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Abstract: Consider a linear regression model where the response variable may be right
censored. The standard MLE-based parametric approach to estimation of regression coef-
ficients requires that the parametric form of the error distribution is known. Given a data
set, we may not be able to find a valid parametric form for the error distribution. In such
a case, the error distribution is unknown and arbitrary, and a semi-parametric approach is
plausible. A special modified semi-parametric MLE of the regression coefficients is proposed
in this paper. Simulation suggests that the MSMLE is consistent, asymptotically normally

distributed and maybe efficient. We apply the new procedure to engineering data.
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1. Introduction. We consider the linear regression problem with right-censored data.
Regression analysis is one of the most widely used statistical techniques. Its applications
occur in almost every field, including engineering, economics, the physical sciences, man-
agement, life and biological sciences and the social sciences. In particular, one desires to
estimate the relationship between one variable Y and an independent variable (or vector)
X. For instance, we may want to estimate the relationship between time to rupture and
stress for a certain alloy, or between shear strength and age of a batch of sustainer propel-
lant in rocket testing, or between time to failure for an insulation for electric motors and
temperature. One relationship between Y and X is Y = /X + ¢, where Y is a random
variable, X a p x 1 covariate vector, ' the transpose of a regression coefficient vector 3, and
e a random variable with an unknown distribution function F, (F,(t) = P(e < t)). Note
that @ = E(e) may not be zero so that the intercept term that one finds in the standard

textbook regression model is incorporated into e.

Sometimes Y may not be observed. For instance, some insulation for electric motors
did not fail by the termination of a temperature-accelerated life test (see the Insulation data
(Nelson (1973)), and only the time interval, C, of the test was recorded. In this case, Y is

the failure time of the insulation material and may be right censored by C'

This is a semi-parametric estimation problem, as 8 and F, are unknown. Several

estimators of B are available, including

(1) the least squares estimator (LSE) and its various modifications under right censoring
e.g., Miller’s (1981, p.146) estimator, the Buckley-James (1979) estimator (BJE), and

the modifications proposed by Chatterjee and Mcleish (1986) and Leurgans (1987);

(2) the Theil-Sen estimator with complete-data (Theil (1950) and Sen (1968)), and its
modifications with right-censored data (Ireson and Rao (1985) and Akritas, Murphy
and LaValley (1995));



(3) various M-estimators (Huber (1964), Ritov (1990) and Zhang and Li (1996));
(4) adaptive estimators (Bickel (1982) and Koul and Susarla (1983));
(5) the semi-parametric MLE (Yu and Wong (2003)).

The standard MLE-based parametric alternatives require the assumption that the form
of the error distribution is known, which is not required for the semi-parametric approach. It
is well known that under certain regularity conditions, the parametric MLE of the regression
coefficient vector is consistent and efficient. Zhang and Li (1996) show that under the semi-
parametric set-up certain M-estimators of the regression coefficients are also consistent and
efficient. The drawback in the M-estimation approach, like most numerical algorithms for
solving optimization problems, is that the solution to the M-estimator may not be unique and
there is no general algorithm that guarantees that one obtains the “efficient M-estimate”,

as demonstrated in Yu and Wong (2001).

In this paper, we propose a modified semi-parametric MLE (MSMLE) of 8. The estima-
tor maximizes a modified generalized likelihood function, to be specified in the next section.
Recall that in parametric MLE-based analysis, if the MLE does not have a closed form solu-
tion, then in general, a numerical algorithm only guarantees that it leads to a zero-point of
the score function, instead of the MLE. We propose an algorithm that guarantees finding
the MSMLE. Our simulation studies suggest that the MSMLE is likely to be consistent and
asymptotically normally distributed, and maybe efficient. In a technical report (see Yu and
Wong (2004)), we actually prove these properties under a discrete assumption on the error

distribution.

The paper is organized as follows. In Section 2, we introduce the MSMLE. In Section 3,
we illustrate how to compute the MSMLE and its variance by a simple right-censored engi-
neering data set. In Section 4, we present our simulation results on the asymptotic properties

of the estimator and compare them to the corresponding parametric MLE or BJE. In Sec-
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tion 5, we apply our procedure to engineering data. Section 6 is a concluding remark. Some
detailed proofs of the statements in Sections 2 and 3 are given in the Appendix.

2. The MSMLE. Let Y; and X; satisfy ¥; = 8'X; + ¢;, i = 1, ..., n, where (Y;,X;, ¢;,C;)
are n ii.d. copies of (Y, X, ¢, C) which are explained in Section 1. Our observations are
(M;,0;,X;), where M; equals Y; if it is not censored, and is a censored value otherwise; J;
is the indicator that is 0 if Y; is censored and 1 otherwise. Let S, = 1 — F, and denote by
fo the pdf of F,. Let F' be a cdf, f its pdf and S =1 — F. For a p x 1 vector b, denote

Ti(b) = M; — b'X;.

The generalized likelihood function of (8, S,) defined by Kiefer and Wolfowitz (1956), is

n

L(S,b, f) = [ TI(F(Ti(0))* (S(Ti(b))) ).

i=1
Both S and f in the above expression are unspecified. One can estimate S by the product-
limit-estimator (PLE), Sb (see (A.1) in the Appendix). Moreover, motivated by the fact

that e is often continuous, it is desirable to estimate f by a kernel estimator,

Sp((t = hy) =) = S (t + Iy,

(e.9., hn = O(n™1/%), as suggested in Hardle (1990, p.59)), and S(t—) = limg¢ S(x). Tt is

obvious that féb is a function of h,,. Then verify that

A = 1 4 A A _s.
L(Sp.b. f5 ) = 11 [(ﬁ[sb((Ti(b) — hn)=) = Sp(Ti(b) + b))% (S (T3(b)))' %] (2.2)
i=1 n
We propose to estimate 3 by the value of b, denoted by (3 that maximizes L(Sb, b, fsb)
over all possible b values. We call 3 the MSMLE of 8, because L(S’b, b, fgb) is a modified

semi-parametric likelihood function. We prove in the Appendix that the likelihood function

(2.2) takes on finitely many values. Thus the MSMLE exists.
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Remark 2.1. Since F,, is arbitrary, F(e) may not exist. Even if it does, it is well known
(see Buckley and James (1979)) that in general there is no consistent estimator of E(e) (= )
under right censoring. Thus people formulate the censored regression model as Y = /X + ¢
(see, e.g., Lai and Ying (1991) and Zhang and Li (1996)) to emphasize that the main interest
of the model is B, which has a consistent estimator. One can estimate o by & given in (3.1)

of Section 3. & is the conditional expectation based on F 30 as limy_.o0 Fg(t) <1 very often

under right censoring.

To study properties of the MSMLE, we need the commonly-used assumption that € and
(X, C) are independent (see, e.g., Zhang and Li (1996, p.2721)). We also need the following
identifiability condition: P(rcmk; <£1 Xiﬂ) —p+1, 6= =06p = 1) > 0
(see Yu and Wong (2002, p.409)). In the case of simple linear regression with complete-
data it becomes P{X; # X3} > 0. The assumption is weaker than the condition
E((X1,.., Xn)(X1,...,X,))]) # 0 with complete-data used in Bickel (1982), where |A]

is the determinant of a matrix A.

3. Computing the MSMLE and its covariance matrix. Since the PLE can only take
on finitely many values, so does the likelihood function. Hence, finding the MSMLE can be
done by exhaustive search. A formal presentation of the algorithm is given in Appendix.
In this section, we shall illustrate the algorithm via a simple data set, and discuss how to

estimate the standard deviation (SD) of the MSMLE.

3.1. Covariance of the MSMLE. Simulation results suggest that the MSMLE is asymp-
totically normally distributed (see §4.2). If the MSMLE is also efficient, then one expects
that a consistent estimate of the covariance matrix of the MSMLE is the empirical Fisher
information matrix, with all the unknown variables being replaced by their consistent esti-
mates. Our simulation results suggest that it is indeed a consistent estimator of the Fisher

information matrix, which is the efficient lower bound of the covariance matrix of an esti-
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mator of the regression coefficient vector. However, our simulation results also indicate that
it often underestimates the variance of the MSMLE for the moderate sample sizes in our
simulation studies. It may be due to the fact that sample sizes are not large enough.

Our simulation results suggest that for moderate sample sizes the MSMLE is at least
as good as the BJE in general (see §4.5). Thus we can use the estimate of the covariance

matrix of the BJE, which is

> =6%(C,C,) 71, (3.1)
~ / ~
A2 LST(n)(@)(t_d)zdFB(t) 51 51X1 R fng(n)(é) IdFB(l’)
where o7 = CCE ) R A (U I 4P,
s S & Jucriyin 19E5 @

Ty < -+ < Tiy,) are order statistics of the T;’s and Fb is the PLE of F' (see Miller
(1981, p. 152)). Simulation indicates that it is a conservative estimate for n > 100 unless
normality holds.

An approximate confidence interval for the i-coordinate of B, say [3;, is BAZ + 24204,
where z, /5 is the 1 — a/2 percentile of N(0,1) and 62 is the i-diagonal element of the
estimated covariance matrix (3.1) of the MSMLE.

Under certain regularity conditions, it can be shown that the efficient lower bound
(ELB) of the covariance matrix of a semi-parametric estimator of B is the inverse of the

minus Fisher information matrix

1
S 8lnLl |
0bob

which can be shown that, under further regularity conditions,

fo
_§le
fo

(T(B)) + (1 - 5>£<T<ﬂ>>J2XX'>) . (3.2)

z:(m[ <

A consistent estimator ¥ of ¥ can be obtained by choosing appropriate kernel estimators

for f, and f!, and replacing S, by its PLE in expression (3.2), and approximating the
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expectation operation by an average. We conjecture that the MSMLE is efficient, thus ¥ is

another estimate of the covariance matrix of the MSMLE of 8 .

3.2. Computing the MSMLE. Hereafter we shall illustrate through a simple engineering
data example how to find the MSMLE of a simple linear regression model and a multiple

linear regression model.

Example 3.1. (Creep Rupture Test Data (Nelson and Hahn (1973)). It was desired to
estimate the relationship between time to rupture and stress for a certain alloy. The test
involved running paired creep-rupture specimens in tandem. That is, pairs of specimens
were linked end to end and put under a constant test stress. When one member of a pair of
specimens failed, the other was taken off the test. Tandem specimens were used to hasten
the completion of the test and to provide more information on the lower tail of the distribu-
tion. The specimens were tested at 5 different stress conditions with one pair of specimens
at each condition. Let X stand for log of stress (in KSI), M stand for log of hours to the
first failure in a test pair and Y stand for log of hours to failure. Thus Y is only observed for
one specimen in a pair and is censored for the other. The resulting values of (X;, M;, d;)’s
are: (In44,In1350,1), (In37,1n2435, 1), (In34,1n5578,1), (In32,1n8322,1), (In27,1n11495, 1),
(In44,1n1350, 0), (In37,1n2435,0), (In34,In5578,0), (In32,1n8322,0), (In27,1n11495,0). Here,
we actually fitted the original data with a log-linear model rather than a linear model, fol-

lowing a referee’s suggestion.

Since ﬁ in (2.2) does not depend on b, it suffices to maximize a simpler expression,
denoted by I(b), which is the right hand side of (2.2) with the factor i dropped. Note that
the bandwidth h,, is a coefficient to be determined. Various suggestions have been made

on the bandwidth in the literature. They are all associated with the standard deviation of

the distribution of the observable random variables. Under right censoring, based on our
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simulation results (see §4.4), we suggest the following choice of the bandwidth h,,:
h, = cn~ /5, where ¢ equals 2x the sample SD of M;’s.

In this example, the sample SD of M;’s is 0.83. Thus we take h, = cn~'/® in (2.1), with
n =10 and ¢ = 2 x 0.83 = 1.66. That is, h,, = 1.05.

Simple linear regression Y = X +¢. Now b = 0. 3 can be obtained in 3 steps.

Step 1. The PLE and the likelihood function (2.2) or I(+), as functions of b, will change
values only at the solutions to the equations T;(b) = T,(b) + kh,, k = 0,%£1,+2, where
T;(b) = M,; — bX,;. The solutions are of the form b;j; = %”;th", where X; # X for

i1<7j,k=0,%1, £2. e.g., biog = bgro = % ~ —3.4 (corresponding to T3 (b) =

T5(b)), bio1 = bgpy = 21380=I02435-1.05 9 9 (corresponding to T4 (b) = T2(b) — hy,), etc.

Among them there are only 50 distinct values (= 5 x 5 x (5 —1)/2). Now order these 50
bijr as a1 < --- < aso. In particular, a; = —41.2 and asg = 28.0.
Step 2. These 50 points partition the real line into 51 open intervals. Add to the set
{ay,...,a50} the “midpoints” of these intervals, where the “midpoints” of (—o0,a;) and
(as0,00) are defined as a; — 1 and asg + 1, respectively. The augmented set, denoted by
B, contains 101 distinct b values. The set {I(b) : b € B} contains all possible values of the
“likelihood” I(+).
Step 3. By exhaustive search, it is found that the maximum value of I(b) is [ = 0.051.
There are three b values that attain [(b) = 0.051: b = —6.6, —5.5 and —4.5. We take the
median B = —5.5.

By formula (3.1), the estimate of the SD of the MSMLE is 0.5.
Remark 3.1. (Applying a simpler algorithm). From our simulation studies, we found that
the MSMLE always falls within the set obtained in Step 1. In this example, all the three
maximum points belong to {ai,...,as0}. Thus in practice, one may skip Step 2 and treat

the solutions as the MSMLE, though they may only be very close to the MSMLE.
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Multiple linear regression. For illustration purposes, we also fitted to the data to the
model Y = ﬂlX + ﬁQ(X)2 + €. Now E(b) = Mz — lez — b2<XZ')2, where b/ = (bl, bg)

Step 1. Find solutions b = (b1, b3)’ of equations of the form

{ Ti(b) % hmy = T;(b) where h = en™'/® and my,me = —2,—1,0,1, 2. (3.3)

For example, for (i, j, k,1,my,m2) = (1,2,1,3,0,1), we have the system of linear equations

In1350 — byInd4 — by (In44)? = In2435 — b11n37 — by (In37)?
In1350 — b11n44 — by(Ind4)? — 1.05 = In5578 — b11n34 — bo(In34)2.

In particular, there are 50 (= 5 x (g)) distinct linear equations of the form T;(b) £ hmgy =
T;(b), and at most 1225 (= (520)) systems of linearly independent equations of form (3.3).
Thus there are at most 1225 solutions of b.

However, the number of calculation can be reduced if we notice that there are 10 (= (g))

systems of two linearly independent equations of the form T;(b) = T (b) = Tj(b), where
i, 7 and k are all distinct, and 5 (= (i)) systems of two linearly independent equations
T;(b) = Tj(b) and T;(b) = Tj(b), where ¢, j, [ and k are all distinct. Thus there are at
most 52 x (10 + 5) = 375 distinct equations of form (3.3), and at most 375 solutions of b.
Step 2. (Skipped, see Remark 3.1).
Step 3. Using formula (2.2), we can derive [(b), for each b in the set obtained in
the previous step. By exhaustive search, it is found that the maximum value of I(b) is
[ ~ e %429, There are two b values that maximize [(b) over all possible b values. They are
b’ = (2.59,—0.87), (—0.04,—0.48). The median of them is not an MSMLE. We take the
first one 3’ = (2.56, —0.87). The covariance matrix of 3 can be obtained by (3.1).

As we have seen from this example, the MSMLE may not be unique. There are several
ways to select an estimate when the MSMLE is not unique. Under the simple linear regres-

sion model, i.e., p = 1, we choose the MSMLE that is closest to the median of the set of

all MSMLEs. The method can easily be extended to multiple regression. In particular, we
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choose an MSMLE that is closest to the center of the set of all MSMLESs, where the k—th
coordinate of the center is the median of the set consisting of all the k—th coordinates of

the MSMLES.

4. Performance of the MSMLE. In this section, we shall present simulation results
in which we investigated consistency and efficiency of the MSMLE when F, is not discrete,
as it is proved in Yu and Wong (2004) that the MSMLE is super efficient under a discrete

assumption. In our simulation studies, we considered the following distribution assumptions:
(1) the case that F, has a normal, logistic or exponential distribution;
(2) the case of complete-data or right-censored data.

We also investigated the influence of the bandwidth on the MSMLE, and the relative effi-
ciency of the MSMLE with respect to (w.r.t.) the parametric MLE or w.r.t. the BJE under

various distribution assumptions.

In our simulation, for convenience, we assumed that ¢, X and C are independent. In
each simulation study, we had 1000 replications and computed the sample mean and sample
standard error (SE) of the 1000 estimates. Hereafter Exp(u,o) denotes an exponential

T —

distribution with the pdf f(z) = %e_[ 1] 1(z>pu—0), Where 1(4) is the indicator of the set

A. We considered 6 different cases.

Case 1 (complete-data under a normal distribution). Suppose e ~ N(0,0.09), X ~ U(0,9)
(uniform distribution) and 8 = 1. Computing times for sample sizes less than 200 are less
than 12 minutes.

Case 2 (censored-data under a normal distribution). Suppose ¢ ~ N(3,0.09), X ~ U(0,9)
and C equals 0.5 and 39 w.p. 0.5 and 0.5, respectively. § = 1. Computing times for sample
sizes less than 200 are less than 2.5 minutes.

Case 3 (censored-data under a normal distribution). Suppose € ~ N(3,1), X ~ Exzp(0,1)

and C ~ Fzp(1,1). g = 1. Computing times for sample sizes less than 200 are less than 14
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seconds.

Case 4 (complete-data under a logistic distribution). Suppose € has a logistic distribution
with mean 0 and variance 1, X ~ FExp(0,1) and 8 = 1. Computing times for sample sizes

less than 200 are less than 53 seconds.

Case 5 (censored-data under a logistic distribution). Suppose € has a logistic distribution
with mean 0 and variance 1, X ~ Fzp(0,1) and C ~ Ezp(1,1). 8 = 1. Computing times

for sample sizes less than 200 are less than 9 seconds.

Case 6 (censored-data under an exponential distribution). Suppose e, C' and X have
distributions Exp(5,2), Exp(3,4) and Fxp(2,2), respectively. = 1. Computing times for
sample sizes less than 200 are less than 10 seconds.

The results of these cases are summarized in the Tables 1-6. In order to investigate
the influence of the bandwidth on estimation we carried out simulation studies with various
bandwidths h,, in Cases 1, 3, 4 and 5. The results are summarized in Tables 1, 2 and 3.
Entries in the column corresponding to &. are the sample means of the estimates of the SD
using formula (3.2). Table 4 presents the relative efficiency (RE) of the MSMLE with respect
to the parametric MLE (written as “MLE” in the table), where RE= SEy 1 p/SErmsyvLE-
The entries in the 3rd and 4th columns of the table are the sample mean (SE) of the
MSMLE and the parametric MLE, respectively, in the 1000 replications. In Case 1, the
parametric MLE has an explicit expression, which is the LSE. In the other cases, the MLE
can only be obtained by numerical methods. In particular, we used the Newton-Raphson
method to derive the MLE. In Table 2, we compare the BJE to the MSMLE under normal
distributions. In Table 5, we compare the sample variance of the MSMLE to the ELB under

the exponential distribution (Case 6).
The following are main observations from our simulation.
4.1. Consistency. All the 6 cases suggest that the MSMLE f3 is consistent, as the values

11



of # are all within 2 SE’s from the sample means and the SE’s are decreasing in n, (see

Tables 1-4).

Table 1. Simulation results on bandwidth effect under N(u,o?).
Case 1, 3 =1and oy =+/4.5+0.09

n cin h, MLE (SE) MSMLE (SE) o

32 0.5 1.000 (0.022) 1.000 (0.030) 0.020
1 0.999 (0.028) 0.020
2 0.998 (0.032) 0.021
4 0.960 (0.044) 0.022
10 0.927 (0.052) 0.025

200 0.5 1.000 (0.008) 1.000 (0.012) 0.008
1 1.000 (0.010) 0.008
2 1.000 (0.010) 0.008
4 0.998 (0.019) 0.008
10 0.958 (0.096) 0.011

300 1 1.000 (0.007) 1.000 (0.008) 0.007
2 1.000 (0.008) 0.007
4 1.000 (0.012) 0.007
10 0.932 (0.038) 0.008

Table 2. Simulation

results on comparison to BJE under N(u,o?).
Case 3, B =1 and oy = V2

~

n cin hy, BJE (SE) MSMLE (SE) Oe

200 1 0.909 (1.140) 1.146 (0.520) 0.624
5 1.034 (0.429) 0.617
10 1.058 (0.697) 0.658

300 1 0.952 (0.876) 1.104 (0.407) 0.494
5 1.013 (0.332) 0.494
10 1.021 ( 0.561) 0.515
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Table 3. Simulation results on various bandwidths
under logistic distribution.
B=1and oy =2
n ‘ cin h, ‘ MLE (SE) ‘ MSMLE (SE) ‘ Oc
Case 4. Complete-data.
32 1 0.996(0.345) 0.988(0.612) 0.346
2 0.964(0.494) 0.342
4 0.973(0.431) 0.339
10 0.989(0.496) 0.340
200 1 0.998(0.125) 0.988(0.207) 0.129
2 1.003(0.180) 0.129
4 0.995(0.157) 0.129
10 0.999(0.152) 0.129
300 1 0.991(0.101) 0.989(0.193) 0.105
2 0.998(0.151) 0.105
4 0.998(0.116) 0.105
10 0.986(0.111) 0.105
Case 5. Censored-data.

32 1 1.045 (0.472) 1.564 (1.527) 0.802
2 1.274 (1.149) 0.747
4 1.155 (0.993) 0.733
10 1.598 (1.535) 0.837
100 1 1.010 (0.264) 1.128 (0.561) 0.387
2 1.053 (0.450) 0.382
4 0.991 (0.432) 0.381
10 1.092 (0.731) 0.401
200 1 1.002 (0.186) 1.044 (0.336) 0.269
2 1.022 (0.283) 0.267
4 0.979 (0.274) 0.267
10 1.027 (0.450) 0.273
400 1 1.005 (0.131) 1.029 (0.232) 0.190
2 1.011 (0.194) 0.190
4 0.991 (0.184) 0.190
10 1.009(0.267) 0.188

4.2. Asymptotic normality. Our simulation results suggest that the MSMLE is asymp-
totically normally distributed. In Figure 4.1, we plot the QQ-plot of the MSMLESs versus

N(0,1). In each of the six QQ-plots, there are 1000 MSMLE estimates. The error distri-
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butions are normal, logistic and exponential, respectively, the sample sizes of the top three

QQ-plots are 50, 100 and 100, respectively, and the sample sizes of the bottom three QQ-

plots are 200, 400 and 400, respectively. It is seen that the QQ-plot of the MSMLESs from

the normal error distribution appears quite linear, even with a sample size of 200, as we

expected
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Fig.4.1. QQ-plot of the MSMLE v.s. N(0,1)

4.3. Efficiency. Simulation results in Table 4 are inconclusive on whether the MSMLE is

asymptotically efficient. None of the relative efficiencies displayed in Table 4 are 1 for the

largest sample sizes displayed. However, they all appear to be on the increase. In Case 6,

the efficient lower bound (ELB) of the estimator of 3 is Var(e)/(n-Var(X)) = 2.52/n. It is
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seen from Table 5 that when n = 800, the MSMLE practically attains the ELB. Note that

in Table 5, 52 stands for the sample variance in the simulation.

B

Table 4. Simulation results on relative efficiency of MSMLE w.r.t MLE.

g=1
case sample size MLE (SE) MSMLE (SE) RE

1 32 1.000 (0.0220) 0.998 (0.0300) 0.67
200 1.000 (0.0083) 1.000 (0.0094) 0.88
300 1.000 (0.0072) 1.000 (0.0081) 0.89

2 32 1.000 (0.030) 0.995 (0.042) 0.71
200 1.000 (0.011) 0.994 (0.013) 0.85
300 1.000 (0.009) 0.999 (0.010) 0.90

4 32 0.996 (0.345) 0.973 (0.431) 0.80
200 0.998 (0.124) 0.995 (0.152) 0.82
400 1.022 (0.090) 1.017 (0.103) 0.87

5 32 1.045 (0.472) 1.155 (0.993) 0.48
200 1.002 (0.186) 0.979 (0.274) 0.68
400 1.005 (0.131) 0.991 (0.184) 0.71

Table 5. Comparison between the SE of the MSMLE and the ELB
n: 32 100 200 400 800 vn-FELB

\/ﬁ%:(10.363 5.707 3.875 3.132 2.503)"' ( 2.5 )

It suggests that the MSMLE may be efficient in the exponential distribution case. Also the
simulation results indicate that the convergence rate of the MSMLE is /n.

4.4. Bandwidth impact. The bandwidth in (2.1) may make a difference for moderate
sample sizes. As suggested in Hardle (1990, p.59 or p.91), the optimal bandwidth with
complete-data (in terms of the mean squared error of the estimator) is h,, = en~ Y% where
¢ ~ min{a,iqr}, ¢ is the SE of the observations and “iqr” is the inter-quartile-range. Under
the linear regression model, our observations are the (Y;, X;)’s. It may be appropriate to
replace ¢ and “iqr” by the SD of the Y;’s. For Cases 1 and 2, the SD of Y is 4/ ?—; +0.09
and we selected h,, = en~/%, with ¢ = 0.5,1,2,4,10. For Cases 4 and 5, the SD of YV is
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V2 and we selected h,, = en~/®, with ¢ = 1,2,4,5,10. The influence of the bandwidth
on the MSMLE is displayed in Table 1, 2 and 3. From these tables we notice that (1) in
general, the MSMLE is consistent for each h,, selected in the tables; (2) as far as efficiency is
concerned, if n is large enough, h,, = c,0.n~> with ¢, between 1 and 3 (which corresponds
to ¢ around 2 and 5) may have some optimality (empirically). We suggest choosing ¢, = 2.
4.5. Justification of the covariance estimator in (3.1). If the MSMLE is efficient,
then a naive estimator of O'g is the estimate of the ELB of the variance given by Expression
(3.2). The performance of this estimate is studied via &, in Tables 1, 2 and 3. The estimator
maybe appropriate for large sample sizes, but often underestimates for sample sizes < 100.
Thus one may consider a conservative estimator.

The BJE is a semi-parametric estimator of 8 in the linear regression model. It is well
known that if € ~ N(u,0?) such as in Cases 1, 2 and 3, the BJE is efficient. From Table
1, we note that the BJE, which is the LSE and hence the MLE, is close to the MSMLE
when sample sizes are large. However, in Case 3, which is also under a normal distribution,
the SE of the BJE is twice the SE of the MSMLE for the sample sizes displayed in the
table. We also compared the relative efficiency of the MSMLE w.r.t. the BJE in three
uniform distribution (unif) cases and one exponential distributions (expon.) case (see Table
6). The results suggest that the MSMLE is as good as the BJE. Since Expression (3.1) is the
estimate of the covariance matrix of the BJE, one expects that it is a conservative estimate
of the covariance matrix of the MSMLE. This is confirmed by our simulation results (but

were not displayed).

Table 6. Estimates of the relative efficiency of MSMLE 3 to the BJE.

case : 1 3 ) 6 others?

52

R 7! 1.0 1.1 3.7 > 1
%5

F,: normal normal logistic. expon. unif.
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Note:

! In Case 1, i.e., under the normal distribution with complete-data, the parametric MLE
is the LSE, which is also the BJE. We only carried out simulation up to sample size
n = 300. The relative efficiency is 0.89 and is still increasing quite significantly (see

Table 4). Thus it is inconclusive in this case.

We carried out simulation with several other distributions including uniform distribu-
tions to compare the MSMLE with the BJE. The results are summarized in the column

“others”.

5. Applications. We compare the MSMLE to the BJE using two real data sets in this
section. The BJE is based on the least squares principle (see Buckley and James (1979))
and is also an M-estimator (see Zhang and Li (1996)). We do not compare the MSMLE to

other approaches for the following reasons.

1. The least squares approach is the common approach in linear regression with complete

data, though it is not efficient under the semi-parametric set-up.

2. There exist efficient M-estimators under the semi-parametric set-up (see Zhang and
Li (1996)). However, the M-estimation approach depends on the kernel selection and
its applications with real data sets have not been seen in the literature except for the

special case of the BJE as far as we know.
3. The other estimators discussed in Section 1 are not efficient.

In the first data set of size 40, the MSMLE looks reasonable, whereas the BJE appears
pretty bad, the sign of the BJE of the slope is not even right in view of the scatter plot
of the data set. In the second data set of size 99, the normality maybe valid and the two
estimates do not differ greatly. In order to remind readers that the normality of the error
distribution is not always valid even under the complete-data case, we present a simulation

studies in which the LSE is worse than the MSMLE in the case of complete-data with both
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small and large sample sizes.

Example 5.1. (Insulation data (Nelson 1973)). To evaluate a new Class-B insulation for
electric motors, temperature-accelerated life testing was conducted on 40 motorettes. The
main purpose was to estimate the distribution of insulation at the design temperature of
130°C. Ten motorettes were put on test at each of four temperatures (150°C, 170°C, 190°C,
and 220°C). Let X be the temperature (in °C) and Y the logarithm of hours to failure of
an insulation at temperature X. The data are plotted in Figure 5.1.

The MSMLE of (a, ) is (0.923,—0.022), with an SE (0.515,0.003). Thus it is signifi-
cant. The standard procedure for censored regression in the literature is the BJE. For this
data set, the BJE of («, 3) derived using the algorithm given in Buckley and James (1979)
is (8.951,0.011) with their standard errors (1.629,0.008) estimated by (3.1).

From the scatter plot in Figure 5.1, it is seen that the BJE is absurd, though the BJE is
not significant. In this data set of moderate sample size, our new approach has a compelling

advantage over the least squares principle and over the M-estimation approach.
Fig. 5.1. MSMLE vs. BJE For Insulation Data
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“+” stands for a right-censored observation and “.” an exact observation.
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Example 5.2. (Auto Data). This data set consists of 99 observations taken from a larger
data set of automobile fuel consumption data published by Transport Canada in 1985. One
can also find it in Jobson (1991). Data are uncensored. Y is the fuel consumption or
combustion rate (COMBRATE) and X is the weight of the car. For this data set, the
sample standard deviation of Y;’s is 21.1. The MSMLE of 3 is 0.024 with a standard error
0.002 if the coefficient ¢ in the bandwidth h = en~1/% is between 0.1 and 5, and is 0.040 with
a standard error 0.002 if the coefficient ¢ is between 6 and 100. According to our simulation
results, we choose ¢ = 42 (~ 2x sample SD of Y') and thus we choose the estimate 0.040
with a standard error 0.002. From Figure 5.2, it is seen that the choice of ¢ = 42 gives a
better estimate than the other choice. The MSMLE of « is —28.857 with a standard error
5.162. The standard procedure for this data set is the LSE. The LSE of (a, ) for this data
set is (—13.770,0.035) with standard errors (4.926,0.002). Notice that these two estimates
are not as drastically different as in Example 5.1. A Q-Q residual plot reveals that the error
distribution is very close to a normal distribution and thus one expects that the LSE is

efficient and so is the MSMLE.

Fig. 5.2. Regression Line for Auto Data

250

200

——  MSMLE with c<=5 -
,,,,,,,,,, LSE _- /
MSMLE with ¢>5

COMBRATE
150

100

50

1000 2000 3000 4000 5000 6000

WEIGHT

19



Note that in the case of complete data, the LSE is not efficient in general. The following
is a simulation study to remind readers that even for a small sample size, the variance of
the LSE maybe much larger than the variance of the MSMLE.

Simulation results. Case 7. Suppose € and X have distributions Exp(3,1) and Exp(0,1),
respectively. § = 1. The simulation results of the LSE and the MSMLE with sample sizes
10, 32, 100 and 200 are summarized in Table 7. It is seen from Table 7 that the relative
efficiency of the LSE w.r.t. the MSMLE is getting to 0.64 and the standard error of the
LSE is already larger than the standard error of the MSMLE under a small sample size of

10, if the error distribution is not normal.

Table 7. Simulation results on relative efficiency of LSE w.r.t MSMLE.
g=1
sample size LSE (SE) MSMLE (SE) RE (:SEMSMLE/SELSE>
10 0.972 (0.455) 1.017 (0.454) <1
32 1.004 (0.201) 1.006 (0.152) 0.76
100 0.986 (0.099) 0.998 (0.068) 0.68
200 0.999 (0.067) 0.995 (0.043) 0.64

6. Concluding Remarks. We propose a new estimator, the MSMLE, using the likelihood
principle. Simulation results suggest that the MSMLE is consistent and asymptotically
normally distributed. Our simulation results suggest that the MSMLE is more efficient than
the BJE, a common procedure in this problem. In particular, simulation studies suggest
that (1) the MSMLE is efficient if the error distribution is exponential and (2) the relative
efficiency of the MSMLE to the parametric MLE ranges from 0.71 to 0.9 under the logistic
distribution and normal distributions for the sample sizes up to 300-400.

The MSMLE depends on the bandwidth h,. Selection of optimal bandwidth relies
on what criterion is adopted. Possible criteria may include minimizing the mean squared

error in f,, minimizing the variance of § or maximizing I(b) in (2.2) over all h, and all b.
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As one expects, there does not exist a unique choice of bandwidth that is always optimal.

Simulation studies also suggest that the bandwidth h, = 2x sample SD of Y x n~=1/5

may
be appropriate for large sample sizes and the practical examples in Section 5 suggest that

this choice works well in practice.

Appendix. We shall prove the existence of the MSMLE here. Moreover, we shall present
the algorithm for the MSMLE formally and prove that it will find the MSMLE.

Let T(1y(b) < -+ < T(y,)(b) be order statistics of the T;(b)’s and let d(;(b) be the §;
associated with T{;)(b). Note that

Syt =] (1—M), (A.1)

—1+1
Ty (b)<t et

and thus given t, Sb(t) is constant on the set on which the vector (d(1y(b),..., 00,y (b)) is
a constant. Given a sample and the h,,, there are at most finitely many distinct values of

Sp(T(4)(b)), as there are at most 2" distinct values of the vector (§(1)(b),...,d(»)(b)). In
view of (2.2), the likelihood

n
A A A

L(b) oc [ [[S6((T5(b) — hn)—) = Sp(Ti(b) + hn )] (Su(T(b)))' %], (A.2)

i=1
thus the likelihood takes on finitely many values. Consequently, the MSMLE exists. o
To motivate an algorithm for the MSMLE, we make use of the following notation.
Since we have T;(b) £+ h,, and T;(b) in the likelihood (2.2) or (A.2), for convenience, we
write vz;_o(b) = T;(b) — hy, vs;—1(b) = T;(b), vsi(b) = T;(b) + hy, i = 1, ..., n. Let
r(v;(b)) be the rank of v;(b) among v;(b),...,vs,(b). Since the PLE only depends on the
ranks of T;(b)’s (see (A.1)), by (A.2), likelihood (2.2) is constant on the set Br, where
Br = {b: (r(vi(b)),...,7(vsn(b))) = r)}, for each of the possible values r = (rq,...,7r3,)
of (r(v1(b)), ..., (v3n(b))), the ranks of the 3n v;(b)’s. The above discussion suggests the
algorithm for the MSMLE:
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Algorithm 1. For each value r of the ranks of the 3n v;(b)’s, one can find a point by in
Byr. There are at most finitely many possible different values of r, and thus there are at
most finitely many different values of the likelihood function, say L(by) for all by we have.
Hence, finding the MSMLE can be done by exhaustive search. o

The key to the algorithm is to identify these By’s. For different r1 and ro, the ranks of
{vi(br,),i=1, ..., 3n} and {vk(br,), i = 1, ..., 3n} are different by definition. It is obvious
that vi(b)’s change their ranks only at the solutions to equations v;(b) = v;(b). By the
definition of v;(b), these equations yield the following 3 types.

(1) T;(b) + kh,, = Tj(b) + khy,,, k = 0,£1 (i.e. M; —bX; = M; —bX;);

(2) T;(b) — hy, = T;(b) + khy,, k=0, 1;

(3) T;(b) + hy, = T;(b) + khy,, k =0, —1.

These are the equations of the form T;(b) = T;(b) + kh,, k = 0, £1, £2. Finding the
solutions to these equations will help to identify the sets By.

We first explain how to find these By in the case of simple linear regression. Now the
space for b is the whole real line. The solution to the equation T;(b) = T;(b) + kh, (i.e.,
M; —bX; = M; —bX; + khy,), if exists, is either a singleton point (if X; # X;) or the whole
real line (if (X;, M;) = (X, M;)). Let a1 < -+ < a,, be all the distinct solutions to the
equations that have a unique solution. These points partition the real line into m + 1 open
intervals and m singleton sets. That is, there are 2m + 1 By’s. The likelihood function (2.2)
is constant on each of these subsets. The MSMLE can be found in three steps.

1. Compute the points b = %ﬂ;fm, for all X; # X;,4 < j and k = 0,41, £2. Order
the distinct elements of these b values as a1 < -+ < an;

2. Add to the above set the points a; — 1, a,, + 1 and points C”%“”, 1=2, .., m.

3. The maximum value of likelihood is obtained within the set of b values obtained in

Steps 1 and 2. Moreover, if b is an MSMLE and b € (a;,a;+1), then each point in
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(ai,a;+1) is also an MSMLE. o

From our simulation studies we noticed that the MSMLE always falls in the set obtained
in Step 1. Thus one may skip Step 2 in practice. This simplifies the search for by. In multiple
regression, in order to find the points b in Step 1, one can solve one by one the (3;) systems
of p linear equations v;, (b) = v;, (b), k = 1, ..., p, if they are linearly independent. This
can be implemented easily in computer, though the computation load of this approach is

large. We expect that for p < 3 and on a Pentiem 3 computer, it is feasible to compute the

MSMLE with a sample of size around 500.
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