Test 2

October 25th 2012

- a) In Z₆₀ find if possible the multiplicative inverses of [17] and [21].
 b) For an arbitrary prim p>2 find the multiplicative inverse of [(p − 1)/2] in Z_p.
- 2. Show that a group G that contains only the two subgroups $\{e\}$ and G is finite of order |G| = p a prime number.
- 3. Prove as in class that every subgroup of the additive group \mathbb{Z} is cyclic.
- 4. Prove that in a group G the following holdsa) any two conjugate elements have the same orderb) for arbitrary elements a, b in G ab and ba have the same order.
- 5. Let G be a group, H≤G a subgroup and N≤G a normal subgroup of G.
 a) prove that HN={hn | h∈H, n∈N} is a subgroup of G,
 b) prove that H∩N is a normal subgroup of H.
- 6. a) In the symmetric permutation group S₅ find a permutation π with $\pi(1,2,3)\pi^{-1}=(2,3,5)$ b) Can we choose π in A₅? If so why?
- 7. By enumerating the corners of a square counter-clockwise we realize the dihedral group D_4 as a subgroup $H \leq S_4$.
 - a) What are the elements of H?
 - b) Find a complete set of representatives of the cosets xH in S_4 .
 - c) find the elements of $H \cap A_4$ and the index $|S_4:(H \cap A_4)|.$
- 8. Let $\varphi: G \rightarrow H$ be a homomorphism of groups. Prove that if S is a subgroup of H then $T = \{a \in G \mid \phi(a) \in S\}$ is a subgroup of G.
- 9. Let G be a non-Abelian group of order |G|= 8. Show a) that G contains an element a∈G of order 4, b) that the cyclic subgroup gp(a) is normal, c) that a² has order 2, and d) the center of G is Z(G) = {e, a²}.