Technical Report on
“Identifiability Conditions For The Linear Regression Model Under Right Censoring”.
Dong, J.Y. and Yu, Q.Q.

We give an example of obtaining SMLE when \(p = 2 \).

Example 5. Let \(X, Z \sim \text{bin}(1,0.5), W \sim \text{U}(0,1) \), \(\beta_1 = \beta_2 = 1 \), \(Y = X + Z + W \), and \(C \equiv 1 \). Here \(\tau_C = \tau_o=1 \), \(\mathbf{x}_0 = (0,0) \), \(\mathbf{x}_1 = (0,1) \) with \(w_1 = 0 \) and \(\mathbf{x}_2 = (1,0) \) with \(w_2 = 0 \). By Theorem 1, since \(\mathcal{B}_{x_0} \neq \emptyset \) and \(\mu(\mathcal{B}_{x_0}) = 0 \), the SMLE of \(\mathbf{\beta} = (\beta_1, \beta_2) \) is consistent.

Proof of Example 5. Assume there are \(N_0 \) exact observations \((X, Z, M, \delta) = (0,0,M,1) \), \(N_1 \) RC observations \((X, Z, M, \delta) = (1,0,1,0) \), \(N_2 \) RC observations \((X, Z, M, \delta) = (0,1,1,0) \), \(N_3 \) RC observations \((X, Z, M, \delta) = (1,1,1,0) \) and \(N_0 + N_1 + N_2 + N_3 = n \). WLOG, assume \(M_1 < M_2 < \ldots < M_{N_1+1} = \cdots = M_n \). The exact observations divide the real line into \(N_0 + 1 \) intervals, \(I_1 = (M_1, M_{i+1}] \), \(i = 0,1,\ldots,N_0 \), \(M_0 = -\infty \) and \(M_{N_0+1} = \infty \). Let \(T_i = T_j(b_1, b_2) = M_i - b_1 X_1 - b_2 Z_i \), \(i = 1,2,\ldots,n \), then \(T_1 = M_1, \ldots, T_{N_1} = M_{N_1} \), \(T_{N_1+1} = 1 - b_1 = \cdots = T_{N_1+N_2}, T_{N_1+N_2+1} = 1 - b_2 = \cdots = T_{N_1+N_2+N_3} = T_n \). Assume \(M_i \leq 1 - b_1 < M_{i+1}, M_j \leq 1 - b_2 < M_{j+1}, \) and \(M_k \leq 1 - b_1 - b_2 < M_{k+1} \).

Case 1. If \(0 \leq i < j < k \leq N_0 \), then we can order all \(T_i \)'s as \(M_1 < M_2 < \ldots < M_i < 1 - b_1 < M_{i+1} < \ldots < M_j < 1 - b_2 < M_{j+1} < \ldots < M_k < (1 - b_1 - b_2) < M_{k+1} < \ldots < M_{N_0} \). Then

\[
\mathcal{L}(b, \hat{\mathbf{S}}_b) = \prod_{r=1}^{i} \hat{f}(M_r) \left[\prod_{r=i+1}^{j} \hat{f}(M_r) \right]^{N_0} \left[\prod_{r=j+1}^{k} \hat{f}(M_r) \right]^{N_1} \left[\prod_{r=k+1}^{N_0} \hat{f}(M_r) \right]^{N_3} \]

By Lemma 3, since \(n - i = N_1 + N_2 + N_3 < N_0 - i > N_0 + N_2 + N_3 - i, N_0 + N_2 + N_3 - j > N_0 + N_3 - j, N_0 + N_3 - k > N_0 - k, \) \(\frac{(N_0+N_3-k)^{N_0+N_3-j}}{(N_0-k)^{N_0-N_3-k}} \) is a decreasing function and is maximized when \(k = j, \frac{(N_0+N_3-j)^{N_0+N_3-j}}{(N_0-k)^{N_0-N_3-j}} \) is a decreasing function and is maximized when \(j = i, \) and \(\frac{1}{(N_0+N_3-j)^{N_0+N_3-j}} \) is a decreasing function and is maximized when \(i = 0 \). So \(\mathcal{L}(b, \hat{\mathbf{S}}_b) \) is maximized when \(i = j = k = 0 \).

Case 2. If \(0 \leq i \leq k \leq j \leq N_0 \), then we can order all \(T_i \)'s as \(M_1 < M_2 < \ldots < M_i \leq 1 - b_1 < M_{i+1} \leq 1 - b_2 \leq M_{i+1} < \ldots < M_j < 1 - b_1 < M_{i+1} \leq 1 - b_2 < M_{i+1} < \ldots < M_k < 1 - b_1 < M_{i+1} < \ldots < M_{N_0} \).
... $M_k \leq 1 - b_1 - b_2 < M_{k+1} < ... < M_j \leq 1 - b_2 < M_{j+1} < ... < M_{N_0}$. Then

$$\mathcal{L}(b, \hat{S}_b)$$

$$= \prod_{r=1}^{i} \hat{f}(M_r) [\hat{(S}(1 - b_1))^{N_1}] [\prod_{r=i+1}^{k} \hat{f}(M_r)] [\hat{(S}(1 - b_2))^{N_2}] [\prod_{r=k+1}^{N_0} \hat{f}(M_r)]$$

$$= \frac{(n-i)^{N_1} (N_0 + N_2 + N_3 - N_0 - i)}{n^{N_1} (N_0 + N_2 + N_3 + N_0 - i) (N_0 + N_2 + N_3 - N_0 - i)} \frac{(n-i)^{N_2} (N_0 + N_2 + N_3 + N_0 - k)}{n^{N_2} (N_0 + N_2 + N_3 + N_0 - k) (N_0 + N_2 + N_3 + N_0 - k)} \frac{(n-i)^{N_3} (N_0 + N_2 + N_3 - k)}{n^{N_3} (N_0 + N_2 + N_3 - k) (N_0 + N_2 + N_3 - k)}$$

By Lemma 3, since $n-i = N_0 + N_1 + N_2 + N_3 - i > N_0 + N_2 + N_3 - i, N_0 + N_2 + N_3 - j > N_0 + N_2 - j, N_0 + N_2 - k = N_0 - k$, $\frac{(N_0 + N_2 - j)^{N_0 + N_2 - j}}{(N_0 - j)^{N_0 - j}}$ is a decreasing function and is maximized when $j = i$, $\frac{(N_0 + N_2 + N_3 - k)^{N_0 + N_2 + N_3 - k}}{(N_0 + N_2 + N_3 - k)^{N_0 + N_2 + N_3 - k}}$ is a decreasing function and is maximized when $k = j$, and $\frac{(N_0 + N_2 + N_3 - k)^{N_0 + N_2 + N_3 - k}}{(N_0 + N_2 + N_3 - k)^{N_0 + N_2 + N_3 - k}}$ is a decreasing function and is maximized when $i = 0$. So $\mathcal{L}(b, \hat{S}_b)$ is maximized when $i = j = k = 0$.

Other cases. By the similar argument as in Case 1 and 2, one can obtain

$$\mathcal{L}(b, \hat{S}_b) =$$

$$\begin{cases}
\frac{1}{n^i} \frac{(n-i)^{j-i}}{(n-j)^{j-i}} \frac{(N_0 + N_2 + N_3 - j)^{N_0 + N_2 + N_3 - j}}{(N_0 - j)^{N_0 - j}} & \text{if } 0 \leq i \leq j \leq k \leq N_0 \\
\frac{1}{n^i} \frac{(n-i)^{j-i}}{(n-j)^{j-i}} \frac{(N_0 + N_2 - k)^{N_0 + N_2 - k}}{(N_0 - k)^{N_0 - k}} & \text{if } 0 \leq i \leq j \leq k \leq N_0 \\
\frac{1}{n^i} \frac{(n-i)^{j-i}}{(n-j)^{j-i}} \frac{(N_0 + N_3 - k)^{N_0 + N_3 - k}}{(N_0 - k)^{N_0 - k}} & \text{if } 0 \leq j \leq i \leq k \leq N_0 \\
\frac{1}{n^i} \frac{(n-i)^{j-i}}{(n-j)^{j-i}} \frac{(N_0 + N_1 + N_2 - k)^{N_0 + N_1 + N_2 - k}}{(N_0 - k)^{N_0 - k}} & \text{if } 0 \leq j \leq k \leq i \leq N_0 \\
\frac{1}{n^i} \frac{(n-i)^{j-i}}{(n-j)^{j-i}} \frac{(N_0 + N_1 - i)^{N_0 + N_1 - i}}{(N_0 - i)^{N_0 - i}} & \text{if } 0 \leq k \leq j \leq i \leq N_0 \\
\frac{1}{n^i} \frac{(n-i)^{j-i}}{(n-j)^{j-i}} \frac{(N_0 + N_1 - i)^{N_0 + N_1 - i}}{(N_0 - i)^{N_0 - i}} & \text{if } 0 \leq k \leq j \leq i \leq N_0 \\
\frac{1}{n^i} \frac{(n-i)^{j-i}}{(n-j)^{j-i}} \frac{(N_0 + N_1 - i)^{N_0 + N_1 - i}}{(N_0 - i)^{N_0 - i}} & \text{if } 0 \leq k \leq j \leq i \leq N_0 \\
\end{cases}$$

For each case, by Lemma 3, since the last three terms are decreasing functions of i, j and k respectively, each case is always maximized when $i = j = k = 0$. The order of i, j, or k doesn't matter while maximizing $\mathcal{L}(b, \hat{S}_b)$ and the maximum is always obtained when $i = j = k = 0$.

In other words, \mathcal{L} is maximized when $1 - b_1, 1 - b_2, 1 - b_1 - b_2 < M_1$, that is, when $b_1, b_2, b_1 + b_2 > 1 - M_1$. To obtain three inequalities simultaneously, we need to make $b_1 > 1 - M_1$ and $b_2 > 1 - M_1$. Similar to $p = 1$ case, we can let $b_1 = 1 - M_1 + \eta, b_2 = 1 - M_1 + \eta, e.g., \eta = \frac{1}{n}$. When sample size is large enough, $M_1 = \min(M_i) \to 0$ and thus $b_1 \to 0$ and $b_2 \to 0$. They are both
consistent.

Note. If we let \(b_1 = 1 - M_1 + \eta \) and \(b_1 + b_2 = 1 - M_1 + \eta \), then we cannot guarantee \(b_2 > 1 - M_1 \). So the only way to make all inequalities hold is to set \(b_1 = 1 - M_1 + \eta, b_2 = 1 - M_1 + \eta \).

Remark 4. Example 5 shows that the order of \(i, j, \) or \(k \) doesn’t matter while maximizing \(\mathcal{L}(b, \hat{S}_b) \) and the maximum is always obtained when \(i = j = k = 0 \). So, WLOG, we can assume \(i \leq j \leq k \).