

**Technical Report for “Consistency Of The Semi-parametric MLE
Under The Lehmann Family With Right-Censored Data”**

Proof. of Corollary 1. Let $k = \inf_n \inf_x f_n(x)$. If $k \geq 0$ then the corollary follows from Lemma 1. Otherwise, let $f_n^-(x) = 0 \wedge f_n(x)$, $f_n^+(x) = 0 \vee f_n(x)$, $f^-(x) = 0 \wedge f(x)$ and $f^+(x) = 0 \vee f(x)$. Then $f_n^+ \rightarrow f^+$ and $f_n^- \rightarrow f^-$ pointwisely, as $f_n \rightarrow f$ in Case (1). Then

$$\begin{aligned}
& \varliminf_{n \rightarrow \infty} \int f_n d\mu_n = \varliminf_{n \rightarrow \infty} \int (f_n^+ + f_n^-) d\mu_n = \varliminf_{n \rightarrow \infty} [\int f_n^+ d\mu_n + \int f_n^- d\mu_n] \\
& \geq \varliminf_{n \rightarrow \infty} \int f_n^+ d\mu + \varliminf_{n \rightarrow \infty} \int f_n^- d\mu_n \\
& = \varliminf_{n \rightarrow \infty} \int f_n^+ d\mu_n + \int \lim_{n \rightarrow \infty} f_n^- d\mu_n \quad (\text{by statement (2) of Lemma 1, as } |f_n^-(x)| \leq k) \\
& \geq \int \lim_{n \rightarrow \infty} f_n^+ d\mu + \int f^- d\mu \quad (\text{by statement (1) of Lemma 1, as } f_n^+(x) \text{ is nonnegative}) \\
& = \int f^+ d\mu + \int f^- d\mu = \int (f^+ + f^-) d\mu = \int f d\mu \quad \text{i.e., statement (1) holds.}
\end{aligned}$$

Let $g_n(x) = \inf\{f_k(x) : k \geq n\}$, then $g_n(x) \rightarrow g(x) = \varliminf_{n \rightarrow \infty} f_n(x)$. We have

$$\begin{aligned}
\int \varliminf_{n \rightarrow \infty} f_n d\mu &= \int \lim_{n \rightarrow \infty} g_n d\mu \leq \varliminf_{n \rightarrow \infty} \int g_n d\mu_n \quad (\text{by statement (1)}), \text{ as } g_n \text{ is bounded below} \\
&= \varliminf_{n \rightarrow \infty} \int \inf\{f_k : k \geq n\} d\mu_n \\
&\leq \varliminf_{n \rightarrow \infty} \int f_n d\mu_n.
\end{aligned}$$

$$\begin{aligned}
\text{Moreover, } \int \ln \varliminf_{n \rightarrow \infty} f_n d\mu &= \int \ln \lim_{n \rightarrow \infty} g_n d\mu \\
&= \int \lim_{n \rightarrow \infty} \ln g_n d\mu \quad (\text{as } \ln x \text{ is continuous in } x) \\
&\leq \varliminf_{n \rightarrow \infty} \int \ln g_n d\mu_n \quad (\text{by statement (1), as } g_n \text{ is bounded below}) \\
&= \varliminf_{n \rightarrow \infty} \int \ln \inf\{f_k : k \geq n\} d\mu_n \\
&\leq \varliminf_{n \rightarrow \infty} \int \ln f_n d\mu_n \quad (\text{as } \ln x \text{ is increasing in } x), \text{ thus statement (3) holds.}
\end{aligned}$$

The fourth statement is a modified bounded convergence theorem and we skip its proof. \square