Technical Report on

"Identifiability Conditions For The Linear Regression Model Under Right Censoring". Dong, J.Y. and Yu, Q.Q.

We give an example of obtaining SMLE when p = 2.

Example 5. Let $X, Z \sim bin(1,0.5)$, $W \sim U(0,1)$, $\beta_1 = \beta_2 = 1$, Y = X + Z + W, and $C \equiv 1$. Here $\tau_C = \tau_0 = 1$, $\mathbf{x}_0 = (0,0)$, $\mathbf{x}_1 = (0,1)$ with $w_1 = 0$ and $\mathbf{x}_2 = (1,0)$ with $w_2 = 0$. By Theorem 1, since $\mathscr{B}_{x_0} \neq \emptyset$ and $\mu(\mathscr{B}_{x_0}) = 0$, the SMLE of $\boldsymbol{\beta} = (\beta_1, \beta_2)$ is consistent.

Proof of Example 5. Assume there are N_0 exact observations $(X, Z, M, \delta) = (0, 0, M, 1)$, N_1 RC observations $(X, Z, M, \delta) = (1, 0, 1, 0)$, N_2 RC observations $(X, Z, M, \delta) = (0, 1, 1, 0)$, $N_3 =$ RC observations $(X, Z, M, \delta) = (1, 1, 1, 0)$ and $N_0 + N_1 + N_2 + N_3 = n$. WLOG, assume $M_1 < M_2 < \cdots < M_{N_1} < 1 = M_{N_1+1} = \cdots = M_n$. The exact observations divide the real line into $N_0 + 1$ intervals, $I_i = (M_i, M_{i+1}]$, $i = 0, 1, ..., N_0$, $M_0 = -\infty$ and $M_{N_0+1} = \infty$. Let $T_i = T_i(b_1, b_2) = M_i - b_1 X_i - b_2 Z_i$, i = 1, 2, ..., n, then $T_1 = M_1, ..., T_{N_1} = M_{N_1}, T_{N_1+1} = 1 - b_1 = \cdots = T_{N_1+N_2}, T_{N_1+N_2+1} = 1 - b_2 = \cdots = T_{n-N_3}, T_{n-N_3+1} = 1 - b_1 - b_2 = \cdots = T_n$. Assume $M_i \le 1 - b_1 < M_{i+1}$, $M_j \le 1 - b_2 < M_{j+1}$, and $M_k \le 1 - b_1 - b_2 < M_{k+1}$.

Case 1. If $0 \le i \le j \le k \le N_0$, then we can order all $T'_i s$ as $M_1 < M_2 < ... < M_i \le 1 - b_1 < M_{i+1} < ... < M_j \le 1 - b_2 < M_{j+1} < ... < M_k \le (1 - b_1 - b_2) < M_{k+1} < ... < M_{N_0}$. Then

$$\mathscr{L}(\mathbf{b}, \hat{S}_{\mathbf{b}})$$

$$\begin{split} &= [\prod_{r=1}^{i} \hat{f}(M_{r})] \left[(\hat{S}(1-b_{1}))^{N_{1}} \right] \left[\prod_{r=i+1}^{j} \hat{f}(M_{r}) \right] \left[(\hat{S}(1-b_{2}))^{N_{2}} \right] \left[\prod_{r=j+1}^{k} \hat{f}(M_{r}) \right] \left[(\hat{S}(1-b_{1}-b_{2}))^{N_{3}} \right] \left[\prod_{r=k+1}^{N_{0}} \hat{f}(M_{r}) \right] \\ &= (\frac{1}{n})^{i} \left(\frac{n-i}{n} \right)^{N_{1}} \left(\frac{n-i}{n} \frac{1}{N_{2}+N_{3}+N_{0}-i} \right)^{j-i} \left(\frac{n-i}{n} \frac{N_{2}+N_{3}+N_{0}-j}{N_{2}+N_{3}+N_{0}-i} \right)^{N_{2}} \\ &\quad (\frac{n-i}{n} \frac{N_{2}+N_{3}+N_{0}-j}{N_{2}+N_{3}+N_{0}-i} \frac{1}{N_{2}+N_{0}-j} \right)^{k-j} \left(\frac{n-i}{n} \frac{N_{2}+N_{2}+N_{0}-j}{N_{2}+N_{3}+N_{0}-i} \frac{N_{3}+N_{0}-k}{N_{3}+N_{0}-j} \right)^{N_{3}} \\ &\quad (\frac{n-i}{n} \frac{N_{2}+N_{3}+N_{0}-j}{N_{2}+N_{3}+N_{0}-i} \frac{N_{3}+N_{0}-k}{N_{3}+N_{0}-j} \frac{1}{N_{0}-k} \right)^{N_{0}-k} \\ &= \frac{1}{n^{n}} \frac{(n-i)^{n-i}}{(N_{0}+N_{2}+N_{3}-i)^{N_{0}+N_{2}+N_{3}-i}} \frac{(N_{0}+N_{2}+N_{3}-j)^{N_{0}+N_{3}-j}}{(N_{0}+N_{3}-j)^{N_{0}+N_{3}-j}} \frac{(N_{0}+N_{3}-k)^{N_{0}+N_{3}-k}}{(N_{0}-k)^{N_{0}-k}} \end{split}$$

By Lemma 3, since $n - i = N_1 + N_2 + N_3 + N_0 - i > N_0 + N_2 + N_3 - i$, $N_0 + N_2 + N_3 - j > N_0 + N_3 - j$, $N_0 + N_3 - k > N_0 - k$, $\frac{(N_0 + N_3 - k)^{N_0 + N_3 - k}}{(N_0 - k)^{N_0 - k}}$ is a decreasing function and is maximized when k = j, $\frac{(N_0 + N_2 + N_3 - j)^{N_0 + N_2 + N_3 - j}}{(N_0 + N_3 - j)^{N_0 + N_3 - j}}$ is a decreasing function and is maximized when j = i, and $\frac{(n - i)^{n - i}}{(N_0 + N_2 + N_3 - i)^{N_0 + N_2 + N_3 - j}}$ is a decreasing function and is maximized when i = 0. So $\mathcal{L}(\mathbf{b}, \hat{S}_{\mathbf{b}})$ is maximized when i = j = k = 0.

Case 2. If $0 \le i \le k \le j \le N_0$, then we can order all $T'_i s$ as $M_1 < M_2 < ... < M_i \le 1 - b_1 < M_{i+1} < b_i < M_i \le 1 - b_i < M_i$

$$\dots < M_k \le 1 - b_1 - b_2 < M_{k+1} < \dots < M_j \le 1 - b_2 < M_{j+1} < \dots < M_{N_0}$$
. Then

$$\mathscr{L}(\mathbf{b}, \hat{S}_{\mathbf{b}})$$

$$= \left[\prod_{r=1}^{i} \hat{f}(M_{r})\right] \left[(\hat{S}(1-b_{1}))^{N_{1}}\right] \left[\prod_{r=i+1}^{k} \hat{f}(M_{r})\right] \left[(\hat{S}(1-b_{1}-b_{2}))^{N_{3}}\right] \left[\prod_{r=k+1}^{j} \hat{f}(M_{r})\right] \left[(\hat{S}(1-b_{2}))^{N_{2}}\right] \left[\prod_{r=k+1}^{N_{0}} \hat{f}(M_{r})\right] \left[(\hat{S}(1-b_{2}))^{N_{2}}\right] \left[(\prod_{r=k+1}^{N_{0}} \hat{f}(M_{r})\right] \left[(\prod_{r=k+1}^{N_{0}} \hat{f}(M_{r})\right] \left[(\prod_{r=k+1}^{N_{0}} \hat{f}(M_{r})\right] \left[(\prod_{r=k+1}^{N_{0}} \hat$$

By Lemma 3, since $n - i = N_0 + N_1 + N_2 + N_3 - i > N_0 + N_2 + N_3 - i$, $N_0 + N_2 + N_3 - j > N_0 + N_2 - j$, $N_0 + N_2 - k = N_0 - k$, $\frac{(N_0 + N_2 - j)^{N_0 + N_2 - j}}{(N_0 - j)^{N_0 - j}}$ is a decreasing function and is maximized when j = i, $\frac{(N_0 + N_2 + N_3 - k)^{N_1 + N_2 + N_3 - k}}{(N_0 + N_2 - k)^{N_0 + N_2 - k}}$ is a decreasing function and is maximized when k = j, and $\frac{(n - i)^{n - i}}{(N_0 + N_2 + N_3 - i)^{N_0 + N_2 - k}}$ is a decreasing function and is maximized when i = 0. So $\mathcal{L}(\mathbf{b}, \hat{S}_{\mathbf{b}})$ is maximized when i = j = k = 0.

Other cases. By the similar argument as in Case 1 and 2, one can obtain

 $\mathscr{L}(\mathbf{b}, \hat{S}_{\mathbf{b}}) =$

$$\begin{cases} \frac{1}{n^n} \frac{(n-i)^{n-i}}{(N_0+N_2+N_3-i)^{N_0+N_2+N_3-i}} \frac{(N_0+N_2+N_3-j)^{N_0+N_2+N_3-j}}{(N_0+N_3-j)^{N_0+N_3-j}} \frac{(N_0+N_3-k)^{N_0+N_3-k}}{(N_0-k)^{N_0-k}} & \text{if } 0 \le i \le j \le k \le N_0 \\ \frac{1}{n^n} \frac{(n-i)^{n-i}}{(N_0+N_2+N_3-i)^{N_0+N_2+N_3-i}} \frac{(N_0+N_2+N_3-k)^{N_0+N_2+N_3-k}}{(N_0+N_2-k)^{N_0+N_2-k}} \frac{(N_0+N_2-j)^{N_0+N_2-j}}{(N_0-j)^{N_0-j}}, & \text{if } 0 \le i \le k \le j \le N_0 \\ \frac{1}{n^n} \frac{(n-j)^{n-j}}{(N_0+N_1+N_3-j)^{N_0+N_1+N_3-j}} \frac{(N_0+N_1+N_3-i)^{N_0+N_1+N_3-i}}{(N_0+N_3-i)^{N_0+N_1-i}} \frac{(N_0+N_3-k)^{N_0+N_3-k}}{(N_0+N_3-k)^{N_0-k}}, & \text{if } 0 \le j \le i \le k \le N_0 \\ \frac{1}{n^n} \frac{(n-j)^{n-j}}{(N_0+N_3+N_1-j)^{N_0+N_3+N_1-j}} \frac{(N_0+N_3+N_1-k)^{N_0+N_3+N_1-k}}{(N_0+N_1-k)^{N_0+N_1-k}} \frac{(N_0+N_1-i)^{N_0+N_1-i}}{(N_0-k)^{N_0-k}}, & \text{if } 0 \le j \le k \le i \le N_0 \\ \frac{1}{n^n} \frac{(n-k)^{n-k}}{(N_0+N_1+N_2-k)^{N_0+N_1+N_2-k}} \frac{(N_0+N_1+N_2-i)^{N_0+N_1+N_2-i}}{(N_0+N_2-i)^{N_0+N_2-i}} \frac{(N_0+N_2-j)^{N_0+N_2-j}}{(N_0-k)^{N_0-j}}, & \text{if } 0 \le k \le i \le j \le N_0 \\ \frac{1}{n^n} \frac{(n-k)^{n-k}}{(N_0+N_2+N_1-k)^{N_0+N_1+N_2-k}} \frac{(N_0+N_2+N_1-j)^{N_0+N_2+N_1-j}}{(N_0+N_1-j)^{N_0+N_2-i}} \frac{(N_0+N_1-i)^{N_0+N_1-i}}{(N_0-k)^{N_0-i}}, & \text{if } 0 \le k \le i \le j \le N_0 \end{cases}$$

For each case, by Lemma 3, since the last three terms are decreasing functions of *i*, *j* and *k* respectively, each case is always maximized when i = j = k = 0. The order of *i*, *j*, or *k* doesn't matter while maximizing $\mathcal{L}(\mathbf{b}, \hat{S}_{\mathbf{b}})$ and the maximum is always obtained when i = j = k = 0.

In other words, \mathscr{L} is maximized when $1 - b_1, 1 - b_2, 1 - b_1 - b_2 < M_1$, that is, when $b_1, b_2, b_1 + b_2 > 1 - M_1$. To obtain three inequalities simultaneously, we need to make $b_1 > 1 - M_1$ and $b_2 > 1 - M_1$. Similar to p = 1 case, we can let $b_1 = 1 - M_1 + \eta$, $b_2 = 1 - M_1 + \eta$, e.g., $\eta = \frac{1}{n}$. When sample size is large enough, $M_1 = \min(M_i) \rightarrow 0$ and thus $b_1 \rightarrow 0$ and $b_2 \rightarrow 0$. They are both

consistent.

Note. If we let $b_1 = 1 - M_1 + \eta$ and $b_1 + b_2 = 1 - M_1 + \eta$, then we cannot guarantee $b_2 > 1 - M_1$. So the only way to make all inequalities hold is to set $b_1 = 1 - M_1 + \eta$, $b_2 = 1 - M_1 + \eta$.

Remark 4. Example 5 shows that the order of *i*, *j*, or *k* doesn't matter while maximizing $\mathscr{L}(\mathbf{b}, \hat{S}_{\mathbf{b}})$ and the maximum is always obtained when i = j = k = 0. So, WLOG, we can assume $i \le j \le k$.