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1 Proof of Example 2.1 and 2.2

Proof of Example 2.1. (Continued) Assume that the joint distribution of (Y, Z) is uniform on the
region A; U Ay, where A; is the set bounded by the four straightlines y =0, y=1, x— y=0and
x—y=-1,and A is the set bounded by y =0, y =1, x =3 and x = 4. The family of distributions
{Fy|z(-|z): z€ (=1,1) U (3,4)} does not satisfy the TIPH model and the simply linear regression
model. We shall show that the functions Sy, Sy+ for fitting TIPH model and Sy+ for fitting the
linear regression model are all uniquely defined and are different, as well as . In particular,

Y ~unif(0,1),

1-t= ifye[0,1+x]and x€ (-1,0] X ifxe[-1,0]
SyizIM=41-Y2 fye(x1Jandxe(0,1]  andfz0={12x ifxe (0,1
1-y  ifye[0,11and x € [3,4], 3 ifxe[34]

To fit the TIPH model, for y € [0, 1], Sy+|z(y|x) = (1—-y)*PF¥ and Sy~ (y) = [(1-y)®PPBY) f,(x)d x.
The numerical calculation yields f = —0.046, which uniquely maximizes Z(f) = BE(Z;) —
E[InE(1(Y> = Y1) exp(822)|Y1)], where (Y1, Z)) and (Y, Z,) are i.i.d. from Fy ;. Moreover, Sy #
Sy~, otherwise, it leads to a contradiction: —1 =S}, (1-) = §}..(1-) =0,as =1 =S}, (y) = S}.(y) =
[ = y)ePF0=1Px(_1) f,(x)dx, ¥ y € (0,1).

To fit the simple linear regression model, Sy« z(y|x) =1(y—fx<1)—(y-px)1(0<y—-Px=<1)
and Sy+(y) = [[1(y—Bx<1)—(y—Px)1(0 < y—Px < 1)] fz(x)dx, where § = Cov(Z,Y)IVar(Z) =
2/153. Moreover, Sy # Sy+, as
Sy*()=f1(x=0)—(1-Px)11/f=x=0)]fz(x)dx= [Px1(x=0)fz(x)dx = (2/153)E(Z1(Z >
0)) >0=Sy(1).

Proof of Example 2.2 (continued). If Qg is a simple linear regression, then Sy = Sy+, =1, and



1 ift—x<0 1 ift<0
forx € {0, 1}, Sy z(t|x) = Sy (t) = E(So(t-2)) =

1-(t-x) ift-x€]0,1], 1-¢/2 ift€]0,2),

1 ift<0
So(t) =

1-¢t ifre]0,1).
If © is a TIPH model, then f = —oco, as £’ (B) = 0.5eP[B—In[1+ef]] < 0, where £ (0) = E[0'G()Z,-

1 ift<Oandx=0

INE[e® CZ1(Y, = Vi)IVi]]. Sy+z(t10) = So) =4 1_ 5 ifre[0.1]and x=0 »and Sy-()=

1(t<1) ifx=1

. 1 ift<0
E[(So(t))eﬁ ] = Thus Sy (t) = (1 —t/2) >0 = Sy=(¢) if ¢t € [1,2). That is,

1-t/2 ifte]o,1].
Sy # Sy+.

2 Methods to obtain S*(¢|x)

1. ©cOp. §*(t1x) = (S, (1)PBCN where B is the SMLE (see (Wong and Yu, 2012)).

2. B <0, NO.. S*(tIx) = e~ Jizi o exp(B'G(9xds) \yhere B is the MPLE. There are some
simplified forms of $* for the special cases as follows.
(@ (Continuous TIPH model) §* (£[x) = (S, (£))*P#™.

(b) (Continuous PWPH model) In the continuous PWPH model, say two cut-points a

and b, G(7) is a 3 x 3 diagonal matrix with diagonal entries 1(¢ < a), 1(a < t < b), and



1(¢ = b). Then the estimator of S*(¢|U, R, V), where Z= (U,R,V)', is

(So ()PP if t<a

S*(HIU,R, V) =4 (& ¢ yexp(Brl) Soe)PB2R oo
(So(a)) @)oo B if ast<b

Sob)=PP2B (5, (1)) B3V)
(So(@)@PB2R) (S, (b))exPB3V)

(So(a) @ Br) if =D

(c) (Continuous TDPH model) In continuous TDPH model, G(¢) = (t — a)1(t = a). Let
a= by < b <...< by be the discontinuous points of S,(¢) for t > a. The estimator of

S*(tl|2) is

) Sy (1) if t<b;
S*(t12) =

& i Sobi —a)p .
So(@TT]_, (o) PG @bD if b < t < bja.

- B9 < OpuNOg. 8" (11%) = [Te=,(1 — o) exp(B'G(9)x), here fip(1) = Seli2=5el) and i

the MPLE.
. ©yc 0. S*(tx) = §o(t—[§'x), where ﬁ = (ZZ' -ZZ)) L (ZY - Z(Y)) if there is no tie
in Y;’s, otherwise, ﬁ is given by the SMLE (see (Yu and Wong, 2005)), which satisfies

lim, . P(B=P) =1if Fy7€0,,nO,.

. B9 <Oy Syz(tlz) = So(t— f'z— z;’:lf,-(zj)), where (f1,.., Bg) = (0,...,0). The estima-

tors fj(-), 1 < j < g can be obtained by gam() function in the R package mgcv. Let U =

(Zgs1r- Zp), then (Bgi1,..., Bp) = QU U@ HUY -7 fiZ))-OY-XL, fiZ.

. O € Ogpisi. Sy+iz = So(t —Y'Z— p(&'Z)), where (Y150 Vg @ge1,p) = (0,...,0) and B =
(@1, gy Y g1, Yp)'. The estimator B and p can be obtained by the procedure proposed

by Carroll (1997).



3 Simulation

The next table summarizes the simulation cases. The PH model is defined by

h(t|z) = ho(t) exp(B’ G(1)z) (1)

where G(7) is a px p diagonal matrix with diagonal elements g;(#), j = 1,..., p. If G(¢) is the identity
matrix, then the PH model is called time-independent PH (TIPH) model. If g(t) = 1(a< t < b),
where a and b are cut-points, then the PH model is called the piece-wise PH (PWPH) model. For

other g(#) # 1, we called the PH model a time-dependent PH (TDPH) model.

True Data O are tests valid ? reject Hy? | error cases

1 TIPH TIPH | both MD and residual no typel cases 1, 8 (RC)

2 PWPH TIPH | both MD and residual yes type Il | cases 5(RC), 10, 12

3 TDPH TIPH | both MD and residual yes type II cases 2 (RC), 7

4 | PWPH PWPH | both MD and residual no typel case9

5 TIPH TIPH only MD method yes type II case 3

6 TDPH TIPH only MD method yes type 11 cases 6, 11
7 TDPH PWPH only MD method yes type 11 case 4

8 | non-PH | TIPH only MD method yes type 11 example 2.1

CASE 1 Complete data. (Y1,721), ..., Y, Z,) are from hy|z(t|z) = ho(f) exp(z), where ho(f) =
1(t>0),and Z ~ N(0,1). Let Hy: h(t|z) = ho(t) exp(Bz). The residual method assumes h(t|z) =
ho(t)exp(fz+0zt) and tests ng 0=0.v.s. le: 0 #0. Both Hy and H5 are correct. We compare
the probability of type I error P(H;|Hy) of these two methods. The MD plots suggest that the

model fits even for sample size n = 50. All tests achieve the nominal level of the tests.



Case 1 P(H;|Hy) T; T T3 Ty Ts Ts residual (1) residual (2)

n=50 0.036 0.035 0.024 0.029 0.027 0.034 0.056 0.004
n= 100 0.040 0.040 0.036 0.042 0.036 0.046 0.054 0.004
n=200 0.039 0.041 0.025 0.029 0.029 0.032 0.058 0.004

CASE 2 RC data. hy|z(t|z) = ho(?) exp(ﬁz+622t), where P(Z =-1) = P(Z =-2) =0.5, hy(t) =
1(¢>0), B=-0.5,0=1,and C=0.7. Hy: h(t|z) = ho(t) exp(Bz). The residual method assumes
h(t|z) = ho(t) exp(Bz+02z>t) and tests H{:0=0v.s. H{: 0 #0. Both methods assume the correct
parameter space and should reject Hy. We compare P(Hy|H;) of these two methods. The MD
plots clearly reject Hy even if n = 50. The MD tests can detect the incorrect model when 7 = 200,
except 77 and T». The residual test almost never rejects the wrong model for n < 200. The MD

tests are more powerful than the residual test except T and Ts..

Case 8 P(H()|H1) T1 TZ T3 T4 T5 Te residual (2)

n=>50 0.996 0998 0.826 0918 0.830 0.920 0.988
n=100 1 1 0.682 0.786 0.680 0.778 0.936
n= 200 1 1 0.406 0.514 0.406 0.506 0.798

CASE 3 Complete data. hy|z(t|z) = ho(t) exp(Bz?). ho(t) = 1(t>0), =1and Z ~ uni f(-3,3).
Hy: h(t|z) = ho(t) exp(Bz). The residual method assumes h(t|z) = hy(t) exp(Bz +0zt) and tests
H[:0=0v.s. H{: 0 #0. Both methods should reject Hy. Here we compute the probability of type
IT error for MD test and that of pseudo type II error for residual method. The MD plots clearly
reject Hy if n=100. The MD tests perform similarly. The residual test does not reject the wrong

model w.p.0.95.



type Il error pseudo type II error

Case 10 P(Hy|Hy) T T T3 Ty Ts Ts residual (1) residual (2)

n=100 0.004 0.004 0.054 0.008 0.064 0.008 0.932 1
n= 150 0 0 0.002 0 0.002 0 0.958 1
n =200 0 0 0 0 0 0 0.952 1

CASE 4 Complete data. hy|z(t|z) = ho(f) exp(2z1(t = 0.2) +2zt1( = 0.6)), where ho(1) = 1(¢ > 0)
and Z ~ unif(0,1). Hy: h(t|z) = ho(#) exp(fz1(t =0.1)). The residual method assumes h(¢|z) =
ho(t)exp((fz+0z1t)1(t =0.1)). Both methods should reject Hy. Here we compute P(Hy|H;) for
MD test and the probability of pseudo type II error for residual test. The MD plots clearly reject
H, if n = 50. The MD tests perform similarly, except 77 and T». The residual tests are not as

powerful as the MD tests T3, Ty, T5 and Tg.

type Il error pseudo type II error
Case12P(HylH)) T T, 13 Ty Ts Ts residual (1)
n=50 1 1 059 049 0.52 0.57 0.694
n=100 1 1 0.14 0.10 0.12 0.08 0.484
n=200 1 1 0.07 0.06 0.06 0.04 0.164

CASE 5 RC data. hy|z(t|z) = ho(t) exp(z1(t = 1)), where ho(f) = 1(¢ > 0), C ~ unif(0,2), and
Z ~bin(2,0.5). Hy: h(t|z) = hy(t) exp(Bz). The residual method assumes h(t|z) = hy(t) exp(Bz+
0z1(t=1)) and tests ng 0=0vs. HI’: 0 # 0. Both methods assume the correct parameter space
and should reject Hy. We compare P(Hy|H;) of these two methods. Here, we only apply existing
code, cox.zph, for residual method. The MD plots are unclear even if n = 200. The MD tests can
detect the wrong model if n = 400 except T and T>. The residual tests are more powerful.
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Case 5 P(H()lHl) T1 T2 T3 T4 T5 T6 residual (2)

n=100 0.84 086 064 071 0.64 0.69 0.594
n=200 0.82 0.84 060 0.58 0.58 0.59 0.249
n =400 1 1 0.1 0.17 0.13 0.30 0.029

CASE 6 Complete data. hy|z(t|z) = ho(t) exp(Bz +02zt), where ho(t) =1(t>0), =-05,0=1,
and P(Z = -1) = P(Z = -2) = 0.5. Hy: h(t|z) = ho(t) exp(Bz). The residual method assumes
h(t|z) = ho(t) exp(fz+0zt) and tests HS: 0=0vs. lez 0 #0. H is false. We compare P(Hy|H;)
of these two methods. The MD plots clearly reject Hy if n = 100. The MD tests and residual test

(1) perform similarly, except for 77, T> and residual test (2).

Case 6 P(Hy|Hy) Th T T3 Ty Ts Ts residual (1) residual (2)

n=50 0.996 0996 0.774 0.872 0.750 0.856 0.764 0.998
n=100 1 1 0.628 0.730 0.606 0.698 0.546 0.984
n =200 1 1 0.362 0.428 0.338 0.404 0.226 0.970

CASE 7 Complete data. hyz(t|z) = ho(t) exp(Bz + 0zt), where ho(f) =1(£>0), f=~-1,0 =5 and
Z ~unif(0,4). Hy: h(t|z) = ho(t) exp(Bz). The residual method assumes h(t|z) = ho(f) exp(fz +
0zt) and tests Hj: 0 =0 v.s. H: 6 # 0. Both methods assume the correct parameter space and
should reject Hy. We compare P(Hy|H;) of these two methods. The MD plots clearly reject Hy
even if n = 50. The MD tests perform similarly, except T; and T». The residual tests are not as

powerful as the MD tests except 77 and T».

Case 7 P(H()|H1) T1 T2 Tg T4 T5 T6 residual (2)

n=50 1.000 1.000 0.428 0.330 0.528 0.374 0.526

n=100 1.000 1.000 0.116 0.104 0.158 0.138 0.162




CASE 8 RC data. hyz(t|z) = ho(t) exp(z), where hy (1) =1(z > 0), Z ~ pois(1) and the censoring
variable C ~ uni f(0,2). Let Hy: h(t|z) = ho(t) exp(Bz). The residual method assumes h(t|z) =
ho(t) exp(Bz + 0zlog(r)) and tests Hj: 0 =0 v.s. HJ: 0 # 0. Both Hy and H] are correct. We
compare (H;|Hy) of these two methods. Here, we only apply existing code, cox.zph, for the
residual method. The MD plots suggest that the model fits even for sample size n = 50. All tests

achieve the nominal level of the tests.

Case 2 P(Hl |H0) Tl Tg T3 T4 T5 TG residual (2)

n=100 0.04 0.04 0.04 0.05 0.04 0.03 0.071
n=200 0.01 0.04 0.03 0.06 0.07 0.06 0.074
n =400 0.02 0.04 003 0 007 O 0.069

CASE 9 Complete data. hy|z(t]z) = ho(t) exp(fz1l(t = 1)). ho(t) =1(£>0), f=1and Z ~ N(0,1).
Hy: h(t|z) = ho(t)exp(Bz1(t = 1)). The residual method assumes h(t|z) = ho(t) exp(Bz1(t =
1) +0zt21(¢ = 1)), and tests HS: 0=0vs. lez 0 # 0. Both methods assume correct underlying
model and should not reject Hy. We present P(H;|Hy) for both methods. The MD plots suggest

that the model fits even for sample size n = 50. All tests achieve the nominal level of the tests.

Case 9 P(H1 |H0) T1 T2 Tg T4 T5 T6 residual (1)

n=50 0.110 0.108 0.048 0.048 0.112 0.106 0.118
n=100 0.002 0.002 0.002 0 0.008 0.006 0.092
n=200 0.006 0.006 0 0 0.002 0.002 0.064

CASE 10 Complete data. hy|z(tz) = ho(2) exp(fz+0z1(t = 2)), where ho(2) = 1( >0), = -2,
0 =2and Z ~ N(0,1). Hy: h(t|z) = ho(t) exp(Bz). Hj: 0 =0v.s. H{: 0 # 0. Both methods assume

the correct parameter space and should reject Hy. We compare the probability of type II error



P(Hy|H,) of these two methods. The MD plots clearly reject Hy if n = 100, and unclear if n = 50.

The MD tests perform similarly. The residual tests are more powerful.

Case 3 P(Hy|Hy) Th T, T3 Ty Ts Ts residual (1) residual (2)

n=50 0.344 0370 0.797 0.624 0.801 0.622 0.098 0.208
n=100 0.080 0.085 0.508 0.252 0.505 0.265 0.010 0.018
n =200 0.013 0.012 0.150 0.049 0.159 0.070 0 0

CASE 11 Complete data. hy,z(t|z) = ho(t) exp(Bz> +0z1). ho(t) =1(t >0),let =5,0 =1 and
Z ~N(0,1). Hy: h(t|z) = ho(t) exp(fz). The residual method assumes h(¢|z) = hy(f) exp(fz+0zt)
and tests HJ: 0 =0v.s. H: 6 # 0. Since one should reject Hy, we compute P(Hy|H;) for MD test.
The MD plots clearly reject Hy if n = 50. The MD tests perform similarly. The residual test does

not reject the wrong model with a probability = 0.77.

type II error pseudo type II error

Case 11 P(Hy|Hy) Th T T3 Ty Ts Ts residual (1) residual (2)

n=50 0.608 0.604 0.850 0.846 0.842 0.838 0.906 1
n=100 0 0 0.092 0.086 0.106 0.100 0.903 1
n=200 0 0 0.002 0.002 0.002 0.002 0.774 1

CASE 12 Complete data. hy|z(t]z) = ho(t) exp(Bz +0z1(t = 0.5)), where ho(t) =1(£>0), =1,
0 =5,Z~unif(-2,2). Hy: h(t|z) = ho(t) exp(fz). H}: 6 =0v.s. H: 6 # 0. Both methods assume
the correct parameter space and should reject Hy. We compare P(Hy|H;) of these two methods.
The MD plots are unclear even if n = 200. The MD tests can detect the wrong model for a large n,

except T and T>». The residual tests are more powerful.
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Cased P(Hy|Hy)) T T, T3 Ty Ts Ts residual (1) residaul (2)

n=50 1 1 0.752 0.833 0.815 0.863 0 0
n=100 1 1 0.169 0319 0.391 0.467 0 0
n=200 1 1 0.009 0.021 0.108 0.110 0 0

Example 2.1 (continued). Complete data are generated under the assumptions in Example
2.1. Hy: h(t|z) = ho(t)exp(Bz) v.s. Hy: h(t|z) # ho(t) exp(Bz). And residual method assumes
h(t|z) = ho(t) exp(fz+0zt) and tests Hg: 0=0vs. lez 0 # 0. The MD tests perform quite well
even when n = 100, except for T; and T3, but the residual tests make mistake most of the time

and there is no tendency that P(Hy|H;) goes down as n becomes large.

type Il error pseudo type II error

PH model T T T3 Ty Ts Ts residual (1) residual (2)

n=50 0.982 0986 0.740 0.774 0.732 0.762 0.900 0.908
n=100 1.000 1.000 0.198 0.252 0.174 0.232 0.912 0.92
n=200 1.000 1.000 0 0 0 0 0.920 0.934
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Figure 1. MD plots for Cases 1-12
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4 Proof

In this section, we give the proofs for Lemma 2 and 3.

Remark 1. Let Q; be the event that Fyyz(l“,z) = %2?21 1(Y; < t,Z; < 2) — Fyz(t,2) and Ey(p) =
%Z;.’:l 1(Y; < t) — Fy(t) and let Q, be the event that G(s) = %Z?zl 1(Z; < s) — Fz(s), then by
the SLLN, P(Q;) =1 and P(Q;) = 1. Let Qp = {w € Q, fzo(t)(w) — ho(D)} and Qs = {w e Q:

suplSo(t)(a)) —So(B)] — 0} and Qy = QN QN Q1 NQy, then by Lemma 2 and 3, P(Qy) = 1.

Lemma 4. Let (X, %, P) be a probability space. Let 1, (t,w), t € R and w € X, be a sequence of
measure. Let f,, and g, be measurable functions, Qg ={w € X : p,(-,w) — p(-, w) set-wisely}, Qp =
fweX: fu(t,w) — f(t,w) point-wiselyint}, and Q. ={w e X : g,(t,w) — g(t,w) point-wisely in t}.
IfP(Qq) = P(Qp) = P(Qe) =1, | ful < gn, and [ gndu, — [ gdu < oo almost surely, then [ fndu, —

[ fdu almost surely.

Proof. LetQ=Q,nQ,NnQ then P(Q) = 1. For each w € Q, u,(-,w) — u(-,w) set-wisely,
fn(t,w) — f(t,w) point-wisely in t, and f,(f,w) — f(¢,w) point-wisely in t. Since | f,| < g, and

J gndun — [ gdp < oo almost surely, by the General Convergence Theorem Royden (1988),
lim [ f,(t,0)dun(t,0) = [ f(t,w)du(t,w). Since P(Q) =1, [ fpdu, — [ fdu almost surely.

Lemma 5. Assume that S, is continuous and (Y;,Z;), i=1,...,n, are i.i.d copies from (Y, Z) where

T 1> IZill<cn)
T IZiTI<e)

ZeR? . Iff) — n almost surely, then — P(Y >nl|Z= 0) almost surely, where c;,

satisfies the conditions in Lemma 1.
_ X WY ZilI<en) _ XE NY>Azm+1(Y >+ 10> Y >DILIZi]<cp)
X HiZgli<en) Y 101ZjlI<en) ’

T IZill<cs) | T 1@G=Yi>nlIZill<cn) I NZilI<c) | X 10z Y lIZlI<cp)
T 11Z11<en) T TZ11<en) T 1(1Z;TI<cp) T 1(1Z;TI<cp)

Then

Proof. Notice that hy, :

<h,=<
The first terms of the upper bound and the lower bound converge almost surely to P(Y > n|Z = 0)
by Stute (1986). Let € > 0, when n is large enough, since ) — n almost surely, then [—7)| < € almost
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. Y 1mzYi>nl1ZilI<cy) _ XI, 1mzYi>n-€llZ;lI<cp)
surely. The second term in the upper bound ST 1012, <cn) < ST 107 T<0 —

Pn—e<Y =n|Z=0) (=S,(n—¢€)—Sy(n)) almost surely by Stute (1986). Since it is true for any €
and S, is continuous, the second term in the upper bound converges almost surely to 0. Similarly,

it can be shown that the second term in the lower bound converges almost surely to 0. By the

T LYi>,l1Zil1<cp)
T 1(1Z;TI<cy)

Squeeze Theorem, — P(Y >n|Z = 0) almost surely.

Lemma 6. If f,,(x) — f(x) on [a,b], f)/(x) exists and are uniformly bounded on [a,b] and h, — 0,
then %’j_m — f'(x) uniformly on [a,b].

Proof. If f,(x) — f(x) on [a,b], f)/(x) exists and are uniformly bounded on [a,b], then by Corollary
D of Theorem 3 in Frink (1935), lim;_.« f,;(x) — f'(x) on [a,b] uniformly. Also, by Lemma in
Frink (1935), W — f’(x) uniformly on [a,b].

A.3. Proof of Lemma 2. Under the assumptions that all expectations exist and that ®y c ©;,, by
the SLIN, ZZT ~ZZ' — E[ZZ")- E(Z|E[ZT] = =5 almost surelyand ZY —-ZY — E[ZY]-E[Z]E[Y]
almost surely, then B — P almost surely. Thus statement (a) holds.

Now assume Fyz € ©;, and e L Z, S’*(t;ﬁlx) = So(t— ﬁTx) — So(t— ﬂTx) almost surely and

Sy+z(t; BIX) = So(t — BTx). Thus statement (b) holds. Moreover, $*(£; Ix) = S,(t — f7x) =

I 1Y>1-BTx1Z]I<cn)/ n

ST 10 ZilI<e)n . Letf) = t—ﬁTx andn = t— p’x. Since ﬁ — p almost surely by Lemma
i=1 ill<Cn

2(a), i — 1 almost surely. Since S, is continuous, by Lemma 5, $*(¢; B|x) — P(Y > t — pTx|Z =
0) = S,(t — BTx) = Sy+z(¢; BIx) almost surely. Thus statement (c) holds.

A.4. Proof of Lemma 3.

T AV
Proof of (a). Let L, (a) = [ | — 22 GUIZ)

=1
i=1 Ty oy, expla GUVIZ) and Zy(a) = InL,(a) +Inn, then

L@ =1y aTG(Y)Z -1y In[lyr  e® 6UZ1(y, > Y;)]. We shall show that its limit

is
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ZL(@) = E[a"G(Y))Z, - Inp(a, Y1)], where p(a, V1) = E[e® STWZ] (Y, = })|Y]],
Let py(a, Y1) = 137 @' 60021 (v, = 1)), fule, Y1) = Inp,(a, Y1) and f(a, 1) = Inp(a, V7).
By assumption, ||G(Y1)Z1]| < M < co. If « is finite, then laTG(Yy)Z,| is bounded by some
real number K and e X <exp(a’G(Y1)Z)) < eX. Also + ¥ | @’ G(Y))Z; — Ela’ G(Y}1)Z,] almost

surely by the SLLN.

1
X =pula,vi)ze Kﬁ Y 1(Yi 2 Y) = K= fula, V1) 2 gula, 1),
k=1

where g, (@, Yy) = —K +In[2 Y7 1(Y} = })]. Notice that

fgn(a,t)dﬁyl(t) Z [In[— Z 1(Ye 2 Y))] - K]
n =1

i
Z n(n 5 +1-— )—K.

i=1

Let h;(x) = ln(% +1-x),0<x<1,then h’l (x) <0. Using right-endpoints estimation,

Ry =-5Y" ln(n(n 5 l—n%l) underestimates fol hi(x)dx.

Hence [In[2L® 4 (1 - By (0)1dBy (D) < [} In(E +1-x)dx <ooif n=2.

Let hy(x) = ln(x +t1-x), ;g <x<l+-=3H then h’ (x) < 0. Using left-endpoints estimation,
. . . 1+L
Lpi=-5Y" ln(n(‘,:r_ll)+1—}1—11 =-L.yn 1n(n(n 5+l 5e) overestlmatesfﬁ"‘1 ho(x)dx.

1

Then [In[28 1 (1 - By ()1dFy (1) = [ 7T In(E +1 - x)dx > -0 if n = 3. Also, since
n-1
_1
fol In(s +1-x)dx — fol In(1-x)dx=-1and f:l"’l In(s +1-x)dx — fol In(1-x)dx=—
SIn(B2 4 (1 - By ())dFy (D) — fy In(1 - x)dx = —1.

Then lim [ g, (a, )dFy, (¢) is finite. Since f,, is bounded by the integrable function g, and

fn — f almost surely, by Lemma 4,

n
f fndFy (1) = % Y (Y — f fdFy(t) = E[InE[e® €21 (Y, = v))|13]]

i=1
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almost surely and £, (a) — £ (@) almost surely, for each a € R”.
By assumption, B = {f: B = argsup,pr Z (@)} is a singleton set, By = argsup,cpr Z (@) is
uniquely determined. Let Bn= argsup gepr ZLn(a@). Then Z(fo) = sup pepr £ (@) = £ (a) and

La(Br) = sup gepr Ln(@) = Ly (@) for any a € RP . Since £,(B,) = L (Bo),
liminf;,_o%n (ﬁn) > liminf; ..o % (Bo) = £ (Po) almost surely )

Let B* be a limiting point of f,, in the sense that there exists a subsequence of f,,(w), say n (W),
such that I;n, (w) — B* (= B* (w)). By the assumption in the Lemma 3, P(r}i_m IIBnll <oo) =1. Let
—00
Q1 be as defined in Remarkand letQ,=Q;n {r}i_m ||i3n|| < oo}. For each w € Q,, B* (w) is finite.
— 00

Then

n 122 . 1.2 1 2 . '
LnBr @) ==Y Bry@) G(YDZ—— Y In[— Y. &P @ COZiy (v, > v
ni=1 Ni=1 Mg=1

Since ﬁn, (w) — B* and B* is finite, ﬁnl(w) is bounded. By the similar argument as above,
ffn(ﬁnl (w)) — ZL(B*) almost surely. Since limffn(ﬁm) > liminfn_.ooffn(ﬁn) > £ (Po) almost surely,
we have Z(B*) = £ (By) almost surely. Then £ (%) = £ (Bo), thatis, B* = By, as B is a singleton
set. Since every convergent subsequence of fin converges to fy, B () — Py ¥V weQ,. Thatis,
B, — B, almost surely.

Proof of (b). Let Qs = {w e Q: sup ISO(I) (W) — Sy (t)] — 0} and

Qo ={weQ: suplgo(t)(w) —S,(8)] — 0}. Since S,(f) and S,(¢) has the same asymptotic
properties and P(Q2) =1 (Yu and Li, 1994), P(Qy) = 1.

Let w € Qy. Since h, is a piece-wise constant baseline hazard function, for each t ¢ {a;: j =
0}, there exist p,q =1 such that a;, < t < az and h,(#) is constant on (ap, aq). If ho(f) =0 on

(ap,aq), then flo(l‘) (w) = 0if n is large enough, as there is no observation in (ay, aq), t € (ap, ag),
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andn, —0.If fzo(t) (w) > 0, assume that the sample size n is large enough such that there exist at
least two observations Y(;_1) and Y{;), j € {2,..., m} in (ap, ag) such that a, < Y(j_1) <t < ¥{(;) < aq4.
When j < m, letn, — 0, then there are three cases:

(1) ap < Y(j) —Np < Y(j—l) <t< Y(]’) <dag

(ii) ap < Y(j—l) < Y(j) —Np<t=s Y(j) <ayg,

(iii) ap < Y(]'_l) <r< Y(j) —Np< Y(]') < dy.

In case (i), notice that —InS, (¢)(w) = /.

N

< o (8)(@)ds, ~InS, (1) (@) + I8, (Y(j—1) (@) =

fy(jil)qstflo(s)(w)ds = hj(t—Y(-1). Let h, = t— Y{j_1) = 0, since h, <1, and n, — 0, h, — 0.

Then Jip(1)(@) = hj = “SQ@EIShW 1ot £ () = —Ino(1) (@) = ~InS,(¥j-1) (@) + j(t -
Yj-1y) and f (1) = —InS,(#) = H, (1), then f,,(1) — f(#) and f,/(#) = 0. By Lemma 6, hio (1) (W) —
(=InS, (1) = ho(8).

In case (ii), ~InS,(£) (@) + InS,(Yj_1) (@) = f;(j)_nn ho(s)(@)ds = hj(t = (Y —nn))- Let hy, =

t = (Y(jy —Nn) < 1np, then hy, — 0. Notice that Svo(Y(j_l))(w) = SO(Y(j) —1Nn)(w), then fzo(t)(a)) =

hj = S 0@ISU=R)@) 1o £ (1) = ~In(1)(@) = ~InSy(Vj-1)) @) + hy (1~ (¥; ~ 1), F(1) =
—InS,(#) = Hy(2), then f,,(t) — f (1), f,/(t) = 0 and by Lemma 6, o (1) (@) — (—InS,y (1)) = hy(1).

In case (iii), we have S,(£)(w) = S,(£). Since f1,(£)(w) — hy(t) (Hansen, 2004), h,(t)(w) =
hro (D) (@) = ho(2).

Finally, if j = m, that is, a, < Y;u-1) < t < Y < a4, one can define ho(8)(w) = 0, then
50(1‘) (w) = So(t) (w). By similar argument as in case (iii), fzo( H(w) — hy(1).

Since w € Q¢ where P(Qy) = 1, l1,(t) — h, (1) almost surely for each ¢ which is not a cut-point.
Proof of (c). Let Q; be as defined in (b) and let Q) = {w € Q, fzo(t) (w) — hy(1)}, then by
(b), P(Q2p) = P(Q) = 1. Let w € Q; N Q. Since B is finite and G(#)Z is bounded, there exists
0 <71 <7¥2 < oo such that y; < exp(B7G(5)X) < y,. Then, 171, (5) (@) < 1, (s) () exp(BTG(s)x) <
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ygﬁo(s) (w). Lett =inf{r| S,(¢) =0}. If T =00, then for any ¢, exp(— fot fzo(s)(w)ds) = §0(t) (w) —
So() = exp(— fy ho(s)ds) >0and [ fi,(s)(@)ds — [ ho(s)ds < co. Since f;,(s) = f1,(s) (w) exp(B G(s)x) —
ho(s)exp(BTG(s)x), fot Fo(5) (@) exp(BTG(s)x)ds — fot ho(s)exp(BTG(s)x)ds by the dominated
convergence theorem. Hence

$* (£ B1%) = exp(— [y 110(5) (@) exp(B G(s)X)ds) — exp(— [y ho(s) exp(BTG(5)X)ds) = Sy-(z(£; BIx).
If T < 0o, it is sufficient to show that S* (; PpIx) — 0 = Sy+z(t;, BIx) for £ = b. Notice that S,(¢) =0
and Sy+z(t; BIx) =0 when £ = 7. And

exp(— fi ho(s)(w)y1ds) = exp(— [ ho(s)(@) exp(BTG(s)x)ds) = $* (£; BIX) = exp(— i} hio(s)(W)y2ds).
Since S, (1) () — So(1), exp(= fy hio(8)@)y1ds) = [So (N @) — S,(1)1* =0,

exp(— [y To(8)(@)y2ds) = [So(D)(@)]72 — So(H)7? = 0 and then §*(£; BIx) — 0 = Sy+pz(t1X).
Since P(QQ;,NnQ) =1, S*(tlﬁlx) — Sy« z(¢; BIx) almost surely for each .

In addition, let Q, = {w € Q: B — B}, then by Lemma 3(a), P(Qp) = 1. Let w € Q, N QN
Q. Since B is finite when sample size is large enough, § is bounded. Also, since G(s)Z is
bounded, there exists 0 < y; < y2 < oo such that y; < exp(ﬁTG(s)x) < v,. Then, )quo(s) (w) <
Fo () (@) exp(BTG(s)x) < Y2 J16(s) (w). By the similar argument as above, $* (£; B|x) — 0 = Sy~ z(&; BIxX).

Since P(Q;,nQ) =1, S*(t;ﬁlx) — Sy+z(t; BIx) almost surely for each t.

References

R.J. Carroll, J. Fan, I. Gijbels, and M.P. Wand. Generalized partially linear single-index models. Journal of

the American Statistical Association- Theory and Methods, 92(436):477-489, 1997.
O. Frink. Differentiation of sequences. Bull. Amer. Math. Soc, 41(8):553-560, 1935.

B. E. Hansen. Nonparametric conditional density estimation, 2004.

19



H.L. Royden. Real Analysis. Pearson, 1988. ISBN 0024041513.

W. Stute. On almost sure convergence of conditional empirical distribution functions. The Annals of

Probability, 1986.

G. Y. C. Wong and Q. Yu. Estimation under the lehmann regression model with interval-censored data.

Communications in Statistics - Simulation and Computation, 41(8):1489-1500, 2012.

Q. Yu and L. Li. On the strong consistency of the product limit estimator. Sankhya, A, (56):416-430, 1994.

Q. Yu and G.Y.C. Wong. A modified semi-parametric mle in linear regression analysis with complete data

or right-censored data. Technometrics, 47(1):34-42, 2005.

20



	Proof of Example 2.1 and 2.2
	Methods to obtain *(t|x)
	Simulation
	Proof
	Bibliography

