Assignment for the week Sept. 5th – Sept 12th.

- 1. Read Chapter 2.2 (sets and functions, p. 50 59) carefully. Ask questions in class when you find something which you do not fully understand.
- 2. Do exercises 15, 16, 17.
- 3. Try to read, discuss, understand and solve the following set of problems.

When A is a set we write P(A) for the set of all subsets of A; thus $P(A) = \{X \mid X \subseteq A\}$. When f: A \rightarrow B is a function from the set A into the set B, and S \subseteq B is an arbitrary subset of B we write f⁻¹(S) for the subset of A, f⁻¹(S) = {a \in A | f(a) \in S}. Thus f⁻¹ assigns to every subset S of B a subset f⁻¹(S) of A; hence f⁻¹ is a function f⁻¹: P(B) \rightarrow P(A). – See p. 57 for more details.

a) Find $f^{-1}(S)$ for $S = \emptyset$ (the empty set), for S = B, and describe $f^{-1}(S)$ in words when when $S = \{b\}$ is a singleton.

b) Is it true that for all S and T in P(B) we have

 $f^{-1}(S \cup T) = f^{-1}(S) \cup f^{-1}(T)$, and

 $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$?

- c) Show that if b is an element of B which is not in f(A) then $f^{-1}(\{b\}) = \emptyset$
- c') Prove that if f^{-1} is injective then f is surjective.
- d) Show that if a and a ' are two elements of A with f(a) = f(a') then every set of the form $f^{-1}(S)$ (with $S \subseteq B$) either contains both a and a' or contains neither a nor a'.
- d') Prove that if f⁻¹ is surjective then f is injective.