Test 1

September 27th 2012

- 1. Let $A = (\mathbb{Z}_{8}, +)$ be the additive group of the integers mod 8. Find the order of all elements in A.
- 2. Let M be the set of all elements of \mathbb{Z}_8 that have a multiplicative inverse in \mathbb{Z}_8 . Prove that M -- with respect to multiplication in \mathbb{Z}_8 -- is a group, and compute the order of its elements.
- 3. Let G be an arbitrary group, and let $t \in G$. Prove that for each $x \in G$, x and $y = t^{-1}xt$ have the same order.
- Let f: A→B be a function from a set A into a set B, and g: P(B)→P(A) the function on set of subsets which sends the subset Y⊆B to the subset g(Y) = {a∈A|f(a)∈Y}⊆A Show that if f is surjective then g is injectiv.
- 5. Consider the two permutations $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 4 & 6 & 2 & 1 & 7 & 5 \end{pmatrix}$ $\rho = \begin{pmatrix} 12 & 3 & 4 & 5 & 6 & 7 \\ 2 & 17 & 5 & 6 & 4 & 3 \end{pmatrix}$ Find a permutation τ which has the property that $\tau \pi = \rho$.
- 6. Compute the orders of the elements τ , π , and ρ in Problem 5.
- 7. Give the Definition of a group (G, *) in detail (be careful to use the words "*for all* …" and "*there is* …" correctly!)
- 8. In the dihedral group D_4 let ρ be the rotation by $+\pi/2$. Choose an arbitrary reflection σ and compute $\sigma\rho\sigma^{-1}$.
- 9. Let A be a set with 3 elements, and let G = P(A) be the power set of A. We know that G with the operation X * Y = {a∈A | a∈X∪Y, a∉X∩Y}, where X,Y ∈ A, is a group. Give the multiplication table of G and decide whether G is isomorphic to Z₈.