

Technical Report on

“The MLE Of The Uniform Distribution With Right-censored Data”

Appendix I. Roots of a polynomial of degree 3 or 4.

The roots of $h(x) = ax^3 + bx^2 + cx + d = 0$ can be derived as follows. Let $x = y - \frac{b}{3a}$.

Then $h(x) = 0 \Rightarrow y^3 + py + q = 0$, where $p = \frac{3ac - b^2}{3a^2}$ and $q = \frac{2b^3 - 9abc + 27a^2d}{27a^3}$. Let $\Delta = \frac{q^2}{4} + \frac{p^3}{27}$.

(1) If $\Delta < 0$, there are 3 real roots:

$$\begin{aligned} y_1 &= \left(-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \right)^{1/3} + \left(-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \right)^{1/3}, \\ y_2 &= \omega_1 \left(-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \right)^{1/3} + \omega_2 \left(-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \right)^{1/3}, \\ y_3 &= \omega_2 \left(-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \right)^{1/3} + \omega_1 \left(-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \right)^{1/3}, \text{ where } \omega_1 = \frac{-1+\sqrt{3}i}{2} \text{ and} \\ \omega_1 &= \frac{-1-\sqrt{3}i}{2}. \end{aligned}$$

(2) If $\Delta = 0$, then $y_1 = 2(-q/2)^{1/3}$ and $y_2 = y_3 = (q/2)^{1/3}$.

(3) if $\Delta > 0$, then $y_1 = y_2 = y_3 = \left(-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \right)^{1/3} + \left(-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \right)^{1/3}$.

The roots of $x^4 + ax^3 + bx^2 + cx + d = 0$ can be derived as follows.

The 4 roots can be solved through these 2 quadratic equations in x :

$$x^2 + \frac{a \pm \sqrt{8y + a^2 - 4b}}{2}x + \left(y \pm \frac{ay - c}{\sqrt{8y + a^2 - 4b}} \right) = 0$$

where y is any root of the equation $y^3 - \frac{b}{2}y^2 + \frac{ac-4d}{4}y + \frac{d(4b-a^2)-c^2}{8} = 0$. \square

Appendix II. Proof of Theorem 4 in Cases (1) and (2). The proof of (I) (sufficiency) is almost identical, except revising (η_1, η_2) in the proof there by setting $\eta_2 = b$ in Case (1) and $\eta_1 = a$ in Case (2). Thus we only give the proofs that $\tau_Y > a$ is the necessary condition.

Suppose Case (1) is true. That is $\theta = a$. Then

$$f_{Z,\delta}(t, s; \theta) = \left(\frac{\mathbf{1}(t \in (\theta, b])}{b - \theta} S_Y(t-) \right)^\delta \left\{ \left[\frac{\mathbf{1}(t \in (\theta, b])(b - t)}{b - \theta} + \mathbf{1}(t < \theta) \right] f_Y(t) \right\}^{1-\delta}. \quad (A.1)$$

Assume $\tau_Y \leq a$. Let $\eta = \theta + c$, where $c = (b - \theta)/2$. By (A.1), $f_{Z,\delta}(t, 1; \theta) = \frac{\mathbf{1}(t \in (\theta, b])}{b - \theta} S_Y(t-) = 0 = f_{Z,\delta}(t, 1; \eta)$ (except perhaps at $t = \theta$), as (1) $S_Y(t-) = 0 = f_Y(t)$ for $t > \theta \geq \tau_Y$, and (2) $\mathbf{1}(t \in [\theta, b]) = 0 = \mathbf{1}(t \in [\theta + c, b])$ if $t < \theta$. Moreover,

$$f_{Z,\delta}(t, 0; \theta) = (\mathbf{1}(t < \theta) + \frac{\mathbf{1}(t \in [\theta, b])(b - t)}{b - \theta}) f_Y(t) = \begin{cases} 0 & \text{if } t > \theta \\ f_Y(t) & \text{if } t \leq \theta \end{cases} \equiv f_Y(t). \quad (A.2)$$

$$f_{Z,\delta}(t, 1; \eta) = (\mathbf{1}(t < a + c) + \frac{\mathbf{1}(t \in [a+c, b])(b - t)}{b - a - c}) f_Y(t) \equiv f_Y(t) = f_{Z,\delta}(t, 1; \theta) \text{ by (A.2).}$$

Thus, $f_{Z,\delta}(t, s; \theta) = (f_{Z,\delta}(t, 1; \theta))^s (f_{Z,\delta}(t, 0; \theta))^{1-s} = (f_{Z,\delta}(t, 1; \eta))^s (f_{Z,\delta}(t, 0; \eta))^{1-s} = f_{Z,\delta}(t, s; \eta)$, *i.e.*, $f_{Z,\delta}(t, s; \eta) = f_{Z,\delta}(t, s; \theta)$ a.e. and consequently, Eq. (5.2) holds. Thus $\tau_Y > \theta (= a)$ is the necessary identifiability condition in Case 1.

Now suppose Case (2) is true. Thus $\theta = b$. Then

$$f_{Z,\delta}(t, s; \theta) = (\frac{\mathbf{1}(t \in [a, \theta])}{\theta - a} S_Y(t-))^\delta \{ [\frac{\mathbf{1}(t \in [a, \theta])(\theta - t)}{\theta - a} + \mathbf{1}(t < a)] f_Y(t) \}^{1-\delta}. \quad (A.3)$$

Assume $\tau_Y \leq a$. Let $\eta = \theta + 1$. By (A.3), $f_{Z,\delta}(t, 1; \theta) = \frac{\mathbf{1}(t \in (a, \theta])}{\theta - a} S_Y(t-) = 0 = f_{Z,\delta}(t, 1; \eta)$ (except perhaps at $t = a$), as (1) $S_Y(t-) = 0 = f_Y(t)$ for $t > a \geq \tau_Y$, and (2) $\mathbf{1}(t \in [a, b]) = 0 = \mathbf{1}(t \in [a, b + 1])$ if $t < a$. Moreover,

$$f_{Z,\delta}(t, 0; \theta) = (\mathbf{1}(t < a) + \frac{\mathbf{1}(t \in [a, b])(b - t)}{b - a}) f_Y(t) = \begin{cases} 0 & \text{if } t > a \\ f_Y(t) & \text{if } t \leq a \end{cases} \equiv f_Y(t). \quad (A.4)$$

$$f_{Z,\delta}(t, 1; \eta) = (\mathbf{1}(t < a) + \frac{\mathbf{1}(t \in [a, b + 1])(b + 1 - t)}{b + 1 - a}) f_Y(t) \equiv f_Y(t) = f_{Z,\delta}(t, 1; \theta) \text{ by (A.4).}$$

Thus, $f_{Z,\delta}(t, s; \eta) = (f_{Z,\delta}(t, 1; \theta))^s (f_{Z,\delta}(t, 0; \theta))^{1-s} = (f_{Z,\delta}(t, 1; \eta))^s (f_{Z,\delta}(t, 0; \eta))^{1-s} = f_{Z,\delta}(t, s; \eta)$, *i.e.*, $f_{Z,\delta}(t, s; \eta) = f_{Z,\delta}(t, s; \theta)$ a.e. and consequently, Eq. (5.2) holds. Thus $\tau_Y > a$ is the necessary identifiability condition in Case 2. \square

Appendix III. Proof of Theorem 6. We first consider \hat{b} . Abusing notations, we write

$a = \hat{a} = Z_{(1)}$. Let $k = \sum_{i=1}^n \mathbf{1}(Z_i = c)$ ($= n \overline{\mathbf{1}(X > c)}$, as $\mathbf{1}(Z = c) = \mathbf{1}(Y \equiv c < X)$).

Then $\frac{d}{db} \ln \mathbb{L}(b) = 0$ leads to $H(b) = -\frac{n}{b-a} + \frac{k}{b-c} = 0$. Thus the root of $H(b)$ is

$$\tilde{b} = \frac{nc - ka}{n - k} = \frac{(n - k)c + k(c - a)}{n - k} = c + (c - \hat{a}) \frac{\overline{\mathbf{1}(X > c)}}{1 - \overline{\mathbf{1}(X > c)}} = c + (c - \hat{a}) \frac{1 - \hat{p}}{\hat{p}}$$

$> c = Z_{(n)}$. By Lemma 1, the MLE is $\hat{b} = \tilde{b}$. It converges to $c + (c - a)\frac{b-c}{c-a} = b$ a.s.. Since $V(\hat{a}) = O(n^{-2})$ and $\mathbf{1}(X \leq c) \sim \text{bin}(1, p)$ with $p = P(X \leq c)$, by the central limit theorem and Slutsky's Theorem, $\sqrt{n}(\hat{b} - b) \xrightarrow{D} N(0, \sigma^2)$, where $\sigma^2 = n(g'(p))^2 V(\hat{p}) = \frac{(c-a)^2(1-p)}{p^3}$ and $g(p) = c + (c - \hat{a})\frac{1-p}{p}$ (notice that $V(\hat{a}) = O(1/n^2)$).

Of course, \hat{a} is not asymptotically normally distributed. It is well known that the MLE of a is $X_{(1)}$. Let $X_o \sim U(0, 1)$ and $T_o = (X_o)_{(n)}$, then $F_{T_o}(t) = (F_{X_o}(t))^n = t^n \mathbf{1}(t \in [0, 1]) + \mathbf{1}(t > 1)$.

$$E(T_o) = \int_0^1 (1 - t^n) dt = 1 - t^{n+1}/(n+1) \Big|_0^1 = 1 - \frac{1}{n+1}.$$

$$E(T_o^2) = \int_0^1 2t(1 - t^n) dt = [t^2 - 2t^{n+2}/(n+2)] \Big|_0^1 = 1 - \frac{2}{n+2}.$$

$$V(T_o) = 1 - \frac{2}{n+2} - (1 - \frac{1}{n+1})^2 = -\frac{2}{n+2} + \frac{2}{n+1} - (\frac{1}{n+1})^2 = \frac{2}{(n+1)(n+2)} - (\frac{1}{n+1})^2 = \frac{2n+2-n-2}{(n+1)^2(n+2)} = \frac{n}{(n+1)^2(n+2)}.$$

If $X \sim U(a, b)$ ($= U(a, \theta + a)$, then $X = \theta X_o + a$, $F_X(t) = (\frac{t-a}{\theta})^n \mathbf{1}(t \in (a, b)) + \mathbf{1}(t \geq b)$ and $S_X(t) = (\frac{b-1}{\theta})^n \mathbf{1}(t \in (a, b)) + \mathbf{1}(t \leq a)$. Moreover, $V(X_{(n)}) = \theta^2 V(T_o) = \frac{n\theta^2}{(n+1)^2(n+2)}$. $V(X_{(1)}) = \frac{n\theta^2}{(n+1)^2(n+2)}$, as $X_{(1)} = \theta(1 - T_{o(n)}) + a = \theta - (\theta T_{o(n)} + a) + 2a = \theta + 2a - X_{(n)}$. \square