An instructive exercise on sets and functions

Let $f: A \rightarrow B$ a function (or a map) from the domain A into the range B. The same letter f is also used when we mean the corresponding function $f: P(A) \rightarrow P(B)$, on the power set P(A) of A, defined by $f(X) = \{f(x) | x \in X\}$. This "abuse of notation" is harmless as long as we always indicate domain and range together with the symbol f. Similarly for the symbol f^{-1} : It may be used for the function $f^{-1}: B \rightarrow P(A)$ which assigns to $b \in B$ the fiber $f^{-1}(b):=\{a \in A | f(a)=b\}$, or the map $f^{-1}: P(B) \rightarrow P(A)$ which assigns to each set $Y \in P(B)$ the set $f^{-1}(Y):=\{a \in A | f(a) \in Y\}$, $Y \in P(B)$, or the inverse $f^{-1}: B \rightarrow A$ of f when f is a bijection; but this is harmless as long as we always indicate domain and range of the function which we mean.

Exercise 1. Prove or disprove

a) f: $A \rightarrow B$ is injective if and only if f: $P(A) \rightarrow P(B)$ is injective, b) f: $A \rightarrow B$ is surjective if and only if f: $P(A) \rightarrow P(B)$ is surjective,

Exercise 2.

a) Show that for every $Y \subseteq B$, $f(f^{-1}(Y)) = Y \cap f(A)$, b) Show that if f: $A \rightarrow B$ is surjective then $f \circ f^{-1} = id_{P(B)}$ and f^{-1} : $P(B) \rightarrow P(A)$ is injective. c) Show that if f^{-1} : $P(B) \rightarrow P(A)$ is injective then f: $A \rightarrow B$ is surjective.

Exercise 3.

a) Show that for every $X \subseteq A$, $f^{-1}(f(X))$ is the union of all fibers over the elements in f(X).

b) Show that if f: $A \rightarrow B$ is injective then f^{-1} : $P(B) \rightarrow P(A)$ is surjective.

c) Show that if f^{-1} : P(B) \rightarrow P(A) is surjective then f: A \rightarrow B is injective.

Robert Bieri, September 19, 2012