The main reason is that the maximum value of L(b, S) over all (b, S) without the restriction

that S is a survival function is larger than the maximum value of L(b, S) over all (b, S) with

the restriction. Thus we propose an algorithm as follows.

Assume that there are m distinct IIs, with the right-end points t1 < t2 < · · · < tm.

Denote Si = S(ti) with Sm = 0. Abusing notations, we identify S with a vector (S1, ..., Sm).

Similarly, we identify S(i) with (S
(i)
1 , ..., S

(i)
m ).

Step 0. Let b(0) = 0 be the initial estimate of β and the initial estimate of S(0) puts 1/m

weight to each tj ’s.
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Step i+1 (i ≥ 0). Let b(i) and S(i) be the updated values of b and S at Step i. Do b-step and

S-step as follows.

* (b-step) With S = S(i) fixed, find a b so that the likelihood function L(S(i), ·) increases.

Denote the up-dated estimate b by b(i+1). In particular, one can use the NR method to

obtain the maximum point b of the likelihood function with the given S = S(i).

* (S-step) With b = b(i+1) fixed, search a non-increasing S so that the likelihood function

L(·, b(i+1)) is maximized (or increases). Denote the up-dated estimate S by S(i+1). In

order to guarantee the up-dated So is nondecreasing, proceed as follows. Let S(i+1),0 =

S(i). At Sub-step j (j = 1, ..., m), update (S1, ..., Sm) by (S
(i+1),j
1 , ...S

(i+1),j
m ), where

S
(i+1),j
h = Sj,uo and Sj,u =







S
(i+1),j−1

h
+u

1+u if h < j,

S
(i+1),j−1

h

1+u if h ≥ j,
h = 1, ...,m, uo > 0 is a number

maximizing L(b(i+1), S·,u) where S·,u = (S1,u, ..., Sm,u).

Note: If such uo is difficult to choose, one may choose a uo satisfying

L(b(i+1), S(i+1),j) > L(b(i+1), S(i+1),j−1). (2.4)

In particular, if ∂
∂u lnL(b

(i+1), S·,u)
∣

∣

u=0
> 0, uo = ck ∂

∂u lnL(b
(i+1), S·,u)

∣

∣

u=0
, where S·,u =

(S1,u, ..., Sm,u) and k is the smallest non-negative integer that is smaller than Ko such

that (2.4) holds.

Stop at convergence.

Expressions of the partial derivatives can be found in Appendix I.

Remark 4. Let pi be the weight on ti, p = (p1, ..., pm) and p(i) the updated value of p at

the i-th step. Since S(ti) = pi+1 + · · ·+ pm, the S-step can also be replaced by the p-step as

follows.

* (p-step) With b = b(i+1) fixed, search a non-increasing S so that the likelihood function

L(·, b(i+1)) is maximized (or increases). Let p(i+1),0 = p(i). At Sub-step j (j = 1,

..., m), update (p1, ..., pm) by (p
(i+1),j
1 , ...p

(i+1),j
m ), where p

(i+1),j
h = pj,uo and pj,u =







p
(i+1),j−1

h
+u

1+u if h = j,

p
(i+1),j−1

h

1+u if h 6= j,
h = 1, ...,m, uo > 0 is a number maximizing L(b(i), S·,u) where

S·,u = (S1,u, ..., Sm,u) and Si,u = pi+1,u + · · ·+ pm,u.

Moreover, the restriction u > 0 can be replaced by u > −p
(i+1),j−1
h .
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Under the assumption that the follow-up times are discrete, the covariance matrix can

be estimated by the inverse of the empirical Fisher information matrix.

A proof of the consistency of the SMLE and β̆ under a simple assumption is as follows.

Example 2.2. Suppose that h(t|u) = ho(t)e
βu1(t≥a) and Y is continuous and is subject

to the case m IC model, where m ≥ 3, the follow-up time Cj ’s are constant and satisfy

C1 < a < C2, and the covariate u takes at least two values, say 0 and 1. Then the SMLE

and the estimator β̆ based on the NPMLE are all consistent. Moreover, the SMLE is more

efficient than β̆.

One may think that Example 2.2 is trivial. It is interesting to see that if the case 3 model

is replaced by the case 2 model, the conclusion is different as in the next example.

Example 2.3. Suppose that h(t|ui) = ho(t)e
βui1(t≥2) and Y is continuous, and is subject

to the case 2 IC model where (C1, C2) only takes value (1, 3), where ui = 1(i ≤ n/2). It is

proved in Appendix that the SMLE is not unique and not consistent.

Remark 5. The non-uniqueness and inconsistency of the SMLE in Example 2.3 is due to

the non-identifiability of the parameter under the condition that the support set contains only

one point ≥ a, proved in Example 2.1. In general, the identifiability condition in Lemma 2

can be satisfied, as is the case in our breast cancer data. It is also worth noticing that under

the TICPH model with the covariate taking at least two values, under the case 1 model with

the follow-up time C1 = y w.p.1 and So(y) ∈ (0, 1), the SMLE of β is consistent.

Proposition 2. Under the assumption in Example 2.2, if the estimator of β̃ is obtained by

maximizing L with So(a) = So(y1), then β̃ is inconsistent.
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3. Simulation Studies. We present simulation study results as follows.

sample size β So a β̂1 β̂2 SDβ̂1
SDβ̂2

400 (0, 2) Exp(1) 0.15 −0.011 2.101 0.292 0.289
800 0.001 2.046 0.207 0.183
1600 −0.002 2.020 0.149 0.143
400 (−1, 1) Exp(1) 0.15 −1.042 1.023 0.406 0.167
800 −1.034 1.008 0.275 0.123
1600 −0.969 1.008 0.210 0.085

400 (0, 2) U(0, 2) 0.15 −0.019 2.069 0.412 0.275
800 −0.009 2.030 0.280 0.166
1600 0.009 2.009 0.199 0.110
400 (−1, 1) U(0, 2) 0.15 −1.070 1.018 0.589 0.186
800 −1.040 1.011 0.409 0.126
1600 −1.011 1.005 0.265 0.090

In our studies, (Y, U) satisfies the model hY |U (t|ui) = eβ1ui1(t≤a)+β2ui1(t>a)ho(t), where a =

0.15 and U ∼ bin(1, 0.4). The censorship model is the mixed case model with P (N = 2) = 1,

which is also called the case 2 model. The follow-up times are C1 and C2, where C1 < C2.

C1 equals W with probability 0.2 and equals 0.15 with probability 0.8, where W ∼ U(0, 0.2).

C2 equals 0.25, 0.5 and 1 with probabilities 0.25, 0.25 and 0.5, respectively. So is either from

Exp(1) (the exponential distribution with mean 1), or from U(0, 2) (the uniform distribution

on the interval (0, 2)). β = (β1, β2) is either (0, 2) or (−1, 1). We generated data with 5000

replications each for sample sizes n = 400, 800 and 1600. Under both baseline distributions,

the proportions of left-censoring and right-censoring are roughly 0.07 and 0.43, if (β1, β2) =

(0, 2), and are 0.05 and 0.75 if (β1, β2) = (−1, 1). Our simulation results suggest that the

SMLE of β is consistent and the convergence rate is n1/2. We also carried out the simulation

for sample sizes n ≤ 200, the sample standard deviations are very large, due to the divergence

of the SMLE β̂ for some samples. For instance, if β = (−1, 1) and So is Exp(1), the rates

of divergence of β̂ are 11.4%, 3% and 0.2% for n = 50, 100 and 200, respectively. It also

happens for the partial likelihood estimator with right censored data if n is small (see Wong

et al. (2016)). Thus we only present in the previous table the simulation results for n ≥ 400.

The proof of the consistency of the SMLE (β̂, Ŝo) is under preparation and the proof of the

convergent rate of β̂ is our next project.
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4. Data Analysis. Our data are obtained from 371 women with stages I - III unilateral

invasive breast cancer surgically treated at Memorial Sloan-Kettering Cancer Center between

1985 and 2001, and up-dated more recently. We considered a problem of studying the relation

between the bone marrow micrometastasis (bmm) and the relapse time Y of a breast cancer

patient after the surgery. Y is interval censored. The covariate bmm is a categorical variable

taking values 1 and 0. The median follow-up time is 7.4 years.

Suggested by a medical doctor, we considered PWPH model(1). We originally thought

that the likelihood under the the PH model is still as in (1.4) and computed the “SMLE”.

The “estimates” β̃1 > 0 and β̃2 < 0, but only β̃1 is significant. However, it turns out that the

analysis is based on the Lehmann model, not the PH model. Moreover, there is a restriction

of β1 ≤ 0 under the Lehmann model (see Yu et al. (2013)).

We compute the value of β that maximizes the generalized likelihood (2.3). The SMLE

based on our data satisfy

β̂1 = 0.211420 with a SE 0.188309 and Z-value= 1.12,

β̂2 = 0.729921 with a SE 0.483862 and Z-value= 1.5.

Both are not significant.

5. Appendix.

Proof of Lemma 2. WLOG, we can assume that the covariates u and β belong to R1, the

censorship model is the case 2 model with two follow-up times C1 and C2, and conditional on

u, X and (C1, C2) are independent.

Step (1). ⊢: S(t|u) is identifiable at SFL
∪ SFR

.

It is easy to show that SFL
∪ SFR

= ([c1, c2] ∩ (SFC1
∪ SFC2

)) ∪ {−∞,∞}. Under the

censoring model, the density function is

g(l, r|u)) =







(1− S(r|u))fC1(r) if l = 0 and fC1(r) > 0
(S(l|u)− S(r|u))fC1,C2(l, r) if fC1,C2(l, r) > 0 and 0 < l < r < ∞
S(l|u)fC2(l) if fC2(l) > 0 and r = ∞.

If t ∈ SFC1
, then we either have fC1(t) > 0 or ∃ a sequence of distinct points tj ∈ SFC1

such

that tj → t and fC1(tj) > 0. If fC1(t) > 0, then S(t|u) = 1 − g(0, t|u)/fC1(t) is uniquely

determined. If fC2(t) > 0 then S(t|u) = g(t,∞|u)/fC2(t) is uniquely determined. Moreover,

if to is a limiting point in SFC1
∪ SFC2

, say tj → to, where tj ∈ SFC1
∪ SFC2

, then S(to|u) is
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uniquely determined as S(t|u) is continuous. Thus the claim is proved.

Step (2) (Conclusion). Since u takes at least two values, WLOG, we can assume that it

takes values 0 and 1. Notice that So(t) = S(t|0). Thus So(t) and S(t|1) are identifiable at

SFC1
∪ SFC2

. Now let a ≤ b < c, where b, c ∈ SFL
∪ SFR

, then So(b) and So(c) and S(b|1)

and S(c|1) are identifiable by Step (1). Moreover, S(t|1) = (So(a))
1−eβ (So(t))

eβ if t ≥ a.

Since S(b|1)/S(c|1) = (So(b)/So(c))
eβ , β is identifiable if So(b) > So(c) > 0. Finally, since

S(b|1) = (So(a))
1−eβ (So(b))

eβ , So(a) is also identifiable if β 6= 0.

Proof in Example 2.1. It suffices to give a counterexample to the identifiability of the

parameters under the given assumptions. Let U ∼ bin(1, 0.5). Suppose that So(t) ∈ (0, 1)

if t ∈ (0, 4). Moreover, assume the case 2 model, that is, the observable random vector is

(L,R) = (−∞, C1)1(Y ≤ C1) + (C1, C2)1(Y ∈ (C1, C2]) + (C2,∞)1(Y > C2), where the

random vector (C1, C2) and (U, Y ) are independent.

Let the censoring vector (C1, C2) ≡ (1, 3) and So be absolutely continuous, where

So(1) > So(2) > So(3) > So(4) = 0. Let s0 = 1(Y ≤ 1|U = 0) + 1(Y ≤ 1|U = 1),

s1 = 1(Y ∈ (1, 3]|U = 1), s2 = 1(Y ∈ (1, 3]|U = 0), s3 = 1(Y > 3|U = 1), and

s4 = 1(Y > 3|U = 0). Let p1 = Fo(1), p2 = Fo(3)−Fo(2), p3 = So(3), and p4 = Fo(2)−Fo(1).

The density of (s0, s1, ..., s4) is

f = (p1)
s0(1− p1 − (p2 + p3)

1−eβpe
β

3 )s1(1− p1 − p3)
s2((p2 + p3)

1−eβpe
β

3 )s3ps43 .

For given (p1, p2, p3, β) = (p∗1, p
∗
2, p

∗
3, β

∗), let γ∗ = (p∗2 + p∗3)
1−eβ

∗

p∗e
β∗

3 , then f remains the

same if (p1, p2, p3, β) = (p∗1, p2, p
∗
3, β), where (p2, β) satisfies (p2 + p∗3)

1−eβp∗e
β

3 = γ∗. The

latter equation yields

β = ln
ln γ∗

p2+p∗
3

ln
p∗
3

p2+p∗
3

(5.1)

where p2 ∈ (0, 1−p∗1−p∗3]. Thus the β is not uniquely determined if p∗1+p∗3 < 1. For instance,

let (p∗1, p
∗
2, p

∗
3, β

∗) = (1/3, 1/8, 1/8,−1.1), then γ∗/(p∗2 + p∗3) ≈ 0.12. Thus β = β(p2) in (5.1)

is well defined for p2 in a neighborhood of 1/8 (actually, for p2 in (0, 1− 1/3− 1/8]). Hence,

the parameter β is not identifiable.

Proof of Example 2.2. WLOG, we can assume m = 3. That is, we can assume that

the censorship model is a case 3 model with follow-up times at C1, C2, C3. WLOG, we can
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further assume (C1, a, C2, C3) = (1, 2, 3, 4) and there are n IC observations under the model

h(t|ui) = euiβ1(t≥2)ho(t), where u ∼ bin(1, 0.5). (Li, Ri) is of the forms (−∞, 1), (1, 3),

(3, 4) and (4,∞). Let n0 =
∑

i≤n 1(1 = Ri), n1 =
∑

i 1((Li, Ri, ui) = (1, 3, 0)), n2 =
∑

i 1((Li, Ri, ui) = (1, 3, 1)), n3 =
∑

i 1((Li, Ri, ui) = (3, 4, 0)), n4 =
∑

i 1((Li, Ri, ui) =

(3, 4, 1)), n5 =
∑

i 1(Li = 4, ui = 0), and n6 =
∑

i 1(Li = 4, ui = 1). Let Si = So(i). By

Corollary 1, the generalized likelihood in (1.4) becomes

L =(1− S1)
n0(S1 − S3)

n1(S1 − S2(
S3

S2
)e

β

)n2

(S3 − S4)
n3(S2(

S3

S2
)e

β

− S2(
S4

S2
)e

β

)n4Sn5
4 (S2(

S4

S2
)e

β

)n6

=(1− S1)
n0(S1 − S3)

n1(S1 − S1−eβ

2 Seβ

3 )n2S
(1−eβ)(n4+n6)
2 (S3 − S4)

n3(Seβ

3 − Seβ

4 )n4Sn5+n6e
β

4 .

Let sj = Sj/S1 and s = (s2, s3, s4) then

L = (1−S1)
n0Sn−n0

1 (1− s3)
n1(1− s1−eβ

2 se
β

3 )n2s
(1−eβ)(n4+n6)
2 (s3− s4)

n3(se
β

3 − se
β

4 )n4sn5+n6e
β

4 .

∂lnL

∂(s, β)
=















−n2(1−eβ)s−eβ

2 se
β

3

1−s1−eβ

2 se
β

3

+ (1−eβ)(n4+n6)
s2

− n1

1−s3
−

n2e
βs1−eβ

2 se
β−1

3

1−s1−eβ

2 se
β

3

+ n3

s3−s4
+

n4e
βse

β−1
3

s
β

3 −se
β

4

− n3

s3−s4
−

n4e
βse

β−1
3

s
β

3 −se
β

4

+ n5+n6e
β

s4















.

There are 5 parameters in this example, that is, (S1, S2, S3, S4, β), where Si = So(i). Let

si = So(i)/So(a), and ši = Si/S1, where a = 2. Then L can be written as

L =[(1− S1)
n0Sn−n0

1 ] · [(1− š3)
n1(š3 − š4)

n3 šn5
4 ] · [(1− š2s

eβ

3 )n2(š2s
eβ

3 − š2s
eβ

4 )n4(š2s
eβ

4 )n6 ].

Notice that L is the product of three factors, each has its own independent parameters, say

{S1}, {š3, š4}, and {s̃3, s̃4}, where s̃3 = š2s3, s̃4 = š2s4. Thus the SMLE satisfies

1− S1 = n0/n,

S1−S3

S1
= n1

n1+n3+n5
,

S4

S1
= n5

n1+n3+n5
,

S1−S1−eβ

2 Seβ

3

S1
= n2

n2+n4+n6
,

S1−eβ

2 Seβ

4

S1
= n6

n2+n4+n6
.

The previous equations leads to
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Ŝ1 = 1− n0/n,

Ŝ3 = Ŝ1(1−
n1

n1+n3+n5
),

Ŝ4 = Ŝ1
n5

n1+n3+n5
,

Ŝ1−eβ̂

2 Ŝeβ̂

3 = Ŝ1
n4+n6

n2+n4+n6
,

Ŝ1−eβ

2 Ŝeβ

4 = Ŝ1
n6

n2+n4+n6
.

The last two equations lead to

( Ŝ3

Ŝ4
)e

β̂

= n4+n6

n6
.

which further yields

β̂ = log

{

log(
Ŝ3
Ŝ4

)

log(
n4+n6

n6
)

}

= log

{

log(
n3+n5

n5
)

log(
n4+n6

n6
)

}

.

Finally, if β̂ 6= 0 then

Ŝ2 =(
Ŝ1n6

Ŝeβ̂
4 (n2 + n4 + n6)

)
1

1−eβ̂

=(
Ŝ1(n4 + n6)

Ŝeβ̂
3 (n2 + n4 + n6)

)
1

1−eβ̂

=













(1− n0

n )(n4 + n6)

[(1− n0

n )(1− n1

n1+n3+n5
)]

log(
n3+n5

n5
)

log(
n4+n6

n6
)
(n2 + n4 + n6)













1

1−
log(

n3+n5
n5

)

log(
n4+n6

n6
)

.

Since (β̂, Ŝ1, Ŝ3, Ŝ4) is a function of (n1, n2, n3, n4, n5, n8)/n, it is easy to show that the SMLE

is consistent. Notice that under given assumptions, it becomes a multinomial distribution

problem, which belongs to the exponential family. The SMLE of (β, S1, S2, S3, S4) is just the

MLE under the multivariate distribution. If β > 0, then one can further show that the SMLE

of β is asymptotically normally distributed and obtains the Cramer-rao lower bound. Thus β̂

is the efficient estimator. Moreover, if β 6= 0, one can also show that Ŝo(a) is consistent and

asymptotically normally distributed. It is worth mentioning that P (β̂ = 0) → 0 a.s.. Hence

Ŝ2 is well-defined most of the time. Thus the SMLE of So assigns weight to a (= 2 here).

However, Ŝo(a) is not consistent if β = 0.

We now discuss β̆. It is interesting to notice that L can be written as

L =(1− S1)
n0(S1 − S3)

n1g(S2)(S3 − S4)
n3(Seβ

3 − Seβ

4 )n4Sn5+n6e
β

4 ,
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where g(x) = (t − xyb)n2xs, where t = S1, x = So(a), y = 1 − eβ , b = Seβ

3 and s =

(1− eβ)(n4 + n6). (log g)
′ = 0 yields the unique zero point of (log g)′:

x = xo = (
st/b

n2y + s
)1/y = (

S1(n4 + n6)/S
eβ

3

n2 + n4 + n6
)1/(1−eβ) if β̂ 6= 0.

The expression is the same as Ŝ2 if one replaces Si by Ŝi

Under the given assumptions in this example and the non-parametric setup, there is

a closed form solution to the parameters based on the sample with ui = 0 and ui = 1,

respectively. Let n00 =
∑n

i=1 1(Ri = 1, ui = 0) and n01 =
∑n

i=1 1(Ri = 1, ui = 1). In this

set-up, the degree of freedom for the parameters is 6 under the non-parametric set-up. We

first estimate the 6 parameters S(i|u) for i ∈ {2, 3, 4} and u ∈ {0, 1}. Then estimate So(a)

and β based on the 6 parameters. Thus the non-parametric MLE satisfies

1− S1 = n00

n00+n1+n3+n5
,

S1 − S3 = n1

n00+n1+n3+n5
,

S4 = n5

n00+n1+n3+n5
,

1− S(1|1) = n01

n01+n2+n4+n6
,

S(1|1)− S(3|1) = n2

n01+n2+n4+n6
,

S(4|1) = n6

n01+n2+n4+n6
,

The first 3 equations lead to an estimate of (S1, S3, S4), that is,

S̆1 = 1− n00

n00+n1+n3+n5
, S̆3 = S̆1 −

n1

n00+n1+n3+n5
, S̆4 = n5

n00+n1+n3+n5
.

Notice that the last 3 equations lead to a different estimator of S1: Š1 = n01

n01+n2+n4+n6
.

Moreover, they lead to S1−eβ

a Seβ

3 = n4+n6

n01+n2+n4+n6
, S1−eβ

a Seβ

4 = n6

n01+n2+n4+n6
.

Thus β̆ = log
log

n4+n6
n6

log
S̆3
S̆4

and S̆a =

{

n4
n01+n2+n4+n6

Seβ

3 −Seβ

4

}
1

1−eβ

. It can all be viewed as a non-

parametric MLE of Si and β. Then the SMLE of (So, β) (Ŝo, β̂) satisfies L(S̆o, β̆) > L(Ŝo, β̂).

In fact,

L(Ŝo, β̂) =(
n0

n
)no(1−

n0

n
)n−no(

n1

n1 + n3 + n5
)n1(

n3

n1 + n3 + n5
)n3

· (
n5

n1 + n3 + n5
)n5(

n2

n2 + n4 + n6
)n2(

n4

n2 + n4 + n6
)n4(

n6

n2 + n4 + n6
)n6

≤(
n00

n00 + n1 + n3 + n5
)n00(

n1

n00 + n1 + n3 + n5
)n1(

n3

n00 + n1 + n3 + n5
)n3

· (
n5

n00 + n1 + n3 + n5
)n5(

n01

n01 + n1 + n3 + n5
)n01
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· (
n2

n01 + n2 + n4 + n6
)n2(

n4

n01 + n2 + n4 + n6
)n4(

n6

n01 + n2 + n4 + n6
)n6 = L(S̆o, β̆).

It can be verified that limn→∞ σ2
β̆
n does not equal the Cramer-Rao lower bound and thus the

SMLE is more efficient than β̆.

Proof of Example 2.3. By the given assumptions, (Li, Ri) is of the forms (−∞, 1), (1, 3)

and (3,∞). To show that the SMLE is not unique, let n = 12. Let

n0 =
∑

i≤n

1(1 = Ri) = 4, n1 =
∑

i≤n/2

1((Li, Ri) = (1, 3)) = 1,

n2 =
∑

i>n/2

1((Li, Ri) = (1, 3)) = 2, n3 =
∑

i≤n/2

1(Li = 3) = 3, n4 =
∑

i>n/2

1(Li = 3) = 2.

Let p1 = Fo(1), p2 = Fo(3)− Fo(2), p3 = So(3), and p4 = Fo(2)− Fo(1). By Corollary 1, the

generalized likelihood in (1.4) becomes

L = (p1)
n0(1− p1 − (p2 + p3)

1−eβpe
β

3 )n1(1− p1 − p3)
n2((p2 + p3)

1−eβpe
β

3 )n3pn4
3

= (p1)
n0(1− p1)

n−n0(1−
(p2 + p3)

1−eβpe
β

3

1− p1
)n1(1−

p3
1− p1

)n2(
(p2 + p3)

1−eβpe
β

3

1− p1
)n3(

p3
1− p1

)n4 .

The maximum point (p1, p2, p3, β) of L is not unique. In particular, the maximum value of

L is (n0

n )n0(1 − n0

n )n−n0( n1

n1+n3
)n1( n2

n2+n4
)n2( n3

n1+n3
)n3( n4

n2+n4
)n4 , which can be obtained at

p1 = n0

n = 1/3, p3 = (1 − p1)(
n4

n2+n4
) = 1/3, and (p2 + p3)

1−eβpe
β

3 = (1 − p1)(
n3

n1+n3
) = 1/2.

These equations yield β = ln
ln

1/2
p2+1/3

ln
1/3

p2+1/3

. If p2 ∈ (1/6, 1/3] and β ∈ (−∞, ln
ln 4

3

ln2 ], then p2 + p4 =

1/3. Thus each (p1, p3, p2, β) = (1/3, 1/3, p2, ln
ln

1/2
p2+1/3

ln
1/3

p2+1/3

), p2 ∈ (1/6, 1/3], is a solution to the

SMLE.

Note that the expression of the SMLE is valid even if n is arbitrary. It can be shown

that each SMLE is not consistent by the strong law of large numbers.

Proof of Proposition 2. Recall that under the TICPH model, the weights of the SMLE are

assigned to the right-end points of the innermost intervals. If this is true also for the TDCPH

model, then the likelihood becomes

Lo =(1− S1)
n0Sn−n0

1 (1−
S3

S1
)n1(

S3

S1
−

S4

S1
)n3(

S4

S1
)n5

(1− (
S3

S1
)e

β

)n2((
S3

S1
)e

β

− (
S4

S1
)e

β

)n4((
S4

S1
)e

β

)n6 .
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An estimate based on the NPMLE yields

(
Ŝ4

Ŝ1

)e
β̂

=
n6

n2 + n4 + n6
, Ŝ1 = 1− n0/n and Ŝ4/Ŝ1 =

n5

n1 + n3 + n5
.

Then eβ̂ =
log

n6
n2+n4+n6

log
Ŝ4
Ŝ1

→ eβ + log S2

log
S4
S1

a.s.. Thus it does lead to a consistent estimator of β.
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Appendix I. The partial derivatives of the likelihood needed in §3 for IC data.

Noticing that ln(S(tli |zi)− S(tri |zi)) =

{

ln(1− S(tri |zi)) if li = 0 and ri < m
lnS(tli |zi) if ri = m.

∂lnL

∂β
=

∑

ri≤ia

(Sli)
e
v′

3i
β

(lnSli)e
v′

3iβv3i − (Sri)
e
v′

3i
β

(lnSri)e
v′

3iβv3i

(Sli)
e
v′

3i
β

− (Sri)
e
v′

3i
β

(=
D−li

−D−ri

···−··· )

+
∑

li≤ia<ri

1(ri < m)(D−li −D+ri)

(Sli)
e
v′

3i
β

− (Sia)
e
v′

3i
β

(Sri/Sia)
e
v′

2i
β

+
∑

li>ia

1(ri < m)(D+li −D+ri)

(Sia)
e
v′

3i
β

(Sli/Sia)
e
v′

2i
β

− (Sia)
e
v′

3i
β

(Sri/Sia)
e
v′

2i
β

+
∑

li≤ia,ri=m

ev
′
3iβv3ilnSli +

∑

li>ia,ri=m

((ev
′
3iβ lnSia)v3i + ev

′
2iβ(ln

Sli

Sia

)v2i)]

where D−ri = (Sri)
e
v′

3i
β

(lnSri)e
v′

3iβv3i and

D+ri = (Sia)
e
v′

3i
β

(
Sri

Sia

)e
v′

2i
β

[(lnSia)e
v′

3iβv3i + (ln
Sri

Sia

)ev
′
2iβv2i] if ri < m,

and D−li and D+li are defined in an obvious way.

∂2lnL

∂β∂β′
=

∑

ri≤ia

(B−li −B−ri)

(Sli)
e
v′

3i
β

− (Sri)
e
v′

3i
β
−

(D−li −D−ri)(D−li −D−ri)
′

((Sli)
e
v′

3i
β

− (Sri)
e
v′

3i
β

)2

+
∑

li≤ia<ri

[
B−li −B+ri

(Sli)
e
v′

3i
β

− (Sia)
e
v′

3i
β

(
Sri

Sia
)e
v′

2i
β
−

(D−li −D+ri)(D−li −D+ri)
′

((Sli)
e
v′

3i
β

− (Sia)
e
v′

3i
β

(
Sri

Sia
)e
v′

2i
β

)2
]

+
∑

li>ia

[
(B+li −B+ri)

(Sia)
e
v′

3i
β

(
Sli

Sia
)e
v′

2i
β

− (Sia)
e
v′

3i
β

(
Sri

Sia
)e
v′

2i
β
−

(D+li −D+ri)(D+li −D+ri)
′

(S(Li|z(Li))− S(Ri|z(Ri)))2
]

+ 1(ri = m)[
∑

li≤ia

ev
′
3iβ(lnSli)v3iv

′
3i +

∑

li>ia

(ev
′
3iβ(lnSia)v3iv

′
3i + ev

′
2iβ(ln

Sli

Sia

)v2iv
′
2i)]

where B−li = (1 + (lnSli)e
v′

3iβ)D−liv
′
3i = (Sli)

e
v′

3i
β

((lnSli)e
v′

3iβ + ((lnSli)e
v′

3iβ)2)v3iv
′
3i and

B+ri = (Sia)
e
v′

3i
β

(
Sri

Sia

)e
v′

2i
β

{(lnSia)e
v′

3iβv3iv
′
3i + (ln

Sri

Sia

)ev
′
2iβv2iv

′
2i

+ [(lnSia)e
v′

3iβv3i + (ln
Sri

Sia

)ev
′
2iβv2i][(lnSia)e

v′
3iβv3i + (ln

Sri

Sia

)ev
′
2iβv2i]

′} if ri < m,

and B−ri and B+li are defined in an obvious way.

Given k ∈ {1, ...,m − 1}, write Ujk(u) =

{

Sj

1+u if k ≤ j
Sj+u
1+u if k > j

=

{

Sj

1+u if k ≤ j
Sj−1
1+u + 1 if k > j.

Let

L = L(S1, ..., Sm−1) and Hk(u) = lnL(Uj1(u), ..., Ui,m−1(u)). Then

∂Ujk(u)
∂u =

{

− Sj

(1+u)2 if 0 < k ≤ j < m

− Sj−1
(1+u)2 if m > k > j > 0.

∂2Ujk(u)
∂u2 =

{

2
Sj

(1+u)3 if 0 < k ≤ j < m

2
Sj−1
(1+u)3 if m > k > j > 0.

Moreover,

Ujk(0) = Sj , U
′
jk(0) =

∂Ujk(0)
∂u =

{

−Sj if 0 < k ≤ j < m
1− Sj if 0 < j < k < m,
0 otherwise.

21



U ′′
jk(0) =

∂2Ujk(0)
∂u2 =

{

2Sj if 0 < k ≤ j < m
2(Sj − 1) if m > k > j > 0
0 otherwise.

Abusing notations, write Sj = Sj(u) = Ujk(u).

∂Hk

∂u

∣

∣

u=0
=

∑

ri≤ia

eβ
′v3i

(Sli)
eβ

′v3i−1U ′
lik

(0)− (Sri)
eβ

′v3i−1U ′
rik

(0)

(Sli)
eβ

′v3i − (Sri)
eβ

′v3i

+
∑

li≤ia<ri

eβ
′v3i(Sli)

eβ
′v3i−1U ′

lik
(0)− CriU

′
iak

(0)−WriU
′
rik

(0)

(Sli)
eβ

′v3i − (Sia)
eβ

′v3i (
Sri

Sia
)e

β′v2i

+
∑

li>ia

CliU
′
iak

(0) +WliU
′
lik

(0)− CriU
′
iak

(0)−WriU
′
rik

(0)

(Sia)
eβ

′v3i (
Sli

Sia
)e

β′v2i − (Sia)
eβ

′v3i (
Sri

Sia
)e

β′v2i

+ 1(ri = m)[
∑

li≤ia

eβ
′v3iU ′

lik
(0)

Sli

+
∑

li>ia

(
(eβ

′v3i − eβ
′v2i)U ′

iak
(0)

Sia

+
eβ

′v2iU ′
lik

(0)

Sli

)],

where Cri = (eβ
′v3i − eβ

′v2i)(Sia)
eβ

′v3i−eβ
′v2i−1(Sri)

eβ
′v2i

if ri < m,

Wri = (Sia)
eβ

′v3i−eβ
′v2i

eβ
′v2i(Sri)

eβ
′v2i−1 if ri < m,

and Cli and Wli are defined in an obvious way.

∂2Hk

∂u2

∣

∣

u=0
=

∑

li≤ia

{eβ
′v3i

(Sli)
eβ

′v3i−1U ′′
lik

(0)− (Sri)
eβ

′v3i−1U ′′
rik

(0)

(Sli)
eβ

′v3i − (Sri)
eβ

′v3i

+ (eβ
′v3i − 1)eβ

′v3i
(Sli)

eβ
′v3i−2(U ′

lik
(0))2 − (Sri)

eβ
′v3i−2(U ′

rik
(0))2)

(Sli)
eβ

′v3i − (Sri)
eβ

′v3i

− (eβ
′v3i

(Sli)
eβ

′v3i−1U ′
lik

(0)− (Sri)
eβ

′v3i−1U ′
rik

(0))

(Sli)
eβ

′v3i − (Sri)
eβ

′v3i
)2}

+
∑

li≤ia<ri

{
eβ

′v3i(Sli)
eβ

′v3i−1U ′′
lik

(0)− CriU
′′
iak

(0)−WriU
′′
rik

(0)

(Sli)
eβ

′v3i − (Sia)
eβ

′v3i (
Sri

Sia
)e

β′v2i

+
(eβ

′v3i − 1)eβ
′v3i(Sli)

eβ
′v3i−2(U ′

lik
(0))2 − C ′

rik
U ′
iak

(0)−W ′
rik

U ′
rik

(0)

(Sli)
eβ

′v3i − (Sia)
eβ

′v3i (
Sri

Sia
)e

β′v2i

− (
eβ

′v3i(Sli)
eβ

′v3i−1U ′
lik

(0)− CriU
′
iak

(0)−WriU
′
rik

(0)

(Sli)
eβ

′v3i − (Sia)
eβ

′v3i (
Sri

Sia
)e

β′v2i
)2

+ 1(ri = m)eβ
′v3i(

U ′′
lik

(0)

Sli

− (
U ′
lik

(0)

Sli

)2)}

+
∑

li>ia

{
CliU

′′
iak

(0) +WliU
′′
lik

(0)− CriU
′′
iak

(0)−WriU
′′
rik

(0)

(Sia)
eβ

′v3i (
Sli

Sia
)e

β′v2i − (Sia)
eβ

′v3i (
Sri

Sia
)e

β′v2i

+
C ′

lik
U ′
iak

(0) +W ′
lik

U ′
lik

(0)− C ′
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U ′
iak

(0)−W ′
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U ′
rik

(0)

(Sia)
eβ

′v3i (
Sli

Sia
)e

β′v2i − (Sia)
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Sri
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− (
CliU

′
iak

(0) +WliU
′
lik

(0)− CriU
′
iak

(0)−WriU
′
rik

(0)

(Sia)
eβ

′v3i (
Sli

Sia
)e

β′v2i − (Sia)
eβ

′v3i (
Sri

Sia
)e

β′v2i
)2

+ 1(ri = m)[(eβ
′v3i − eβ

′v2i)(
U ′′
iak

(0)

Sia

− (
U ′
iak

(0)

Sia

)2) + eβ
′v2i(

U ′′
lik

(0)

Sli

− (
U ′
lik

(0)

Sli

)2)]}

where C ′
rik = (eβ

′v3i − eβ
′v2i − 1)(eβ

′v3i − eβ
′v2i)(Sia)

eβ
′v3i−eβ

′v2i−2(Sri)
eβ

′v2i
U ′
iak(0)

+ (eβ
′v3i − eβ

′v2i)(eβ
′v2i − 1)(Sia)

eβ
′v3i−eβ

′v2i−1(Sri)
eβ

′v2i−1U ′
rik(0) if ri < m,

W ′
rik = (eβ

′v3i − eβ
′v2i)(Sia)

eβ
′v3i−eβ

′v2i−1eβ
′v2i(Sri)

eβ
′v2i−1U ′

iak(0)

+ (Sia)
eβ

′v3i−eβ
′v2i

(eβ
′v2i − 1)eβ

′v2i(Sri)
eβ

′v2i−2U ′
rik(0) if ri < m,

and C ′
lik

and W ′
lik

are defined in an obvious way.

∂lnL

∂Sj
=

∑

ri≤ia

(Sli)
e
v′

3i
β 1(li=j)

Sli
ev

′
3iβ − (Sri)

e
v′

3i
β 1(ri=j)

Sri
ev

′
3iβ

(Sli)
e
v′

3i
β

− (Sri)
e
v′

3i
β

+
∑

li≤ia<ri

[
1(ri < m)(G−lij −G+rij)

(Sli)
e
v′

3i
β

− (Sia)
e
v′

3i
β

(Sri/Sia)
e
v′

2i
β
+ 1(ri = m, li = j)

ev
′
3iβ

Sli

]

+
∑

li>ia

[
1(ri < m)(G+lij −G+rij)

(Sia)
e
v′

3i
β

(Sli/Sia)
e
v′

2i
β

− (Sia)
e
v′

3i
β

(Sri/Sia)
e
v′

2i
β

+ 1(ri = m)(1(ia = j)
ev

′
3iβ − ev

′
2iβ

Sia

+ 1(li = j)
ev

′
2iβ

Sli

)],

G−rij = (Sri)
e
v′

3i
β 1(ri = j)

Sri

ev
′
3iβ ,

G+rij = (Sia)
e
v′

3i
β

(Sri/Sia)
e
v′

2i
β

[(ev
′
3iβ − ev

′
2iβ)

1(ia = j)

Sia

+ ev
′
2iβ

1(ri = j 6= ia)

Sri

],

G−li,j and G+lij are defined in an obvious way. Notice that in order to derive the covariance

matrix, we need to compute ∂lnL
∂Sj

for j ∈ {1, ...,m − 1}, as Ĉov = Î−1 and I is the Fisher

information matrix.
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Appendix II We use a simple numerical example to illustrate why the various existing

algorithms do not work for the SMLE.

§a.1. Consider fitting time-indepemdent covarites Cox’s regression model with five ob-

servations (Li, Ri, Zi): (2,5,0), (3,4,0), (5,9,1), (1,6,1), (7,8,0). It can be viewed as data

from two groups, corresponding to Zi = 0 or 1. Then, the innermost intervals are (3,4),

(5,6) and (7,8). Let the weights on these innermost intervals be p1, p2 and p3, with

p1+p2+p3 = 1 and pi ≥ 0. Note that the baseline survival function S satisfies S(4−) = 1,

S(4) = S(6−) = p2 + p3, S(6) = S(8−) = p3 and S(8) = 0. For this example, it is more

convenient to express the likelihood as a function of pi’s rather than S. The likelihood is

L = p21p3(1 − pe
β

3 )(p2 + p3)
eβ . Since p1 + p2 + p3 = 1, in view of L, it is simpler to write

the log likelihood as

l = log[p21p3(1− p1)
eβ (1− pe

β

3 )]. (A.1)

The parameter space is Ω = {(β, p1, p3) : β ∈ (−∞,∞), p1 ≥ 0, p3 ≥ 0, p1 + p3 ≤ 1} with

p2 = 1− p1 − p3. For convenience, we write α = eβ hereafter. Thus,

l = 2 log p1 + log p3 + α log(1− p1) + log(1− pα3 ).

Since the likelihood function has only three variables, it can be shown by direct derivation

that the SMLE of (β, p1, p2, p3) is approximately (−0.461, 2/3, 0, 1/3).

In general, the likelihood is not so simple and one needs to compute the SMLE by

numerical methods. We shall illustrate by this example that several naive numerical meth-

ods fail to yield the SMLE. They include: (a) the Newton-Raphson (NR) method; (b) the

scaled NR method and (c) the profile likelihood (PL) method. Finally, we shall illustrate

by this example why our new algorithm can yield the SMLE. The main difference is that

the first three algorithms cannot search the SMLE along the line p2 = 0 (or p1 + p3 = 1),

while the new algorithm can. Note that the SMLE is on boundary p2 = 0.

§a.2. In order to apply the NR method, we need to compute the partial derivatives.

∂l

∂α
= log(1− p1)−

pα3 log p3
1− pα3

,
∂2l

∂α2
= −

pα3 (log p3)
2

(1− pα3 )
2
, (A.2)
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∂l

∂p1
=

2

p1
−

α

1− p1
and

∂l

∂p3
=

1

p3
−

αpα−1
3

1− pα3
. (A.3)

§a.2.1. (The NR method). At the SMLE (p1, p3) = (2/3, 1/3) with β = −0.461, Equation

(A.3) yields that the gradient in (p1, p3) is (1.11, 1.11). In other words, as (p1, p2) moves

towards outside the parameter space, the likelihood increases. Thus the maximum value

of L without the restriction of the parameter space can only be achieved outside the

parameter space. The NR yields the unrestricted maximum point of L. Thus the solution

to the NR algorithm is not the SMLE.

§a.2.2. A scaled NR method is as follows.

Let β = 0 or α = 1 be the initial value, and let the SMLE (or SCE) of (p1, p3) at

β = 0 be the initial value of (p1, p3).

Step 1. Maximize L over β with given up-dated (p1, p3) using the NR method.

Step 2. Maximize L over (p1, p3) with up-dated β using a scaled NR method, that is,

scale the increments △pi’s in the original NR algorithm by a constant c so that the updated

(p1, p3) remains in the parameter space.

Repeat Steps 1 and 2 until convergence.

However, it does not work in this example. In particular, in the initial step. we have

β = 0 (or α = 1) and (p1, p3) = (3/5, 2/5). In Step 1, L is maximized by α = − log 2
log 0.4 ≈ 0.76

(see Eq. (A.4)). In Step 2, by Equation (A.3), the gradient at (p1, p3) = (3/5, 2/5) is

(1.44, 0.61). Thus (p1, p3) should be up-dated to ( 35 + 1.44x, 2
5 + 0.61x) for some x ≥ 0. If

x > 0, it violates the constraint p1+p3 ≤ 1. Thus the algorithm stops at S(4) = p2+p3 =

2/5 and S(6) = p3 = 2/5 with β = log 0.76 (= −0.274), which is not the SMLE.

§a.2.3. A PL approach is as follows:

The initial step and Step 1 are the same as in the scaled NR method above.

Step 2 (p1-substep). Maximize L over p1 with up-dated p3 and β.

Step 3 (p3-substep). Maximize L over p3 with up-dated p1 and β.

Repeat Steps 1, 2 and 3 until convergence.
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However, the PL method still does not work. In particular, at Step 1, α = 0.76,

p1 = 0.6 and p3 = 0.4. The gradient at (p1, p3) = (0.6, 0.4) is (1.44, 0.61). Thus we move

(p1, p3) either to (0.6 + 1.44x, 0.4) with x ≥ 0 (p1 substep), or to (0.6, 0.4 + 0.61x) with

x ≥ 0 (p3 substep). If x > 0, both the p1-substep and the p3-substep will move (p1, p3)

outside the parameter space. Consequently, it will stop at the value which is not the

SMLE.

§a.2.4. There are three line segments in the boundary of the parameter space in (p1, p3).

They are p1 = 0, p3 = 0 and p1 + p3 = 1. One can find the value that maximizes the

likelihood on these line segments separately, using the NR method, and then check which

is the SMLE. This approach works in this example. However, if there are m pi’s, we need

to consider the subsets of the boundary corresponding to the m − 2 cases: case (1) one

pi = 0, case (2) two pi = 0, ..., case (m − 2) (m − 2) pi = 0. Thus the order is O(m2/2).

When m is large, this approach is not feasible.

§a3. We now illustrate why the new algorithm works. Our new algorithm is as follows.

The initial step. Let the SMLE of (p1, p2, p3) be the initial value of the (p1, p2, p3) and

α = 1 the initial value of α.

β-step. Maximize L over β with up-dated pi’s.

S-step. Each S-step consists of 3 substeps: p1-substep, p2-substep, p3-substep.

p1-substep. Consider a transformation p11(u) =
p1+u
1+u , p12(u) =

p2

1+u , and p13(u) =

p3

1+u , u > 0. This transformation ensures that (p11(u), p12(u), p13(u)) remains in the pa-

rameter space of (p1, p2, p3) for each u > 0. Let uo be the value of u that maximizes

L(β, p11(u), p12(u), p13(u)) over u ≥ 0, with β and pi’s given in the previous step. Then

up-date pi by pi = p1i(uo), i = 1, 2, 3.

p2-substep. Consider another transformation p21(u) = p1

1+u , p22(u) = p2+u
1+u , and

p23(u) = p3

1+u . If ∂
∂u lnL(β, p21(u), p23(u))

∣

∣

u=0
> 0, choose a uo > 0 that maximizes

L(β, p21(u), p22(u), p23(u)) over u ≥ 0, with β and pi’s given in the previous step. Up-

date pi by pi = p2i(uo), i = 1, 2, 3.
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p3-substep. Consider a further new transformation p31(u) = p1

1+u , p32(u) = p2

1+u ,

and p33(u) =
p3+u
1+u . If ∂

∂u lnL(β, p31(u), p33(u))
∣

∣

u=0
> 0, choose a uo > 0 that maximizes

L(β, p31(u), p32(u), p33(u)) over u ≥ 0, with β and pi’s given in the previous step. Up-date

pi by pi = p3i(uo), i = 1, 2, 3.

At the p1-substep of the initial iteration step, by Eq. (A.5),

∂
∂u lnL(β, p11(u), p13(u))

∣

∣

u=0
= 0.51 > 0 at (p1, p3) = (0.6, 0.4), and uo ≈ 0.1 maximizes

L(β, p21(u), p23(u)). At this step (p1, p2, p3) is up-dated to ( 0.71.1 , 0,
0.4
1.1 ) (= (0.636, 0.364)).

At the p2-substep and p3-substep, by Equations (A.6) and (A.7),

∂
∂u lnL(β, pi1(u), pi3(u))

∣

∣

u=0
< 0, i = 2, 3, thus no change is made. However, since

(p1, p2, p3) is changed at this S-step, β (or α) will also be change at the next β-step.

In fact, in the next β-step, β is up-dated to ln0.69 = −0.371. In the p1-substep,

∂
∂u lnL(β, p11(u), p13(u))

∣

∣

u=0
= 0.14 > 0, L is maximized by (p1, p3) = ( 0.7421.142 ,

0.4
1.142 ) =

(0.65, 0.35) with uo = 0.042. by Equations (A.6) and (A.7), ∂
∂u lnL(β, pi1(u), pi3(u))

∣

∣

u=0
<

0, i = 2, 3, thus no change is made. However, since (p1, p2, p3) is changed at this S-step,

β (or α) will also be change at the next β-step.

Iteratively repeat these two steps, the algorithm will yield the SMLE (β, p1, p2, p3) =

(−0.461, 2/3, 0, 1/3).

Remark 2. Recall that p
(0)
i is the SMLE of pi when β = 0. Let p̂i be the SMLE under

Cox’s model. According to our observation, it is often the case that if p
(0)
i = 0 then p̂i = 0

too. It is not clear that whether it is indeed true that

p
(0)
i = 0 iff p̂i = 0.

If this is true, then one can delete the pi’s for which p
(0)
i = 0 in the algorithm to reduce

the dimension of the parameter space. Moreover, after this elimination, the NR method

will work too, since the SMLE is in the interior of the parameter space. However, both

the sufficient and the necessary conditions may not hold.

§a4. The following is the details of deriving the SMLE directly. There are only 3 variables

in L, by direct examination, one can find that the maximum value of L is outside the
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parameter space and the SMLE of (p1, p2, p3) is on the boundary of the parameter space.

Moreover, the SMLE of (p1, p2, p3) is on the subspace p2 = 0, as L = 0 if p1 = 0 or p3 = 0.

If p2 = 0, L = (1 − p3)
2p1+α

3 (1 − pα3 ).
∂l
∂α = log p3 −

pα
3 log p3

1−pα
3

= log p3
1−2pα

3

1−pα
3

= 0 implies

that unless p3 = 1, we have pα3 = 1/2 or p3 = 2−α or

α = − log 2/ log p3. (A.4)

For each fixed p3, if α = − log 2/ log p3, L achieves its maximum (1−p3)
2p

1−log 2/ log p3

3 (1−

p3)
− log 2/ log p3 . The SMLE can be found by plotting the graph of (p3, L).

§a5. In this section, we shall derive the partial derivatives needed in §3.

∂

∂u
p11(u) =

1− p1
(1 + u)2

,
∂

∂u
p12(u) =

−p2
(1 + u)2

,
∂

∂u
p11(u) =

−p3
(1 + u)2

.

∂

∂u
lnL(β, p11(u), p13(u))

∣

∣

u=0
=

2(1− p1)

p1
+

αpα3
1− pα3

− α− 1 (A.5)

∂

∂u
p21(u) =

−p1
(1 + u)2

,
∂

∂u
p22(u) =

1− p2
(1 + u)2

,
∂

∂u
p23(u) =

−p3
(1 + u)2

.

∂

∂u
lnL(β, p21(u), p23(u))

∣

∣

u=0
= −2− 1 + p3

αpα−1
3

1− pα3
+ α

p1
1− p1

. (A.6)

∂

∂u
p31(u) =

−p1
(1 + u)2

,
∂

∂u
p32(u) =

−p2
(1 + u)2

,
∂

∂u
p33(u) =

1− p3
(1 + u)2

.

∂

∂u
lnL(β, p31(u), p33(u))

∣

∣

u=0
= −2 +

1− p3
p3

−
αpα−1

3 (1− p3)

1− pα3
+ α

p1
1− p1

(A.7)
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