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1 Proof of Example 2.1 and 2.2

Proof of Example 2.1. (Continued) Assume that the joint distribution of (Y , Z ) is uniform on the

region A1 ∪ A2, where A1 is the set bounded by the four straight lines y = 0, y = 1, x − y = 0 and

x − y =−1, and A2 is the set bounded by y = 0, y = 1, x = 3 and x = 4. The family of distributions

{FY |Z (·|z) : z ∈ (−1,1)∪ (3,4)} does not satisfy the TIPH model and the simply linear regression

model. We shall show that the functions SY , SY ∗ for fitting TIPH model and SY ∗ for fitting the

linear regression model are all uniquely defined and are different, as well as β. In particular,

Y ∼ uni f (0,1),

SY |Z (y |x) =



1− y
1+x if y ∈ [0,1+x] and x ∈ (−1,0]

1− y−x
1−x if y ∈ [x,1] and x ∈ (0,1]

1− y if y ∈ [0,11 and x ∈ [3,4],

and fZ (x) =



1+x
2 if x ∈ [−1,0]

1−x
2 if x ∈ (0,1]

1
2 if x ∈ [3,4]

.

To fit the TIPH model, for y ∈ [0,1], SY ∗|Z (y |x) = (1−y)exp(βx) and SY ∗(y) = ∫
(1−y)exp(βx) fZ (x)d x.

The numerical calculation yields β ≈ −0.046, which uniquely maximizes L (β) = βE(Z1) −

E [lnE(1(Y2 ≥ Y1)exp(βZ2)|Y1)], where (Y1, Z1) and (Y2, Z2) are i.i.d. from FY ,Z . Moreover, SY 6=

SY ∗ , otherwise, it leads to a contradiction: −1 = S′
Y (1−) = S′

Y ∗(1−) = 0, as −1 = S′
Y (y) = S′

Y ∗(y) =∫
(1− y)exp(βx)−1eβx(−1) fZ (x)d x, ∀ y ∈ (0,1).

To fit the simple linear regression model, SY ∗|Z (y |x) = 1(y−βx ≤ 1)−(y−βx)1(0 ≤ y−βx ≤ 1)

and SY ∗(y) = ∫
[1(y−βx ≤ 1)−(y−βx)1(0 ≤ y−βx ≤ 1)] fZ (x)d x, where β=Cov(Z ,Y )/V ar (Z ) =

2/153. Moreover, SY 6= SY ∗ , as

SY ∗(1) = ∫
[1(x ≥ 0)− (1−βx)1(1/β≥ x ≥ 0)] fZ (x)d x ≥ ∫

βx1(x ≥ 0) fZ (x)d x = (2/153)E(Z 1(Z >

0)) > 0 = SY (1).

Proof of Example 2.2 (continued). IfΘ0 is a simple linear regression, then SY = SY ∗ , β= 1, and
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for x ∈ {0,1}, SY |Z (t |x) =


1 if t −x < 0

1− (t −x) if t −x ∈ [0,1],

SY (t ) = E (So(t−Z )) =


1 if t < 0

1− t/2 if t ∈ [0,2),

So(t ) =


1 if t < 0

1− t if t ∈ [0,1).

IfΘ0 is a TIPH model, thenβ=−∞, as L ′(β) = 0.5eβ[β−ln[1+eβ]] < 0, where L (θ) = E
[
θ′G(Y1)Z1−

lnE [eθ
′G(Y1)Z2 1(Y2 ≥ Y1)|Y1]

]
. SY ∗|Z (t |x) = (So(t ))eβx =



1 if t < 0 and x = 0

(1− t ) if t ∈ [0,1] and x = 0

1(t < 1) if x = 1

, and SY ∗(t ) =

E [(So(t))eβZ
] =


1 if t < 0

1− t/2 if t ∈ [0,1].

Thus SY (t) = (1− t/2) > 0 = SY ∗(t) if t ∈ [1,2). That is,

SY 6= SY ∗ .

2 Methods to obtain Ŝ∗(t |x)

1. Θ0 ⊂ΘL . Ŝ∗(t |x) = (Ŝo(t ))exp(β̂′G(t )x), where β̂ is the SMLE (see (Wong and Yu, 2012)).

2. Θ0 ⊂ Θph ∩Θc . Ŝ∗(t |x) = e−∫
s≤t ȟo (s)exp(β̂′G(s)xd s), where β̂ is the MPLE. There are some

simplified forms of Ŝ∗ for the special cases as follows.

(a) (Continuous TIPH model) Ŝ∗(t |x) = (Ŝo(t ))exp(β̂′x).

(b) (Continuous PWPH model) In the continuous PWPH model, say two cut-points a

and b, G(t ) is a 3×3 diagonal matrix with diagonal entries 1(t < a), 1(a ≤ t < b), and
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1(t ≥ b). Then the estimator of S∗(t |U ,R,V ), where Z = (U ,R,V )′, is

Ŝ∗(t |U ,R,V ) =



(Ŝo(t ))exp(β̂1U ) if t < a

(Ŝo(a))exp(β̂1U ) (Ŝo (t ))exp(β̂2R)

(Ŝo (a))exp(β̂2R)
if a ≤ t < b

(Ŝo(a))exp(β̂1U ) (Ŝo (b))exp(β̂2R)

(Ŝo (a))exp(β̂2R)

(Ŝo (t ))exp(β̂3V )

(Ŝo (b))exp(β̂3V )
if t ≥ b.

(c) (Continuous TDPH model) In continuous TDPH model, G(t) = (t −a)1(t ≥ a). Let

a = b0 < b1 < ... < bk be the discontinuous points of Ŝo(t ) for t > a. The estimator of

S∗(t |Z ) is

Ŝ∗(t |Z ) =


Ŝo(t ) if t < b1

Ŝo(a)
∏ j

i=1( Ŝo (bi )
Ŝo (bi−1)

)exp((bi−a)β̂Z ) if b j ≤ t < b j+1.

3. Θ0 ⊂Θph ∩Θd . Ŝ∗(t |x) = ∏
s≤t (1− ȟo(s)exp(β̂′G(s)x)), where ĥo(t) = Ŝo (t−)−Ŝo (t )

Ŝo (t−)
, and β̂ is

the MPLE.

4. Θ0 ⊂ Θl r . Ŝ∗(t |x) = Ŝo(t − β̂′x), where β̂ = (ZZ′ − Z(Z)′)−1(ZY − Z(Y )) if there is no tie

in Yi ’s, otherwise, β̂ is given by the SMLE (see (Yu and Wong, 2005)), which satisfies

limn→∞ P (β̂=β) = 1 if FY ,Z ∈Θl r ∩Θd .

5. Θ0 ⊂ Θapl . ŜY |Z(t |z) = Ŝo(t − β̂′z−∑q
j=1 f̂ j (z j )), where (β1, ...,βq ) = (0, ...,0). The estima-

tors f̂ j (·), 1 ≤ j ≤ q can be obtained by g am() function in the R package mg cv . Let U =

(Zq+1, ..., Zp ), then (β̂q+1, ..., β̂p )′ = (UU′−U(U)′)−1[(U(Y −∑q
i=1 f̂i (Zi )))−(UY −∑q

i=1 f̂i (Zi ))].

6. Θ0 ⊂ Θg pl si . ŜY ∗|Z = Ŝo(t − γ̂′Z−ρ(α̂′Z)), where (γ1, ...,γq ,αq+1,αp ) = (0, ...,0) and β =

(α1, ...,αq ,γq+1, ...,γp )′. The estimator β̂ and ρ̂ can be obtained by the procedure proposed

by Carroll (1997).
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3 Simulation

The next table summarizes the simulation cases. The PH model is defined by

h(t |z) = ho(t )exp(βT G(t )z) (1)

where G(t ) is a p×p diagonal matrix with diagonal elements g j (t ), j = 1, ..., p. If G(t ) is the identity

matrix, then the PH model is called time-independent PH (TIPH) model. If g (t ) = 1(a < t < b),

where a and b are cut-points, then the PH model is called the piece-wise PH (PWPH) model. For

other g (t ) 6= 1, we called the PH model a time-dependent PH (TDPH) model.

True Data Θ0 are tests valid ? reject H0? error cases

1 TIPH TIPH both MD and residual no type I cases 1, 8 (RC)

2 PWPH TIPH both MD and residual yes type II cases 5(RC), 10, 12

3 TDPH TIPH both MD and residual yes type II cases 2 (RC), 7

4 PWPH PWPH both MD and residual no type I case 9

5 TIPH TIPH only MD method yes type II case 3

6 TDPH TIPH only MD method yes type II cases 6, 11

7 TDPH PWPH only MD method yes type II case 4

8 non-PH TIPH only MD method yes type II example 2.1

CASE 1 Complete data. (Y1, Z1), ..., Yn , Zn) are from hY |Z (t |z) = h0(t)exp(z), where h0(t) =

1(t > 0), and Z ∼ N (0,1). Let H0: h(t |z) = h0(t )exp(βz). The residual method assumes h(t |z) =

h0(t )exp(βz +θzt ) and tests H r
0 : θ = 0. v.s. H r

1 : θ 6= 0. Both H0 and H r
0 are correct. We compare

the probability of type I error P (H1|H0) of these two methods. The MD plots suggest that the

model fits even for sample size n = 50. All tests achieve the nominal level of the tests.
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Case 1 P (H1|H0) T1 T2 T3 T4 T5 T6 residual (1) residual (2)

n=50 0.036 0.035 0.024 0.029 0.027 0.034 0.056 0.004

n= 100 0.040 0.040 0.036 0.042 0.036 0.046 0.054 0.004

n = 200 0.039 0.041 0.025 0.029 0.029 0.032 0.058 0.004

CASE 2 RC data. hY |Z (t |z) = h0(t)exp(βz +θz2t), where P (Z = −1) = P (Z = −2) = 0.5, h0(t) =

1(t > 0), β=−0.5, θ = 1, and C ≡ 0.7. H0: h(t |z) = h0(t)exp(βz). The residual method assumes

h(t |z) = h0(t )exp(βz +θz2t ) and tests H r
0 : θ = 0 v.s. H r

1 : θ 6= 0. Both methods assume the correct

parameter space and should reject H0. We compare P (H0|H1) of these two methods. The MD

plots clearly reject H0 even if n = 50. The MD tests can detect the incorrect model when n ≥ 200,

except T1 and T2. The residual test almost never rejects the wrong model for n ≤ 200. The MD

tests are more powerful than the residual test except T1 and T2..

Case 8 P (H0|H1) T1 T2 T3 T4 T5 T6 residual (2)

n = 50 0.996 0.998 0.826 0.918 0.830 0.920 0.988

n=100 1 1 0.682 0.786 0.680 0.778 0.936

n= 200 1 1 0.406 0.514 0.406 0.506 0.798

CASE 3 Complete data. hY |Z (t |z) = h0(t)exp(βz2). h0(t) = 1(t > 0), β= 1 and Z ∼ uni f (−3,3).

H0: h(t |z) = h0(t )exp(βz). The residual method assumes h(t |z) = h0(t )exp(βz +θzt) and tests

H r
0 : θ = 0 v.s. H r

1 : θ 6= 0. Both methods should reject H0. Here we compute the probability of type

II error for MD test and that of pseudo type II error for residual method. The MD plots clearly

reject H0 if n ≥ 100. The MD tests perform similarly. The residual test does not reject the wrong

model w.p.0.95.
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type II error pseudo type II error

Case 10 P (H0|H1) T1 T2 T3 T4 T5 T6 residual (1) residual (2)

n= 100 0.004 0.004 0.054 0.008 0.064 0.008 0.932 1

n= 150 0 0 0.002 0 0.002 0 0.958 1

n = 200 0 0 0 0 0 0 0.952 1

CASE 4 Complete data. hY |Z (t |z) = h0(t )exp(2z1(t ≥ 0.2)+2zt1(t ≥ 0.6)), where h0(t ) = 1(t > 0)

and Z ∼ uni f (0,1). H0 : h(t |z) = h0(t )exp(βz1(t ≥ 0.1)). The residual method assumes h(t |z) =

h0(t )exp((βz +θzt )1(t ≥ 0.1)). Both methods should reject H0. Here we compute P (H0|H1) for

MD test and the probability of pseudo type II error for residual test. The MD plots clearly reject

H0 if n ≥ 50. The MD tests perform similarly, except T1 and T2. The residual tests are not as

powerful as the MD tests T3, T4, T5 and T6.

type II error pseudo type II error

Case 12 P (H0|H1) T1 T2 T3 T4 T5 T6 residual (1)

n=50 1 1 0.59 0.49 0.52 0.57 0.694

n= 100 1 1 0.14 0.10 0.12 0.08 0.484

n = 200 1 1 0.07 0.06 0.06 0.04 0.164

CASE 5 RC data. hY |Z (t |z) = h0(t)exp(z1(t ≥ 1)), where h0(t) = 1(t > 0), C ∼ uni f (0,2), and

Z ∼ bi n(2,0.5). H0: h(t |z) = h0(t )exp(βz). The residual method assumes h(t |z) = h0(t )exp(βz +

θz1(t ≥ 1)) and tests H r
0 : θ = 0 v.s. H r

1 : θ 6= 0. Both methods assume the correct parameter space

and should reject H0. We compare P (H0|H1) of these two methods. Here, we only apply existing

code, cox.zph, for residual method. The MD plots are unclear even if n = 200. The MD tests can

detect the wrong model if n = 400 except T1 and T2. The residual tests are more powerful.

7



Case 5 P (H0|H1) T1 T2 T3 T4 T5 T6 residual (2)

n=100 0.84 0.86 0.64 0.71 0.64 0.69 0.594

n= 200 0.82 0.84 0.60 0.58 0.58 0.59 0.249

n = 400 1 1 0.1 0.17 0.13 0.30 0.029

CASE 6 Complete data. hY |Z (t |z) = h0(t)exp(βz +θz2t), where h0(t) = 1(t > 0), β=−0.5, θ = 1,

and P (Z = −1) = P (Z = −2) = 0.5. H0: h(t |z) = h0(t)exp(βz). The residual method assumes

h(t |z) = h0(t )exp(βz +θzt ) and tests H r
0 : θ = 0 v.s. H r

1 : θ 6= 0. H0 is false. We compare P (H0|H1)

of these two methods. The MD plots clearly reject H0 if n ≥ 100. The MD tests and residual test

(1) perform similarly, except for T1, T2 and residual test (2).

Case 6 P (H0|H1) T1 T2 T3 T4 T5 T6 residual (1) residual (2)

n=50 0.996 0.996 0.774 0.872 0.750 0.856 0.764 0.998

n= 100 1 1 0.628 0.730 0.606 0.698 0.546 0.984

n = 200 1 1 0.362 0.428 0.338 0.404 0.226 0.970

CASE 7 Complete data. hY |Z (t |z) = h0(t )exp(βz +θzt ), where h0(t ) = 1(t > 0), β=−1, θ = 5 and

Z ∼ uni f (0,4). H0: h(t |z) = h0(t )exp(βz). The residual method assumes h(t |z) = h0(t )exp(βz +

θzt) and tests H r
0 : θ = 0 v.s. H r

1 : θ 6= 0. Both methods assume the correct parameter space and

should reject H0. We compare P (H0|H1) of these two methods. The MD plots clearly reject H0

even if n = 50. The MD tests perform similarly, except T1 and T2. The residual tests are not as

powerful as the MD tests except T1 and T2.

Case 7 P (H0|H1) T1 T2 T3 T4 T5 T6 residual (2)

n=50 1.000 1.000 0.428 0.330 0.528 0.374 0.526

n= 100 1.000 1.000 0.116 0.104 0.158 0.138 0.162
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CASE 8 RC data. hY |Z (t |z) = h0(t )exp(z), where h0(t ) = 1(t > 0), Z ∼ poi s(1) and the censoring

variable C ∼ uni f (0,2). Let H0: h(t |z) = h0(t)exp(βz). The residual method assumes h(t |z) =

h0(t)exp(βz +θz log(t)) and tests H r
0 : θ = 0 v.s. H r

1 : θ 6= 0. Both H0 and H r
0 are correct. We

compare (H1|H0) of these two methods. Here, we only apply existing code, cox.zph, for the

residual method. The MD plots suggest that the model fits even for sample size n = 50. All tests

achieve the nominal level of the tests.

Case 2 P (H1|H0) T1 T2 T3 T4 T5 T6 residual (2)

n=100 0.04 0.04 0.04 0.05 0.04 0.03 0.071

n= 200 0.01 0.04 0.03 0.06 0.07 0.06 0.074

n = 400 0.02 0.04 0.03 0 0.07 0 0.069

CASE 9 Complete data. hY |Z (t |z) = h0(t )exp(βz1(t ≥ 1)). h0(t ) = 1(t > 0), β= 1 and Z ∼ N (0,1).

H0: h(t |z) = h0(t)exp(βz1(t ≥ 1)). The residual method assumes h(t |z) = h0(t)exp(βz1(t ≥

1)+θzt 21(t ≥ 1)), and tests H r
0 : θ = 0 v.s. H r

1 : θ 6= 0. Both methods assume correct underlying

model and should not reject H0. We present P (H1|H0) for both methods. The MD plots suggest

that the model fits even for sample size n = 50. All tests achieve the nominal level of the tests.

Case 9 P (H1|H0) T1 T2 T3 T4 T5 T6 residual (1)

n=50 0.110 0.108 0.048 0.048 0.112 0.106 0.118

n= 100 0.002 0.002 0.002 0 0.008 0.006 0.092

n = 200 0.006 0.006 0 0 0.002 0.002 0.064

CASE 10 Complete data. hY |Z (t |z) = h0(t)exp(βz +θz1(t ≥ 2)), where h0(t) = 1(t > 0), β=−2,

θ = 2 and Z ∼ N (0,1). H0: h(t |z) = h0(t )exp(βz). H r
0 : θ = 0 v.s. H r

1 : θ 6= 0. Both methods assume

the correct parameter space and should reject H0. We compare the probability of type II error
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P (H0|H1) of these two methods. The MD plots clearly reject H0 if n ≥ 100, and unclear if n = 50.

The MD tests perform similarly. The residual tests are more powerful.

Case 3 P (H0|H1) T1 T2 T3 T4 T5 T6 residual (1) residual (2)

n=50 0.344 0.370 0.797 0.624 0.801 0.622 0.098 0.208

n= 100 0.080 0.085 0.508 0.252 0.505 0.265 0.010 0.018

n = 200 0.013 0.012 0.150 0.049 0.159 0.070 0 0

CASE 11 Complete data. hY |Z (t |z) = h0(t)exp(βz2 +θzt). h0(t) = 1(t > 0), let β = 5, θ = 1 and

Z ∼ N (0,1). H0: h(t |z) = h0(t )exp(βz). The residual method assumes h(t |z) = h0(t )exp(βz+θzt )

and tests H r
0 : θ = 0 v.s. H r

1 : θ 6= 0. Since one should reject H0, we compute P (H0|H1) for MD test.

The MD plots clearly reject H0 if n ≥ 50. The MD tests perform similarly. The residual test does

not reject the wrong model with a probability ≥ 0.77.

type II error pseudo type II error

Case 11 P (H0|H1) T1 T2 T3 T4 T5 T6 residual (1) residual (2)

n=50 0.608 0.604 0.850 0.846 0.842 0.838 0.906 1

n= 100 0 0 0.092 0.086 0.106 0.100 0.903 1

n = 200 0 0 0.002 0.002 0.002 0.002 0.774 1

CASE 12 Complete data. hY |Z (t |z) = h0(t)exp(βz +θz1(t ≥ 0.5)), where h0(t) = 1(t > 0), β= 1,

θ = 5, Z ∼ uni f (−2,2). H0: h(t |z) = h0(t )exp(βz). H r
0 : θ = 0 v.s. H r

1 : θ 6= 0. Both methods assume

the correct parameter space and should reject H0. We compare P (H0|H1) of these two methods.

The MD plots are unclear even if n = 200. The MD tests can detect the wrong model for a large n,

except T1 and T2. The residual tests are more powerful.
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Case 4 P (H0|H1) T1 T2 T3 T4 T5 T6 residual (1) residaul (2)

n=50 1 1 0.752 0.833 0.815 0.863 0 0

n= 100 1 1 0.169 0.319 0.391 0.467 0 0

n = 200 1 1 0.009 0.021 0.108 0.110 0 0

Example 2.1 (continued). Complete data are generated under the assumptions in Example

2.1. H0: h(t |z) = h0(t)exp(βz) v.s. H1: h(t |z) 6= h0(t)exp(βz). And residual method assumes

h(t |z) = h0(t)exp(βz +θzt) and tests H r
0 : θ = 0 v.s. H r

1 : θ 6= 0. The MD tests perform quite well

even when n = 100, except for T1 and T2, but the residual tests make mistake most of the time

and there is no tendency that P (H0|H1) goes down as n becomes large.

type II error pseudo type II error

PH model T1 T2 T3 T4 T5 T6 residual (1) residual (2)

n= 50 0.982 0.986 0.740 0.774 0.732 0.762 0.900 0.908

n=100 1.000 1.000 0.198 0.252 0.174 0.232 0.912 0.92

n=200 1.000 1.000 0 0 0 0 0.920 0.934
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4 Proof

In this section, we give the proofs for Lemma 2 and 3.

Remark 1. Let Ω1 be the event that F̂Y ,Z(t ,z) = 1
n

∑n
i=1 1(Yi ≤ t ,Zi ≤ z) → FY ,Z(t ,z) and F̂Y (t) =

1
n

∑n
i=1 1(Yi ≤ t) → FY (t) and let Ωz be the event that Ĝ(s) = 1

n

∑n
i=1 1(Zi ≤ s) → FZ(s), then by

the SLLN, P (Ωz) = 1 and P (Ω1) = 1. Let Ωh = {ω ∈ Ω, ȟo(t)(ω) → ho(t)} and Ωs = {ω ∈ Ω :

sup |Ŝo(t )(ω)−So(t )|→ 0} andΩ2 =Ωh ∩Ωs ∩Ω1 ∩Ωz, then by Lemma 2 and 3, P (Ω2) = 1.

Lemma 4. Let (X ,F ,P ) be a probability space. Let µn(t ,ω), t ∈ R and ω ∈ X , be a sequence of

measure. Let fn and gn be measurable functions, Ωa = {ω ∈ X : µn(·,ω) →µ(·,ω) set-wisely },Ωb =

{ω ∈ X : fn(t ,ω) → f (t ,ω) point-wisely in t }, andΩc = {ω ∈ X : gn(t ,ω) → g (t ,ω) point-wisely in t }.

If P (Ωa) = P (Ωb) = P (Ωc ) = 1, | fn | ≤ gn , and
∫

gndµn → ∫
g dµ<∞ almost surely, then

∫
fndµn →∫

f dµ almost surely.

Proof. Let Ω = Ωa ∩Ωb ∩Ωc , then P (Ω) = 1. For each ω ∈ Ω, µn(·,ω) → µ(·,ω) set-wisely,

fn(t ,ω) → f (t ,ω) point-wisely in t, and fn(t ,ω) → f (t ,ω) point-wisely in t. Since | fn | ≤ gn and∫
gndµn → ∫

g dµ < ∞ almost surely, by the General Convergence Theorem Royden (1988),

lim
∫

fn(t ,ω)dµn(t ,ω) = ∫
f (t ,ω)dµ(t ,ω). Since P (Ω) = 1,

∫
fndµn → ∫

f dµ almost surely.

Lemma 5. Assume that So is continuous and (Yi ,Zi ), i=1,...,n, are i.i.d copies from (Y ,Z) where

Z ∈ Rp . If η̂→ η almost surely, then
∑n

i=1 1(Yi>η̂,||Zi ||<cn )∑n
j=1 1(||Z j ||<cn ) → P (Y > η|Z = 0) almost surely, where cn

satisfies the conditions in Lemma 1.

Proof. Notice that hn :=
∑n

i=1 1(Yi>η̂,||Zi ||<cn )∑n
j=1 1(||Z j ||<cn ) =

∑n
i=1[1(Yi>η̂≥η)+1(Yi>η>η̂)+1(η>Yi>η̂)]1(||Zi ||<cn )∑n

j=1 1(||Z j ||<cn ) . Then
∑n

i=1 1(Yi>η,||Zi ||<cn )∑n
j=1 1(||Z j ||<cn ) −

∑n
i=1 1(η̂≥Yi>η,||Zi ||<cn )∑n

j=1 1(||Z j ||<cn ) ≤ hn ≤
∑n

i=1 1(Yi>η,||Zi ||<cn )∑n
j=1 1(||Z j ||<cn ) +

∑n
i=1 1(η≥Yi>η̂,||Zi ||<cn )∑n

j=1 1(||Z j ||<cn ) .

The first terms of the upper bound and the lower bound converge almost surely to P (Y > η|Z = 0)

by Stute (1986). Let ε> 0, when n is large enough, since η̂→ η almost surely, then |η−η̂| < ε almost
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surely. The second term in the upper bound
∑n

i=1 1(η≥Yi>η̂,||Zi ||<cn )∑n
j=1 1(||Z j ||<cn ) ≤

∑n
i=1 1(η≥Yi>η−ε,||Zi ||<cn )∑n

j=1 1(||Z j ||<cn ) →

P (η−ε< Y ≤ η|Z = 0) (= So(η−ε)−So(η)) almost surely by Stute (1986). Since it is true for any ε

and So is continuous, the second term in the upper bound converges almost surely to 0. Similarly,

it can be shown that the second term in the lower bound converges almost surely to 0. By the

Squeeze Theorem,
∑n

i=1 1(Yi>η̂,||Zi ||<cn )∑n
j=1 1(||Z j ||<cn ) → P (Y > η|Z = 0) almost surely.

Lemma 6. If fn(x) → f (x) on [a,b], f ′′
n (x) exists and are uniformly bounded on [a,b] and hn → 0,

then fn (x+hn )− f (x)
hn

→ f ′(x) uniformly on [a,b].

Proof. If fn(x) → f (x) on [a,b], f ′′
n (x) exists and are uniformly bounded on [a,b], then by Corollary

D of Theorem 3 in Frink (1935), limn→∞ f ′
n(x) → f ′(x) on [a,b] uniformly. Also, by Lemma in

Frink (1935), fn (x+hn )− fn (x)
hn

→ f ′(x) uniformly on [a,b].

A.3. Proof of Lemma 2. Under the assumptions that all expectations exist and thatΘ0 ⊂Θl r , by

the SLLN, ZZT −Z Z
T → E [ZZT ]−E [Z]E [ZT ] =ΣZ almost surely and ZY −Z Y → E [ZY ]−E [Z]E [Y ]

almost surely, then β̂→β almost surely. Thus statement (a) holds.

Now assume FY ,z ∈Θl r and ε⊥ Z, Ŝ∗(t ;β|x) = Ŝo(t −βT x) → So(t −βT x) almost surely and

SY ∗|Z(t ;β|x) = So(t −βT x). Thus statement (b) holds. Moreover, Ŝ∗(t ; β̂|x) = Ŝo(t − β̂T x) =
∑n

i=1 1(Yi>t−β̂T x,||Zi ||<cn )/n∑n
i=1 1(||Zi ||<cn )/n . Let η̂= t − β̂T x and η= t −βT x. Since β̂→β almost surely by Lemma

2(a), η̂→ η almost surely. Since So is continuous, by Lemma 5, Ŝ∗(t ; β̂|x) → P (Y > t −βT x|Z =

0) = So(t −βT x) = SY ∗|Z(t ;β|x) almost surely. Thus statement (c) holds.

A.4. Proof of Lemma 3.

Proof of (a). Let Ln(α) =∏n
i=1

exp(αT G(Yi )Zi )∑
k:Yk≥Yi

exp(αT G(Yi )Zk )
and Ln(α) = 1

n lnLn(α)+ lnn, then

Ln(α) = 1
n

∑n
i=1α

T G(Yi )Zi − 1
n

∑n
i=1 ln[ 1

n

∑n
k=1 eα

T G(Yi )Zk 1(Yk ≥ Yi )]. We shall show that its limit

is

15



L (α) = E
[
αT G(Y1)Z1 − lnp(α,Y1)], where p(α,Y1) = E [eα

T G(Y1)Z2 1(Y2 ≥ Y1)|Y1],

Let pn(α,Y1) = 1
n

∑n
k=1 eα

T G(Y1)Zk 1(Yk ≥ Y1), fn(α,Y1) = lnpn(α,Y1) and f (α,Y1) = lnp(α,Y1).

By assumption, ||G(Y1)Z1|| ≤ M <∞. If α is finite, then |αT G(Y1)Z1| is bounded by some

real number K and e−K ≤ exp(αT G(Y1)Z1) ≤ eK . Also 1
n

∑n
i=1α

T G(Yi )Zi → E [αT G(Y1)Z1] almost

surely by the SLLN.

eK ≥ pn(α,Y1) ≥ e−K 1

n

n∑
k=1

1(Yk ≥ Y1) ⇒ K ≥ fn(α,Y1) ≥ gn(α,Y1),

where gn(α,Y1) =−K + ln[ 1
n

∑n
k=1 1(Yk ≥ Y1)]. Notice that

∫
gn(α, t )dF̂Y1 (t ) = 1

n

n∑
j=1

[
ln[

1

n

n∑
k=1

1(Yk ≥ Y j )]−K
]

= n −1

n

1

n −1

n−1∑
i=1

ln(
i

n(n −1)
+1− i

n −1
)−K .

Let h1(x) = ln( x
n +1−x), 0 < x < 1, then h′

1(x) < 0. Using right-endpoints estimation,

Rn−1 = 1
n−1

∑n−1
i=1 ln( i

n(n−1) +1− i
n−1 ) underestimates

∫ 1
0 h1(x)d x.

Hence
∫

ln[ F̂Y (t )
n + (1− F̂Y (t ))]dF̂Y (t ) ≤ ∫ 1

0 ln( x
n +1−x)d x <∞ if n ≥ 2.

Let h2(x) = ln( x
n +1−x), 1

n−1 < x < 1+ 1
n−1 , then h′

2(x) < 0. Using left-endpoints estimation,

Ln−1 = 1
n−1

∑n−2
i=0 ln( i+1

n(n−1)+1− i+1
n−1 ) = 1

n−1

∑n−1
i=1 ln( i

n(n−1)+1− i
n−1 ) overestimates

∫ 1+ 1
n−1

1
n−1

h2(x)d x.

Then
∫

ln[ F̂Y (t )
n + (1− F̂Y (t ))]dF̂Y (t ) ≥ ∫ 1+ 1

n−1
1

n−1

ln( x
n +1−x)d x >−∞ if n ≥ 3. Also, since∫ 1

0 ln( x
n +1−x)d x → ∫ 1

0 ln(1−x)d x =−1 and
∫ 1+ 1

n−1
1

n−1

ln( x
n +1−x)d x → ∫ 1

0 ln(1−x)d x =−1,∫
ln[ F̂Y (t )

n + (1− F̂Y (t ))]dF̂Y (t ) → ∫ 1
0 ln(1−x)d x =−1.

Then lim
∫

gn(α, t)dF̂Y1 (t) is finite. Since fn is bounded by the integrable function gn and

fn → f almost surely, by Lemma 4,

∫
fndF̂Y (t ) = 1

n

n∑
i=1

fn(Yi ) →
∫

f dFY (t ) = E
[
lnE [eα

T G(Y1)Z2 1(Y2 ≥ Y1)|Y1]
]
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almost surely and Ln(α) →L (α) almost surely, for each α ∈Rp .

By assumption, B = {β : β= argsupα∈Rp L (α)} is a singleton set, β0 = argsupα∈Rp L (α) is

uniquely determined. Let β̂n = argsupα∈Rp Ln(α). Then L (β0) = supα∈Rp L (α) ≥L (α) and

Ln(β̂n) = supα∈Rp Ln(α) ≥Ln(α) for any α ∈Rp . Since Ln(β̂n) ≥Ln(β0),

liminfn→∞Ln(β̂n) ≥ liminfn→∞Ln(β0) =L (β0) almost surely (2)

Let β∗ be a limiting point of β̂n in the sense that there exists a subsequence of β̂n(ω), say β̂nl (ω),

such that β̂nl (ω) →β∗ (=β∗(ω)). By the assumption in the Lemma 3, P ( lim
n→∞ ||β̂n || <∞) = 1. Let

Ω1 be as defined in Remark 1 and letΩ∗ =Ω1 ∩ { lim
n→∞ ||β̂n || <∞}. For each ω ∈Ω∗, β∗(ω) is finite.

Then

Ln(β̂nl (ω)) = 1

n

n∑
i=1

β̂nl (ω)T G(Yi )Zi − 1

n

n∑
i=1

ln[
1

n

n∑
k=1

eβ̂nl
(ω)T G(Yi )Zk 1(Yk ≥ Yi )]

Since β̂nl (ω) →β∗ and β∗ is finite, β̂nl (ω) is bounded. By the similar argument as above,

Ln(β̂nl (ω)) →L (β∗) almost surely. Since limLn(β̂nl ) ≥ liminfn→∞Ln(β̂n) ≥L (β0) almost surely,

we have L (β∗) ≥L (β0) almost surely. Then L (β∗) =L (β0), that is, β∗ =β0, as B is a singleton

set. Since every convergent subsequence of β̂n converges to β0, β̂n(ω) →β0 ∀ ω ∈Ω∗. That is,

β̂n →β0 almost surely.

Proof of (b). LetΩs = {ω ∈Ω : sup |Ŝo(t )(ω)−So(t )|→ 0} and

Ωs′ = {ω ∈ Ω : sup|Šo(t)(ω)− So(t)| → 0}. Since Ŝo(t) and Šo(t) has the same asymptotic

properties and P (Ωs) = 1 (Yu and Li, 1994), P (Ωs′) = 1.

Let ω ∈Ωs′ . Since ho is a piece-wise constant baseline hazard function, for each t ∉ {a j : j ≥

0}, there exist p, q ≥ 1 such that ap < t < aq and ho(t) is constant on (ap , aq ). If ho(t) = 0 on

(ap , aq ), then ȟo(t )(ω) = 0 if n is large enough, as there is no observation in (ap , aq ), t ∈ (ap , aq ),
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and ηn → 0. If ȟo(t )(ω) > 0, assume that the sample size n is large enough such that there exist at

least two observations Y( j−1) and Y( j ), j ∈ {2, ...,m} in (ap , aq ) such that ap < Y( j−1) < t ≤ Y( j ) < aq .

When j < m, let ηn → 0, then there are three cases:

(i) ap < Y( j ) −ηn ≤ Y( j−1) < t ≤ Y( j ) < aq ,

(ii) ap < Y( j−1) < Y( j ) −ηn < t ≤ Y( j ) < aq ,

(iii) ap < Y( j−1) < t < Y( j ) −ηn < Y( j ) < aq .

In case (i), notice that −lnŠo(t )(ω) = ∫
s≤t ȟo(s)(ω)d s, −lnŠo(t )(ω)+ lnŠo(Y( j−1))(ω) =∫

Y( j−1)<s≤t ȟo(s)(ω)d s = h j (t −Y( j−1)). Let hn = t −Y( j−1) ≥ 0, since hn ≤ ηn and ηn → 0, hn → 0.

Then ȟo(t)(ω) = h j = −lnŠo (t )(ω)+lnŠo (t−hn )(ω)
hn

. Let fn(t) = −lnŠo(t)(ω) = −lnŠo(Y j−1)(ω)+h j (t −

Y( j−1)) and f (t) = −lnSo(t) = Ho(t), then fn(t) → f (t) and f ′′
n (t) = 0. By Lemma 6, ȟo(t)(ω) →

(−lnSo(t ))′ = ho(t ).

In case (ii), −lnŠo(t)(ω)+ lnŠo(Y( j−1))(ω) = ∫ t
Y( j )−ηn

ȟo(s)(ω)d s = h j (t − (Y( j ) −ηn)). Let hn =

t − (Y( j ) −ηn) ≤ ηn , then hn → 0. Notice that Šo(Y( j−1))(ω) = Šo(Y( j ) −ηn)(ω), then ȟo(t)(ω) =

h j = −lnŠo (t )(ω)+lnŠo (t−hn )(ω)
hn

. Let fn(t ) =−lnŠo(t )(ω) =−lnŠo(Y( j−1))(ω)+h j (t − (Y j −ηn)), f (t ) =

−lnSo(t ) = Ho(t ), then fn(t ) → f (t ), f ′′
n (t ) = 0 and by Lemma 6, ȟo(t )(ω) → (−lnSo(t ))′ = ho(t ).

In case (iii), we have Šo(t)(ω) = Ŝo(t). Since ĥo(t)(ω) → ho(t) (Hansen, 2004), ȟo(t)(ω) =

ĥo(t )(ω) → ho(t ).

Finally, if j = m, that is, ap < Y(m−1) < t ≤ Y(m) < aq , one can define ȟo(t)(ω) = 0, then

Šo(t )(ω) = Ŝo(t )(ω). By similar argument as in case (iii), ȟo(t )(ω) → ho(t ).

Sinceω ∈Ωs′ where P (Ωs′) = 1, ȟo(t ) → ho(t ) almost surely for each t which is not a cut-point.

Proof of (c). Let Ωs be as defined in (b) and let Ωh = {ω ∈ Ω, ȟo(t)(ω) → ho(t)}, then by

(b), P (Ωh) = P (Ωs) = 1. Let ω ∈ Ωh ∩Ωs . Since β is finite and G(t)Z is bounded, there exists

0 < γ1 ≤ γ2 <∞ such that γ1 ≤ exp(βT G(s)x) ≤ γ2. Then, γ1ȟo(s)(ω) ≤ ȟo(s)(ω)exp(βT G(s)x) ≤
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γ2ȟo(s)(ω). Let τ= inf{t | So(t ) = 0}. If τ=∞, then for any t , exp(−∫ t
0 ȟo(s)(ω)d s) = Šo(t )(ω) →

So(t ) = exp(−∫ t
0 ho(s)d s) > 0 and

∫ t
0 ȟo(s)(ω)d s → ∫ t

0 ho(s)d s <∞. Since fn(s) = ȟo(s)(ω)exp(βT G(s)x) →

ho(s)exp(βT G(s)x),
∫ t

0 ȟo(s)(ω)exp(βT G(s)x)d s → ∫ t
0 ho(s)exp(βT G(s)x)d s by the dominated

convergence theorem. Hence

Ŝ∗(t ;β|x) = exp(−∫ t
0 ȟo(s)(ω)exp(βT G(s)x)d s)→ exp(−∫ t

0 ho(s)exp(βT G(s)x)d s) = SY ∗|Z(t ;β|x).

If τ<∞, it is sufficient to show that Ŝ∗(t ;β|x) → 0 = SY ∗|Z(t ; ,β|x) for t ≥ b. Notice that So(t ) = 0

and SY ∗|Z(t ;β|x) = 0 when t ≥ τ. And

exp(−∫ t
0 ȟo(s)(ω)γ1d s) ≥ exp(−∫ t

0 ȟo(s)(ω)exp(βT G(s)x)d s) = Ŝ∗(t ;β|x) ≥ exp(−∫ t
0 ȟo(s)(ω)γ2d s).

Since Šo(t )(ω) → So(t ), exp(−∫ t
0 ȟo(s)(ω)γ1d s) = [Šo(t )(ω)]γ1 → So(t )γ1 = 0,

exp(−∫ t
0 ȟo(s)(ω)γ2d s) = [Šo(t)(ω)]γ2 → So(t)γ2 = 0 and then Ŝ∗(t ;β|x) → 0 = SY ∗;β|Z(t |x).

Since P (Ωh ∩Ωs) = 1, Ŝ∗(t |β|x) → SY ∗|Z(t ;β|x) almost surely for each t .

In addition, let Ωb = {ω ∈ Ω : β̂→ β}, then by Lemma 3(a), P (Ωb) = 1. Let ω ∈ Ωh ∩Ωs ∩

Ωb . Since β is finite when sample size is large enough, β̂ is bounded. Also, since G(s)Z is

bounded, there exists 0 < γ1 ≤ γ2 <∞ such that γ1 ≤ exp(β̂T G(s)x) ≤ γ2. Then, γ1ȟo(s)(ω) ≤

ȟo(s)(ω)exp(β̂T G(s)x) ≤ γ2ȟo(s)(ω). By the similar argument as above, Ŝ∗(t ; β̂|x) → 0 = SY ∗|Z(t ;β|x).

Since P (Ωh ∩Ωs) = 1, Ŝ∗(t ; β̂|x) → SY ∗|Z(t ;β|x) almost surely for each t .
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