Assignments for the week Oct. 10th -- 17th

Problem 1.

Let G and H be two groups. We write $G \times H$ for the set of all pairs {(g,h) | $g \in G$, $h \in H$ } and we define on $G \times H$ a product by putting (g,h)(g',h') = (gg',hh').a)

a) Show that $G_1 = \{(g,e_H) \mid g \in G\}$ and $H_1 = \{(e_G,h) \mid h \in H\}$ are subgroups of $G \times H$,

- b) Show that $G_1 \cap H_1 = e$,
- c) Show that $G_1H_1 = G \times H_{,.}$
- c) Show that any two elements $g_1 \in G_1$ and $h_1 \in H_1$ commute in $G \times H$.

Problem 2. Show that $\mathbb{Z}_4 \times \mathbb{Z}_2$ is not isomorphic to \mathbb{Z}_8 ; but is it isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_4$?

The next problem starts with the following

Remark. Let p be a prime number. We have seen that all non-zero elements of the commutative ring $K = \mathbb{Z}_p$ are invertible (because they are represented by numbers $0 \le a \le p$ which cannot have a common divisor $\neq 1$ with p since p is a prime number). Hence K is a field and the techniques of linear algebra apply just like for other fields like \mathbb{R} , or \mathbb{Q} .

Problem 3. Let A be an additive Abelian group with the property that every non-zero element $a \in A$ has order p (i.e., pa = 0 for all $a \in A$). We would like to view A as a vector space over the field K. For this we need to define a product $k \cdot a$, and we attempt to do this by the formula $[n]_p \cdot a = na$, where n is an integer representing $k \in \mathbb{Z}_p$.

- a) Why do we have to show that this is well defined ?
- b) Prove that it is well defined and that it turns A into a vector space over K.

Problem 4. Let p be a prime number.

a) Find all (pairwise non-isomorphic) additive Abelian groups A of order p².

b) For each A of part a) find the number of subgroups of A.

Problem 5.

a) Show that the alternating groups A_3 and A_4 are generated by their 3-cycles.

b) show for arbitrary n that A_n is generated by all its 3-cycles.

Problem 6. Prove that if a is an element of the finite group G then $a^{|G|} = e$.