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Proof. of Corollary 1. Let k = infn infx fn(x). If k ≥ 0 then the corollary follows from

Lemma 1. Otherwise, let f−

n
(x) = 0 ∧ fn(x), f

+
n
(x) = 0 ∨ fn(x), f

−(x) = 0 ∧ f(x) and

f+(x) = 0 ∨ f(x). Then f+
n → f+ and f−

n → f− pointwisely, as fn → f in Case (1). Then
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f−

n dµn (by statement (2) of Lemma 1, as |f−

n (x)| ≤ k)

≥

∫
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f+

n dµ+

∫
f−dµ (by statement (1) of Lemma 1, as f+

n (x) is nonnegative)

=
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∫
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∫
fdµ i.e., statement (1) holds.

Let gn(x) = inf{fk(x) : k ≥ n}, then gn(x) → g(x) = lim
n→∞

fn(x). We have

∫
lim
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∫
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gn dµ ≤ lim
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gn dµn (by statement (1)), as gn is bounded below)
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Moreover,

∫
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gn dµ

=
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lngn dµ (as lnx is continuous in x)
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∫
lngn dµn (by statement (1), as gn is bounded below)

= lim
n→∞

∫
ln inf{fk : k ≥ n} dµn

≤ lim
n→∞

∫
lnfn dµn (as lnx is increasing in x), thus statement (3) holds.

The fourth statement is a modified bounded convergence theorem and we skip its proof.
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