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Appendix I. Roots of a polynomial of degree 3 or 4.

The roots of h(x) = ax3+bx2+cx+d = 0 can be derived as follows. Let x = y− b
3a

.

Then h(x) = 0 => y3 + py + q = 0, where p = 3ac−b2

3a2 and q = 2b3−9abc+27a2d
27a3 . Let

∆ = q2

4 + p3

27 .

(1) If ∆ < 0, there are 3 real roots:
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(

− q
2

+
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q2

4
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27

)1/3
+

(

− q
2
−

√

q2

4
+ p3

27

)1/3
,

y2 = ω1

(

− q
2 +

√

q2

4 + p3

27

)1/3
+ ω2

(

− q
2 −

√

q2

4 + p3

27

)1/3
,

y3 = ω2
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− q
2 +
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4 + p3

27

)1/3
+ ω1

(

− q
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4 + p3

27

)1/3
, where ω1 = −1+

√
3i

2 and

ω1 = −1−
√
3i

2
.

(2) If ∆ = 0, then y1 = 2(−q/2)1/3 and y2 = y3 = (q/2)1/3.

(3) if ∆ > 0, then y1 = y2 = y3 =
(

− q
2 +

√

q2

4 + p3

27

)1/3
+

(

− q
2 −

√

q2

4 + p3

27

)1/3
.

The roots of x4 + ax3 + bx2 + cx + d = 0 can be derived as follows.

The 4 roots can be solved through these 2 quadratic equations in x:

x2 +
a±

√

8y + a2 − 4b

2
x + (y ± ay − c

√

8y + a2 − 4b
) = 0

where y is any root of the equation y3 − b
2y

2 + ac−4d
4 y + d(4b−a2)−c2

8 = 0.

Appendix II. Proof of Theorem 4 in Cases (1) and (2). The proof of (I) (suffi-

ciency) is almost identical, except revising (η1, η2) in the proof there by setting η2 = b

in Case (1) and η1 = a in Case (2). Thus we only give the proofs that τY > a is the

necessary condition.

Suppose Case (1) is true. That is θ = a. Then

fZ,δ(t, s; θ) = (
1(t ∈ (θ, b])

b− θ
SY (t−))δ{[

1(t ∈ (θ, b])(b− t)

b− θ
+ 1(t < θ)]fY (t)}1−δ. (A.1)
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Assume τY ≤ a. Let η = θ + c, where c = (b − θ)/2. By (A.1), fZ,δ(t, 1; θ) =

1(t∈(θ,b])
b−θ SY (t−) = 0 = fZ,δ(t, 1; η) (except perhaps at t = θ), as (1) SY (t−) = 0 = fY (t)

for t > θ ≥ τY , and (2) 1(t ∈ [θ, b]) = 0 = 1(t ∈ [θ + c, b]) if t < θ. Moreover,

fZ,δ(t, 0; θ) = (1(t < θ) +
1(t ∈ [θ, b])(b− t)

b− θ
)fY (t) =

{

0 if t > θ
fY (t) if t ≤ θ

≡ fY (t). (A.2)

fZ,δ(t, 1; η) = (1(t < a + c) + 1(t∈[a+c,b])(b−t)
b−a−c )fY (t) ≡ fY (t) = fZ,δ(t, 1; θ) by (A.2).

Thus, fZ,δ(t, s; θ) = (fZ,δ(t, 1; θ))s(fZ,δ(t, 0; θ))1−s = (fZ,δ(t, 1; η))s(fZ,δ(t, 0; η))1−s =

fZ,δ(t, s; η), i.e., fZ,δ(t, s; η) = fZ,δ(t, s; θ) a.e. and consequently, Eq. (5.2) holds. Thus

τY > θ (= a) is the necessary identifiability condition in Case 1.

Now suppose Case (2) is true. Thus θ = b. Then

fZ,δ(t, s; θ) = (
1(t ∈ [a, θ))

θ − a
SY (t−))δ{[

1(t ∈ [a, θ])(θ− t)

θ − a
+ 1(t < a)]fY (t)}1−δ. (A.3)

Assume τY ≤ a. Let η = θ + 1. By (A.3), fZ,δ(t, 1; θ) = 1(t∈(a,θ])
θ−a

SY (t−) = 0 =

fZ,δ(t, 1; η) (except perhaps at t = a), as (1) SY (t−) = 0 = fY (t) for t > a ≥ τY , and

(2) 1(t ∈ [a, b]) = 0 = 1(t ∈ [a, b + 1]) if t < a. Moreover,

fZ,δ(t, 0; θ) = (1(t < a) +
1(t ∈ [a, b])(b− t)

b− a
)fY (t) =

{

0 if t > a
fY (t) if t ≤ a

≡ fY (t). (A.4)

fZ,δ(t, 1; η) = (1(t < a) + 1(t∈[a,b+1])(b+1−t)
b+1−a )fY (t) ≡ fY (t) = fZ,δ(t, 1; θ) by (A.4).

Thus, fZ,δ(t, s; η) = (fZ,δ(t, 1; θ))s(fZ,δ(t, 0; θ))1−s = (fZ,δ(t, 1; η))s(fZ,δ(t, 0; η))1−s =

fZ,δ(t, s; η), i.e., fZ,δ(t, s; η) = fZ,δ(t, s; θ) a.e. and consequently, Eq. (5.2) holds. Thus

τY > a is the necessary identifiability condition in Case 2.

Appendix III. Proof of Theorem 6 . We first consider b̂. Abusing notations, we write

a = â = Z(1). Let k =
∑n

i=1 1(Zi = c) (= n1(X > c), as 1(Z = c) = 1(Y ≡ c < X)).

Then d
db

ln L(b) = 0 leads to H(b) = − n
b−a

+ k
b−c

= 0. Thus the root of H(b) is

b̃ =
nc− ka

n− k
=

(n− k)c + k(c− a)

n− k
= c + (c− â)

1(X > c)

1 − 1(X > c)
= c + (c− â)

1 − p̂

p̂
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> c = Z(n). By Lemma 1, the MLE is b̂ = b̃. It converges to c + (c − a) b−c
c−a = b a.s..

Since V (â) = O(n−2) and 1(X ≤ c) ∼ bin(1, p) with p = P (X ≤ c), by the central

limit theorem and Slutsky’s Theorem,
√
n(b̂−b)

D→N(0, σ2), where σ2 = n(g′(p))2V (p̂) =

(c−a)2(1−p)
p3 and g(p) = c + (c− â) 1−p

p
(notice that V (â) = O(1/n2)).

Of course, â is not asymptotically normally distributed. It is well known that the

MLE of a is X(1). Let Xo ∼ U(0, 1) and To = (Xo)(n), then FTo
(t) = (FXo

(t))n =

tn1(t ∈ [0, 1]) + 1(t > 1).

E(To) =
∫ 1

0
(1 − tn)dt = 1 − tn+1/(n + 1)

∣

∣

1

0
= 1 − 1

n+1
.

E(T 2
o ) =

∫ 1

0
2t(1 − tn)dt = [t2 − 2tn+2/(n + 2)]

∣

∣

1

0
= 1 − 2

n+2 .

V (To) = 1 − 2
n+2 − (1 − 1

n+1 )2 = − 2
n+2 + 2

n+1 − ( 1
n+1 )2 = 2

(n+1)(n+2) − ( 1
n+1 )2 =

2n+2−n−2
(n+1)2(n+2)

= n
(n+1)2(n+2)

.

If X ∼ U(a, b) (= U(a, θ + a), then X = θXo + a, FX(t) = ( t−a
θ

)n1
(

t ∈ (a, b)
)

+ 1(t ≥

b) and SX(t) = ( b−1
θ )n1

(

t ∈ (a, b)
)

+ 1(t ≤ a). Moreover, V (X(n)) = θ2V (To) =

nθ2

(n+1)2(n+2) . V (X(1)) = nθ2

(n+1)2(n+2) , as X(1) = θ(1− To(n)) + a = θ− (θTo(n) + a) + 2a =

θ + 2a−X(n).
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