
Technical Report to
“THE NPMLE OF THE JOINT DISTRIBUTION FUNCTION

WITH RIGHT-CENSORED AND MASKED COMPETING RISKS DATA”
In this report, we shall give the proofs of some statements in the main paper. To be consistent

with the paper, we order the sections in this report as §8 and §9. The proofs in §7 are given in §8.
The other proofs are given in §9.

§8. Proofs of the lemmas in §7 related to Theorems 6.1 and 6.2.
Most proofs in §6 are given here, except for Lemma 7.1. Lemma 7.1 essentially says that the

GMLE satisfies both the cdf form and the df form of the SC equation. The proof of the equivalence
between the df form and the cdf form is quite similar to the proof under the interval censoring
case in (Li et al. (1997)), and is skipped.
Proof of Lemma 7.2. Statement (1) of the lemma follows from Eq.s (7.4) and (7.5).

To prove Statement (2), it follows from (7.5) that

RF (F )(x, y) =

∫

v<x

F (x, y) − F (v, y)

1 − FT (v)
(1 − FT (v))dFR(v)

+
∑

w∈J

∫

v≤x

∑

i≤y,i∈w fC|T (i|v)
∑

j∈w fC|T (j|v)

∑

c∈w

fC|T (c|v)q(w|v)dFT (v)

(as
∫ ∫

dF (t, c) =
∫

∑

c fC|T (c|t)dFT (t))

=

∫

v<x

F (x, y) − F (v, y)dFR(v) +

∫

v≤x

∑

w∈J

∑

i≤y,i∈w

fC|T (i|v)q(w|v)dFT (v)

=

∫

v<x

F (x, y) − F (v, y)dFR(v) +

∫

v≤x

∑

i≤y

fC|T (i|v)
∑

w∈J

1(i∈w)q(w|v)dFT (v)

=

∫

v<x

∫

v<u≤x,c≤y

dF (u, c)dFR(v) +

∫

v≤x

∑

i≤y

fC|T (i|v)SR(v−)dFT (v)

(

as
∑

w∈J

q(w|x)1(y∈w) =
∑

w: y∈w

∑

h: w∈Ph

P (∆ = h,R ≥ x) (see A2)

=
∑

h

∑

j: y∈Phj

P (∆ = h,R ≥ x) = SR(x−)

)

(8.1)

=
∑

c≤y

fC(c){
∫

v<x

∫

v<u≤x

dFT |C(u|c)dFR(v) +

∫

v≤x

∫

v≤r

dFR(r)dFT |C(v|c)}

=
∑

c≤y

fC(c)FT |C(x|c) = F (x, y).

It follows that F = RF (F ) = BF (Q) by (1). Thus statement (2) holds. Verify that in the proof of
F = RF (F ), F is not critical, as long as F ∈ Θo. Thus statement (3) holds too.

The proofs of statements (4), (5) and (6) are similar to those of (1), (2) and (3).

Proof of Lemma 7.3. For each F̌ ∈ Θo, by Lemma 7.2, H = F̌ is a solution to H = RH(F̌ ).
If there exists a different solution of H = RH(F̌ ) in Θo, say H = G 6= F̌ and SG ⊃ SF̌ , then by

Lemma 7.2, we have G = RG(G) as well as G = RG(F̌ ). That is, H = G and H = F̌ are two
different solutions to G = RG(H).

On the other hand, given H ∈ Θo, by Lemma 7.2, F̌ = H is a solution to H = RH(F̌ ). If
F̌ = G 6= H in Θo is a different solution to H = RH(F̌ ) and SH ⊃ SG, then by Lemma 7.2,
G = RG(G). Thus F̌ = H and F̌ = G are two different solutions to H = RH(F̌ ).
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Proof of Lemma 7.4. It is obvious that BF̌ is linear. Let t0 = −∞, tm+1 = ∞, SF̌T
∩ DV =

{t1, ..., tm}, where t1 < · · · < tm. It suffices to show that ∀ g ∈ DQ, H = BF̌ (g) satisfies (7.2), (1)
in (2.2) and SH ⊂ SF̌ .

Since F̌ satisfies (2.2) and it follows from (7.4) that

H(x, y) = BF̌ (g)(x, y) =
J

∑

h=1

1(h≤y){
∫

v<x

F̌ s
h(x) − F̌ s

h(v)

1 − F̌T (v)
dg(v, 0, Cr) (8.2)

+

∫

v≤x,v∈SF̌T
,w∈J

1(h∈w)f̌C|T (h|v)
∑

i∈w f̌C|T (i|v)
dg(v, 1, w)}.

Since F̌ satisfies (7.2) and (1) in (2.2), in view of (8.2) H also satisfies (7.2) and (1) in (2.2). Since
||SF̌ || ≤ (m + 1)J , in order to show SH ⊂ SF̌ , it suffices to show

SHT
⊂ SF̌T

, i.e., if tj ≤ x < tj+1, j ≤ m, then BF̌ (g)(x,∞) − BF̌ (g)(tj ,∞) = 0 ∀ g ∈ DQ;

and if (tj , c) /∈ SF̌ , j ≤ m + 1 and c ∈ Cr, then µH({(tj , c)}) = 0. (8.3)

Actually for each y ∈ Cr, if tj ≤ x < tj+1, j ≤ m, then

BF̌ (g)(x, y) − BF̌ (g)(tj , y)

=

∫

v<x

F̌ (x, y) − F̌ (v, y)

1 − F̌T (v)
dg(v, 0, Cr) +

∫

v≤x,v∈SF̌T
,w∈J

∑

h≤y,h∈w f̌C|T (h|v)
∑

i∈w f̌C|T (i|v)
dg(v, 1, w)

−
∫

v<tj

F̌ (tj , y) − F̌ (v, y)

1 − F̌T (v)
dg(v, 0, Cr) −

∫

v≤tj ,v∈SF̌T
,w∈J

∑

h≤y,h∈w f̌C|T (h|v)
∑

i∈w f̌C|T (i|v)
dg(v, 1, w)

=

∫

v<tj

F̌ (x, y) − F̌ (tj , y)

1 − F̌T (v)
dg(v, 0, Cr) +

∫

tj≤v<x

F̌ (x, y) − F̌ (v, y)

1 − F̌T (v)
dg(v, 0, Cr)

+

∫

tj<v≤x,v∈SF̌T
,w∈J

∑

h≤y,h∈w f̌C|T (h|v)
∑

i∈w f̌C|T (i|v)
dg(v, 1, w)

=0 (as F̌ (t, y) = F̌ (tj , y) and f̌C|T (c|t) = 0 ∀ t ∈ (tj , tj+1)).

Moreover, if µF̌ ({(tj , c)}) = 0, then noting tj ∈ SF̌T
, by (8.2)

µH({(tj , c)}) =

∫

v<tj

F̌ s
c (tj) − F̌ s

c (tj−)

1 − F̌T (v)
dg(v, 0, Cr) +

∫

v=tj ,w∈J

1(c∈w)f̌C|T (c|v)
∑

i∈w f̌C|T (i|v)
dg(v, 1, w)}

=0 (as F̌ s
c (tj) = F̌ s

c (tj−) and f̌C|T (c|tj) = 0 due to µF̌ ({(tj , c)}) = 0).

Thus (8.3) holds. This completes the proof of the statement related to BH . Replacing dg in BF̌ in
the foregoing arguments by (H(∞, J) − H(v, J))dFR or q(w|v)dH(v, c) in RF̌ , we can establish a
similar version of (8.3) for RF̌ . Since RF̌ is also linear, it completes the proof of the lemma.

Proof of Lemma 7.5. Since (1) RF̂ (F̂ ) = F̂ = BF̂ (Q̂) (by Lemma 7.1), (2) RF̂ (F ) = BF̂ (Q)

(by Lemma 7.2), RF̂ (F̂ ) − RF̂ (F ) = BF̂ (Q̂) − BF̂ (Q). Since both of the operators are linear by

Lemma 7.4, RF̂ (F̂ − F ) = BF̂ (Q̂ − Q).
Proof of Lemma 7.6. We shall give the proof in 3 steps.
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Step 1 (preliminary). Recall f = fT,C . The uniqueness of the solution to the equation

F̌ = RF̌ (F ) is equivalent to the uniqueness of the solution to equations (7.3) (w.r.t. the measure

µ(·, ·) on DV × Cr). Since we are interested in the equation F̌ = RF̌ (H) rather than F̌ = RF̌ (F ),
Eq. (7.3) becomes, for x ∈ SF̌T

and H ∈ D,

f̌(x, y) =

∫

v<x

f̌(x, y)(1 − HT (v))

1 − F̌T (v)
dFR(v) +

∑

w∈J

q(w|x)
1(y∈w)f̌(x, y)
∑

k∈w f̌(x, k)

∑

h∈w

h(x, h); (8.4)

f̌T (x) = f̌T (x)

∫

v<x

1 − HT (v)

1 − F̌T (v)
dFR(v) + 1(x∈SF̌T

)SR(x−)hT (x), (8.5)

where (HT , hT ) correspond to (FT , fT ), respectively.

Step 2 (uniqueness of the solution to (8.5)). It is easy to show that H = F̌ is a solution to
the aforementioned equations. In particular, hT = f̌T is the solution of the SC equation (8.5).
By the assumption SH ⊂ SF̌ , SHT

⊂ SF̌T
which is finite. If hT 6= f̌T , let t1 < · · · < tm be all

the points in SF̌T
∩ DV . Let tio

be the smallest point in SF̌T
such that f̌T (tio

) 6= hT (tio
). Since

f̌T (ti) = hT (ti) for i < io and HT (−∞) = F̌T (−∞) = 0 by (1) in (2.2), HT (v) = F̌T (v) for v < tio
.

Letting x = tio
, Eq. (8.5) yields

f̌T (tio
) = f̌T (tio

)

∫

v<tio

1dFR(v) + SR(tio
−)hT (tio

),

⇒f̌T (tio
)(1 − FR(tio

−)) = SR(tio
−)hT (tio

),

⇒f̌T (tio
) = hT (tio

) (as SR(tio
−) > 0 due to tio

∈ DV ),

contradicting the assumption f̌T (tio
) 6= hT (tio

). The contradiction implies that hT = f̌T on DV .
By (7.2), HT = F̌T on [−∞,∞). Since HT (∞) = F̌T (∞) = 1, HT = F̌T .

Step 3 (conclusion). Since hT = f̌T by Step 2, (8.4) is equivalent to

f̌C|T (y|x) = f̌C|T (y|x)FR(x−) +
∑

w∈J ,y∈w

∑

j∈w

hC|T (j|x)
q(w|x)f̌C|T (y|x)
∑

k∈w f̌C|T (k|x)
, (x, y) ∈ SF̌ ; (8.6)

or f̌C|T (y|x) = f̌C|T (y|x)
∑

w∈J

q(w|x)1(y∈w)

SR(x−)

∑

j∈w hC|T (j|x)
∑

k∈w f̌C|T (k|x)
, (x, y) ∈ SF̌ . (8.7)

Verify that hC|T = f̌C|T is a solution to (8.7), as the right hand side of (8.7) becomes

f̌C|T (y|x)
∑

w∈J

q(w|x)1(y∈w)

SR(x−)
= f̌C|T (y|x)

SR(x−)

SR(x−)
= f̌C|T (y|x)

by (8.1). We shall prove that

the solution hC|T (·|x) to (8.7) is unique a.e. in x on DV w.r.t. µFT
. (8.8)

Consider two cases: (1) f̌C|T (c|x) = 0 for some c, (2) f̌C|T (c|x) > 0 for each c.
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In case (1), since SF̌ ⊂ SF (by (7.2)), by A2 ∃ w = {c} ∈ J such that q(w|x) > 0. Then it
follows from (8.7) that if y = c, then (8.7) yields

f̌C|T (c|x) = f̌C|T (c|x)
∑

w∈J

[1(w={c}) + 1(w 6={c})]
q(w|x)1(c∈w)

SR(x−)

∑

j∈w hC|T (j|x)
∑

k∈w f̌C|T (k|x)
, (x, c) ∈ SF̌ .

Thus 0 = 0(

∑

j∈{c} hC|T (c|x)

0 +0). It implies hC|T (c|x) = 0 as 0
0

def
= 1. Since f̌C|T (c|x) = hC|T (c|x) =

0, it reduces to case (2) by replacing J − 1 for J .
Now consider case (2). Then (8.7) is equivalent to

1 =
∑

w∈J ,y∈w

q(w|x)

SR(x−)

∑

j∈w hC|T (j|x)
∑

k∈w f̌C|T (k|x)
, y ∈ {1, ..., J}. (8.9)

Treating f̌C|T as given constant, h
′ = (hC|T (1|x), ..., hC|T (J |x)) as an undetermined vector,

and 1 as the vector with coordinates 1, Eq. (8.9) is actually a system of linear equations in hC|T ,
say 1 = Ah, where A = K′

φKq,f̌Kφ, Kq,f̌ is the kt × kt diagonal matrix with diagonal elements
q(Wj |x)

SR(x−)
∑

k∈Wj
f̌C|T (k|x)

, W1, ..., Wkt
are all the elements of J such that q(Wj |x) > 0, and Kφ is

the kt × J matrix with the jth row (φ(Wj))
′ (see A1, which is implied by A2). Verify that Kφ

is of full rank J and Kq,f̌ is a diagonal matrix of full rank kt, thus K′
φKq,f̌Kφ is of full rank J .

Consequently, the solution of the equation 1 = Ah is unique and hC|T = f̌C|T , as the latter is a
solution to (8.9). Thus (8.8) holds. This concludes the proof of the lemma.
Proof of Lemma 7.7. By assumption ||SF̌ || is finite, let (t1, c1),..., (tm, cm) be all the distinct
points in SF̌ ∩ (DV × Cr). WLOG, we can assume that τ < ∞ and (∞, J) ∈ SF̌ . Otherwise,
the proof is simpler as SF̌ ⊂ (DV × Cr). Let (tm+1, cm+1) = (∞, J). Let gi(x) = 1(x≥(ti,ci)) and
Hi = RF̌ (gi), i = 1,..., m + 1.

By Lemma 7.4, SRF̌
⊂ SF̌ . We shall show that ∀ i ∈ {1, ...,m + 1},

Hi(−∞,−∞) = 0, Hi(∞,∞) = 1 and µHi
({(tk, ck)}) ≥ 0, for all possible (i, k). (8.10)

Now ∀ i, Hi(−∞,−∞) = 0 follows from Lemma 7.4 and (1) in (2.2). Moreover,

Hi(∞,∞) =

∫

v<∞

F̌ (∞,∞) − F̌ (v,∞)

1 − F̌T (v)
(1 − gi(v, J))dFR(v)

+
∑

w∈J

∫

v≤∞

∫

c∈w

∑

h≤∞,h∈w f̌C|T (h|v)
∑

j∈w f̌C|T (j|v)
q(w|v)dgi(v, c)

=

∫

v<∞

(1 − gi(v, J))dFR(v) +
∑

w∈J

∫

v≤∞

∫

c∈w

q(w|v)dgi(v, c)

=

∫

v<ti

dFR(v) +
∑

w∈J ,ci∈w

q(w|ti) (see A2)

=

∫

v<ti

dFR(v) +
∑

w∈J ,ci∈w

∑

h: w∈Ph

f∆(h)SR|∆(ti − |h)

=P (R < ti) + SR(ti−) = 1.
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Thus the first 2 equations in (8.10) hold. Notice that

Hi(tk, ck) =

∫

v<tk

F̌ (tk, ck) − F̌ (v, ck)

1 − F̌T (v)
(1 − gi(v, J))dFR(v)

+
∑

w∈J

∫

v≤tk

∫

c∈w

∑

h≤ck,h∈w f̌C|T (h|v)
∑

j∈w f̌C|T (j|v)
q(w|v)dgi(v, c)

=

J
∑

h=1

1(h≤ck){
∫

v<tk

(F̌ s
h(tk) − F̌ s

h(v))
1 − gi(v, J)

1 − F̌T (v)
dFR(v)

+
∑

w∈J

∫

v≤tk

∫

c∈w

1(h∈w)f̌C|T (h|v)
∑

j∈w f̌C|T (j|v)
q(w|v)dgi(v, c)}

µHi
({(tk, ck)})

=1(h=ck){
∫

v<tk

(F̌ s
h(tk) − F̌ s

h(tk−))
1 − gi(v, J)

1 − F̌T (v)
dFR(v)

+
∑

w∈J

∫

v=tk

∫

c∈w

1(h∈w)f̌C|T (h|v)
∑

j∈w f̌C|T (j|v)
q(w|v)dgi(v, c)}

=

∫

v<tk

µF̌ ({(tk, ck)})1 − 1(v ≥ ti)

1 − F̌T (v)
dFR(v) +

∑

w∈J

1(ci,ck∈w)

f̌C|T (ck|tk)
∑

j∈w f̌C|T (j|tk)
q(w|tk)1(tk=ti)

≥0,

Thus (8.10) holds. (8.10) implies that Hi ∈ Θo.
Notice that (g1, ..., gm+1) is a base of the linear space DF̌ with gi(∞, J) = 1 and gi ∈ Θo,

thus each H in Θo ∩ DF̌ satisfies H =
∑m+1

i=1 aigi, where
∑

i ai = 1 and ai ≥ 0. It follows that
RF̌ (H) ∈ Θo.
Proof of Lemma 7.8. Since ||SF̌ || is finite, by Lemma 7.4, RF̌ is a linear map from DF̌

to DF̌ . WLOG, we can assume that (∞, J) belongs to SF̌ (= {(t1, c1), ..., (tm+1, cm+1)}), where

(tm+1, cm+1) = (∞, J). In order to show that R−1
F̌

exists on DF̌ ∩ Di, it suffices to show that (1)

RF̌ is 1-1 on DF̌ ∩ Di and (2) RF̌ (H)(∞, J) = i if H ∈ DF̌ ∩ Di.

Now suppose that RF̌ (H) ≡ 0 and H ∈ DF̌ ∩ D0. Since RF̌ (F̌ ) = F̌ by Lemma 7.2 F̌ + 0 =

RF̌ (F̌ ) + RF̌ (H) = RF̌ (F̌ + H). Write H1 = F̌ + H, then H1(∞, J) = 1, H1 ∈ DF̌ and

RF̌ (H1) = F̌ . Thus by Lemma 7.6, H1 = F̌ , that is, F̌ + H = F̌ . Hence H ≡ 0, i.e., RF̌ is 1-1 on
DF̌ ∩ D0. Thus (1) holds for i = 0.

If H ∈ DF̌ ∩D0, then H(x, y) =
∑m+1

i=1 di1((x,y)≥(ti,ci)), where
∑m+1

i=1 di = 0 and m+1 = ||SF̌ ||.
It follows that H = H+ − H−, where H+(x, y) =

∑m+1
i=1 di1((x,y)≥(ti,ci),di≥0) and H−(x, y) =

−∑m+1
i=1 di1((x,y)≥(ti,ci),di<0). Let d =

∑m+1
i=1 di1(di≥0). Then H+/d and H−/d both belong to Θo.

By Lemma 7.7, RF̌ (H+/d) ∈ Θo and RF̌ (H−/d) ∈ Θo. Thus RF̌ (H) ∈ D0. That is, (2) holds for

i = 0. It follows that R−1
F̌

exists on DF̌ ∩ D0.

If H and G are in DF̌ ∩ D1 and RF̌ (H) = RF̌ (G), then 0 = RF̌ (H − G). Notice that

H − G ∈ D0 ∩ DF̌ , thus H − G = R−1
F̌

(0) = 0, that is H = G. As a consequence, RF̌ is 1-1 on

D1 ∩ DF̌ . By Lemma 7.7, RF̌ (H) ∈ Θo if H ∈ Θo, It follows that R−1
F̌

exists on DF̌ ∩ D1.

It is easy to show that R−1
F̌

is also linear.
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Proof of Lemma 7.9. By (7.5), it is obvious that statement (1) holds, as

RF̌ (Uo)(x, y) =

∫

v<x

F̌ (x, y) − F̌ (v, y)

1 − F̌T (v)
(0 − 0)dFR(v)

+
∑

w∈J

∫

v≤x

v∈SF̌T

∫

c∈w

∑

i≤y,i∈w f̌C|T (i|v)
∑

j∈w f̌C|T (j|v)
q(w|v)d0 = 0 = Uo.

Moreover, if x < ťo, then RF̌ (UF̌ )(x, y) = UF̌ (x, y) = 0. If x ≥ ťo,then RF̌ (UF̌ )(x, y)

=

∫

v<x

F̌ (x, y) − F̌ (v, y)

1 − F̌T (v)
(UF̌ (∞, J) − UF̌ (v, J))dFR(v)

+
∑

w∈J

∫

v≤x

v∈SF̌T

∫

c∈w

∑

i≤y,i∈w f̌C|T (i|v)
∑

j∈w f̌C|T (j|v)
q(w|v)dUF̌ (v, c)

=

∫

inf SFR
≤v<ťo

F̌ (x, y)dFR(v) +
∑

w∈J

∑

i≤y,i∈w f̌C|T (i|v)
∑

j∈w f̌C|T (j|v)

∑

c∈w

f̌C|T (c|ťo)q(w|v)|v=ťo

=F̌ (x, y)

∫

inf SFR
≤v<ťo

dFR(v) +
∑

i≤y

f̌C|T (i|v)
∑

w∈J

1(i∈w)q(w|v)|v=ťo

=F̌ (x, y)

∫

inf SFR
≤v<ťo

dFR(v) +
∑

i≤y

f̌C|T (i|v)SR(v−)|v=ťo
. (8.11)

In particular, if F̌ = F , then RF (UF )(x, y) =
∑

i≤y fC|T (i|v)SR(v−)|v=to
1(x≥to) = UF (x, y).

Moreover, (8.11) yields statement (3) of the lemma by A3.
Proof of Lemma 7.10. For F̌ ∈ Θo with ťo = to, let Ck be the collection of all the distinct
points among ck,js, where ck,j = inf{x : F̌T (x) ≥ j/2k}, j = 0, ..., 2k, k ≥ 1. Let Fk be a

function in Θo such that Fk(t, c) = F̌ (t, c) ∀ (t, c) ∈ Ck ×Cr and its F s
kc is a step function with its

discontinuity points in Ck. Denote Wk the subclass of D such that each member H satisfies that
Hs

c is a step function and the collection of discontinuity points is a subset of SF s
kc

.

Set i = 1 first. For each g ∈ DF̌ ∩Di and k ≥ 1, let gk ∈ Wk∩Di be such that gk(x, c) = g(x, c)
if (x, c) ∈ Ck × Cr. Then ||gk − g|| → 0, since Sgk

∈ SF̌ ,Sg ∈ SF̌ and the set ∪kCk is dense in

SF̌ . By Lemma 7.8, R−1
Fk

exists, so ∃! Hk ∈ Wk ∩ Di such that gk = RFk
(Hk). ∀ K > k and ∀

H ∈ DF̌ ∩ Di, Wk ⊂ WK , ||Fk − FK || ≤ 1/2k and ||RFk
(H) − RFK

(H)|| → 0 as k → ∞ by the
BCT. Lemma 7.9 says that Uo and UF play the role of 0 and 1 in some sense, respectively, and if
k is large, one can write

(RFk
−RFK

)(H) = o(1)UFK
and (RFk

−RFK
)(H) = o(1)RFK

(UFK
), (8.12)

as ||RFk
(UFk

) − UFk
|| → 0 by Lemma 7.9. Let Gk ∈ DHk

∩ Di such that Gk = R−1
FK

(gk).

RFK
(Gk − Hk) =RFK

(Gk) −RFk
(Hk) + RFk

(Hk) −RFK
(Hk)

=gk − gk + RFk
(Hk) −RFK

(Hk)

=(RFk
−RFK

)(Hk) (as Hk = R−1
Fk

(gk)).

(R−1
FK

−R−1
Fk

)(gk) = Gk − Hk =R−1
FK

((RFk
−RFK

)(Hk)) (by Lemma 7.8,
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as (RFk
−RFK

)(Hk) ∈ DFK
∩ D0).

||(R−1
FK

−R−1
Fk

)(gk)|| = ||R−1
FK

((RFk
−RFK

)(Hk))||
= ||R−1

FK
(o(1)RFK

(UFK
))|| (by (8.12))

= ||o(1)R−1
FK

(RFK
(UFK

))|| (by Lemma 7.9)

= ||o(1)|| · ||UFK
|| → 0 · 1 (by Lemma 7.9). (8.13)

||Hk − HK || ≤||R−1
Fk

(gk) −R−1
FK

(gk)|| + ||R−1
FK

(gk) −R−1
FK

(gK)||
=||R−1

Fk
(gk) −R−1

FK
(gk)|| + ||R−1

FK
(o(1)UFK

)||
(by Lemma 7.9 as ||gk − g|| → 0 and thus ||gk − gK || = o(1)UFK

)

=||R−1
Fk

(gk) −R−1
FK

(gk)|| + ||R−1
FK

(o(1)RFK
(UFK

))|| (by Lemma 7.9)

→0 + 0 as k → ∞ (by (8.13)).

Thus {Hk}k≥1 is a Cauchy sequence. Since DF̌ is a Banach space, ∃ Ho ∈ DF̌ such that ||Hk −
Ho|| → 0. By the BCT, g = limk→∞ RFk

(Hk) = RF̌ (Ho). Define Ho = R−1
F̌

(g).
Verify that the foregoing arguements hold also for i = 0.

Proof of Lemma 7.13. Since SH = SF ,DH = D = DF by (7.2). Given H ∈ Θo, let
G ∈ Θo be an arbitrary solution to H = RH(G). Since H = RH(H) by (3) of Lemma 7.2,
0 = H − H = RH(G) −RH(H) = RH(G − H) by Lemma 7.4. That is, 0 = RH(G − H). Since
R−1

H exists on DH ∩ D0 by Lemma 7.10 and G − H ∈ DH ∩ D0, 0 = R−1
H (0) = G − H. That is,

G = H. In other words, the solution G in Θo to the equation H = RH(G) is unique. Hence the
second statement of Lemma 7.3 holds. Then the solution H to RH(F ) = H is unique in Θo by
Lemma 7.3, and H = F by Lemma 7.2. Since BH(Q) = RH(F ) for each H ∈ Θo by Lemma 7.2,
the solution H in Θo to H = BH(Q) is unique and is H = F .

Now consider H = BH,fC|T,·(Q). Notice that H ∈ Θo and thus hC|T,w are constant in w ∈ J .

By (7.6) and (7.7)

BH,fC|T,.
(Q)(x, y) (= Bo

H(Q)(x, y))

=
∑

w∈J

[

∫

v≤x,v∈Dc
T

,v∈SHT

∑

i≤y,i∈w fC|T (i|v)
∑

j∈w fC|T (j|v)
dQ(v, 1, w)

+

∫

v≤x,v∈DT ,v∈SHT

∑

i≤y,i∈w hC|T (i|v)
∑

j∈w hC|T (j|v)
dQ(v, 1, w)

]

+

∫

v<x

H(x, y) − H(v, y)

1 − HT (v)
dQ(v, 0, Cr)

=
∑

w∈J

∫

v≤x,v∈SHT

∫

c∈w

[

1(v∈Dc
T

)

∑

i≤y,i∈w fC|T (i|v)
∑

j∈w fC|T (j|v)

+1(v∈DT )

∑

i≤y,i∈w hC|T (i|v)
∑

j∈w hC|T (j|v)

]

q(w|v)dF (v, c) +

∫

v<x

H(x, y) − H(v, y)

1 − HT (v)
(1 − FT (v))dFR(v)

=Ro
H(F ) (by (7.8), as F ∈ Θo).

Now verify that replacing (Bo
H ,Ro

H) for (BH ,RH) in Lemmas 7.2 through 7.9, except for Lemma
7.5, one can show that those modified lemmas hold too. Then the proof of the lemma regarding
H = BH,fC|T,·(Q) follows almost line by line as the proof in the first paragraph making use of the

modified lemmas. In particular, Eq. (8.5) and Eq. (8.6) become

f̌T (x) = f̌T (x)

∫

v<x

1 − HT (x)

1 − F̌T (x)
dFR(v) + SR(x−)[1(x∈Dc

T
)f̃T (x) + 1(x∈DT )hT (x)],
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f̌C|T (y|x)SR(x−) =
∑

w∈J ,y∈w

q(w|x)[

∑

j∈w hC|T (j|x)
∑

k∈w f̌C|T (k|x)
1(x∈DT ) +

∑

j∈w f̃C|T (j|x)
∑

k∈w f̌C|T (k|x)
1(x∈Dc

T
)],

∀ (x, y) ∈ SF̌ and H ∈ D. This completes the proof of the lemma.

Proof of Lemma 7.15. Step 1 (preliminary). By definition, F̃ ∗ is the GMLE of the modified
data (Vmi, δi,Mi)s, thus it maximizes the modified likelihood function

Λ2 =
n

∏

i=1

µF̌ (Imi), where Imi =

{

(Vi,∞) ×Mi if δi = 0
{Vmi} ×Mi otherwise,

and F̌ is a cdf.

It can be shown as in Lemma 7.1 that H = F̃ ∗ is a solution to the equation H = BH(Q̂m), where

Q̂m is the empirical cdf of Q, based on (Vmi, δi,Mi)s, and BH is defined in (7.4). Let Ω6 be the

event that Q̂ → Q. By the SLLN P (Ω6) = 1. Let Ω7 be the event that

sup
t∈[−∞,∞],u∈{0,1},w∈J

|Q̂m(t, u,w) − Q(t, u,w)| → 0. (8.14)

Step 2 (to show Ω6 ⊂ Ω7). Fix ω ∈ Ω6. Since Vmi = Vi if δi = 0, for each w ∈ J ,

supt,u |Q̂m(t, u,w) − Q̂(t, u,w)| = supt |Q̂m(t, 1,w) − Q̂(t, 1,w)| (
def
= dnt). Then dnt =

1
n
|∑n

i=1 di|, where di = 1(Vmi≤t,δi=1,Mi=w) − 1(Vi≤t,δi=1,Mi=w). Verify that dnt = 0 if t = 0
(by the definition of Vmis). For t > 0, ∃ j such that t ∈ (sn,j−1, sn,j ]. Then due to the definition
of sn,j , di = −1(δi=1,Vi∈(sn,j−1,t], t<sn,j).

dnt =|
n

∑

i=1

1

n
1(Vi∈(sn,j−1,t], t<sn,j ,δi=1,Mi=w)| ≤ µF̂T

((sn,j−1, t])1(t∈sn−j ,sj ]) ≤ 1/
√

n → 0.

That is, supt,u |Q̂m(t, u,w)− Q̂(t, u,w)| → 0. Since ω ∈ Ω6, supt,u |Q̂(t, u,w)−Q(t, u,w)| → 0 by
assumption on Ω6. Thus it yields that for (u,w) ∈ {0, 1} × J ,

sup
t

|Q̂m(t, u,w) − Q(t, u,w)| ≤ sup
t
{|Q̂m(t, u,w) − Q̂(t, u,w)| + |Q̂(t, u,w) − Q(t, u,w)|} → 0.

Hence (8.14) holds. That is, ω ∈ Ω7. Thus Ω6 ⊂ Ω7.

Step 3 (to derive lim f̃C|T ). For each j ∈ Cr, F̃ s∗
j is monotone and bounded by 0 and 1,

each given subsequence of F̃ s∗
j has a further convergent subsequence. Thus each subsequence

of (F̃ s∗
1 , ..., F̃ s∗

J ), has a further convergent subsequence, as J < ∞, and so is F̃ ∗(·, c), c ∈ Cr.
Denote the limiting point by H∗ together with Hs∗

c , c ∈ Cr. For the given ω ∈ Ω6 and for

each n, one can define f̃C|T (c|t) for each (c, t) ∈ Cr × {Vi : i = 1, ..., n}. Notice also that

F̃ s∗
c (x) =

∫

t≤x
f̃∗

C|T (c|t)dF̃ ∗
T (t) =

∫

t≤x
f̃C|T (c|t)dF̃ ∗

T (t) (see step 2.4)). Since f̃C|T is bounded and

Cr×{Vi : i = 1, ..., n}, is countable, by Helly’s selection theorem there is a convergent subsequence

of f̃C|T with limiting point hC|T such that f̃C|T (c|t) → hC|T (c|t) ∀ (c, t) ∈ Cr × {Vi : i = 1, ..., n}.
By taking further subsequence, without loss of generality, one can assume that {F̃ ∗

nh
, f̃C|T,nh

}h≥1

converges. Now by the BCT, Hs∗
c (x) =

∫

t≤x
hC|T (c|t)dH∗

T (t) ∀ x. Thus for each c ∈ Cr, hC|T (c|·) =

h∗
C|T (c|·) (induced by H∗) (except for a set of zero µH∗

T
measure) is a limiting point of f̃C|T .

Step 4 (conclusion). Verify that supx∈DV
|F̃ ∗

T (x) − FT (x)| → 0. Under A1, for each t, if n
is large enough, there are Mkj

s (where Vkj
, t ∈ (sn,j−1, sn,j ] and δkj

= 1) such that ∀ c ∈ Cr ∃
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constants bcj satisfying φ({c}) =
∑

j bcjφ(Mkj
). It follows that f̃∗

C|T (·|t) does not based on only

one w ∈ Jt, at least for large enough n. In fact, if n is large, each w in {W ∈ Jt : t ∈ (sn,j−1, sn,j ]}
would be observed and thus f̃∗

C|T (·|t) is based on all these w’s. Then for the convergent subsequence

{F̃ ∗
nh

}h≥1, the sequences {f̃C|T,nh
}h≥1 induced by {F̃ ∗

nh
}h≥1 converges to the limiting functions

hC|T on the set {Vi : i = 1, ..., n}, which contains the support of F̃ ∗
T . Notice that each of the ||J ||+1

integrands of BF̃∗ (see (7.4)), namely,
F̃∗

nh
(x,y)−F̃∗

nh
(v,y)

1−F̃∗
T,nh

(v)
and

∑

i≤y,i∈w f̃C|T,w,nh
(i|v)

∑

j∈w f̃C|T,w,nh
(j|v)

where w ∈ Jt,

are bounded by 1 and converge as h → ∞, for each x ∈ DV , y ∈ Cr and v ∈ {Vi : i = 1, ..., n}.
Thus by the BCT, the limiting equation of F̃ ∗(x, y) = BF̃∗(Q̂)(x, y) is H∗(x, y) = BH∗(Q)(x, y)
for all (x, y) ∈ DV × Cr. It can be shown that SH∗ = SF and H∗ ∈ Θo. By Lemma 7.13, the
solution to BH(Q) = H, H ∈ F , is unique in the sense specified there. It follows that each limiting

point hC|T of f̃C|T satisfies that hC|T (·|t) = fC|T (·|t) for each (t, c) ∈ {Vi : i = 1, ..., n} × Cr, and

F̃ ∗ → F . Since F̃ s
c (x) =

∫

t≤x
f̃C|T (c|t)dF̂T (t), by the BCT, F̃ s

c (t) → F s
c (t) on DV and F̃ → F for

the given ω. Since ω is arbitrary in Ω6 and P (Ω6) = 1, the lemma is proved.
§9. Proofs in Sections 1 and 2.

§9.1. Remark 9.1. Dinse (1982, p.426) provides a data set with J = 2. Dinse comments
that the GMLE of fC|T is “extremely erratic”, and partitions the observations into several equal-
sized groups and derives a new smoothed estimator of fC|T based on the grouped data. The new
estimator assigns positive weights to both (Vi, 1) and (Vi, 2), even if the MI is not {Vi} × {1, 2}.
Thus the new estimator is not a GMLE based on the original data. Moreover, most discrete GMLEs
of continuous density functions are not consistent, thus most of them are erratic. However, the
cdfs of based on the inconsistent GMLE of the densities are often consistent, just like the case we
are studying.
§9.2. Proofs in Example 2.1. Under given assumptions, the log likelihood function is

L = n1ln(p1 + p2) + n2ln(1 − p1 − p2) + n3ln(p1 + p3) + n4ln(1 − p1 − p3),

where ni =
∑n

j=1 1(Mj=Wi), pi = f(1, i) and n = n1 + · · · + n4. The normal equations are
n1

p1+p2

− n2

1−p1−p2

+ n3

p1+p3

− n4

1−p1−p3

= 0, n1

p1+p2

− n2

1−p1−p2

= 0, n3

p1+p3

− n4

1−p1−p3

= 0, which reduce

to n1

p1+p2

− n2

1−p1−p2

= 0, n3

p1+p3

− n4

1−p1−p3

= 0. Solving these two equations leads to the GMLE

in Example 2.1: p̂2 = r1 − p̂1, p̂3 = r2 − p̂1, and p̂4 = 1 − p̂1 − p̂2 − p̂3, where p̂1 is arbitrary in
[max{0, r1 + r2 − 1),min{r1, r2}], r1 = n1

(n1+n2)
and r2 = n3

(n3+n4)
.

§9.3. Proofs in Example 2.2 (existence of both inconsistent GMLE and consistent GMLE).
Suppose that J = 2; partitions P0 = {{1}, {2}} and P1 = {Cr}; F s

j s satisfy ∂
∂t

F s
1 (t) = p11(t∈(1,2))

and ∂
∂t

F s
2 (t) = p2

3 1(t∈(0,3)), where p1 + p2 = 1 and pi ≥ 0; f∆(h) = 1/2; there is no censoring;
(T,C) ⊥ (∆, R) and A1 holds. Verify that
(a) all n (Vi, δi,Mi)s are of the forms (1) (Vi, 1, {j}), j ∈ {1, 2}, or (2) (Vi, 1, Cr);
(b) they are all distinct and thus each of them is an MI induced by these n observations.

Thus the GMLE F̂1 assigns weight 1
n

to {Vi}×{j} if Mi = {j}, and assigns weight 1
2n

to {Vi}×{j}
if Mi = Cr and j ∈ Cr. Now F̂1(t, 1) = 1

2n

∑n
i=1 1(Vi≤t,Mi=Cr) + 1

n

∑n
i=1 1(Vi≤t,Mi={1}) →

1
2

p2t
3 f∆(2) = p2t/12 6= F (t, 1). Thus F̂1 is not consistent on (0, 1). In the aforementioned

example, since the data are of the form either (1) or (2), there is a consistent GMLE with a

closed form solution: F̂3(t, 1) = 1
n

∑n
i=1 1(Vi≤t)f̃C|T (1|Vi), where f̃C|T (1|t) =

{

n1t/nt if nt 6= 0
1/2 otherwise

,

nt =
∑n

i=1 1(|Vi−t|≤ 1√
n

, δi=1, Mi={1} or {2}) and n1t =
∑n

i=1 1(|Vi−t|≤ 1√
n

, δi=1, Mi={1}).

§9.4. Proofs in Example 6.1. Suppose T ≡ 1. J = 3, P2 = {{1, 2}, {3}}, P3 = {{1, 3}, {2}},
f∆(2) = f∆(3) = 1/2. R ≡ 2. The possible observations are of the forms (1, 1,Wi), i = 1,
..., 4, where W1 = {1, 2}, W2 = {2}, W3 = {3} and W4 = {1, 3}. Let Nj =

∑n
i=1 1Mi=Wj

,
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j = 1, ..., 4. Then the GMLEs are f̂C|T (2|1) = N2

N2+N4

and f̂C|T (3|1) = N3

N1+N3

, provided that

θ̂ ≤ 1, where θ̂ = N2

N2+N4

+ N3

N1+N3

. However, if fC(2) = fC(3) = 1/2, then
√

n(θ̂ − 1) converges

in distribution to N(0, σ2), where σ > 0. Thus P{θ̂ > 1} → 1/2. It follows that the GMLE

F̂ (1, 1) = f̂C|T (1|1) =

{

1 − θ̂ if θ̂ < 1
0 otherwise.

Thus it is not asymptotically normally distributed.
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