Technical Report to
“THE NPMLE OF THE JOINT DISTRIBUTION FUNCTION

WITH RIGHT-CENSORED AND MASKED COMPETING RISKS DATA”

In this report, we shall give the proofs of some statements in the main paper. To be consistent
with the paper, we order the sections in this report as §8 and §9. The proofs in §7 are given in §8.
The other proofs are given in §9.

§8. Proofs of the lemmas in §7 related to Theorems 6.1 and 6.2.

Most proofs in §6 are given here, except for Lemma 7.1. Lemma 7.1 essentially says that the
GMLE satisfies both the cdf form and the df form of the SC equation. The proof of the equivalence
between the df form and the cdf form is quite similar to the proof under the interval censoring
case in (Li et al. (1997)), and is skipped.

Proof of Lemma 7.2. Statement (1) of the lemma follows from Eq.s (7.4) and (7.5).

To prove Statement (2), it follows from (7.5) that

Re(P)ap) = [ FEILI 0 o))

Zz waCT ’/U
PY [ Bl

weg Jvs® ZJwaClT(]|U)

> fepr(elv)a(wlv)dPr(v)
(as [ [dF(t,c) = fz fer(c|t)dFr(t))

:/< F(ajyy) F(U deR / Z Z fC’|T w|v)dFT<)

T weJ i<y, iCw

:/ F(x,y) — F(v,y)dFgr(v /< ch\T ilv) Z Licw)q(wlv)dFr(v)

1<y weg
/11<.7J /'U<u<w ,c<y U C dFR /’U<mzz<;fC|T |'U SR )dFT( )
( qw|n)lyewy = Y, D, P(A=hR>uz) (see A2)
w: yew h: wePy
=Y ¥ PA=hRza)=Sue)) ()
h j: y€Py;
zgfc(c){[m /v<u<xdFT|c(u\ ¢)dFg(v /M /MdFR r)dFrio(v]e)}
=Y fe(O)Fric(ale) = F(x,y).
c<y

It follows that F' = Rp(F) = Br(Q) by (1). Thus statement (2) holds. Verify that in the proof of
F =Rp(F), F is not critical, as long as F' € ©,. Thus statement (3) holds too.
The proofs of statements (4), (5) and (6) are similar to those of (1), (2) and (3). o

Proof of Lemma 7.3. For each F' € ©,, by Lemma 7.2, H = F' is a solution to H = Ry (F).
If there exists a different solution of H = Ry (F) in ©,, say H = G # F and Sg D Sj, then by

Lemma 7.2, we have G = Rg(G) as well as G = Rg(F). That is, H = G and H = F are two
different solutions to G = Rqg(H).

On the other hand, given H € ©,, by Lemma 7.2, F = H is a solution to H = Ry (F). If
F =G # H in 0, is a different solution to H = Ry (F) and Sy D Sg, then by Lemma 7.2,
G =R¢g(G). Thus F'= H and F = G are two different solutions to H = Ry (F). o
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Proof of Lemma 7.4. It is obvious that By is linear. Let tg = —00, tyy41 = 00, Sp. N Dy =
{t1,....tm}, where t; < --- < t,,,. It suffices to show that V g € Dg, H = Bj:(g) satisfies (7.2), (1)
in (2.2) and Sy C Sp.

Since F satisfies (2.2) and it follows from (7.4) that

H(z,y) = (z,y) Zl(h<y){/ ;le)( ) dg(0.0.C,) )
1(h€w)fC\T(h”U)d )
+ /vgm,veSFT,ng Ziew fC|T(i|U) g(v,1,w)}.

Since F satisfies (7.2) and (1) in (2.2), in view of (8.2) H also satisfies (7.2) and (1) in (2.2). Since
S|l < (m+1)J, in order to show Sy C S, it suffices to show

SHy C Sp,, e, ift; <z <tji1, j <m, then Bp(g)(w,00) — Bp(g)(tj,00) =0V g € Dg;
and if (t;,¢) ¢ Sp, 7 <m+1 and c € C,, then py({(¢t;,c)}) =0. (8.3)
Actually for each y € C;, if t; <2 <tj41, j < m, then
Bi(9)(2,y) = Br(9)(t;,v)

Z — F feir(h
:/ F(xay) v F(U,y) dg('U, 0, Cr) + / Zhgy,hEUj fC|T( "U)
v<w 1- FT(U) va,vESFT,wEJ ZiEw fC|T('L|'U)

B F( ti,y ) F(v, y)d oy Zhgy,hew JEC|T(h|U)d
/v<t ) g(%o’ T) /v<tj,v€$F 2weJ ZiEw fC|T(i|v) g(vjljw)

F —F
y) dg(’U,O, Cr) +/ (x’y> _ (U7y) dg(U,O,Cr,ﬂ)
tj<v<z 1 — Fr(v)

dg(v,1,w)

J

Fr(v
-/ Fa,y) - F(t;
v<t; 1—FT(U)

/ Zhgy,hew fCIT(h|U)
+ s
tj<v§:z:,v€SpT,w€J Ziew fCIT(Z|U)

=0 (as F(t,y) = F(t;,y) and foir(clt) =0V t € (t;,t511)).

dg(v, 1, w)

Moreover, if puz({(t;,c)}) = 0, then noting t; € Sy, by (8.2)

ity o = [ A 0.0 [ (e g 1)

—0 (as F3(t;) = F2(t;—) and foyr(clt;) = 0 due to pp({(tj,¢)}) = 0).

Thus (8.3) holds. This completes the proof of the statement related to By . Replacing dg in Bz in
the foregoing arguments by (H (oo, J) — H(v,J))dFr or g(w|v)dH (v,c) in R, we can establish a
similar version of (8.3) for R . Since R is also linear, it completes the proof of the lemma. o
Proof of Lemma 7.5. Since (1) RF(F) = F = BF(Q) (by Lemma 7.1), (2) Rx(F) = Bx(Q)
(by Lemma 7.2), Rx(F) — Rz(F) = B(Q) — B4(Q). Since both of the operators are linear by
Lemma 7.4, RF(ﬁ —F)= BF(Q -Q). o

Proof of Lemma 7.6. We shall give the proof in 3 steps.
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Step 1 (preliminary). Recall f = frc. The uniqueness of the solution to the equation
F = Rx(F) is equivalent to the uniqueness of the solution to equations (7.3) (w.r.t. the measure
u(-,-) on Dy x C,). Since we are interested in the equation F' = Rz (H) rather than F' = R s (F),
Eq. (7.3) becomes, for x € S, and H € D,

Flx,y) / G . _1 — HT(U))dFR(U) + Z q(wl|x) 1(y€w)f 7Y) Z h(z,h); (8.4)

FT( ) weJ ZkEw ha

frie) = Jr@) [ TR0 + e, Snla—)ir (o) (85)
v<x 1— FT( ) T

where (Hr, hr) correspond to (Fr, fr), respectively.

Step 2 (uniqueness of the solution to (8.5)). It is easy to show that H = F is a solution to
the aforementioned equations. In particular, hp = fr is the solution of the SC equation (8.5).
By the assumption Sy C Sp, Sg, C SFT which is finite. If hp # fT, let ¢4 < --- < t,,, be all
the points in Sp N Dy. Let t;, be the smallest point in Sp, such that fr(ti,) # hr(t;,). Since
fr(ti) = hr(t;) for i < i, and Hy(—o0) = Fr(—o00) = 0 by (1) in (2.2), Hr(v) = Fr(v) for v < t;,.
Letting x = t;,, Eq. (8.5) yields

Fr(ti) = Fr(ts) / 1dFR(0) + Silts, et

o

= fr(ti,)(1 = Fr(ti,—)) = Sr(ti,—)ho(ts,),
:>fT(tl-o) = hr(t;,) (as Sr(t;,—) > 0 due to t;, € Dy ),

contradicting the assumption fr(t;, ) # hr(t;,). The contradiction implies that hy = fr on Dy.
By (7.2), Hy = Fr on [—00,00). Since Hr(oco) = Fr(oo) =1, Hp = Fr.
Step 3 (conclusion). Since hy = fr by Step 2, (8.4) is equivalent to

Forrle) = for ) Fae) + S her(l) “"‘”)fc'T(") (e,9) € Spi (86)

weJ , yeEw jEW Zkew fC|T( )

or Foon(ole) = For (o) §= 410 wew) 2jew horr(le)
feir(ylz) fclﬂ?ﬂ)é Sneo) S Jor(hia)

Verify that hojr = foir is a solution to (8.7), as the right hand side of (8.7) becomes

(z,y) € Sp. (8.7)

fewrtole) 3 U forn(ylo) 552 = ool

by (8.1). We shall prove that

the solution her(|x) to (8.7) is unique a.e. in  on Dy w.r.t. pup,. (8.8)

Consider two cases: (1) fC|T(c|x) = 0 for some ¢, (2) fC|T(C|x) > 0 for each c.
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In case (1), since Sp C Sp (by (7.2)), by A2 3 w = {c} € J such that g(w|z) > 0. Then it
follows from (8.7) that if y = ¢, then (8.7) yields

z)
z)’

; _ 7 Q(w’I)l(cEw) Zjew hC|T(j
fC’|T(C|$) = fC|T(C|$) é[l(w_{c}) + ]_(w;é{c})] SR(x—) z]cew fC|T(k.

(x,c) € Sp.

, her(clz)
Thus 0 = O(ZJG{C} OclT +0). It implies hc|r(clr) =0as 5 = /1. Since fC‘T(C|£L‘) = heyr(clr) =
0, it reduces to case (2) by replacing J — 1 for J.
Now consider case (2). Then (8.7) is equivalent to

1= ¥ a(wle) 2jewherr(ils) ye{l,..,J}. (8.9)

weJ ,yEw SR(I_) ZkEw va|T(k|x) ,

Treating fC|T as given constant, h' = (heir(1|z), ..., heir(J]x)) as an undetermined vector,
and 1 as the vector with coordinates 1, Eq. (8.9) is actually a system of linear equations in h¢|r,
say 1 = Ah, where A = K/ oKy iKs: K, 7 is the ki X k; diagonal matrix with diagonal elements

q(Wj|z) , :
SR(m_)ZkeW o i) Wi, ..., Wy, are all the elements of J such that ¢(W;|z) > 0, and Ky is

the k; x J matrix with the j* row (¢(W;))" (see Al, which is implied by A2). Verify that K,
is of full rank J and ICq’ jisa diagonal matrix of full rank k;, thus IC;&qu’ f:IC¢ is of full rank J.

Consequently, the solution of the equation 1 = Ah is unique and h¢|r = fC|T, as the latter is a
solution to (8.9). Thus (8.8) holds. This concludes the proof of the lemma. o
Proof of Lemma 7.7. By assumption ||Sy|| is finite, let (t1,¢1),..., (tm,cm) be all the distinct
points in Si N (Dy x Cr). WLOG, we can assume that 7 < oo and (00,J) € Sp. Otherwise,
the proof is simpler as S C (Dy x C;). Let (tmy1,cmy1) = (00,J). Let gi(x) = L(x>(#;,c,)) and
H; = Rp(gl'), 1=1,..., m+ 1.

By Lemma 7.4, Sg ., C Sp. We shall show that Vi € {1,...,m + 1},

H;(—00,—00) =0, Hi(co,00) =1 and pg, ({(tx,cx)}) > 0, for all possible (i, k). (8.10)
Now V i, H;(—o0,—00) = 0 follows from Lemma 7.4 and (1) in (2.2). Moreover,

B F (00, 00) — F(v,00) o

/ D h<oohew feir(hlv)
v<oo JceEw

2

q(wlv)dg; (v, c)

weJ > jew forr(ilv)

:/v<oo(1 = 9i(v, )dFr(v) + Z /@<oo /cew q(wlv)dg;(v, c)

:/ dFr(v) + Z q(wlt;) (see A2)
v<t; we T oscw

:/<tvdFR(v)—|— S > fal)Sralti—|h)

weJ ,c;€w h: weP),
=P(R<t;)+ Sgr(t;i—) =1.
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Thus the first 2 equations in (8.10) hold. Notice that

(e c0) :/<t F(tk,lci)FTf()v Ck)(l _ gi(v, J))dFR(v)

n / > h<ewhew forr(hlv)
v<tg JcEw

q(wlv)dg; (v, c)

=% > ew forr(ilv)
i (el Vﬁ(tk)—Fs(v))%dF (v)
DO I I o e
pr; ({(tk, ck)})
Lol [ (i) = Bl T2 i)
* 3 L L S o)
:/Nk up({(tk,ck)})ll_l(%dm +u;7 (c“%w)Zicwj;“(ccdgimQ(wm)l(tk_m

>0

b

Thus (8.10) holds. (8.10) implies that H; € O,.
Notice that (g1, ..., gm+1) is a base of the linear space Dy with g;(c0,J) = 1 and g; € O,,

thus each H in O, N D satisfies H = thl a;g;, where ) .a; = 1 and a; > 0. It follows that
Rp(H) € O,.

Proof of Lemma 7.8.  Since ||Sj|| is finite, by Lemma 7.4, R is a linear map from D
to Dp. WLOG, we can assume that (0o, J) belongs to Si (= {(t1,¢1), ..., (tm+1,Cm+1)}), where
(tm+1, Cm+1) = (00,J). In order to show that R;l exists on Dy N D;, it suffices to show that (1)
Rpis 1-1 on DpND; and (2) Rp(H)(oo,J) =1 it H € D ND;.

Now suppose that R(H) =0 and H € DN Dy. Since Rp(F) = F by Lemma 7.2 F' 40 =
Rp(F) + Rp(H) = Rp(F + H). Write Hi = F + H, then Hy(co,J) = 1, Hi € D and
Rz(Hy) = F. Thus by Lemma 7.6, H; = F, that is, F'+ H = F. Hence H =0, i.e., Rz is 1-1 on
Di NDy. Thus (1) holds for i = 0.

If H € DzNDy, then H(z,y) = S r ! dil (w1 (t1.cr))» where St d; = 0 and m+1 = ||Sg||.
It follows that H = Hy — H_, where H,(x,y) = Z;"ng dil((z,y)>(t:,00),d;i>0) and H_(z,y) =
— S il (> (e .di<0) - Let d =S4 di1 4,50y, Then Hy /d and H_ /d both belong to ©,.
By Lemma 7.7, R (Hy/d) € ©, and R;(H_/d) € ©,. Thus R;(H) € Dy. That is, (2) holds for
¢ = 0. It follows that R;l exists on Dy N Dy.

If H and G are in Dy NDy and Ri(H) = Ri(G), then 0 = Riz(H — G). Notice that
H -G e DyNDg, thus H -G = R;l(O) = 0, that is H = G. As a consequence, R is 1-1 on
Dy NDjp. By Lemma 7.7, R;x(H) € ©, if H € O, It follows that R exists on Dy N D;.

It is easy to show that R;l is also linear. o



Proof of Lemma 7.9. By (7.5), it is obvious that statement (1) holds, as

F(z F(v,y)
Rz (x,y) / 1 —FT( ) (0 —0)dFRr(v)

+ Z /v<3c ZK?’ L€ fO‘T( il )q(w|v)d0 =0=U,.

Moreover, if < &,, then Rz (Uz)(z,y) = Up(z,y) = 0. If © > {,,then Rx(Uzp)(x,y)

:/ F(l’,y)—F(’U,y)
v<x I_FT( )

4 Z /v<x / Zz<y ZEw fC|T( |’U) q(wlv)dlxlp(v,c)

(UF(OO, J) - UF(U, J))dFR<U)

V€S,
z<y,z€w fC|T ’U
= (.’1} Yy dFR —|— Z ZfC|T C‘t U)|U)‘v t,
inf Spp, <v<i, wed jew fC|T (Jlv) cew

:F(l',y)/ dFR +ZfC|T |U Z ]-(zew)q UJ|’U |11 to
infSFRS’U<to 7/<y wEJ

:F‘(aj,y)/ dFr(v) + Y forr(ilv)Sr(w=)|,—;,. (8.11)
infSFR<v<to i<y

In particular, if F' = F, then Rp(Ur)(z,y) = >_,<, forr(ilv)Sr(v=)|v=t,Lz>t,) = Ur(z,y).
Moreover, (8.11) yields statement (3) of the lemma by A3. o

Proof of Lemma 7.10. For F € ©, with 7, = to, let Cy be the collection of all the distinct
points among cy, ;s, where c; ; = inf{z : Fr(z) > j/2}, 7 =0, .., 2%, k > 1. Let F} be a
function in ©, such that Fy(t,c) = F(t,c) V (t,¢) € Ck x C, and its Fj;. is a step function with its
discontinuity points in C. Denote Wy the subclass of D such that each member H satisfies that
H? is a step function and the collection of discontinuity points is a subset of S P -

Set ¢ = 1 first. For each g € D;zND; and k > 1, let g, € Wi ND; be such that Cgk(m, c)=g(x,c)
if (z,c¢) € Cx x Cp. Then ||gr — g|| — 0, since Sy, € Sp, Sy € Sp and the set UpCy, is dense in
Sjp. By Lemma 7.8, R;kl exists, so 3! Hy, € Wy, N D; such that gy = Rp, (Hg). V K > k and V

H € D NDij, We C Wk, ||[Fk — Fkl|| < 1/2% and ||Rp,(H) — Rr, (H)|| — 0 as k — oo by the
BCT. Lemma 7.9 says that U, and Ur play the role of 0 and 1 in some sense, respectively, and if
k is large, one can write

(Re, = Ry )(H) = o()Upy and (Rp, — Ry )(H) = 0(1) Ry Ury ), (8.12)
as ||Rr,(Up,) —UF, || — 0 by Lemma 7.9. Let G, € Dy, N'D; such that Gy, = R;ﬂ; (gk)-

R (G — Hy) =Ry (Gi) — R, (Hy) + R (F) — R (Fly)

=gk — gk + RF, (Hi) — R, (Hy)

=(Rr, — Rry)(Hr) (as Hy = R, (91))-
(Rey — Ri ) (gk) = Gr — H, =R (Re, — Ry )(Hy)) (by Lemma 7.8,
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as (RFk — RFK)(Hk;) c DFK ﬂD()).
(R — RE) (9|l = IR (R, — R ) (H))|

= [|Rpp. (0(D) R Usi )| (by (8.12))
= [lo()Rp,. (Rise Uri )| (by Lemma 7.9)
= |lo(1)]| - |[Up || — 0-1 (by Lemma 7.9). (8.13)

|Hi — Hic|| <[|R%, (9
=[|R % (g

) = R (@0l + 1R gy (95) = Ripy (gx)|
) = Ripe (1)l + [ Rz (01U, )|
(by Lemma 7.9 as ||gr — g|| — 0 and thus ||grx — gk || = o(1)Up, )

=R, (9k) = R (90|l + IR %y, (0(1)R by Ur,))I| (by Lemma 7.9)
—0+0as k — oo (by (8.13)).

R
R

Thus {H}r>1 is a Cauchy sequence. Since Dy is a Banach space, 3 H, € D} such that ||Hy —
H,|| — 0. By the BCT, g = lim oo R, (Hi) = Rj(H,). Define H, = R (g).

Verify that the foregoing arguements hold also for i = 0. o
Proof of Lemma 7.13. Since Sy = Sp, Dy = D = Dp by (7.2). Given H € 0O, let
G € O, be an arbitrary solution to H = Ry (G). Since H = Ry(H) by (3) of Lemma 7.2,
0=H—-H=Ru(G)—Ru(H) =Ru(G— H) by Lemma 7.4. That is, 0 = Ry (G — H). Since
R exists on Dy N Dy by Lemma 7.10 and G — H € Dy N Dy, 0 = R;'(0) = G — H. That is,
G = H. In other words, the solution G in O, to the equation H = Ry (G) is unique. Hence the
second statement of Lemma 7.3 holds. Then the solution H to Ry (F) = H is unique in O, by
Lemma 7.3, and H = F' by Lemma 7.2. Since By (Q) = Ru(F) for each H € ©, by Lemma 7.2,
the solution H in ©, to H = By (Q) is unique and is H = F.

Now consider H = By f.,,..(Q). Notice that H € ©, and thus h¢r,,, are constant in w € J.
By (7.6) and (7.7)

Bi jer (@) (z,y) (= Bu(Q)(x,y))

. . v
=y [/ Di<yicw fC|T'( | >dQ(v,1,w)
weyg JvSzvEDG vESH, Zjew fClT(] ’71)
D i<y,ic hCIT(i‘U) H(x H(v,y)
+/ 1<y, tEW - ,1,w / dQ(U,O,CT)
v<z,wEDT vESH, Zjew hC|T(J|U) 1—HT( )

_ Z / / [1 Zigy,iew fCIT(Zf"U)
- veDES .
v<z,vESH JcEw (vebz) Zjew fC|T(j|U)

weJ
Zigy,iew her(ilv) H(z,y) — H(v,y)
> e her (o) 12 IE () )
=Ry (F) (by (7.8), as F € ©,).

+1(’U€DT) (1 - FT(U))dFR('U)

Now verify that replacing (B%,R%) for (By,Ry) in Lemmas 7.2 through 7.9, except for Lemma
7.5, one can show that those modified lemmas hold too. Then the proof of the lemma regarding
H = By f.,r.(Q) follows almost line by line as the proof in the first paragraph making use of the

modified lemmas. In particular, Eq. (8.5) and Eq. (8.6) become

frla) = Frta) | ) %ﬁﬁgdm v) + Sa(e—)Lwens) Fr(@) + Lpepmhr (@),



Sjeuhoplle) | Siew foplil)
)(mEDT) ZkwaC|T(k|~T)

V (z,y) € Sp and H € D. This completes the proof of the lemma. o

Proof of Lemma 7.15. Step 1 (preliminary). By definition, F* is the GMLE of the modified
data (Vini, d;, M;)s, thus it maximizes the modified likelihood function

fer(ylo)Sp(a—) = q(wlz)]

weJ,yew ZkEw fC|T<]€|JJ

(D5, )]

— . . e (Vi’OO)XMi iféi:() = .
A2 - HNF(LWL)) where I,,; = { {le} % Mz otherwise, and F' is a cdf.

It can be shown as in Lemma 7.1 that H = F* is a solution to the equation H = By (Q,»), where
Q@ is the empirical cdf of @, based on (V,,,;,0;, M;)s, and By is defined in (7.4). Let g be the
event that @@ — Q. By the SLLN P(Qg) = 1. Let Q7 be the event that

sup |Qm(t,u, w) — Q(t,u,w)| — 0. (8.14)
te[—o0,00],ue{0,1},WeT

Step 2 (to show Qg C Q7). Fix w € Qg. Since V,,,; = V; if §; = 0, for each w € J,
~ ~ A A de
supy o, |Qm(t,u, w) — Q(t,u,w)| = sup; [Qun(t,1,w) — Q(t, 1, w)] (:fdnt). Then d,; =
%lZ?:l dl|, where dl = 1(sz‘§t,5i=1,Mi=W) — l(Vigt,éizl,Mi:W)- Verify that dmg =0ift=0
(by the definition of V,,,;s). For ¢ > 0, 3 j such that t € (sy j_1,5n,;]. Then due to the definition
of $pnj, di = =1(5,=1,Vie(spj_1,t], t<sn,)-

n
1
dnt =| > S Vie(sno1, t<sn g 0i=1, M=) S iy (g1, ) Lves, s 0,)) < 1/v/n — 0.
=1

That is, sup, ,, |Qm(t, U, W) — Q(tu, w)| — 0. Since w € Qg, Sup; 4, |Q(t, u,w) — Q(t,u,w)| — 0 by
assumption on {2g. Thus it yields that for (u,w) € {0,1} x 7,

sup |Qu(t,u, W) = Q(t,u, w)| < Sgp{\Qm(t,u, w) — Q(t,u, )| + |Q(t, u, W) — Q(t, u, w)[} — 0.

Hence (8.14) holds. That is, w € Q7. Thus Qg C Q7.
Step 3 (to derive lim fC|T) For each j € C,, F 5* is monotone and bounded by 0 and 1,
each given subsequence of F 7 has a further convergent subsequence. Thus each subsequence

of (Ff*,...,ﬁj*), has a further convergent subsequence, as J < oo, and so is F*(-,c), c € C,.
Denote the limiting point by H* together with HZ*, ¢ € C,. For the given w € ()¢ and for
each m, one can define fC|T(c|t) for each (¢,t) € C. x{V; : i = 1,..,n}. Notice also that
F5*(x = Jica fC‘T(c]t)dF* = Ji<a for(clt)dEx(t) (see step 2.4)). Since for is bounded and
Cr X {V i =1,...,n}, is countable, by Helly’s selection theorem there is a convergent subsequence
of fC|T with limiting point hc|p such that fC‘T(c]t) — heyr(clt) ¥V (e, t) € Cp X {V i=1,...,n}.
By taking further subsequence, Wlthout loss of generality, one can assume that {F}; , fC‘T nh}h>1
converges. Now by the BCT, H *(x ft<l, heyr(clt)dH7(t) ¥ z. Thus for each ¢ € Cr., heoyr(c|-) =
h*C|T( c|-) (induced by H*) (except for a set of zero piy- measure) is a limiting point of fC|T.

Step 4 (conclusion). Verify that sup,cp,, |F5(z) — Fr(z)] — 0. Under Al, for each t, if n
is large enough, there are My;s (where Vi;,t € (Sn,j-1,5n,;] and d;; = 1) such that V c € C, 3
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constants b.; satisfying ¢({c}) = >_; bej¢(My;). It follows that faT(-|t) does not based on only
one w € J;, at least for large enough n. In fact, if n is large, each win {W € J; : t € (s5,j—1,5n;]}
would be observed and thus f("}‘T(' |t) is based on all these w’s. Then for the convergent subsequence

{F;h}hzh the sequences { fC|T,nh}h21 induced by {F;fh}hzl converges to the limiting functions
hcir ontheset {V; : i =1,...,n}, which contains the support of 135'2 Notice that each of the || J||+1
Fr,@=Fi, 09) o 2icyiew ferr Won, (i)
l_F’l*",nh (’U) ZjeW fC|T,W,'nh (]‘U)
are bounded by 1 and converge as h — oo, for each x € Dy, y € C, and v € {V; : i =1,...,n}.
Thus by the BCT, the limiting equation of F*(z,y) = Bz.(Q)(z,y) is H*(x,y) = Bu-(Q)(x,y)
for all (z,y) € Dy x C,. It can be shown that Sy« = Sp and H* € ©,. By Lemma 7.13, the
solution to By (Q) = H, H € F, is unique in the sense specified there. It follows that each limiting
point hcr of fC|T satisﬁes that he|r(-[t) = foir(-|t) for each (t,c) € {V;: i =1,...,n} x C,, and
F* — F. Since F$(x) = [,, fepr(c|t)dFr(t), by the BCT, F5(t) — F:(t) on Dy and F — F for

the given w. Since w is arbitrary in Qg and P(£26) = 1, the lemma is proved. o

89. Proofs in Sections 1 and 2.
§9.1. Remark 9.1. Dinse (1982, p.426) provides a data set with J = 2. Dinse comments
that the GMLE of for is “extremely erratic”, and partitions the observations into several equal-
sized groups and derives a new smoothed estimator of fo|7 based on the grouped data. The new
estimator assigns positive weights to both (V;,1) and (V},2), even if the MI is not {V;} x {1,2}.
Thus the new estimator is not a GMLE based on the original data. Moreover, most discrete GMLEs
of continuous density functions are not consistent, thus most of them are erratic. However, the
cdfs of based on the inconsistent GMLE of the densities are often consistent, just like the case we
are studying.
§9.2. Proofs in Example 2.1. Under given assumptions, the log likelihood function is

integrands of Bz. (see (7.4)), namely, where w € 7;,

L = niln(p1 + p2) + neln(l — p1 — p2) + nsln(py + p3) + naln(l — p1 — ps3),

where n; = ZJ 1 I(MJ_W), pi = f(1,i) and n = ny + --- + ng. The normal equations are

ny n2 M4 — ni n2 — ns __ T4 — 1
p1+p2 1—p1—p2 P1+;D3 1 P1 —p3 n > pi+p2  1—p1—p2 > p1+p3 1—p1—p3 0’ which reduce

to —— — N2 — (), — 4 = (). Solving these two equations leads to the GMLE
p1+p2 1-p1—p2 p1+P3 _ I=pi—ps3

in Example 2.1: po =11 — p1, p3 =19 — p1, and pg =1 — p1 — 152 — ps3, where pp is arbitrary in
[maX{O T+ 1o — 1) mln{rl, 7"2}] r = m and o = m

§9.3. Proofs in Example 2.2 (existence of both inconsistent GMLE and consistent GMLE).
Suppose that J = 2; partitions Py = {{1},{2}} and P1 = {C,}; F?s satisfy %Ff(t) = p1l(e(1,2))
and %F;(t) = B21(4c(0,3)), Where p1 +p2 = 1 and p; > 0; fa(h) = 1/2; there is no censoring;
(T,C) L (A, R) and Al holds. Verify that

(a) all n (V;,d;, M;)s are of the forms (1) (V;,1,{j}), 7 € {1,2}, or (2) (V;,1,C,);

(b) they are all distinct and thus each of them is an MI induced by these n observations.

Thus the GMLE F} assigns weight < to {V;} x {j} if M; = {j}, and assigns weight - to {V;} x {j}
if M; =C, and j € C. Now Fi(t,1) = 55300 Lvicemi=c,) + 5 Lim lviseami—(1p) —
o2t £ (2) = pot/12 # F(t,1). Thus F} is not consistent on (0,1). In the aforementioned

23
example, since the data are of the form either (1) or (2), there is a consistent GMLE with a

s nlt/nt if ¢ 7é 0
closed form solution: Fg(t 1) = ZZ Ly, <t)fC|T(1\V) where for(1t) = { 1/2 otherwise’
ny = Zizl 1(|Vi—t|§ﬁ, §;i=1, M;={1} or {2}) and ny; = Zn 1(|V —t|< o=, 6i=1, Mi={1}) ‘3
§9.4. Proofs in Example 6.1. Suppose T'=1. J =3, P> = {{1,2},{3}}, P5 = {{1,3}, {2}}
fa(2) = fa(3) = 1/2. R = 2. The possible observations are of the forms (1,1,W1), i =1,

, 4, where Wy = {1,2}, Wy = {2}, W3 = {3} and Wy = {1,3}. Let N; = 31", 1aq,—w;,
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j =1, .. 4. Then the GMLEs are fC|T(2|1) = ﬁ and fC|T(3|1) = MNTR)N;U provided that
6 <1, where § = N;Yfm + NljiBN?,' However, if fC(2)A = fc(3) = 1/2, then /n(6 — 1) converges
in distribution to N(0,02), where ¢ > 0. Thus P{§ > 1} — 1/2. It follows that the GMLE

) o _J1-6 ifd<1
F(1,1) = 111) =
(1,1) = forr(1L) {0 otherwise.

Thus it is not asymptotically normally distributed.

10



