Assignments for the Thanksgiving Week

- 1. Show that the ideal of $\mathbb{Z}[X]$ generated by X and 2 is not principal.
- 2. Find all irreducible Polynomials of degree 3 over \mathbb{Z}_2 and \mathbb{Z}_3 .
- 3. Find the decomposition of $X^6 + X^3 + 1$ in $\mathbb{Z}_2[X]$ and in $\mathbb{Z}_3[X]$ into a product of primes.
- 4. In the ring R = Z[√5] look for units (= elements invertible in R), irreducible elements, prime elements. Try to find a situation which shows that R cannot be a p.i.d. (Hint: play with the facts (√5+1)(√5 1) = 4, (√5+2)(√5 2) = 1, (√5+3)(√5 3) = 4)
- 5. Construct fields with 8, and 9 elements as quotient rings of Z₂[X] or Z₃[X] modulo the ideal an irreducible polynomial f(X) of degree 3 and 2, respectively. Find the addition and the multiplication table of these fields.

Example: The field with 4 elements is obtained as $\mathbf{F} = \mathbb{Z}_2[X]/\mathbb{Z}_2[X](1+X+X^2)$. Division with remainder shows that every polynomial f(X) of $\mathbb{Z}_2[X]$ can be written as $f(X) = g(X)(1+X+X^2)+r(X)$, where r(X) is either 0 or of degree at most 1. Moreover two different polynomials of degree at most 1 cannot be in the same coset mod the ideal $I = \mathbb{Z}_2[X](1+X+X^2)$, hence they form a complete set of representatives mod I.

We thus have four elements in $\mathbf{F} = \{0 = I, 1 = 1+I, a = X+I, b=a+1=(1+X)+I\}$ The + and mult-tables are easy to write down if one keeps in mind, that 2a = 0, and $1+a+a^2 = 0$.

+	0	1	а	<u>a+1</u>	<u>mult</u>	1	a	<u>a+1</u>
0	0	1	а	a+1	1	1	а	a+1
1	1	0	a+1	а	а	а	a+1	1
a	а	a+1	0	1	a+1	a+1	1	а
a+1	a+1	а	1	0				

Happy Thanksgiving