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We give an example of obtaining SMLE when p = 2.
Example 5. Let X, Z ~ bin(1,0.5), W ~U(0,1), f1 =f2=1, Y =X+ Z+ W, and C = 1. Here
Tc =To=1, X9 = (0,0), x; = (0,1) with w; = 0 and x, = (1,0) with wy = 0. By Theorem 1, since
By, # ¢ and p(%ABy,) =0, the SMLE of B = (81, B2) is consistent.
Proof of Example 5. Assume there are N, exact observations (X, Z, M,d) = (0,0, M,1), N,
RC observations (X, Z, M, d) = (1,0,1,0), N> RC observations (X, Z, M,d) = (0,1,1,0), N3 = RC
observations (X, Z, M,6) = (1,1,1,0) and Ny + N; + N> + N3 = n. WLOG, assume M; < My <--- <

Mpy, <1 = Mp,+1 =--- = M,. The exact observations divide the real line into Ny + 1 intervals,
I; = (M;,M;i+11,i=0,1,..., Ny, My = —oo and Mp,+1 =oo. Let T; = T;(b1,b2) = M; — 1 X; — b2 Z;,
i=12,.,nthenTy =M, .., Tn, =My, Tny+1=1-b1 = =Tnj+n,» TNj+Ny4+1=1—=b2 =+ =
Ty-Ny» Tn-nz+1=1—by— b2 =--- = Ty,. Assume M; <1—- by < Mjy, Mj <1-by < Mj,1, and

M <1-b1—by < M.
Casel. If0<i < j < k< Ny, then we can order all Tl.’sasM1<M2<...<M,-sl—b1<M,~+1<
...<Mj§1—b2<Mj+1<...<Mk5(1—b1—b2)<Mk+1<...<MNO.TheIl
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Case 2. If0<i <k < j< Ny then we can order all Tl.’sasM1<M2<...<M,-sl—b1<M,~+1<




w<Mp<1-b1—b2 <M1 <..<Mj<1-by<Mj; <..<Mp,. Then
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maximized wheni=j=k=0.

Other cases. By the similar argument as in Case 1 and 2, one can obtain
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For each case, by Lemma 3, since the last three terms are decreasing functions of i, j and k
respectively, each case is always maximized when i = j = k = 0. The order of i, j, or k doesn’t
matter while maximizing £ (b, S) and the maximum is always obtained when i = j = k = 0.

In other words, £ is maximized when 1 - b;,1 - b,,1— b; — b, < M, that is, when by, by, by +
b, > 1 - M,;. To obtain three inequalities simultaneously, we need to make b; > 1 - M; and
b, >1—- M,;. Similarto p=1case,wecanletb,=1-M;+n, b, =1-M;+1n,e.g.,n= % When
sample size is large enough, M; = min(M;) — 0 and thus b; — 0 and b, — 0. They are both



consistent.

Note. If we let by =1— M; +n and by + b, =1 - M; + 7, then we cannot guarantee b, > 1— M;. So
the only way to make all inequalities hold isto set by =1—- M) +n, b, =1—- M; +1.

Remark 4. Example 5 shows that the order of i, j, or k doesn’'t matter while maximizing £ (b, Sb)

and the maximum is always obtained when i = j = k = 0. So, WLOG, we can assume i < j < k.



